Science.gov

Sample records for episodic ataxia type

  1. The first knockin mouse model of episodic ataxia type 2.

    PubMed

    Rose, Samuel J; Kriener, Lisa H; Heinzer, Ann K; Fan, Xueliang; Raike, Robert S; van den Maagdenberg, Arn M J M; Hess, Ellen J

    2014-11-01

    Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes. PMID:25109669

  2. The first knockin mouse model of episodic ataxia type 2.

    PubMed

    Rose, Samuel J; Kriener, Lisa H; Heinzer, Ann K; Fan, Xueliang; Raike, Robert S; van den Maagdenberg, Arn M J M; Hess, Ellen J

    2014-11-01

    Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes.

  3. Episodic ataxia type 1: clinical characterization, quality of life and genotype-phenotype correlation.

    PubMed

    Graves, Tracey D; Cha, Yoon-Hee; Hahn, Angelika F; Barohn, Richard; Salajegheh, Mohammed K; Griggs, Robert C; Bundy, Brian N; Jen, Joanna C; Baloh, Robert W; Hanna, Michael G

    2014-04-01

    Episodic ataxia type 1 is considered a rare neuronal ion channel disorder characterized by brief attacks of unsteadiness and dizziness with persistent myokymia. To characterize the natural history, develop outcome measures for future clinical trials, and correlate genotype with phenotype, we undertook an international, prospective, cross-sectional study. Thirty-nine individuals (51% male) were enrolled: median age 37 years (range 15-65 years). We identified 10 different pathogenic point mutations in KCNA1 that accounted for the genetic basis of 85% of the cohort. Participants with KCNA1 mutations were more likely to have a positive family history. Analysis of the total cohort showed that the first episode of ataxia occurred before age 20 in all but one patient, with an average age of onset of 7.9 years. Physical exertion, emotional stress and environmental temperature were the most common triggers for attacks. Attack frequency ranged from daily to monthly, even with the same KCNA1 genotype. Average attack duration was in the order of minutes. Ten participants (26%) developed permanent cerebellar signs, which were related to disease duration. The average Scale for the Assessment and Rating of Ataxia score (SARA, a standardized measure of cerebellar dysfunction on clinical examination, scores range from 0-40) was an average of 3.15 for all participants (range 0-14), but was only 2 in those with isolated episodic ataxia compared with 7.7 in those with progressive cerebellar ataxia in addition to episodic ataxia. Thirty-seven participants completed the SF-36, a quality of life survey; all eight domain norm-based average scores (mean=50) were below normal with mental health being the lowest (41.3) in those with mutation positive episodic ataxia type 1. Scores on SF-36 correlated negatively with attack frequency. Of the 39 participants in the study, 33 harboured mutations in KCNA1 whereas the remaining six had no mutation identified. Episodic ataxia type 1 phenocopies

  4. Episodic ataxia type 1: clinical characterization, quality of life and genotype–phenotype correlation

    PubMed Central

    Graves, Tracey D.; Cha, Yoon-Hee; Hahn, Angelika F.; Barohn, Richard; Salajegheh, Mohammed K.; Griggs, Robert C.; Bundy, Brian N.; Jen, Joanna C.; Baloh, Robert W.

    2014-01-01

    Episodic ataxia type 1 is considered a rare neuronal ion channel disorder characterized by brief attacks of unsteadiness and dizziness with persistent myokymia. To characterize the natural history, develop outcome measures for future clinical trials, and correlate genotype with phenotype, we undertook an international, prospective, cross-sectional study. Thirty-nine individuals (51% male) were enrolled: median age 37 years (range 15–65 years). We identified 10 different pathogenic point mutations in KCNA1 that accounted for the genetic basis of 85% of the cohort. Participants with KCNA1 mutations were more likely to have a positive family history. Analysis of the total cohort showed that the first episode of ataxia occurred before age 20 in all but one patient, with an average age of onset of 7.9 years. Physical exertion, emotional stress and environmental temperature were the most common triggers for attacks. Attack frequency ranged from daily to monthly, even with the same KCNA1 genotype. Average attack duration was in the order of minutes. Ten participants (26%) developed permanent cerebellar signs, which were related to disease duration. The average Scale for the Assessment and Rating of Ataxia score (SARA, a standardized measure of cerebellar dysfunction on clinical examination, scores range from 0–40) was an average of 3.15 for all participants (range 0–14), but was only 2 in those with isolated episodic ataxia compared with 7.7 in those with progressive cerebellar ataxia in addition to episodic ataxia. Thirty-seven participants completed the SF-36, a quality of life survey; all eight domain norm-based average scores (mean = 50) were below normal with mental health being the lowest (41.3) in those with mutation positive episodic ataxia type 1. Scores on SF-36 correlated negatively with attack frequency. Of the 39 participants in the study, 33 harboured mutations in KCNA1 whereas the remaining six had no mutation identified. Episodic ataxia type 1

  5. Genetics Home Reference: episodic ataxia

    MedlinePlus

    ... Ebers GC. A genome-wide screen and linkage mapping for a large pedigree with episodic ataxia. Neurology. ... investigators. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain. 2007 Oct;130(Pt 10):2484-93. Epub ...

  6. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2

    PubMed Central

    Tan, S. Veronica; Burke, David; Labrum, Robyn W.; Haworth, Andrea; Gibbons, Vaneesha S.; Sweeney, Mary G.; Griggs, Robert C.; Kullmann, Dimitri M.; Bostock, Hugh; Hanna, Michael G.

    2016-01-01

    Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development. PMID:26912519

  7. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2.

    PubMed

    Tomlinson, Susan E; Tan, S Veronica; Burke, David; Labrum, Robyn W; Haworth, Andrea; Gibbons, Vaneesha S; Sweeney, Mary G; Griggs, Robert C; Kullmann, Dimitri M; Bostock, Hugh; Hanna, Michael G

    2016-02-01

    Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development.

  8. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2.

    PubMed

    Tomlinson, Susan E; Tan, S Veronica; Burke, David; Labrum, Robyn W; Haworth, Andrea; Gibbons, Vaneesha S; Sweeney, Mary G; Griggs, Robert C; Kullmann, Dimitri M; Bostock, Hugh; Hanna, Michael G

    2016-02-01

    Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development. PMID:26912519

  9. New insights into the pathogenesis and therapeutics of episodic ataxia type 1

    PubMed Central

    D’Adamo, Maria Cristina; Hasan, Sonia; Guglielmi, Luca; Servettini, Ilenio; Cenciarini, Marta; Catacuzzeno, Luigi; Franciolini, Fabio

    2015-01-01

    Episodic ataxia type 1 (EA1) is a K+ channelopathy characterized by a broad spectrum of symptoms. Generally, patients may experience constant myokymia and dramatic episodes of spastic contractions of the skeletal muscles of the head, arms, and legs with loss of both motor coordination and balance. During attacks additional symptoms may be reported such as vertigo, blurred vision, diplopia, nausea, headache, diaphoresis, clumsiness, stiffening of the body, dysarthric speech, and difficulty in breathing. These episodes may be precipitated by anxiety, emotional stress, fatigue, startle response or sudden postural changes. Epilepsy is overrepresented in EA1. The disease is inherited in an autosomal dominant manner, and genetic analysis of several families has led to the discovery of a number of point mutations in the voltage-dependent K+ channel gene KCNA1 (Kv1.1), on chromosome 12p13. To date KCNA1 is the only gene known to be associated with EA1. Functional studies have shown that these mutations impair Kv1.1 channel function with variable effects on channel assembly, trafficking and biophysics. Despite the solid evidence obtained on the molecular mechanisms underlying EA1, how these cause dysfunctions within the central and peripheral nervous systems circuitries remains elusive. This review summarizes the main breakthrough findings in EA1, discusses the neurophysiological mechanisms underlying the disease, current therapies, future challenges and opens a window onto the role of Kv1.1 channels in central nervous system (CNS) and peripheral nervous system (PNS) functions. PMID:26347608

  10. Whole-exome sequencing as a diagnostic tool in a family with episodic ataxia type 1.

    PubMed

    Tacik, Pawel; Guthrie, Kimberly J; Strongosky, Audrey J; Broderick, Daniel F; Riegert-Johnson, Douglas L; Tang, Sha; El-Khechen, Dima; Parker, Alexander S; Ross, Owen A; Wszolek, Zbigniew K

    2015-03-01

    Complex neurologic phenotypes are inherently difficult to diagnose. Whole-exome sequencing (WES) is a new tool in the neurologist's diagnostic armamentarium. Whole-exome sequencing can be applied to investigate the "diagnostic odyssey" cases. These cases involve patients with rare diseases that likely have a genetic etiology but have failed to be diagnosed by clinical evaluation and targeted gene testing. We describe such a case, a 22-year-old man who had mild intellectual developmental disability and episodes of jerking ataxic movements that affected his whole body. He underwent numerous multidisciplinary and multicentric evaluations throughout his life that failed to establish a clear diagnosis. Following his visit to Mayo Clinic in Jacksonville, Florida, WES was applied for genetic determination of the unknown disorder in the proband and his biological parents and sister. Additional clinical evaluation, magnetic resonance neuroimaging, electromyography, and electroencephalography of the proband were performed to verify the phenotype after the WES results were available. To our knowledge, this is the first report of the application of WES to facilitate the diagnosis of episodic ataxia type 1. This case illustrates that WES supported by clinical data is a useful and time-saving tool in the evaluation of patients with rare and complex hereditary disorders.

  11. Deficits in ocular and manual tracking due to episodic ataxia type 2.

    PubMed

    Engel, Kevin C; Anderson, John H; Gomez, Christopher M; Soechting, John F

    2004-07-01

    Four patients with a novel mutation leading to episodic ataxia type 2 were studied in a task that required them to track target motion either with the eyes or with the index finger of the right hand. The target initially moved in a straight line and then changed direction at an unpredictable time by an unpredictable amount. On the day of testing, 3 of the patients were evaluated as normal on a neurological exam, whereas the fourth was severely ataxic. Nevertheless, all 4 showed deficits in tracking behavior with common features. Ocular tracking tended to result in hypermetric saccades at longer than normal latencies. Smooth pursuit tracking was absent in 1 patient and had lower than normal gain in the others. Deficits in manual tracking showed similarities to the deficits in ocular tracking, with hypermetric compensations for changes in target direction. The similarities in the deficits in manual and ocular tracking suggest that they are subject to similar control by the cerebellar structures. PMID:15254935

  12. RNAi silencing of P/Q-type calcium channels in Purkinje neurons of adult mouse leads to episodic ataxia type 2.

    PubMed

    Salvi, Julie; Bertaso, Federica; Mausset-Bonnefont, Anne-Laure; Metz, Alexandra; Lemmers, Céline; Ango, Fabrice; Fagni, Laurent; Lory, Philippe; Mezghrani, Alexandre

    2014-08-01

    Episodic ataxia type-2 (EA2) is a dominantly inherited human neurological disorder caused by loss of function mutations in the CACNA1A gene, which encodes the CaV2.1 subunit of P/Q-type voltage-gated calcium channels. It remains however unknown whether the deficit of cerebellar CaV2.1 in adult is in direct link with the disease. To address this issue, we have used lentiviral based-vector RNA interference (RNAi) to knock-down CaV2.1 expression in the cerebellum of adult mice. We show that suppression of the P/Q-type channels in Purkinje neurons induced motor abnormalities, such as imbalance and ataxic gait. Interestingly, moderate channel suppression caused no basal ataxia, while β-adrenergic activation and exercise mimicked stress induced motor disorders. Moreover, stress-induced ataxia was stable, non-progressive and totally abolished by acetazolamide, a carbonic anhydrase inhibitor used to treat EA2. Altogether, these data reveal that P/Q-type channel suppression in adult mice supports the episodic status of EA2 disease.

  13. Episodic Ataxias: Clinical and Genetic Features.

    PubMed

    Choi, Kwang-Dong; Choi, Jae-Hwan

    2016-09-01

    Episodic ataxia (EA) is a clinically heterogeneous group of disorders that are characterized by recurrent spells of truncal ataxia and incoordination lasting minutes to hours. Most have an autosomal dominant inheritance pattern. To date, 8 subtypes have been defined according to clinical and genetic characteristics, and five genes are known to be linked to EAs. Both EA1 and EA2, which are caused by mutations in KCNA1 and CACNA1A, account for the majority of EA, but many patients with no identified mutations still exhibit EA-like clinical features. Furthermore, genetically confirmed EAs have mostly been identified in Caucasian families. In this article, we review the current knowledge on the clinical and genetic characteristics of EAs. Additionally, we summarize the phenotypic features of the genetically confirmed EA2 families in Korea. PMID:27667184

  14. Episodic Ataxias: Clinical and Genetic Features

    PubMed Central

    Choi, Kwang-Dong; Choi, Jae-Hwan

    2016-01-01

    Episodic ataxia (EA) is a clinically heterogeneous group of disorders that are characterized by recurrent spells of truncal ataxia and incoordination lasting minutes to hours. Most have an autosomal dominant inheritance pattern. To date, 8 subtypes have been defined according to clinical and genetic characteristics, and five genes are known to be linked to EAs. Both EA1 and EA2, which are caused by mutations in KCNA1 and CACNA1A, account for the majority of EA, but many patients with no identified mutations still exhibit EA-like clinical features. Furthermore, genetically confirmed EAs have mostly been identified in Caucasian families. In this article, we review the current knowledge on the clinical and genetic characteristics of EAs. Additionally, we summarize the phenotypic features of the genetically confirmed EA2 families in Korea. PMID:27667184

  15. Episodic ataxia type-1 mutations in the hKv1.1 cytoplasmic pore region alter the gating properties of the channel.

    PubMed Central

    D'Adamo, M C; Liu, Z; Adelman, J P; Maylie, J; Pessia, M

    1998-01-01

    Episodic ataxia type-1 is a rare human neurological syndrome which occurs during childhood and persists through the whole life of affected patients. Several heterozygous point mutations have been found in the coding sequence of the voltage-gated potassium channel gene hKv1.1 of different affected families. V408A and E325D mutations are located in the cytoplasmic putative pore region of hKv1.1 channels and profoundly alter their gating properties. V408A channels showed increased kinetic rates of activation, deactivation and C-type inactivation. Expression of E325D channels in Xenopus oocytes led to an approximately 13-fold current amplitude reduction and to a 52.4 mV positive shift in the voltage dependence of activation. Moreover, the E325D mutation altered the kinetics of activation, deactivation, C-type inactivation and channel open probability. Heteromeric channels composed of two wild-type and two mutated subunits, linked as dimers, showed gating properties intermediate between channels formed from four normal or four mutated subunits. The results demonstrate that the highly conserved residues Val408 and Glu325 play a pivotal role in several gating processes of a human potassium channel, and suggest a pathogenetic mechanism by which the impairment of the delayed-rectifier function of affected neurons is related to the type and number of mutated subunits which make up the hKv1.1 channels. PMID:9482717

  16. A novel frameshift mutation in FGF14 causes an autosomal dominant episodic ataxia.

    PubMed

    Choquet, Karine; La Piana, Roberta; Brais, Bernard

    2015-07-01

    Episodic ataxias (EAs) are a heterogeneous group of neurological disorders characterized by recurrent attacks of ataxia. Mutations in KCNA1 and CACNA1A account for the majority of EA cases worldwide. We recruited a two-generation family affected with EA of unknown subtype and performed whole-exome sequencing on two affected members. This revealed a novel heterozygous mutation c.211_212insA (p.I71NfsX27) leading to a premature stop codon in FGF14. Mutations in FGF14 are known to cause spinocerebellar ataxia type 27 (SCA27). Sanger sequencing confirmed segregation within the family. Our findings expand the phenotypic spectrum of SCA27 by underlining the possible episodic nature of this ataxia.

  17. Writer's cramp in spinocerebellar ataxia Type 1

    PubMed Central

    Khwaja, Geeta Anjum; Srivastava, Abhilekh; Ghuge, Vijay Vishwanath; Chaudhry, Neera

    2016-01-01

    Dystonia can be encountered in a small subset of patients with spinocerebellar ataxia (SCA), but task specific dystonia is extremely rare. We report a case of a 48-year-old male with confirmed SCA Type 1 (SCA1) with mild progressive cerebellar ataxia and a prominent and disabling Writer's cramp. This case highlights the ever-expanding phenotypic heterogeneity of the SCA's in general and SCA1 in particular. PMID:27695243

  18. Writer's cramp in spinocerebellar ataxia Type 1

    PubMed Central

    Khwaja, Geeta Anjum; Srivastava, Abhilekh; Ghuge, Vijay Vishwanath; Chaudhry, Neera

    2016-01-01

    Dystonia can be encountered in a small subset of patients with spinocerebellar ataxia (SCA), but task specific dystonia is extremely rare. We report a case of a 48-year-old male with confirmed SCA Type 1 (SCA1) with mild progressive cerebellar ataxia and a prominent and disabling Writer's cramp. This case highlights the ever-expanding phenotypic heterogeneity of the SCA's in general and SCA1 in particular.

  19. Genetics Home Reference: autosomal recessive cerebellar ataxia type 1

    MedlinePlus

    ... Health Conditions ARCA1 autosomal recessive cerebellar ataxia type 1 Enable Javascript to view the expand/collapse boxes. ... Close All Description Autosomal recessive cerebellar ataxia type 1 ( ARCA1 ) is a condition characterized by progressive problems ...

  20. A gene for nystagmus-associated episodic ataxia maps to chromosome 19p

    SciTech Connect

    Kramer, P.L.; Root, D.; Gancher, S.

    1994-09-01

    Episodic ataxia (EA) is a rare, autosomal dominant disorder, characterized by attacks of generalized ataxia and relatively normal neurological function between attacks. Onset occurs in childhood or adolescence and persists through adulthood. Penetrance is nearly complete. EA is clinically heterogeneous, including at least two distinct entities: (1) episodes of ataxia and dysarthria lasting hours to days, generally with interictal nystagmus (MIM 108500); (2) episodes of ataxia and dysarthria lasting only minutes, with interictal myokymia (MMM 160120). The EA/nystagmus patients sometimes develop persistent ataxia and cerebellar atrophy. Previously we reported linkage in four EA/myokymia families to a K{sup +} channel gene on chromosome 12p. We excluded this region in a large family with EA/nystagmus. We now report evidence for linkage to chromosome 19p in this and in one other EA/nystagmus family, based on eight microsatellite markers which span approximately 30 cM. The region is flanked distally by D19S209 and proximally by D19S226. All six markers within this region gave positive evidence for linkage; the highest total two-point lod scores occurred wtih D19S221 (3.98 at theta = 0.10) and D19S413 (3.37 at theta = 0.05). Interestingly, Joutel et al. (1993) mapped a gene for familial hemiplegic migraine (FHM) to the region around D19S221. Some individuals in these families have ataxia, cerebellar atrophy and interictal nystagmus, but no episodic ataxia. These results demonstrate that the clinical heterogeneity in EA reflects underlying genetic hetreogeneity. In addition, they suggest that EA/nystagmus and some FHM may represent different mutations in the same gene locus on chromosome 19p.

  1. A Precocious Cerebellar Ataxia and Frequent Fever Episodes in a 16-Month-Old Infant Revealing Ataxia-Telangiectasia Syndrome

    PubMed Central

    Nespoli, Luigi; Tajè, Silvia; Marinoni, Maddalena

    2013-01-01

    Ataxia-telangiectasia (AT) is the most frequent progressive cerebellar ataxia in infancy and childhood. Immunodeficiency which includes both cellular and humoral arms has variable severity. Since the clinical presentation is extremely variable, a high clinical suspicion will allow an early diagnosis. Serum alpha-fetoprotein is elevated in 80–85% of patients and therefore could be used as a screening tool. Here, we present a case of a 5-year-old female infant who was admitted to our department at the age of 16 months because of gait disorders and febrile episodes that had begun at 5 months after the cessation of breastfeeding. Serum alfa-fetoprotein level was elevated. Other investigations showed leukocytopenia with lymphopenia, reduced IgG2 and IgA levels, and low titers of specific postimmunization antibodies against tetanus toxoid and Haemophilus B polysaccharide. Peripheral lymphocytes subsets showed reduction of T cells with a marked predominance of T cells with a memory phenotype and a corresponding reduction of naïve T cells; NK cells were very increased (41%) with normal activity. The characterization of the ATM gene mutations revealed 2 specific mutations (c.5692C > T/c.7630-2A > C) compatible with AT diagnosis. It was concluded that AT syndrome should be considered in children with precocious signs of cerebellar ataxia and recurrent fever episodes. PMID:25374739

  2. Ataxia.

    PubMed

    Akbar, Umar; Ashizawa, Tetsuo

    2015-02-01

    Ataxia is a disorder of balance and coordination resulted from dysfunctions involving cerebellum and its afferent and efferent connections. While a variety of disorders can cause secondary ataxias, the list of genetic causes of ataxias is growing longer. Genetic abnormalities may involve mitochondrial dysfunction, oxidative stress, abnormal mechanisms of DNA repair, possible protein misfolding, and abnormalities in cytoskeletal proteins. Few ataxias are fully treatable while hope for efficacious gene therapy and pharmacotherapy is emerging. A discussion of the ataxias is presented here with brief mention of acquired ataxias, and a greater focus on inherited ataxias.

  3. Novel frameshift mutation in the CACNA1A gene causing a mixed phenotype of episodic ataxia and familiar hemiplegic migraine.

    PubMed

    Kinder, S; Ossig, C; Wienecke, M; Beyer, A; von der Hagen, M; Storch, A; Smitka, M

    2015-01-01

    Episodic ataxia type 2 (EA2, MIM#108500) is the most common form of EA and an autosomal-dominant inherited disorder characterized by paroxysmal episodes of ataxia. The disease causative gene CACNA1A encodes for the alpha 1A subunit of the voltage-gated P/Q-type calcium channel. We report on a family with a novel mutation in the CACNA1A gene. The clinical symptoms within the family varied from the typical clinical presentation of EA2 with dysarthria, gait ataxia and oculomotor symptoms to migraine and dystonia. A novel nonsense mutation of the CACNA1A gene was identified in all affected family members and is most likely the disease causing molecular defect. The pharmacological treatment with acetazolamide (AAA) was successful in three family members so far. Treatment with AAA led to a reduction of migraine attacks and an improvement of the dystonia. This relationship confirmed the hypothesis that this novel mutation results in a heterogeneous phenotype and confutes the coincidence with common migraine. Dystonia is potentially included as a further part of the phenotype spectrum of CACNA1A gene mutations.

  4. Ataxia

    PubMed Central

    Akbar, Umar; Ashizawa, Tetsuo

    2014-01-01

    Balance and coordination are products of complex circuitry involving the basal ganglia, cerebellum and cerebral cortex, as well as peripheral motor and sensory pathways. Malfunction of any part of this intricate circuitry can lead to imbalance and incoordination, or ataxia, of gait, the limbs or eyes, or a combination thereof. Ataxia can be a symptom of a multisystemic disorder, or it can manifest as the major component of a disease process. Ongoing discoveries of genetic abnormalities suggest the role ofmitochondrial dysfunction, oxidative stress, abnormal mechanisms of DNA repair, possible protein misfolding, and abnormalities in cytoskeletal proteins. Few ataxias are fully treatable, and most are symptomatically managed. A discussion of the ataxias is presented here with brief mention of acquired ataxias, and a greater focus on inherited ataxias. PMID:25432731

  5. Phenotype variability and early onset ataxia symptoms in spinocerebellar ataxia type 7: comparison and correlation with other spinocerebellar ataxias.

    PubMed

    Albuquerque, Marcus Vinicius Cristino de; Pedroso, José Luiz; Braga Neto, Pedro; Barsottini, Orlando Graziani Povoas

    2015-01-01

    The spinocerebellar ataxias (SCA) are a group of neurodegenerative disorders characterized by heterogeneous clinical presentation. Spinocerebellar ataxia type 7 (SCA7) is caused by an abnormal CAG repeat expansion and includes cerebellar signs associated with visual loss and ophthalmoplegia. Marked anticipation and dynamic mutation is observed in SCA7. Moreover, phenotype variability and very early onset of symptoms may occur. In this article, a large series of Brazilian patients with different SCA subtypes was evaluated, and we compared the age of onset of SCA7 with other SCA. From the 26 patients with SCA7, 4 manifested their symptoms before 10-year-old. Also, occasionally the parents may have the onset of symptoms after their children. In conclusion, our study highlights the genetic anticipation phenomenon that occurs in SCA7 families. Patients with very early onset ataxia in the context of a remarkable family history, must be considered and tested for SCA7.

  6. Episodic Ataxia

    MedlinePlus

    ... gene and thus being afflicted with the disease. Males and females are equally likely to be affiicted. ........................................................... . ............... . ............... .. ................ . ........ . ............ .. .. .. ................ . .. ...................... ...................... ........................ ................ ...................... ................. .................... 2 NAF– ...

  7. Ataxias.

    PubMed

    Perlman, Susan L

    2006-11-01

    Gait disorders in elderly individuals are a major cause of falls and their attendant morbidities. Ataxia is one of the neurologic components of fall risk, as are inattention or confusion, visual impairment, vestibular impairment, subcortical white matter disease, parkinsonism, weakness, sensory loss, orthostasis or arrhythmia with alterations in blood pressure, pain, medication use, and environmental hazards. Ataxia in the geriatric population has many causes. Correctly identifying them can improve clinicians' ability to offer treatment and management strategies to patients and their families. The goals should be safe mobility and preserved activities of daily living. PMID:17000340

  8. Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7.

    PubMed

    Hernandez-Castillo, Carlos R; Galvez, Victor; Diaz, Rosalinda; Fernandez-Ruiz, Juan

    2016-03-01

    Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder that is accompanied by loss of motor control and macular degeneration. Previous studies have shown cerebellar and pons atrophy as well as functional connectivity changes across the whole brain. Although different MRI modalities have been used to study the degenerative process, little is known about the relationship between the motor symptoms and cerebral atrophy. Twenty-four patients with molecular diagnosis of SCA7 where invited to participate in this study. Ataxia severity was evaluated using the scale for the assessment and rating of ataxia (SARA). Structural magnetic resonance imaging (MRI) brain images were used to obtain the grey matter volume of each participant. As expected, we found a significant negative correlation between the SARA score and the grey matter volume in distinct regions of the cerebellum in the patient group. Additionally, we found significant correlations between the ataxia degree and the degeneration of specific cortical areas in these patients. These findings provide a better understanding of the relationship between gray matter atrophy and ataxia related symptoms that result from the SCA7 mutation.

  9. A novel missense mutation in CACNA1A evaluated by in silico protein modeling is associated with non-episodic spinocerebellar ataxia with slow progression.

    PubMed

    Bürk, Katrin; Kaiser, Frank J; Tennstedt, Stephanie; Schöls, Ludger; Kreuz, Friedmar R; Wieland, Thomas; Strom, Tim M; Büttner, Thomas; Hollstein, Ronja; Braunholz, Diana; Plaschke, Jens; Gillessen-Kaesbach, Gabriele; Zühlke, Christine

    2014-04-01

    Spinocerebellar ataxia type 6 (SCA6), episodic ataxia type 2 (EA2) and familial hemiplegic migraine type 1 (FHM1) are allelic disorders of the gene CACNA1A encoding the P/Q subunit of a voltage gated calcium channel. While SCA6 is related to repeat expansions affecting the C-terminal part of the protein, EA2 and FHM phenotypes are usually associated with nonsense and missense mutations leading to impaired channel properties. In three unrelated families with dominant cerebellar ataxia, symptoms cosegregated with CACNA1A missense mutations of evolutionary highly conserved amino acids (exchanges p.E668K, p.R583Q and p.D302N). To evaluate pathogenic effects, in silico, protein modeling analyses were performed which indicate structural alterations of the novel mutation p.E668K within the homologous domain 2 affecting CACNA1A protein function. The phenotype is characterised by a very slowly progressive ataxia, while ataxic episodes or migraine are uncommon. These findings enlarge the phenotypic spectrum of CACNA1A mutations.

  10. Clinical and MRI findings in spinocerebellar ataxia type 5.

    PubMed

    Stevanin, G; Herman, A; Brice, A; Dürr, A

    1999-10-12

    Spinocerebellar ataxia type 5 (SCA5), one of the genetically heterogeneous autosomal dominant cerebellar ataxias, was assigned to chromosome 11 in a single family descending from the grandparents of President Abraham Lincoln. We report a second, apparently unrelated, SCA5 family of French origin. The overall clinical picture was a slowly progressive cerebellar syndrome beginning mostly in the third decade (27+/-10 years, range 14 to 40). MRI showed a marked global cerebellar atrophy similar to SCA6.

  11. Spinocerebellar ataxia type 36 in the Han Chinese

    PubMed Central

    Lee, Yi-Chung; Tsai, Pei-Chien; Guo, Yuh-Cherng; Hsiao, Cheng-Tsung; Liu, Guan-Ting

    2016-01-01

    Objective: To ascertain the genetic and clinical characteristics of the GGCCTG hexanucleotide repeat expansion in the nucleolar protein 56 gene (NOP56) in patients with spinocerebellar ataxia (SCA), sporadic ataxia, or amyotrophic lateral sclerosis (ALS) in Taiwan. Methods: We conducted clinical and molecular genetic studies of 109 probands with molecularly unassigned SCA from 512 SCA pedigrees, 323 healthy controls, 502 patients with sporadic ataxia syndromes, and 144 patients with ALS. Repeat-primed PCR assays and PCR-fragment analysis for the number of short hexanucleotide repeats (<40 units) were performed to ascertain NOP56 hexanucleotide repeat expansion. Genotyping included 8 microsatellite markers and 17 single nucleotide polymorphisms flanking NOP56 and covering a region of 1.8 Mb to assess a possible founder effect. Results: Eleven individuals from 3 SCA pedigrees have the NOP56 repeat expansions. The 3 pedigrees share a common haplotype spanning 5.3 kb flanking the NOP56 repeat expansions, suggesting a founder effect of spinocerebellar ataxia type 36 (SCA36) in the Han Chinese. The average age at symptom onset was 44.8 ± 3.8 years with truncal ataxia as the initial manifestation. Common features included slowly progressive truncal/limb ataxia, dysarthria, generalized hyperreflexia, and hearing impairment. Evidence of lower motor neuron involvement, including atrophy and fasciculation in the limb muscles and tongue, was mostly found in patients with prolonged disease duration. NOP56 repeat expansion was not detected in controls or patients with sporadic ataxic syndromes or ALS. Conclusions: SCA36 is an uncommon subtype, which accounted for 0.6% (3/512) of SCA cases in the Han Chinese population. PMID:27123487

  12. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene-KCNA1 (Kv1.1)

    SciTech Connect

    Browne, D.L.; Gancher, S.T.; Nutt, J.G.

    1994-09-01

    Episodic ataxia (EA) is a rare, familial disorder producing attacks of generalized ataxia, with normal or near-normal neurological function between attacks. One type of EA (MIM No.160120) displays autosomal dominant inheritance and is characterized by episodes of ataxia lasting seconds to minutes with myokymia (rippling of small muscles) evident between attacks. Genetic linkage studies in 4 families suggested localization of an EA/myokymia gene near the K{sup +} channel gene KCNA1 (Kv1.1) on chromosome 12p. Chemical cleavage mismatch and DNA sequence analysis of the KCNA1 coding region in these families identified 4 different missense point mutations present in the heterozygous state. The mutations found were Val174Phe, Arg239Ser, Phe249Ile and Val408Ala; the residue numbers correspond to those in the published amino acid sequence of KCNA1 (Genbank Accession No. L02750). Each of these mutations affects an amino acid residue that is invariant among Drosophila melanogaster, mouse, rat and human, The mutations were present in the affected members of the family and absent in all of the unaffected members and in at least 70 unrelated control individuals. These data strongly suggest that EA/myokymia can result from mutations in the KCNA1 gene.

  13. Spinocerebellar ataxia type 1 and Machado-Joseph disease: Incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia

    SciTech Connect

    Ranum, L.P.W.; Gomez, C.; Orr, H.T.

    1995-09-01

    The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia, we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 and MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% have SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively. 30 refs., 1 fig., 3 tabs.

  14. Comparing speech characteristics in spinocerebellar ataxias type 3 and type 6 with Friedreich ataxia.

    PubMed

    Brendel, Bettina; Synofzik, Matthis; Ackermann, Hermann; Lindig, Tobias; Schölderle, Theresa; Schöls, Ludger; Ziegler, Wolfram

    2015-01-01

    Patterns of dysarthria in spinocerebellar ataxias (SCAs) and their discriminative features still remain elusive. Here we aimed to compare dysarthria profiles of patients with (SCA3 and SCA6 vs. Friedreich ataxia (FRDA), focussing on three particularly vulnerable speech parameters (speaking rate, prosodic modulation, and intelligibility) in ataxic dysarthria as well as on a specific oral non-speech variable of ataxic impairment, i.e., the irregularity of oral motor diadochokinesis (DDK). 30 Patients with SCA3, SCA6, and FRDA, matched for group size (n = 10 each), disease severity, and disease duration produced various speech samples and DDK tasks. A discriminant analysis was used to differentiate speech and non-speech parameters between groups. Regularity of DDK was specifically impaired in SCA3, whereas impairments of speech parameters, i.e., rate and modulation were stronger affected in SCA6. Speech parameters are particularly vulnerable in SCA6, while non-speech oral motor features are notably impaired in SCA3.

  15. A comprehensive review of spinocerebellar ataxia type 2 in Cuba.

    PubMed

    Velázquez-Pérez, Luis; Rodríguez-Labrada, Roberto; García-Rodríguez, Julio Cesar; Almaguer-Mederos, Luis Enrique; Cruz-Mariño, Tania; Laffita-Mesa, José Miguel

    2011-06-01

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant cerebellar ataxia characterized by a progressive cerebellar syndrome associated to saccadic slowing, peripheral neuropathy, cognitive disorders, and other multisystem features. SCA2 is caused by the abnormal expansion of cytosine-adenine-guanine triplet repeats in the encoding region of the ATXN2 gene and therefore the expression of toxic polyglutamine expansions in the ataxin 2 protein, which cause progressive neuronal death of Purkinje cells in the cerebellum and several pontine, mesencephalic, and thalamic neurons among other cells. Worldwide, SCA2 is the second most frequent type of spinocerebellar ataxia, only surpassed by SCA3. Nevertheless, in Holguin, Cuba, the disease reaches the highest prevalence, resulting from a putative foundational effect. This review discusses the most important advances in the genotypical and phenotypical studies of SCA2, highlighting the comprehensive characterization reached in Cuba through clinical, neuroepidemiological, neurochemical, and neurophysiological evaluation of SCA2 patients and pre-symptomatic subjects, which has allowed the identification of new disease biomarkers and therapeutical opportunities. These findings provide guidelines, from a Cuban viewpoint, for the clinical management of the disease, its diagnosis, genetic counseling, and therapeutical options through rehabilitative therapy and/or pharmacological options.

  16. Excessive daytime somnolence in spinocerebellar ataxia type 1.

    PubMed

    Dang, Dien; Cunnington, David

    2010-03-15

    Autosomal dominant spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders which result in dysfunction of the neuronal systems of the spinal cord, brainstem, and cerebellum. The manifestations of daytime somnolence and abnormal sleep behavior have been described in SCA type 3 (SCA3) and SCA type 6 (SCA6), but as yet have not been described in SCA type 1 (SCA1). We report two cases of sleep disturbance, fatigue and excessive daytime somnolence in individuals with SCA1 and their progress through several therapies. These case studies are unique as they describe excessive daytime somnolence and sleep abnormalities in SCA1.

  17. Disruptive SCYL1 Mutations Underlie a Syndrome Characterized by Recurrent Episodes of Liver Failure, Peripheral Neuropathy, Cerebellar Atrophy, and Ataxia

    PubMed Central

    Schmidt, Wolfgang M.; Rutledge, S. Lane; Schüle, Rebecca; Mayerhofer, Benjamin; Züchner, Stephan; Boltshauser, Eugen; Bittner, Reginald E.

    2015-01-01

    Hereditary ataxias comprise a group of genetically heterogeneous disorders characterized by clinically variable cerebellar dysfunction and accompanied by involvement of other organ systems. The molecular underpinnings for many of these diseases are widely unknown. Previously, we discovered the disruption of Scyl1 as the molecular basis of the mouse mutant mdf, which is affected by neurogenic muscular atrophy, progressive gait ataxia with tremor, cerebellar vermis atrophy, and optic-nerve thinning. Here, we report on three human individuals, from two unrelated families, who presented with recurrent episodes of acute liver failure in early infancy and are affected by cerebellar vermis atrophy, ataxia, and peripheral neuropathy. By whole-exome sequencing, compound-heterozygous mutations within SCYL1 were identified in all affected individuals. We further show that in SCYL1-deficient human fibroblasts, the Golgi apparatus is massively enlarged, which is in line with the concept that SCYL1 regulates Golgi integrity. Thus, our findings define SCYL1 mutations as the genetic cause of a human hepatocerebellar neuropathy syndrome. PMID:26581903

  18. Increased catabolic state in spinocerebellar ataxia type 1 patients.

    PubMed

    Mähler, Anja; Steiniger, Jochen; Endres, Matthias; Paul, Friedemann; Boschmann, Michael; Doss, Sarah

    2014-08-01

    Autosomal dominant spinocerebellar ataxia type 1 (SCA1) is a genetic movement disorder with neuronal loss in the cerebellum, brainstem, and other cerebral regions. The course of SCA1 is accompanied with progressive weight loss and amyotrophia-the causes for that remain, however, unclear. We tested the hypothesis that an imbalance between energy intake and expenditure contributes to weight loss in SCA1 patients. Anthropometric measures, energy intake (food records), and resting (calorimetry) and free-living (accelerometry) energy expenditure were determined in 10 patients with genetically proven SCA1 and 10 healthy controls closely matched for age, sex, and body composition. At rest, energy expenditure per kilogram fat-free mass was 22 % and fat oxidation rate 28 % higher in patients vs. controls indicating an increased catabolic state. Under free-living conditions, total energy expenditure and daily step counts were significantly lower in patients vs. controls. However, most patients were able to maintain energy intake and expenditure in a balanced state. Resting energy expenditure, fat oxidation, and activity energy expenditure per step count are higher, whereas 24-h total energy expenditure is lower in SCA1 patients vs. healthy controls. An altered autonomic nervous system activity, gait ataxia, and a decreased physical activity might contribute to this outcome.

  19. Expanding the ataxia with oculomotor apraxia type 4 phenotype.

    PubMed

    Paucar, Martin; Malmgren, Helena; Taylor, Malcolm; Reynolds, John J; Svenningsson, Per; Press, Rayomand; Nordgren, Ann

    2016-02-01

    Ataxia with oculomotor apraxia type 4 (AOA4) is an autosomal recessive (AR) disorder recently delineated in a Portuguese cohort and caused by mutations in the PNKP (polynucleotide kinase 3'-phosphatase) gene.(1) AOA4 is a progressive, complex movement disorder that includes hyperkinetic features, eye movement abnormalities, polyneuropathy, varying degrees of cognitive impairment, and obesity. PNKP mutations were initially discovered to be the cause of the severe nonprogressive syndrome microcephaly, early-onset intractable seizures, and developmental delay (MCSZ).(2) Here we describe a patient with compound heterozygous PNKP mutations presenting with an AOA4 phenotype. New features that we report include both mutations, presence of chorea, absence of oculomotor apraxia (OMA), and slow disease progression. PMID:27066586

  20. Abraham Lincoln did not have type 5 spinocerebellar ataxia.

    PubMed

    Sotos, John G

    2009-10-20

    An autosomal dominant genetic disorder, type 5 spinocerebellar ataxia (SCA5), occurs in multiple descendants of one paternal uncle and one paternal aunt of President Abraham Lincoln. It has been suggested that Lincoln himself had the disease and that his DNA should be tested for an SCA5-conferring gene. Herein, I review the pertinent phenotypes of Lincoln, his father, and his paternal grandmother, and conclude that 1) Lincoln's father did not have SCA5, and, therefore, that Lincoln was not at special risk of the disease; 2) Lincoln had neither subclinical nor visible manifestations of SCA5; 3) little evidence suggests SCA5 is a "Lincolnian" disorder; and 4) without additional evidence, Lincoln's DNA should not be tested for SCA5.

  1. Sensorimotor processing for balance in spinocerebellar ataxia type 6

    PubMed Central

    Bunn, Lisa M.; Marsden, Jonathan F.; Voyce, Daniel C.; Giunti, Paola

    2015-01-01

    Abstract Background We investigated whether balance impairments caused by cerebellar disease are associated with specific sensorimotor processing deficits that generalize across all sensory modalities. Experiments focused on the putative cerebellar functions of scaling and coordinate transformation of balance responses evoked by stimulation of single sensory channels. Methods Vestibular, visual, and proprioceptive sensory channels were stimulated in isolation using galvanic vestibular stimulation, moving visual scenery, and muscle vibration, respectively, in 16 subjects with spinocerebellar ataxia type 6 (SCA6) and 16 matched healthy controls. Two polarities of each stimulus type evoked postural responses of similar form in the forward and backward directions. Disease severity was assessed using the Scale for Assessment and Rating of Ataxia. Results Impaired balance of SCA6 subjects during unperturbed stance was reflected in faster than normal body sway (P = 0.009), which correlated with disease severity (r = 0.705, P < 0.001). Sensory perturbations revealed a sensorimotor processing abnormality that was specific to response scaling for the visual channel. This manifested as visually evoked postural responses that were approximately three times larger than normal (backward, P < 0.001; forward P = 0.005) and correlated with disease severity (r = 0.543, P = 0.03). Response direction and habituation properties were no different from controls for all three sensory modalities. Conclusion Cerebellar degeneration disturbs the scaling of postural responses evoked by visual motion, possibly through disinhibition of extracerebellar visuomotor centers. The excessively high gain of the visuomotor channel without compensatory decreases in gains of other sensorimotor channels provides a potential mechanism for instability of the balance control system in cerebellar disease. © 2015 The Authors. Movement Disorders published by Wiley Periodicals, Inc

  2. Spinocerebellar ataxia type 10 in the south of Brazil – The Amerindian-Belgian connection

    PubMed Central

    Teive, Hélio Afonso Ghizoni; Moro, Adriana; Moscovich, Mariana; Arruda, Walter Oleskho; Munhoz, Renato Puppi; Raskin, Salmo; Teive, Gladys Mary Ghizoni; Dallabrida, Norberto; Ashizawa, Tetsuo

    2015-01-01

    Spinocerebellar ataxia type 10 (SCA10) is a rare form of autosomal dominant ataxia found predominantly in patients from Latin America with Amerindian ancestry. The authors report the history of SCA10 families from the south of Brazil (the states of Paraná and Santa Catarina), emphasizing the Belgian-Amerindian connection. PMID:26222367

  3. Spinocerebellar ataxia type 10 in the South of Brazil: the Amerindian-Belgian connection.

    PubMed

    Teive, Hélio Afonso Ghizoni; Moro, Adriana; Moscovich, Mariana; Arruda, Walter Oleskho; Munhoz, Renato Puppi; Raskin, Salmo; Teive, Gladys Mary Ghizoni; Dallabrida, Norberto; Ashizawa, Tetsuo

    2015-08-01

    Spinocerebellar ataxia type 10 (SCA10) is a rare form of autosomal dominant ataxia found predominantly in patients from Latin America with Amerindian ancestry. The authors report the history of SCA10 families from the south of Brazil (the states of Paraná and Santa Catarina), emphasizing the Belgian-Amerindian connection.

  4. A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7.

    PubMed

    Velázquez-Pérez, L; Cerecedo-Zapata, C M; Hernández-Hernández, O; Martínez-Cruz, E; Tapia-Guerrero, Y S; González-Piña, R; Salas-Vargas, J; Rodríguez-Labrada, R; Gurrola-Betancourth, R; Leyva-García, N; Cisneros, B; Magaña, J J

    2015-01-01

    Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disorder characterized by progressive cerebellar ataxia associated with macular degeneration. We recently described one of the largest series of patients with SCA7 that originated from a founder effect in a Mexican population, which allowed us to perform herein the first comprehensive clinical, neurophysiological, and genetic characterization of Mexican patients with SCA7. In this study, 50 patients, categorized into adult or early phenotype, were clinically assessed using standard neurological exams and genotyped using fluorescent PCR and capillary electrophoresis. Patients with SCA7 exhibited the classical phenotype of the disease characterized by cerebellar ataxia and visual loss; however, we reported, for the first time, frontal-executive disorders and altered sensory-motor peripheral neuropathy in these patients. Semiquantitative analysis of ataxia-associated symptoms was performed using Scale for the Assessment and Rating of Ataxia (SARA) and the Brief Ataxia Rating Scale (BARS) scores, while extracerebellar features were measured employing the Inventory of Non-ataxia Symptoms (INAS) scale. Ataxia rating scales confirmed the critical role size of cytosine-adenine-guanine (CAG) repeat size on age at onset and disease severity, while analysis of CAG repeat instability showed that paternal rather than maternal transmission led to greater instability.

  5. Psychiatric disorders, spinocerebellar ataxia type 3 and CAG expansion.

    PubMed

    Silva, Uanda Cristina Almeida; Marques, Wilson; Lourenço, Charles Marques; Hallak, Jaime Eduardo C; Osório, Flávia L

    2015-07-01

    Few studies have investigated the association between spinocerebellar ataxia type 3 (SCA3) and psychiatric disorders, using mainly screening scales to assess signs and symptoms of depression and anxiety. With these limitations in mind, we assessed the prevalence of DSM-IV Axis I psychiatric disorders in SCA3 patients and their possible associations with the length of CAG repeats and socio-demographic characteristics, highlighting potential risk factors. DNA samples were collected from 59 adults diagnosed with SCA3 for the quantification of CAG repeats. Next, the patients were assessed in respect to the presence of psychiatric disorders with the Structured Clinical Interview for DSM-IV. Approximately half of the sample had at least one psychiatric disorder (mood disorders 45.2 %), mainly dysthymia and current depression. There were no statistically significant differences in the length of CAG repeats between subjects with and without psychiatric disorders. The perception that SCA3 has a negative impact on life and the subjective assessment of current health status as poor emerged as risk factors for the occurrence of psychiatric disorders in the sample. There is a higher prevalence of psychiatric disorders in SCA3 patients compared to the general population. The lack of association between CAG repeats and occurrence of psychiatric disorders lends support to the hypothesis that psychiatric disorders in this group are associated with adaptive emotional responses to becoming ill.

  6. Spinocerebellar ataxia type 6 in eastern India: Some new observations

    PubMed Central

    Bhattacharyya, Kalyan B; Pulai, Debabrata; Guin, Deb Shankar; Ganguly, Goutam; Joardar, Anindita; Roy, Sarnava; Rai, Saurabh; Biswas, Atanu; Pandit, Alok; Roy, Arijit; Senapati, Asit Kumar

    2016-01-01

    Introduction: Spinocerebellar ataxias (SCAs) are hereditary, autosomal dominant progressive neurodegenerative disorders showing clinical and genetic heterogeneity. They are usually manifested clinically in the third to fifth decade of life although there is a wide variability in the age of onset. More than 36 different types of SCAs have been reported so far and about half of them are caused by pathological expansion of the trinucleotide, Cytosine Alanine Guanine (CAG) repeat. The global prevalence of SCA is 0.3-2 per 100,000 population, SCA3 being the commonest variety worldwide, accounting for 20-50 per cent of all cases, though SCA 2 is generally considered as the commonest one in India. However, SCA6 has not been addressed adequately from India though it is common in the eastern Asian countries like, Japan, Korea and Thailand. Objective: The present study was undertaken to identify the prevalence of SCA6 in the city of Kolkata and the eastern part of India. Materials and Methods: 83 consecutive patients were recruited for the study of possible SCAs and their clinical features and genotype were investigated. Results: 6 of the 83 subjects turned out positive for SCA6, constituting therefore, 13.33% of the patient pool. Discussion: SCA6 is prevalent in the eastern part of India, though not as frequent as the other common varieties. Conclusions: Further community based studies are required in order to understand the magnitude of SCA6 in the eastern part, as well as in other regions of India. PMID:27570389

  7. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23.

    PubMed

    Smeets, Cleo J L M; Jezierska, Justyna; Watanabe, Hiroyuki; Duarri, Anna; Fokkens, Michiel R; Meijer, Michel; Zhou, Qin; Yakovleva, Tania; Boddeke, Erik; den Dunnen, Wilfred; van Deursen, Jan; Bakalkin, Georgy; Kampinga, Harm H; van de Sluis, Bart; Verbeek, Dineke S

    2015-09-01

    Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid

  8. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23.

    PubMed

    Smeets, Cleo J L M; Jezierska, Justyna; Watanabe, Hiroyuki; Duarri, Anna; Fokkens, Michiel R; Meijer, Michel; Zhou, Qin; Yakovleva, Tania; Boddeke, Erik; den Dunnen, Wilfred; van Deursen, Jan; Bakalkin, Georgy; Kampinga, Harm H; van de Sluis, Bart; Verbeek, Dineke S

    2015-09-01

    Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid

  9. Clinical and neurophysiological profile of four German families with spinocerebellar ataxia type 14.

    PubMed

    Ganos, Christos; Zittel, Simone; Minnerop, Martina; Schunke, Odette; Heinbokel, Christina; Gerloff, Christian; Zühlke, Christine; Bauer, Peter; Klockgether, Thomas; Münchau, Alexander; Bäumer, Tobias

    2014-02-01

    Spinocerebellar ataxia type 14 (SCA14) is an autosomal-dominant ataxia caused by point mutations of the Protein Kinase C Gamma gene. In addition to slowly progressive cerebellar ataxia, it is characterised by dystonia and myoclonus. With scant neuropathological data and no detailed neurophysiological examinations little is known on extracerebellar consequences of SCA14 related cerebellar pathology. To this end, we here delineate clinical phenomenology and neurophysiology of four German SCA14 families. Detailed clinical examination including ataxia severity evaluation by means of the Scale for the Assessment and Rating of Ataxia (SARA) was carried out in 9 affected family members (mean age 49.8 years ± 14.4 SD). Motor thresholds (MT), the contralateral silent period (CSP), short interval intracortical inhibition (SICI) and intracortical facilitation (ICF), interhemispheric inhibition (IHI) and short afferent inhibition (SAI) were determined using transcranial magnetic stimulation (TMS). Somatosensory evoked potentials (SEP) of the median nerve, and acoustic and visual evoked potentials (AEP, VEP) were also performed. Most patients reported symptoms since early childhood. There was a positive correlation between age and SARA scores (r = .721, P < 0.05). Patients had cerebellar ataxia, mild dystonia (focal, task-specific or segmental), subtle pyramidal signs and myoclonus. SICI increased with increasing conditioning pulse intensities in healthy controls but not in patients. Other neurophysiological parameters did not differ between groups. SCA14 is a slowly progressive ataxia associated with mild dystonia and myoclonus. Reduced SICI reflects abnormalities of intracortical inhibitory circuits.

  10. A CaV2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant.

    PubMed

    Dahimene, Shehrazade; Page, Karen M; Nieto-Rostro, Manuela; Pratt, Wendy S; D'Arco, Marianna; Dolphin, Annette C

    2016-09-01

    Episodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide. PMID:27260834

  11. A CaV2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant.

    PubMed

    Dahimene, Shehrazade; Page, Karen M; Nieto-Rostro, Manuela; Pratt, Wendy S; D'Arco, Marianna; Dolphin, Annette C

    2016-09-01

    Episodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide.

  12. 4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6.

    PubMed

    Jayabal, Sriram; Chang, Hui Ho Vanessa; Cullen, Kathleen E; Watt, Alanna J

    2016-01-01

    Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA6(84Q/+)) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA6(84Q/84Q)) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA6(84Q/84Q) mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6. PMID:27381005

  13. 4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6

    PubMed Central

    Jayabal, Sriram; Chang, Hui Ho Vanessa; Cullen, Kathleen E.; Watt, Alanna J.

    2016-01-01

    Spinocerebellar ataxia type 6 (SCA6) is a devastating midlife-onset autosomal dominant motor control disease with no known treatment. Using a hyper-expanded polyglutamine (84Q) knock-in mouse, we found that cerebellar Purkinje cell firing precision was degraded in heterozygous (SCA684Q/+) mice at 19 months when motor deficits are observed. Similar alterations in firing precision and motor control were observed at disease onset at 7 months in homozygous (SCA684Q/84Q) mice, as well as a reduction in firing rate. We further found that chronic administration of the FDA-approved drug 4-aminopyridine (4-AP), which targets potassium channels, alleviated motor coordination deficits and restored cerebellar Purkinje cell firing precision to wildtype (WT) levels in SCA684Q/84Q mice both in acute slices and in vivo. These results provide a novel therapeutic approach for treating ataxic symptoms associated with SCA6. PMID:27381005

  14. Clinical characteristics of combined cases of spinocerebellar ataxia types 6 and 31.

    PubMed

    Ohmori, Hiroyuki; Hara, Akio; Ishikawa, Kinya; Mizusawa, Hidehiro; Ando, Yukio

    2015-01-01

    This study reports the first family in which spinocerebellar ataxia type 6 (SCA6) and spinocerebellar ataxia type 31 (SCA31) mutations were seen. An index patient first presented to our hospital due to gait and speech disturbances. Subsequent clinical investigation of this patient and her family members revealed consistent pure cerebellar ataxia transmitted in an autosomal-dominant manner. Genetic examination unexpectedly demonstrated that two of the five affected individuals had expansions of SCA6 and SCA31, while two others had SCA31 alone and the remaining had SCA6. Clinical manifestations were more severe in individuals with combined mutations relative to those with single mutation, suggesting that the SCA6 and SCA31 mutations have a cumulative pathogenic effect.

  15. A locus for the nystagmus-associated form of episodic ataxia maps to an 11-cM region on chromosome 19p

    SciTech Connect

    Kramer, P.L.; Gancher, S.T.; Nutt, J.G.

    1995-07-01

    Episodic ataxia (EA) is a rare neurological disorder characterized by attacks of generalized ataxia and near-normal neurological function between attacks. Most inherited cases are the result of an autosomal dominant condition with unknown neuropathology. It is heterogeneous and includes at least two distinct forms. In EA-1, attacks last minutes and interictal myokymia may be present. In EA-2, attacks may last hours and interictal nystagmus may occur. We reported linkage in four EA-1 families to chromosome 12p13 and identified mutations in these families in a potassium channel gene, KCNA1. Recently, we reported linkage in two EA-2 families to a 30-cM region on chromosome 19p. This report is based on members of the same two families and one additional kindred. 18 refs., 1 fig., 1 tab.

  16. Spinocerebellar Ataxia Type 7: Clinical Course, Phenotype-Genotype Correlations, and Neuropathology

    PubMed Central

    Horton, Laura C.; Frosch, Matthew P.; Vangel, Mark G.; Weigel-DiFranco, Carol; Berson, Eliot L.; Schmahmann, Jeremy D.

    2012-01-01

    INTRODUCTION Spinocerebellar ataxia type 7 is a neurodegenerative polyglutamine disease characterized by ataxia and retinal degeneration. The longitudinal course is unknown, and relationships between repeat expansion, clinical manifestations, and neuropathology remain uncertain. METHODS We followed 16 affected individuals of a 61-member kindred over 27 years with electroretinograms, neurological examinations including the Brief Ataxia Rating Scale, neuroimaging in 5, and autopsy in 4 cases. RESULTS We identified 4 stages of the illness. Stage 0; gene positive but phenotypically silent. Stage 1; no symptoms, but hyperreflexia and/or abnormal electroretinograms. Stage 2; symptoms and signs progress modestly. Stage 3; rapid clinical progression. CAG repeat length correlated inversely with age of onset of visual or motor signs (r=-0.74, p=0.002). Stage 3 rate of progression did not differ between cases (p=0.18). Electroretinograms correlated with Brief Ataxia Rating Scale score and were a biomarker of disease onset and progression. All symptomatic patients developed gait ataxia, extremity dysmetria, dysarthria, dysrhythmia, and oculomotor abnormalities. Funduscopy revealed pale optic discs and pigmentary disturbances. Visual acuity declined to blindness in those with longer CAG expansions. Hyperreflexia was present from Stage 1 onwards. Restless legs syndrome and sensory impairment were common. Neuropathological hallmarks were neuronal loss in cerebellar cortex, deep cerebellar nuclei, inferior olive, and anterior horns of the spinal cord, and axonal loss in spinocerebellar tracts, dorsal nerve roots and posterior columns. Retinal pathology included photoreceptor degeneration and disruption of retinal pigment epithelium. DISCUSSION Spinocerebellar ataxia type 7 evolves through 4 clinical stages; neuropathological findings underlie the clinical presentation; electroretinograms are a potential biomarker of disease progression. PMID:22915085

  17. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics.

    PubMed

    Fujioka, Shinsuke; Sundal, Christina; Wszolek, Zbigniew K

    2013-01-01

    Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments. PMID:23331413

  18. Molecular mechanism of Spinocerebellar Ataxia type 6: glutamine repeat disorder, channelopathy and transcriptional dysregulation. The multifaceted aspects of a single mutation.

    PubMed

    Giunti, Paola; Mantuano, Elide; Frontali, Marina; Veneziano, Liana

    2015-01-01

    Spinocerebellar Ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease characterized by late onset, slowly progressive, mostly pure cerebellar ataxia. It is one of three allelic disorders associated to CACNA1A gene, coding for the Alpha1 A subunit of P/Q type calcium channel Cav2.1 expressed in the brain, particularly in the cerebellum. The other two disorders are Episodic Ataxia type 2 (EA2), and Familial Hemiplegic Migraine type 1 (FHM1). These disorders show distinct phenotypes that often overlap but have different pathogenic mechanisms. EA2 and FHM1 are due to mutations causing, respectively, a loss and a gain of channel function. SCA6, instead, is associated with short expansions of a polyglutamine stretch located in the cytoplasmic C-terminal tail of the protein. This domain has a relevant role in channel regulation, as well as in transcription regulation of other neuronal genes; thus the SCA6 CAG repeat expansion results in complex pathogenic molecular mechanisms reflecting the complex Cav2.1 C-terminus activity. We will provide a short review for an update on the SCA6 molecular mechanism.

  19. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11.

    PubMed

    Ranum, L P; Schut, L J; Lundgren, J K; Orr, H T; Livingston, D M

    1994-11-01

    Autosomal dominant ataxias are a genetically heterogeneous group of disorders for which spinocerebellar ataxia (SCA) loci on chromosomes 6p, 12q, 14q and 16q have been reported. We have examined 170 individuals (56 of whom were affected) from a previously unreported ten-generation kindred with a dominant ataxia that is clinically and genetically distinct from those previously mapped. The family has two major branches which both descend from the paternal grandparents of President Abraham Lincoln. Among those examined, 56 individuals have a generally non-life threatening cerebellar ataxia. Disease onset varies from 10-68 years and anticipation is evident. We have mapped this gene, spinocerebellar ataxia type 5 (SCA5), to the centromeric region of chromosome 11.

  20. Friedreich's Ataxia

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Friedreich's Ataxia Information Page Condensed from Friedreich's Ataxia Fact Sheet ... Español Additional resources from MedlinePlus What is Friedreich's Ataxia? Friedreich's ataxia is a rare inherited disease that ...

  1. Motor Decline in Clinically Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers

    PubMed Central

    Velázquez-Perez, Luis; Díaz, Rosalinda; Pérez-González, Ruth; Canales, Nalia; Rodríguez-Labrada, Roberto; Medrano, Jacquelín; Sánchez, Gilberto; Almaguer-Mederos, Luis; Torres, Cira; Fernandez-Ruiz, Juan

    2009-01-01

    Background Motor deficits are a critical component of the clinical characteristics of patients with spinocerebellar ataxia type 2. However, there is no current information on the preclinical manifestation of those motor deficits in presymptomatic gene carriers. To further understand and characterize the onset of the clinical manifestation in this disease, we tested presymptomatic spinocerebellar ataxia type 2 gene carriers, and volunteers, in a task that evaluates their motor performance and their motor learning capabilities. Methods and Findings 28 presymptomatic spinocerebellar ataxia type 2 gene carriers and an equal number of control volunteers matched for age and gender participated in the study. Both groups were tested in a prism adaptation task known to be sensible to both motor performance and visuomotor learning deficits. Our results clearly show that although motor learning capabilities are intact, motor performance deficits are present even years before the clinical manifestation of the disease start. Conclusions The results show a clear deficit in motor performance that can be detected years before the clinical onset of the disease. This motor performance deficit appears before any motor learning or clinical manifestations of the disease. These observations identify the performance coefficient as an objective and quantitative physiological biomarker that could be useful to assess the efficiency of different therapeutic agents. PMID:19401771

  2. A new model to study neurodegeneration in ataxia oculomotor apraxia type 2.

    PubMed

    Becherel, Olivier J; Sun, Jane; Yeo, Abrey J; Nayler, Sam; Fogel, Brent L; Gao, Fuying; Coppola, Giovanni; Criscuolo, Chiara; De Michele, Giuseppe; Wolvetang, Ernst; Lavin, Martin F

    2015-10-15

    Ataxia oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia. Recent evidence suggests that the protein defective in this syndrome, senataxin (SETX), functions in RNA processing to protect the integrity of the genome. To date, only patient-derived lymphoblastoid cells, fibroblasts and SETX knockdown cells were available to investigate AOA2. Recent disruption of the Setx gene in mice did not lead to neurobehavioral defects or neurodegeneration, making it difficult to study the etiology of AOA2. To develop a more relevant neuronal model to study neurodegeneration in AOA2, we derived neural progenitors from a patient with AOA2 and a control by induced pluripotent stem cell (iPSC) reprogramming of fibroblasts. AOA2 iPSC and neural progenitors exhibit increased levels of oxidative damage, DNA double-strand breaks, increased DNA damage-induced cell death and R-loop accumulation. Genome-wide expression and weighted gene co-expression network analysis in these neural progenitors identified both previously reported and novel affected genes and cellular pathways associated with senataxin dysfunction and the pathophysiology of AOA2, providing further insight into the role of senataxin in regulating gene expression on a genome-wide scale. These data show that iPSCs can be generated from patients with the autosomal recessive ataxia, AOA2, differentiated into neurons, and that both cell types recapitulate the AOA2 cellular phenotype. This represents a novel and appropriate model system to investigate neurodegeneration in this syndrome. PMID:26231220

  3. Origin of the spinocerebellar ataxia type 7 gene mutation in Mexican population.

    PubMed

    Magaña, J J; Gómez, R; Maldonado-Rodríguez, M; Velázquez-Pérez, L; Tapia-Guerrero, Y S; Cortés, H; Leyva-García, N; Hernández-Hernández, O; Cisneros, B

    2013-12-01

    Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder characterized by progressive cerebellar ataxia associated with macular degeneration that leads, in the majority of patients, to loss of autonomy and blindness. The cause of the disease has been identified as (CAG) n repeat expansion in the coding sequence of the ATXN7 gene on chromosome 3p21.1. SCA7 is one of the least common genetically verified autosomal dominant cerebellar ataxias found worldwide; however, we previously identified the Mexican population showing high prevalence of SCA7, suggesting the occurrence of a common founder effect. In this study, haplotype analysis using four SCA7 gene-linked markers revealed that all 72 SCA7 carriers studied share a common haplotype, A-254-82-98, for the intragenic marker 3145G/A and centromeric markers D3S1287, D3S1228, and D3S3635, respectively. This multiloci combination is uncommon in healthy relatives and Mexican general population, suggesting that a single ancestral mutation is responsible for all SCA7 cases in this population. Furthermore, genotyping using 17 short tandem repeat markers from the non-recombining region of the Y chromosome and further phylogenetic relationship analysis revealed that Mexican patients possess the Western European ancestry, which might trace the SCA7 ancestral mutation to that world region. PMID:23828024

  4. Progression of Brain Atrophy in Spinocerebellar Ataxia Type 2: A Longitudinal Tensor-Based Morphometry Study

    PubMed Central

    Mascalchi, Mario; Diciotti, Stefano; Giannelli, Marco; Ginestroni, Andrea; Soricelli, Andrea; Nicolai, Emanuele; Aiello, Marco; Tessa, Carlo; Galli, Lucia; Dotti, Maria Teresa; Piacentini, Silvia; Salvatore, Elena; Toschi, Nicola

    2014-01-01

    Spinocerebellar ataxia type 2 (SCA2) is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI) to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years) and 16 age- and gender-matched healthy controls (mean interval 3.3 years) on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM) to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM) and cortical gray matter (GM) in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials. PMID:24586758

  5. Broad distribution of ataxin 1 silencing in rhesus cerebella for spinocerebellar ataxia type 1 therapy.

    PubMed

    Keiser, Megan S; Kordower, Jeffrey H; Gonzalez-Alegre, Pedro; Davidson, Beverly L

    2015-12-01

    Spinocerebellar ataxia type 1 is one of nine polyglutamine expansion diseases and is characterized by cerebellar ataxia and neuronal degeneration in the cerebellum and brainstem. Currently, there are no effective therapies for this disease. Previously, we have shown that RNA interference mediated silencing of ATXN1 mRNA provides therapeutic benefit in mouse models of the disease. Adeno-associated viral delivery of an engineered microRNA targeting ATXN1 to the cerebella of well-established mouse models improved motor phenotypes, neuropathy, and transcriptional changes. Here, we test the translatability of this approach in adult rhesus cerebella. Nine adult male and three adult female rhesus macaque were unilaterally injected with our therapeutic vector, a recombinant adeno-associated virus type 1 (rAAV1) expressing our RNAi trigger (miS1) and co-expressing enhanced green fluorescent protein (rAAV1.miS1eGFP) into the deep cerebellar nuclei using magnetic resonance imaging guided techniques combined with a Stealth Navigation system (Medtronics Inc.). Transduction was evident in the deep cerebellar nuclei, cerebellar Purkinje cells, the brainstem and the ventral lateral thalamus. Reduction of endogenous ATXN1 messenger RNA levels were ≥30% in the deep cerebellar nuclei, the cerebellar cortex, inferior olive, and thalamus relative to the uninjected hemisphere. There were no clinical complications, and quantitative and qualitative analyses suggest that this therapeutic intervention strategy and subsequent reduction of ATXN1 is well tolerated. Collectively the data illustrate the biodistribution and tolerability of rAAV1.miS1eGFP administration to the adult rhesus cerebellum and are supportive of clinical application for spinocerebellar ataxia type 1.

  6. Generation of spinocerebellar ataxia type 2 patient-derived iPSC line H266.

    PubMed

    Marthaler, Adele G; Schmid, Benjamin; Tubsuwan, Alisa; Poulsen, Ulla B; Hyttel, Poul; Nielsen, Troels T; Nielsen, Jørgen E; Holst, Bjørn

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. Here, we demonstrate the generation of an induced pluripotent stem cell (iPSC) line of a SCA2 patient. The selected clone has been proven to be a bona fide iPSC line, which retains a normal karyotype. Due to its differentiation potential into neurons, this iPSC line will be a valuable tool in studying a disease-specific phenotype of SCA2. PMID:27345805

  7. Generation of spinocerebellar ataxia type 2 patient-derived iPSC line H196.

    PubMed

    Marthaler, Adele G; Schmid, Benjamin; Tubsuwan, Alisa; Poulsen, Ulla B; Hyttel, Poul; Nielsen, Troels T; Nielsen, Jørgen E; Holst, Bjørn

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. Here, we demonstrate the generation of an induced pluripotent stem cell (iPSC) line of a SCA2 patient. The selected clone has been proven to be a bona fide iPSC line, which retains a normal karyotype. Due to its differentiation potential into neurons, this iPSC line will be a valuable tool in studying a disease-specific phenotype of SCA2. PMID:27345814

  8. Generation of spinocerebellar ataxia type 2 patient-derived iPSC line H271.

    PubMed

    Marthaler, Adele G; Tubsuwan, Alisa; Schmid, Benjamin; Poulsen, Ulla B; Hyttel, Poul; Nielsen, Jørgen E; Nielsen, Troels T; Holst, Bjørn

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. Here, we demonstrate the generation of an induced pluripotent stem cell (iPSC) line of a SCA2 patient. The selected clone has been proven to be a bona fide iPSC line, which retains a normal karyotype. Due to its differentiation potential into neurons, this iPSC line will be a valuable tool in studying a disease-specific phenotype of SCA2. PMID:27345803

  9. Brain Metabolic Changes of Cervical Dystonia with Spinocerebellar Ataxia Type 1 after Botulinum Toxin Therapy.

    PubMed

    Kikuchi, Akio; Takeda, Atsushi; Sugeno, Naoto; Miura, Emiko; Kato, Kazuhiro; Hasegawa, Takafumi; Baba, Toru; Konno, Masatoshi; Oshima, Ryuji; Watanuki, Shoichi; Hiraoka, Kotaro; Tashiro, Manabu; Aoki, Masashi

    2016-01-01

    We occasionally observe long-term remission of cervical dystonia after several botulinum toxin treatments. However, botulinum toxin transiently acts on neuromuscular junctions. We herein report that a cervical dystonia patient with spinocerebellar ataxia type 1 could have long-term remission as a result of the depression of hypermetabolism in the bilateral putamen and primary sensorimotor cortex after botulinum toxin therapy. We suggest that botulinum toxin impacts the central nervous system, causing prolonged improvement through the normalization of basal ganglia circuits in addition to its effects at neuromuscular junctions. PMID:27432104

  10. Brain Metabolic Changes of Cervical Dystonia with Spinocerebellar Ataxia Type 1 after Botulinum Toxin Therapy.

    PubMed

    Kikuchi, Akio; Takeda, Atsushi; Sugeno, Naoto; Miura, Emiko; Kato, Kazuhiro; Hasegawa, Takafumi; Baba, Toru; Konno, Masatoshi; Oshima, Ryuji; Watanuki, Shoichi; Hiraoka, Kotaro; Tashiro, Manabu; Aoki, Masashi

    2016-01-01

    We occasionally observe long-term remission of cervical dystonia after several botulinum toxin treatments. However, botulinum toxin transiently acts on neuromuscular junctions. We herein report that a cervical dystonia patient with spinocerebellar ataxia type 1 could have long-term remission as a result of the depression of hypermetabolism in the bilateral putamen and primary sensorimotor cortex after botulinum toxin therapy. We suggest that botulinum toxin impacts the central nervous system, causing prolonged improvement through the normalization of basal ganglia circuits in addition to its effects at neuromuscular junctions.

  11. Peripheral Neuropathy in Spinocerebellar Ataxia Type 1, 2, 3, and 6.

    PubMed

    Linnemann, Christoph; Tezenas du Montcel, Sophie; Rakowicz, Maryla; Schmitz-Hübsch, Tanja; Szymanski, Sandra; Berciano, Jose; van de Warrenburg, Bart P; Pedersen, Karine; Depondt, Chantal; Rola, Rafal; Klockgether, Thomas; García, Antonio; Mutlu, Gurkan; Schöls, Ludger

    2016-04-01

    Spinocerebellar ataxias (SCAs) are characterized by autosomal dominantly inherited progressive ataxia but are clinically heterogeneous due to variable involvement of non-cerebellar parts of the nervous system. Non-cerebellar symptoms contribute significantly to the burden of SCAs, may guide the clinician to the underlying genetic subtype, and might be useful markers to monitor disease. Peripheral neuropathy is frequently observed in SCA, but subtype-specific features and subclinical manifestations have rarely been evaluated. We performed a multicenter nerve conduction study with 162 patients with genetically confirmed SCA1, SCA2, SCA3, and SCA6. The study proved peripheral nerves to be involved in the neurodegenerative process in 82 % of SCA1, 63 % of SCA2, 55 % of SCA3, and 22 % of SCA6 patients. Most patients of all subtypes revealed affection of both sensory and motor fibers. Neuropathy was most frequently of mixed type with axonal and demyelinating characteristics in all SCA subtypes. However, nerve conduction velocities of SCA1 patients were slower compared to other genotypes. SCA6 patients revealed less axonal damage than patients with other subtypes. No influence of CAG repeat length or biometric determinants on peripheral neuropathy could be identified in SCA1, SCA3, and SCA6. In SCA2, earlier onset and more severe ataxia were associated with peripheral neuropathy. We proved peripheral neuropathy to be a frequent site of the neurodegenerative process in all common SCA subtypes. Since damage to peripheral nerves is readily assessable by electrophysiological means, nerve conduction studies should be performed in a longitudinal approach to assess these parameters as potential progression markers.

  12. Prevalence of inositol 1, 4, 5-triphosphate receptor type 1 gene deletion, the mutation for spinocerebellar ataxia type 15, in Japan screened by gene dosage.

    PubMed

    Obayashi, Masato; Ishikawa, Kinya; Izumi, Yuishin; Takahashi, Makoto; Niimi, Yusuke; Sato, Nozomu; Onodera, Osamu; Kaji, Ryuji; Nishizawa, Masatoyo; Mizusawa, Hidehiro

    2012-03-01

    Spinocerebellar ataxia type 15 (SCA15) is an autosomal dominant neurodegenerative disorder clinically characterized by late-onset, slowly progressive pure cerebellar ataxia. This disease is caused by a heterozygous deletion of the inositol 1, 4, 5-triphosphate receptor type 1 (ITPR1) gene, suggesting that haploinsufficiency of the receptor function is the plausible disease mechanism. To clarify the prevalence of SCA15 in Japan, we designed four sets of probes and primers in different regions of ITPR1 and performed TaqMan PCR assay to search for gene deletions in 226 index SCA patients excluded for repeat expansion disorders. Deletion was found in only one patient, in whom gait ataxia started at 51 years of age and progressed to show cerebellar ataxia. This study demonstrates a simple but efficient method for screening ITPR1 deletion. We also conclude that ITPR1 gene deletions are much rare in Japan than in Europe, comprising only 0.3% in all SCAs in Japan.

  13. Change in the cortical complexity of spinocerebellar ataxia type 3 appears earlier than clinical symptoms.

    PubMed

    Wang, Tzu-Yun; Jao, Chii-Wen; Soong, Bing-Wen; Wu, Hsiu-Mei; Shyu, Kuo-Kai; Wang, Po-Shan; Wu, Yu-Te

    2015-01-01

    Patients with spinocerebellar ataxia type 3 (SCA3) have exhibited cerebral cortical involvement and various mental deficits in previous studies. Clinically, conventional measurements, such as the Mini-Mental State Examination (MMSE) and electroencephalography (EEG), are insensitive to cerebral cortical involvement and mental deficits associated with SCA3, particularly at the early stage of the disease. We applied a three-dimensional fractal dimension (3D-FD) method, which can be used to quantify the shape complexity of cortical folding, in assessing cortical degeneration. We evaluated 48 genetically confirmed SCA3 patients by employing clinical scales and magnetic resonance imaging and using 50 healthy participants as a control group. According to the Scale for the Assessment and Rating of Ataxia (SARA), the SCA3 patients were diagnosed with cortical dysfunction in the cerebellar cortex; however, no significant difference in the cerebral cortex was observed according to the patients' MMSE ratings. Using the 3D-FD method, we determined that cortical involvement was more extensive than involvement of traditional olivopontocerebellar regions and the corticocerebellar system. Moreover, the significant correlation between decreased 3D-FD values and disease duration may indicate atrophy of the cerebellar cortex and cerebral cortex in SCA3 patients. The change of the cerebral complexity in the SCA3 patients can be detected throughout the disease duration, especially it becomes substantial at the late stage of the disease. Furthermore, we determined that atrophy of the cerebral cortex may occur earlier than changes in MMSE scores and EEG signals.

  14. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10.

    PubMed

    Matsuura, T; Yamagata, T; Burgess, D L; Rasmussen, A; Grewal, R P; Watase, K; Khajavi, M; McCall, A E; Davis, C F; Zu, L; Achari, M; Pulst, S M; Alonso, E; Noebels, J L; Nelson, D L; Zoghbi, H Y; Ashizawa, T

    2000-10-01

    Spinocerebellar ataxia type 10 (SCA10; MIM 603516; refs 1,2) is an autosomal dominant disorder characterized by cerebellar ataxia and seizures. The gene SCA10 maps to a 3.8-cM interval on human chromosome 22q13-qter (refs 1,2). Because several other SCA subtypes show trinucleotide repeat expansions, we examined microsatellites in this region. We found an expansion of a pentanucleotide (ATTCT) repeat in intron 9 of SCA10 in all patients in five Mexican SCA10 families. There was an inverse correlation between the expansion size, up to 22.5 kb larger than the normal allele, and the age of onset (r2=0.34, P=0.018). Analysis of 562 chromosomes from unaffected individuals of various ethnic origins (including 242 chromosomes from Mexican persons) showed a range of 10 to 22 ATTCT repeats with no evidence of expansions. Our data indicate that the new SCA10 intronic ATTCT pentanucleotide repeat in SCA10 patients is unstable and represents the largest microsatellite expansion found so far in the human genome.

  15. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1

    PubMed Central

    Hatanaka, Yusuke; Watase, Kei; Wada, Keiji; Nagai, Yoshitaka

    2015-01-01

    Late-onset neurodegenerative diseases are characterized by neurological symptoms and progressive neuronal death. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, causes the symptoms of neurodegenerative diseases. However, the mechanisms underlying the dysfunction that occurs prior to cell death remain unclear. To investigate the synaptic basis of this dysfunction, we employed in vivo two-photon imaging to analyse excitatory postsynaptic dendritic protrusions. We used Sca1154Q/2Q mice, an established knock-in mouse model of the polyglutamine disease spinocerebellar ataxia type 1 (SCA1), which replicates human SCA1 features including ataxia, cognitive impairment, and neuronal death. We found that Sca1154Q/2Q mice exhibited greater synaptic instability than controls, without synaptic loss, in the cerebral cortex, where obvious neuronal death is not observed, even before the onset of distinct symptoms. Interestingly, this abnormal synaptic instability was evident in Sca1154Q/2Q mice from the synaptic developmental stage, and persisted into adulthood. Expression of synaptic scaffolding proteins was also lower in Sca1154Q/2Q mice than controls before synaptic maturation. As symptoms progressed, synaptic loss became evident. These results indicate that aberrant synaptic instability, accompanied by decreased expression of scaffolding proteins during synaptic development, is a very early pathology that precedes distinct neurological symptoms and neuronal cell death in SCA1. PMID:26531852

  16. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1.

    PubMed

    Hatanaka, Yusuke; Watase, Kei; Wada, Keiji; Nagai, Yoshitaka

    2015-11-04

    Late-onset neurodegenerative diseases are characterized by neurological symptoms and progressive neuronal death. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, causes the symptoms of neurodegenerative diseases. However, the mechanisms underlying the dysfunction that occurs prior to cell death remain unclear. To investigate the synaptic basis of this dysfunction, we employed in vivo two-photon imaging to analyse excitatory postsynaptic dendritic protrusions. We used Sca1(154Q/2Q) mice, an established knock-in mouse model of the polyglutamine disease spinocerebellar ataxia type 1 (SCA1), which replicates human SCA1 features including ataxia, cognitive impairment, and neuronal death. We found that Sca1(154Q/2Q) mice exhibited greater synaptic instability than controls, without synaptic loss, in the cerebral cortex, where obvious neuronal death is not observed, even before the onset of distinct symptoms. Interestingly, this abnormal synaptic instability was evident in Sca1(154Q/2Q) mice from the synaptic developmental stage, and persisted into adulthood. Expression of synaptic scaffolding proteins was also lower in Sca1(154Q/2Q) mice than controls before synaptic maturation. As symptoms progressed, synaptic loss became evident. These results indicate that aberrant synaptic instability, accompanied by decreased expression of scaffolding proteins during synaptic development, is a very early pathology that precedes distinct neurological symptoms and neuronal cell death in SCA1.

  17. Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1.

    PubMed

    Matsuura, Serina; Shuvaev, Anton N; Iizuka, Akira; Nakamura, Kazuhiro; Hirai, Hirokazu

    2014-06-01

    Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disorder caused by the expansion of a polyglutamine tract in the ataxin-1 protein. To date, no fundamental treatments for SCA1 have been elucidated. However, some studies have shown that mesenchymal stem cells (MSCs) are partially effective in other genetic mouse models of cerebellar ataxia. In this study, we tested the efficacy of the intrathecal injection of MSCs in the treatment of SCA1 in transgenic (SCA1-Tg) mice. We found that intrathecal injection of only 3 × 10(3) MSCs greatly mitigated the cerebellar neuronal disorganization observed in SCA1 transgenic mice (SCA1-Tg mice). Although the Purkinje cells (PCs) of 24-week-old nontreated SCA1-Tg mice displayed a multilayer arrangement, SCA1-Tg mice at a similar age injected with MSCs displayed monolayer PCs. Furthermore, intrathecal injection of MSCs suppressed the atrophy of PC dendrites in SCA1-Tg mice. Finally, behavioral tests demonstrated that MSCs normalized deficits in motor coordination in SCA1-Tg mice. Future studies should be performed to develop optimal protocols for intrathecal transplantation of MSCs in SCA1 model primates with the aim of developing applications for SCA1 patients.

  18. Genetic and clinical analysis of spinocerebellar ataxia type 36 in Mainland China.

    PubMed

    Zeng, S; Zeng, J; He, M; Zeng, X; Zhou, Y; Liu, Z; Xia, K; Pan, Q; Jiang, H; Shen, L; Yan, X; Tang, B; Wang, J

    2016-08-01

    Spinocerebellar ataxia type 36 (SCA36) is a new SCA subtype recently reported in Japanese and Spanish pedigrees. To assess the frequency and clinical characteristics of SCA36 in patients from Mainland China, we combined the repeat-primed polymerase chain reaction method and Southern blot analysis to detect the GGCCTG hexanucleotide repeats of NOP56 in 364 probands with SCA, 126 probands with hereditary spastic paraplegia and 99 probands with amyotrophic lateral sclerosis (ALS). Systematic and targeted clinical evaluations and investigations were conducted in the SCA36 patients. As a result, eight autosomal dominant spinocerebellar ataxia (ADCA) pedigrees (a total of 13 patients) and one sporadic SCA (S-SCA) patient were identified as SCA36 in the SCA cohort, accounting for approximately 1.60% of the cases in the ADCA group and 0.32% of those in the S-SCA group in Mainland China. The characteristics include late onset and slow progression accompanied by acoustic impairments and 'possible' ALS phenotype in patients from Mainland China.

  19. Spinocerebellar ataxia type 6 protein aggregates cause deficits in motor learning and cerebellar plasticity.

    PubMed

    Mark, Melanie D; Krause, Martin; Boele, Henk-Jan; Kruse, Wolfgang; Pollok, Stefan; Kuner, Thomas; Dalkara, Deniz; Koekkoek, Sebastiaan; De Zeeuw, Chris I; Herlitze, Stefan

    2015-06-10

    Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that a CT fragment of the Cav2.1 channel, which is detected specifically in cytosolic and nuclear fractions in SCA6 patients, is associated with the SCA6 pathogenesis. To test this hypothesis, we expressed P/Q-type channel protein fragments from two different human CT splice variants, as predicted from SCA6 patients, in PCs of mice using viral and transgenic approaches. These splice variants represent a short (CT-short without polyQs) and a long (CT-long with 27 polyQs) CT fragment. Our results show that the different splice variants of the CTs differentially distribute within PCs, i.e., the short CTs reveal predominantly nuclear inclusions, whereas the long CTs prominently reveal both nuclear and cytoplasmic aggregates. Postnatal expression of CTs in PCs in mice reveals that only CT-long causes SCA6-like symptoms, i.e., deficits in eyeblink conditioning (EBC), ataxia, and PC degeneration. The physiological phenotypes associated specifically with the long CT fragment can be explained by an impairment of LTD and LTP at the parallel fiber-to-PC synapse and alteration in spontaneous PC activity. Thus, our results suggest that the polyQ carrying the CT fragment of the P/Q-type channel is sufficient to cause SCA6 pathogenesis in mice and identifies EBC as a new diagnostic strategy to evaluate Ca(2+) channel-mediated human diseases.

  20. Adult-onset autosomal recessive ataxia associated with neuronal ceroid lipofuscinosis type 5 gene (CLN5) mutations.

    PubMed

    Mancini, Cecilia; Nassani, Stefano; Guo, Yiran; Chen, Yulan; Giorgio, Elisa; Brussino, Alessandro; Di Gregorio, Eleonora; Cavalieri, Simona; Lo Buono, Nicola; Funaro, Ada; Pizio, Nicola Renato; Nmezi, Bruce; Kyttala, Aija; Santorelli, Filippo Maria; Padiath, Quasar Salem; Hakonarson, Hakon; Zhang, Hao; Brusco, Alfredo

    2015-01-01

    Autosomal recessive inherited ataxias are a growing group of genetic disorders. We report two Italian siblings presenting in their mid-50s with difficulty in walking, dysarthria and progressive cognitive decline. Visual loss, ascribed to glaucoma, manifested a few years before the other symptoms. Brain MRI showed severe cerebellar atrophy, prevalent in the vermis, with marked cortical atrophy of both hemispheres. Exome sequencing identified a novel homozygous mutation (c.935G > A;p.Ser312Asn) in the ceroid neuronal lipofuscinosis type 5 gene (CLN5). Bioinformatics predictions and in vitro studies showed that the mutation was deleterious and likely affects ER-lysosome protein trafficking. Our findings support CLN5 hypomorphic mutations cause autosomal recessive cerebellar ataxia, confirming other reports showing CLN mutations are associated with adult-onset neurodegenerative disorders. We suggest CLN genes should be considered in the molecular analyses of patients presenting with adult-onset autosomal recessive cerebellar ataxia.

  1. Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1.

    PubMed

    Cvetanovic, M; Ingram, M; Orr, H; Opal, P

    2015-03-19

    Spinocerebellar ataxia type 1 (SCA1) is an incurable, dominantly inherited neurodegenerative disease of the cerebellum caused by a polyglutamine-repeat expansion in the protein ataxin-1 (ATXN1). While analysis of human autopsy material indicates significant glial pathology in SCA1, previous research has focused on characterizing neuronal dysfunction. In this study, we characterized astrocytic and microglial response in SCA1 using a comprehensive array of mouse models. We have discovered that astrocytes and microglia are activated very early in SCA1 pathogenesis even when mutant ATXN1 expression was limited to Purkinje neurons. Glial activation occurred in the absence of neuronal death, suggesting that glial activation results from signals emanating from dysfunctional neurons. Finally, in all different models examined glial activation closely correlated with disease progression, supporting the development of glial-based biomarkers to follow disease progression.

  2. In vivo assessment of riluzole as a potential therapeutic drug for spinocerebellar ataxia type 3.

    PubMed

    Schmidt, Jana; Schmidt, Thorsten; Golla, Matthias; Lehmann, Lisa; Weber, Jonasz Jeremiasz; Hübener-Schmid, Jeannette; Riess, Olaf

    2016-07-01

    Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominantly inherited neurodegenerative disorder for which no curative therapy is available. The cause of this disease is the expansion of a CAG repeat in the so-called ATXN3 gene leading to an expanded polyglutamine stretch in the ataxin-3 protein. Although the function of ataxin-3 has been defined as a deubiquitinating enzyme, the pathogenic pathway underlying SCA3 remains to be deciphered. Besides others, also the glutamatergic system seems to be altered in SCA3. The antiglutamatergic substance riluzole has thus been suggested as a potential therapeutic agent for SCA3. To assess whether riluzole is effective in the treatment of SCA3 in vivo, we used a phenotypically well-characterized conditional mouse model previously generated by us. Treatment with 10 mg/kg riluzole in the drinking water was started when mice showed impairment in rotarod performance. Post-symptomatic treatment with riluzole carried out for a period of 10 months led to reduction of the soluble ataxin-3 level and an increase in ataxin-3 positive accumulations, but did not improve motor deficits measured by rotarod. There was also no positive effect on home cage behavior or body weight. We even observed a pronounced reduction of calbindin expression in Purkinje cells in riluzole-treated mice. Thus, long-term treatment with riluzole was not able to alleviate disease symptoms observed in transgenic SCA3 mice and should be considered with caution in the treatment of human patients. Assessing riluzole as a potential treatment for spinocerebellar ataxia type 3 (SCA3) had no beneficial, but rather a worsening effect on our transgenic SCA3 mouse model. We hypothesize that: Riluzole treatment enhanced glutamate release in ATXN3-expressing cells leading to an increased Ca(2+) influx resulting in Purkinje cell damage shown by loss of calbindin expression.

  3. Ataxia Telangiectasia

    MedlinePlus

    Ataxia-telangiectasia (A-T) is a rare, inherited disease. It affects the nervous system, immune system, and ... young children, usually before age 5. They include Ataxia - trouble coordinating movements Poor balance Slurred speech Tiny, ...

  4. Friedreich's Ataxia

    MedlinePlus

    Friedreich's ataxia is an inherited disease that damages your nervous system. The damage affects your spinal cord and the ... of 5 and 15. The main symptom is ataxia, which means trouble coordinating movements. Specific symptoms include ...

  5. Friedreich's Ataxia

    MedlinePlus

    ... diabetes. The disorder does not affect thinking and reasoning abilities (cognitive functions). Friedreich’s ataxia is caused by ... A diagnosis of Friedreich's ataxia requires a careful clinical examination, which includes a medical history and a ...

  6. Profile of extrapyramidal manifestations in 85 patients with spinocerebellar ataxia type 1, 2 and 3.

    PubMed

    Jhunjhunwala, Ketan; Netravathi, M; Purushottam, Meera; Jain, Sanjeev; Pal, Pramod Kumar

    2014-06-01

    This study aimed to determine the prevalence and type of extrapyramidal signs (EPS) in spinocerebellar ataxia (SCA) type 1, 2 and 3. Eighty-five patients with genetically confirmed SCA (SCA1=40, SCA2=28, SCA3=17) were evaluated for the prevalence and types of EPS. Forty-one SCA patients (48.2%) had one or more types of EPS. The prevalence of EPS was 60.7% in SCA2, 52.9% in SCA3, and 37.5% in SCA1. Among SCA2 patients, bradykinesia was the most frequent (35.3%), followed by reduced facial expression, postural tremor and dystonia (29.4% each), rest tremor, titubation and rigidity (23.5% each), and lip/jaw tremor and chorea (11.8% each). In SCA3 the common EPS were bradykinesia (44.4%), staring look, postural tremor and dystonia (33.3% each), and reduced facial expression and rigidity (22.2% each). In SCA1, staring look was the most common (53.3%), followed by dystonia and bradykinesia (33.3% each), and postural tremor (26.7%). In all three groups, there was no significant difference in the mean length of repeat of the abnormal allele between those with and without EPS. To conclude bradykinesia, staring look, dystonia and postural tremor were the most frequent EPS observed in SCA. In SCA1, these signs were seen more often in younger patients with early onset of symptoms.

  7. [THE ANALYSIS OF LIFE SPAN AND MORTALITY OF PATIENTS WITH SPINOCEREBELLAR ATAXIA TYPE I].

    PubMed

    Tikhonov, D G; Goldfarb, L G; Neustroeva, T S; Yakovleva, N V; Timofeev, L F; Luckan, I P; Platonov, F A

    2015-01-01

    The article presents results of investigation of certain unclear aspects of mortality of patients with spinocerebellar ataxia type I including patients with the same number of CAG-repetitions. The analysis of mortality of patients observed from 1993 to nowadays was implemented. Sampling included 112 patients during that period 53 patients died. The comparative analysis was implemented concerning received data and results of analysis of mortality of patients died prior to 1980. According received data, average value of CAG-repetitions of normal allele was equal to 30.2, and ofpathologic allele--48.7. The average life span made up to 52.8 years, average age of disease onset--38 years and natural duration of disease--14.8 years. The analysis of life span of patients with equal length of repetitions demonstrated that range of life span of patients makes up to from 8 to 23 years. It is established that life of patients becomes shorter because of accidents, cancer and concomitant diseases of cardiovascular system. The presence of such concomitant disease as tuberculosis of lungs results in no shortening of life of patients. The comparative analysis of mortality during the period over 34 years demonstrated that age of disease onset turned out to be more conservative and stable indicator of morbidity. Despite of lacking of effective methods of treatment of disease, the natural duration of disease increased statistically reliable up to 1.8 times during period of observation. The analysis of life span ofpatients with spinocerebellar ataxia type I demonstrated that their life span except length of CAG-expansion depends on a number of factors accelerating and retarding development of disease. At that, life span of patients with the same number of CAG-repetitions can significantly differ The malignant neoplasms, diseases of cardiovascular system and external causes are to be referred to factors accelerating and retarding development of main disease. The addition oftuberculosis

  8. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6

    PubMed Central

    Onuki, Yoshiyuki; Abdelgabar, Abdel R.; Owens, Cullen B.; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D.; De Zeeuw, Chris I.

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the ‘anticipatory’ period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  9. Impairment of spinal motor neurons in spinocerebellar ataxia type 1-knock-in mice.

    PubMed

    Takechi, Yasuhiko; Mieda, Tokue; Iizuka, Akira; Toya, Syutaro; Suto, Nana; Takagishi, Kenji; Nakazato, Yoichi; Nakamura, Kazuhiro; Hirai, Hirokazu

    2013-02-22

    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of polyglutamine repeats in the Ataxin-1 protein. An accumulating body of cerebellar, histological and behavioral analyses has proven that SCA1-knock-in mice (in which the endogenous Atxn1 gene is replaced with mutant Atxn1 that has abnormally expanded 154 CAG repeats) work as a good tool, which resembles the central nervous system pathology of SCA1 patients. However, the peripheral nervous system pathology of the model mice has not been studied despite the fact that the clinical manifestation is also characterized by peripheral involvement. We show here that spinal motor neurons are degenerated in SCA1-knock-in mice. Histologically, some spinal motor neurons of the SCA1-knock-in mice have polyglutamine aggregates in their nuclei and also thinner and demyelinated axons. Electrophysiological examinations of the mice showed slower nerve conduction velocities in spinal motor neurons and lower amplitudes of muscle action potential, compared to wild-type mice. Consistently, the mice displayed decrease in rearing number and total rearing time. These results suggest that the knock-in mice serve as a definite model that reproduces peripheral involvement and are therefore useful for research on the peripheral nervous system pathology in SCA1 patients.

  10. Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6.

    PubMed

    Broersen, Robin; Onuki, Yoshiyuki; Abdelgabar, Abdel R; Owens, Cullen B; Picard, Samuel; Willems, Jessica; Boele, Henk-Jan; Gazzola, Valeria; Van der Werf, Ysbrand D; De Zeeuw, Chris I

    2016-01-01

    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the 'anticipatory' period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events. PMID:27571363

  11. Cerebellar neurochemical alterations in spinocerebellar ataxia type 14 appear to include glutathione deficiency.

    PubMed

    Doss, Sarah; Rinnenthal, Jan Leo; Schmitz-Hübsch, Tanja; Brandt, Alexander U; Papazoglou, Sebastian; Lux, Silke; Maul, Stephan; Würfel, Jens; Endres, Matthias; Klockgether, Thomas; Minnerop, Martina; Paul, Friedemann

    2015-08-01

    Autosomal dominant ataxia type 14 (SCA14) is a rare usually adult-onset progressive disorder with cerebellar neurodegeneration caused by mutations in protein kinase C gamma. We set out to examine cerebellar and extracerebellar neurochemical changes in SCA14 by MR spectroscopy. In 13 SCA14 patients and 13 healthy sex- and age-matched controls, 3-T single-voxel brain proton MR spectroscopy was performed in a cerebellar voxel of interest (VOI) at TE = 30 ms to obtain a neurochemical profile of metabolites with short relaxation times. In the cerebellum and in additional VOIs in the prefrontal cortex, motor cortex, and somatosensory cortex, a second measurement was performed at TE = 144 ms to mainly extract the total N-acetyl-aspartate (tNAA) signal besides the signals for total creatine (tCr) and total choline (tCho). The cerebellar neurochemical profile revealed a decrease in glutathione (6.12E-06 ± 2.50E-06 versus 8.91E-06 ± 3.03E-06; p = 0028) and tNAA (3.78E-05 ± 5.67E-06 versus 4.25E-05 ± 5.15E-06; p = 0023) and a trend for reduced glutamate (2.63E-05 ± 6.48E-06 versus 3.15E-05 ± 7.61E-06; p = 0062) in SCA14 compared to controls. In the tNAA-focused measurement, cerebellar tNAA (296.6 ± 42.6 versus 351.7 ± 16.5; p = 0004) and tCr (272.1 ± 25.2 versus 303.2 ± 31.4; p = 0004) were reduced, while the prefrontal, somatosensory and motor cortex remained unaffected compared to controls. Neuronal pathology in SCA14 detected by MR spectroscopy was restricted to the cerebellum and did not comprise cortical regions. In the cerebellum, we found in addition to signs of neurodegeneration a glutathione reduction, which has been associated with cellular damage by oxidative stress in other neurodegenerative diseases such as Parkinson's disease and Friedreich's ataxia.

  12. Crystallographic and Computational Analyses of AUUCU Repeating RNA That Causes Spinocerebellar Ataxia Type 10 (SCA10).

    PubMed

    Park, HaJeung; González, Àlex L; Yildirim, Ilyas; Tran, Tuan; Lohman, Jeremy R; Fang, Pengfei; Guo, Min; Disney, Matthew D

    2015-06-23

    Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide (5')UCU(3')/(3')UCU(5') internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA. PMID:26039897

  13. Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry.

    PubMed

    Mercadillo, Roberto E; Galvez, Víctor; Díaz, Rosalinda; Hernández-Castillo, Carlos Roberto; Campos-Romo, Aurelio; Boll, Marie-Catherine; Pasaye, Erick H; Fernandez-Ruiz, Juan

    2014-12-15

    Spinocerebellar Ataxia Type 2 (SCA2) is a genetic disorder causing cerebellar degeneration that result in motor and cognitive alterations. Voxel-based morphometry (VBM) analyses have found neurodegenerative patterns associated to SCA2, but they show some discrepancies. Moreover, behavioral deficits related to non-cerebellar functions are scarcely discussed in those reports. In this work we use behavioral and cognitive tests and VBM to identify and confirm cognitive and gray matter alterations in SCA2 patients compared with control subjects. Also, we discuss the cerebellar and non-cerebellar functions affected by this disease. Our results confirmed gray matter reduction in the cerebellar vermis, pons, and insular, frontal, parietal and temporal cortices. However, our analysis also found unreported loss of gray matter in the parahippocampal gyrus bilaterally. Motor performance test ratings correlated with total gray and white matter reductions, but executive performance and clinical features such as CAG repetitions and disease progression did not show any correlation. This pattern of cerebellar and non-cerebellar morphological alterations associated with SCA2 has to be considered to fully understand the motor and non-motor deficits that include language production and comprehension and some social skill changes that occur in these patients. PMID:25263602

  14. Overexpression of Cystathionine γ-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3

    PubMed Central

    Snijder, Pauline M; Baratashvili, Madina; Grzeschik, Nicola A; Leuvenink, Henri G D; Kuijpers, Lucas; Huitema, Sippie; Schaap, Onno; Giepmans, Ben N G; Kuipers, Jeroen; Miljkovic, Jan Lj; Mitrovic, Aleksandra; Bos, Eelke M; Szabó, Csaba; Kampinga, Harm H; Dijkers, Pascale F; den Dunnen, Wilfred F A; Filipovic, Milos R; van Goor, Harry; Sibon, Ody C M

    2015-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies. PMID:26467707

  15. Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry.

    PubMed

    Mercadillo, Roberto E; Galvez, Víctor; Díaz, Rosalinda; Hernández-Castillo, Carlos Roberto; Campos-Romo, Aurelio; Boll, Marie-Catherine; Pasaye, Erick H; Fernandez-Ruiz, Juan

    2014-12-15

    Spinocerebellar Ataxia Type 2 (SCA2) is a genetic disorder causing cerebellar degeneration that result in motor and cognitive alterations. Voxel-based morphometry (VBM) analyses have found neurodegenerative patterns associated to SCA2, but they show some discrepancies. Moreover, behavioral deficits related to non-cerebellar functions are scarcely discussed in those reports. In this work we use behavioral and cognitive tests and VBM to identify and confirm cognitive and gray matter alterations in SCA2 patients compared with control subjects. Also, we discuss the cerebellar and non-cerebellar functions affected by this disease. Our results confirmed gray matter reduction in the cerebellar vermis, pons, and insular, frontal, parietal and temporal cortices. However, our analysis also found unreported loss of gray matter in the parahippocampal gyrus bilaterally. Motor performance test ratings correlated with total gray and white matter reductions, but executive performance and clinical features such as CAG repetitions and disease progression did not show any correlation. This pattern of cerebellar and non-cerebellar morphological alterations associated with SCA2 has to be considered to fully understand the motor and non-motor deficits that include language production and comprehension and some social skill changes that occur in these patients.

  16. Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models

    PubMed Central

    Matos, Carlos A.; Nóbrega, Clévio; Louros, Susana R.; Almeida, Bruno; Ferreiro, Elisabete; Valero, Jorge; Pereira de Almeida, Luís; Macedo-Ribeiro, Sandra

    2016-01-01

    Different neurodegenerative diseases are caused by aberrant elongation of repeated glutamine sequences normally found in particular human proteins. Although the proteins involved are ubiquitously distributed in human tissues, toxicity targets only defined neuronal populations. Changes caused by an expanded polyglutamine protein are possibly influenced by endogenous cellular mechanisms, which may be harnessed to produce neuroprotection. Here, we show that ataxin-3, the protein involved in spinocerebellar ataxia type 3, also known as Machado-Joseph disease, causes dendritic and synapse loss in cultured neurons when expanded. We report that S12 of ataxin-3 is phosphorylated in neurons and that mutating this residue so as to mimic a constitutive phosphorylated state counters the neuromorphologic defects observed. In rats stereotaxically injected with expanded ataxin-3–encoding lentiviral vectors, mutation of serine 12 reduces aggregation, neuronal loss, and synapse loss. Our results suggest that S12 plays a role in the pathogenic pathways mediated by polyglutamine-expanded ataxin-3 and that phosphorylation of this residue protects against toxicity. PMID:26880203

  17. Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models.

    PubMed

    Matos, Carlos A; Nóbrega, Clévio; Louros, Susana R; Almeida, Bruno; Ferreiro, Elisabete; Valero, Jorge; Pereira de Almeida, Luís; Macedo-Ribeiro, Sandra; Carvalho, Ana Luísa

    2016-02-15

    Different neurodegenerative diseases are caused by aberrant elongation of repeated glutamine sequences normally found in particular human proteins. Although the proteins involved are ubiquitously distributed in human tissues, toxicity targets only defined neuronal populations. Changes caused by an expanded polyglutamine protein are possibly influenced by endogenous cellular mechanisms, which may be harnessed to produce neuroprotection. Here, we show that ataxin-3, the protein involved in spinocerebellar ataxia type 3, also known as Machado-Joseph disease, causes dendritic and synapse loss in cultured neurons when expanded. We report that S12 of ataxin-3 is phosphorylated in neurons and that mutating this residue so as to mimic a constitutive phosphorylated state counters the neuromorphologic defects observed. In rats stereotaxically injected with expanded ataxin-3-encoding lentiviral vectors, mutation of serine 12 reduces aggregation, neuronal loss, and synapse loss. Our results suggest that S12 plays a role in the pathogenic pathways mediated by polyglutamine-expanded ataxin-3 and that phosphorylation of this residue protects against toxicity.

  18. Estimation of the age at onset in spinocerebellar ataxia type 2 Cuban patients by survival analysis.

    PubMed

    Almaguer-Mederos, L E; Falcón, N S; Almira, Y R; Zaldivar, Y G; Almarales, D C; Góngora, E M; Herrera, M P; Batallán, K E; Armiñán, R R; Manresa, M V; Cruz, G S; Laffita-Mesa, J; Cyuz, T M; Chang, V; Auburger, G; Gispert, S; Pérez, L V

    2010-08-01

    Previous studies have investigated the close association that exists between CAG repeat number and the age at onset in SCA2 = spinocerebellar ataxia type 2. These studies have focused on affected individuals. To further characterize this association and estimate the risk of a carrier developing SCA2 at a particular age as a function of a specific CAG repeat size, we have analyzed a large group of 924 individuals, including 394 presymptomatic and 530 affected individuals with a CAG repeat length of 32-79 units. Using a Kaplan-Meier survival analysis, we obtained cumulative probability curves for disease manifestation at a particular age for each CAG repeat length in the 34-45 range. These curves were significantly different (p < 0.001) and showed small overlap. All these information may be very valuable in predictive-testing programs, in the planning of studies for the identification of other genetic and environmental factors as modifiers of age at onset, and in the design of clinical trials for people at enlarged risk for SCA2. PMID:20095980

  19. Mesenchymal stem cells attenuate peripheral neuronal degeneration in spinocerebellar ataxia type 1 knockin mice.

    PubMed

    Mieda, Tokue; Suto, Nana; Iizuka, Akira; Matsuura, Serina; Iizuka, Haku; Takagishi, Kenji; Nakamura, Kazuhiro; Hirai, Hirokazu

    2016-03-01

    Spinocerebellar ataxia type 1 (SCA1) is a devastating neurodegenerative disorder in which an abnormally expanded polyglutamine tract is inserted into causative ataxin-1 proteins. We have previously shown that SCA1 knockin (SCA1-KI) mice over 6 months of age exhibit a degeneration of motor neuron axons and their encasing myelin sheaths, as reported in SCA1 patients. We examined whether axon degeneration precedes myelin degeneration or vice versa in SCA1-KI mice and then attempted to mitigate motor neuron degeneration by intrathecally administering mesenchymal stem cells (MSCs). Temporal examination of the diameters of motor neuron axons and their myelin sheaths revealed a decrease in diameter of the axon but not of the myelin sheaths in SCA1-KI mice as early as 1 month of age, which suggests secondary degeneration of the myelin sheaths. We injected MSCs into the intrathecal space of SCA1-KI mice at 1 month of age, which resulted in a significant suppression of degeneration of both motor neuron axons and myelin sheaths, even 6 months after the MSC injection. Thus, MSCs effectively suppressed peripheral nervous system degeneration in SCA1-KI mice. It has not yet been clarified how clinically administered MSCs exhibit significant therapeutic effects in patients with SCA1. The morphological evidence presented in this current mouse study might explain the mechanisms that underlie the therapeutic effects of MSCs that are observed in patients with SCA1.

  20. A randomized controlled pilot trial of lithium in spinocerebellar ataxia type 2.

    PubMed

    Saccà, Francesco; Puorro, Giorgia; Brunetti, Arturo; Capasso, Giovambattista; Cervo, Amedeo; Cocozza, Sirio; de Leva, Mariafulvia; Marsili, Angela; Pane, Chiara; Quarantelli, Mario; Russo, Cinzia Valeria; Trepiccione, Francesco; De Michele, Giuseppe; Filla, Alessandro; Morra, Vincenzo Brescia

    2015-01-01

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant disorder. Lithium is able to stimulate autophagy, and to reduce Ca(2+) efflux from the inositol-1,4,5-triphosphate receptor. We designed a phase II, randomized, placebo-controlled, double-blind, 48-week trial with lithium carbonate in 20 patients with SCA2. The primary objective was to determine safety and tolerability of lithium. The secondary objectives were to determine disease progression, quality of life, mood, and brain volume change. Sixteen patients completed the trial, 8 randomized to lithium, 8 to placebo. Forty adverse events (AEs) were reported during the trial, twenty-eight in the lithium and 12 in the placebo group (p = 0.11). Mean AE duration was 57.4 ± 60.8 and 77.4 ± 68.5 days (p = 0.37). Non-significant differences were observed for the SARA and for brain volume change, whereas a significant reduction in the BDI-II was observed for lithium group (p < 0.05). Lithium was well tolerated and reported AEs were similar to those previously described for bipolar disorder patients. A correctly powered phase III trial is needed to assess if lithium may slow disease progression in SCA2.

  1. The insulin-like growth factor pathway is altered in Spinocerebellar ataxia type 1 and type 7

    SciTech Connect

    Gatchel, Jennifer R.; Watase, Kei; Thaller, Christina; Carson, James P.; Jafar-Nejad, Paymaan; Shaw, Chad A.; Zu, Tao; Orr, Harry T.; Zoghbi, Huda Yahya

    2008-01-29

    Polyglutamine diseases are inherited neurodegenerative disorders caused by expansion of CAG trinucleotide repeats encoding a polyglutamine tract in the disease-causing proteins. There are nine of these disorders each having distinct features but also clinical and pathological similarities. In particular, spinocerebellar ataxia type 1 and 7 (SCA1 and SCA7) patients manifest cerebellar ataxia with corresponding degeneration of Purkinje cells. Given this common phenotype, we asked whether the two disorders share common molecular pathogenic events. To address this question we studied two genetically accurate mouse models of SCA1 and SCA7—Sca1154Q/2Q and Sca7266Q/5Q knock-in mice—that express the glutamine-expanded proteins from the respective endogenous loci. We found common transcriptional changes in early symptomatic mice, with downregulation of Insulin-like growth factor binding protein 5 (Igfbp5) representing one of the most robust transcriptional changes that closely correlates with disease state. Interestingly, down-regulation of Igfbp5 occurred in granule neurons through a non-cell autonomous mechanism and was concomitant with activation of the Insulin-like growth factor I (Igf-I) pathway, and, in particular, the Igf-I receptor, expressed in part on Purkinje cells (PC). These data define a possible common pathogenic response in SCA1 and SCA7 and reveal the importance of neuron-neuron interactions in SCA1 and SCA7 pathogenesis. The sensitivity of Igfbp5 levels to disease state could render it and other components of its effector pathway useful as biomarkers in this class of diseases.

  2. Automated home cage assessment shows behavioral changes in a transgenic mouse model of spinocerebellar ataxia type 17.

    PubMed

    Portal, Esteban; Riess, Olaf; Nguyen, Huu Phuc

    2013-08-01

    Spinocerebellar Ataxia type 17 (SCA17) is an autosomal dominantly inherited, neurodegenerative disease characterized by ataxia, involuntary movements, and dementia. A novel SCA17 mouse model having a 71 polyglutamine repeat expansion in the TATA-binding protein (TBP) has shown age related motor deficit using a classic motor test, yet concomitant weight increase might be a confounding factor for this measurement. In this study we used an automated home cage system to test several motor readouts for this same model to confirm pathological behavior results and evaluate benefits of automated home cage in behavior phenotyping. Our results confirm motor deficits in the Tbp/Q71 mice and present previously unrecognized behavioral characteristics obtained from the automated home cage, indicating its use for high-throughput screening and testing, e.g. of therapeutic compounds.

  3. Partial Loss of Ataxin-1 Function Contributes to Transcriptional Dysregulation in Spinocerebellar Ataxia Type 1 Pathogenesis

    PubMed Central

    Crespo-Barreto, Juan; Fryer, John D.; Shaw, Chad A.; Orr, Harry T.; Zoghbi, Huda Y.

    2010-01-01

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a CAG repeat that encodes a polyglutamine tract in ATAXIN1 (ATXN1). Molecular and genetic data indicate that SCA1 is mainly caused by a gain-of-function mechanism. However, deletion of wild-type ATXN1 enhances SCA1 pathogenesis, whereas increased levels of an evolutionarily conserved paralog of ATXN1, Ataxin 1-Like, ameliorate it. These data suggest that a partial loss of ATXN1 function contributes to SCA1. To address this possibility, we set out to determine if the SCA1 disease model (Atxn1154Q/+ mice) and the loss of Atxn1 function model (Atxn1−/− mice) share molecular changes that could potentially contribute to SCA1 pathogenesis. To identify transcriptional changes that might result from loss of function of ATXN1 in SCA1, we performed gene expression microarray studies on cerebellar RNA from Atxn1−/− and Atxn1154Q/+ cerebella and uncovered shared gene expression changes. We further show that mild overexpression of Ataxin-1-Like rescues several of the molecular and behavioral defects in Atxn1−/− mice. These results support a model in which Ataxin 1-Like overexpression represses SCA1 pathogenesis by compensating for a partial loss of function of Atxn1. Altogether, these data provide evidence that partial loss of Atxn1 function contributes to SCA1 pathogenesis and raise the possibility that loss-of-function mechanisms contribute to other dominantly inherited neurodegenerative diseases. PMID:20628574

  4. Causes of Ataxia

    MedlinePlus

    ... Donate to the National Ataxia Foundation Causes of Ataxia The hereditary ataxias are genetic, which means they ... the disease is inherited as a recessive gene. Ataxia Gene Identified in 1993 The first ataxia gene ...

  5. Molecular and clinical correlations in spinocerebellar ataxia type I: Evidence for familial effects on the age at onset

    SciTech Connect

    Ranum, L.P.W.; Chung, M.; Schut, L.J.; Duvick, L.A. ); Banfi, S.; McCall, A. ); Bryer, A.; Ramesar, R.; Subramony, S.H.; Goldfarb, L.

    1994-08-01

    The spinocerebellar ataxias are a group of debilitating neurodegenerative diseases for which a clinical classification system has proved unreliable. The authors have recently isolated the gene for spinocerebellar ataxia type 1 (SCA1) and have shown that the disease is caused by an expanded, unstable, CAG trinucleotide repeat within an expressed gene. Normal alleles have a size range of 19-36 repeats, while SCA1 alleles have 42-81 repeats. In this study, they examined the frequency and variability of the SCA1 repeat expansion in 87 kindreds with diverse ethnic backgrounds and dominantly inherited ataxia. All nine families for which linkage to the SCA1 region of 6p had previously been established showed repeat expansion, while 3 of the remaining 78 showed a similar abnormality. For 113 patients from the families with repeat expansion, inverse correlations between CAG repeat size and both age at onset and disease duration were observed. Repeat size accounted for 66% of the variation in age at onset in these patients. After correction for repeat size, interfamilial differences in age at onset remained significant, suggesting that additional genetic factors affect the expression of the SCA1 gene product. 48 refs., 4 figs.

  6. Mutation analysis of spinocerebellar ataxia type 1 (SCA1) in a large Iakut kinship of Eastern Siberia

    SciTech Connect

    Goldfarb, L.G.; Lunkes, A.; Vaconcelos, O.

    1994-09-01

    We have studied 131 patients with autosomal dominant cerebellar ataxia clinically and pathologically expressed as olivopontocerebellar atrophy. The disease in this Siberian kinship has been genetically linked to the SCA1 gene on chromosome 6p, and the pedigree was screened for the recently described CAG repeat expansion in this gene using the GeneScan program (ABI). The normal allele in the affected individuals had 26 to 32 repeats, and among 424 analyzed normal alleles of the unaffected members of the kinship, unrelated controls and patients with other neurological disorders, the range of repeat numbers was 26 to 37, with 92% within 28 to 30 repeats. All 65 normal alleles in which the repeat area has been sequenced show a CAT or CATCAGCAT interruption between the first and the second stretches of 10 to 17 CAG repeats. The SCA1 allele was extended to 39 to 60 uninterrupted repeats in all fifty-nine analyzed ataxia patients. Repeat numbers of 40 to 55 were also found in thirty-nine of 105 tested unaffected first and second degree relatives. Two patients and an unaffected child were homozygous for the elongated allele. In seven of 10 paternal transmissions an increase of 2 to 11 repeats have occurred; in nine maternal transmissions the repeat numbers remained the same or grew for just one repeat. Mutation analysis provides new opportunities in diagnosis and risk assessment of spinocerebellar ataxia type 1.

  7. Inhibition of Ataxia Telangiectasia Mutated (ATM) Kinase Suppresses Herpes Simplex Virus Type 1 (HSV-1) Keratitis

    PubMed Central

    Alekseev, Oleg; Donovan, Kelly; Azizkhan-Clifford, Jane

    2014-01-01

    Purpose. Herpes keratitis (HK) remains the leading cause of cornea-derived blindness in the developed world, despite the availability of effective antiviral drugs. Treatment toxicity and the emergence of drug resistance highlight the need for additional therapeutic approaches. This study examined ataxia telangiectasia mutated (ATM), an apical kinase in the host DNA damage response, as a potential new target for the treatment of HK. Methods. Small molecule inhibitor of ATM (KU-55933) was used to treat herpes simplex virus type 1 (HSV-1) infection in three experimental models: (1) in vitro—cultured human corneal epithelial cells, hTCEpi, (2) ex vivo—organotypically explanted human and rabbit corneas, and (3) in vivo—corneal infection in young C57BL/6J mice. Infection productivity was assayed by plaque assay, real-time PCR, Western blot, and disease scoring. Results. Robust ATM activation was detected in HSV-1-infected human corneal epithelial cells. Inhibition of ATM greatly suppressed viral replication in cultured cells and in explanted human and rabbit corneas, and reduced the severity of stromal keratitis in mice. The antiviral effect of KU-55933 in combination with acyclovir was additive, and KU-55933 suppressed replication of a drug-resistant HSV-1 strain. KU-55933 caused minimal toxicity, as monitored by clonogenic survival assay and fluorescein staining. Conclusions. This study identifies ATM as a potential target for the treatment of HK. ATM inhibition by KU-55933 reduces epithelial infection and stromal disease severity without producing appreciable toxicity. These findings warrant further investigations into the DNA damage response as an area for therapeutic intervention in herpetic ocular diseases. PMID:24370835

  8. Social and Cultural Elements Associated with Neurocognitive Dysfunctions in Spinocerebellar Ataxia Type 2 Patients.

    PubMed

    Mercadillo, Roberto Emmanuele; Galvez, Víctor; Díaz, Rosalinda; Paredes, Lorena; Velázquez-Moctezuma, Javier; Hernandez-Castillo, Carlos R; Fernandez-Ruiz, Juan

    2015-01-01

    Spinocerebellar Ataxia Type 2 (SCA2) is a rare genetic disorder producing cerebellar degeneration and affecting motor abilities. Neuroimaging studies also show neurodegeneration in subcortical and cortical regions related to emotional and social processes. From social neuroscience, it is suggested that motor and social abilities can be influenced by particular cultural dynamics so, culture is fundamental to understand the effect of brain-related alterations. Here, we present the first analysis about the cultural elements related to the SCA2 disorder in 15 patients previously evaluated with neuroimaging and psychometric instruments, and their nuclear relationships distributed in six geographical and cultural regions in Mexico. Ethnographic records and photographic and video archives about the quotidian participant's routine were obtained from the patients, their relatives and their caregivers. The information was categorized and interpreted taking into consideration cultural issues and patients' medical files. Our analyses suggest that most of the participants do not understand the nature of the disease and this misunderstanding favors magic and non-medical explanations. Patients' testimonies suggest a decrease in pain perception as well as motor alterations that may be related to interoceptive dysfunctions. Relatives' testimonies indicate patients' lack of social and emotional interests that may be related to frontal, temporal, and cerebellar degeneration. In general, participants use their religious beliefs to deal with the disease and only a few of them trust the health system. Patients and their families are either openly rejected and ignored, tolerated or even helped by their community accordingly to different regional traits. We propose that ethnography can provide social representations to understand the patients' alterations, to formulate neurobiological hypotheses, to develop neurocognitive interventions, and to improve the medical approach to the disease

  9. Social and Cultural Elements Associated with Neurocognitive Dysfunctions in Spinocerebellar Ataxia Type 2 Patients

    PubMed Central

    Mercadillo, Roberto Emmanuele; Galvez, Víctor; Díaz, Rosalinda; Paredes, Lorena; Velázquez-Moctezuma, Javier; Hernandez-Castillo, Carlos R.; Fernandez-Ruiz, Juan

    2015-01-01

    Spinocerebellar Ataxia Type 2 (SCA2) is a rare genetic disorder producing cerebellar degeneration and affecting motor abilities. Neuroimaging studies also show neurodegeneration in subcortical and cortical regions related to emotional and social processes. From social neuroscience, it is suggested that motor and social abilities can be influenced by particular cultural dynamics so, culture is fundamental to understand the effect of brain-related alterations. Here, we present the first analysis about the cultural elements related to the SCA2 disorder in 15 patients previously evaluated with neuroimaging and psychometric instruments, and their nuclear relationships distributed in six geographical and cultural regions in Mexico. Ethnographic records and photographic and video archives about the quotidian participant’s routine were obtained from the patients, their relatives and their caregivers. The information was categorized and interpreted taking into consideration cultural issues and patients’ medical files. Our analyses suggest that most of the participants do not understand the nature of the disease and this misunderstanding favors magic and non-medical explanations. Patients’ testimonies suggest a decrease in pain perception as well as motor alterations that may be related to interoceptive dysfunctions. Relatives’ testimonies indicate patients’ lack of social and emotional interests that may be related to frontal, temporal, and cerebellar degeneration. In general, participants use their religious beliefs to deal with the disease and only a few of them trust the health system. Patients and their families are either openly rejected and ignored, tolerated or even helped by their community accordingly to different regional traits. We propose that ethnography can provide social representations to understand the patients’ alterations, to formulate neurobiological hypotheses, to develop neurocognitive interventions, and to improve the medical approach to

  10. Social and Cultural Elements Associated with Neurocognitive Dysfunctions in Spinocerebellar Ataxia Type 2 Patients.

    PubMed

    Mercadillo, Roberto Emmanuele; Galvez, Víctor; Díaz, Rosalinda; Paredes, Lorena; Velázquez-Moctezuma, Javier; Hernandez-Castillo, Carlos R; Fernandez-Ruiz, Juan

    2015-01-01

    Spinocerebellar Ataxia Type 2 (SCA2) is a rare genetic disorder producing cerebellar degeneration and affecting motor abilities. Neuroimaging studies also show neurodegeneration in subcortical and cortical regions related to emotional and social processes. From social neuroscience, it is suggested that motor and social abilities can be influenced by particular cultural dynamics so, culture is fundamental to understand the effect of brain-related alterations. Here, we present the first analysis about the cultural elements related to the SCA2 disorder in 15 patients previously evaluated with neuroimaging and psychometric instruments, and their nuclear relationships distributed in six geographical and cultural regions in Mexico. Ethnographic records and photographic and video archives about the quotidian participant's routine were obtained from the patients, their relatives and their caregivers. The information was categorized and interpreted taking into consideration cultural issues and patients' medical files. Our analyses suggest that most of the participants do not understand the nature of the disease and this misunderstanding favors magic and non-medical explanations. Patients' testimonies suggest a decrease in pain perception as well as motor alterations that may be related to interoceptive dysfunctions. Relatives' testimonies indicate patients' lack of social and emotional interests that may be related to frontal, temporal, and cerebellar degeneration. In general, participants use their religious beliefs to deal with the disease and only a few of them trust the health system. Patients and their families are either openly rejected and ignored, tolerated or even helped by their community accordingly to different regional traits. We propose that ethnography can provide social representations to understand the patients' alterations, to formulate neurobiological hypotheses, to develop neurocognitive interventions, and to improve the medical approach to the disease.

  11. Spinocerebellar ataxias type 8, 12, and 17 and dentatorubro-pallidoluysian atrophy in Czech ataxic patients.

    PubMed

    Musova, Zuzana; Sedlacek, Zdenek; Mazanec, Radim; Klempir, Jiri; Roth, Jan; Plevova, Pavlina; Vyhnalek, Martin; Kopeckova, Marta; Apltova, Ludmila; Krepelova, Anna; Zumrova, Alena

    2013-04-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative disorders currently associated with 27 genes. The most frequent types are caused by expansions in coding CAG repeats. The frequency of SCA subtypes varies among populations. We examined the occurrence of rare SCAs, SCA8, SCA12, SCA17 and dentatorubro-pallidoluysian atrophy (DRPLA), in the Czech population from where the data were missing. We analyzed causal gene expansions in 515 familial and sporadic ataxic patients negatively tested for SCA1-3 and SCA6-7. Pathogenic SCA8 and SCA17 expansions were identified in eight and five patients, respectively. Tay-Sachs disease was later diagnosed in one patient with an SCA8 expansion and the diagnosis of multiple sclerosis (MS) was suspected in two other patients with SCA8 expansions. These findings are probably coincidental, although the participation of SCA8 expansions in the susceptibility to MS and disease progression cannot be fully excluded. None of the patients had pathogenic SCA12 or DRPLA expansions. However, three patients had intermediate SCA12 alleles out of the normal range with 36 and 43 CAGs. Amyotrophic lateral sclerosis (ALS) was probable in the patient with 43 CAGs. This coincidence is remarkable, especially in the context with the recently identified predisposing role of longer SCA2 alleles in ALS. Five families with SCA17 represent a significant portion of ataxic patients and this should be reflected in the diagnostics of SCAs in the Czech population. SCA8 expansions must be considered after careful clinical evaluation. PMID:22872568

  12. Sporadic infantile-onset spinocerebellar ataxia caused by missense mutations of the inositol 1,4,5-triphosphate receptor type 1 gene.

    PubMed

    Sasaki, Masayuki; Ohba, Chihiro; Iai, Mizue; Hirabayashi, Shinichi; Osaka, Hitoshi; Hiraide, Takuya; Saitsu, Hirotomo; Matsumoto, Naomichi

    2015-05-01

    Mutations in the inositol 1,4,5-triphosphate receptor type 1 gene (ITPR1) have been identified in families with early-onset spinocerebellar ataxia type 29 (SCA29) and late-onset SCA15, but have not been found in sporadic infantile-onset cerebellar ataxia. We examined if mutations of ITPR1 are also involved in sporadic infantile-onset SCA. Sixty patients with childhood-onset cerebellar atrophy of unknown etiology and their families were examined by whole-exome sequencing. We found de novo heterozygous ITPR1 missense mutations in four unrelated patients with sporadic infantile-onset, nonprogressive cerebellar ataxia. Patients displayed nystagmus, tremor, and hypotonia from very early infancy. Nonprogressive ataxia, motor delay, and mild cognitive deficits were common clinical findings. Brain magnetic resonance imaging revealed slowly progressive cerebellar atrophy. ITPR1 missense mutations cause infantile-onset cerebellar ataxia. ITPR1-related SCA includes sporadic infantile-onset cerebellar ataxia as well as SCA15 and SCA29.

  13. Ataxin-1 oligomers induce local spread of pathology and decreasing them by passive immunization slows Spinocerebellar ataxia type 1 phenotypes.

    PubMed

    Lasagna-Reeves, Cristian A; Rousseaux, Maxime Wc; Guerrero-Munoz, Marcos J; Vilanova-Velez, Luis; Park, Jeehye; See, Lauren; Jafar-Nejad, Paymaan; Richman, Ronald; Orr, Harry T; Kayed, Rakez; Zoghbi, Huda Y

    2015-12-17

    Previously, we reported that ATXN1 oligomers are the primary drivers of toxicity in Spinocerebellar ataxia type 1 (SCA1; Lasagna-Reeves et al., 2015). Here we report that polyQ ATXN1 oligomers can propagate locally in vivo in mice predisposed to SCA1 following intracerebral oligomeric tissue inoculation. Our data also show that targeting these oligomers with passive immunotherapy leads to some improvement in motor coordination in SCA1 mice and to a modest increase in their life span. These findings provide evidence that oligomer propagation is regionally limited in SCA1 and that immunotherapy targeting extracellular oligomers can mildly modify disease phenotypes.

  14. Identifying Niemann-Pick type C in early-onset ataxia: two quick clinical screening tools.

    PubMed

    Synofzik, Matthis; Fleszar, Zofia; Schöls, Ludger; Just, Jennifer; Bauer, Peter; Torres Martin, Juan V; Kolb, Stefan

    2016-10-01

    Niemann-Pick disease type C (NP-C) is a rare multisystemic lysosomal disorder which, albeit treatable, is still starkly underdiagnosed. As NP-C features early onset ataxia (EOA) in 85-90 % of cases, EOA presents a promising target group for undiagnosed NP-C patients. Here, we assessed the ability of the previously established NP-C suspicion index (SI) and a novel abbreviated '2/3 SI' tool for rapid appraisal of suspected NP-C in unexplained EOA. This was a retrospective observational study comparing 'NP-C EOA' cases (EOA patients with confirmed NP-C) with non-NP-C EOA controls (EOA patients negative for NP-C gene mutations). NP-C risk prediction scores (RPS) from both the original and 2/3 SIs were calculated and their discriminatory performance evaluated. Among 133 patients (47 NP-C EOA cases; 86 non-NP-C EOA controls), moderate (40-69 points) and high (≥70 points) RPS were common based on original SI assessments in non-NP-C EOA controls [16 (19 %) and 8 (9 %), respectively], but scores ≥70 points were far more frequent [46 (98 %)] among NP-C EOA cases. RPS cut-off values provided 98 % sensitivity and 91 % specificity for NP-C at 70-point cut-off, and ROC analysis revealed an AUC of 0.982. Using the 2/3 SI, 90 % of NP-C EOA cases had scores of 2 or 3, and RPS analysis showed an AUC of 0.961. In conclusion, the NP-C SI and the new, quick-to-apply 2/3 SI distinguished well between NP-C and non-NP-C patients, even in EOA populations with high background levels of broadly NPC-compatible multisystemic disease features. While the original SI showed the greatest sensitivity, both tools reliably aided identification of patients with unexplained EOA who warranted further investigation for NP-C.

  15. Characterization of the gene causing type 1 spinocerebellar ataxia and identification of the murine homolog

    SciTech Connect

    Banfi, S.; Servadio, A.; McCall, A.E.

    1994-09-01

    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder characterized by neurodegeneration of the cerebellum and brainstem. The mutation in SCA1 involves the expansion of a highly polymorphic CAG trinucleotide repeat located within the coding region of a novel gene on the short arm of human chromosome 6. The SCA1 transcript is 10,660 bases and has a wide pattern of expression. The gene product, ataxin-1, is predicted to contain 792-825 amino acids (depending on the size of the CAG repeat on normal alleles) and does not share any homology with any known protein. The structure of this gene is unusual in that it contains seven exons in the 5{prime} untranslated region (5{prime} UTR) and two large exons (2080 and 7805 bp respectively) which contain the coding region, and a 7277 bp 3{prime} untranslated region (3{prime} UTR). In order to identify putative functional domains of ataxin-1 and to investigate the significance of the long 5{prime} UTR, we began characterizing the murine homolog of the SCA1 gene (Sca1). Northern analysis revealed that the size of the Sca1 transcript is approximately 10.5 kb. Sequence analysis of more than 3 kb of the murine gene revealed that Sca1 encodes for a predicted protein of 792 amino acids which shows 89% peptide identity with the human protein. The murine Sca1 gene contains only two CAG repeats suggesting that the polyglutamine tract is not essential for the normal function of this protein. Preliminary analysis of the murine locus suggests that it is very similar to the human locus with two large exons containing the coding region and a very long 3{prime} UTR. Sequence homology between the mouse and human homologs extends into the 5{prime} UTR and 3{prime} UTR with 85% and 63% identity respectively. Detailed characterization of the 5{prime} UTR in the mouse is currently in progress to determine its potential role in the regulation of transcription and/or translation of this gene.

  16. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4.

    PubMed

    Bras, Jose; Alonso, Isabel; Barbot, Clara; Costa, Maria Manuela; Darwent, Lee; Orme, Tatiana; Sequeiros, Jorge; Hardy, John; Coutinho, Paula; Guerreiro, Rita

    2015-03-01

    Hereditary autosomal-recessive cerebellar ataxias are a genetically and clinically heterogeneous group of disorders. We used homozygosity mapping and exome sequencing to study a cohort of nine Portuguese families who were identified during a nationwide, population-based, systematic survey as displaying a consistent phenotype of recessive ataxia with oculomotor apraxia (AOA). The integration of data from these analyses led to the identification of the same homozygous PNKP (polynucleotide kinase 3'-phosphatase) mutation, c.1123G>T (p.Gly375Trp), in three of the studied families. When analyzing this particular gene in the exome sequencing data from the remaining cohort, we identified homozygous or compound-heterozygous mutations in five other families. PNKP is a dual-function enzyme with a key role in different pathways of DNA-damage repair. Mutations in this gene have previously been associated with an autosomal-recessive syndrome characterized by microcephaly; early-onset, intractable seizures; and developmental delay (MCSZ). The finding of PNKP mutations associated with recessive AOA extends the phenotype associated with this gene and identifies a fourth locus that causes AOA. These data confirm that MCSZ and some forms of ataxia share etiological features, most likely reflecting the role of PNKP in DNA-repair mechanisms. PMID:25728773

  17. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4.

    PubMed

    Bras, Jose; Alonso, Isabel; Barbot, Clara; Costa, Maria Manuela; Darwent, Lee; Orme, Tatiana; Sequeiros, Jorge; Hardy, John; Coutinho, Paula; Guerreiro, Rita

    2015-03-01

    Hereditary autosomal-recessive cerebellar ataxias are a genetically and clinically heterogeneous group of disorders. We used homozygosity mapping and exome sequencing to study a cohort of nine Portuguese families who were identified during a nationwide, population-based, systematic survey as displaying a consistent phenotype of recessive ataxia with oculomotor apraxia (AOA). The integration of data from these analyses led to the identification of the same homozygous PNKP (polynucleotide kinase 3'-phosphatase) mutation, c.1123G>T (p.Gly375Trp), in three of the studied families. When analyzing this particular gene in the exome sequencing data from the remaining cohort, we identified homozygous or compound-heterozygous mutations in five other families. PNKP is a dual-function enzyme with a key role in different pathways of DNA-damage repair. Mutations in this gene have previously been associated with an autosomal-recessive syndrome characterized by microcephaly; early-onset, intractable seizures; and developmental delay (MCSZ). The finding of PNKP mutations associated with recessive AOA extends the phenotype associated with this gene and identifies a fourth locus that causes AOA. These data confirm that MCSZ and some forms of ataxia share etiological features, most likely reflecting the role of PNKP in DNA-repair mechanisms.

  18. Mutations in PNKP Cause Recessive Ataxia with Oculomotor Apraxia Type 4

    PubMed Central

    Bras, Jose; Alonso, Isabel; Barbot, Clara; Costa, Maria Manuela; Darwent, Lee; Orme, Tatiana; Sequeiros, Jorge; Hardy, John; Coutinho, Paula; Guerreiro, Rita

    2015-01-01

    Hereditary autosomal-recessive cerebellar ataxias are a genetically and clinically heterogeneous group of disorders. We used homozygosity mapping and exome sequencing to study a cohort of nine Portuguese families who were identified during a nationwide, population-based, systematic survey as displaying a consistent phenotype of recessive ataxia with oculomotor apraxia (AOA). The integration of data from these analyses led to the identification of the same homozygous PNKP (polynucleotide kinase 3′-phosphatase) mutation, c.1123G>T (p.Gly375Trp), in three of the studied families. When analyzing this particular gene in the exome sequencing data from the remaining cohort, we identified homozygous or compound-heterozygous mutations in five other families. PNKP is a dual-function enzyme with a key role in different pathways of DNA-damage repair. Mutations in this gene have previously been associated with an autosomal-recessive syndrome characterized by microcephaly; early-onset, intractable seizures; and developmental delay (MCSZ). The finding of PNKP mutations associated with recessive AOA extends the phenotype associated with this gene and identifies a fourth locus that causes AOA. These data confirm that MCSZ and some forms of ataxia share etiological features, most likely reflecting the role of PNKP in DNA-repair mechanisms. PMID:25728773

  19. Ataxia Telangiectasia

    MedlinePlus

    ... Funding Information Research Programs Training & Career Awards Enhancing Diversity Find People About NINDS NINDS Ataxia Telangiectasia Information ... News From NINDS | Find People | Training | Research | Enhancing Diversity Careers@NINDS | FOIA | Accessibility Policy | Contact Us | Privacy ...

  20. Genetic fitness and selection intensity in a population affected with high-incidence spinocerebellar ataxia type 1.

    PubMed

    Platonov, Fedor A; Tyryshkin, Kathrin; Tikhonov, Dmitriy G; Neustroyeva, Tatyana S; Sivtseva, Tatyana M; Yakovleva, Natalya V; Nikolaev, Valerian P; Sidorova, Oksana G; Kononova, Sardana K; Goldfarb, Lev G; Renwick, Neil M

    2016-07-01

    Spinocerebellar ataxia type 1 (SCA1) is the major and likely the only type of autosomal dominant cerebellar ataxia in the Sakha (Yakut) people of Eastern Siberia. The prevalence rate of SCA1 has doubled over the past 21 years peaking at 46 cases per 100,000 rural population. The age at death correlates closely with the number of CAG triplet repeats in the mutant ATXN1 gene (r = -0.81); most patients with low-medium (39-55) repeat numbers survived until the end of reproductive age. The number of CAG repeats expands in meiosis, particularly in paternal transmissions; the average total increase in intergenerational transmissions in our cohort was estimated at 1.6 CAG repeats. The fertility rates of heterozygous carriers of 39-55 CAG repeats in women were no different from those of the general Sakha population. Overall, the survival of mutation carriers through reproductive age, unaltered fertility rates, low childhood mortality in SCA1-affected families, and intergenerational transmission of increasing numbers of CAG repeats in the ATXN1 gene indicate that SCA1 in the Sakha population will be maintained at high prevalence levels. The low (0.19) Crow's index of total selection intensity in our SCA1 cohort implies that this mutation is unlikely to be eliminated through natural selection alone. PMID:27106293

  1. Genetic fitness and selection intensity in a population affected with high-incidence spinocerebellar ataxia type 1.

    PubMed

    Platonov, Fedor A; Tyryshkin, Kathrin; Tikhonov, Dmitriy G; Neustroyeva, Tatyana S; Sivtseva, Tatyana M; Yakovleva, Natalya V; Nikolaev, Valerian P; Sidorova, Oksana G; Kononova, Sardana K; Goldfarb, Lev G; Renwick, Neil M

    2016-07-01

    Spinocerebellar ataxia type 1 (SCA1) is the major and likely the only type of autosomal dominant cerebellar ataxia in the Sakha (Yakut) people of Eastern Siberia. The prevalence rate of SCA1 has doubled over the past 21 years peaking at 46 cases per 100,000 rural population. The age at death correlates closely with the number of CAG triplet repeats in the mutant ATXN1 gene (r = -0.81); most patients with low-medium (39-55) repeat numbers survived until the end of reproductive age. The number of CAG repeats expands in meiosis, particularly in paternal transmissions; the average total increase in intergenerational transmissions in our cohort was estimated at 1.6 CAG repeats. The fertility rates of heterozygous carriers of 39-55 CAG repeats in women were no different from those of the general Sakha population. Overall, the survival of mutation carriers through reproductive age, unaltered fertility rates, low childhood mortality in SCA1-affected families, and intergenerational transmission of increasing numbers of CAG repeats in the ATXN1 gene indicate that SCA1 in the Sakha population will be maintained at high prevalence levels. The low (0.19) Crow's index of total selection intensity in our SCA1 cohort implies that this mutation is unlikely to be eliminated through natural selection alone.

  2. Beyond the glutamine expansion: influence of posttranslational modifications of ataxin-1 in the pathogenesis of spinocerebellar ataxia type 1.

    PubMed

    Ju, Hyoungseok; Kokubu, Hiroshi; Lim, Janghoo

    2014-12-01

    Posttranslational modifications are crucial mechanisms that modulate various cellular signaling pathways, and their dysregulation is associated with many human diseases. Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia, mild cognitive impairments, difficulty with speaking and swallowing, and respiratory failure. It is caused by the expansion of an unstable CAG trinucleotide repeat encoding a glutamine tract in Ataxin-1 (ATXN1). Although the expansion of the polyglutamine tract is the key determinant of the disease, protein domains outside of the polyglutamine tract and posttranslational modifications of ATXN1 significantly alter the neurotoxicity of SCA1. ATXN1 undergoes several posttranslational modifications, including phosphorylation, ubiquitination, sumoylation, and transglutamination. Such modifications can alter the stability of ATXN1 or its activity in the regulation of target gene expression and therefore contribute to SCA1 toxicity. This review outlines different types of posttranslational modifications in ATXN1 and discusses their potential regulatory mechanisms and effects on SCA1 pathogenesis. Finally, the manipulation of posttranslational modifications as a potential therapeutic approach will be discussed.

  3. More Than Ataxia: Hyperkinetic Movement Disorders in Childhood Autosomal Recessive Ataxia Syndromes

    PubMed Central

    Pearson, Toni S.

    2016-01-01

    Background The autosomal recessive ataxias are a heterogeneous group of disorders that are characterized by complex neurological features in addition to progressive ataxia. Hyperkinetic movement disorders occur in a significant proportion of patients, and may sometimes be the presenting motor symptom. Presentations with involuntary movements rather than ataxia are diagnostically challenging, and are likely under-recognized. Methods A PubMed literature search was performed in October 2015 utilizing pairwise combinations of disease-related terms (autosomal recessive ataxia, ataxia–telangiectasia, ataxia with oculomotor apraxia type 1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2), Friedreich ataxia, ataxia with vitamin E deficiency), and symptom-related terms (movement disorder, dystonia, chorea, choreoathetosis, myoclonus). Results Involuntary movements occur in the majority of patients with ataxia–telangiectasia and AOA1, and less frequently in patients with AOA2, Friedreich ataxia, and ataxia with vitamin E deficiency. Clinical presentations with an isolated hyperkinetic movement disorder in the absence of ataxia include dystonia or dystonia with myoclonus with predominant upper limb and cervical involvement (ataxia–telangiectasia, ataxia with vitamin E deficiency), and generalized chorea (ataxia with oculomotor apraxia type 1, ataxia-telangiectasia). Discussion An awareness of atypical presentations facilitates early and accurate diagnosis in these challenging cases. Recognition of involuntary movements is important not only for diagnosis, but also because of the potential for effective targeted symptomatic treatment. PMID:27536460

  4. Impaired vestibulo-ocular reflex (VOR) in spinocerebellar ataxia type 3 (SCA3): bedside and search coil evaluation.

    PubMed

    Gordon, Carlos R; Zivotofsky, Ari Z; Caspi, Avi

    2014-01-01

    Vestibulo-Ocular Reflex (VOR) abnormalities in cerebellar ataxias are a matter of renewed interest. We have previously reported vestibular areflexia in a group of Yemenite-Jews with Spinocerebellar Ataxia Type 3 (SCA3) who had clear bilateral pathological horizontal Head Impulse Test (HIT). The objective of this study was to evaluate the VOR of ten SCA3 patients who have variable bedside HIT responses by recording their eye movements using magnetic search coils and to correlate these results with their clinical and genetic data. Eight out of the ten patients have abnormal horizontal HIT detected by both clinical bedside examination and laboratory tests. Results of bedside HIT testing were significantly correlated with the VOR gain recorded using magnetic search coils. No significant correlations were found between VOR gain and other clinical or genetic data. Our study confirms the presence of defective VOR in SCA3 patients and corroborates the useful of the HIT as a reliable bedside test for diagnosis of VOR deficits.

  5. Expansion of the Spinocerebellar ataxia type 10 (SCA10) repeat in a patient with Sioux Native American ancestry.

    PubMed

    Bushara, Khalaf; Bower, Matthew; Liu, Jilin; McFarland, Karen N; Landrian, Ivette; Hutter, Diane; Teive, Hélio A G; Rasmussen, Astrid; Mulligan, Connie J; Ashizawa, Tetsuo

    2013-01-01

    Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia, is caused by the expansion of the non-coding ATTCT pentanucleotide repeat in the ATAXIN 10 gene. To date, all cases of SCA10 are restricted to patients with ancestral ties to Latin American countries. Here, we report on a SCA10 patient with Sioux Native American ancestry and no reported Hispanic or Latino heritage. Neurological exam findings revealed impaired gait with mild, age-consistent cerebellar atrophy and no evidence of epileptic seizures. The age at onset for this patient, at 83 years of age, is the latest documented for SCA10 patients and is suggestive of a reduced penetrance allele in his family. Southern blot analysis showed an SCA10 expanded allele of 1400 repeats. Established SNPs surrounding the SCA10 locus showed a disease haplotype consistent with the previously described "SCA10 haplotype". This case suggests that the SCA10 expansion represents an early mutation event that possibly occurred during the initial peopling of the Americas. PMID:24278426

  6. Executive deficit in spinocerebellar ataxia type 2 is related to expanded CAG repeats: evidence from antisaccadic eye movements.

    PubMed

    Rodríguez-Labrada, Roberto; Velázquez-Pérez, Luis; Aguilera-Rodríguez, Raúl; Seifried-Oberschmidt, Carola; Peña-Acosta, Arnoy; Canales-Ochoa, Nalia; Medrano-Montero, Jacqueline; Estupiñan-Rodríguez, Annelié; Vázquez-Mojena, Yaimeé; González-Zaldivar, Yanetza; Laffita Mesa, Jose M

    2014-11-01

    Although antisaccadic task is a sensitive research tool in psychopathology, it has not been systematically studied in patients with spinocerebellar ataxia type 2 (SCA2). To identify putative biomarkers of executive dysfunction in SCA2 we assessed the antisaccade performance in 41 SCA2 patients and their sex-and-age matched controls using an electronystagmography device. We studied the relationship between findings in the antisaccade task and CAG repeat length and motor function as assessed using the Scale for the Assessment and Rating of Ataxia (SARA), Nine-Hole Pegboard Test and a validated battery for executive dysfunctions. SCA2 patients showed a significant increase of inhibition and omission antisaccadic error rates, decrease of corrected antisaccadic errors and prolongation of antisaccadic latency and antisaccadic correction latency. Multiple regression predictions identified the expanded CAG repeat as a significant contributing factor on inhibition antisaccadic error rate and percentage of corrected antisaccadic errors. Impaired antisaccadic performance was associated to higher Stroop interference task and verbal fluency test deficits. In conclusion, antisaccadic eye movement abnormalities are a newly recognized association with the genetic abnormality in SCA2 and correlate with executive dysfunction in SCA2. Antisaccade parameters are a promising source of cognitive biomarkers for exploring the disease pathophysiology, and assessing the efficacy of therapeutic options.

  7. Rapid Onset of Motor Deficits in a Mouse Model of Spinocerebellar Ataxia Type 6 Precedes Late Cerebellar Degeneration123

    PubMed Central

    Ljungberg, Lovisa; Cormier, Alexander; Quilez, Sabrina

    2015-01-01

    Abstract Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant cerebellar ataxia that has been associated with loss of cerebellar Purkinje cells. Disease onset is typically at midlife, although it can vary widely from late teens to old age in SCA6 patients. Our study focused on an SCA6 knock-in mouse model with a hyper-expanded (84X) CAG repeat expansion that displays midlife-onset motor deficits at ∼7 months old, reminiscent of midlife-onset symptoms in SCA6 patients, although a detailed phenotypic analysis of these mice has not yet been reported. Here, we characterize the onset of motor deficits in SCA684Q mice using a battery of behavioral assays to test for impairments in motor coordination, balance, and gait. We found that these mice performed normally on these assays up to and including at 6 months, but motor impairment was detected at 7 months with all motor coordination assays used, suggesting that motor deficits emerge rapidly during a narrow age window in SCA684Q mice. In contrast to what is seen in SCA6 patients, the decrease in motor coordination was observed without alterations in gait. No loss of cerebellar Purkinje cells or striatal neurons were observed at 7 months, the age at which motor deficits were first detected, but significant Purkinje cell loss was observed in 2-year-old SCA684Q mice, arguing that Purkinje cell death does not significantly contribute to the early stages of SCA6. PMID:26730403

  8. Impaired vestibulo-ocular reflex (VOR) in spinocerebellar ataxia type 3 (SCA3): bedside and search coil evaluation.

    PubMed

    Gordon, Carlos R; Zivotofsky, Ari Z; Caspi, Avi

    2014-01-01

    Vestibulo-Ocular Reflex (VOR) abnormalities in cerebellar ataxias are a matter of renewed interest. We have previously reported vestibular areflexia in a group of Yemenite-Jews with Spinocerebellar Ataxia Type 3 (SCA3) who had clear bilateral pathological horizontal Head Impulse Test (HIT). The objective of this study was to evaluate the VOR of ten SCA3 patients who have variable bedside HIT responses by recording their eye movements using magnetic search coils and to correlate these results with their clinical and genetic data. Eight out of the ten patients have abnormal horizontal HIT detected by both clinical bedside examination and laboratory tests. Results of bedside HIT testing were significantly correlated with the VOR gain recorded using magnetic search coils. No significant correlations were found between VOR gain and other clinical or genetic data. Our study confirms the presence of defective VOR in SCA3 patients and corroborates the useful of the HIT as a reliable bedside test for diagnosis of VOR deficits. PMID:25564077

  9. Non-invasive detection of neurochemical changes prior to overt pathology in a mouse model of spinocerebellar ataxia type 1.

    PubMed

    Emir, Uzay E; Brent Clark, Howard; Vollmers, Manda L; Eberly, Lynn E; Öz, Gülin

    2013-12-01

    Spinocerebellar ataxia type 1 (SCA1) is a hereditary, progressive and fatal movement disorder that primarily affects the cerebellum. Non-invasive imaging markers to detect early disease in SCA1 will facilitate testing and implementation of potential therapies. We have previously demonstrated the sensitivity of neurochemical levels measured by (1) H magnetic resonance spectroscopy (MRS) to progressive neurodegeneration using a transgenic mouse model of SCA1. In order to investigate very early neurochemical changes related to neurodegeneration, here we utilized a knock-in mouse model, the Sca1(154Q/2Q) line, which displays milder cerebellar pathology than the transgenic model. We measured cerebellar neurochemical profiles of Sca1(154Q/2Q) mice and wild-type littermates using 9.4T MRS at ages 6, 12, 24, and 39 weeks and assessed the cerebellar pathology of a subset of the mice at each time point. The Sca1(154Q/2Q) mice displayed very mild cerebellar pathology even at 39 weeks, however, were distinguished from wild types by MRS starting at 6 weeks. Taurine and total choline levels were significantly lower at all ages and glutamine and total creatine levels were higher starting at 12 weeks in Sca1(154Q/2Q) mice than controls, demonstrating the sensitivity of neurochemical levels to neurodegeneration related changes in the absence of overt pathology. We measured cerebellar neurochemical alterations in a knock-in mouse model of spinocerebellar ataxia type 1, a hereditary movement disorder, using ultra-high field magnetic resonance spectroscopy (MRS). Very early neurochemical alterations were detectable prior to overt pathology in the volume-of-interest for MRS. Alterations were indicative of osmolytic changes and of disturbances in membrane phospholipid and energy metabolism.

  10. Spinocerebellar ataxia type 3/Machado-Joseph disease starting before adolescence.

    PubMed

    Donis, Karina Carvalho; Saute, Jonas Alex Morales; Krum-Santos, Ana Carolina; Furtado, Gabriel Vasata; Mattos, Eduardo Preusser; Saraiva-Pereira, Maria Luiza; Torman, Vanessa Leotti; Jardim, Laura Bannach

    2016-04-01

    Onset of Machado-Joseph disease (SCA3/MJD) before adolescence has been rarely reported. This study aims to describe a cohort of SCA3/MJD with onset before 12 years of age, comparing their disease progression with the progression observed in patients with usual disease onset. We identified all cases from our cohort whose onset was before adolescence. After consent, patients were examined with clinical scales Scale for the Assessment and Rating of Ataxia (SARA) and Neurological Examination Score for Spinocerebellar Ataxia (NESSCA). Gender, age, age at onset, disease duration, CAG expanded repeats, transmitting parent, and anticipation of cases with infantile and adult onset were studied. Progression of NESSCA and SARA scores was estimated through a mixed model, and was compared with a historical group with onset after adolescence. Between 2000 and 2014, 461 symptomatic individuals from our region were diagnosed as SCA3/MJD. Onset of eight cases (2.2%), all heterozygotes, was before adolescence: seven were females (p = 0.054). CAG expanded repeats--75 ± 3 versus 84 ± 4--and anticipations--7 ± 9.7 versus 14.4 ± 7.2 years--were different between early childhood and adult onset groups (p < 0.03). The median survival of early childhood onset group was 23 years of age. The annual progression of SARA--2.3 and 0.6 points/year (p = 0.001)--and NESSCA--2.04 and 0.88 points/year (p = 0.043)--was faster in childhood than in adult onset group. Onset of SCA3/MJD before adolescence was related to larger expanded CAG repeats in heterozygosis; females seemed to be at higher risk. Disease progression was faster than in SCA3/MJD starting after 12 years.

  11. In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7.

    PubMed

    Adanyeguh, Isaac M; Henry, Pierre-Gilles; Nguyen, Tra M; Rinaldi, Daisy; Jauffret, Celine; Valabregue, Romain; Emir, Uzay E; Deelchand, Dinesh K; Brice, Alexis; Eberly, Lynn E; Öz, Gülin; Durr, Alexandra; Mochel, Fanny

    2015-04-15

    Spinocerebellar ataxias (SCAs) belong to polyglutamine repeat disorders and are characterized by a predominant atrophy of the cerebellum and the pons. Proton magnetic resonance spectroscopy ((1) H MRS) using an optimized semiadiabatic localization by adiabatic selective refocusing (semi-LASER) protocol was performed at 3 T to determine metabolite concentrations in the cerebellar vermis and pons of a cohort of patients with SCA1 (n=16), SCA2 (n=12), SCA3 (n=21), and SCA7 (n=12) and healthy controls (n=33). Compared with controls, patients displayed lower total N-acetylaspartate and, to a lesser extent, lower glutamate, reflecting neuronal loss/dysfunction, whereas the glial marker, myoinositol (myo-Ins), was elevated. Patients also showed higher total creatine as reported in Huntington's disease, another polyglutamine repeat disorder. A strong correlation was found between the Scale for the Assessment and Rating of Ataxia and the neurometabolites in both affected regions of patients. Principal component analyses confirmed that neuronal metabolites (total N-acetylaspartate and glutamate) were inversely correlated in the vermis and the pons to glial (myo-Ins) and energetic (total creatine) metabolites, as well as to disease severity (motor scales). Neurochemical plots with selected metabolites also allowed the separation of SCA2 and SCA3 from controls. The neurometabolic profiles detected in patients underlie cell-specific changes in neuronal and astrocytic compartments that cannot be assessed by other neuroimaging modalities. The inverse correlation between metabolites from these two compartments suggests a metabolic attempt to compensate for neuronal damage in SCAs. Because these biomarkers reflect dynamic aspects of cellular metabolism, they are good candidates for proof-of-concept therapeutic trials. © 2015 International Parkinson and Movement Disorder Society.

  12. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11.

    PubMed

    Hansen, Susanne K; Borland, Helena; Hasholt, Lis F; Tümer, Zeynep; Nielsen, Jørgen E; Rasmussen, Mikkel A; Nielsen, Troels T; Stummann, Tina C; Fog, Karina; Hyttel, Poul

    2016-05-01

    Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by a CAG-repeat expanding mutation in ATXN3. We generated induced pluripotent stem cells (iPSCs) from a SCA3 patient by electroporation of dermal fibroblasts with episomal plasmids encoding L-MYC, LIN28, SOX2, KLF4, OCT4 and short hairpin RNA targeting P53. The resulting iPSCs had normal karyotype, were free of genomically integrated episomal plasmids, expressed pluripotency markers, could differentiate into the three germ layers in vitro and retained the disease-causing ATXN3 mutation. This iPSC line could be useful for the investigation of SCA3 disease mechanisms. PMID:27346190

  13. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11.

    PubMed

    Hansen, Susanne K; Borland, Helena; Hasholt, Lis F; Tümer, Zeynep; Nielsen, Jørgen E; Rasmussen, Mikkel A; Nielsen, Troels T; Stummann, Tina C; Fog, Karina; Hyttel, Poul

    2016-05-01

    Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by an expansion of the CAG-repeat in ATXN3. In this study, induced pluripotent stem cells (iPSCs) were generated from SCA3 patient dermal fibroblasts by electroporation with episomal plasmids encoding L-MYC, LIN28, SOX2, KLF4, OCT4 and short hairpin RNA targeting P53. The resulting iPSCs had normal karyotype, were free of integrated episomal plasmids, expressed pluripotency markers, could differentiate into the three germ layers in vitro and retained the disease-causing ATXN3 mutation. Potentially, this iPSC line could be a useful tool for the investigation of SCA3 disease mechanisms. PMID:27346191

  14. Broad therapeutic benefit after RNAi expression vector delivery to deep cerebellar nuclei: implications for spinocerebellar ataxia type 1 therapy.

    PubMed

    Keiser, Megan S; Boudreau, Ryan L; Davidson, Beverly L

    2014-03-01

    Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant, late-onset neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the ataxin-1 protein, which causes progressive neurodegeneration in cerebellar Purkinje cells and brainstem nuclei. Here, we tested if reducing mutant ataxin-1 expression would significantly improve phenotypes in a knock-in (KI) mouse model that recapitulates spatial and temporal aspects of SCA1. Adeno-associated viruses (AAVs), expressing inhibitory RNAs targeting ataxin-1, were injected into the deep cerebellar nuclei (DCN) of KI mice. This approach induced ataxin-1 suppression in the cerebellar cortex and in brainstem neurons. RNA interference (RNAi) of ataxin-1 preserved cerebellar lobule integrity and prevented disease-related transcriptional changes for over a year. Notably, RNAi therapy also preserved rotarod performance and neurohistology. These data suggest that delivery of AAVs encoding RNAi sequences against ataxin-1, to DCN alone, may be sufficient for SCA1 therapy.

  15. The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3'-phosphatase in spinocerebellar ataxia type 3 pathogenesis.

    PubMed

    Chatterjee, Arpita; Saha, Saikat; Chakraborty, Anirban; Silva-Fernandes, Anabela; Mandal, Santi M; Neves-Carvalho, Andreia; Liu, Yongping; Pandita, Raj K; Hegde, Muralidhar L; Hegde, Pavana M; Boldogh, Istvan; Ashizawa, Tetsuo; Koeppen, Arnulf H; Pandita, Tej K; Maciel, Patricia; Sarkar, Partha S; Hazra, Tapas K

    2015-01-01

    DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD. PMID:25633985

  16. DnaJ-1 and karyopherin α3 suppress degeneration in a new Drosophila model of Spinocerebellar Ataxia Type 6.

    PubMed

    Tsou, Wei-Ling; Hosking, Ryan R; Burr, Aaron A; Sutton, Joanna R; Ouyang, Michelle; Du, Xiaofei; Gomez, Christopher M; Todi, Sokol V

    2015-08-01

    Spinocerebellar ataxia type 6 (SCA6) belongs to the family of CAG/polyglutamine (polyQ)-dependent neurodegenerative disorders. SCA6 is caused by abnormal expansion in a CAG trinucleotide repeat within exon 47 of CACNA1A, a bicistronic gene that encodes α1A, a P/Q-type calcium channel subunit and a C-terminal protein, termed α1ACT. Expansion of the CAG/polyQ region of CACNA1A occurs within α1ACT and leads to ataxia. There are few animal models of SCA6. Here, we describe the generation and characterization of the first Drosophila melanogaster models of SCA6, which express the entire human α1ACT protein with a normal or expanded polyQ. The polyQ-expanded version of α1ACT recapitulates the progressively degenerative nature of SCA6 when expressed in various fly tissues and the presence of densely staining aggregates. Additional studies identify the co-chaperone DnaJ-1 as a potential therapeutic target for SCA6. Expression of DnaJ-1 potently suppresses α1ACT-dependent degeneration and lethality, concomitant with decreased aggregation and reduced nuclear localization of the pathogenic protein. Mutating the nuclear importer karyopherin α3 also leads to reduced toxicity from pathogenic α1ACT. Little is known about the steps leading to degeneration in SCA6 and the means to protect neurons in this disease are lacking. Invertebrate animal models of SCA6 can expand our understanding of molecular sequelae related to degeneration in this disorder and lead to the rapid identification of cellular components that can be targeted to treat it.

  17. Genetic map of the spinocerebellar ataxia type 2 (SCA2) region on chromosome 12

    SciTech Connect

    Nechiporuk, A.; Frederick, T.; Pulst, S.M.

    1994-09-01

    The autosomal dominant ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by progressive ataxia. At least four gene loci have been identified: SCA1 on chromosome (CHR) 6, SCA2 on CHR12, Machado-Joseph disease on CHR14, and SCA families that are not linked to any of the above loci. In addition, the gene causing dentato-rubro-pallido-luysian atrophy has been identified as an expanded CAG repeat on CHR 12p. As a necessary step in identifying the gene for SCA2, we now identified closer flanking markers. To do this we ordered microsatellite markers in the now identified closer flanking markers. To do this we ordered microsatellite markers in the region and then determined pairwise and multipoint lod scores between the markers and SCA2 in three large pedigrees with SCA. The following order was established with odds > 1,000:1 using six non-SCA pedigrees: D12S101-7.1cM-D12S58-0cM-IGF1-3.6cM-D12S78-1.4cM-D12S317-3.7cM-D12S84-0cM-D12S105-7.2cM-D12S79-7.0cM-PLA2. Using this ordered set of markers we examined linkage to SCA2 in three pedigrees of Italian, Austrian and French-Canadian descent. Pairwise linkage analysis resulted in significant positive lod scores for all markers. The highest pairwise lod score was obtained with D12S84/D12S105 (Z{sub max}=7.98, theta{sub max}=0.05). To further define the location of SCA2, we performed multipoint linkage analysis using the genetic map established above. The highest location score was obtained between D12S317 and D12S84/D12S105. A location of SCA2 between these loci was favored with odds > 100:1. These data likely narrow the SCA2 candidate region to approximately 3.7 cM. The relatively large large number of markers tightly linked to SCA2 will facilitate the assignment of additional SCA pedigrees to CHR12, and will help in the presymptomatic diagnosis of individuals in families with proven linkage to CHR12.

  18. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3.

    PubMed

    Duarte, João Valente; Faustino, Ricardo; Lobo, Mercês; Cunha, Gil; Nunes, César; Ferreira, Carlos; Januário, Cristina; Castelo-Branco, Miguel

    2016-10-01

    Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley

  19. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3.

    PubMed

    Duarte, João Valente; Faustino, Ricardo; Lobo, Mercês; Cunha, Gil; Nunes, César; Ferreira, Carlos; Januário, Cristina; Castelo-Branco, Miguel

    2016-10-01

    Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley

  20. Spinocerebellar ataxia type 7 in South Africa: Epidemiology, pathogenesis and therapy.

    PubMed

    Watson, L; Smith, D C; Scholefield, J; Ballo, R; Kidson, S; Greenberg, L J; Wood, M J A

    2016-01-01

    Disorders of the nervous system represent a significant proportion of the global burden of non-communicable diseases, due to the trend towards ageing populations. The Department (now Division) of Human Genetics at the University of Cape Town (UCT) has been involved in pioneering research into these diseases since the appointment of Prof. Peter Beighton as Head of Department in 1972. Beighton's emphasis on understanding the genetic basis of disease laid the groundwork for investigations into several monogenic neurodegenerative conditions, including Huntington's disease and the polyglutamine spinocerebellar ataxias (SCAs). In particular, SCA7, which occurs at an unusually high frequency in the South African (SA) population, was identified as a target for further research and therapeutic development. Beginning with early epidemiological surveys, the SCA7 project progressed to molecular genetics-based investigations, leading to the identification of a founder effect in the SA SCA7 patient population in the mid-2000s. Capitalising on the founder haplotype shared by many SCA7 patients, UCT researchers went on to develop the first population-specific gene-silencing approach for the disease. More recently, efforts have shifted to the development of a more accurate model to decipher the precise mechanisms of neurodegeneration, using induced pluripotent stem cells derived from SA SCA7 patients. In many ways, the SA SCA7 journey reflects the legacy and vision of Prof. Peter Beighton, and his efforts to establish world-class, collaborative research into diseases affecting the African continent. PMID:27245542

  1. Ataxia telangiectasia.

    PubMed

    Nissenkorn, Andreea; Ben-Zeev, Bruria

    2015-01-01

    Ataxia telangiectasia (AT) is an autosomal recessive multisystem genetic disorder caused by a mutation in the ATM gene encoding for the ATM protein. AT systemic manifestations include cutaneous telangiectasias, radiosensitivity, immune deficiency with recurrent sinopulmonary infections, and a tendency to develop lymphoid malignancies. These complications are explained by the major role played by ATM in DNA repair. AT is also the second most common childhood onset neurodegenerative disorder of the cerebellum, presenting with progressive ataxia and oculomotor apraxia and often accompanied by extrapyramidal movement disorders. Ataxia typically begins around the time children start to walk at about 1 year of age and leads to wheelchair dependence by the second decade of life. Cerebellar atrophy is evident on imaging after 2 years of life and is progressive. Abnormal DNA repair mechanisms do not entirely explain the pathophysiology in nondividing neurons. The nervous system involvement is better explained by the role ATM plays in antioxidative defense, mitochondrial homeostasis, and DNA chromatin packing. A better understanding of the underlying pathophysiologic mechanisms of this devastating disease may enable disease-modifying treatments in the future. Meanwhile, treatment is mainly supportive and does not change the poor prognosis of the disease although it improves the patient's quality of life. PMID:26564081

  2. Acute cerebellar ataxia

    MedlinePlus

    Cerebellar ataxia; Ataxia - acute cerebellar; Cerebellitis; Post-varicella acute cerebellar ataxia; PVACA ... virus. Viral infections that may cause this include chickenpox , Coxsackie disease, Epstein-Barr, and echovirus . Other causes ...

  3. Spinocerebellar ataxia type 3/Machado-Joseph disease: segregation patterns and factors influencing instability of expanded CAG transmissions.

    PubMed

    Souza, G N; Kersting, N; Krum-Santos, A C; Santos, A S P; Furtado, G V; Pacheco, D; Gonçalves, T A; Saute, J A; Schuler-Faccini, L; Mattos, E P; Saraiva-Pereira, M L; Jardim, L B

    2016-08-01

    Controversies about Mendelian segregation and CAG expansion (CAGexp) instabilities during meiosis in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) need clarification. Additional evidence about these issues was obtained from the cohort of all SCA3/MJD individuals living in South Brazil. A survey was carried out to update information registered since 2001. Deaths were checked with the Public Information System, and data was made anonymous. Anticipation and delta-CAGexp from parent-offspring pairs, and delta-CAGexp between siblings were obtained. One hundred and fifty-nine families (94% of the entire registry) were retrieved, comprising 3725 living individuals as of 2015, 625 of these being symptomatic. Minimal prevalence was 6:100,000. Carriers of a CAGexp represented 65.6% of sibs in the genotyped offspring (p < 0.001). Median instability was larger among paternal than maternal transmissions, and instabilities correlated with anticipation (r = 0.38; p = 0.001). Age of the parent correlated to delta-CAGexp among 115 direct parent-offspring CAGexp transmissions (ρ = 0.23, p = 0.014). In 98 additional kindreds, the delta-CAGexp between 269 siblings correlated with their delta-of-age (ρ = 0.27, p < 0.0001). SCA3/MJD was associated with a segregation distortion favoring the expanded allele in our cohort. Instability of expansion during meiosis was weakly influenced by the age of the transmitting parent at the time of conception. PMID:26693702

  4. Treatment with a Ginkgo biloba extract, EGb 761, inhibits excitotoxicity in an animal model of spinocerebellar ataxia type 17.

    PubMed

    Huang, Ding-Siang; Lin, Hsuan-Yuan; Lee-Chen, Guey-Jen; Hsieh-Li, Hsiu-Mei; Wu, Chung-Hsin; Lin, Jung-Yaw

    2016-01-01

    Spinocerebellar ataxia type 17 (SCA 17) is a polyglutamine disease caused by the expansion of CAG/CAA repeats in the TATA box-binding protein (TBP) gene. The Ginkgo biloba extract, EGb 761, contains flavonoids and terpenoids with a potential use for the treatment of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The neuroprotective effects of EGb 761 are obvious, but whether the EGb 761 has therapeutic effects in SCA 17 is still unclear. To manage our issues, we have generated TBP/79Q-expressing SH-SY5Y cells and SCA 17 transgenic mice with the mutant hTBP gene. In in vitro experiment, we observed that the EGb 761 treatment decreased the amount of sodium dodecyl sulfate-insoluble proteins in the TBP/79Q-expressing SH-SY5Y cells. We further found that the EGb 761 treatment could inhibit excitotoxicity and calcium influx and reduce the expression of apoptotic markers in glutamate-treated SH-SY5Y neuroblastoma cells. In in vivo experiment, we observed that the EGb 761 treatment (100 mg/kg intraperitoneal injection per day) could relieve the motor deficiencies of the SCA 17 transgenic mice. Our findings provide evidence that the EGb 761 treatment can be a remedy for SCA 17 via suppressing excitotoxicity and apoptosis in SCA 17 cell and animal models. Therefore, we suggest that EGb 761 may be a potential therapeutic agent for treating SCA 17. PMID:26937174

  5. Spinocerebellar ataxia type 3/Machado-Joseph disease: segregation patterns and factors influencing instability of expanded CAG transmissions.

    PubMed

    Souza, G N; Kersting, N; Krum-Santos, A C; Santos, A S P; Furtado, G V; Pacheco, D; Gonçalves, T A; Saute, J A; Schuler-Faccini, L; Mattos, E P; Saraiva-Pereira, M L; Jardim, L B

    2016-08-01

    Controversies about Mendelian segregation and CAG expansion (CAGexp) instabilities during meiosis in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) need clarification. Additional evidence about these issues was obtained from the cohort of all SCA3/MJD individuals living in South Brazil. A survey was carried out to update information registered since 2001. Deaths were checked with the Public Information System, and data was made anonymous. Anticipation and delta-CAGexp from parent-offspring pairs, and delta-CAGexp between siblings were obtained. One hundred and fifty-nine families (94% of the entire registry) were retrieved, comprising 3725 living individuals as of 2015, 625 of these being symptomatic. Minimal prevalence was 6:100,000. Carriers of a CAGexp represented 65.6% of sibs in the genotyped offspring (p < 0.001). Median instability was larger among paternal than maternal transmissions, and instabilities correlated with anticipation (r = 0.38; p = 0.001). Age of the parent correlated to delta-CAGexp among 115 direct parent-offspring CAGexp transmissions (ρ = 0.23, p = 0.014). In 98 additional kindreds, the delta-CAGexp between 269 siblings correlated with their delta-of-age (ρ = 0.27, p < 0.0001). SCA3/MJD was associated with a segregation distortion favoring the expanded allele in our cohort. Instability of expansion during meiosis was weakly influenced by the age of the transmitting parent at the time of conception.

  6. Treatment with a Ginkgo biloba extract, EGb 761, inhibits excitotoxicity in an animal model of spinocerebellar ataxia type 17

    PubMed Central

    Huang, Ding-Siang; Lin, Hsuan-Yuan; Lee-Chen, Guey-Jen; Hsieh-Li, Hsiu-Mei; Wu, Chung-Hsin; Lin, Jung-Yaw

    2016-01-01

    Spinocerebellar ataxia type 17 (SCA 17) is a polyglutamine disease caused by the expansion of CAG/CAA repeats in the TATA box-binding protein (TBP) gene. The Ginkgo biloba extract, EGb 761, contains flavonoids and terpenoids with a potential use for the treatment of neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. The neuroprotective effects of EGb 761 are obvious, but whether the EGb 761 has therapeutic effects in SCA 17 is still unclear. To manage our issues, we have generated TBP/79Q-expressing SH-SY5Y cells and SCA 17 transgenic mice with the mutant hTBP gene. In in vitro experiment, we observed that the EGb 761 treatment decreased the amount of sodium dodecyl sulfate-insoluble proteins in the TBP/79Q-expressing SH-SY5Y cells. We further found that the EGb 761 treatment could inhibit excitotoxicity and calcium influx and reduce the expression of apoptotic markers in glutamate-treated SH-SY5Y neuroblastoma cells. In in vivo experiment, we observed that the EGb 761 treatment (100 mg/kg intraperitoneal injection per day) could relieve the motor deficiencies of the SCA 17 transgenic mice. Our findings provide evidence that the EGb 761 treatment can be a remedy for SCA 17 via suppressing excitotoxicity and apoptosis in SCA 17 cell and animal models. Therefore, we suggest that EGb 761 may be a potential therapeutic agent for treating SCA 17. PMID:26937174

  7. Mutant γPKC that causes spinocerebellar ataxia type 14 upregulates Hsp70, which protects cells from the mutant's cytotoxicity.

    PubMed

    Ogawa, Kota; Seki, Takahiro; Onji, Tomoya; Adachi, Naoko; Tanaka, Shigeru; Hide, Izumi; Saito, Naoaki; Sakai, Norio

    2013-10-11

    Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that the mutant γPKC found in SCA14 is misfolded, susceptible to aggregation and cytotoxic. Molecular chaperones assist the refolding and degradation of misfolded proteins and prevention of the proteins' aggregation. In the present study, we found that the expression of mutant γPKC-GFP increased the levels of heat-shock protein 70 (Hsp70) in SH-SY5Y cells. To elucidate the role of this elevation, we investigated the effect of siRNA-mediated knockdown of Hsp70 on the aggregation and cytotoxicity of mutant γPKC. Knockdown of Hsp70 exacerbated the aggregation and cytotoxicity of mutant γPKC-GFP by inhibiting this mutant's degradation. These findings suggest that mutant γPKC increases the level of Hsp70, which protects cells from the mutant's cytotoxicity by enhancing its degradation.

  8. Episodic Memories

    ERIC Educational Resources Information Center

    Conway, Martin A.

    2009-01-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of "episodic elements," summary records of experience often in the form of visual images, associated to a "conceptual frame" that provides a…

  9. Presenile onset of spinocerebellar ataxia type 1 presenting with conspicuous psychiatric symptoms and widespread anti-expanded polyglutamine antibody- and fused in sarcoma antibody-immunopositive pathology.

    PubMed

    Iwasaki, Yasushi; Mori, Keiko; Ito, Masumi; Mimuro, Maya; Yoshida, Mari

    2015-09-01

    A 50-year-old Japanese man showed slowly progressive gait disturbance and dysarthria. Neurological examination 5 years after onset revealed slow eye movement with nystagmus as well as limb and truncal ataxia. Magnetic resonance imaging showed atrophy of the cerebellum and brainstem. Because genetic examination revealed CAG repeat expansion of the ataxin-1 gene, the patient was diagnosed with spinocerebellar ataxia type 1. Ten years after onset, he showed psychiatric symptoms with cognitive impairment, and antipsychotic drugs were administered. As psychiatric symptoms gradually worsened, particularly with regard to resisting nursing care and shouting, the doses of the drugs were increased. Although the clinicopathologic findings were generally identical to previously reported spinocerebellar ataxia type 1 cases with the exception of the conspicuous psychiatric symptoms, there are two notable immunohistochemical findings. Firstly, numerous anti-expanded polyglutamine antibody-immunopositive neuronal inclusions were extensively observed, including in the cerebral cortex and limbic system, but not in the Purkinje cells. Secondly, anti-fused in sarcoma antibody-immunopositive intranuclear inclusions were extensively observed. We posit that the anti-expanded polyglutamine antibody-immunopositive neuronal inclusions and possibly the anti-fused in sarcoma antibody-immunopositive inclusions, particularly those in the neocortex and limbic system, may correspond to the psychiatric symptoms and cognitive impairment that were observed in the patient.

  10. A human β-III-spectrin spinocerebellar ataxia type 5 mutation causes high-affinity F-actin binding

    PubMed Central

    Avery, Adam W.; Crain, Jonathan; Thomas, David D.; Hays, Thomas S.

    2016-01-01

    Spinocerebellar ataxia type 5 (SCA5) is a human neurodegenerative disease that stems from mutations in the SPTBN2 gene encoding the protein β-III-spectrin. Here we investigated the molecular consequence of a SCA5 missense mutation that results in a L253P substitution in the actin-binding domain (ABD) of β-III-spectrin. We report that the L253P substitution in the isolated β-III-spectrin ABD causes strikingly high F-actin binding affinity (Kd = 75.5 nM) compared to the weak F-actin binding affinity of the wild-type ABD (Kd = 75.8 μM). The mutation also causes decreased thermal stability (Tm = 44.6 °C vs 59.5 °C). Structural analyses indicate that leucine 253 is in a loop at the interface of the tandem calponin homology (CH) domains comprising the ABD. Leucine 253 is predicted to form hydrophobic contacts that bridge the CH domains. The decreased stability of the mutant indicates that these bridging interactions are probably disrupted, suggesting that the high F-actin binding affinity of the mutant is due to opening of the CH domain interface. These results support a fundamental role for leucine 253 in regulating opening of the CH domain interface and binding of the ABD to F-actin. This study indicates that high-affinity actin binding of L253P β-III-spectrin is a likely driver of neurodegeneration. PMID:26883385

  11. Spinocerebellar ataxias – genotype-phenotype correlations in 104 Brazilian families

    PubMed Central

    Teive, Hélio A. G.; Munhoz, Renato P.; Arruda, Walter O.; Lopes-Cendes, Iscia; Raskin, Salmo; Werneck, Lineu C.; Ashizawa, Tetsuo

    2012-01-01

    OBJECTIVE: Spinocerebellar ataxias are neurodegenerative disorders involving the cerebellum and its connections. There are more than 30 distinct subtypes, 16 of which are associated with an identified gene. The aim of the current study was to evaluate a large group of patients from 104 Brazilian families with spinocerebellar ataxias. METHODS: We studied 150 patients from 104 families with spinocerebellar ataxias who had received molecular genetic testing for spinocerebellar ataxia types 1, 2, 3, 6, 7, 8, 10, 12, 17, and dentatorubral-pallidoluysian atrophy. A statistical analysis of the results was performed using basic descriptive statistics and the correlation coefficient (r), Student's t-test, chi-square test, and Yates' correction. The statistical significance level was established for p-values <0.05. RESULTS: The results show that the most common subtype was spinocerebellar ataxia 3, which was followed by spinocerebellar ataxia 10. Moreover, the comparison between patients with spinocerebellar ataxia 3, spinocerebellar ataxia 10, and other types of spinocerebellar ataxia revealed distinct clinical features for each type. In patients with spinocerebellar ataxia 3, the phenotype was highly pleomorphic, although the most common signs of disease included cerebellar ataxia (CA), ophthalmoplegia, diplopia, eyelid retraction, facial fasciculation, pyramidal signs, and peripheral neuropathy. In patients with spinocerebellar ataxia 10, the phenotype was also rather distinct and consisted of pure cerebellar ataxia and abnormal saccadic eye movement as well as ocular dysmetria. Patients with spinocerebellar ataxias 2 and 7 presented highly suggestive features of cerebellar ataxia, including slow saccadic ocular movements and areflexia in spinocerebellar ataxia 2 and visual loss in spinocerebellar ataxia 7. CONCLUSIONS: Spinocerebellar ataxia 3 was the most common subtype examined, followed by spinocerebellar ataxia 10. Patients with spinocerebellar ataxia 2 and 7

  12. Epigallocatechin-3-gallate and tetracycline differently affect ataxin-3 fibrillogenesis and reduce toxicity in spinocerebellar ataxia type 3 model.

    PubMed

    Bonanomi, Marcella; Natalello, Antonino; Visentin, Cristina; Pastori, Valentina; Penco, Amanda; Cornelli, Giuseppina; Colombo, Giorgio; Malabarba, Maria G; Doglia, Silvia M; Relini, Annalisa; Regonesi, Maria E; Tortora, Paolo

    2014-12-15

    The polyglutamine (polyQ)-containing protein ataxin-3 (AT3) triggers the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3) when its polyQ tract is expanded beyond a critical length. This results in protein aggregation and generation of toxic oligomers and fibrils. Currently, no effective treatment is available for such and other polyQ diseases. Therefore, plenty of investigations are being carried on to assess the mechanism of action and the therapeutic potential of anti-amyloid agents. The polyphenol compound epigallocatechin-3-gallate (EGCG) and tetracycline have been shown to exert some effect in preventing fibrillogenesis of amyloidogenic proteins. Here, we have incubated an expanded AT3 variant with either compound to assess their effects on the aggregation pattern. The process was monitored by atomic force microscopy and Fourier transform infrared spectroscopy. Whereas in the absence of any treatment, AT3 gives rise to amyloid β-rich fibrils, whose hallmark is the typical glutamine side-chain hydrogen bonding, when incubated in the presence of EGCG it generated soluble, SDS-resistant aggregates, much poorer in β-sheets and devoid of any ordered side-chain hydrogen bonding. These are off-pathway species that persist until the latest incubation time and are virtually absent in the control sample. In contrast, tetracycline did not produce major alterations in the structural features of the aggregated species compared with the control, but substantially increased their solubility. Both compounds significantly reduced toxicity, as shown by the MTT assay in COS-7 cell line and in a transgenic Caenorhabditis elegans strain expressing in the nervous system an AT3 expanded variant in fusion with GFP.

  13. Ataxias with autosomal, X-chromosomal or maternal inheritance.

    PubMed

    Finsterer, Josef

    2009-07-01

    Heredoataxias are a group of genetic disorders with a cerebellar syndrome as the leading clinical manifestation. The current classification distinguishes heredoataxias according to the trait of inheritance into autosomal dominant, autosomal recessive, X-linked, and maternally inherited heredoataxias. The autosomal dominant heredoataxias are separated into spinocerebellar ataxias (SCA1-8, 10-15, 17-23, 25-30, and dentato-rubro-pallido-luysian atrophy), episodic ataxias (EA1-7), and autosomal dominant mitochondrial heredoataxias (Leigh syndrome, MIRAS, ADOAD, and AD-CPEO). The autosomal recessive ataxias are separated into Friedreich ataxia, ataxia due to vitamin E deficiency, ataxia due to Abeta-lipoproteinemia, Refsum disease, late-onset Tay-Sachs disease, cerebrotendineous xanthomatosis, spinocerebellar ataxia with axonal neuropathy, ataxia telangiectasia, ataxia telangiectasia-like disorder, ataxia with oculomotor apraxia 1 and 2, spastic ataxia of Charlevoix-Saguenay, Cayman ataxia, Marinesco-Sjögren syndrome, and autosomal recessive mitochondrial ataxias (AR-CPEO, SANDO, SCAE, AHS, IOSCA, MEMSA, LBSL CoQ-deficiency, PDC-deficiency). Only two of the heredoataxias, fragile X/tremor/ataxia syndrome, and XLSA/A are transmitted via an X-linked trait. Maternally inherited heredoataxias are due to point mutations in genes encoding for tRNAs, rRNAs, respiratory chain subunits or single large scale deletions/duplications of the mitochondrial DNA and include MELAS, MERRF, KSS, PS, MILS, NARP, and non-syndromic mitochondrial disorders. Treatment of heredoataxias is symptomatic and supportive and may have a beneficial effect in single patients. **Please see page 424 for abbreviation list. PMID:19650351

  14. Diagnosis of Ataxia

    MedlinePlus

    ... the fingers, hands, arms, legs, body, speech, and eye movements. The word ataxia is often used to describe ... motor control such as writing and eating. Slow eye movements can be seen in some form of ataxia. ...

  15. National Ataxia Foundation

    MedlinePlus

    ... Minnesota Walk, Stroll n’ Roll St. Louis Park, MN September 10 New England Walk n’ Roll Bristol, ... Ataxia Foundation • 2600 Fernbrook Lane Suite 119 • Minneapolis, MN 55447 • 763.553.0020 naf@ataxia.org | Site ...

  16. A third locus for autosomal dominant cerebellar ataxia Type I maps to chromosome 14q24. 3-qter: Evidence for the existence of a fourth locus

    SciTech Connect

    Stevanin, G.; Guern, E.L.; Ravise, N.; Chneiweiss, H.; Duerr, A.; Cancel, G.; Vignal, A.; Boch, A.L.; Ruberg, M.; Penet, C.; Pothin, Y.; Lagroua, I.; Haguenau, M.; Rancurel, G.; Weissenbach, J.; Agid, Y.; Brice, A.

    1994-01-01

    The autosomal dominant cerebellar ataxias (ADCA) type I are a group of neurological disorders that are clinically and genetically heterogeneous. Two genes implicated in the disease, SCA1 (spinal cerebellar ataxia 1) and SCA2, are already localized. The authors have mapped a third locus to chromosome 14q24.3-qter, by linkage analysis in a non-SCA1/non-SCA2 family and have confirmed its existence in a second such family. The authors suggest designating this new locus [open quotes]SCA3.[close quotes] Combined analysis of the two families restricted the SCA3 locus to a 15-cM interval between markers D14S67 and D14S81. The gene for Machado-Joseph disease (MJD), a clinically different form of ADCA type I, has been recently assigned to chromosome 14q24.3-q32. Although the SCA3 locus is within the MJD region, linkage analyses cannot yet demonstrate whether they result from mutations of the same gene. Linkage to all three loci (SCA1, SCA2, and SCA3) was excluded in another family, which indicates the existence of a fourth ADCA type I locus. 36 refs., 4 figs., 3 tabs.

  17. Clinical and molecular effect on offspring of a marriage of consanguineous spinocerebellar ataxia type 7 mutation carriers: a family case report.

    PubMed

    Magaña, Jonathan J; Tapia-Guerrero, Yessica S; Velázquez-Pérez, Luis; Cruz-Mariño, Tania; Cerecedo-Zapata, Cesar M; Gómez, Rocío; Murillo-Melo, Nadia M; González-Piña, Rigoberto; Hernández-Hernández, Oscar; Cisneros, Bulmaro

    2014-01-01

    Spinocerebellar ataxia type 7 (SCA7) is a genetic disorder characterized by degeneration of the cerebellum, brainstem, and retina that is caused by abnormal expansion of a CAG repeat located in the ATXN7 gene encoding sequence on chromosome 3p21.1. Although SCA7 is an uncommon autosomal dominant ataxia, we previously found increased prevalence of the disease in a Southeastern Mexican population. In this study, we described to our knowledge for the first time a marriage of consanguineous SCA7 mutation carriers and their offspring effect. We characterized a severely affected infantile-onset female patient whose parents and two siblings exhibited no symptoms of the disease at time of diagnosis. A comprehensive clinical analysis of the proband showed a progressive cerebellar syndrome, including gait ataxia, movement disorders, and saccadic movements, as well as hyperreflexia, visual deterioration, urinary and cardiovascular dysfunction, and impaired nerve conduction. The SCA7 mutation was detected in the proband patient. Subsequently, genetic examination using four ATXN7 gene-linked markers (three centromeric microsatellite markers [D3S1228, D3S1287, and D3S3635] and an intragenic Single Nucleotide Polymorphism [SNP-3145G/A]) revealed that the proband descends from a couple of consanguineous SCA7 mutation carriers. Genotyping analysis demonstrated that all offspring inherited only one mutant allele, and that the severe infantile-onset phenotype is caused by germinal expansion (from 37 to 72 CAG repeats) of the paternal mutant allele. Interestingly, the couple also referred a miscarriage. Finally, we found no CAA interruptions in the ATXN7 gene CAG repeats tract in this family, which might explain, at least in part, the triplet instability in the proband.

  18. Clinical and molecular effect on offspring of a marriage of consanguineous spinocerebellar ataxia type 7 mutation carriers: a family case report

    PubMed Central

    Magaña, Jonathan J; Tapia-Guerrero, Yessica S; Velázquez-Pérez, Luis; Cruz-Mariño, Tania; Cerecedo-Zapata, Cesar M; Gómez, Rocío; Murillo-Melo, Nadia M; González-Piña, Rigoberto; Hernández-Hernández, Oscar; Cisneros, Bulmaro

    2014-01-01

    Spinocerebellar ataxia type 7 (SCA7) is a genetic disorder characterized by degeneration of the cerebellum, brainstem, and retina that is caused by abnormal expansion of a CAG repeat located in the ATXN7 gene encoding sequence on chromosome 3p21.1. Although SCA7 is an uncommon autosomal dominant ataxia, we previously found increased prevalence of the disease in a Southeastern Mexican population. In this study, we described to our knowledge for the first time a marriage of consanguineous SCA7 mutation carriers and their offspring effect. We characterized a severely affected infantile-onset female patient whose parents and two siblings exhibited no symptoms of the disease at time of diagnosis. A comprehensive clinical analysis of the proband showed a progressive cerebellar syndrome, including gait ataxia, movement disorders, and saccadic movements, as well as hyperreflexia, visual deterioration, urinary and cardiovascular dysfunction, and impaired nerve conduction. The SCA7 mutation was detected in the proband patient. Subsequently, genetic examination using four ATXN7 gene-linked markers (three centromeric microsatellite markers [D3S1228, D3S1287, and D3S3635] and an intragenic Single Nucleotide Polymorphism [SNP-3145G/A]) revealed that the proband descends from a couple of consanguineous SCA7 mutation carriers. Genotyping analysis demonstrated that all offspring inherited only one mutant allele, and that the severe infantile-onset phenotype is caused by germinal expansion (from 37 to 72 CAG repeats) of the paternal mutant allele. Interestingly, the couple also referred a miscarriage. Finally, we found no CAA interruptions in the ATXN7 gene CAG repeats tract in this family, which might explain, at least in part, the triplet instability in the proband. PMID:25664129

  19. Ataxia is the major neuropathological finding in arylsulfatase G-deficient mice: similarities and dissimilarities to Sanfilippo disease (mucopolysaccharidosis type III).

    PubMed

    Kowalewski, Björn; Heimann, Peter; Ortkras, Theresa; Lüllmann-Rauch, Renate; Sawada, Tomo; Walkley, Steven U; Dierks, Thomas; Damme, Markus

    2015-04-01

    Deficiency of arylsulfatase G (ARSG) leads to a lysosomal storage disease in mice resembling biochemical and pathological features of the mucopolysaccharidoses and particularly features of mucopolysaccharidosis type III (Sanfilippo syndrome). Here we show that Arsg KO mice share common neuropathological findings with other Sanfilippo syndrome models and patients, but they can be clearly distinguished by the limitation of most phenotypic alterations to the cerebellum, presenting with ataxia as the major neurological finding. We determined in detail the expression of ARSG in the central nervous system and observed highest expression in perivascular macrophages (which are characterized by abundant vacuolization in Arsg KO mice) and oligodendrocytes. To gain insight into possible mechanisms leading to ataxia, the pathology in older adult mice (>12 months) was investigated in detail. This study revealed massive loss of Purkinje cells and gliosis in the cerebellum, and secondary accumulation of glycolipids like GM2 and GM3 gangliosides and unesterified cholesterol in surviving Purkinje cells, as well as neurons of some other brain regions. The abundant presence of ubiquitin and p62-positive aggregates in degenerating Purkinje cells coupled with the absence of significant defects in macroautophagy is consistent with lysosomal membrane permeabilization playing a role in the pathogenesis of Arsg-deficient mice and presumably Sanfilippo disease in general. Our data delineating the phenotype of mucopolysaccharidosis IIIE in a mouse KO model should help in the identification of possible human cases of this disease.

  20. Ataxia is the major neuropathological finding in arylsulfatase G-deficient mice: similarities and dissimilarities to Sanfilippo disease (mucopolysaccharidosis type III)

    PubMed Central

    Kowalewski, Björn; Heimann, Peter; Ortkras, Theresa; Lüllmann-Rauch, Renate; Sawada, Tomo; Walkley, Steven U.; Dierks, Thomas; Damme, Markus

    2015-01-01

    Deficiency of arylsulfatase G (ARSG) leads to a lysosomal storage disease in mice resembling biochemical and pathological features of the mucopolysaccharidoses and particularly features of mucopolysaccharidosis type III (Sanfilippo syndrome). Here we show that Arsg KO mice share common neuropathological findings with other Sanfilippo syndrome models and patients, but they can be clearly distinguished by the limitation of most phenotypic alterations to the cerebellum, presenting with ataxia as the major neurological finding. We determined in detail the expression of ARSG in the central nervous system and observed highest expression in perivascular macrophages (which are characterized by abundant vacuolization in Arsg KO mice) and oligodendrocytes. To gain insight into possible mechanisms leading to ataxia, the pathology in older adult mice (>12 months) was investigated in detail. This study revealed massive loss of Purkinje cells and gliosis in the cerebellum, and secondary accumulation of glycolipids like GM2 and GM3 gangliosides and unesterified cholesterol in surviving Purkinje cells, as well as neurons of some other brain regions. The abundant presence of ubiquitin and p62-positive aggregates in degenerating Purkinje cells coupled with the absence of significant defects in macroautophagy is consistent with lysosomal membrane permeabilization playing a role in the pathogenesis of Arsg-deficient mice and presumably Sanfilippo disease in general. Our data delineating the phenotype of mucopolysaccharidosis IIIE in a mouse KO model should help in the identification of possible human cases of this disease. PMID:25452429

  1. Targeting the prodromal stage of spinocerebellar ataxia type 17 mice: G-CSF in the prevention of motor deficits via upregulating chaperone and autophagy levels.

    PubMed

    Chang, Ya-Chin; Lin, Chia-Wei; Hsu, Chen-Ming; Lee-Chen, Guey-Jen; Su, Ming-Tsan; Ro, Long-Sun; Chen, Chiung-Mei; Huang, Hei-Jen; Hsieh-Li, Hsiu Mei

    2016-05-15

    Spinocerebellar ataxia type 17 (SCA17), an autosomal dominant cerebellar ataxia, is a devastating, incurable disease caused by the polyglutamine (polyQ) expansion of transcription factor TATA binding protein (TBP). The polyQ expansion causes misfolding and aggregation of the mutant TBP, further leading to cytotoxicity and cell death. The well-recognized prodromal phase in many forms of neurodegeneration suggests a prolonged period of partial neuronal dysfunction prior to cell loss that may be amenable to therapeutic intervention. The objective of this study was to assess the effects and molecular mechanisms of granulocyte-colony stimulating factor (G-CSF) therapy during the pre-symptomatic stage in SCA17 mice. Treatment with G-CSF at the pre-symptomatic stage improved the motor coordination of SCA17 mice and reduced the cell loss, insoluble mutant TBP protein, and vacuole formation in the Purkinje neurons of these mice. The neuroprotective effects of G-CSF may be produced by increases in Hsp70, Beclin-1, LC3-II and the p-ERK survival pathway. Upregulation of chaperone and autophagy levels further enhances the clearance of mutant protein aggregation, slowing the progression of pathology in SCA17 mice. Therefore, we showed that the early intervention of G-CSF has a neuroprotective effect, delaying the progression of SCA17 in mutant mice via increases in the levels of chaperone expression and autophagy.

  2. Gene Testing for Hereditary Ataxia

    MedlinePlus

    ... have a family history of ataxia, but diagnostic tests for known ataxia genes cannot explain the ataxia in their family. In recent years, scientists have developed technologies to sequence thousands of genes at the same ...

  3. Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A.

    PubMed

    García Segarra, Nuria; Gautschi, Ivan; Mittaz-Crettol, Laureane; Kallay Zetchi, Christine; Al-Qusairi, Lama; Van Bemmelen, Miguel Xavier; Maeder, Philippe; Bonafé, Luisa; Schild, Laurent; Roulet-Perez, Eliane

    2014-07-15

    Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.

  4. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H271.

    PubMed

    Marthaler, Adele G; Schmid, Benjamin; Tubsuwan, Alisa; Poulsen, Ulla B; Engelbrecht, Alexander F; Mau-Holzmann, Ulrike A; Hyttel, Poul; Nielsen, Jørgen E; Nielsen, Troels T; Holst, Bjørn

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated bona fide induced pluripotent stem cell (iPSC) lines of SCA2 patients in order to study a disease-specific phenotype. Here, we demonstrate the gene correction of the iPSC line H271 clone 1 where we have exchanged the expanded CAG repeat of the ATXN2 gene with the normal length found in healthy alleles. This gene corrected cell line will provide the ideal control to model SCA2 by iPSC technology. PMID:27345809

  5. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H266.

    PubMed

    Marthaler, Adele G; Tubsuwan, Alisa; Schmid, Benjamin; Poulsen, Ulla B; Engelbrecht, Alexander F; Mau-Holzmann, Ulrike A; Hyttel, Poul; Nielsen, Troels T; Nielsen, Jørgen E; Holst, Bjørn

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated bona fide induced pluripotent stem cell (iPSC) lines of SCA2 patients in order to study a disease-specific phenotype. Here, we demonstrate the gene correction of the iPSC line H266 clone 10 where we have exchanged the expanded CAG repeat of the ATXN2 gene with the normal length found in healthy alleles. This gene corrected cell line will provide the ideal control to model SCA2 by iPSC technology. PMID:27345815

  6. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H196.

    PubMed

    Marthaler, Adele G; Schmid, Benjamin; Tubsuwan, Alisa; Poulsen, Ulla B; Engelbrecht, Alexander F; Mau-Holzmann, Ulrike A; Hyttel, Poul; Nielsen, Jørgen E; Nielsen, Troels T; Holst, Bjørn

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated bona fide induced pluripotent stem cell (iPSC) lines of SCA2 patients in order to study a disease-specific phenotype. Here, we demonstrate the gene correction of the iPSC line H196 clone 7 where we have exchanged the expanded CAG repeat of the ATXN2 gene with the normal length found in healthy alleles. This gene corrected cell line will provide the ideal control to model SCA2 by iPSC technology. PMID:27345804

  7. Decreased expression of glutamate transporter GLAST in Bergmann glia is associated with the loss of Purkinje neurons in the spinocerebellar ataxia type 1.

    PubMed

    Cvetanovic, Marija

    2015-02-01

    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease of the cerebellum caused by a polyglutamine-repeat expansion in the protein ATXN1. We have previously demonstrated that astrocytic activation occurs early in pathogenesis, correlates with disease progression, and can occur when mutant ATXN1 expression is limited to Purkinje neurons. We now show that expression of glutamate and aspartate transporter, GLAST, is decreased in cerebellar astrocytes in a mouse model of SCA1. This decrease occurs in non-cell autonomous manner late in disease and correlates well with the loss of Purkinje neurons. Astrogliosis or decreased neuronal activity does not correlate with diminished GLAST expression. In addition, Bergmann glia remain capable of transcriptional upregulation of GLAST in response to improvement in Purkinje neurons supporting the notion of active neuron-glia crosstalk in disease.

  8. Cold episodes in the Peruvian Central Andes: Composites, Types, and their Impacts over South America (1958-2014)

    NASA Astrophysics Data System (ADS)

    Sulca, J. C.; Vuille, M. F.; Roundy, P. E.; Trasmonte, G.; Silva, Y.; Takahashi, K.

    2015-12-01

    The Mantaro basin (MB) is located in the central Peruvian Andes. Occasionally, cold episodes are observed during austral summer (January-March), that strongly damage crops. However, little is known about the causes and impacts of such cold episodes. The main goal of this study is thus to characterize cold episodes in the MB and assess their large-scale circulation and teleconnections over South America (SA) during austral summer. To identify cold events in the MB daily minimum temperature (Tmin) for the period 1958-2014 from Huayao station, located within the MB was used. A cold episode is defined when daily minimum temperature drops below its 10-percentile for at least one day. Additionally, to study the sensitivity between physical mechanisms associated with cold episodes and temperature, cold episodes are classified in three groups: Weak cold episodes (7.5 ≤ Tmin ≤ 10 percentile), strong cold episodes (Tmin ≤ 2.5 percentile), but excluding the 9 coldest events (Tmin ≤ 0 ͦ C), henceforth referred to as extraordinary cold episodes. Several gridded reanalysis were used to characterize the large-scale circulation, cloud cover and rainfall over SA associated with these events. Weak and strong cold episodes in the MB are mainly associated with a weakening of the Bolivian High-Nordeste Low system by tropical-extratropical interactions. Both types of cold episodes are associated with westerly wind anomalies at mid- and upper-tropospheric levels aloft the Peruvian Central Andes, which inhibit the influx of humid air masses from the lowlands to the east and hence limit the development of cloud cover (e.g., positive OLR anomalies over MB). The resulting clear sky conditions cause nighttime temperatures to drop, leading to cold extremes below 10-percentile. Simultaneously, northeastern Brazil (NEB) registers negative OLR anomalies, strong convection and enhanced cloud cover because displacement of the South Atlantic Convergence Zone (SACZ) toward the northeast of

  9. Friedreich ataxia: an overview

    PubMed Central

    Delatycki, M.; Williamson, R.; Forrest, S.

    2000-01-01

    Friedreich ataxia, an autosomal recessive neurodegenerative disease, is the most common of the inherited ataxias. The recent discovery of the gene that is mutated in this condition, FRDA, has led to rapid advances in the understanding of the pathogenesis of Friedreich ataxia. About 98% of mutant alleles have an expansion of a GAA trinucleotide repeat in intron 1 of the gene. This leads to reduced levels of the protein, frataxin. There is mounting evidence to suggest that Friedreich ataxia is the result of accumulation of iron in mitochondria leading to excess production of free radicals, which then results in cellular damage and death. Currently there is no known treatment that alters the natural course of the disease. The discovery of the FRDA gene and its possible function has raised hope that rational therapeutic strategies will be developed.


Keywords: Friedreich ataxia; FRDA gene PMID:10633128

  10. Disentangling different types of El Niño episodes by evolving climate network analysis.

    PubMed

    Radebach, Alexander; Radebach, A; Donner, Reik V; Donner, R V; Runge, Jakob; Runge, J; Donges, Jonathan F; Donges, J F; Kurths, Jürgen; Kurths, J

    2013-11-01

    Complex network theory provides a powerful toolbox for studying the structure of statistical interrelationships between multiple time series in various scientific disciplines. In this work, we apply the recently proposed climate network approach for characterizing the evolving correlation structure of the Earth's climate system based on reanalysis data for surface air temperatures. We provide a detailed study of the temporal variability of several global climate network characteristics. Based on a simple conceptual view of red climate networks (i.e., networks with a comparably low number of edges), we give a thorough interpretation of our evolving climate network characteristics, which allows a functional discrimination between recently recognized different types of El Niño episodes. Our analysis provides deep insights into the Earth's climate system, particularly its global response to strong volcanic eruptions and large-scale impacts of different phases of the El Niño Southern Oscillation. PMID:24329318

  11. Disentangling different types of El Niño episodes by evolving climate network analysis.

    PubMed

    Radebach, Alexander; Radebach, A; Donner, Reik V; Donner, R V; Runge, Jakob; Runge, J; Donges, Jonathan F; Donges, J F; Kurths, Jürgen; Kurths, J

    2013-11-01

    Complex network theory provides a powerful toolbox for studying the structure of statistical interrelationships between multiple time series in various scientific disciplines. In this work, we apply the recently proposed climate network approach for characterizing the evolving correlation structure of the Earth's climate system based on reanalysis data for surface air temperatures. We provide a detailed study of the temporal variability of several global climate network characteristics. Based on a simple conceptual view of red climate networks (i.e., networks with a comparably low number of edges), we give a thorough interpretation of our evolving climate network characteristics, which allows a functional discrimination between recently recognized different types of El Niño episodes. Our analysis provides deep insights into the Earth's climate system, particularly its global response to strong volcanic eruptions and large-scale impacts of different phases of the El Niño Southern Oscillation.

  12. Spinocerebellar ataxia type 2 (SCA2) in an Egyptian family presenting with polyphagia and marked CAG expansion in infancy.

    PubMed

    Abdel-Aleem, Alice; Zaki, Maha S

    2008-03-01

    We describe an Egyptian family having SCA2 affecting three generations with marked molecular and clinical anticipation observed in the index case. Our proband was a male child starting as early as 2 years old with progressive extrapyramidal manifestations, slow eye movements and cognitive impairment. A history of nonspecific mild developmental delay was recorded. The patient lost all cognitive functions, had persistent dystonic posture, trophic changes, vasomotor instability, dysphagia and died at the age of 7 years. The age at presentation among other affected family members varied between 11 and 45 years old across three generations. The early common neurological symptoms were choreoathetotic movements, myoclonic jerk, gait difficulty, expressionless face and emotional liability. Later, overt ataxia, incoordination, dysarthria, mild dementia and slow eye saccades predominated. Brisk tendon reflexes were detected in three cases. Peripheral nerve affection was a late manifestation. Interestingly, polyphagia and obesity were striking manifestations in the middle stage of the disease; an observation that might support a previously suggested relation between the ataxin-2 gene and body weight. The proband showed an amplified allele with marked CAG expansion in the form of a smear sized 69-75 repeats resulted from maternal transmission. To our knowledge, our index case is the second report in the literature presenting with infantile onset SCA2 and intermediate repeat expansion. This family expands the phenotypic spectrum of early onset SCA2 and points out the importance of considering SCA2 gene analysis in children with progressive neurological impairment and abnormal movements with or without polyphagia. PMID:18297329

  13. Reviewing the genetic causes of spastic-ataxias.

    PubMed

    de Bot, Susanne T; Willemsen, Michel A A P; Vermeer, Sascha; Kremer, Hubertus P H; van de Warrenburg, Bart P C

    2012-10-01

    Although the combined presence of ataxia and pyramidal features has a long differential, the presence of a true spastic-ataxia as the predominant clinical syndrome has a rather limited differential diagnosis. Autosomal recessive ataxia of Charlevoix-Saguenay, late-onset Friedreich ataxia, and hereditary spastic paraplegia type 7 are examples of genetic diseases with such a prominent spastic-ataxic syndrome as the clinical hallmark. We review the various causes of spastic-ataxic syndromes with a focus on the genetic disorders, and provide a clinical framework, based on age at onset, mode of inheritance, and additional clinical features and neuroimaging signs, that could serve the diagnostic workup. PMID:23033504

  14. Diet for Ataxia

    MedlinePlus

    ... discuss these guidelines with a physical therapist and nutritionist familiar with movement disorders. Ataxia is a complex ... fiber to your diet with your physician or nutritionist, ask them if you might also benefit by ...

  15. Speech in spinocerebellar ataxia.

    PubMed

    Schalling, Ellika; Hartelius, Lena

    2013-12-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal dominant cerebellar ataxias clinically characterized by progressive ataxia, dysarthria and a range of other concomitant neurological symptoms. Only a few studies include detailed characterization of speech symptoms in SCA. Speech symptoms in SCA resemble ataxic dysarthria but symptoms related to phonation may be more prominent. One study to date has shown an association between differences in speech and voice symptoms related to genotype. More studies of speech and voice phenotypes are motivated, to possibly aid in clinical diagnosis. In addition, instrumental speech analysis has been demonstrated to be a reliable measure that may be used to monitor disease progression or therapy outcomes in possible future pharmacological treatments. Intervention by speech and language pathologists should go beyond assessment. Clinical guidelines for management of speech, communication and swallowing need to be developed for individuals with progressive cerebellar ataxia.

  16. Mutant β-III spectrin causes mGluR1α mislocalization and functional deficits in a mouse model of spinocerebellar ataxia type 5.

    PubMed

    Armbrust, Karen R; Wang, Xinming; Hathorn, Tyisha J; Cramer, Samuel W; Chen, Gang; Zu, Tao; Kangas, Takashi; Zink, Anastasia N; Öz, Gülin; Ebner, Timothy J; Ranum, Laura P W

    2014-07-23

    Spinocerebellar ataxia type 5 (SCA5), a dominant neurodegenerative disease characterized by profound Purkinje cell loss, is caused by mutations in SPTBN2, a gene that encodes β-III spectrin. SCA5 is the first neurodegenerative disorder reported to be caused by mutations in a cytoskeletal spectrin gene. We have developed a mouse model to understand the mechanistic basis for this disease and show that expression of mutant but not wild-type β-III spectrin causes progressive motor deficits and cerebellar degeneration. We show that endogenous β-III spectrin interacts with the metabotropic glutamate receptor 1α (mGluR1α) and that mice expressing mutant β-III spectrin have cerebellar dysfunction with altered mGluR1α localization at Purkinje cell dendritic spines, decreased mGluR1-mediated responses, and deficient mGluR1-mediated long-term potentiation. These results indicate that mutant β-III spectrin causes mislocalization and dysfunction of mGluR1α at dendritic spines and connects SCA5 with other disorders involving glutamatergic dysfunction and synaptic plasticity abnormalities.

  17. Recovering and Preventing Loss of Detailed Memory: Differential Rates of Forgetting for Detail Types in Episodic Memory

    ERIC Educational Resources Information Center

    Sekeres, Melanie J.; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired,…

  18. The Prevalence, Types and Perceived Outcomes of Crisis Episodes in Early Adulthood and Midlife: A Structured Retrospective-Autobiographical Study

    ERIC Educational Resources Information Center

    Robinson, Oliver C.; Wright, Gordon R. T.

    2013-01-01

    The objective of the study was to gain data on the prevalence, types and perceived outcomes of crisis episodes in three age decades of adult life: 20-29, 30-39 and 40-49. A further aim was to explore the relationship between crisis occurrence and empathy. A retrospective-autobiographical survey instrument and an empathy questionnaire were…

  19. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia.

    PubMed

    Stefanescu, Maria R; Dohnalek, Moritz; Maderwald, Stefan; Thürling, Markus; Minnerop, Martina; Beck, Andreas; Schlamann, Marc; Diedrichsen, Joern; Ladd, Mark E; Timmann, Dagmar

    2015-05-01

    Spinocerebellar ataxia type 3, spinocerebellar ataxia type 6 and Friedreich's ataxia are common hereditary ataxias. Different patterns of atrophy of the cerebellar cortex are well known. Data on cerebellar nuclei are sparse. Whereas cerebellar nuclei have long been thought to be preserved in spinocerebellar ataxia type 6, histology shows marked atrophy of the nuclei in Friedreich's ataxia and spinocerebellar ataxia type 3. In the present study susceptibility weighted imaging was used to assess atrophy of the cerebellar nuclei in patients with spinocerebellar ataxia type 6 (n = 12, age range 41-76 years, five female), Friedreich's ataxia (n = 12, age range 21-55 years, seven female), spinocerebellar ataxia type 3 (n = 10, age range 34-67 years, three female), and age- and gender-matched controls (total n = 23, age range 22-75 years, 10 female). T1-weighted magnetic resonance images were used to calculate the volume of the cerebellum. In addition, ultra-high field functional magnetic resonance imaging was performed with optimized normalization methods to assess function of the cerebellar cortex and nuclei during simple hand movements. As expected, the volume of the cerebellum was markedly reduced in spinocerebellar ataxia type 6, preserved in Friedreich's ataxia, and mildy reduced in spinocerebellar ataxia type 3. The volume of the cerebellar nuclei was reduced in the three patient groups compared to matched controls (P-values < 0.05; two-sample t-tests). Atrophy of the cerebellar nuclei was most pronounced in spinocerebellar ataxia type 6. On a functional level, hand-movement-related cerebellar activation was altered in all three disorders. Within the cerebellar cortex, functional magnetic resonance imaging signal was significantly reduced in spinocerebellar ataxia type 6 and Friedreich's ataxia compared to matched controls (P-values < 0.001, bootstrap-corrected cluster-size threshold; two-sample t-tests). The difference missed significance in spinocerebellar ataxia

  20. Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1

    PubMed Central

    2013-01-01

    Background Spinocerebellar ataxia type 1 (SCA1) is a genetic disorder characterized by severe ataxia associated with progressive loss of cerebellar Purkinje cells. The mGlu1 metabotropic glutamate receptor plays a key role in mechanisms of activity-dependent synaptic plasticity in the cerebellum, and its dysfunction is linked to the pathophysiology of motor symptoms associated with SCA1. We used SCA1 heterozygous transgenic mice (Q154/Q2) as a model for testing the hypothesis that drugs that enhance mGlu1 receptor function may be good candidates for the medical treatment of SCA1. Results Symptomatic 30-week old SCA1 mice showed reduced mGlu1 receptor mRNA and protein levels in the cerebellum. Interestingly, these mice also showed an intense expression of mGlu5 receptors in cerebellar Purkinje cells, which normally lack these receptors. Systemic treatment of SCA1 mice with the mGlu1 receptor positive allosteric modulator (PAM), Ro0711401 (10 mg/kg, s.c.), caused a prolonged improvement of motor performance on the rotarod and the paw-print tests. A single injection of Ro0711401 improved motor symptoms for several days, and no tolerance developed to the drug. In contrast, the mGlu5 receptor PAM, VU0360172 (10 mg/kg, s.c.), caused only a short-lasting improvement of motor symptoms, whereas the mGlu1 receptor antagonist, JNJ16259685 (2.5 mg/kg, i.p.), further impaired motor performance in SCA1 mice. The prolonged symptomatic benefit caused by Ro0711401 outlasted the time of drug clearance from the cerebellum, and was associated with neuroadaptive changes in the cerebellum, such as a striking reduction of the ectopically expressed mGlu5 receptors in Purkinje cells, increases in levels of total and Ser880-phosphorylated GluA2 subunit of AMPA receptors, and changes in the length of spines in the distal dendrites of Purkinje cells. Conclusions These data demonstrate that pharmacological enhancement of mGlu1 receptors causes a robust and sustained motor improvement in SCA

  1. Gluten-related disorders: gluten ataxia.

    PubMed

    Hadjivassiliou, Marios; Sanders, David D; Aeschlimann, Daniel P

    2015-01-01

    The term gluten-related disorders (GRD) refers to a spectrum of diverse clinical manifestations triggered by the ingestion of gluten in genetically susceptible individuals. They include both intestinal and extraintestinal manifestations. Gluten ataxia (GA) is one of the commonest neurological manifestations of GRD. It was originally defined as otherwise idiopathic sporadic ataxia in the presence of circulating antigliadin antibodies of IgA and/or IgG type. Newer more specific serological markers have been identified but are not as yet readily available. GA has a prevalence of 15% amongst all ataxias and 40% of all idiopathic sporadic ataxias. It usually presents with gait and lower limb ataxia. It is of insidious onset with a mean age at onset of 53 years. Up to 40% of patients have evidence of enteropathy on duodenal biopsy. Gastrointestinal symptoms are seldom prominent and are not a reliable indicator for the presence of enteropathy. Furthermore, the presence of enteropathy does not influence the response to a gluten-free diet. Most patients will stabilise or improve with strict adherence to gluten-free diet depending on the duration of the ataxia prior to the treatment. Up to 60% of patients with GA have evidence of cerebellar atrophy on MR imaging, but all patients have spectroscopic abnormalities primarily affecting the vermis. Recent evidence suggests that patients with newly diagnosed coeliac disease presenting to the gastroenterologists have abnormal MR spectroscopy at presentation associated with clinical evidence of subtle cerebellar dysfunction. The advantage of early diagnosis and treatment (mean age 42 years in patients presenting with gastrointestinal symptoms vs. 53 years in patients presenting with ataxia) may protect the first group from the development and/or progression of neurological dysfunction.

  2. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ.

    PubMed

    Stucki, David M; Ruegsegger, Céline; Steiner, Silvio; Radecke, Julika; Murphy, Michael P; Zuber, Benoît; Saxena, Smita

    2016-08-01

    Spinocerebellar ataxia type 1 (SCA1), due to an unstable polyglutamine expansion within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), decreasing motor coordination and causing death within 10-15 years of diagnosis. Currently, there are no therapies available to slow down disease progression. As secondary cellular impairments contributing to SCA1 progression are poorly understood, here, we focused on identifying those processes by performing a PC specific proteome profiling of Sca1(154Q/2Q) mice at a symptomatic stage. Mass spectrometry analysis revealed prominent alterations in mitochondrial proteins. Immunohistochemical and serial block-face scanning electron microscopy analyses confirmed that PCs underwent age-dependent alterations in mitochondrial morphology. Moreover, colorimetric assays demonstrated impairment of the electron transport chain complexes (ETC) and decrease in ATPase activity. Subsequently, we examined whether the mitochondria-targeted antioxidant MitoQ could restore mitochondrial dysfunction and prevent SCA1-associated pathology in Sca1(154Q/2Q) mice. MitoQ treatment both presymptomatically and when symptoms were evident ameliorated mitochondrial morphology and restored the activities of the ETC complexes. Notably, MitoQ slowed down the appearance of SCA1-linked neuropathology such as lack of motor coordination as well as prevented oxidative stress-induced DNA damage and PC loss. Our work identifies a central role for mitochondria in PC degeneration in SCA1 and provides evidence for the supportive use of mitochondria-targeted therapeutics in slowing down disease progression. PMID:27394174

  3. Long-term oral administration of the NMDA receptor antagonist memantine extends life span in spinocerebellar ataxia type 1 knock-in mice.

    PubMed

    Iizuka, Akira; Nakamura, Kazuhiro; Hirai, Hirokazu

    2015-04-10

    Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease caused by extension of a CAG repeat in the Sca1gene. Although the mechanisms underlying the symptoms of SCA1 have not been determined, aberrant neuronal activation potentially contributes to the neuronal cell death characteristic of the disease. Here we examined the potential involvement of extrasynaptic N-methyl-d-aspartate receptor (NMDAR) activation in the pathogenesis of SCA1 by administering memantine, a low-affinity noncompetitive NMDAR antagonist, in SCA1 knock-in (KI) mice. In KI mice, the exon in the ataxin 1 gene is replaced with abnormally expanded 154CAG repeats. Memantine was administered orally to the SCA1 KI mice from 4 weeks of age until death. The treatment significantly attenuated body-weight loss and prolonged the life span of SCA1 KI mice. Furthermore, memantine significantly suppressed the loss of Purkinje cells in the cerebellum and motor neurons in the dorsal motor nucleus of the vagus, which are critical for motor function and parasympathetic function, respectively. These findings support the contribution of aberrant activation of extrasynaptic NMDARs to neuronal cell death in SCA1 KI mice and suggest that memantine may also have therapeutic benefits in human SCA1 patients.

  4. Mapping and cloning of the critical region for the spineocerebellar ataxia Type 1 gene (SCA1) in a yeast artificial chromosome contig spanning 1. 2 Mb

    SciTech Connect

    Banfi, S.; McCall, A.E.; Zoghbi, H.Y.; Kwiatkowski, T.J. Jr.; Chinault, A.C. ); Ranum, L.P.W.; Orr, H.T. )

    1993-12-01

    The gene responsible for spinocerebellar ataxia type 1 (SCA1) has been localized to a 6.7-cM region between the centromeric marker D6S109 and the telomeric marker D6S89. The authors screened two yeast artificial chromosome (YAC) libraries using sequence-tagged sites at D6S89 and at newly identified markers in 6p22-p23. Fifty YAC clones were identified and 34 insert termini were isolated from some of these YACs for detailed overlap mapping and long-range restriction analysis. A large YAC contig estimated to span 2.5 Mb was developed and genetic analysis in five large SCA1 kindreds using highly informative dinucleotide repeat polymorphisms mapped to this contig allowed the identification of D6S274 as the closest centromeric flanking marker for SCA1. Long-range restriction analysis determined the size for the critical SCA1 region, as defined by the two flanking markers D6S274 and D6S89, to be 1.2 Mb. This region is spanned by a minimum set of four nonchimeric YAC clones. The development of a 2.5-Mb YAC contig in 6p22-p23 provides valuable reagents for characterization of this genomic region and for the cloning of the SCA1 gene. 34 refs., 4 figs., 2 tabs.

  5. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ.

    PubMed

    Stucki, David M; Ruegsegger, Céline; Steiner, Silvio; Radecke, Julika; Murphy, Michael P; Zuber, Benoît; Saxena, Smita

    2016-08-01

    Spinocerebellar ataxia type 1 (SCA1), due to an unstable polyglutamine expansion within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), decreasing motor coordination and causing death within 10-15 years of diagnosis. Currently, there are no therapies available to slow down disease progression. As secondary cellular impairments contributing to SCA1 progression are poorly understood, here, we focused on identifying those processes by performing a PC specific proteome profiling of Sca1(154Q/2Q) mice at a symptomatic stage. Mass spectrometry analysis revealed prominent alterations in mitochondrial proteins. Immunohistochemical and serial block-face scanning electron microscopy analyses confirmed that PCs underwent age-dependent alterations in mitochondrial morphology. Moreover, colorimetric assays demonstrated impairment of the electron transport chain complexes (ETC) and decrease in ATPase activity. Subsequently, we examined whether the mitochondria-targeted antioxidant MitoQ could restore mitochondrial dysfunction and prevent SCA1-associated pathology in Sca1(154Q/2Q) mice. MitoQ treatment both presymptomatically and when symptoms were evident ameliorated mitochondrial morphology and restored the activities of the ETC complexes. Notably, MitoQ slowed down the appearance of SCA1-linked neuropathology such as lack of motor coordination as well as prevented oxidative stress-induced DNA damage and PC loss. Our work identifies a central role for mitochondria in PC degeneration in SCA1 and provides evidence for the supportive use of mitochondria-targeted therapeutics in slowing down disease progression.

  6. What Is Ataxia-Telangiectasia?

    MedlinePlus

    ... what led to naming this disease "ataxia-telangiectasia." Immune System Problems... For most (about 70 percent) of children ... A-T patients, the combination of a weakened immune system and the progressive ataxia can ultimately lead to ...

  7. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia.

    PubMed

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-11-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  8. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia

    PubMed Central

    Coutelier, Marie; Blesneac, Iulia; Monteil, Arnaud; Monin, Marie-Lorraine; Ando, Kunie; Mundwiller, Emeline; Brusco, Alfredo; Le Ber, Isabelle; Anheim, Mathieu; Castrioto, Anna; Duyckaerts, Charles; Brice, Alexis; Durr, Alexandra; Lory, Philippe; Stevanin, Giovanni

    2015-01-01

    Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs. PMID:26456284

  9. Friedreich's Ataxia (FA)

    MedlinePlus

    ... About Friedreich’s Ataxia Updated December 2009 Michelle Moffitt Smith Michelle and James Smith at their wedding Dear Friends: W hen I ... for a doctorate. I met my husband, James Smith, through MDA’s magazine, Quest. He also has a ...

  10. Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model

    PubMed Central

    Aikawa, Tomonori; Mogushi, Kaoru; Iijima-Tsutsui, Kumiko; Ishikawa, Kinya; Sakurai, Miyano; Tanaka, Hiroshi; Mizusawa, Hidehiro; Watase, Kei

    2015-01-01

    Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Cav2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs. Mutant Cav2.1 confers toxicity primarily through a toxic gain-of-function mechanism; however, its molecular basis remains elusive. Here, we studied the cerebellar gene expression patterns of young Sca6-MPI118Q/118Q knockin (KI) mice, which expressed mutant Cav2.1 from an endogenous locus and recapitulated many phenotypic features of human SCA6. Transcriptional signatures in the MPI118Q/118Q mice were distinct from those in the Sca1154Q/2Q mice, a faithful SCA1 KI mouse model. Temporal expression profiles of the candidate genes revealed that the up-regulation of genes associated with microglial activation was initiated before PC degeneration and was augmented as the disease progressed. Histological analysis of the MPI118Q/118Q cerebellum showed the predominance of M1-like pro-inflammatory microglia and it was concomitant with elevated expression levels of tumor necrosis factor, interleukin-6, Toll-like receptor (TLR) 2 and 7. Genetic ablation of MyD88, a major adaptor protein conveying TLR signaling, altered expression patterns of M1/M2 microglial phenotypic markers in the MPI118Q/118Q cerebellum. More importantly, it ameliorated PC loss and partially rescued motor impairments in the early disease phase. These results suggest that early neuroinflammatory response may play an important role in the pathogenesis of SCA6 and its modulation could pave the way for slowing the disease progression during the early stage of the disease. PMID:26034136

  11. Reduced brain-derived neurotrophic factor (BDNF) mRNA expression and presence of BDNF-immunoreactive granules in the spinocerebellar ataxia type 6 (SCA6) cerebellum.

    PubMed

    Takahashi, Makoto; Ishikawa, Kinya; Sato, Nozomu; Obayashi, Masato; Niimi, Yusuke; Ishiguro, Taro; Yamada, Mitsunori; Toyoshima, Yasuko; Takahashi, Hitoshi; Kato, Takeo; Takao, Masaki; Murayama, Shigeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro

    2012-12-01

    Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder caused by a small expansion of tri-nucleotide (CAG) repeat encoding polyglutamine (polyQ) in the gene for α(1A) voltage-dependent calcium channel (Ca(v) 2.1). Thus, this disease is one of the nine neurodegenerative disorders called polyQ diseases. The Purkinje cell predominant neuronal loss is the characteristic neuropathology of SCA6, and a 75-kDa carboxy-terminal fragment (CTF) of Ca(v) 2.1 containing polyQ, which remains soluble in normal brains, becomes insoluble in the cytoplasm of SCA6 Purkinje cells. Because the suppression of the brain-derived neurotrophic factor (BDNF) expression is a potentially momentous phenomenon in many other polyQ diseases, we implemented BDNF expression analysis in SCA6 human cerebellum using quantitative RT-PCR for the BDNF mRNA, and by immunohistochemistry for the BDNF protein. We observed significantly reduced BDNF mRNA levels in SCA6 cerebellum (n = 3) compared to controls (n = 6) (Mann-Whitney U-test, P = 0.0201). On immunohistochemistry, BDNF protein was only weakly stained in control cerebellum. On the other hand, we found numerous BDNF-immunoreactive granules in dendrites of SCA6 Purkinje cells. We did not observe similar BDNF-immunoreactive granules in other polyQ diseases, such as Huntington's disease or SCA2. As we often observed that the 1C2-positive Ca(v) 2.1 aggregates existed more proximally than the BDNF-positive granules in the dendrites, we speculated that the BDNF protein trafficking in dendrites may be disturbed by Ca(v) 2.1 aggregates in SCA6 Purkinje cells. We conclude that the SCA6 pathogenic mechanism associates with the BDNF mRNA expression reduction and abnormal localization of BDNF protein.

  12. Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model.

    PubMed

    Aikawa, Tomonori; Mogushi, Kaoru; Iijima-Tsutsui, Kumiko; Ishikawa, Kinya; Sakurai, Miyano; Tanaka, Hiroshi; Mizusawa, Hidehiro; Watase, Kei

    2015-09-01

    Spinocerebellar ataxia type 6 (SCA6) is dominantly inherited neurodegenerative disease, caused by an expansion of CAG repeat encoding a polyglutamine (PolyQ) tract in the Cav2.1 voltage-gated calcium channel. Its key pathological features include selective degeneration of the cerebellar Purkinje cells (PCs), a common target for PolyQ-induced toxicity in various SCAs. Mutant Cav2.1 confers toxicity primarily through a toxic gain-of-function mechanism; however, its molecular basis remains elusive. Here, we studied the cerebellar gene expression patterns of young Sca6-MPI(118Q/118Q) knockin (KI) mice, which expressed mutant Cav2.1 from an endogenous locus and recapitulated many phenotypic features of human SCA6. Transcriptional signatures in the MPI(118Q/118Q) mice were distinct from those in the Sca1(154Q/2Q) mice, a faithful SCA1 KI mouse model. Temporal expression profiles of the candidate genes revealed that the up-regulation of genes associated with microglial activation was initiated before PC degeneration and was augmented as the disease progressed. Histological analysis of the MPI(118Q/118Q) cerebellum showed the predominance of M1-like pro-inflammatory microglia and it was concomitant with elevated expression levels of tumor necrosis factor, interleukin-6, Toll-like receptor (TLR) 2 and 7. Genetic ablation of MyD88, a major adaptor protein conveying TLR signaling, altered expression patterns of M1/M2 microglial phenotypic markers in the MPI(118Q/118Q) cerebellum. More importantly, it ameliorated PC loss and partially rescued motor impairments in the early disease phase. These results suggest that early neuroinflammatory response may play an important role in the pathogenesis of SCA6 and its modulation could pave the way for slowing the disease progression during the early stage of the disease.

  13. Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory.

    PubMed

    Sekeres, Melanie J; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-02-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired, while memory for central details is relatively spared. Given the sensitivity of memory to loss of details, the present study sought to investigate factors that mediate the forgetting of different types of information from naturalistic episodic memories in young healthy adults. The study investigated (1) time-dependent loss of "central" and "peripheral" details from episodic memories, (2) the effectiveness of cuing with reminders to reinstate memory details, and (3) the role of retrieval in preventing forgetting. Over the course of 7 d, memory for naturalistic events (film clips) underwent a time-dependent loss of peripheral details, while memory for central details (the core or gist of events) showed significantly less loss. Giving brief reminders of the clips just before retrieval reinstated memory for peripheral details, suggesting that loss of details is not always permanent, and may reflect both a storage and retrieval deficit. Furthermore, retrieving a memory shortly after it was encoded prevented loss of both central and peripheral details, thereby promoting retention over time. We consider the implications of these results for behavioral and neurobiological models of retention and forgetting.

  14. Validating an Ataxia Functional Composite Scale in spinocerebellar ataxia.

    PubMed

    Assadi, Mitra; Leone, Paola; Veloski, J Jon; Schwartzman, Robert J; Janson, Christopher G; Campellone, Joseph V

    2008-05-15

    The Ataxia Functional Composite Scale (AFCS) may provide a sensitive and reproducible assessment of treatment responses in studies of the spinocerebellar ataxias (SCA). We previously assessed the effects of buspirone in a cohort of patients with SCA via the International Cooperative Ataxia Rating Scale (ICARS). At each assessment period, AFCS scores were also obtained. A strong correlation of AFCS with ICARS scores was demonstrated at all assessment periods. This study supports the validity of the AFCS as a useful assessment of ataxia in this population.

  15. Metronidazole induced cerebellar ataxia

    PubMed Central

    Hari, Aditya; Srikanth, B. Akshaya; Lakshmi, G. Sriranga

    2013-01-01

    Metronidazole is a widely used antimicrobial usually prescribed by many specialist doctors for a short duration of 10-15 days. Prolonged use of metronidazole is rare. The present case is of a patient who used the drug for 4 months and developed peripheral neuropathy, convulsions, and cerebellar ataxia. He was treated with diazepam and levetiracetam. The patient recovered completely following discontinuation of metronidazole. PMID:23833378

  16. Friedreich Ataxia: Neuropathology Revised

    PubMed Central

    Koeppen, Arnulf H.; Mazurkiewicz, Joseph E.

    2013-01-01

    Friedreich ataxia is an autosomal recessive disorder that affects children and young adults. The mutation consists of a homozygous guanine-adenine-adenine trinucleotide repeat expansion that causes deficiency of frataxin, a small nuclear genome–encoded mitochondrial protein. Low frataxin levels lead to insufficient biosynthesis of iron-sulfur clusters that are required for mitochondrial electron transport and assembly of functional aconitase, and iron dysmetabolism of the entire cell. This review of the neuropathology of Friedreich ataxia stresses the critical role of hypoplasia and superimposed atrophy of dorsal root ganglia. Progressive destruction of dorsal root ganglia accounts for thinning of dorsal roots, degeneration of dorsal columns, transsynaptic atrophy of nerve cells in Clarke column and dorsal spinocerebellar fibers, atrophy of gracile and cuneate nuclei, and neuropathy of sensory nerves. The lesion of the dentate nucleus consists of progressive and selective atrophy of large glutamatergic neurons and grumose degeneration of corticonuclear synaptic terminals that contain γ-aminobutyric acid (GABA). Small GABA-ergic neurons and their projection fibers in the dentato-olivary tract survive. Atrophy of Betz cells and corticospinal tracts constitute a second intrinsic CNS lesion. In light of the selective vulnerability of organs and tissues to systemic frataxin deficiency, many questions about the pathogenesis of Friedreich ataxia remain. PMID:23334592

  17. Genetics Home Reference: ataxia neuropathy spectrum

    MedlinePlus

    ... Genetics Home Health Conditions ataxia neuropathy spectrum ataxia neuropathy spectrum Enable Javascript to view the expand/collapse ... Download PDF Open All Close All Description Ataxia neuropathy spectrum is part of a group of conditions ...

  18. Ataxias and Cerebellar or Spinocerebellar Degeneration

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Ataxias and Cerebellar or Spinocerebellar Degeneration Information Page Synonym(s): ... Publications and Information Publicaciones en Español What are Ataxias and Cerebellar or Spinocerebellar Degeneration? Ataxia often occurs ...

  19. Quantitative evaluation of gait ataxia by accelerometers.

    PubMed

    Shirai, Shinichi; Yabe, Ichiro; Matsushima, Masaaki; Ito, Yoichi M; Yoneyama, Mitsuru; Sasaki, Hidenao

    2015-11-15

    An appropriate biomarker for spinocerebellar degeneration (SCD) has not been identified. Here, we performed gait analysis on patients with pure cerebellar type SCD and assessed whether the obtained data could be used as a neurophysiological biomarker for cerebellar ataxia. We analyzed 25 SCD patients, 25 patients with Parkinson's disease as a disease control, and 25 healthy control individuals. Acceleration signals during 6 min of walking and 1 min of standing were measured by two sets of triaxial accelerometers that were secured with a fixation vest to the middle of the lower and upper back of each subject. We extracted two gait parameters, the average and the coefficient of variation of motion trajectory amplitude, from each acceleration component. Then, each component was analyzed by correlation with the Scale for the Assessment and Rating of Ataxia (SARA) and the Berg Balance Scale (BBS). Compared with the gait control of healthy subjects and concerning correlation with severity and disease specificity, our results suggest that the average amplitude of medial-lateral (upper back) of straight gait is a physiological biomarker for cerebellar ataxia. Our results suggest that gait analysis is a quantitative and concise evaluation scale for the severity of cerebellar ataxia.

  20. Cost-effectiveness of reducing glycaemic episodes through community pharmacy management of patients with type 2 diabetes mellitus.

    PubMed

    Hendrie, Delia; Miller, Ted R; Woodman, Richard J; Hoti, Kreshnik; Hughes, Jeff

    2014-12-01

    Accessibility, availability and frequent public contact place community pharmacists in an ideal position to provide medically necessary, intensive health education and preventive health services to diabetes patients, thus reducing physician burden. We assessed the cost-effectiveness of reducing glycaemic episodes in patients with type 2 diabetes mellitus through a pharmacist-led Diabetes Management Education Program (DMEP) compared to standard care. We recruited eight metropolitan community pharmacies in Perth, Western Australia for the study. We paired them based on geographical location and the socioeconomic status of the population served, and then randomly selected one pharmacy in each pair to be in the intervention group, with the other assigned to the control group. We conducted an incremental cost-effectiveness analysis to compare the costs and effectiveness of DMEP with standard pharmacy care. Cost per patient of implementing DMEP was AU$394 (US$356) for the 6-month intervention period. Significantly greater reductions in number of hyperglycaemic and hypoglycaemic episodes occurred in the intervention relative to the control group [OR 0.34 (95 % CI 0.22, 0.52), p = 0.001; OR 0.54 (95 % CI 0.34, 0.86), p = 0.009], respectively, with a net reduction of 1.86 days with glycaemic episodes per patient per month. The cost-effectiveness of DMEP relative to standard pharmacy care was AU$43 (US$39) per day of glycaemic symptoms avoided. Patients with type 2 diabetes in three surveys were willing to pay an average of 1.9 times that amount to avoid a hypoglycaemic day. We conclude that DMEP decreased days with glycaemic symptoms at a reasonable cost. If a larger-scale replication study confirms these findings, widespread adoption of this approach would improve diabetes health without burdening general practitioners. PMID:25257687

  1. Ocular motor characteristics of different subtypes of spinocerebellar ataxia: distinguishing features.

    PubMed

    Kim, Ji Sun; Kim, Ji Soo; Youn, Jinyoung; Seo, Dae-Won; Jeong, Yuri; Kang, Ji-Hoon; Park, Jeong Ho; Cho, Jin Whan

    2013-08-01

    Because of frequent involvement of the cerebellum and brainstem, ocular motor abnormalities are key features of spinocerebellar ataxias and may aid in differential diagnosis. Our objective for this study was to distinguish the subtypes by ophthalmologic features after head-shaking and positional maneuvers, which are not yet recognized as differential diagnostic tools in most common forms of spinocerebellar ataxias. Of the 302 patients with a diagnosis of cerebellar ataxia in 3 Korean University Hospitals from June 2011 to June 2012, 48 patients with spinocerebellar ataxia types 1, 2, 3, 6, 7, or 8 or with undetermined spinocerebellar ataxias were enrolled. All patients underwent a video-oculographic recording of fixation abnormalities, gaze-evoked nystagmus, positional and head-shaking nystagmus, and dysmetric saccades. Logistic regression analysis controlling for disease duration revealed that spontaneous and positional downbeat nystagmus and perverted head-shaking nystagmus were strong predictors for spinocerebellar ataxia 6, whereas saccadic intrusions and oscillations were identified as positive indicators of spinocerebellar ataxia 3. In contrast, the presence of gaze-evoked nystagmus and dysmetric saccades was a negative predictor of spinocerebellar ataxia 2. Positional maneuvers and horizontal head shaking occasionally induced or augmented saccadic intrusions/oscillations in patients with spinocerebellar ataxia types 1, 2, and 3 and undetermined spinocerebellar ataxia. The results indicated that perverted head-shaking nystagmus may be the most sensitive parameter for SCA6, whereas saccadic intrusions/oscillations are the most sensitive for spinocerebellar ataxia 3. In contrast, a paucity of gaze-evoked nystagmus and dysmetric saccades is more indicative of spinocerebellar ataxia 2. Head-shaking and positional maneuvers aid in defining ocular motor characteristics in spinocerebellar ataxias. © 2013 Movement Disorder Society.

  2. Prevalence of ataxia in children

    PubMed Central

    Stoyanov, Cristina T.; Marasigan, Rhul; Jenkins, Mary E.; Konczak, Jürgen; Morton, Susanne M.; Bastian, Amy J.

    2014-01-01

    Objective: To estimate the prevalence of childhood ataxia resulting from both genetic and acquired causes. Methods: A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement. Five databases were searched for articles reporting a frequency measure (e.g., prevalence, incidence) of ataxia in children. Included articles were first grouped according to the World Health Organization (WHO) regions and subsequently classified according to etiology (genetic, acquired, or mixed). Each article was assessed for its risk of bias on the domains of sampling, measurement, and analysis. Incidence values were converted to prevalence estimates whenever possible. European prevalence estimates for different etiologies of ataxia were summed to gauge the overall prevalence of childhood ataxia. Results: One hundred fifteen articles were included in the review. More than 50% of the data originated from the Europe WHO region. Data from this region also showed the least susceptibility to bias. Little data were available for Africa and Southeast Asia. The prevalence of acquired ataxias was found to vary more greatly across regions than the genetic ataxias. Ataxic cerebral palsy was found to be a significant contributor to the overall prevalence of childhood ataxia across WHO regions. The prevalence of childhood ataxias in Europe was estimated to be ∼26/100,000 children and likely reflects a minimum prevalence worldwide. Conclusions: The findings show that ataxia is a common childhood motor disorder with a higher prevalence than previously assumed. More research concerning the epidemiology, assessment, and treatment of childhood ataxia is warranted. PMID:24285620

  3. Ataxia-Telangiectasia

    PubMed Central

    Dunn, H. G.; Meuwissen, H.; Livingstone, C. S.; Pump, K. K.

    1964-01-01

    Ataxia-telangiectasia is a syndrome of progressive cerebellar ataxia and other neurological manifestations associated with conjunctival and cutaneous telangiectases and with recurrent sino-pulmonary infections. Immunological and endocrine abnormalities occur. Two girls with this disease are described. The first had only minor respiratory infections; her serum proteins and immunity responses appeared normal. The second had recurrent pulmonary infections and bronchiectasis; she also exhibited sclerodermatous changes, poor development of secondary sexual characteristics with low urinary excretion of 17-ketosteroids, and lymphopenia. Autopsy at 17 years showed bilateral ovarian dysgerminomata and excessive cutaneous collagen as well as atrophy, and perhaps hypoplasia, of adrenals, thymus, spleen and lymphoid tissue (after steroid therapy). The cerebellum exhibited cortical degeneration. Both lungs were fibrotic with old and recent bronchopneumonia and bronchiectasis. The left lung was studied by injection of a latex preparation; no arteriovenous aneurysms were found, but the smaller pulmonary vessels showed some unusual morphological characteristics. ImagesFig. 1Fig. 2Fig. 3Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11aFig. 11b PMID:14229760

  4. Autobiographically significant concepts: more episodic than semantic in nature? An electrophysiological investigation of overlapping types of memory.

    PubMed

    Renoult, Louis; Davidson, Patrick S R; Schmitz, Erika; Park, Lillian; Campbell, Kenneth; Moscovitch, Morris; Levine, Brian

    2015-01-01

    A common assertion is that semantic memory emerges from episodic memory, shedding the distinctive contexts associated with episodes over time and/or repeated instances. Some semantic concepts, however, may retain their episodic origins or acquire episodic information during life experiences. The current study examined this hypothesis by investigating the ERP correlates of autobiographically significant (AS) concepts, that is, semantic concepts that are associated with vivid episodic memories. We inferred the contribution of semantic and episodic memory to AS concepts using the amplitudes of the N400 and late positive component, respectively. We compared famous names that easily brought to mind episodic memories (high AS names) against equally famous names that did not bring such recollections to mind (low AS names) on a semantic task (fame judgment) and an episodic task (recognition memory). Compared with low AS names, high AS names were associated with increased amplitude of the late positive component in both tasks. Moreover, in the recognition task, this effect of AS was highly correlated with recognition confidence. In contrast, the N400 component did not differentiate the high versus low AS names but, instead, was related to the amount of general knowledge participants had regarding each name. These results suggest that semantic concepts high in AS, such as famous names, have an episodic component and are associated with similar brain processes to those that are engaged by episodic memory. Studying AS concepts may provide unique insights into how episodic and semantic memory interact.

  5. Olfactory dysfunction in degenerative ataxias.

    PubMed

    Connelly, T; Farmer, J M; Lynch, D R; Doty, R L

    2003-10-01

    Several lines of evidence suggest that the cerebellum may play a role in higher-order olfactory processing. In this study, we administered the University of Pennsylvania Smell Identification Test (UPSIT), a standardised test of olfactory function, to patients with ataxias primarily due to cerebellar pathology (spinocerebellar ataxias and related disorders) and to patients with Friedreich ataxia, an ataxia associated mainly with loss of afferent cerebellar pathways. UPSIT scores were slightly lower in both patient groups than in the control subjects, but no differences were noted between the scores of the Friedreich and the other ataxia patients. Within the Friedreich ataxia group, the smell test scores did not correlate with the number of pathologic GAA repeats (a marker of genetic severity), disease duration, or categorical ambulatory ability. UPSIT scores did not correlate with disease duration, although they correlated marginally with ambulatory status in the patients with cerebellar pathology. This study suggests that olfactory dysfunction may be a subtle clinical component of degenerative ataxias, in concordance with the hypothesis that the cerebellum or its afferents plays some role in central olfactory processing.

  6. Clinical and genetic analysis of hereditary and sporadic ataxia in central Italy.

    PubMed

    Cellini, E; Forleo, P; Nacmias, B; Tedde, A; Latorraca, S; Piacentini, S; Parnetti, L; Gallai, V; Sorbi, S

    We have clinically and genetically evaluated 24 affected patients belonging to 22 Italian Friedreich ataxia (FA) families, 52 patients from 32 kindreds with proven autosomal dominant cerebellar ataxia (ADCA), 9 patients belonging to 5 families with autosomal recessive hereditary ataxia (ARCA) and 103 sporadic cases, 89 of which affected by idiopathic late onset cerebellar ataxia (ILOCA). Genotype-phenotype correlation analyses in FA patients have evidenced an inverse relationship between GAA repeat expansion length and age of onset, disease duration, and presence of cardiomyopathy. Among autosomal dominant types, spinocerebellar ataxia 2 (SCA2) genotype has been found in 31% of our ADCA families, resulting the most frequent form of ataxia. Phenotypic analysis of the various SCA subtypes evidenced a marked heterogeneity of symptoms with a substantial overlap between different syndromes. PMID:11719273

  7. Evidence for efficacy of acute treatment of episodic tension-type headache: methodological critique of randomised trials for oral treatments.

    PubMed

    Moore, R Andrew; Derry, Sheena; Wiffen, Philip J; Straube, Sebastian; Bendtsen, Lars

    2014-11-01

    The International Headache Society (IHS) provides guidance on the conduct of trials for acute treatment of episodic tension-type headache (TTH), a common disorder with considerable disability. Electronic and other searches identified randomised, double-blind trials of oral drugs treating episodic TTH with moderate or severe pain at baseline, or that tested drugs at first pain onset. The aims were to review methods, quality, and outcomes reported (in particular the IHS-recommended primary efficacy parameter pain-free after 2 hours), and to assess efficacy by meta-analysis. We identified 58 reports: 55 from previous reviews and searches, 2 unpublished reports, and 1 clinical trial report with results. We included 40 reports of 55 randomised trials involving 12,143 patients. Reporting quality was generally good, with potential risk of bias from incomplete outcome reporting and small size; the 23 largest trials involved 82% of patients. Few trials reported IHS outcomes. The number needed to treat values for being pain-free at 2 hours compared with placebo were 8.7 (95% confidence interval [CI] 6.2 to 15) for paracetamol 1000 mg, 8.9 (95% CI 5.9 to 18) for ibuprofen 400mg, and 9.8 (95% CI 5.1 to 146) for ketoprofen 25mg. Lower (better) number needed to treat values were calculated for outcomes of mild or no pain at 2 hours, and patient global assessment. These were similar to values for these drugs in migraine. No other drugs had evaluable results for these patient-centred outcomes. There was no evidence that any one outcome was better than others. The evidence available for treatment efficacy is small in comparison to the size of the clinical problem.

  8. Deep Brain Stimulation for Tremor Associated with Underlying Ataxia Syndromes: A Case Series and Discussion of Issues

    PubMed Central

    Oyama, Genko; Thompson, Amanda; Foote, Kelly D.; Limotai, Natlada; Abd-El-Barr, Muhammad; Maling, Nicholas; Malaty, Irene A.; Rodriguez, Ramon L.; Subramony, Sankarasubramoney H.; Ashizawa, Tetsuo; Okun, Michael S.

    2014-01-01

    Background Deep brain stimulation (DBS) has been utilized to treat various symptoms in patients suffering from movement disorders such as Parkinson's disease, dystonia, and essential tremor. Though ataxia syndromes have not been formally or frequently addressed with DBS, there are patients with ataxia and associated medication refractory tremor or dystonia who may potentially benefit from therapy. Methods A retrospective database review was performed, searching for cases of ataxia where tremor and/or dystonia were addressed by utilizing DBS at the University of Florida Center for Movement Disorders and Neurorestoration between 2008 and 2011. Five patients were found who had DBS implantation to address either medication refractory tremor or dystonia. The patient's underlying diagnoses included spinocerebellar ataxia type 2 (SCA2), fragile X associated tremor ataxia syndrome (FXTAS), a case of idiopathic ataxia (ataxia not otherwise specified [NOS]), spinocerebellar ataxia type 17 (SCA17), and a senataxin mutation (SETX). Results DBS improved medication refractory tremor in the SCA2 and the ataxia NOS patients. The outcome for the FXTAS patient was poor. DBS improved dystonia in the SCA17 and SETX patients, although dystonia did not improve in the lower extremities of the SCA17 patient. All patients reported a transient gait dysfunction postoperatively, and there were no reports of improvement in ataxia-related symptoms. Discussion DBS may be an option to treat tremor, inclusive of dystonic tremor in patients with underlying ataxia; however, gait and other symptoms may possibly be worsened. PMID:25120941

  9. Treatable causes of cerebellar ataxia.

    PubMed

    Ramirez-Zamora, Adolfo; Zeigler, Warren; Desai, Neeja; Biller, José

    2015-04-15

    The cerebellar ataxia syndromes are a heterogeneous group of disorders clinically characterized by the presence of cerebellar dysfunction. Initial assessment of patients with progressive cerebellar ataxia is complex because of an extensive list of potential diagnoses. A detailed history and comprehensive examination are required for an accurate diagnosis and hierarchical diagnostic investigations. Although no cure exists for most of these conditions, a small group of metabolic, hereditary, inflammatory, and immune-mediated etiologies of cerebellar ataxia are amenable to disease-modifying, targeted therapies. Over the past years, disease-specific treatments have emerged. Thus, clinicians must become familiar with these disorders because maximal therapeutic benefit is only possible when done early. In this article, we review disorders in which cerebellar ataxia is a prominent clinical feature requiring targeted treatments along with specific management recommendations.

  10. Leprosy type-I reaction episode mimicking facial cellulitis-the importance of early diagnosis*

    PubMed Central

    Fernandes, Tania Rita Moreno de Oliveira; Brandão, Graziele Áquila de Souza; Souza, Bruno de Castro e

    2015-01-01

    Leprosy is aneasily recognizable disease due to its dermato-neurological manifestations. It must be present in the physician’s diagnostic repertoire, especially for those working in endemic areas. However, leprosy reaction is not always easily recognized by non-dermatologists, becoming one of the major problems in the management of patients with leprosy, as it presents clinical complications characterized by inflammatory process, accompanied by pain, malaise and sometimes the establishment or worsening of the patient’s disabilities. We report the case of a patient with type-1 periorbital reaction admitted to the hospital, diagnosed and treated as facial cellulitis, whose late diagnosis may have contributed to the appearance or worsening of facial neuritis. PMID:26312679

  11. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes.

    PubMed

    Tezenas du Montcel, Sophie; Durr, Alexandra; Bauer, Peter; Figueroa, Karla P; Ichikawa, Yaeko; Brussino, Alessandro; Forlani, Sylvie; Rakowicz, Maria; Schöls, Ludger; Mariotti, Caterina; van de Warrenburg, Bart P C; Orsi, Laura; Giunti, Paola; Filla, Alessandro; Szymanski, Sandra; Klockgether, Thomas; Berciano, José; Pandolfo, Massimo; Boesch, Sylvia; Melegh, Bela; Timmann, Dagmar; Mandich, Paola; Camuzat, Agnès; Goto, Jun; Ashizawa, Tetsuo; Cazeneuve, Cécile; Tsuji, Shoji; Pulst, Stefan-M; Brusco, Alfredo; Riess, Olaf; Brice, Alexis; Stevanin, Giovanni

    2014-09-01

    Polyglutamine-coding (CAG)n repeat expansions in seven different genes cause spinocerebellar ataxias. Although the size of the expansion is negatively correlated with age at onset, it accounts for only 50-70% of its variability. To find other factors involved in this variability, we performed a regression analysis in 1255 affected individuals with identified expansions (spinocerebellar ataxia types 1, 2, 3, 6 and 7), recruited through the European Consortium on Spinocerebellar Ataxias, to determine whether age at onset is influenced by the size of the normal allele in eight causal (CAG)n-containing genes (ATXN1-3, 6-7, 17, ATN1 and HTT). We confirmed the negative effect of the expanded allele and detected threshold effects reflected by a quadratic association between age at onset and CAG size in spinocerebellar ataxia types 1, 3 and 6. We also evidenced an interaction between the expanded and normal alleles in trans in individuals with spinocerebellar ataxia types 1, 6 and 7. Except for individuals with spinocerebellar ataxia type 1, age at onset was also influenced by other (CAG)n-containing genes: ATXN7 in spinocerebellar ataxia type 2; ATXN2, ATN1 and HTT in spinocerebellar ataxia type 3; ATXN1 and ATXN3 in spinocerebellar ataxia type 6; and ATXN3 and TBP in spinocerebellar ataxia type 7. This suggests that there are biological relationships among these genes. The results were partially replicated in four independent populations representing 460 Caucasians and 216 Asian samples; the differences are possibly explained by ethnic or geographical differences. As the variability in age at onset is not completely explained by the effects of the causative and modifier sister genes, other genetic or environmental factors must also play a role in these diseases. PMID:24972706

  12. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes.

    PubMed

    Tezenas du Montcel, Sophie; Durr, Alexandra; Bauer, Peter; Figueroa, Karla P; Ichikawa, Yaeko; Brussino, Alessandro; Forlani, Sylvie; Rakowicz, Maria; Schöls, Ludger; Mariotti, Caterina; van de Warrenburg, Bart P C; Orsi, Laura; Giunti, Paola; Filla, Alessandro; Szymanski, Sandra; Klockgether, Thomas; Berciano, José; Pandolfo, Massimo; Boesch, Sylvia; Melegh, Bela; Timmann, Dagmar; Mandich, Paola; Camuzat, Agnès; Goto, Jun; Ashizawa, Tetsuo; Cazeneuve, Cécile; Tsuji, Shoji; Pulst, Stefan-M; Brusco, Alfredo; Riess, Olaf; Brice, Alexis; Stevanin, Giovanni

    2014-09-01

    Polyglutamine-coding (CAG)n repeat expansions in seven different genes cause spinocerebellar ataxias. Although the size of the expansion is negatively correlated with age at onset, it accounts for only 50-70% of its variability. To find other factors involved in this variability, we performed a regression analysis in 1255 affected individuals with identified expansions (spinocerebellar ataxia types 1, 2, 3, 6 and 7), recruited through the European Consortium on Spinocerebellar Ataxias, to determine whether age at onset is influenced by the size of the normal allele in eight causal (CAG)n-containing genes (ATXN1-3, 6-7, 17, ATN1 and HTT). We confirmed the negative effect of the expanded allele and detected threshold effects reflected by a quadratic association between age at onset and CAG size in spinocerebellar ataxia types 1, 3 and 6. We also evidenced an interaction between the expanded and normal alleles in trans in individuals with spinocerebellar ataxia types 1, 6 and 7. Except for individuals with spinocerebellar ataxia type 1, age at onset was also influenced by other (CAG)n-containing genes: ATXN7 in spinocerebellar ataxia type 2; ATXN2, ATN1 and HTT in spinocerebellar ataxia type 3; ATXN1 and ATXN3 in spinocerebellar ataxia type 6; and ATXN3 and TBP in spinocerebellar ataxia type 7. This suggests that there are biological relationships among these genes. The results were partially replicated in four independent populations representing 460 Caucasians and 216 Asian samples; the differences are possibly explained by ethnic or geographical differences. As the variability in age at onset is not completely explained by the effects of the causative and modifier sister genes, other genetic or environmental factors must also play a role in these diseases.

  13. Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants

    PubMed Central

    Agathanggelou, Angelo; Weston, Victoria J.; Perry, Tracey; Davies, Nicholas J.; Skowronska, Anna; Payne, Daniel T.; Fossey, John S.; Oldreive, Ceri E.; Wei, Wenbin; Pratt, Guy; Parry, Helen; Oscier, David; Coles, Steve J.; Hole, Paul S.; Darley, Richard L.; McMahon, Michael; Hayes, John D.; Moss, Paul; Stewart, Grant S.; Taylor, A. Malcolm R.; Stankovic, Tatjana

    2015-01-01

    Inactivation of the Ataxia Telangiectasia Mutated gene in chronic lymphocytic leukemia results in resistance to p53-dependent apoptosis and inferior responses to treatment with DNA damaging agents. Hence, p53-independent strategies are required to target Ataxia Telangiectasia Mutated-deficient chronic lymphocytic leukemia. As Ataxia Telangiectasia Mutated has been implicated in redox homeostasis, we investigated the effect of the Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia genotype on cellular responses to oxidative stress with a view to therapeutic targeting. We found that in comparison to Ataxia Telangiectasia Mutated-wild type chronic lymphocytic leukemia, pro-oxidant treatment of Ataxia Telangiectasia Mutated-null cells led to reduced binding of NF-E2 p45-related factor-2 to antioxidant response elements and thus decreased expression of target genes. Furthermore, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia cells contained lower levels of antioxidants and elevated mitochondrial reactive oxygen species. Consequently, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia, but not tumors with 11q deletion or TP53 mutations, exhibited differentially increased sensitivity to pro-oxidants both in vitro and in vivo. We found that cell death was mediated by a p53- and caspase-independent mechanism associated with apoptosis inducing factor activity. Together, these data suggest that defective redox-homeostasis represents an attractive therapeutic target for Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia. PMID:25840602

  14. Infantile onset spinocerebellar ataxia 2 (SCA2): a clinical report with review of previous cases.

    PubMed

    Singh, Ankur; Faruq, Mohammed; Mukerji, Mitali; Dwivedi, Manish Kumar; Pruthi, Sumit; Kapoor, Seema

    2014-01-01

    Autosomal dominant cerebellar ataxia type I is a heterogeneous group of spinocerebellar ataxias with variable neurologic presentations, with age of onset varying from infancy to adulthood. Autosomal dominant cerebellar ataxia type I is composed mainly of 3 prevalent spinocerebellar ataxia types with different pathogenic loci, specifically spinocerebellar ataxia 1 (6p24-p23), spinocerebellar ataxia 2 (12q24.1), and spinocerebellar ataxia 3 (14q32.1). The shared pathogenic mutational event is the expansion of the CAG repeat that results in polyglutamine extended stretches in the encoded proteins. CAG repeat disorders generally show the phenomenon of anticipation, which is more often associated with paternal transmission. In this report, we describe a patient with infantile-onset spinocerebellar ataxia type 2 (~320 CAG repeat) who inherited the disease from his father (47 CAG repeats). We have summarized the clinical, neuroimaging, electroencephalographic (EEG), and molecular data of previous cases and attempt to highlight the most consistent findings. Our intent is to help treating clinicians to suspect this disorder and to offer timely genetic counseling for a currently potentially untreatable disorder.

  15. Cerebellar Ataxia and Glutamic Acid Decarboxylase Antibodies

    PubMed Central

    Ariño, Helena; Gresa-Arribas, Nuria; Blanco, Yolanda; Martínez-Hernández, Eugenia; Sabater, Lidia; Petit-Pedrol, Mar; Rouco, Idoia; Bataller, Luis; Dalmau, Josep O.; Saiz, Albert; Graus, Francesc

    2016-01-01

    IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar

  16. Attentional Episodes in Visual Perception

    ERIC Educational Resources Information Center

    Wyble, Brad; Potter, Mary C.; Bowman, Howard; Nieuwenstein, Mark

    2011-01-01

    Is one's temporal perception of the world truly as seamless as it appears? This article presents a computationally motivated theory suggesting that visual attention samples information from temporal episodes (episodic simultaneous type/serial token model; Wyble, Bowman, & Nieuwenstein, 2009). Breaks between these episodes are punctuated by periods…

  17. Voxel-Based Morphometry for Separation of Schizophrenia From Other Types of Psychosis in First-Episode Psychosis: Diagnostic Test Review.

    PubMed

    Palaniyappan, Lena; Maayan, Nicola; Bergman, Hanna; Davenport, Clare; Adams, Clive E; Soares-Weiser, Karla

    2016-03-01

    Subtle but widespread deficit in the cortical and subcortical grey matter is a consistent neuroimaging observation in schizophrenia. Several studies have used voxel based morphometry (VBM) to investigate the nature of this structural deficit. We conducted a diagnostic test review to explore the diagnostic potential of VBM in differentiating schizophrenia from other types of first-episode psychoses. PMID:26738529

  18. Repeated Episodes of Hypoglycemia as a Potential Aggravating Factor for Preclinical Atherosclerosis in Subjects With Type 1 Diabetes

    PubMed Central

    Giménez, Marga; Gilabert, Rosa; Monteagudo, Joan; Alonso, Anna; Casamitjana, Roser; Paré, Carles; Conget, Ignacio

    2011-01-01

    OBJECTIVE To evaluate through early preclinical atherosclerosis assessment whether repeated episodes of hypoglycemia represent an aggravating factor for macrovascular disease in type 1 diabetes. RESEARCH DESIGN AND METHODS After sample-size calculation, a case-control study of 25 patients with type 1 diabetes and repeated severe/nonsevere hypoglycemia (H-group) compared with 20 age- and sex-matched type 1 diabetes control subjects (C-group) was designed. Assessment of preclinical atherosclerosis consisted of flow-mediated brachial dilatation (FMD) and carotid and femoral intima-media thickness (IMT) studies. To consider hypoglycemia awareness, two different questionnaires and symptomatic response to an acute induction to hypoglycemia were used. Evaluation of the glycemic profile was obtained from continuous glucose monitoring. Endothelial function/inflammation markers were measured in euglycemia/hypoglycemia. A multivariate linear regression analysis was performed to test whether repeated hypoglycemia was independently associated with atherosclerosis. RESULTS H-group subjects displayed hypoglycemia unawareness and presented a higher percentage of continuous glucose values and area under the curve <70 mg/dl compared with the C-group (14.2 ± 8.9 vs. 6.3 ± 7.1%, P < 0.02 and 2.4 ± 1.8 vs. 0.6 ± 1.0 mg/dl/day, P < 0.01). The percentage of maximal FMD was lower in the H-group than in the C-group (6.52 ± 2.92 vs. 8.62 ± 3.13%, P < 0.05). A significantly higher IMT was observed at both carotid and femoral sites in the H-group (carotid 0.53 ± 0.09 vs. 0.47 ± 0.08 mm, P < 0.05 and femoral 0.51 ± 0.17 vs. 0.39 ± 0.09 mm, P < 0.05). Baseline inflammation and endothelial function markers were higher in the H-group (leukocytes 7.0 ± 1.8 vs. 5.6 ± 1.4 × 103/ml, von Willebrand factor 119 ± 29 vs. 93 ± 26%, fibrinogen 2.82 ± 0.64 vs. 2.29 ± 0.44g/l, and soluble intercellular adhesion molecule-1 408 ± 224 vs. 296 ± 95 ng/ml; P < 0.05 for all). CONCLUSIONS In

  19. Ataxia telangiectasia: learning from previous mistakes

    PubMed Central

    Kumar, Naveen; Aggarwal, Puneet; Dev, Nishanth; kumar, Gunjan

    2012-01-01

    Ataxia telangiectasia is an early onset neurodegenerative disorder. We report a case of childhood onset ataxia and ocular telangiectasia, presenting with pulmonary infection. The patient was diagnosed as ataxia telangiectasia. The patient succumbed to death owing to late diagnosis and sepsis. PMID:23242084

  20. A Gain-of-Function Mutation in NALCN in a Child with Intellectual Disability, Ataxia, and Arthrogryposis.

    PubMed

    Aoyagi, Kyota; Rossignol, Elsa; Hamdan, Fadi F; Mulcahy, Ben; Xie, Lin; Nagamatsu, Shinya; Rouleau, Guy A; Zhen, Mei; Michaud, Jacques L

    2015-08-01

    NALCN and its homologues code for the ion channel responsible for half of background Na(+) -leak conductance in vertebrate and invertebrate neurons. Recessive mutations in human NALCN cause intellectual disability (ID) with hypotonia. Here, we report a de novo heterozygous mutation in NALCN affecting a conserved residue (p.R1181Q) in a girl with ID, episodic and persistent ataxia, and arthrogryposis. Interestingly, her episodes of ataxia were abolished by the administration of acetazolamide, similar to the response observed in episodic ataxia associated with other ion channels. Introducing the analogous mutation in the Caenorhabditis elegans homologue nca-1 induced a coiling locomotion phenotype, identical to that obtained with previously characterized C. elegans gain-of-function nca alleles, suggesting that p.R1181Q confers the same property to NALCN. This observation thus suggests that dominant mutations in NALCN can cause a neurodevelopmental phenotype that overlaps with, while being mostly distinct from that associated with recessive mutations in the same gene.

  1. Antioxidant use in Friedreich ataxia

    PubMed Central

    Myers, Lauren; Farmer, Jennifer M.; Wilson, Robert B.; Friedman, Lisa; Perlman, Susan L.; Subramony, Sub H.; Gomez, Christopher M.; Ashizawa, Tetsuo; Wilmot, George R.; Mathews, Katherine D.; Balcer, Laura J.; Lynch, David R.

    2008-01-01

    Summary Many antioxidants have been suggested as potential treatments for Friedreich ataxia, but have not been tested in clinical trials. We found that a majority of patients in our cohort already use such antioxidants, including idebenone, which is not available at a pharmaceutical grade in the United States. Younger age, cardiomyopathy and shorter GAA repeat length were independent predictors of idebenone use, but no factors predicted use of other antioxidants. This confirms that non-prescription antioxidant use represents a major confounder to formal trials of existing and novel agents for Friedreich ataxia. PMID:17988688

  2. Ataxia-Telangiectasia Presenting as Cerebral Palsy and Recurrent Wheezing: A Case Report

    PubMed Central

    Navratil, Marta; Đuranović, Vlasta; Nogalo, Boro; Švigir, Alen; Dubravčić, Iva Dumbović; Turkalj, Mirjana

    2015-01-01

    Patient: Male, 8 Final Diagnosis: Ataxia-telangiectasia Symptoms: Ataxia • sinopulmonary infection • telangiectasiae • wheezing Medication: — Clinical Procedure: IVIG supstitution Specialty: Pediatrics and Neonatology Objective: Rare disease Background: Ataxia-telangiectasia (A-T) is an autosomal recessive disease that consists of progressive cerebellar ataxia, variable immunodeficiency, sinopulmonary infections, oculocutaneous telangiectasia, radiosensitivity, early aging, and increased incidence of cancer. Case Report: We report the case of an 8-year-old boy affected by A-T. At 12 months of age, he had a waddling gait, with his upper body leaning forward. Dystonic/dyskinetic cerebral palsy was diagnosed at the age of 3 years. At age 6 he was diagnosed with asthma based on recurrent wheezing episodes. A-T was confirmed at the age 8 years on the basis of clinical signs and laboratory findings (increased alpha fetoprotein - AFP, immunodeficiency, undetectable ataxia-telangiectasia mutated (ATM) protein on immunoblotting, and identification A-T mutation, 5932G>T). Conclusions: The clinical and immunological presentation of ataxia-telangiectasia (A-T) is very heterogeneous and diagnostically challenging, especially at an early age, leading to frequent misdiagnosis. PMID:26380989

  3. Speech Prosody in Cerebellar Ataxia

    ERIC Educational Resources Information Center

    Casper, Maureen A.; Raphael, Lawrence J.; Harris, Katherine S.; Geibel, Jennifer M.

    2007-01-01

    Persons with cerebellar ataxia exhibit changes in physical coordination and speech and voice production. Previously, these alterations of speech and voice production were described primarily via perceptual coordinates. In this study, the spatial-temporal properties of syllable production were examined in 12 speakers, six of whom were healthy…

  4. Hereditary Cerebellar Ataxias: A Korean Perspective

    PubMed Central

    Kim, Ji Sun; Cho, Jin Whan

    2015-01-01

    Hereditary ataxia is a heterogeneous disorder characterized by progressive ataxia combined with/without peripheral neuropathy, extrapyramidal symptoms, pyramidal symptoms, seizure, and multiple systematic involvements. More than 35 autosomal dominant cerebellar ataxias have been designated as spinocerebellar ataxia, and there are 55 recessive ataxias that have not been named systematically. Conducting genetic sequencing to confirm a diagnosis is difficult due to the large amount of subtypes with phenotypic overlap. The prevalence of hereditary ataxia can vary among countries, and estimations of prevalence and subtype frequencies are necessary for planning a diagnostic strategy in a specific population. This review covers the various hereditary ataxias reported in the Korean population with a focus on the prevalence and subtype frequencies as the clinical characteristics of the various subtypes. PMID:26090078

  5. Lidocaine injection of pericranial myofascial trigger points in the treatment of frequent episodic tension-type headache

    PubMed Central

    2013-01-01

    Background The present study aimed to evaluate the efficacy of local lidocaine injections into the myofascial trigger points (TPs) located at the pericranial muscles in patients with episodic tension-type headache (ETTH). Methods The study included 108 patients with frequent ETTH that were randomized into 4 groups. One injection of saline (NaCl 0.9%) was administered to group 1 (n = 27), 1 injection of lidocaine (0.5%) was administered to group 2 (n = 27), group 3 (n = 27) received 5 injections of saline (NaCl 0.9%), and group 4 (n = 27) received 5 injections of lidocaine (0.5%); on alternate days 2 mL for each muscle was injected into the frontal, temporal, masseter, sternocleidomastoid, semispinalis capitis, trapezius and splenius capitis muscles bilaterally. The frequency of painful days per month (FPD) and the patients’ visual analogue scales (VAS) were evaluated before treatment, and 2, 4 and 6 months after treatment. Results Mean age of the patients was 36.28 ± 9.41 years (range: 18–54 years). FPD scores improved significantly in group 2, 3 and 4 at 2 months posttreatment compared to pre- treatment (all P < 0.05), and also VAS scores improved significantly in group 2 and 4 at 2 months posttreatment (P < 0.05) but this improvement insisted at the 6 month only in group 4. Group 2 had better VAS and FPD than group 1 only at 2. and 4. months after treatment (for VAS P < 0.0121, P = 0.0232; for FPD P = 0.0003, P = 0.0004, respectively). Group 4 had better scores than group 3 at the 2., 4. and 6. months after treatment in both parameters (all P < 0.05). Group 2 had better scores than group 1 in FPD at the 2. and 4. months posttreatment (P = 0.0003, P = 0.0004, respectively), but not at the 6. month. Conclusion Local lidocaine injections into the myofascial TPs located in the pericranial muscles could be considered as an effective alternative treatment for ETTH. PMID:23698019

  6. Spinocerebellar Ataxia 7: A Report of Unaffected Siblings Who Married into Different SCA 7 Families

    PubMed Central

    Zaheer, Fariha; Fee, Dominic

    2014-01-01

    Two families with spinocerebellar ataxia type 7 are presented. Although there are affected cousins, it is not the sibling parents that transmitted the mutation. It is assumed that the affected families share a common ancestor. PMID:24883214

  7. Rejection episodes.

    PubMed

    Koyama, H; Cecka, J M

    1992-01-01

    Based upon analyses of 40,671 kidney transplants reported to the UNOS Scientific Renal Transplant Registry between October 1987 and August 1992: 1. Twenty-four percent of the 21,923 recipients of first cadaver grafts experienced one or more rejection episodes during their transplant hospitalization, 52% during the first 6 months. At 12 months, only 40% of patients remained rejection-free. Patients who experienced any rejection during the first 6 months had a 72% 1-year graft survival rate compared with 95% for those who remained rejection-free (p < 0.001). 2. Recipients of transplants from living donors had a significantly lower incidence of rejection episodes. There was a clear effect of histocompatibility in comparing the incidence of rejection in HLA-identical sibling transplants (8% at discharge and 32% at 1 year) with that in 1-haplotype disparate transplants (22% at discharge and 52% at 1 year, p < 0.01 at each time point). Rejections were reported for 25% of transplants from other living donors at discharge and for 56% at 1 year, similar to the figures for cadaver transplants. 3. Histocompatibility also influenced the incidence of rejection in first cadaver-donor transplants. Only 15% of recipients of 0-HLA-A,B mismatched kidneys had rejection episodes reported at discharge, compared with 26% of those who received kidneys completely mismatched for HLA-A,B antigens (p < 0.01). At 1 year, 56% of HLA-A,B matched patients remained rejection-free, whereas only 35% of those mismatched for 4 antigens had no reported rejection through the first year (p < 0.01). Considering HLA-DR antigen mismatches, 19% of the 0-antigen mismatched group had rejection episodes at discharge, versus 28% for those with 2 HLA-DR mismatches (p < 0.01), and at 1 year, the percentage who were rejection-free decreased from 48% to 40% and 34% with 0, 1, and 2 HLA-DR mismatches, respectively. 4. The incidence of rejection episodes decreased as the recipient's age increased. Patients under age

  8. Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression

    PubMed Central

    Yang, Zhen; Zhong, Shenghua; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2014-01-01

    Cerebellar ataxia is a progressive neuro-degenerative disease that has multiple genetic versions, each with a characteristic pattern of anatomical degeneration that yields distinctive motor and cognitive problems. Studying this pattern of degeneration can help with the diagnosis of disease subtypes, evaluation of disease stage, and treatment planning. In this work, we propose a learning framework using MR image data for discriminating a set of cerebellar ataxia types and predicting a disease related functional score. We address the difficulty in analyzing high-dimensional image data with limited training subjects by: 1) training weak classifiers/regressors on a set of image subdomains separately, and combining the weak classifier/regressor outputs to make the decision; 2) perturbing the image subdomain to increase the training samples; 3) using a deep learning technique called the stacked auto-encoder to develop highly representative feature vectors of the input data. Experiments show that our approach can reliably classify between one of four categories (healthy control and three types of ataxia), and predict the functional staging score for ataxia. PMID:25553339

  9. Cerebellar ataxia as presenting feature of hypothyroidism.

    PubMed

    Kotwal, Suman Kumar; Kotwal, Shalija; Gupta, Rohan; Singh, Jang Bhadur; Mahajan, Annil

    2016-04-01

    Symptoms and signs of the hypothyroidism vary in relation to the magnitude and acuteness of the thyroid hormone deficiency. The usual clinical features are constipation, fatigue, cold intolerance and weight gain. Rarely it can present with neurologic problems like reversible cerebellar ataxia, dementia, peripheral neuropathy, psychosis and coma. Hypothyroidism should be suspected in all cases of ataxia, as it is easily treatable. A 40 year-old male presented with the history facial puffiness, hoarseness of voice and gait-ataxia. Investigations revealed frank primary hypothyroidism. Anti-TPO antibody was positive. Thyroxine was started and patient improved completely within eight weeks. Hypothyroidism can present with ataxia as presenting feature. Hypothyroidism should be considered in all cases of cerebellar ataxia as it is a reversible cause of ataxia. PMID:26886095

  10. Locomotor patterns in cerebellar ataxia.

    PubMed

    Martino, G; Ivanenko, Y P; Serrao, M; Ranavolo, A; d'Avella, A; Draicchio, F; Conte, C; Casali, C; Lacquaniti, F

    2014-12-01

    Several studies have demonstrated how cerebellar ataxia (CA) affects gait, resulting in deficits in multijoint coordination and stability. Nevertheless, how lesions of cerebellum influence the locomotor muscle pattern generation is still unclear. To better understand the effects of CA on locomotor output, here we investigated the idiosyncratic features of the spatiotemporal structure of leg muscle activity and impairments in the biomechanics of CA gait. To this end, we recorded the electromyographic (EMG) activity of 12 unilateral lower limb muscles and analyzed kinematic and kinetic parameters of 19 ataxic patients and 20 age-matched healthy subjects during overground walking. Neuromuscular control of gait in CA was characterized by a considerable widening of EMG bursts and significant temporal shifts in the center of activity due to overall enhanced muscle activation between late swing and mid-stance. Patients also demonstrated significant changes in the intersegmental coordination, an abnormal transient in the vertical ground reaction force and instability of limb loading at heel strike. The observed abnormalities in EMG patterns and foot loading correlated with the severity of pathology [International Cooperative Ataxia Rating Scale (ICARS), a clinical ataxia scale] and the changes in the biomechanical output. The findings provide new insights into the physiological role of cerebellum in optimizing the duration of muscle activity bursts and the control of appropriate foot loading during locomotion.

  11. Genetics Home Reference: X-linked sideroblastic anemia and ataxia

    MedlinePlus

    ... linked sideroblastic anemia and ataxia X-linked sideroblastic anemia and ataxia Enable Javascript to view the expand/ ... Open All Close All Description X-linked sideroblastic anemia and ataxia is a rare condition characterized by ...

  12. Genetics Home Reference: dilated cardiomyopathy with ataxia syndrome

    MedlinePlus

    ... dilated cardiomyopathy with ataxia syndrome dilated cardiomyopathy with ataxia syndrome Enable Javascript to view the expand/collapse ... Open All Close All Description Dilated cardiomyopathy with ataxia (DCMA) syndrome is an inherited condition characterized by ...

  13. Migration of objects and inferences across episodes.

    PubMed

    Hannigan, Sharon L; Reinitz, Mark Tippens

    2003-04-01

    Participants viewed episodes in the form of a series of photographs portraying ordinary routines (e.g., eating at a restaurant) and later received a recognition test. In Experiment 1, it was shown that objects (e.g., a vase of flowers, a pewter lantern) that appeared in a single episode during the study phase migrated between memories of episodes described by the same abstract schema (e.g., from Restaurant Episode A at study to Restaurant Episode B at test), and not between episodes anchored by different schemas. In Experiment 2, it was demonstrated that backward causal inferences from one study episode influenced memories of other episodes described by the same schema, and that high-schema-relevant items viewed in one episode were sometimes remembered as having occurred in another episode of the same schematic type.

  14. Migration of objects and inferences across episodes.

    PubMed

    Hannigan, Sharon L; Reinitz, Mark Tippens

    2003-04-01

    Participants viewed episodes in the form of a series of photographs portraying ordinary routines (e.g., eating at a restaurant) and later received a recognition test. In Experiment 1, it was shown that objects (e.g., a vase of flowers, a pewter lantern) that appeared in a single episode during the study phase migrated between memories of episodes described by the same abstract schema (e.g., from Restaurant Episode A at study to Restaurant Episode B at test), and not between episodes anchored by different schemas. In Experiment 2, it was demonstrated that backward causal inferences from one study episode influenced memories of other episodes described by the same schema, and that high-schema-relevant items viewed in one episode were sometimes remembered as having occurred in another episode of the same schematic type. PMID:12795485

  15. The scale for the assessment and rating of ataxia correlates with dysarthria assessment in Friedreich's ataxia.

    PubMed

    Eigentler, Andreas; Rhomberg, Johanna; Nachbauer, Wolfgang; Ritzer, Irmgard; Poewe, Werner; Boesch, Sylvia

    2012-03-01

    Dysarthria is an acquired neurogenic sensorimotor speech symptom and an integral part within the clinical spectrum of ataxia syndromes. Ataxia measurements and disability scores generally focus on the assessment of motor functions. Since comprehensive investigations of dysarthria in ataxias are sparse, we assessed dysarthria in ataxia patients using the Frenchay Dysarthria Assessment. The Frenchay Dysarthria Assessment is a ten-item validated test in which eight items focus on the observation of oral structures and speech functions. Fifteen Friedreich's ataxia patients and 15 healthy control individuals were analyzed using clinical and logopedic methodology. All patients underwent neurological assessment applying the Scale for the Assessment and Rating of Ataxia. In Friedreich's ataxia patients, the Frenchay sub-item voice showed to be most affected compared to healthy individuals followed by items such as reflexes, palate, tongue, and intelligibility. Scoring of lips, jaw, and respiration appeared to be mildly affected. Ataxia severity in Friedreich's ataxia patients revealed a significant correlation with the Frenchay dysarthria sum score. The introduction of a binary Adapted Dysarthria Score additionally allowed allocation to distinct dysarthria pattern in ataxias. The Frenchay Dysarthria Assessment proved to be a valid dysarthria measure in Friedreich's ataxia. Its availability in several languages provides a major advantage regarding the applicability in international clinical studies. Shortcomings of the Frenchay test are the multiplicity of items tested and its alphabetic coding. Numerical scoring and condensation of assessments in a modified version may, however, provide an excellent clinical tool for the measurement and scoring of dysarthria in ataxic speech disorders.

  16. Genes and genetic testing in hereditary ataxias.

    PubMed

    Sandford, Erin; Burmeister, Margit

    2014-07-22

    Ataxia is a neurological cerebellar disorder characterized by loss of coordination during muscle movements affecting walking, vision, and speech. Genetic ataxias are very heterogeneous, with causative variants reported in over 50 genes, which can be inherited in classical dominant, recessive, X-linked, or mitochondrial fashion. A common mechanism of dominant ataxias is repeat expansions, where increasing lengths of repeated DNA sequences result in non-functional proteins that accumulate in the body causing disease. Greater understanding of all ataxia genes has helped identify several different pathways, such as DNA repair, ubiquitination, and ion transport, which can be used to help further identify new genes and potential treatments. Testing for the most common mutations in these genes is now clinically routine to help with prognosis and treatment decisions, but next generation sequencing will revolutionize how genetic testing will be done. Despite the large number of known ataxia causing genes, however, many individuals with ataxia are unable to obtain a genetic diagnosis, suggesting that more genes need to be discovered. Utilization of next generation sequencing technologies, expression studies, and increased knowledge of ataxia pathways will aid in the identification of new ataxia genes.

  17. Genes and Genetic Testing in Hereditary Ataxias

    PubMed Central

    Sandford, Erin; Burmeister, Margit

    2014-01-01

    Ataxia is a neurological cerebellar disorder characterized by loss of coordination during muscle movements affecting walking, vision, and speech. Genetic ataxias are very heterogeneous, with causative variants reported in over 50 genes, which can be inherited in classical dominant, recessive, X-linked, or mitochondrial fashion. A common mechanism of dominant ataxias is repeat expansions, where increasing lengths of repeated DNA sequences result in non-functional proteins that accumulate in the body causing disease. Greater understanding of all ataxia genes has helped identify several different pathways, such as DNA repair, ubiquitination, and ion transport, which can be used to help further identify new genes and potential treatments. Testing for the most common mutations in these genes is now clinically routine to help with prognosis and treatment decisions, but next generation sequencing will revolutionize how genetic testing will be done. Despite the large number of known ataxia causing genes, however, many individuals with ataxia are unable to obtain a genetic diagnosis, suggesting that more genes need to be discovered. Utilization of next generation sequencing technologies, expression studies, and increased knowledge of ataxia pathways will aid in the identification of new ataxia genes. PMID:25055202

  18. Genetic and molecular aspects of spinocerebellar ataxias

    PubMed Central

    Honti, Viktor; Vécsei, László

    2005-01-01

    The group of spinocerebellar ataxias (SCAs) includes more than 20 subgroups based only on genetic research. The “ataxia genes” are autosomal; the “disease-alleles” are dominant, and many of them, but not all, encode a protein with an abnormally long polyglutamine domain. In DNA, this domain can be detected as an elongated CAG repeat region, which is the basis of genetic diagnostics. The polyglutamine tails often tend to aggregate and form inclusions. In some cases, protein–protein interactions are the key to understanding the disease. Protein partners of ataxia proteins include phosphatases and components of chromatin and the transcriptional machinery. To date, investigation of spinocerebellar ataxias involves population genetics, molecular methods, and studying model organisms. However, there is still no efficient therapy for patients. Here, we review the genetic and molecular data gained on spinocerebellar ataxias. PMID:18568057

  19. Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling.

    PubMed

    Schorge, Stephanie; van de Leemput, Joyce; Singleton, Andrew; Houlden, Henry; Hardy, John

    2010-05-01

    A persistent mystery about the ataxias has been why mutations in genes--many of which are expressed widely in the brain--primarily cause ataxia, and not, for example, epilepsy or dementia. Why should a polyglutamine stretch in the TATA-binding protein (that is important in all cells) particularly disrupt cerebellar coordination? We propose that advances in the genetics of cerebellar ataxias suggest a rational hypothesis for how so many different genes lead to predominantly cerebellar defects. We argue that the unifying feature of many genes involved in cerebellar ataxias is their impact on the signaling protein ITPR1 (inositiol 1,4,5-triphosphate receptor type 1), that underlies coincidence detection in Purkinje cells and could play an important role in cerebellar coordination.

  20. The cellular ataxia telangiectasia-mutated kinase promotes epstein-barr virus lytic reactivation in response to multiple different types of lytic reactivation-inducing stimuli.

    PubMed

    Hagemeier, Stacy R; Barlow, Elizabeth A; Meng, Qiao; Kenney, Shannon C

    2012-12-01

    The Epstein-Barr virus (EBV) latent-to-lytic switch is mediated by the viral proteins BZLF1 (Z), BRLF1 (R), and BRRF1 (Na). Since we previously showed that DNA-damaging agents (including chemotherapy and irradiation) can induce EBV lytic reactivation and recently demonstrated that wild-type p53 contributes to lytic reactivation, we investigated the role of the ATM kinase during EBV reactivation. ATM phosphorylates and activates p53, as well as numerous other substrates involved in the cellular DNA damage response. Using an ATM inhibitor (KU55933), we found that ATM activity is required for efficient induction of EBV lytic gene expression by a variety of different stimuli, including a histone deacetylase (HDAC) inhibitor, the transforming growth factor β (TGF-β) cytokine, a demethylating agent (5-azacytidine), B cell receptor engagement with anti-IgG antibody, hydrogen peroxide, and the proteosome inhibitor bortezomib. In EBV-infected AGS (gastric) cells, knockdown of ATM, or p53, expression inhibits EBV reactivation. Conversely, treatment of these cells with nutlin-3 (which activates p53 and ATM) robustly induces lytic reactivation in a p53- and ATM-dependent manner. The ability of the EBV R and Na proteins to induce lytic reactivation in EBV-infected AGS cells is ATM dependent. However, overexpression of Z induces lytic gene expression in the presence or absence of ATM activity. Our results suggest that ATM enhances Z promoter activity in the context of the intact EBV genome and that p53 contributes to the ATM effect. Nevertheless, since we found that ATM inhibitors also reduce lytic reactivation in Burkitt lymphoma cells that have no p53, additional ATM substrates must also contribute to the ATM effect.

  1. Speech prosody in cerebellar ataxia.

    PubMed

    Casper, Maureen A; Raphael, Lawrence J; Harris, Katherine S; Geibel, Jennifer M

    2007-01-01

    Persons with cerebellar ataxia exhibit changes in physical coordination and speech and voice production. Previously, these alterations of speech and voice production were described primarily via perceptual coordinates. In this study, the spatial-temporal properties of syllable production were examined in 12 speakers, six of whom were healthy speakers and six with ataxia. The speaking task was designed to elicit six different prosodic conditions and four contrastive prosodic events. Distinct prosodic patterns were elicited by the examiner for cerebellar patients and healthy speakers. These utterances were digitally recorded and analysed acoustically and statistically. The healthy speakers showed statistically significant differences among all four prosodic contrasts. The normal model described by the prosodic contrasts provided a sensitive index of cerebellar pathology with quantitative acoustic analyses. A significant interaction between subject groups and prosodic conditions revealed a compromised prosody in cerebellar patients. Significant differences were found for durational parameters, F0 and formant frequencies. The cerebellar speakers demonstrated different patterns of syllable lengthening and syllable reduction from that of the healthy speakers. PMID:17613097

  2. Recurrent Episodes of Stroke-Like Symptoms in a Patient with Charcot-Marie-Tooth Neuropathy X Type 1

    PubMed Central

    Wu, Ning; Said, Sarita; Sabat, Shyamsunder; Wicklund, Matthew; Stahl, Mark C.

    2015-01-01

    Charcot-Marie-Tooth disease (CMT), also known as hereditary motor sensory neuropathy, is a heterogeneous group of disorders best known for causing inherited forms of peripheral neuropathy. The X-linked form, CMTX1, is caused by mutations in the gap junction protein beta 1 (GJB1) gene, expressed both by peripheral Schwann cells and central oligodendrocytes. Central manifestations are known but are rare, and there are few case reports of leukoencephalopathy with transient or persistent neurological deficits in patients with this CMT subtype. Here, we report the case of a man with multiple male and female family members affected by neuropathy who carries a pathologic mutation in GJB1. He has experienced three transient episodes with variable neurological deficits over the course of 7 years with corresponding changes on magnetic resonance imaging (MRI). This case illustrates CMT1X as a rare cause of transient neurological deficit and demonstrates the evolution of associated reversible abnormalities on MRI over time. To the best of our knowledge, this report provides the longest period of serial imaging in a single patient with this condition in the English language literature. PMID:26955336

  3. Potential contribution of the Alzheimer's disease risk locus BIN1 to episodic memory performance in cognitively normal Type 2 diabetes elderly.

    PubMed

    Greenbaum, Lior; Ravona-Springer, Ramit; Lubitz, Irit; Schmeidler, James; Cooper, Itzik; Sano, Mary; Silverman, Jeremy M; Heymann, Anthony; Beeri, Michal Schnaider

    2016-04-01

    In recent years, several promising susceptibility loci for late-onset Alzheimer's disease (AD) were discovered, by implementing genome-wide association studies (GWAS) approach. Recent GWAS meta-analysis has demonstrated the association of 19 loci (in addition to the APOE locus) with AD in the European ancestry population at genome-wide significance level. Since Type 2 Diabetes (T2D) is a substantial risk factor for cognitive decline and dementia, the 19 single nucleotide polymorphisms (SNPs) that represent the 19 AD loci were studied for association with performance in episodic memory, a primary cognitive domain affected by AD, in a sample of 848 cognitively normal elderly Israeli Jewish T2D patients. We found a suggestive association of SNP rs6733839, located near the bridging integrator 1 (BIN1) gene, with this phenotype. Controlling for demographic (age, sex, education, disease duration and ancestry) covariates, carriers of two copies of the AD risk allele T (TT genotype) performed significantly worse (p=0.00576; p=0.00127 among Ashkenazi origin sub-sample) in episodic memory compared to carriers of the C allele (CT+CC genotypes). When including additional potential covariates (clinical and APOE genotype), results remained significant (p=0.00769; p=0.00148 among Ashkenazi). Interestingly, as validated in multiple large studies, BIN1 is one of the most established AD risk loci, with a high odds ratio. Although preliminary and require further replications, our findings support a contribution of BIN1 to individual differences in episodic memory performance among T2D patients. PMID:26947052

  4. A Case of Ataxia with Isolated Vitamin E Deficiency Initially Diagnosed as Friedreich's Ataxia

    PubMed Central

    Bonello, Michael; Ray, Partha

    2016-01-01

    Ataxia with isolated vitamin E deficiency (AVED) is a rare autosomal recessive condition that is caused by a mutation in the alpha tocopherol transfer protein gene. It is almost indistinguishable clinically from Friedreich's ataxia but with appropriate treatment its devastating neurological features can be prevented. Patients can present with a progressive cerebellar ataxia, pyramidal spasticity, and evidence of a neuropathy with absent deep tendon reflexes. It is important to screen for this condition on initial evaluation of a young patient presenting with progressive ataxia and it should be considered in patients with a long standing ataxia without any diagnosis in view of the potential therapeutics and genetic counselling. In this case report we present a patient who was initially diagnosed with Friedreich's ataxia but was later found to have AVED. PMID:26989534

  5. The Diagnostic Accuracy of Truncal Ataxia and HINTS as Cardinal Signs for Acute Vestibular Syndrome.

    PubMed

    Carmona, Sergio; Martínez, Carlos; Zalazar, Guillermo; Moro, Marcela; Batuecas-Caletrio, Angel; Luis, Leonel; Gordon, Carlos

    2016-01-01

    The head impulse, nystagmus type, test of skew (HINTS) protocol set a new paradigm to differentiate peripheral vestibular disease from stroke in patients with acute vestibular syndrome (AVS). The relationship between degree of truncal ataxia and stroke has not been systematically studied in patients with AVS. We studied a group of 114 patients who were admitted to a General Hospital due to AVS, 72 of them with vestibular neuritis (based on positive head impulse, abnormal caloric tests, and negative MRI) and the rest with stroke: 32 in the posterior inferior cerebellar artery (PICA) territory (positive HINTS findings, positive MRI) and 10 in the anterior inferior cerebellar artery (AICA) territory (variable findings and grade 3 ataxia, positive MRI). Truncal ataxia was measured by independent observers as grade 1, mild to moderate imbalance with walking independently; grade 2, severe imbalance with standing, but cannot walk without support; and grade 3, falling at upright posture. When we applied the HINTS protocol to our sample, we obtained 100% sensitivity and 94.4% specificity, similar to previously published findings. Only those patients with stroke presented with grade 3 ataxia. Of those with grade 2 ataxia (n = 38), 11 had cerebellar stroke and 28 had vestibular neuritis, not related to the patient's age. Grade 2-3 ataxia was 92.9% sensitive and 61.1% specific to detect AICA/PICA stroke in patients with AVS, with 100% sensitivity to detect AICA stroke. In turn, two signs (nystagmus of central origin and grade 2-3 Ataxia) had 100% sensitivity and 61.1% specificity. Ataxia is less sensitive than HINTS but much easier to evaluate.

  6. The Diagnostic Accuracy of Truncal Ataxia and HINTS as Cardinal Signs for Acute Vestibular Syndrome

    PubMed Central

    Carmona, Sergio; Martínez, Carlos; Zalazar, Guillermo; Moro, Marcela; Batuecas-Caletrio, Angel; Luis, Leonel; Gordon, Carlos

    2016-01-01

    The head impulse, nystagmus type, test of skew (HINTS) protocol set a new paradigm to differentiate peripheral vestibular disease from stroke in patients with acute vestibular syndrome (AVS). The relationship between degree of truncal ataxia and stroke has not been systematically studied in patients with AVS. We studied a group of 114 patients who were admitted to a General Hospital due to AVS, 72 of them with vestibular neuritis (based on positive head impulse, abnormal caloric tests, and negative MRI) and the rest with stroke: 32 in the posterior inferior cerebellar artery (PICA) territory (positive HINTS findings, positive MRI) and 10 in the anterior inferior cerebellar artery (AICA) territory (variable findings and grade 3 ataxia, positive MRI). Truncal ataxia was measured by independent observers as grade 1, mild to moderate imbalance with walking independently; grade 2, severe imbalance with standing, but cannot walk without support; and grade 3, falling at upright posture. When we applied the HINTS protocol to our sample, we obtained 100% sensitivity and 94.4% specificity, similar to previously published findings. Only those patients with stroke presented with grade 3 ataxia. Of those with grade 2 ataxia (n = 38), 11 had cerebellar stroke and 28 had vestibular neuritis, not related to the patient’s age. Grade 2–3 ataxia was 92.9% sensitive and 61.1% specific to detect AICA/PICA stroke in patients with AVS, with 100% sensitivity to detect AICA stroke. In turn, two signs (nystagmus of central origin and grade 2–3 Ataxia) had 100% sensitivity and 61.1% specificity. Ataxia is less sensitive than HINTS but much easier to evaluate. PMID:27551274

  7. The Diagnostic Accuracy of Truncal Ataxia and HINTS as Cardinal Signs for Acute Vestibular Syndrome.

    PubMed

    Carmona, Sergio; Martínez, Carlos; Zalazar, Guillermo; Moro, Marcela; Batuecas-Caletrio, Angel; Luis, Leonel; Gordon, Carlos

    2016-01-01

    The head impulse, nystagmus type, test of skew (HINTS) protocol set a new paradigm to differentiate peripheral vestibular disease from stroke in patients with acute vestibular syndrome (AVS). The relationship between degree of truncal ataxia and stroke has not been systematically studied in patients with AVS. We studied a group of 114 patients who were admitted to a General Hospital due to AVS, 72 of them with vestibular neuritis (based on positive head impulse, abnormal caloric tests, and negative MRI) and the rest with stroke: 32 in the posterior inferior cerebellar artery (PICA) territory (positive HINTS findings, positive MRI) and 10 in the anterior inferior cerebellar artery (AICA) territory (variable findings and grade 3 ataxia, positive MRI). Truncal ataxia was measured by independent observers as grade 1, mild to moderate imbalance with walking independently; grade 2, severe imbalance with standing, but cannot walk without support; and grade 3, falling at upright posture. When we applied the HINTS protocol to our sample, we obtained 100% sensitivity and 94.4% specificity, similar to previously published findings. Only those patients with stroke presented with grade 3 ataxia. Of those with grade 2 ataxia (n = 38), 11 had cerebellar stroke and 28 had vestibular neuritis, not related to the patient's age. Grade 2-3 ataxia was 92.9% sensitive and 61.1% specific to detect AICA/PICA stroke in patients with AVS, with 100% sensitivity to detect AICA stroke. In turn, two signs (nystagmus of central origin and grade 2-3 Ataxia) had 100% sensitivity and 61.1% specificity. Ataxia is less sensitive than HINTS but much easier to evaluate. PMID:27551274

  8. [Late onset Friedreich ataxia: clinical description of a family in Argentina].

    PubMed

    Pérez Akly, Manuel; Alvarez, Fernando

    2013-01-01

    Friedreich Ataxia (FA) is the most common hereditary ataxia, caused by abnormal expansion of the GAA triplet of the first intron of the X25 gene on chromosome 9. Clinically it occurs in patients under the age of 25 and it is frequently associated with musculoskeletal, endocrine and myocardial disorders. Among their phenotypic variants there are patients starting their symptoms after the age of 25. The latter group is defined as late onset Freidreich ataxia (LOFA). The objective of this work is to present three siblings affected by late onset Friedreich ataxia. Their symptoms began between the ages of 32 and 34, with gait disturbance and dysarthria of cerebellar type, which worsened, thus becoming more evident in the course of 6-12 months. None had musculoskeletal or myocardial involvement. There was no family history of ataxia or other neurological disorders. Two of these patients underwent genetic study that showed abnormal expansion of GAA triplet confirming the diagnosis of FA. A magnetic resonance imaging (MRI) of the brain was performed. Proximal spinal cord atrophy, sparing cerebellar structures, was found in two of the cases and vermian atrophy associated with proximal spinal cord atrophy was observed in the third one. Molecular testing GAA expansions in the FA gene should be considered in cerebellar ataxia with dysarthria and loss of proprioception. PMID:24152405

  9. [Late onset Friedreich ataxia: clinical description of a family in Argentina].

    PubMed

    Pérez Akly, Manuel; Alvarez, Fernando

    2013-01-01

    Friedreich Ataxia (FA) is the most common hereditary ataxia, caused by abnormal expansion of the GAA triplet of the first intron of the X25 gene on chromosome 9. Clinically it occurs in patients under the age of 25 and it is frequently associated with musculoskeletal, endocrine and myocardial disorders. Among their phenotypic variants there are patients starting their symptoms after the age of 25. The latter group is defined as late onset Freidreich ataxia (LOFA). The objective of this work is to present three siblings affected by late onset Friedreich ataxia. Their symptoms began between the ages of 32 and 34, with gait disturbance and dysarthria of cerebellar type, which worsened, thus becoming more evident in the course of 6-12 months. None had musculoskeletal or myocardial involvement. There was no family history of ataxia or other neurological disorders. Two of these patients underwent genetic study that showed abnormal expansion of GAA triplet confirming the diagnosis of FA. A magnetic resonance imaging (MRI) of the brain was performed. Proximal spinal cord atrophy, sparing cerebellar structures, was found in two of the cases and vermian atrophy associated with proximal spinal cord atrophy was observed in the third one. Molecular testing GAA expansions in the FA gene should be considered in cerebellar ataxia with dysarthria and loss of proprioception.

  10. Genetics Home Reference: spinocerebellar ataxia type 2

    MedlinePlus

    ... tremors, and weakness in the muscles that control eye movement (ophthalmoplegia). Eye muscle weakness leads to a decreased ability to make rapid eye movements (saccadic slowing). Over time, individuals with SCA2 may ...

  11. Genetics Home Reference: spinocerebellar ataxia type 1

    MedlinePlus

    ... spasticity), and weakness in the muscles that control eye movement (ophthalmoplegia). Eye muscle weakness leads to rapid, involuntary eye movements (nystagmus). Individuals with SCA1 may have difficulty processing, ...

  12. Spinocerebellar Ataxia Type 10 (SCA10)

    MedlinePlus

    ... onset, coordination of hands and arms becomes impaired. Fine motor skills such as handwriting and fastening buttons ... that causes SCA10. DNA tests for SCA10 involve analysis of a gene located on chromosome 22q13. (Each ...

  13. Genetics Home Reference: spinocerebellar ataxia type 6

    MedlinePlus

    ... it clusters together and forms clumps (aggregates). The effect these aggregates have on cell functioning is unknown. The lack of normal calcium channels in the cell membrane impairs cell communication between neurons in the brain. Diminished cell communication ...

  14. Genetics Home Reference: spinocerebellar ataxia type 3

    MedlinePlus

    ... double vision. People with this condition may experience sleep disorders such as restless leg syndrome or REM sleep ... often acts out his or her dreams. These sleep disorders tend to leave affected individuals feeling tired during ...

  15. Spinocerebellar Ataxia Type 14 (SCA14)

    MedlinePlus

    ... human chromosome 19 and encodes a protein called protein kinase C gamma (PKCγ, the gene is PRKCG). Inherited ... may suggest potential therapeutic interventions. PKCγ is a protein kinase – an enzyme involved in activating and inactivating other ...

  16. Rare Disease Patient Registry & Natural History Study - Coordination of Rare Diseases at Sanford

    ClinicalTrials.gov

    2016-09-01

    ; Non Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Spectrin-associated Autosomal Recessive Cerebellar Ataxia; Spasticity-ataxia-gait Anomalies Syndrome; Spastic Ataxia With Congenital Miosis; Spastic Ataxia - Corneal Dystrophy; Spastic Ataxia; Rare Hereditary Ataxia; Rare Ataxia; Recessive Mitochondrial Ataxia Syndrome; Progressive Epilepsy and/or Ataxia With Myoclonus as a Major Feature; Posterior Column Ataxia - Retinitis Pigmentosa; Post-Stroke Ataxia; Post-Head Injury Ataxia; Post Vaccination Ataxia; Polyneuropathy - Hearing Loss - Ataxia - Retinitis Pigmentosa - Cataract; Muscular Atrophy - Ataxia - Retinitis Pigmentosa - Diabetes Mellitus; Non-progressive Cerebellar Ataxia With Intellectual Disability; Non-hereditary Degenerative Ataxia; Paroxysmal Dystonic Choreathetosis With Episodic Ataxia and Spasticity; Olivopontocerebellar Atrophy - Deafness; NARP Syndrome; Myoclonus - Cerebellar Ataxia - Deafness; Multiple System Atrophy, Parkinsonian Type; Multiple System Atrophy, Cerebellar Type; Multiple System Atrophy; Maternally-inherited Leigh Syndrome; Machado-Joseph Disease Type 3; Machado-Joseph Disease Type 2; Machado-Joseph Disease Type 1; Lethal Ataxia With Deafness and Optic Atrophy; Leigh Syndrome; Leukoencephalopathy With Mild Cerebellar Ataxia and White Matter Edema; Leukoencephalopathy - Ataxia - Hypodontia - Hypomyelination; Leigh Syndrome With Nephrotic Syndrome; Leigh Syndrome With Leukodystrophy; Leigh Syndrome With Cardiomyopathy; Late-onset Ataxia With Dementia; Intellectual Disability-hyperkinetic Movement-truncal Ataxia Syndrome; Infection or Post Infection Ataxia; Infantile-onset Autosomal Recessive Nonprogressive Cerebellar Ataxia; Infantile Onset Spinocerebellar Ataxia; GAD Ataxia; Hereditary Episodic Ataxia; Gliadin/Gluten Ataxia; Friedreich Ataxia; Fragile X-associated Tremor/Ataxia Syndrome; Familial Paroxysmal Ataxia; Exposure to Medications Ataxia; Episodic Ataxia With Slurred Speech; Episodic Ataxia Unknown Type

  17. Ataxia-telangiectasia: future prospects

    PubMed Central

    Chaudhary, Mohammed Wajid; Al-Baradie, Raidah Saleem

    2014-01-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive multi-system disorder caused by mutation in the ataxia-telangiectasia mutated gene (ATM). ATM is a large serine/threonine protein kinase, a member of the phosphoinositide 3-kinase-related protein kinase (PIKK) family whose best-studied function is as master controller of signal transduction for the DNA damage response (DDR) in the event of double strand breaks (DSBs). The DDR rapidly recognizes DNA lesions and initiates the appropriate cellular programs to maintain genome integrity. This includes the coordination of cell-cycle checkpoints, transcription, translation, DNA repair, metabolism, and cell fate decisions, such as apoptosis or senescence. DSBs can be generated by exposure to ionizing radiation (IR) or various chemical compounds, such as topoisomerase inhibitors, or can be part of programmed generation and repair of DSBs via cellular enzymes needed for the generation of the antibody repertoire as well as the maturation of germ cells. AT patients have immunodeficiency, and are sterile with gonadal dysgenesis as a result of defect in meiotic recombination. In the cells of nervous system ATM has additional role in vesicle dynamics as well as in the maintenance of the epigenetic code of histone modifications. Moderate levels of ATM are associated with prolonged lifespan through resistance to oxidative stress. ATM inhibitors are being viewed as potential radiosensitizers as part of cancer radiotherapy. Though there is no cure for the disease at present, glucocorticoids have been shown to induce alternate splicing site in the gene for ATM partly restoring its activity, but their most effective timing in the disease natural history is not yet known. Gene therapy is promising but large size of the gene makes it technically difficult to be delivered across the blood–brain barrier at present. As of now, apart from glucocorticoids, use of histone deacetylase inhibitors/EZH2 to minimize effect of the absence of

  18. Sacsinopathies: sacsin-related ataxia.

    PubMed

    Takiyama, Yoshihisa

    2007-01-01

    Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) was originally found among inhabitants of the Charlevoix-Saguenay region of northeastern Quebec in Canada. This disease is a neurodegenerative disorder characterized by early-onset spastic ataxia, dysarthria, nystagmus, distal muscle wasting, finger and foot deformities, and retinal hypermyelination. The principal neuropathology comprises atrophy of the upper vermis and the loss of Purkinje cells in the cerebellum. The SACS gene was originally reported to consist of a single gigantic exon spanning 12.8 kb with an 11.5-kb open reading frame (ORF), and to encode the protein sacsin. Recently, eight exons upstream from the original gigantic one, however, have been found, and the new ORF has elongated to 13.7 kb. To date, at least 28 mutations have been found in Quebec and non-Quebec patients including ones in Italy, Japan, Spain, Tunisia, and Turkey, and ARSACS thus shows a worldwide occurrence. Although most of the mutations reported have been in the gigantic exon, the genotype is now expanding upstream from this gigantic exon. Therefore, the new exons upstream of the gigantic one should be analyzed when a case is clinically compatible with ARSACS, even without any mutation in the gigantic exon. Although Quebec patients show a homogeneous phenotype, non-Quebec patients exhibit some atypical clinical features, as follows: slightly later onset than that in Quebec patients, absence of retinal hypermyelination, intellectual impairment, and lack of spasticity. Thus, since ARSACS shows the clinical diversity, the SACS gene should be analyzed not only in typical cases as Quebec patients but also in atypical cases as non-Quebec patients. As more SACS mutations are identified worldwide, the clinical spectrum of 'sacsinopathies' will expand, and a finer genotype-phenotype correlation study will become possible and shed light on the molecular mechanism underlying ARSACS.

  19. The effects of cervical traction, cranial rhythmic impulse, and Mckenzie exercise on headache and cervical muscle stiffness in episodic tension-type headache patients

    PubMed Central

    Choi, Sung-Yong; Choi, Jung-Hyun

    2016-01-01

    [Purpose] The purpose of this study was to examine the effects of cervical traction treatment, cranial rhythmic impulse treatment, a manual therapy, and McKenzie exercise, a dynamic strengthening exercise, on patients who have the neck muscle stiffness of the infrequent episodic tension-type (IETTH) headache and frequent episodic tension-type headache(FETTH), as well as to provide the basic materials for clinical interventions. [Subjects] Twenty-seven subjects (males: 15, females: 12) who were diagnosed with IETTH and FETTH after treatment by a neurologist were divided into three groups: (a cervical traction group (CTG, n=9), a cranial rhythmic contractiongroup (CRIG, n=9), and a McKenzie exercise group (MEG, n=9). An intervention was conducted for each group and the differences in their degrees of neck pain and changes in muscle tone were observed. [Results] In the within-group comparison of each group, headache significantly decreased in CTG. According to the results of the analysis of the muscle tone of the upper trapezius, there was a statistically significant difference in MEG on the right side and in CRIG on the left side. According to the results of the analysis of the muscle tone of the sternocleidomastoid muscle, there was a statistically significant difference in MEG on the right side and in CRIG on the left side. [Conclusion] In the comparison of the splenius capitis muscle between the groups, there was a statistically significant difference on the right side. Hence, compared to the other methods, cervical traction is concluded to be more effective at reducing headaches in IETTH and FETTH patients. PMID:27134368

  20. The effects of cervical traction, cranial rhythmic impulse, and Mckenzie exercise on headache and cervical muscle stiffness in episodic tension-type headache patients.

    PubMed

    Choi, Sung-Yong; Choi, Jung-Hyun

    2016-03-01

    [Purpose] The purpose of this study was to examine the effects of cervical traction treatment, cranial rhythmic impulse treatment, a manual therapy, and McKenzie exercise, a dynamic strengthening exercise, on patients who have the neck muscle stiffness of the infrequent episodic tension-type (IETTH) headache and frequent episodic tension-type headache(FETTH), as well as to provide the basic materials for clinical interventions. [Subjects] Twenty-seven subjects (males: 15, females: 12) who were diagnosed with IETTH and FETTH after treatment by a neurologist were divided into three groups: (a cervical traction group (CTG, n=9), a cranial rhythmic contractiongroup (CRIG, n=9), and a McKenzie exercise group (MEG, n=9). An intervention was conducted for each group and the differences in their degrees of neck pain and changes in muscle tone were observed. [Results] In the within-group comparison of each group, headache significantly decreased in CTG. According to the results of the analysis of the muscle tone of the upper trapezius, there was a statistically significant difference in MEG on the right side and in CRIG on the left side. According to the results of the analysis of the muscle tone of the sternocleidomastoid muscle, there was a statistically significant difference in MEG on the right side and in CRIG on the left side. [Conclusion] In the comparison of the splenius capitis muscle between the groups, there was a statistically significant difference on the right side. Hence, compared to the other methods, cervical traction is concluded to be more effective at reducing headaches in IETTH and FETTH patients.

  1. Sporadic Ataxia and Multiple System Atrophy (MSA)

    MedlinePlus

    ... sporadic ataxia and MSA. The disorders include rapid eye movement (REM) sleep behavior disorder, a condition in which ... sleep disorders and provide specific treatment for rapid eye movement sleep behavior disorder as well as obstructive sleep ...

  2. Vestibular ataxia and its measurement in man

    NASA Technical Reports Server (NTRS)

    Fregly, A. R.

    1974-01-01

    Methods involved in and results obtained with a new comprehensive ataxia test battery are described, and definitions of spontaneous and induced vestibular ataxia in man are given in terms of these findings. In addition, the topic of alcohol-induced ataxia in relation to labyrinth function is investigated. Items in the test battery comprise a sharpened Romberg test, in which the subject stands on the floor with eyes closed and arms folded against his chest, feet heel-to-toe, for 60 seconds; an eyes-open walking test; an eyes-open standing test; an eyes-closed standing test; an eyes-closed on-leg standing test; an eyes-closed walk a line test; an eyes-closed heel-to-toe walking test; and supplementary ataxia tests such as the classical Romberg test.

  3. 'Pseudo-dominant' inheritance in Friedreich's ataxia.

    PubMed Central

    Harding, A E; Zilkha, K J

    1981-01-01

    A family is described in which Friedreich's ataxia occurred in two generations. It is proposed that this resulted from a homozygote-heterozygote mating. The heterozygote frequency for the Friedreich's ataxia gene is in the order of 1 in 110, so the likelihood of the disease developing in an individual child of a patient is 1 in 220. This risk is probably higher than that often assumed when counselling patients with this disorder. PMID:7277422

  4. Novel ATM mutations with ataxia-telangiectasia.

    PubMed

    Liu, Xiao-Li; Wang, Tian; Huang, Xiao-Jun; Zhou, Hai-Yan; Luan, Xing-Hua; Shen, Jun-Yi; Chen, Sheng-Di; Cao, Li

    2016-01-12

    Ataxia telangiectasia is an autosomal recessive multisystem disorder characterized by progressive cerebellar ataxia with onset in childhood, oculocutaneous telangiectasia, increased serum alpha-fetoprotein, immunodeficiency, chromosomal instability, and radiation hypersensitivity. Ataxia-telangiectasia mutated gene (ATM) is one of the known genes to be associated with ataxia telangiectasia. We reported the clinical and genetic findings of three early-onset Chinese patients who demonstrated ataxia, oculomotor apraxia, choreoathetosis, myoclonus and telangiectasia of eyes. Sequence analysis of ATM revealed two known nonsense mutations c.8287C>T and c.9139C>T in the siblings. Though the siblings carried the same mutations, they showed different clinical features involving strephenopodia, exotropia, torsion dystonia, myoclonus and extrapyramidal impairments. The other patient was compound heterozygotes for ATM: c.8911C>T and c.7141_7151delAATGGAAAAAT, both of which were not reported previously and not found in 200 control chromosomes. This study widens the spectrum of mutations and phenotypes in ataxia telangiectasia.

  5. Novel ATM mutations with ataxia-telangiectasia.

    PubMed

    Liu, Xiao-Li; Wang, Tian; Huang, Xiao-Jun; Zhou, Hai-Yan; Luan, Xing-Hua; Shen, Jun-Yi; Chen, Sheng-Di; Cao, Li

    2016-01-12

    Ataxia telangiectasia is an autosomal recessive multisystem disorder characterized by progressive cerebellar ataxia with onset in childhood, oculocutaneous telangiectasia, increased serum alpha-fetoprotein, immunodeficiency, chromosomal instability, and radiation hypersensitivity. Ataxia-telangiectasia mutated gene (ATM) is one of the known genes to be associated with ataxia telangiectasia. We reported the clinical and genetic findings of three early-onset Chinese patients who demonstrated ataxia, oculomotor apraxia, choreoathetosis, myoclonus and telangiectasia of eyes. Sequence analysis of ATM revealed two known nonsense mutations c.8287C>T and c.9139C>T in the siblings. Though the siblings carried the same mutations, they showed different clinical features involving strephenopodia, exotropia, torsion dystonia, myoclonus and extrapyramidal impairments. The other patient was compound heterozygotes for ATM: c.8911C>T and c.7141_7151delAATGGAAAAAT, both of which were not reported previously and not found in 200 control chromosomes. This study widens the spectrum of mutations and phenotypes in ataxia telangiectasia. PMID:26628246

  6. Intelligent detection of hypoglycemic episodes in children with type 1 diabetes using adaptive neural-fuzzy inference system.

    PubMed

    San, Phyo Phyo; Ling, Sai Ho; Nguyen, Hung T

    2012-01-01

    Hypoglycemia, or low blood glucose, is the most common complication experienced by Type 1 diabetes mellitus (T1DM) patients. It is dangerous and can result in unconsciousness, seizures and even death. The most common physiological parameter to be effected from hypoglycemic reaction are heart rate (HR) and correct QT interval (QTc) of the electrocardiogram (ECG) signal. Based on physiological parameters, an intelligent diagnostics system, using the hybrid approach of adaptive neural fuzzy inference system (ANFIS), is developed to recognize the presence of hypoglycemia. The proposed ANFIS is characterized by adaptive neural network capabilities and the fuzzy inference system. To optimize the membership functions and adaptive network parameters, a global learning optimization algorithm called hybrid particle swarm optimization with wavelet mutation (HPSOWM) is used. For clinical study, 15 children with Type 1 diabetes volunteered for an overnight study. All the real data sets are collected from the Department of Health, Government of Western Australia. Several experiments were conducted with 5 patients each, for a training set (184 data points), a validation set (192 data points) and a testing set (153 data points), which are randomly selected. The effectiveness of the proposed detection method is found to be satisfactory by giving better sensitivity, 79.09% and acceptable specificity, 51.82%. PMID:23367375

  7. Ataxia, dysmetria, tremor. Cerebellar diseases.

    PubMed

    Kornegay, J N

    1991-09-01

    Diseases affecting the cerebellum typically cause ataxia, coupled with dysmetria and tremor. Dysmetria is a condition in which there is improper measuring of distance in muscular acts; hypermetria is overreaching (overstepping) and hypometria is underreaching (understepping). Tremor refers to an involuntary, rhythmic, oscillatory movement of a body part. The tremor of cerebellar disease typically is exaggerated by goal-oriented movements (intention tremor). Cerebellar lesions also often cause loss of the menace response, despite the presence of normal vision. The anatomic basis for this phenomenon is obscure. The principal disease affecting the cerebellum in cats is cerebellar hypoplasia due to in utero infection with the panleukopenia virus. This disease will be discussed here. Neurologic signs of cerebellar involvement also may be seen in association with those diseases that affect the CNS multifocally. In these cats, there may be additional signs indicating involvement of other anatomic areas or the cerebellar deficits may occur alone (see discussion of multifocal diseases in Multiple Neurologic Deficits: Inflammatory Diseases [page 426] and Multiple Neurologic Deficits: Noninfectious Diseases [page 440]). PMID:1802262

  8. Episodic memory in nonhuman animals

    PubMed Central

    Templer, Victoria L.

    2013-01-01

    Summary Episodic memories differ from other types of memory because they represent aspects of the past not present in other memories, such as the time, place, or social context in which the memories were formed. Focus on phenomenal experience in human memory, such as the sense of “having been there” has resulted in conceptualizations of episodic memory that are difficult or impossible to apply to nonhumans. It is therefore a significant challenge for investigators to agree on objective behavioral criteria that can be applied in nonhumans and still capture features of memory thought to be critical in humans. Some investigators have attempted to use neurobiological parallels to bridge this gap. However, defining memory types on the basis of the brain structures involved rather than on identified cognitive mechanisms risks missing the most crucial functional aspects of episodic memory, which are ultimately behavioral. The most productive way forward is likely a combination of neurobiology and sophisticated cognitive testing that identifies the mental representations present in episodic memory. Investigators that have refined their approach from asking the naïve question “do nonhuman animals have episodic memory” to instead asking “what aspects of episodic memory are shared by humans and nonhumans” are making progress. PMID:24028963

  9. Delusions in first-episode psychosis: Principal component analysis of twelve types of delusions and demographic and clinical correlates of resulting domains.

    PubMed

    Paolini, Enrico; Moretti, Patrizia; Compton, Michael T

    2016-09-30

    Although delusions represent one of the core symptoms of psychotic disorders, it is remarkable that few studies have investigated distinct delusional themes. We analyzed data from a large sample of first-episode psychosis patients (n=245) to understand relations between delusion types and demographic and clinical correlates. First, we conducted a principal component analysis (PCA) of the 12 delusion items within the Scale for the Assessment of Positive Symptoms (SAPS). Then, using the domains derived via PCA, we tested a priori hypotheses and answered exploratory research questions related to delusional content. PCA revealed five distinct components: Delusions of Influence, Grandiose/Religious Delusions, Paranoid Delusions, Negative Affect Delusions (jealousy, and sin or guilt), and Somatic Delusions. The most prevalent type of delusion was Paranoid Delusions, and such delusions were more common at older ages at onset of psychosis. The level of Delusions of Influence was correlated with the severity of hallucinations and negative symptoms. We ascertained a general relationship between different childhood adversities and delusional themes, and a specific relationship between Somatic Delusions and childhood neglect. Moreover, we found higher scores on Delusions of Influence and Negative Affect Delusions among cannabis and stimulant users. Our results support considering delusions as varied experiences with varying prevalences and correlates. PMID:27344587

  10. Delusions in first-episode psychosis: Principal component analysis of twelve types of delusions and demographic and clinical correlates of resulting domains.

    PubMed

    Paolini, Enrico; Moretti, Patrizia; Compton, Michael T

    2016-09-30

    Although delusions represent one of the core symptoms of psychotic disorders, it is remarkable that few studies have investigated distinct delusional themes. We analyzed data from a large sample of first-episode psychosis patients (n=245) to understand relations between delusion types and demographic and clinical correlates. First, we conducted a principal component analysis (PCA) of the 12 delusion items within the Scale for the Assessment of Positive Symptoms (SAPS). Then, using the domains derived via PCA, we tested a priori hypotheses and answered exploratory research questions related to delusional content. PCA revealed five distinct components: Delusions of Influence, Grandiose/Religious Delusions, Paranoid Delusions, Negative Affect Delusions (jealousy, and sin or guilt), and Somatic Delusions. The most prevalent type of delusion was Paranoid Delusions, and such delusions were more common at older ages at onset of psychosis. The level of Delusions of Influence was correlated with the severity of hallucinations and negative symptoms. We ascertained a general relationship between different childhood adversities and delusional themes, and a specific relationship between Somatic Delusions and childhood neglect. Moreover, we found higher scores on Delusions of Influence and Negative Affect Delusions among cannabis and stimulant users. Our results support considering delusions as varied experiences with varying prevalences and correlates.

  11. Genetics Home Reference: myoclonic epilepsy myopathy sensory ataxia

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions MEMSA myoclonic epilepsy myopathy sensory ataxia Enable Javascript to view the ... Download PDF Open All Close All Description Myoclonic epilepsy myopathy sensory ataxia , commonly called MEMSA , is part ...

  12. Efavirenz as a cause of ataxia in children.

    PubMed

    Hauptfleisch, Marc Peter Kedzlie; Moore, David P; Rodda, John L

    2015-11-01

    Acute ataxia in childhood is often caused by toxin ingestion. With the increasing number of paediatric patients on antiretroviral medication, we are seeing more side-effects of these drugs. We report two cases of efavirenz toxicity causing ataxia.

  13. Fragile X-Associated Tremor and Ataxia Syndrome (FXTAS)

    MedlinePlus

    ... Resources and Publications Fragile X-Associated Tremor and Ataxia Syndrome (FXTAS): Overview Skip sharing on social media ... this: Page Content Fragile X-associated tremor and ataxia syndrome (FXTAS) is a late-onset condition (occurs ...

  14. A Single Amino Acid Deletion (ΔF1502) in the S6 Segment of CaV2.1 Domain III Associated with Congenital Ataxia Increases Channel Activity and Promotes Ca2+ Influx

    PubMed Central

    Drechsel, Oliver; Rahman, Rubayte; Marcé-Grau, Anna; Prieto, Marta; Ossowski, Stephan; Macaya, Alfons; Fernández-Fernández, José M.

    2015-01-01

    Mutations in the CACNA1A gene, encoding the pore-forming CaV2.1 (P/Q-type) channel α1A subunit, result in heterogeneous human neurological disorders, including familial and sporadic hemiplegic migraine along with episodic and progressive forms of ataxia. Hemiplegic Migraine (HM) mutations induce gain-of-channel function, mainly by shifting channel activation to lower voltages, whereas ataxia mutations mostly produce loss-of-channel function. However, some HM-linked gain-of-function mutations are also associated to congenital ataxia and/or cerebellar atrophy, including the deletion of a highly conserved phenylalanine located at the S6 pore region of α1A domain III (ΔF1502). Functional studies of ΔF1502 CaV2.1 channels, expressed in Xenopus oocytes, using the non-physiological Ba2+ as the charge carrier have only revealed discrete alterations in channel function of unclear pathophysiological relevance. Here, we report a second case of congenital ataxia linked to the ΔF1502 α1A mutation, detected by whole-exome sequencing, and analyze its functional consequences on CaV2.1 human channels heterologously expressed in mammalian tsA-201 HEK cells, using the physiological permeant ion Ca2+. ΔF1502 strongly decreases the voltage threshold for channel activation (by ~ 21 mV), allowing significantly higher Ca2+ current densities in a range of depolarized voltages with physiological relevance in neurons, even though maximal Ca2+ current density through ΔF1502 CaV2.1 channels is 60% lower than through wild-type channels. ΔF1502 accelerates activation kinetics and slows deactivation kinetics of CaV2.1 within a wide range of voltage depolarization. ΔF1502 also slowed CaV2.1 inactivation kinetic and shifted the inactivation curve to hyperpolarized potentials (by ~ 28 mV). ΔF1502 effects on CaV2.1 activation and deactivation properties seem to be of high physiological relevance. Thus, ΔF1502 strongly promotes Ca2+ influx in response to either single or trains of action

  15. A Single Amino Acid Deletion (ΔF1502) in the S6 Segment of CaV2.1 Domain III Associated with Congenital Ataxia Increases Channel Activity and Promotes Ca2+ Influx.

    PubMed

    Bahamonde, Maria Isabel; Serra, Selma Angèlica; Drechsel, Oliver; Rahman, Rubayte; Marcé-Grau, Anna; Prieto, Marta; Ossowski, Stephan; Macaya, Alfons; Fernández-Fernández, José M

    2015-01-01

    Mutations in the CACNA1A gene, encoding the pore-forming CaV2.1 (P/Q-type) channel α1A subunit, result in heterogeneous human neurological disorders, including familial and sporadic hemiplegic migraine along with episodic and progressive forms of ataxia. Hemiplegic Migraine (HM) mutations induce gain-of-channel function, mainly by shifting channel activation to lower voltages, whereas ataxia mutations mostly produce loss-of-channel function. However, some HM-linked gain-of-function mutations are also associated to congenital ataxia and/or cerebellar atrophy, including the deletion of a highly conserved phenylalanine located at the S6 pore region of α1A domain III (ΔF1502). Functional studies of ΔF1502 CaV2.1 channels, expressed in Xenopus oocytes, using the non-physiological Ba2+ as the charge carrier have only revealed discrete alterations in channel function of unclear pathophysiological relevance. Here, we report a second case of congenital ataxia linked to the ΔF1502 α1A mutation, detected by whole-exome sequencing, and analyze its functional consequences on CaV2.1 human channels heterologously expressed in mammalian tsA-201 HEK cells, using the physiological permeant ion Ca2+. ΔF1502 strongly decreases the voltage threshold for channel activation (by ~ 21 mV), allowing significantly higher Ca2+ current densities in a range of depolarized voltages with physiological relevance in neurons, even though maximal Ca2+ current density through ΔF1502 CaV2.1 channels is 60% lower than through wild-type channels. ΔF1502 accelerates activation kinetics and slows deactivation kinetics of CaV2.1 within a wide range of voltage depolarization. ΔF1502 also slowed CaV2.1 inactivation kinetic and shifted the inactivation curve to hyperpolarized potentials (by ~ 28 mV). ΔF1502 effects on CaV2.1 activation and deactivation properties seem to be of high physiological relevance. Thus, ΔF1502 strongly promotes Ca2+ influx in response to either single or trains of action

  16. A Single Amino Acid Deletion (ΔF1502) in the S6 Segment of CaV2.1 Domain III Associated with Congenital Ataxia Increases Channel Activity and Promotes Ca2+ Influx.

    PubMed

    Bahamonde, Maria Isabel; Serra, Selma Angèlica; Drechsel, Oliver; Rahman, Rubayte; Marcé-Grau, Anna; Prieto, Marta; Ossowski, Stephan; Macaya, Alfons; Fernández-Fernández, José M

    2015-01-01

    Mutations in the CACNA1A gene, encoding the pore-forming CaV2.1 (P/Q-type) channel α1A subunit, result in heterogeneous human neurological disorders, including familial and sporadic hemiplegic migraine along with episodic and progressive forms of ataxia. Hemiplegic Migraine (HM) mutations induce gain-of-channel function, mainly by shifting channel activation to lower voltages, whereas ataxia mutations mostly produce loss-of-channel function. However, some HM-linked gain-of-function mutations are also associated to congenital ataxia and/or cerebellar atrophy, including the deletion of a highly conserved phenylalanine located at the S6 pore region of α1A domain III (ΔF1502). Functional studies of ΔF1502 CaV2.1 channels, expressed in Xenopus oocytes, using the non-physiological Ba2+ as the charge carrier have only revealed discrete alterations in channel function of unclear pathophysiological relevance. Here, we report a second case of congenital ataxia linked to the ΔF1502 α1A mutation, detected by whole-exome sequencing, and analyze its functional consequences on CaV2.1 human channels heterologously expressed in mammalian tsA-201 HEK cells, using the physiological permeant ion Ca2+. ΔF1502 strongly decreases the voltage threshold for channel activation (by ~ 21 mV), allowing significantly higher Ca2+ current densities in a range of depolarized voltages with physiological relevance in neurons, even though maximal Ca2+ current density through ΔF1502 CaV2.1 channels is 60% lower than through wild-type channels. ΔF1502 accelerates activation kinetics and slows deactivation kinetics of CaV2.1 within a wide range of voltage depolarization. ΔF1502 also slowed CaV2.1 inactivation kinetic and shifted the inactivation curve to hyperpolarized potentials (by ~ 28 mV). ΔF1502 effects on CaV2.1 activation and deactivation properties seem to be of high physiological relevance. Thus, ΔF1502 strongly promotes Ca2+ influx in response to either single or trains of action

  17. Truncal ataxia from infarction involving the inferior olivary nucleus.

    PubMed

    Park, Jae Hyun; Ryoo, Sookyung; Moon, So Young; Seo, Sand Won; Na, Duk L

    2012-08-01

    Truncal ataxia in medullary infarction may be caused by involvement of the lateral part of the medulla; however, truncal ataxia in infarction involving the inferior olivary nucleus (ION) has received comparatively little attention. We report a patient with truncal ataxia due to medial medullary infarction located in the ION. A lesion in the ION could produce a contralateral truncal ataxia due to increased inhibitory input to the contralesional vestibular nucleus from the contralesional flocculus.

  18. Landmark Based Shape Analysis for Cerebellar Ataxia Classification and Cerebellar Atrophy Pattern Visualization

    PubMed Central

    Yang, Zhen; Abulnaga, S. Mazdak; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi; Ying, Sarah H.; Prince, Jerry L.

    2016-01-01

    Cerebellar dysfunction can lead to a wide range of movement disorders. Studying the cerebellar atrophy pattern associated with different cerebellar disease types can potentially help in diagnosis, prognosis, and treatment planning. In this paper, we present a landmark based shape analysis pipeline to classify healthy control and different ataxia types and to visualize the characteristic cerebellar atrophy patterns associated with different types. A highly informative feature representation of the cerebellar structure is constructed by extracting dense homologous landmarks on the boundary surfaces of cerebellar sub-structures. A diagnosis group classifier based on this representation is built using partial least square dimension reduction and regularized linear discriminant analysis. The characteristic atrophy pattern for an ataxia type is visualized by sampling along the discriminant direction between healthy controls and the ataxia type. Experimental results show that the proposed method can successfully classify healthy controls and different ataxia types. The visualized cerebellar atrophy patterns were consistent with the regional volume decreases observed in previous studies, but the proposed method provides intuitive and detailed understanding about changes of overall size and shape of the cerebellum, as well as that of individual lobules. PMID:27303111

  19. Landmark based shape analysis for cerebellar ataxia classification and cerebellar atrophy pattern visualization

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Abulnaga, S. Mazdak; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar dysfunction can lead to a wide range of movement disorders. Studying the cerebellar atrophy pattern associated with different cerebellar disease types can potentially help in diagnosis, prognosis, and treatment planning. In this paper, we present a landmark based shape analysis pipeline to classify healthy control and different ataxia types and to visualize the characteristic cerebellar atrophy patterns associated with different types. A highly informative feature representation of the cerebellar structure is constructed by extracting dense homologous landmarks on the boundary surfaces of cerebellar sub-structures. A diagnosis group classifier based on this representation is built using partial least square dimension reduction and regularized linear discriminant analysis. The characteristic atrophy pattern for an ataxia type is visualized by sampling along the discriminant direction between healthy controls and the ataxia type. Experimental results show that the proposed method can successfully classify healthy controls and different ataxia types. The visualized cerebellar atrophy patterns were consistent with the regional volume decreases observed in previous studies, but the proposed method provides intuitive and detailed understanding about changes of overall size and shape of the cerebellum, as well as that of individual lobules.

  20. Neoproterozoic A-type granitoids of the central and southern Appalachians: Intraplate magmatism associated with episodic rifting of the Rodinian supercontinent

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.; Bartholomew, M.J.; Rankin, D.W.

    2004-01-01

    Emplacement of compositionally distinctive granitic plutons accompanied two pulses (765-680 and 620-550Ma) of crustal extension that affected the Rodinian craton at the present location of the central Appalachians during the Neoproterozoic. The dominantly metaluminous plutons display mineralogical and geochemical characteristics of A-type granites including high FeO t/MgO ratios, high abundances of Nb, Zr, Y, Ta, and REE (except Eu), and low concentrations of Sc, Ba, Sr, and Eu. These dike-like, sheet complexes occur throughout the Blue Ridge province of Virginia and North Carolina, and were emplaced at shallow levels in continental crust during active extension, forming locally multiple-intrusive plutons elongated perpendicular to the axis of extension. New U-Pb zircon ages obtained from the Polly Wright Cove (706??4Ma) and Suck Mountain (680??4Ma) plutons indicate that metaluminous magmas continued to be replenished near the end of the first pulse of rifting. The Suck Mountain body is presently the youngest known igneous body associated with earlier rifting. U-Pb zircon ages for the Pound Ridge Granite Gneiss (562??5Ma) and Yonkers Gneiss (563??2Ma) in the Manhattan prong of southeastern New York constitute the first evidence of plutonic felsic activity associated with the later period of rifting in the U.S. Appalachians, and suggest that similar melt-generation processes were operative during both intervals of crustal extension. Fractionation processes involving primary minerals were responsible for much of the compositional variation within individual plutons. Compositions of mapped lithologic units in a subset of plutons studied in detail define overlapping data arrays, indicating that, throughout the province, similar petrologic processes operated locally on magmas that became successively more chemically evolved. Limited variation in source-sensitive Y/Nb and Yb/Ta ratios is consistent with results of melting experiments and indicates that metaluminous

  1. Ataxia with Vitamin E Deficiency in Norway

    PubMed Central

    Elkamil, Areej; Johansen, Krisztina K.; Aasly, Jan

    2015-01-01

    Objective Ataxia with vitamin E deficiency (AVED) is a rare autosomal recessive neurological disorder which usually starts in childhood. The clinical presentation is very similar to Friedreich ataxia, most patients have progressive truncal and extremity ataxia, areflexia, positive Babinski sign, dysarthria and sensory neuropathy. Methods We made an inquiry to our colleagues in Norway, we included information from a prevalence study published southern Norway and added data from our own known case. Results A newly published prevalence study of hereditary ataxias (total of 171 subjects) found only one subject with AVED in Southeast Norway. We describe two more patients, one from the Central part and one from the Northern part of Norway. All 3 cases had age of onset in early childhood (age of 4–5 years) and all experienced gait ataxia and dysarthria. The genetic testing confirmed that they had pathogenic mutations in the α-tocopherol transfer protein gene (TTPA). All were carriers of the non-sense c.400C > T mutation, one was homozygous for that mutation and the others were compound heterozygous, either with c.358G > A or c.513_514insTT. The homozygous carrier was by far the most severely affected case. Conclusions We estimate the occurrence of AVED in Norway to be at least 0.6 per million inhabitants. We emphasize that all patients who develop ataxia in childhood should be routinely tested for AVED to make an early diagnosis for initiating treatment with high dose vitamin E to avoid severe neurological deficits. PMID:25614784

  2. Vitamin E deficiency ataxia associated with adenoma.

    PubMed

    Benomar, A; Yahyaoui, M; Marzouki, N; Birouk, N; Bouslam, N; Belaidi, H; Amarti, A; Ouazzani, R; Chkili, T

    1999-01-01

    Vitamin E is one of the most important lipid-soluble antioxidant nutrient. Severe vitamin E deficiency (VED) can have a profound effect on the central nervous system. VED causes ataxia and peripheral neuropathy that resembles Friedreich's ataxia. We report here a patient presenting this syndrome, but also a prolactin and FSH adenoma. Both the neurological syndromes and the adenoma regressed after treatment with alpha-tocopherol. Although, the presence of the prolactinoma in this patient may not be related to his vitamin E deficiency, alpha-tocopherol treatment seems to be beneficial and might usefully be tested in patients with hypophyseal secreting other forms of adenoma. PMID:10064178

  3. Requirements for muscle relaxation in Friedreich's ataxia.

    PubMed

    Mouloudi, H; Katsanoulas, C; Frantzeskos, G

    1998-02-01

    Friedreich's ataxia is an inherited disorder of the nervous system, requiring special care during anaesthesia, because of increased sensitivity to muscle relaxants. We report a case of Friedreich's ataxia in a 31-year-old woman, anaesthetised on two occasions, for tendinoplasty and pes cavus repair. Atracurium was used for neuromuscular blockade and monitored by a train-of-four twitch technique. The patient's response was normal. She returned to adequate spontaneous breathing within 20 min of the last dose of the muscle relaxant without need for anticholinesterase administration. When neuromuscular function is monitored, normal doses of muscle relaxant can safely be used in these patients.

  4. ELOVL5 mutations cause spinocerebellar ataxia 38.

    PubMed

    Di Gregorio, Eleonora; Borroni, Barbara; Giorgio, Elisa; Lacerenza, Daniela; Ferrero, Marta; Lo Buono, Nicola; Ragusa, Neftj; Mancini, Cecilia; Gaussen, Marion; Calcia, Alessandro; Mitro, Nico; Hoxha, Eriola; Mura, Isabella; Coviello, Domenico A; Moon, Young-Ah; Tesson, Christelle; Vaula, Giovanna; Couarch, Philippe; Orsi, Laura; Duregon, Eleonora; Papotti, Mauro Giulio; Deleuze, Jean-François; Imbert, Jean; Costanzi, Chiara; Padovani, Alessandro; Giunti, Paola; Maillet-Vioud, Marcel; Durr, Alexandra; Brice, Alexis; Tempia, Filippo; Funaro, Ada; Boccone, Loredana; Caruso, Donatella; Stevanin, Giovanni; Brusco, Alfredo

    2014-08-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ω3 and ω6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases.

  5. Anti Transglutaminase Antibodies Cause Ataxia in Mice

    PubMed Central

    Boscolo, Sabrina; Lorenzon, Andrea; Sblattero, Daniele; Florian, Fiorella; Stebel, Marco; Marzari, Roberto; Not, Tarcisio; Aeschlimann, Daniel; Ventura, Alessandro; Hadjivassiliou, Marios; Tongiorgi, Enrico

    2010-01-01

    Background Celiac disease (CD) is an autoimmune gastrointestinal disorder characterized by the presence of anti-transglutaminase 2 (TG2) and anti-gliadin antibodies. Amongst the neurological dysfunctions associated with CD, ataxia represents the most common one. Methods We analyzed by immunohistochemistry, the anti-neural reactivity of the serum from 20 CD patients. To determine the role of anti-TG2 antibodies in ataxia, two anti-TG2 single chain variable fragments (scFv), isolated from a phage-display IgA antibody library, were characterized by immunohistochemistry and ELISA, and injected in mice to study their effects on motor coordination. We found that 75% of the CD patient population without evidence of neurological involvement, has circulating anti-neural IgA and/or IgG antibodies. Two anti-TG2 scFvs, cloned from one CD patient, stained blood vessels but only one reacted with neurons. This anti-TG2 antibody showed cross reactivity with the transglutaminase isozymes TG3 and TG6. Intraventricular injection of the anti-TG2 or the anti-TG2/3/6 cross-reactive scFv provoked transient, equally intensive ataxia in mice. Conclusion The serum from CD patients contains anti-TG2, TG3 and TG6 antibodies that may potentially cause ataxia. PMID:20300628

  6. Pharmacogenetic associations of the type-3 metabotropic glutamate receptor (GRM3) gene with working memory and clinical symptom response to antipsychotics in first-episode schizophrenia

    PubMed Central

    Reilly, James L.; Harris, Margret S. H.; Patel, Shitalben R.; Kittles, Rick; Badner, Judith A.; Prasad, Konasale M.; Nimgaonkar, Vishwajit L.; Keshavan, Matcheri S.; Sweeney, John A.

    2014-01-01

    Rationale Type-3 metabotropic glutamate receptor gene (GRM3) single nucleotide polymorphisms (SNPs) have been associated with cognitive performance and prefrontal cortex brain activity in chronically treated schizophrenia patients. Whether these SNPs are associated with cognitive and symptom response to antipsychotic therapy has not been extensively evaluated. Objectives The aim of the study was to examine pharmacogenetic relationships between GRM3 and selected variants in relevant dopamine genes with changes in spatial working memory and clinical symptoms after treatment. Methods Sixty-one untreated first-episode schizophrenia patients were assessed before and after 6 weeks of antipsychotic pharmacotherapy, primarily consisting of risperidone. Patients’ level of cognitive performance on a spatial working memory task was assessed with a translational oculomotor paradigm. Changes after treatment in cognitive and clinical measures were examined in relationship to genetic polymorphisms in the GRM3, COMT, and DRD2/ANKK1 gene regions. Results Spatial working memory performance worsened after antipsychotic treatment. This worsening was associated with GRM3 rs1468412, with the genetic subgroup of patients known to have altered glutamate activity having greater adverse changes in working memory performance after antipsychotic treatment. Negative symptom improvement was associated with GRM3 rs6465084. There were no pharmacogenetic associations between DRD2/ANKK1 and COMT with working memory changes or symptom response to treatment. Conclusions These findings suggest important pharmacogenetic relationships between GRM3 variants and changes in cognition and symptom response with exposure to antipsychotics. This information may be useful in identifying patients susceptible to adverse cognitive outcomes associated with antipsychotic treatment and suggest that glutamatergic mechanisms contribute to such effects. PMID:25096017

  7. White matter damage is related to ataxia severity in SCA3.

    PubMed

    Kang, J-S; Klein, J C; Baudrexel, S; Deichmann, R; Nolte, D; Hilker, R

    2014-02-01

    Spinocerebellar ataxia type 3 (SCA3) is the most frequent inherited cerebellar ataxia in Europe, the US and Japan, leading to disability and death through motor complications. Although the affected protein ataxin-3 is found ubiquitously in the brain, grey matter atrophy is predominant in the cerebellum and the brainstem. White matter pathology is generally less severe and thought to occur in the brainstem, spinal cord, and cerebellar white matter. Here, we investigated both grey and white matter pathology in a group of 12 SCA3 patients and matched controls. We used voxel-based morphometry for analysis of tissue loss, and tract-based spatial statistics (TBSS) on diffusion magnetic resonance imaging to investigate microstructural pathology. We analysed correlations between microstructural properties of the brain and ataxia severity, as measured by the Scale for the Assessment and Rating of Ataxia (SARA) score. SCA3 patients exhibited significant loss of both grey and white matter in the cerebellar hemispheres, brainstem including pons and in lateral thalamus. On between-group analysis, TBSS detected widespread microstructural white matter pathology in the cerebellum, brainstem, and bilaterally in thalamus and the cerebral hemispheres. Furthermore, fractional anisotropy in a white matter network comprising frontal, thalamic, brainstem and left cerebellar white matter strongly and negatively correlated with SARA ataxia scores. Tractography identified the thalamic white matter thus implicated as belonging to ventrolateral thalamus. Disruption of white matter integrity in patients suffering from SCA3 is more widespread than previously thought. Moreover, our data provide evidence that microstructural white matter changes in SCA3 are strongly related to the clinical severity of ataxia symptoms.

  8. The response of ataxia-telangiectasia lymphoblastoid cells to neutron irradiation

    SciTech Connect

    Houldsworth, J.; Cohen, D.; Singh, S.; Lavin, M.F. )

    1991-03-01

    The response of control and ataxia-telangiectasia (A-T) cells to increasing doses of high-linear-energy-transfer (LET) ionizing radiation (neutrons) was compared. Ataxia-telangiectasia cells were markedly more sensitive to neutron irradiation than were control cells. The D0 value for the two A-T cell lines was 0.4 Gy while the value for controls was approximately 1.4 Gy. Fast neutrons were considerably more effective than gamma rays in inducing cell death in both cell types, but the sensitivity factor remained approximately the same as with gamma rays. A minimal depression of DNA synthesis was observed in ataxia-telangiectasia cells after neutron irradiation, similar to that reported previously after gamma irradiation. The extent of inhibition was not significantly greater in control cells, contrary to that seen with gamma rays. In time-course experiments a significant difference in degree of inhibition of DNA synthesis was observed between the cell types. Low doses of fast neutrons induced a G2-phase delay in both cell types, but the degree and extent of this delay was greater in ataxia-telangiectasia cells as observed previously with low-LET radiation.

  9. Clinical assessment of the sensory ataxias; diagnostic algorithm with illustrative cases.

    PubMed

    Chhetri, S K; Gow, D; Shaunak, S; Varma, A

    2014-08-01

    Ataxia is a common neurological syndrome resulting from cerebellar, vestibular or sensory disorders. The recognition and characterisation of sensory ataxia remains a challenge. Cerebellar ataxia is the more common and easier to identify; sensory ataxia is often mistaken for cerebellar ataxia, leading to diagnostic errors and delays. A coherent aetiological work-up is only possible if clinicians initially recognise sensory ataxia. We discuss ways to separate sensory from cerebellar ataxia, the causes of sensory ataxia and the clinico-neurophysiological syndromes causing the sensory ataxia syndromes. We summarise a logical tiered approach as a diagnostic algorithm.

  10. Childhood colon cancer in a patient with ataxia telangiectasia

    PubMed Central

    Jo, Kyeong Min; Park, Jong Ha; Kim, Tae Oh; Jeong, Heui Jeong; Heo, Chang Min; Jang, Ji Hoon; Hur, So Chong; Jeong, Na Ri; Jeong, Su Jin; Seol, Sang Hoon; Nam, Kyung Han

    2016-01-01

    Background Ataxia-telangiectasia (AT) is a rare autosomal recessive disease characterized by progressive neurologic impairment and cerebellar ataxia. In addition, patients with this disease are known to have an inherent increased susceptibility to the development of cancer, predominantly hematologic malignancies. Methods We report the case of a young boy with AT from Russia, who had abdominal pain. Laboratory tests and radiologic examinations were performed to him. Results After abdominal computed tomography (CT), colonoscopy and surgical interventions, the young boy was diagnosed with colon cancer that had signet ring cell features. Conclusions It is known that the patient with AT appeared to be predisposed to various tumors, including leukemia or lymphoma, which are more common in childhood. Even if the patient with AT could have solid tumor such as stomach cancer or breast cancer, it is less likely to have colon cancer, especially signet ring cell type. Actually, no case of colon cancer has ever been reported, especially in young patient and hence, we have focused on this point and are hereby reporting this unique case. PMID:26855947

  11. Cerebrospinal Fluid Biomarkers in Spinocerebellar Ataxia: A Pilot Study.

    PubMed

    Brouillette, Ashley M; Öz, Gülin; Gomez, Christopher M

    2015-01-01

    Neurodegenerative diseases, including the spinocerebellar ataxias (SCA), would benefit from the identification of reliable biomarkers that could serve as disease subtype-specific and stage-specific indicators for the development and monitoring of treatments. We analyzed the cerebrospinal fluid (CSF) level of tau, α-synuclein, DJ-1, and glial fibrillary acidic protein (GFAP), proteins previously associated with neurodegenerative processes, in patients with the autosomal dominant SCA1, SCA2, and SCA6, and the sporadic disease multiple system atrophy, cerebellar type (MSA-C), compared with age-matched controls. We estimated disease severity using the Scale for the Assessment and Rating of Ataxia (SARA). Most proteins measured trended higher in disease versus control group yet did not reach statistical significance. We found the levels of tau in both SCA2 and MSA-C patients were significantly higher than control. We found that α-synuclein levels were lower with higher SARA scores in SCA1 and tau levels were higher with greater SARA in MSA-C, although this final correlation did not reach statistical significance after post hoc correction. Additional studies with larger sample sizes are needed to improve the power of these studies and validate the use of CSF biomarkers in SCA and MSA-C.

  12. Episodic future thinking.

    PubMed

    Atance, Cristina M.; O'Neill, Daniela K.

    2001-12-01

    Thinking about the future is an integral component of human cognition - one that has been claimed to distinguish us from other species. Building on the construct of episodic memory, we introduce the concept of 'episodic future thinking': a projection of the self into the future to pre-experience an event. We argue that episodic future thinking has explanatory value when considering recent work in many areas of psychology: cognitive, social and personality, developmental, clinical and neuropsychology. Episodic future thinking can serve as a unifying concept, connecting aspects of diverse research findings and identifying key questions requiring further reflection and study.

  13. Grenvillian magmatism in the northern Virginia Blue Ridge: Petrologic implications of episodic granitic magma production and the significance of postorogenic A-type charnockite

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.; Borduas, E.A.; Dickin, A.P.; McNutt, R.H.; Fanning, C.M.

    2006-01-01

    Grenvillian (1.2 to 1.0 Ga) plutonic rocks in northern Virginia preserve evidence of episodic, mostly granitic magmatism that spanned more than 150 million years (m.y.) of crustal reworking. Crystallization ages determined by sensitive high resolution ion microprobe (SHRIMP) U-Pb isotopic analyses of zircon and monazite, combined with results from previous studies, define three periods of magmatic activity at 1183-1144 Ma (Magmatic Interval I), 1120-1111 Ma (Magmatic Interval II), and 1078-1028 Ma (Magmatic Interval III). Magmatic activity produced dominantly tholeiitic plutons composed of (1) low-silica charnockite, (2) leucogranite, (3) non-leucocratic granitoid (with or without orthopyroxene (opx)), and (4) intermediate biotite-rich granitoid. Field, petrologic, geochemical, and geochronologic data indicate that charnockite and non-charnockitic granitoids were closely associated in both space and time, indicating that presence of opx is related to magmatic conditions, not metamorphic grade. Geochemical and Nd isotopic data, combined with results from experimental studies, indicate that leucogranites (Magmatic Intervals I and III) and non-leucocratic granitoids (Magmatic Intervals I and II) were derived from parental magmas produced by either a high degree of partial melting of isotopically evolved tonalitic sources or less advanced partial melting of dominantly tonalitic sources that also included a more mafic component. Post-orogenic, circa 1050 Ma low-silica charnockite is characterized by A-type compositional affinity including high FeOt/(FeOt + MgO), Ga/Al, Zr, Nb, Y, and Zn, and was derived from parental magmas produced by partial melting of potassic mafic sources in the lower crust. Linear geochemical trends defined by leucogranites, low-silica charnockite, and biotite-rich monzogranite emplaced during Magmatic Interval III reflect differences in source-related characteristics; these features do not represent an igneous fractionation sequence. A

  14. Echocardiographic evaluation of verapamil in Friedreich's ataxia.

    PubMed Central

    Casazza, F; Ferrari, F; Finocchiaro, G; Hartwig, J; Piccone, U; Tramarin, R; Morpurgo, M

    1986-01-01

    Nine patients with hypertrophic cardiomyopathy associated with Friedreich's ataxia were treated with the calcium antagonist verapamil, which is known to reduce myocardial hypertrophy and improve diastolic function in patients with idiopathic hypertrophic cardiomyopathy. Daily oral doses of 7 mg/kg were given for a mean (SD) of 24 (8) months. M mode echocardiography performed at the start of the study and at the end of follow up showed no significant difference between the treated group and an untreated control group of nine patients. Verapamil produced no changes in left ventricular wall thickness, mass index, left ventricular internal diameter, fractional shortening, peak normalised lengthening rate, peak rate of septal and posterior wall thinning, and time from minimum ventricular cavity dimension to mitral valve opening. Myocardial calcium overload has been suggested as a cause of cardiac disease in Friedreich's ataxia; however, verapamil had no beneficial effect on these patients with established myocardial hypertrophy. PMID:3964508

  15. Ataxia in institutionalized patients with epilepsy.

    PubMed

    Young, G B; Oppenheimer, S R; Gordon, B A; Wells, G A; Assis, L P; Kreeft, J H; Lohuis, N A; Blume, W T

    1994-08-01

    Fifty-four per cent of 41 chronically institutionalized adult patients with epilepsy had ataxia of gait (wide mean stride width). None of the following correlated with stride width: serum phenytoin, previous phenytoin toxicity, seizure frequency, or status epilepticus. Seventeen of the 41 patients had computed tomographic head scans. Patients with radiological evidence of cerebellar atrophy had a wider mean stride width, later age of onset of seizures, greater peak serum concentrations of phenytoin than did those without cerebellar atrophy. Ataxia of gait was inconsistently associated with cerebellar atrophy. Elevated serum/plasma concentrations of phenytoin may be a risk factor for cerebellar atrophy, but seizure frequency or status epilepticus are not independently related to this complication.

  16. Eye movements in ataxia-telangiectasia.

    PubMed

    Baloh, R W; Yee, R D; Boder, E

    1978-11-01

    The spectrum of eye movement disorders in six patients with ataxia-telangiectasia at different stages of progression was assessed quantitatively by electrooculography. All patients demonstrated abnormalities of voluntary and involuntary saccades. The youngest and least involved patient had significantly increased reaction times of voluntary saccades, but normal accuracy and velocity. The other patients demonstrated increased reaction times and marked hypometria of horizontal and vertical voluntary saccades. Saccade velocity remained normal. Vestibular and optokinetic fast components (involuntary saccades) had normal amplitude and velocity but the eyes deviated tonically in the direction of the slow component. We conclude that patients with ataxia-telangiectasia have a defect in the initiation of voluntary and involuntary saccades in the earliest stages. These findings are distinctly different from those in other familial cerebellar atrophy syndromes.

  17. Uterine tumors in ataxia-telangiectasia.

    PubMed

    Gatti, R A; Nieberg, R; Boder, E

    1989-02-01

    Roughly one-third of patients with ataxia-telangiectasia (AT) develop malignant tumors, usually of lymphoid origin. AT patients also exhibit progeric changes. We describe three patients, between the ages of 27 and 32 years, with uterine tumors: one with a frank leiomyosarcoma and chronic T-cell leukemia, one with a multilobulated leiomyoma of uncertain malignant potential, and one with an unremarkable leiomyoma. Thus, the spectrum of tumors in AT patients beyond adolescence includes nonlymphoid malignancies and precocious, benign leiomyomas.

  18. Radiological imaging in ataxia telangiectasia: a review.

    PubMed

    Sahama, Ishani; Sinclair, Kate; Pannek, Kerstin; Lavin, Martin; Rose, Stephen

    2014-08-01

    The human genetic disorder ataxia telangiectasia (A-T) is characterised by neurodegeneration, immunodeficiency, radiosensitivity, cell cycle checkpoint defects, genomic instability and cancer predisposition. Progressive cerebellar ataxia represents the most debilitating aspect of this disorder. At present, there is no therapy available to cure or prevent the progressive symptoms of A-T. While it is possible to alleviate some of the symptoms associated with immunodeficiency and deficient lung function, neither the predisposition to cancer nor the progressive neurodegeneration can be prevented. Significant effort has focused on improving our understanding of various clinical, genetic and immunological aspects of A-T; however, little attention has been directed towards identifying altered brain structure and function using MRI. To date, most imaging studies have reported radiological anomalies in A-T. This review outlines the clinical and biological features of A-T along with known radiological imaging anomalies. In addition, we briefly discuss the advent of high-resolution MRI in conjunction with diffusion-weighted imaging, which enables improved investigation of the microstructural tissue environment, giving insight into the loss in integrity of motor networks due to abnormal neurodevelopmental or progressive neurodegenerative processes. Such imaging approaches have yet to be applied in the study of A-T and could provide important new information regarding the relationship between mutation of the ataxia telangiectasia mutated (ATM) gene and the integrity of motor circuitry. PMID:24683014

  19. Abnormal N400 word repetition effects in fragile X-associated tremor/ataxia syndrome

    PubMed Central

    Chan, Shiaohui; Wong, Ling M.; Schneider, Andrea; Seritan, Andreea; Niese, Adam; Yang, Jin-Chen; Laird, Kelsey; Teichholtz, Sara; Khan, Sara; Tassone, Flora; Hagerman, Randi

    2010-01-01

    Fragile X-associated tremor/ataxia syndrome, a neurodegenerative disorder associated with premutation alleles (55–200 CGG repeats) of the FMR1 gene, affects many carriers in late-life. Patients with fragile X-associated tremor/ataxia syndrome typically have cerebellar ataxia, intranuclear inclusions in neurons and astrocytes, as well as cognitive impairment. Dementia can also be present with cognitive deficits that are as severe as in Alzheimer’s disease, however frontosubcortical type impairment is more pronounced in fragile X-associated tremor/ataxia syndrome. We sought to characterize the P600 and N400 word repetition effects in patients with fragile X-associated tremor/ataxia syndrome, using an event-related potential word repetition paradigm with demonstrated sensitivity to very early Alzheimer’s disease. We hypothesized that the fragile X-associated tremor/ataxia syndrome-affected participants with poor declarative verbal memory would have pronounced abnormalities in the P600 repetition effect. In the event-related potential experiment, subjects performed a category decision task whilst an electroencephalogram was recorded. Auditory category statements were each followed by an associated visual target word (50% ‘congruous’ category exemplars, 50% ‘incongruous’ nouns). Two-thirds of the stimuli (category statement–target word pairs) were repeated, either at short-lag (∼10–40 s) or long-lag (∼100–140 s). The N400 and P600 amplitude data were submitted to split-plot analyses of variance. These analyses of variance showed a highly significant reduction of the N400 repetition effect (F = 22.5, P < 0.001), but not of the P600 repetition effect, in mild fragile X-associated tremor/ataxia syndrome (n = 32, mean age = 68.7, mean Mini-Mental State Examination score = 26.8). Patients with fragile X-associated tremor/ataxia syndrome had significantly smaller late positive amplitude (550–800 ms post-stimulus onset) to congruous words (P = 0

  20. Genetics Home Reference: PRICKLE1-related progressive myoclonus epilepsy with ataxia

    MedlinePlus

    ... myoclonus epilepsy with ataxia PRICKLE1-related progressive myoclonus epilepsy with ataxia Enable Javascript to view the expand/ ... All Close All Description PRICKLE1 -related progressive myoclonus epilepsy with ataxia is a rare inherited condition characterized ...

  1. Response of sensitive human ataxia and resistant T-1 cell lines to accelerated heavy ions

    SciTech Connect

    Tobias, C.A.; Blakely, E.A.; Chang, P.Y.; Lommel, L.; Roots, R.

    1983-07-01

    The radiation dose responses of fibroblast from a patient with Ataxia telangiectasis (AT-2SF) and an established line of human T-1 cells were studied. Nearly monoenergetic accelerated neon and argon ions were used at the Berkeley Bevalac with various residual range values. The LET of the particles varied from 30 keV/..mu..m to over 1000 keV/..mu..m. All Ataxia survival curves were exponential functions of the dose. Their radiosensitivity reached peak values at 100 to 200 keV/..mu..m. Human T-1 cells have effective sublethal damage repair as has been evidenced by split dose experiments, and they are much more resistant to low LET than to high LET radiation. The repair-misrepair model has been used to interpret these results. We have obtained mathematical expressions that describe the cross sections and inactivation coefficients for both human cell lines as a function of the LET and the type of particle used. The results suggest either that high-LET particles induce a greater number of radiolesions per track or that heavy-ions at high LET induce lesions that kill cells more effectively and that are different from those produced at low LET. We assume that the lesions induced in T-1 and Ataxia cells are qualitatively similar and that each cell line attempts to repair these lesions. The result in most irradiated Ataxia cells, however, is either lethal misrepair or incomplete repair leading to cell death. 63 references, 10 figures, 1 table.

  2. Kidney infarction in Friedreich's ataxia with dilated cardiomyopathy.

    PubMed

    Evangelopoulos, Dimitrios Stergios; Pirvu, Tatiana Nataly; Exadaktylos, Aristomenis; Kohl, Sandro

    2012-09-30

    A 37-year-old man with advanced Friedreich's ataxia was referred to our emergency department with acute exacerbated abdominal pain of unclear aetiology. Laboratory tests showed slightly increased inflammatory parameters, elevated troponin and B-type natriuretic peptide, as well as minimal proteinuria. Transthoracic echocardiography revealed a pre-existing dilated cardiomyopathy. Abdominal sonography showed no pathological alterations. Owing to persistent pain under analgesia, a contrast-enhanced CT-abdomen was performed, which revealed a non-homogeneous perfusion deficit of the right kidney, although neither abdominal vascular alteration, cardiac thrombus, deep vein thrombosis nor a patent foramen ovale could be detected. Taking all clinical and radiological results into consideration, the current incident was diagnosed as a thromboembolic kidney infarction. As a consequence, lifelong oral anticoagulation was initiated.

  3. Clinical and virologic response to episodic acyclovir for genital ulcers among HIV-1 seronegative, herpes simplex virus type 2 seropositive African women: a randomized, placebo-controlled trial.

    PubMed

    Baeten, Jared M; Reid, Stewart E; Delany-Moretlwe, Sinead; Hughes, James P; Wang, Richard S; Wilcox, Ellen; Limbada, Mohammed; Akpomiemie, Godspower; Corey, Lawrence; Wald, Anna; Celum, Connie

    2012-01-01

    In a randomized trial among African women with recurrent genital herpes, episodic acyclovir therapy resulted in modestly greater likelihood of lesion healing (hazard ratio [HR] = 1.48, P = 0.098; mean, 5.1 vs. 6.0 days) and cessation of herpes simplex virus shedding (HR = 1.88, P = 0.008; mean, 3.0 vs. 5.0 days) compared with placebo, similar to results of studies in high-income countries (ClinicalTrials.gov registration NCT00808405).

  4. Spinocerebellar ataxia in the Italian Spinone dog is associated with an intronic GAA repeat expansion in ITPR1.

    PubMed

    Forman, Oliver P; De Risio, Luisa; Matiasek, Kaspar; Platt, Simon; Mellersh, Cathryn

    2015-02-01

    Spinocerebellar ataxia in the Italian Spinone dog breed is characterised by a progressive gait abnormality that manifests from approximately 4 months of age. The disorder shows an autosomal recessive mode of inheritance, and affected individuals are usually euthanized by one year of age on welfare grounds due to an inability to ambulate. Using a homozygosity mapping technique with six cases and six controls, we mapped the disease locus to chromosome 20 of the canine genome. Linkage analysis across an extended pedigree confirmed the association, with microsatellite C20.374 achieving a maximal LOD score of 4.41. All five genes within the disease-associated interval were exon resequenced, although no exonic candidate mutations were identified. A targeted resequencing approach was therefore adopted to sequence the entire disease-associated interval. Analysis of the sequencing data revealed a GAA repeat expansion in intron 35 of ITPR1, which was homozygous in all cases and heterozygous in obligate carriers. Partial impairment of cerebellar ITPR1 expression in affected dogs was demonstrated by immunohistochemistry. Given the association of ITPR1 mutations with spinocerebellar ataxia (SCA) type 15 (also designated SCA16) in humans and that an intronic GAA repeat expansion has been shown to cause Friedreich ataxia, the repeat expansion is an excellent candidate for the cause of spinocerebellar ataxia in the Italian Spinone. This finding represents the first naturally occurring pathogenic intronic GAA repeat expansion in a non-human species and a novel mechanism for ITPR1 associated spinocerebellar ataxia.

  5. Low bone mineral density in Friedreich ataxia.

    PubMed

    Eigentler, Andreas; Nachbauer, Wolfgang; Donnemiller, Eveline; Poewe, Werner; Gasser, Rudolf W; Boesch, Sylvia

    2014-10-01

    Friedreich ataxia (FRDA) is the most common inherited neurodegenerative ataxia. Apart from predominant neurological features an involvement of the skeletal system in terms of scoliosis and foot deformities is frequent. Disease-related falls, mobility restrictions, and wheelchair-dependency in later disease stages might additionally compromise bone structure in FRDA. The aim of this pilot study was to systematically evaluate the bone status in a representative FRDA cohort. Twenty-eight FRDA patients became enrolled in this cross-sectional study. Neurological assessment, a questionnaire comprising the history of fractures and osteoporosis as well as osteodensitometric measurements complemented with general and bone-specific laboratory parameters were performed. The WHO Fracture Risk Assessment tool (FRAX®) was applied, calculating the 10-year risk of suffering an osteoporotic fracture. Six patients (21.4 %) presented with a bone mineral density below the expected range for age in at least one of the examined sites (femoral neck, lumbar spine, and forearm) irrespective of their gender. Corresponding Z scores were significantly lower compared to normative values for the femoral neck and lumbar spine. Vitamin D status was insufficient in 11 and deficient in 8 FRDA patients. There was a strong negative correlation between ataxia severity, GAA repeat expansion and bone density in the femoral neck of FRDA patients. This is the first report of an increased rate of low bone mineral density in FRDA. Given the increased risk of falls, this data rectifies routine bone mineral density measurements in FRDA which may help to initiate therapeutic interventions to prevent this condition.

  6. Friedreich's ataxia--a case of aberrant transcription termination?

    PubMed

    Butler, Jill Sergesketter; Napierala, Marek

    2015-01-01

    Reduced expression of the mitochondrial protein Frataxin (FXN) is the underlying cause of Friedreich's ataxia. We propose a model of premature termination of FXN transcription induced by pathogenic expanded GAA repeats that links R-loop structures, antisense transcription, and heterochromatin formation as a novel mechanism of transcriptional repression in Friedreich's ataxia.

  7. Dysarthria and Friedreich's Ataxia: What Can Intelligibility Assessment Tell Us?

    ERIC Educational Resources Information Center

    Blaney, Bronagh; Hewlett, Nigel

    2007-01-01

    Background: Friedreich's ataxia is one of the most common hereditary disorders of the nervous system. Dysarthria is a pervasive symptom of Friedreich's ataxia, yet the clinical presentation of speech symptoms remains poorly understood, leaving clinicians without the evidence required to develop therapy interventions. Aims: The research reported…

  8. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    ERIC Educational Resources Information Center

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  9. Recent advances in the genetics of cerebellar ataxias.

    PubMed

    Sailer, Anna; Houlden, Henry

    2012-06-01

    The hereditary cerebellar ataxias are a clinically and genetically heterogeneous group of disorders that primarily affect the cerebellum; often there are additional features such as neuropathy, cognitive decline, or maculopathy that help define the clinical subtype of ataxia. They are commonly classified according to their mode of inheritance into autosomal dominant, autosomal recessive, X-linked, and mitochondrial forms. Great advances have been made in understanding the genetics of cerebellar ataxias in the last 15 years. At least 36 different forms of ADCA are known, 20 autosomal-recessive, two X-linked, and several forms of ataxia associated with mitochondrial defects are known to date. However, in about 40 % of suspected genetically determined ataxia cases, the underlying genetic defect remains undetermined. Although the majority of disease genes have been found in the last two decades, over the last 2 years the genetics has undergone a methodological revolution. New DNA sequencing technologies are enabling us to investigate the whole or large targeted proportions of the genome in a rapid, affordable, and comprehensive way. Exome and targeted sequencing has recently identified four new genes causing ataxia: TGM6, ANO10, SYT14, and rundataxin. This approach is likely to continue to discover new ataxia genes and make screening of existing genes more effective. Translating the genetic findings into isolated and overlapping disease pathways will help stratify patient groups and identify therapeutic targets for ataxia that have so far remained undiscovered.

  10. [Buspirone in the treatment of cerebellar ataxia].

    PubMed

    Svetel, M; Vojvodić, N; Filipović, S R; Dragasević, N; Sternić, N; Kostić, V S

    1999-01-01

    Ataxia is defined as a disturbance which, quite independent of any motor weakness, alters direction and extent of voluntary movement and impairs the sustained voluntary of reflex muscle contraction necessary for maintaining postiue and equilibrium [1]. Since pathophysiological basis of cerebeller ataxia is still not completely clear, the current therapeutic attempts are mainly symptom-oriented [3]. One possible approach could be a modification of potentially involved neurotransmitter systems of the cerebellum, where particularly interesting is the serotonergic system. However, attempts with levorotatory form of tryptophan (5-HT precursors) proved to be ineffective [4, 5]. Since receptors in the cerebellum are mainly of 5-HTIA subtype, the use of specific agonists might be a more reasonable therapy [6]. The study initially involved 11 patients, but only 9 completed the protocol due to unfavorable side effects. Our open label prospective study lasted for 15 weeks. The patients were tested before the beginning of the treatment (initial visit), at 7th (first visit) and 11th week (second visit) of continuous therapy, and eventually at 15th week (final visit). The daily dose was 40 mg at the first and 60 mg at the second visit. We used the evaluation scale gurposed for cerebellar functions testing (speech, gait, coordination and ocular movements). Significant improvement of cerebellar ataxia in patients under buspiron therapy has been noted. We analyzed the results obtained from our 9 patients (4 females and 5 males), of which 6 patients suffered from cerebellar degeneration, one from multiple sclerosis, one from Ramsey-Hunt syndrome, and one from pontine myelinolysis. At the initial visit the patient score was 18.9 (SD = 7.3), subsequently, at the iirst visit the score was 15.4 (SD = 8), while the second visit yielded the score of 12.9 (SD = 8.2), and finally, after a two-weeks lasting wash-out period, it was 17.7 (SD = 7.1) (Table 1). It was found that patients

  11. Survival and severity in dominant cerebellar ataxias

    PubMed Central

    Monin, Marie-Lorraine; Tezenas du Montcel, Sophie; Marelli, Cecilia; Cazeneuve, Cecile; Charles, Perrine; Tallaksen, Chantal; Forlani, Sylvie; Stevanin, Giovanni; Brice, Alexis; Durr, Alexandra

    2015-01-01

    Inherited spinocerebellar ataxias (SCAs) are known to be genetically and clinically heterogeneous. Whether severity and survival are variable, however, is not known. We, therefore, studied survival and severity in 446 cases and 509 relatives with known mutations. Survival was 68 years [95% CI: 65–70] in 223 patients with polyglutamine expansions versus 80 years [73–84] in 23 with other mutations (P < 0.0001). Disability was also more severe in the former: at age 60, 30% were wheelchair users versus 3% with other SCAs (P < 0.001). This has implications for genetic counseling and the design of therapeutic trials. PMID:25750924

  12. Transfer factor therapy in ataxia--telangiectasia.

    PubMed Central

    Berkel, A I; Ersoy, F; Epstein, L B; Spitler, L E

    1977-01-01

    The effects of weekly doses of transfer factor in four patients with ataxia--telangiectasia were investigated following a total course of 2 months therapy. Transfer factor administration showed no influence on the absolute lymphocyte counts, T-cell rosettes or antibody titres to EBV, but it caused conversion of skin-test reactivity and production of MIF to various antigens. There was a dissociation in blastic transformation response, the skin-test responses and MIF production. Serum interferon levels were low before, and 2, 6 and 24 hr after, therapy. Clinically no improvement in infections was observed following transfer factor therapy. PMID:201409

  13. High altitude ataxia--its assessment and relevance.

    PubMed

    Bird, Brynn A; Wright, Alexander David; Wilson, Mark H; Johnson, Brian G; Imray, Chris H

    2011-06-01

    Ataxia at altitude is reviewed in relation to acute mountain sickness (AMS). The cause of ataxia occurring at altitude is unknown but may be hypoxia affecting basal ganglia and hindbrain activity. Ataxia is an important sign of high altitude cerebral edema (HACE) but is less well-established as a clinical feature of AMS. Assessment of ataxia is part of the Environmental Systems and the Lake Louise questionnaires, together with a heel-to-toe measurement. More precise measures of ataxia include the Sharpened Romberg Test (SRT) and the use of unstable platforms. Isolated ataxia at altitude may not be related to AMS or HACE. Age affects ataxia and careful baseline measurements are essential in older subjects before results at high altitude can be interpreted. Testing for ataxia needs to be standardized with sufficient learning time. Ataxia should be distinguished from weakness or fatigue occurring at altitude. Specialized tests have not been shown to be clinically important. Our results above 5000 m showed that an abnormal SRT may be specific for AMS but with relatively poor sensitivity. Wobble board results have not correlated with AMS scores consistently. Other authors using an unstable platform in a chamber and static posturography during 3 days of exposure to 4559 m also found no relationship with AMS scores. Ataxia is a common and important clinical feature of HACE but is unhelpful in the assessment of mild or even moderate AMS in the absence of an altered mental state. The simple heel-to-toe test remains a useful part of the assessment of more severe AMS bordering on HACE.

  14. Friedreich`s ataxia in American families

    SciTech Connect

    D`Costa, A.; Maguire, B.A.; Sylvester, J.E.

    1994-09-01

    Freidreich`s ataxia (FRDA) is a progressive neurodegenerative disorder presenting with dysarthia, loss of tendon reflexes, and ataxic gait. Both diabetes mellitus and cardiomyopathy are frequently found associated with the disease. The gene, FRDA, has been localized to 9q13-21. Recent reports of recombination events in individuals homozygous by descent have positioned the gene to a 450 KB region in the FRDA locus centromeric to the original markers. Candidate cDNA`s have been isolated from part of this region, and characterized, but not shown to be responsible for the disease. We have performed linkage analysis on 46 American families with markers in the FRDA region. A recombination has been detected in a family which has the phenotypic criteria for Friedreich`s; none of the three affected exhibit signs of cardiomyopathy which is a required diagnostic criteria. Since this recombination lies within the now excluded D9S5/D9S15 region, it is being tested for linkage to the {open_quotes}ataxia with selective vitamin E deficiency{close_quotes} (AVED) locus on chromosome 8q. Our lab has work in progress to subclone appropriate regions from YACs in order to identify expressed sequences and nucleotide variations (by SSCP) in the FRDA locus.

  15. Differential Progression of Dysphagia in Heredity and Sporadic Ataxias Involving Multiple Systems.

    PubMed

    Isono, Chiharu; Hirano, Makito; Sakamoto, Hikaru; Ueno, Shuichi; Kusunoki, Susumu; Nakamura, Yusaku

    2015-01-01

    Sporadic ataxia affecting multiple systems, such as cerebellar, extrapyramidal, and autonomic systems, is known as multiple system atrophy cerebellar type (MSA-C), while similar multisystem involvements are seen in certain types of hereditary ataxia, such as spinocerebellar ataxia type 3 (SCA3). Dysphagia is a common symptom that can predispose to aspiration pneumonia, a major cause of death in patients with these diseases. Although the progressions of dysphagia in patients with MSA-C have been reported sporadically, those in SCA3 have not been reported. We retrospectively compared the results of repetitive videofluoroscopic examinations in patients with SCA3 (n = 6) and in those with MSA-C (n = 7). The result showed that the gross progression of dysphagia was significantly slower in patients with SCA3 than in those with MSA-C, but the maximum progression speeds were not significantly different. The dysphagia severities were not associated with impaired activity of daily living evaluated by the Barthel index in MSA-C, but were associated in SCA3. Despite the small number of patients enrolled, these data suggest that physicians should monitor swallowing functions in patients with SCA3 after mild dysphagia develops because it may progress as rapidly as it does in MSA-C.

  16. Episodic coronal heating

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Dixon, W. W.; Klimchuk, J. A.; Antiochos, S. K.

    1990-01-01

    A study is made of the observational consequences of the hypothesis that there is no steady coronal heating, the solar corona instead being heated episodically, such that each short burst of heating is followed by a long period of radiative cooling. The form of the resulting contribution to the differential emission measure (DEM), and to a convenient related function (the differential energy flux, DEF) is calculated. Observational data for the quiet solar atmosphere indicate that the upper branch of the DEM, corresponding to temperatures above 100,000 K, can be interpreted in terms of episodic energy injection at coronal temperatures.

  17. Fifteen-minute consultation: The child with acute ataxia.

    PubMed

    Prasad, Manish; Ong, Min Tsui; Setty, Gururaj; Whitehouse, William P

    2013-12-01

    Acute ataxia is a relatively common presentation to the paediatric acute services or child neurologist. Although the cause of ataxia is most often benign, it is important during initial assessment to recognise or exclude serious causes including brain tumour and central nervous system infections. It is equally important to recognise the non-neurological causes of unsteady gait and to avoid unnecessary investigations. In this review, we have presented a diagnostic approach to a child presenting with acute ataxia and described various causes, their treatments and outcomes.

  18. Familial periodic cerebellar ataxia without myokymia maps to a 19-cM region on 19p13

    SciTech Connect

    Teh, B.T.; Lindblad, K.; Betz, R.

    1995-06-01

    Familial periodic cerebellar ataxia (FPCA) is a heterogenous group of rare autosomal dominant disorders characterized by episodic cerebellar disturbance. A potassium-channel gene (KCNA1) has been found to be responsible for one of its subgroups, familial periodic cerebellar ataxia with myokymia (FPCA/+M; MIM 160120). A different subgroup that is not associated with myokymia (FPCA/-M; MIM 108500) was recently mapped to chromosome 19p. Here we have performed linkage analysis in two large families with FPCA/-M that also demonstrated neurodegenerative pathology of the cerebellum. Three markers in 19p13 gave significant lod scores (>3.0), while linkage to KCNA1 and three known loci for spinocerebellar ataxia (SCA1, SCA2, and SCA3) was excluded. The highest lod score was obtained with the marker D19S413 (4.4 at recombination fraction 0), and identification of meiotic recombinants in affected individuals placed the locus between the flanking markers D19S406 and D19S226, narrowing the interval to 19 cM. A CAG trinucleotide-repeat expansion was detected in one family but did not consegregate with the disease. 30 refs., 3 figs., 1 tab.

  19. Animal and cellular models of Friedreich ataxia.

    PubMed

    Perdomini, Morgane; Hick, Aurore; Puccio, Hélène; Pook, Mark A

    2013-08-01

    The development and use of animal and cellular models of Friedreich ataxia (FRDA) are essential requirements for the understanding of FRDA disease mechanisms and the investigation of potential FRDA therapeutic strategies. Although animal and cellular models of lower organisms have provided valuable information on certain aspects of FRDA disease and therapy, it is intuitive that the most useful models are those of mammals and mammalian cells, which are the closest in physiological terms to FRDA patients. To date, there have been considerable efforts put into the development of several different FRDA mouse models and relevant FRDA mouse and human cell line systems. We summarize the principal mammalian FRDA models, discuss the pros and cons of each system, and describe the ways in which such models have been used to address two of the fundamental, as yet unanswered, questions regarding FRDA. Namely, what is the exact pathophysiology of FRDA and what is the detailed genetic and epigenetic basis of FRDA?

  20. Cardiomyopathy in Friedreich ataxia: clinical findings and research.

    PubMed

    Payne, R Mark; Wagner, Gregory R

    2012-09-01

    Friedreich ataxia is the most common human ataxia and results from inadequate production of the frataxin protein, most often the result of a triplet expansion in the nuclear FXN gene. The gene cannot be transcribed to generate the messenger ribonucleic acid for frataxin. Frataxin is an iron-binding protein targeted to the mitochondrial matrix. In its absence, multiple iron-sulfur-dependent proteins in mitochondria and the cytosol lack proper assembly, destroying mitochondrial and nuclear function. Mitochondrial oxidant stress may also participate in ongoing cellular injury. Although progressive and debilitative ataxia is the most prominent clinical finding, hypertrophic cardiomyopathy with heart failure is the most common cause of early death in this disease. There is no cure. In this review the authors cover recent basic and clinical findings regarding the heart in Friedreich ataxia, offer recommendations for clinical management of the cardiomyopathy in this disease, and point out new research directions to advance the field.

  1. High-dose thiamine improves the symptoms of Friedreich's ataxia.

    PubMed

    Costantini, Antonio; Giorgi, Rafaela; D'Agostino, Sonia; Pala, Maria Immacolata

    2013-05-22

    Friedreich's ataxia (FRDA) is an autosomal recessive inherited disorder characterised by progressive gait and limb ataxia, dysarthria, areflexia, loss of position sense and a progressive motor weakness of central origin. Some observations indicate that all symptoms of FRDA ataxia could be the manifestation of a thiamine deficiency because of enzymatic abnormalities. Two patients with FRDA were under rehabilitative treatment from February 2012 to February 2013. The scale for assessment and rating of ataxia was performed. The patient began an intramuscular therapy with 100 mg of thiamine every 3-5 days. Injection of high-dose thiamine was effective in reversing the motor failure. From this clinical observation, it is reasonable to infer that a thiamine deficiency due to enzymatic abnormalities could cause a selective neuronal damage in the centres that are typically affected by this disease.

  2. High-dose thiamine improves the symptoms of Friedreich's ataxia.

    PubMed

    Costantini, Antonio; Giorgi, Rafaela; D'Agostino, Sonia; Pala, Maria Immacolata

    2013-01-01

    Friedreich's ataxia (FRDA) is an autosomal recessive inherited disorder characterised by progressive gait and limb ataxia, dysarthria, areflexia, loss of position sense and a progressive motor weakness of central origin. Some observations indicate that all symptoms of FRDA ataxia could be the manifestation of a thiamine deficiency because of enzymatic abnormalities. Two patients with FRDA were under rehabilitative treatment from February 2012 to February 2013. The scale for assessment and rating of ataxia was performed. The patient began an intramuscular therapy with 100 mg of thiamine every 3-5 days. Injection of high-dose thiamine was effective in reversing the motor failure. From this clinical observation, it is reasonable to infer that a thiamine deficiency due to enzymatic abnormalities could cause a selective neuronal damage in the centres that are typically affected by this disease. PMID:23704441

  3. Past, Present and Future Therapeutics for Cerebellar Ataxias

    PubMed Central

    Marmolino, D; Manto, M

    2010-01-01

    Cerebellar ataxias are a group of disabling neurological disorders. Patients exhibit a cerebellar syndrome and can also present with extra-cerebellar deficits, namely pigmentary retinopathy, extrapyramidal movement disorders, pyramidal signs, cortical symptoms (seizures, cognitive impairment/behavioural symptoms), and peripheral neuropathy. Recently, deficits in cognitive operations have been unraveled. Cerebellar ataxias are heterogeneous both at the phenotypic and genotypic point of view. Therapeutical trials performed during these last 4 decades have failed in most cases, in particular because drugs were not targeting a deleterious pathway, but were given to counteract putative defects in neurotransmission. The identification of the causative mutations of many hereditary ataxias, the development of relevant animal models and the recent identifications of the molecular mechanisms underlying ataxias are impacting on the development of new drugs. We provide an overview of the pharmacological treatments currently used in the clinical practice and we discuss the drugs under development. PMID:20808545

  4. Episodic memory, semantic memory, and amnesia.

    PubMed

    Squire, L R; Zola, S M

    1998-01-01

    Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.

  5. Lymphoblast Oxidative Stress Genes as Potential Biomarkers of Disease Severity and Drug Effect in Friedreich's Ataxia

    PubMed Central

    Hayashi, Genki; Cortopassi, Gino

    2016-01-01

    There is no current approved therapy for the ultimately lethal neuro- and cardio-degenerative disease Friedreich's ataxia (FA). Finding minimally-invasive molecular biomarkers of disease progression and drug effect could support smaller, shorter clinical trials. Since we and others have noted a deficient oxidative stress response in FA, we investigated the expression of 84 genes involved in oxidative stress, signaling, and protection in control and FA lymphoblasts ranging from 460 to 1122 GAA repeats. Several antioxidant genes responded in a dose-dependent manner to frataxin expression at the mRNA and protein levels, which is inversely correlated with disease progression and severity. We tested the effect of experimental Friedreich’s ataxia therapies dimethyl fumarate (DMF) and type 1 histone deacetylase inhibitor (HDACi) on biomarker mRNA expression. We observed that exposure of lymphoblasts to DMF and HDACi dose-dependently unsilenced frataxin expression and restored the potential biomarkers NCF2 and PDLIM1 expression to control levels. We suggest that in addition to frataxin expression, blood lymphoblast levels of NCF2 and PDLIM1 could be useful biomarkers for disease progression and drug effect in future clinical trials of Friedreich’s ataxia. PMID:27078885

  6. Lymphoblast Oxidative Stress Genes as Potential Biomarkers of Disease Severity and Drug Effect in Friedreich's Ataxia.

    PubMed

    Hayashi, Genki; Cortopassi, Gino

    2016-01-01

    There is no current approved therapy for the ultimately lethal neuro- and cardio-degenerative disease Friedreich's ataxia (FA). Finding minimally-invasive molecular biomarkers of disease progression and drug effect could support smaller, shorter clinical trials. Since we and others have noted a deficient oxidative stress response in FA, we investigated the expression of 84 genes involved in oxidative stress, signaling, and protection in control and FA lymphoblasts ranging from 460 to 1122 GAA repeats. Several antioxidant genes responded in a dose-dependent manner to frataxin expression at the mRNA and protein levels, which is inversely correlated with disease progression and severity. We tested the effect of experimental Friedreich's ataxia therapies dimethyl fumarate (DMF) and type 1 histone deacetylase inhibitor (HDACi) on biomarker mRNA expression. We observed that exposure of lymphoblasts to DMF and HDACi dose-dependently unsilenced frataxin expression and restored the potential biomarkers NCF2 and PDLIM1 expression to control levels. We suggest that in addition to frataxin expression, blood lymphoblast levels of NCF2 and PDLIM1 could be useful biomarkers for disease progression and drug effect in future clinical trials of Friedreich's ataxia. PMID:27078885

  7. Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent.

    PubMed

    Paradisi, Irene; Ikonomu, Vassiliki; Arias, Sergio

    2016-03-01

    Dominantly inherited ataxias (spinocerebellar ataxias, SCAs) are a genetically heterogeneous group of neurologic diseases characterized by progressive cerebellar and spinal tract degeneration with ataxia and other signs, common to all known subtypes. Several types are relatively frequent worldwide, but in several countries, one specific SCA may show a higher prevalence owing to founder phenomena. In Venezuela, genetic epidemiological features of SCAs have been assessed during the last 30 years; mutations in ATXN1 (SCA1), ATXN2 (SCA2), ATXN3 (SCA3), CACNA1A (SCA6), ATXN7 (SCA7), ATXN8 (SCA8), ATXN10 (SCA10), TBP (SCA17) and ATN1 (dentatorubral pallidoluysian atrophy, DRPLA) loci were searched among 115 independent families. SCA7 was the most frequent subtype (26.6%), followed by SCA3 (25.0%), SCA2 (21.9%), SCA1 (17.2%), SCA10 (4.7%) and DRPLA (3.1%); in 43% of the families, the subtype remained unidentified. SCA7 mutations displayed strong geographic aggregation in two independent founder foci, and SCA1 showed a very remote founder effect for a subset of families. SCA10 families were scattered across the country, but all had an identical in-phase haplotype carried also by Mexican, Brazilian and Sioux patients, supporting a very old common Amerindian origin. Prevalence for dominant SCAs in Venezuela was estimated as 1:25 000 nuclear families, provenances of which are either Caucasoid, African or Amerindian.

  8. Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent.

    PubMed

    Paradisi, Irene; Ikonomu, Vassiliki; Arias, Sergio

    2016-03-01

    Dominantly inherited ataxias (spinocerebellar ataxias, SCAs) are a genetically heterogeneous group of neurologic diseases characterized by progressive cerebellar and spinal tract degeneration with ataxia and other signs, common to all known subtypes. Several types are relatively frequent worldwide, but in several countries, one specific SCA may show a higher prevalence owing to founder phenomena. In Venezuela, genetic epidemiological features of SCAs have been assessed during the last 30 years; mutations in ATXN1 (SCA1), ATXN2 (SCA2), ATXN3 (SCA3), CACNA1A (SCA6), ATXN7 (SCA7), ATXN8 (SCA8), ATXN10 (SCA10), TBP (SCA17) and ATN1 (dentatorubral pallidoluysian atrophy, DRPLA) loci were searched among 115 independent families. SCA7 was the most frequent subtype (26.6%), followed by SCA3 (25.0%), SCA2 (21.9%), SCA1 (17.2%), SCA10 (4.7%) and DRPLA (3.1%); in 43% of the families, the subtype remained unidentified. SCA7 mutations displayed strong geographic aggregation in two independent founder foci, and SCA1 showed a very remote founder effect for a subset of families. SCA10 families were scattered across the country, but all had an identical in-phase haplotype carried also by Mexican, Brazilian and Sioux patients, supporting a very old common Amerindian origin. Prevalence for dominant SCAs in Venezuela was estimated as 1:25 000 nuclear families, provenances of which are either Caucasoid, African or Amerindian. PMID:26538302

  9. Ionizing radiation and cell cycle progression in ataxia telangiectasia

    SciTech Connect

    Beamish, H.; Khanna, K.K.; Lavin, M.F.

    1994-04-01

    Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G{sub 1} phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G{sub 1}-phase delay in ataxia telangiectasia cells is accompanied by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G{sub 1}/S-phase delay. When the progress of irradiated G{sub 1}-phase cells was followed into the subsequent G{sub 2} and G{sub 1} phases ataxia telangiectasia cells showed a more pronounced accumulation in G{sub 2} phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G{sub 2} phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G{sub 1} and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs.

  10. The Role of Episodic and Semantic Memory in Episodic Foresight

    ERIC Educational Resources Information Center

    Martin-Ordas, Gema; Atance, Cristina M.; Louw, Alyssa

    2012-01-01

    In this paper we describe a special form of future thinking, termed "episodic foresight" and its relation with episodic and semantic memory. We outline the methodologies that have largely been developed in the last five years to assess this capacity in young children and non-human animals. Drawing on Tulving's definition of episodic and semantic…

  11. Episodes, events, and models

    PubMed Central

    Khemlani, Sangeet S.; Harrison, Anthony M.; Trafton, J. Gregory

    2015-01-01

    We describe a novel computational theory of how individuals segment perceptual information into representations of events. The theory is inspired by recent findings in the cognitive science and cognitive neuroscience of event segmentation. In line with recent theories, it holds that online event segmentation is automatic, and that event segmentation yields mental simulations of events. But it posits two novel principles as well: first, discrete episodic markers track perceptual and conceptual changes, and can be retrieved to construct event models. Second, the process of retrieving and reconstructing those episodic markers is constrained and prioritized. We describe a computational implementation of the theory, as well as a robotic extension of the theory that demonstrates the processes of online event segmentation and event model construction. The theory is the first unified computational account of event segmentation and temporal inference. We conclude by demonstrating now neuroimaging data can constrain and inspire the construction of process-level theories of human reasoning. PMID:26578934

  12. Early onset cerebellar ataxia with retained tendon reflexes: a clinical and genetic study of a disorder distinct from Friedreich's ataxia.

    PubMed Central

    Harding, A E

    1981-01-01

    Twenty patients are described with a distinctive clinical syndrome characterised by progressive cerebellar ataxia developing within the first two decades. This is associated with dysarthria, pyramidal signs in the limbs, normal or increased knee jerks and upper limb reflexes and in some instances sensory loss. Inheritance is probably autosomal recessive in the majority, if not all, of the cases. The preservation of tendon reflexes distinguishes this disorder from Friedreich's ataxia. Other important differences from Friedreich's ataxia are absence of optic atrophy, cardiomyopathy, diabetes mellitus and severe skeletal deformity. The prognosis was better in the present series than in cases of Friedreich's ataxia; patients remained ambulant, on average, for more than 10 years longer. PMID:7276963

  13. Concealed semantic and episodic autobiographical memory electrified.

    PubMed

    Ganis, Giorgio; Schendan, Haline E

    2012-01-01

    Electrophysiology-based concealed information tests (CIT) try to determine whether somebody possesses concealed information about a crime-related item (probe) by comparing event-related potentials (ERPs) between this item and comparison items (irrelevants). Although the broader field is sometimes referred to as "memory detection," little attention has been paid to the precise type of underlying memory involved. This study begins addressing this issue by examining the key distinction between semantic and episodic memory in the autobiographical domain within a CIT paradigm. This study also addresses the issue of whether multiple repetitions of the items over the course of the session habituate the brain responses. Participants were tested in a 3-stimulus CIT with semantic autobiographical probes (their own date of birth) and episodic autobiographical probes (a secret date learned just before the study). Results dissociated these two memory conditions on several ERP components. Semantic probes elicited a smaller frontal N2 than episodic probes, consistent with the idea that the frontal N2 decreases with greater pre-existing knowledge about the item. Likewise, semantic probes elicited a smaller central N400 than episodic probes. Semantic probes also elicited a larger P3b than episodic probes because of their richer meaning. In contrast, episodic probes elicited a larger late positive complex (LPC) than semantic probes, because of the recent episodic memory associated with them. All these ERPs showed a difference between probes and irrelevants in both memory conditions, except for the N400, which showed a difference only in the semantic condition. Finally, although repetition affected the ERPs, it did not reduce the difference between probes and irrelevants. These findings show that the type of memory associated with a probe has both theoretical and practical importance for CIT research. PMID:23355816

  14. Clinical features and genetic diagnosis of hereditary spinocerebellar ataxia 3.

    PubMed

    Wang, Yaoguang; Yang, Xiaokai; Ma, Weide; Li, Jinxin; Zhang, Qingyuan; Xia, Shuqi; Wang, Hai; Zhang, Chenghui; Xu, Xiaomin; Zheng, Jiayong

    2016-10-01

    Spinocerebellar ataxia type 3 (SCA3) is a rare inherited autosomal dominant progressive neurological disorder, which results from a CAG‑repeat expansion in the gene encoding the deubiquitinating enzyme, ataxin‑3. At present, no effective treatment is available for this fatal disorder; however, certain studies have suggested that reducing the levels of mutant ataxin‑3 protein may reverse or halt the progression of disease in patients with SCA3. In the present study, clinical examinations were performed on a patient with SCA3 who exhibited disease features including coughing, expectoration and was bedridden with mobility limitation. CAG repetitions at SCA‑associated genes were detected in the patient's family by performing standard polymerase chain reaction (PCR) and triple‑repeat primed PCR. The numbers of CAG‑repeats within the two alleles of the gene of interest in the patient were 15 and 78. Notably, the patient's brother, who harbored 76 CAG‑repeats in one allele of the gene of interest, did not exhibit severe disease symptoms. These results suggest that the number of CAG‑repeats is a critical for determination of SCA3 disease severity and time of onset. In addition, the defined phenotypic characteristics of the patient in the present study provide useful insight for more accurate clinical diagnosis and genotyping of future patients. PMID:27600091

  15. Genetic homogeneity at the Friedreich Ataxia locus on chromosome 9

    PubMed Central

    Chamberlain, Susan; Shaw, Jacqui; Wallis, Julie; Rowland, Alison; Chow, Larry; Farrall, Martin; Keats, Bronya; Richter, Andrea; Roy, Madeleine; Melancon, Serge; Deufel, Thomas; Berciano, José; Williamson, Robert

    1989-01-01

    Classical Friedreich ataxia, a progressive, neurodegenerative disorder involving both the central and peripheral nervous systems, has been subclassified according to the observed clinical heterogeneity. The variations in the age at onset and in the spectrum and severity of symptoms have previously been interpreted as evidence of genetic heterogeneity. We have studied the linkage between the disorder and closely linked DNA markers in families of distinct ethnic origins, including the “typical” French–Canadians and the Acadian population of Louisiana. The disease in these two populations, both of continental French origin, has a very similar initial clinical picture. However, a marked difference in the rate of progression of the obligatory symptoms after 10 years of apparent disease is observed. A total of 553 individuals from 80 families with 202 affected members have been typed with the chromosome 9 marker MCT112, which we have previously shown to be closely linked to the disease locus. Evidence for linkage was observed in all families with the generation of a combined total lod score of 25.09 at a recombination fraction of θ = .00, providing strong evidence for genetic homogeneity at this locus for the classical form of this disease. PMID:2929596

  16. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    NASA Astrophysics Data System (ADS)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  17. [Ataxia telangiectasia: what impact in clinical oncology?].

    PubMed

    Stoppa-Lyonnet, D; Aurias, A

    1992-01-01

    Ataxia telangiectasia (AT) is a hereditary disease transmitted in a recessive mode and characterized by chromosomal instability and radiosensitivity. AT patients have a 100-fold higher risk of cancer than the general population. Although AT is a rare disease of which the frequency has been estimated to be 1/40,000, the frequency of the heterozygosity status, when assessed with the Hardy-Weinberg equation is high (about 1.4%). Parents of AT children, thus obligate AT carriers, show chromosomal instability and radiosensitivity, but at a lower level than AT patients. Assuming that these AT characteristics deal with the cancer predisposition, it can be hypothesized that AT heterozygote individuals have a higher cancer susceptibility than the general population. To test this hypothesis, M Swift's group compared cancer incidence rates from adult blood relatives of AT patients with controls. The risk of cancer in AT heterozygotes could be increased by 3.5 and, for carrier women, the breast cancer risk could be increased by 5.1. Actually, the diagnosis of the AT heterozygote status is not possible. However, the near cloning of the gene (or genes) for the disease will permit to identify the AT carriers in a population of patients suffering from cancer and to assess precisely the impact of AT heterozygosity in the genetic predisposition to cancer. PMID:1467590

  18. Ataxia-telangiectasia. (Clinical and immunological aspects).

    PubMed

    Boder, E; Sedgwick, R P

    1970-01-01

    This syndrome was defined by the authors in 1947. Earlier publications of similar disease descriptions were by Syllaba and Henner (1926), Louis-Bar (1941). The authors at present have a stock of 253 cases. The cardinal symptoms of this phakomatosis are: Cerebellar ataxia which begin in infancy and take a slowly progressive course. In the late stages free walking and standing are no longer possible. Progressive atactic speech disorders, cerebellar atrophy in the pneumoencephalogram. Slowly progressing symmetrical skin and mucosal telangiectasia in the face and especially on the conjunctivae at the age of 3 to 6 years. Relapsing sinopulmonary infections with a tendency toward the development of bronchiectases. Apraxia of eye movements. Atrophy of facial skin and premature graying of hair. Recessively hereditary disorder with a high familial manifestation. This syndrome combines the spinocerebellar degeneration, phakomatoses, and infantile dementia processes. Such other conditions as abnormity or absence of thymus, reduction in gamma globulins, amino-aciduria, autosomal-recessive inheritance suggest a genetically determined "error of metabolism".

  19. Recurrent Episodes of Dissociative Fugue

    PubMed Central

    Angothu, Hareesh; Pabbathi, Lokeswar Reddy

    2016-01-01

    Dissociative fugue is rare entity to encounter with possible differentials of epilepsy and malingering. It is one of the dissociative disorders rarely seen in clinical practice more often because of the short lasting nature of this condition. This might also be because of organized travel of the individuals during the episodes and return to their families after the recovery from episodes. This is a case description of a patient who has experienced total three episodes of dissociative fugue. The patient has presented during the third episode and two prior episodes were diagnosed as fugue episodes retrospectively based on the history. Planned travel in this case by the patient to a distant location was prevented because of early diagnosis and constant vigilance till the recovery. As in this case, it may be more likely that persons with Dissociative fugue may develop similar episodes if they encounter exceptional perceived stress. However, such conclusions may require follow-up studies. PMID:27114633

  20. Principal component analysis of cerebellar shape on MRI separates SCA types 2 and 6 into two archetypal modes of degeneration.

    PubMed

    Jung, Brian C; Choi, Soo I; Du, Annie X; Cuzzocreo, Jennifer L; Geng, Zhuo Z; Ying, Howard S; Perlman, Susan L; Toga, Arthur W; Prince, Jerry L; Ying, Sarah H

    2012-12-01

    Although "cerebellar ataxia" is often used in reference to a disease process, presumably there are different underlying pathogenetic mechanisms for different subtypes. Indeed, spinocerebellar ataxia (SCA) types 2 and 6 demonstrate complementary phenotypes, thus predicting a different anatomic pattern of degeneration. Here, we show that an unsupervised classification method, based on principal component analysis (PCA) of cerebellar shape characteristics, can be used to separate SCA2 and SCA6 into two classes, which may represent disease-specific archetypes. Patients with SCA2 (n=11) and SCA6 (n=7) were compared against controls (n=15) using PCA to classify cerebellar anatomic shape characteristics. Within the first three principal components, SCA2 and SCA6 differed from controls and from each other. In a secondary analysis, we studied five additional subjects and found that these patients were consistent with the previously defined archetypal clusters of clinical and anatomical characteristics. Secondary analysis of five subjects with related diagnoses showed that disease groups that were clinically and pathophysiologically similar also shared similar anatomic characteristics. Specifically, Archetype #1 consisted of SCA3 (n=1) and SCA2, suggesting that cerebellar syndromes accompanied by atrophy of the pons may be associated with a characteristic pattern of cerebellar neurodegeneration. In comparison, Archetype #2 was comprised of disease groups with pure cerebellar atrophy (episodic ataxia type 2 (n=1), idiopathic late-onset cerebellar ataxias (n=3), and SCA6). This suggests that cerebellar shape analysis could aid in discriminating between different pathologies. Our findings further suggest that magnetic resonance imaging is a promising imaging biomarker that could aid in the diagnosis and therapeutic management in patients with cerebellar syndromes.

  1. Principal component analysis of cerebellar shape on MRI separates SCA types 2 and 6 into two archetypal modes of degeneration.

    PubMed

    Jung, Brian C; Choi, Soo I; Du, Annie X; Cuzzocreo, Jennifer L; Geng, Zhuo Z; Ying, Howard S; Perlman, Susan L; Toga, Arthur W; Prince, Jerry L; Ying, Sarah H

    2012-12-01

    Although "cerebellar ataxia" is often used in reference to a disease process, presumably there are different underlying pathogenetic mechanisms for different subtypes. Indeed, spinocerebellar ataxia (SCA) types 2 and 6 demonstrate complementary phenotypes, thus predicting a different anatomic pattern of degeneration. Here, we show that an unsupervised classification method, based on principal component analysis (PCA) of cerebellar shape characteristics, can be used to separate SCA2 and SCA6 into two classes, which may represent disease-specific archetypes. Patients with SCA2 (n=11) and SCA6 (n=7) were compared against controls (n=15) using PCA to classify cerebellar anatomic shape characteristics. Within the first three principal components, SCA2 and SCA6 differed from controls and from each other. In a secondary analysis, we studied five additional subjects and found that these patients were consistent with the previously defined archetypal clusters of clinical and anatomical characteristics. Secondary analysis of five subjects with related diagnoses showed that disease groups that were clinically and pathophysiologically similar also shared similar anatomic characteristics. Specifically, Archetype #1 consisted of SCA3 (n=1) and SCA2, suggesting that cerebellar syndromes accompanied by atrophy of the pons may be associated with a characteristic pattern of cerebellar neurodegeneration. In comparison, Archetype #2 was comprised of disease groups with pure cerebellar atrophy (episodic ataxia type 2 (n=1), idiopathic late-onset cerebellar ataxias (n=3), and SCA6). This suggests that cerebellar shape analysis could aid in discriminating between different pathologies. Our findings further suggest that magnetic resonance imaging is a promising imaging biomarker that could aid in the diagnosis and therapeutic management in patients with cerebellar syndromes. PMID:22258915

  2. Vascular Risk Factors and Clinical Progression in Spinocerebellar Ataxias

    PubMed Central

    Lo, Raymond Y.; Figueroa, Karla P.; Pulst, Stefan M.; Lin, Chi-Ying; Perlman, Susan; Wilmot, George; Gomez, Christopher M.; Schmahmann, Jeremy; Paulson, Henry; Shakkottai, Vikram G.; Ying, Sarah H.; Zesiewicz, Theresa; Bushara, Khalaf; Geschwind, Michael; Xia, Guangbin; Subramony, S. H.; Ashizawa, Tetsuo; Kuo, Sheng-Han

    2015-01-01

    Background The contributions of vascular risk factors to spinocerebellar ataxia (SCA) are not known. Methods We studied 319 participants with SCA 1, 2, 3, and 6 and repeatedly measured clinical severity using the Scale for Assessment and Rating of Ataxia (SARA) for 2 years. Vascular risk factors were summarized by CHA2DS2-VASc scores as the vascular risk factor index. We employed regression models to study the effects of vascular risk factors on ataxia onset and progression after adjusting for age, sex, and pathological CAG repeats. Our secondary analyses took hyperlipidemia into account. Results Nearly 60% of SCA participants were at low vascular risks with CHA2DS2-VASc = 0, and 31% scored 2 or greater. Higher CHA2DS2-VASc scores were not associated with either earlier onset or faster progression of ataxia. These findings were not altered after accounting for hyperlipidemia. Discussion Vascular risks are not common in SCAs and are not associated with earlier onset or faster ataxia progression. PMID:25713748

  3. Harry Lee Parker and paroxysmal dysarthria and ataxia

    PubMed Central

    Klaas, James P.; Burkholder, David B.; Singer, Wolfgang

    2013-01-01

    Objective: To review descriptions of paroxysmal dysarthria and ataxia in multiple sclerosis (MS), with special attention given to Parker and his 1946 case series. Methods: Evaluation of original publications describing paroxysmal dysarthria and ataxia, bibliographic information, writings, and unpublished letters from the Mayo Clinic Historical Unit. Results: In 1940, Störring described a patient with MS with paroxysmal symptoms that included dizziness and trouble speaking, but also unilateral extremity weakness. In 1946, Parker published a series of 11 patients with paroxysmal dysarthria and ataxia. Six of these patients had MS, and he recognized this phenomenon as a manifestation of the disease. The term “paroxysmal dysarthria and ataxia” was first used in 1959 by Andermann and colleagues. Since that time, paroxysmal dysarthria and ataxia has become a well-recognized phenomenon in MS. More recent reports have suggested that the responsible lesion is located in the midbrain, near or involving the red nucleus. Conclusions: Parker was the first to accurately describe paroxysmal dysarthria and ataxia in patients with MS. PMID:23319475

  4. Non-progressive cerebellar ataxia and previous undetermined acute cerebellar injury: a mysterious clinical condition.

    PubMed

    Pinto, Wladimir Bocca Vieira de Rezende; Pedroso, José Luiz; Souza, Paulo Victor Sgobbi de; Albuquerque, Marcus Vinícius Cristino de; Barsottini, Orlando Graziani Povoas

    2015-10-01

    Cerebellar ataxias represent a wide group of neurological diseases secondary to dysfunctions of cerebellum or its associated pathways, rarely coursing with acute-onset acquired etiologies and chronic non-progressive presentation. We evaluated patients with acquired non-progressive cerebellar ataxia that presented previous acute or subacute onset. Clinical and neuroimaging characterization of adult patients with acquired non-progressive ataxia were performed. Five patients were identified with the phenotype of acquired non-progressive ataxia. Most patients presented with a juvenile to adult-onset acute to subacute appendicular and truncal cerebellar ataxia with mild to moderate cerebellar or olivopontocerebellar atrophy. Establishing the etiology of the acute triggering events of such ataxias is complex. Non-progressive ataxia in adults must be distinguished from hereditary ataxias.

  5. Comorbid Medical Conditions in Friedreich Ataxia: Association With Inflammatory Bowel Disease and Growth Hormone Deficiency.

    PubMed

    Shinnick, Julianna E; Schadt, Kimberly; Strawser, Cassandra; Wilcox, Nicholas; Perlman, Susan L; Wilmot, George R; Gomez, Christopher M; Mathews, Katherine D; Yoon, Grace; Zesiewicz, Theresa; Hoyle, Chad; Subramony, S H; Yiu, Eppie M; Delatycki, Martin B; Brocht, Alicia F; Farmer, Jennifer M; Lynch, David R

    2016-08-01

    Friedreich ataxia is a progressive degenerative disease with neurologic and cardiac involvement. This study characterizes comorbid medical conditions in a large cohort of patients with Friedreich ataxia. Patient diagnoses were collected in a large natural history study of 641 subjects. Prevalence of diagnoses in the cohort with Friedreich ataxia was compared with prevalence in the population without Friedreich ataxia. Ten patients (1.6%) had inflammatory bowel disease, 3.5 times more common in this cohort of individuals with Friedreich ataxia than in the general population. Four subjects were growth hormone deficient, reflecting a prevalence in Friedreich ataxia that is 28 times greater than the general population. The present study identifies specific diagnoses not traditionally associated with Friedreich ataxia that are found at higher frequency in this disease. These associations could represent coincidence, shared genetic background, or potentially interactive disease mechanisms with Friedreich ataxia.

  6. The physiological basis of therapies for cerebellar ataxias

    PubMed Central

    Mitoma, Hiroshi; Manto, Mario

    2016-01-01

    Cerebellar ataxias represent a group of heterogeneous disorders impacting on activities of daily living and quality of life. Various therapies have been proposed to improve symptoms in cerebellar ataxias. This review examines the physiological background of the various treatments currently administered worldwide. We analyze the mechanisms of action of drugs with a focus on aminopyridines and other antiataxic medications, of noninvasive cerebellar stimulation, and of motor rehabilitation. Considering the cerebellum as a controller, we propose the novel concept of ‘restorable stage’. Because of its unique anatomical architecture and its diffuse connectivity in particular with the cerebral cortex, keeping in mind the anatomophysiology of the cerebellar circuitry is a necessary step to understand the rationale of therapies of cerebellar ataxias and develop novel therapeutic tools. PMID:27582895

  7. Neurodegeneration in Friedreich's Ataxia: From Defective Frataxin to Oxidative Stress

    PubMed Central

    Gomes, Cláudio M.; Santos, Renata

    2013-01-01

    Friedreich's ataxia is the most common inherited autosomal recessive ataxia and is characterized by progressive degeneration of the peripheral and central nervous systems and cardiomyopathy. This disease is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. This small protein with an α/β sandwich fold undergoes complex processing and imports into the mitochondria, generating isoforms with distinct N-terminal lengths which may underlie different functionalities, also in respect to oligomerization. Missense mutations in the FXN coding region, which compromise protein folding, stability, and function, are found in 4% of FRDA heterozygous patients and are useful to understand how loss of functional frataxin impacts on FRDA physiopathology. In cells, frataxin deficiency leads to pleiotropic phenotypes, including deregulation of iron homeostasis and increased oxidative stress. Increasing amount of data suggest that oxidative stress contributes to neurodegeneration in Friedreich's ataxia. PMID:23936609

  8. Clinical Experience With Deferiprone Treatment for Friedreich Ataxia.

    PubMed

    Elincx-Benizri, Sandra; Glik, Amir; Merkel, Drorit; Arad, Michael; Freimark, Dov; Kozlova, Evgenia; Cabantchik, Ioav; Hassin-Baer, Sharon

    2016-07-01

    Friedreich ataxia is an inherited disorder characterized by degeneration of the peripheral and central nervous system and hypertrophic cardiomyopathy. Homozygous mutations in the frataxine (FXN) gene reduce expression of frataxin and cause accumulation of iron in the mitochondria. Deferiprone, an oral iron chelator, has been shown effective in cell and animal models of Friedreich ataxia. The results of a 6-month randomized, double blind placebo-controlled study suggested that deferiprone 20 mg/kg/day may reduce disease progression. The authors present their experience of 5 Friedreich ataxia patients treated with deferiprone (20 mg/kg/day), in addition to idebenone treatment, followed over a period of 10-24 months, under off-label authorization. The patients were monitored for laboratory parameters, cardiac assessment, neurological evaluations, and quality of life. The authors conclude that combined therapy of a low dose of deferiprone with idebenone is relatively safe, might improve neurological function, and seems to improve heart hypertrophy, warranting further studies.

  9. The physiological basis of therapies for cerebellar ataxias.

    PubMed

    Mitoma, Hiroshi; Manto, Mario

    2016-09-01

    Cerebellar ataxias represent a group of heterogeneous disorders impacting on activities of daily living and quality of life. Various therapies have been proposed to improve symptoms in cerebellar ataxias. This review examines the physiological background of the various treatments currently administered worldwide. We analyze the mechanisms of action of drugs with a focus on aminopyridines and other antiataxic medications, of noninvasive cerebellar stimulation, and of motor rehabilitation. Considering the cerebellum as a controller, we propose the novel concept of 'restorable stage'. Because of its unique anatomical architecture and its diffuse connectivity in particular with the cerebral cortex, keeping in mind the anatomophysiology of the cerebellar circuitry is a necessary step to understand the rationale of therapies of cerebellar ataxias and develop novel therapeutic tools. PMID:27582895

  10. Cerebellar ataxias: β-III spectrin's interactions suggest common pathogenic pathways.

    PubMed

    Perkins, Emma; Suminaite, Daumante; Jackson, Mandy

    2016-08-15

    Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of disorders all characterised by postural abnormalities, motor deficits and cerebellar degeneration. Animal and in vitro models have revealed β-III spectrin, a cytoskeletal protein present throughout the soma and dendritic tree of cerebellar Purkinje cells, to be required for the maintenance of dendritic architecture and for the trafficking and/or stabilisation of several membrane proteins: ankyrin-R, cell adhesion molecules, metabotropic glutamate receptor-1 (mGluR1), voltage-gated sodium channels (Nav ) and glutamate transporters. This scaffold of interactions connects β-III spectrin to a wide variety of proteins implicated in the pathology of many SCAs. Heterozygous mutations in the gene encoding β-III spectrin (SPTBN2) underlie SCA type-5 whereas homozygous mutations cause spectrin associated autosomal recessive ataxia type-1 (SPARCA1), an infantile form of ataxia with cognitive impairment. Loss-of β-III spectrin function appears to underpin cerebellar dysfunction and degeneration in both diseases resulting in thinner dendrites, excessive dendritic protrusion with loss of planarity, reduced resurgent sodium currents and abnormal glutamatergic neurotransmission. The initial physiological consequences are a decrease in spontaneous activity and excessive excitation, likely to be offsetting each other, but eventually hyperexcitability gives rise to dark cell degeneration and reduced cerebellar output. Similar molecular mechanisms have been implicated for SCA1, 2, 3, 7, 13, 14, 19, 22, 27 and 28, highlighting alterations to intrinsic Purkinje cell activity, dendritic architecture and glutamatergic transmission as possible common mechanisms downstream of various loss-of-function primary genetic defects. A key question for future research is whether similar mechanisms underlie progressive cerebellar decline in normal ageing. PMID:26821241

  11. Cerebellar ataxia as the presenting manifestation of Lyme disease.

    PubMed

    Arav-Boger, Ravit; Crawford, Thomas; Steere, Allen C; Halsey, Neal A

    2002-04-01

    A 7-year-old boy from suburban Baltimore who presented with cerebellar ataxia and headaches was found by magnetic resonance imaging to have multiple cerebellar enhancing lesions. He had no history of tick exposure. He was initially treated with steroids for presumptive postinfectious encephalitis. Lyme disease was diagnosed 10 weeks later after arthritis developed. Testing of the cerebrospinal fluid obtained at the time cerebellar ataxia was diagnosed revealed intrathecal antibody production to Borrelia burgdorferi. Treatment with intravenous antibiotics led to rapid resolution of persistent cerebellar findings.

  12. Spontaneous Intracranial Hypotension Associated with Kinetic Tremor and Ataxia

    PubMed Central

    Salazar, Richard

    2016-01-01

    Background Spontaneous intracranial hypotension (SIH) is a clinically variable syndrome caused by low cerebrospinal fluid (CSF) pressure due to a non-traumatic CSF leak. Phenomenology Shown This case describes a 68-year-old gentleman who presents with chronic and slightly progressive kinetic tremor of bilateral hands associated with gait ataxia and gait start hesitation. Educational Value This case underscores the importance of having a high index of suspicion for the diagnosis of SIH when encountering a patient presenting with late-onset progressive kinetic tremor and gait ataxia syndrome. PMID:27351232

  13. Bilateral maculopathy in a patient with ataxia telangiectasia.

    PubMed

    Gioia, Lauren V; Bonsall, Dean; Moffett, Kathryn; Leys, Monique

    2016-02-01

    We report a case of toxoplasmosis with bilateral maculopathy in a 7-year-old boy diagnosed with ataxia telangiectasia (AT) at age 6. AT manifests as ataxia, apraxia, telangiectasia, and dysarthria. Common ophthalmologic findings in AT include fine conjunctival telangiectasia. Patients also suffer from recurrent sinopulmonary infections; however, serious opportunistic infection is rarely diagnosed. At 8 years of age he developed disseminated Toxoplasma gondii (toxoplasmosis) infection and meningoencephalitis. This ophthalmologic finding and the subsequent toxoplasmosis meningoencephalitis have not been previously reported in AT.

  14. Bilateral maculopathy in a patient with ataxia telangiectasia.

    PubMed

    Gioia, Lauren V; Bonsall, Dean; Moffett, Kathryn; Leys, Monique

    2016-02-01

    We report a case of toxoplasmosis with bilateral maculopathy in a 7-year-old boy diagnosed with ataxia telangiectasia (AT) at age 6. AT manifests as ataxia, apraxia, telangiectasia, and dysarthria. Common ophthalmologic findings in AT include fine conjunctival telangiectasia. Patients also suffer from recurrent sinopulmonary infections; however, serious opportunistic infection is rarely diagnosed. At 8 years of age he developed disseminated Toxoplasma gondii (toxoplasmosis) infection and meningoencephalitis. This ophthalmologic finding and the subsequent toxoplasmosis meningoencephalitis have not been previously reported in AT. PMID:26917084

  15. The evolution of episodic memory

    PubMed Central

    Allen, Timothy A.; Fortin, Norbert J.

    2013-01-01

    One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002) Annu Rev Psychol 53:1–25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologs in other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. The implication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-specific divergences that have developed on top of the fundamental episodic memory architecture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area. PMID:23754432

  16. The Episodic Nature of Episodic-Like Memories

    ERIC Educational Resources Information Center

    Easton, Alexander; Webster, Lisa A. D.; Eacott, Madeline J.

    2012-01-01

    Studying episodic memory in nonhuman animals has proved difficult because definitions in humans require conscious recollection. Here, we assessed humans' experience of episodic-like recognition memory tasks that have been used with animals. It was found that tasks using contextual information to discriminate events could only be accurately…

  17. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias.

    PubMed

    Kasumu, Adebimpe; Bezprozvanny, Ilya

    2012-09-01

    Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 30 autosomal-dominant genetic and neurodegenerative disorders. SCAs are generally characterized by progressive ataxia and cerebellar atrophy. Although all SCA patients present with the phenotypic overlap of cerebellar atrophy and ataxia, 17 different gene loci have so far been implicated as culprits in these SCAs. It is not currently understood how mutations in these 17 proteins lead to the cerebellar atrophy and ataxia. Several pathogenic mechanisms have been studied in SCAs but there is yet to be a promising target for successful treatment of SCAs. Emerging research suggests that a fundamental cellular signaling pathway is disrupted by a majority of these mutated genes, which could explain the characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. We propose that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells either as a result of an excitotoxic increase or a compensatory suppression of calcium signaling. We argue that disruptions in Purkinje cell calcium signaling lead to initial cerebellar dysfunction and ataxic sympoms and eventually proceed to Purkinje cell death. Here, we discuss a calcium hypothesis of Purkinje cell neurodegeneration in SCAs by primarily focusing on an example of spinocerebellar ataxia 2 (SCA2). We will also present evidence linking deranged calcium signaling to the pathogenesis of other SCAs (SCA1, 3, 5, 6, 14, 15/16) that lead to significant Purkinje cell dysfunction and loss in patients.

  18. Cellular responses to ionizing and ultraviolet radiation in ataxia telangiectasia

    SciTech Connect

    Loberg, L.I.; McGrath, S.J.; Dixon, K.

    1995-11-01

    Ataxia telangiectasia (AT) is a genetic disease characterized by a wide variety of symptoms including a marked increase of cancer incidence and hypersensitivity to ionizing radiation (IR). Hypersensitivity is expressed as decreased cell survival, increased induction of chromosomal damage, radioresistant DNA synthesis and absence of G1 arrest following exposure of cells to IR. The defect in AT may lie in the regulation of DNA replication and control of the cell cycle. Fluorescence-activated cell sorting (FACS) analysis confirms the alterations of cell cycle control in AT cells following exposure to 1Gy ionizing radiation. Replication activity in the in vitro system parallels in vivo DNA synthesis in that: (a) extracts from normal cells exposed to 1Gy IR show a dramatic decrease in replication activity, and (b) extracts from AT cells exposed 1Gy IR do not show such a decrease in replication activity. The inability of AT cells to inhibit DNA replication following exposure to IR is a response which is seen after exposure to other types of DNA damaging agents. AT and normal cells were treated with 254nm UV radiation. Following exposure to 10J UV radiation, normal cells show dramatic DNA replication arrest while AT cells do not demonstrate DNA replication arrest. It appears that failure to halt DNA synthesis is a global feature of AT cells exposed to radiation. Phosphorylation changes of the essential replication protein, single strand binding protein (hSSB), have been investigated after both UV and ionizing radiation exposure. Previous work in the lab has shown, via immunoblotting techniques, that hSSB is hyperphosphorylated in HeLa cells following exposure to 10J UV radiation. In AT cells, hyperphosphorylation of hSSB also occurs following 10J UV radiation, but not 1Gy Ir. Further research is being conducted to examine the apparent uncoupling of DNA synthesis control and hyperphosphorylation of hSSB in UV-exposed AT cells.

  19. Genetic linkage studies in autosomal dominant ataxia families with an MJD phenotype

    SciTech Connect

    Silveira, I.; Lopes-Cendes, I.; Paciel, P.

    1994-09-01

    Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration which was originally described in patients originating from the Portuguese islands of the Azores. The first non-Portuguese kindred was described in 1979 and was an American black family originating from North Carolina. Since then the number of pedigrees of non-Azorean, non-Portuguese origin has increased with families being reported from other European countries, as well as Brazil, Japan, India, The United States and Australia. The autosomal dominant ataxias are a clinically and genetically heterogeneous group of disorders. To date, genetic analysis of families with autosomal dominant ataxias has permitted the identification of four loci, the SCA1 (spinocerebellar ataxia type 1) locus on chromosome 6p, the SCA2 locus on chromosome 12q, a third locus on chromosome 14q, the MJD/SCA3 and, more recently, the DRPLA (Dentatorubral-pallidoluysian atrophy) locus on chromosome 12p. We ascertained a total of 181 individuals with 60 affected from eight Indian, two Brazilian and one Sicilian-American family; all of them have received the clinical diagnosis of MJD. Recently, we have begun molecular genetic studies in these families in order to test these four candidate regions. The SCA1 mutation and the DRPLA mutation has been found to be an expansion of a CAG repeat. Direct analysis of the SCA1 and DRPLA expansion has been performed in all families and no expansion was found in the affected individuals. We are now running flanking markers for the SCA2 and MJD/SCA3 loci. These results will also be presented.

  20. Speech Perception Ability in Individuals with Friedreich Ataxia

    ERIC Educational Resources Information Center

    Rance, Gary; Fava, Rosanne; Baldock, Heath; Chong, April; Barker, Elizabeth; Corben, Louise; Delatycki

    2008-01-01

    The aim of this study was to investigate auditory pathway function and speech perception ability in individuals with Friedreich ataxia (FRDA). Ten subjects confirmed by genetic testing as being homozygous for a GAA expansion in intron 1 of the FXN gene were included. While each of the subjects demonstrated normal, or near normal sound detection, 3…

  1. Genetics Home Reference: ataxia with vitamin E deficiency

    MedlinePlus

    ... this condition have developed an eye disorder called retinitis pigmentosa that causes vision loss. Most people who have ... Registry: Ataxia with vitamin E deficiency MedlinePlus Encyclopedia: Retinitis pigmentosa MedlinePlus Encyclopedia: Vitamin E These resources from MedlinePlus ...

  2. Cerebellar ataxia with recovery related to central pontine myelinolysis.

    PubMed

    Steller, U; Koschorek, F; Strenge, H

    1988-07-01

    Development of severe ataxia and mild pyramidal signs without mental deterioration, tetraparesis or pseudobulbar palsy during recovery from withdrawal delirium and initial hyponatraemia are unusual clinical features consistent with central pontine myelinolysis. This diagnosis was confirmed by magnetic resonance imaging (MRI) in an alcoholic man. Clinical and electrodiagnostic improvement occurred, whereas the MRI findings remained unchanged in a follow-up study. PMID:3171622

  3. Voicing Status of Word Final Plosives in Friedreich's Ataxia Dysarthria

    ERIC Educational Resources Information Center

    Blaney, B. E.; Hewlett, N.

    2007-01-01

    In a previous study, the authors identified final plosive voicing contrast as the highest single error source in dysarthria associated with Friedreich's Ataxia in a group of Irish English-speaking participants. This study aimed to determine the acoustic features underlying misperceptions of voicing status and implications for clinical management.…

  4. Speech Characteristics Associated with Three Genotypes of Ataxia

    ERIC Educational Resources Information Center

    Sidtis, John J.; Ahn, Ji Sook; Gomez, Christopher; Sidtis, Diana

    2011-01-01

    Purpose: Advances in neurobiology are providing new opportunities to investigate the neurological systems underlying motor speech control. This study explores the perceptual characteristics of the speech of three genotypes of spino-cerebellar ataxia (SCA) as manifest in four different speech tasks. Methods: Speech samples from 26 speakers with SCA…

  5. Visual System Involvement in Patients with Friedreich's Ataxia

    ERIC Educational Resources Information Center

    Fortuna, Filippo; Barboni, Piero; Liguori, Rocco; Valentino, Maria Lucia; Savini, Giacomo; Gellera, Cinzia; Mariotti, Caterina; Rizzo, Giovanni; Tonon, Caterina; Manners, David; Lodi, Raffaele; Sadun, Alfredo A.; Carelli, Valerio

    2009-01-01

    Optic neuropathy is common in mitochondrial disorders, but poorly characterized in Friedreich's ataxia (FRDA), a recessive condition caused by lack of the mitochondrial protein frataxin. We investigated 26 molecularly confirmed FRDA patients by studying both anterior and posterior sections of the visual pathway using a new, integrated approach.…

  6. Motor Training in Degenerative Spinocerebellar Disease: Ataxia-Specific Improvements by Intensive Physiotherapy and Exergames

    PubMed Central

    2014-01-01

    The cerebellum is essentially involved in movement control and plays a critical role in motor learning. It has remained controversial whether patients with degenerative cerebellar disease benefit from high-intensity coordinative training. Moreover, it remains unclear by which training methods and mechanisms these patients might improve their motor performance. Here, we review evidence from different high-intensity training studies in patients with degenerative spinocerebellar disease. These studies demonstrate that high-intensity coordinative training might lead to a significant benefit in patients with degenerative ataxia. This training might be based either on physiotherapy or on whole-body controlled videogames (“exergames”). The benefit shown in these studies is equal to regaining one or more years of natural disease progression. In addition, first case studies indicate that even subjects with advanced neurodegeneration might benefit from such training programs. For both types of training, the observed clinical improvements are paralleled by recoveries in ataxia-specific dysfunctions (e.g., multijoint coordination and dynamic stability). Importantly, for both types of training, the retention of the effects seems to depend on the frequency and continuity of training. Based on these studies, we here present preliminary recommendations for clinical practice, and articulate open questions that might guide future studies on neurorehabilitation in degenerative spinocerebellar disease. PMID:24877117

  7. SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large multi-centre study.

    PubMed

    Synofzik, Matthis; Smets, Katrien; Mallaret, Martial; Di Bella, Daniela; Gallenmüller, Constanze; Baets, Jonathan; Schulze, Martin; Magri, Stefania; Sarto, Elisa; Mustafa, Mona; Deconinck, Tine; Haack, Tobias; Züchner, Stephan; Gonzalez, Michael; Timmann, Dagmar; Stendel, Claudia; Klopstock, Thomas; Durr, Alexandra; Tranchant, Christine; Sturm, Marc; Hamza, Wahiba; Nanetti, Lorenzo; Mariotti, Caterina; Koenig, Michel; Schöls, Ludger; Schüle, Rebecca; de Jonghe, Peter; Anheim, Mathieu; Taroni, Franco; Bauer, Peter

    2016-05-01

    Mutations in the synaptic nuclear envelope protein 1 (SYNE1) gene have been reported to cause a relatively pure, slowly progressive cerebellar recessive ataxia mostly identified in Quebec, Canada. Combining next-generation sequencing techniques and deep-phenotyping (clinics, magnetic resonance imaging, positron emission tomography, muscle histology), we here established the frequency, phenotypic spectrum and genetic spectrum of SYNE1 in a screening of 434 non-Canadian index patients from seven centres across Europe. Patients were screened by whole-exome sequencing or targeted panel sequencing, yielding 23 unrelated families with recessive truncating SYNE1 mutations (23/434 = 5.3%). In these families, 35 different mutations were identified, 34 of them not previously linked to human disease. While only 5/26 patients (19%) showed the classical SYNE1 phenotype of mildly progressive pure cerebellar ataxia, 21/26 (81%) exhibited additional complicating features, including motor neuron features in 15/26 (58%). In three patients, respiratory dysfunction was part of an early-onset multisystemic neuromuscular phenotype with mental retardation, leading to premature death at age 36 years in one of them. Positron emission tomography imaging confirmed hypometabolism in extra-cerebellar regions such as the brainstem. Muscle biopsy reliably showed severely reduced or absent SYNE1 staining, indicating its potential use as a non-genetic indicator for underlying SYNE1 mutations. Our findings, which present the largest systematic series of SYNE1 patients and mutations outside Canada, revise the view that SYNE1 ataxia causes mainly a relatively pure cerebellar recessive ataxia and that it is largely limited to Quebec. Instead, complex phenotypes with a wide range of extra-cerebellar neurological and non-neurological dysfunctions are frequent, including in particular motor neuron and brainstem dysfunction. The disease course in this multisystemic neurodegenerative disease can be fatal

  8. SYNE1 ataxia is a common recessive ataxia with major non-cerebellar features: a large multi-centre study.

    PubMed

    Synofzik, Matthis; Smets, Katrien; Mallaret, Martial; Di Bella, Daniela; Gallenmüller, Constanze; Baets, Jonathan; Schulze, Martin; Magri, Stefania; Sarto, Elisa; Mustafa, Mona; Deconinck, Tine; Haack, Tobias; Züchner, Stephan; Gonzalez, Michael; Timmann, Dagmar; Stendel, Claudia; Klopstock, Thomas; Durr, Alexandra; Tranchant, Christine; Sturm, Marc; Hamza, Wahiba; Nanetti, Lorenzo; Mariotti, Caterina; Koenig, Michel; Schöls, Ludger; Schüle, Rebecca; de Jonghe, Peter; Anheim, Mathieu; Taroni, Franco; Bauer, Peter

    2016-05-01

    Mutations in the synaptic nuclear envelope protein 1 (SYNE1) gene have been reported to cause a relatively pure, slowly progressive cerebellar recessive ataxia mostly identified in Quebec, Canada. Combining next-generation sequencing techniques and deep-phenotyping (clinics, magnetic resonance imaging, positron emission tomography, muscle histology), we here established the frequency, phenotypic spectrum and genetic spectrum of SYNE1 in a screening of 434 non-Canadian index patients from seven centres across Europe. Patients were screened by whole-exome sequencing or targeted panel sequencing, yielding 23 unrelated families with recessive truncating SYNE1 mutations (23/434 = 5.3%). In these families, 35 different mutations were identified, 34 of them not previously linked to human disease. While only 5/26 patients (19%) showed the classical SYNE1 phenotype of mildly progressive pure cerebellar ataxia, 21/26 (81%) exhibited additional complicating features, including motor neuron features in 15/26 (58%). In three patients, respiratory dysfunction was part of an early-onset multisystemic neuromuscular phenotype with mental retardation, leading to premature death at age 36 years in one of them. Positron emission tomography imaging confirmed hypometabolism in extra-cerebellar regions such as the brainstem. Muscle biopsy reliably showed severely reduced or absent SYNE1 staining, indicating its potential use as a non-genetic indicator for underlying SYNE1 mutations. Our findings, which present the largest systematic series of SYNE1 patients and mutations outside Canada, revise the view that SYNE1 ataxia causes mainly a relatively pure cerebellar recessive ataxia and that it is largely limited to Quebec. Instead, complex phenotypes with a wide range of extra-cerebellar neurological and non-neurological dysfunctions are frequent, including in particular motor neuron and brainstem dysfunction. The disease course in this multisystemic neurodegenerative disease can be fatal

  9. Distinct phenotypes within autosomal recessive ataxias not linked to already known loci.

    PubMed

    Bouhlal, Y; El-Euch-Fayeche, G; Amouri, R; Hentati, F

    2005-10-01

    Autosomal recessive ataxias represent a large group of neurodegenerative disorders characterized by progressive degeneration of central and peripheral nervous systems and a genetic heterogeneity. To analyse clinical, neurophysiological and nerve biopsy findings in 14 Tunisian unrelated families showing linkage exclusion to the known autosomal recessive ataxia loci, 20 Tunisian families with a total of 73 affected subjects were selected on the presence of a clinical phenotype associating a cerebellar ataxia with retained tendon reflexes on at least the index patient. A genetic linkage study was performed with markers spanning the Friedreich ataxia, Spastic ataxia of the Charlevoix-Saguenay, Autosomal recessive ataxia associated with isolated vitamin E deficiency, Ataxia with oculomotor apraxia, Infantile onset spinocerebellar ataxia, Ataxia with Hearing Loss and Optic Atrophy, AT, ATLD, Spinocerebellar ataxia with axonal neuropathy, Cayman ataxia, Cerebellar ataxia with mental retardation optic atrophy and skin abnormalities, Salla syndrome, Marinesco-Sjögren and the Childhood Spinocerebellar Ataxia loci. Out of the 20 families, 4 showed linkage to the spastic ataxia of the Charlevoix-Saguenay locus, one to the Friedreich ataxia locus and one to the Ataxia with oculomotor apraxia locus. Linkage to all tested loci has been excluded in the 14 remaining families. These families were divided into 3 groups according to tendon reflex status in lower limbs which appear as the most obvious distinguishing clinical sign between patients and families: Group A was characterized by brisk tendon reflexes in lower limbs, group B by a homogeneous feature of tendon reflexes with the absence of ankle reflexes and brisk knee reflexes and group C by variable features of tendon reflexes in lower limbs within the same family. Haplotype analysis and Lod score calculation did not show any evidence of linkage to the 16 known loci of cerebellar ataxias. Aim of this study was to reveal the

  10. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model

    PubMed Central

    Maltecca, Francesca; Baseggio, Elisa; Consolato, Francesco; Mazza, Davide; Podini, Paola; Young, Samuel M.; Drago, Ilaria; Bahr, Ben A.; Puliti, Aldamaria; Codazzi, Franca; Quattrini, Angelo; Casari, Giorgio

    2014-01-01

    Spinocerebellar ataxia type 28 (SCA28) is a neurodegenerative disease caused by mutations of the mitochondrial protease AFG3L2. The SCA28 mouse model, which is haploinsufficient for Afg3l2, exhibits a progressive decline in motor function and displays dark degeneration of Purkinje cells (PC-DCD) of mitochondrial origin. Here, we determined that mitochondria in cultured Afg3l2-deficient PCs ineffectively buffer evoked Ca2+ peaks, resulting in enhanced cytoplasmic Ca2+ concentrations, which subsequently triggers PC-DCD. This Ca2+-handling defect is the result of negative synergism between mitochondrial depolarization and altered organelle trafficking to PC dendrites in Afg3l2-mutant cells. In SCA28 mice, partial genetic silencing of the metabotropic glutamate receptor mGluR1 decreased Ca2+ influx in PCs and reversed the ataxic phenotype. Moreover, administration of the β-lactam antibiotic ceftriaxone, which promotes synaptic glutamate clearance, thereby reducing Ca2+ influx, improved ataxia-associated phenotypes in SCA28 mice when given either prior to or after symptom onset. Together, the results of this study indicate that ineffective mitochondrial Ca2+ handling in PCs underlies SCA28 pathogenesis and suggest that strategies that lower glutamate stimulation of PCs should be further explored as a potential treatment for SCA28 patients. PMID:25485680

  11. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis

    PubMed Central

    Eaton, Jana S.; Lin, Z. Ping; Sartorelli, Alan C.; Bonawitz, Nicholas D.; Shadel, Gerald S.

    2007-01-01

    Ataxia-telangiectasia mutated (ATM) kinase orchestrates nuclear DNA damage responses but is proposed to be involved in other important and clinically relevant functions. Here, we provide evidence for what we believe are 2 novel and intertwined roles for ATM: the regulation of ribonucleotide reductase (RR), the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates, and control of mitochondrial homeostasis. Ataxia-telangiectasia (A-T) patient fibroblasts, wild-type fibroblasts treated with the ATM inhibitor KU-55933, and cells in which RR is inhibited pharmacologically or by RNA interference (RNAi) each lead to mitochondrial DNA (mtDNA) depletion under normal growth conditions. Disruption of ATM signaling in primary A-T fibroblasts also leads to global dysregulation of the R1, R2, and p53R2 subunits of RR, abrogation of RR-dependent upregulation of mtDNA in response to ionizing radiation, high mitochondrial transcription factor A (mtTFA)/mtDNA ratios, and increased resistance to inhibitors of mitochondrial respiration and translation. Finally, there are reduced expression of the R1 subunit of RR and tissue-specific alterations of mtDNA copy number in ATM null mouse tissues, the latter being recapitulated in tissues from human A-T patients. Based on these results, we propose that disruption of RR and mitochondrial homeostasis contributes to the complex pathology of A-T and that RR genes are candidate disease loci in mtDNA-depletion syndromes. PMID:17786248

  12. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia

    SciTech Connect

    Wright, J.; Teraoka, S.; Concannon, P.

    1996-10-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. 33 refs., 1 fig., 1 tab.

  13. Mutation of the nuclear lamin gene LMNB2 in progressive myoclonus epilepsy with early ataxia.

    PubMed

    Damiano, John A; Afawi, Zaid; Bahlo, Melanie; Mauermann, Monika; Misk, Adel; Arsov, Todor; Oliver, Karen L; Dahl, Hans-Henrik M; Shearer, A Eliot; Smith, Richard J H; Hall, Nathan E; Mahmood, Khalid; Leventer, Richard J; Scheffer, Ingrid E; Muona, Mikko; Lehesjoki, Anna-Elina; Korczyn, Amos D; Herrmann, Harald; Berkovic, Samuel F; Hildebrand, Michael S

    2015-08-15

    We studied a consanguineous Palestinian Arab family segregating an autosomal recessive progressive myoclonus epilepsy (PME) with early ataxia. PME is a rare, often fatal syndrome, initially responsive to antiepileptic drugs which over time becomes refractory and can be associated with cognitive decline. Linkage analysis was performed and the disease locus narrowed to chromosome 19p13.3. Fourteen candidate genes were screened by conventional Sanger sequencing and in one, LMNB2, a novel homozygous missense mutation was identified that segregated with the PME in the family. Whole exome sequencing excluded other likely pathogenic coding variants in the linked interval. The p.His157Tyr mutation is located in an evolutionarily highly conserved region of the alpha-helical rod of the lamin B2 protein. In vitro assembly analysis of mutant lamin B2 protein revealed a distinct defect in the assembly of the highly ordered fibrous arrays typically formed by wild-type lamin B2. Our data suggests that disruption of the organisation of the nuclear lamina in neurons, perhaps through abnormal neuronal migration, causes the epilepsy and early ataxia syndrome and extends the aetiology of PMEs to include dysfunction in nuclear lamin proteins.

  14. Episodic tremor triggers small earthquakes

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-08-01

    It has been suggested that episodic tremor and slip (ETS), the weak shaking not associated with measurable earthquakes, could trigger nearby earthquakes. However, this had not been confirmed until recently. Vidale et al. monitored seismicity in the 4-month period around a 16-day episode of episodic tremor and slip in March 2010 in the Cascadia region. They observed five small earthquakes within the subducting slab during the ETS episode. They found that the timing and locations of earthquakes near the tremor suggest that the tremor and earthquakes are related. Furthermore, they observed that the rate of earthquakes across the area was several times higher within 2 days of tremor activity than at other times, adding to evidence of a connection between tremor and earthquakes. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003559, 2011)

  15. Behind the Webb Episode 27

    NASA Video Gallery

    This episode of "Behind the Webb" explores the multi-tasking capabilities of one of the cameras on the Webb Space Telescope, the Near-Infrared Spectrograph. Newly designed technology known as "micr...

  16. Lgr4 protein deficiency induces ataxia-like phenotype in mice and impairs long term depression at cerebellar parallel fiber-Purkinje cell synapses.

    PubMed

    Guan, Xin; Duan, Yanhong; Zeng, Qingwen; Pan, Hongjie; Qian, Yu; Li, Dali; Cao, Xiaohua; Liu, Mingyao

    2014-09-19

    Cerebellar dysfunction causes ataxia characterized by loss of balance and coordination. Until now, the molecular and neuronal mechanisms of several types of inherited cerebellar ataxia have not been completely clarified. Here, we report that leucine-rich G protein-coupled receptor 4 (Lgr4/Gpr48) is highly expressed in Purkinje cells (PCs) in the cerebellum. Deficiency of Lgr4 leads to an ataxia-like phenotype in mice. Histologically, no obvious morphological changes were observed in the cerebellum of Lgr4 mutant mice. However, the number of PCs was slightly but significantly reduced in Lgr4(-/-) mice. In addition, in vitro electrophysiological analysis showed an impaired long term depression (LTD) at parallel fiber-PC (PF-PC) synapses in Lgr4(-/-) mice. Consistently, immunostaining experiments showed that the level of phosphorylated cAMP-responsive element-binding protein (Creb) was significantly decreased in Lgr4(-/-) PCs. Furthermore, treatment with forskolin, an adenylyl cyclase agonist, rescued phospho-Creb in PCs and reversed the impairment in PF-PC LTD in Lgr4(-/-) cerebellar slices, indicating that Lgr4 is an upstream regulator of Creb signaling, which is underlying PF-PC LTD. Together, our findings demonstrate for first time an important role for Lgr4 in motor coordination and cerebellar synaptic plasticity and provide a potential therapeutic target for certain types of inherited cerebellar ataxia. PMID:25063812

  17. Genes for spinocerebellar ataxia with blindness and deafness (SCABD/SCAR3, MIM# 271250 and SCABD2).

    PubMed

    Guissart, Claire; Drouot, Nathalie; Oncel, Ibrahim; Leheup, Bruno; Gershoni-Barush, Ruth; Muller, Jean; Ferdinandusse, Sacha; Larrieu, Lise; Anheim, Mathieu; Arslan, Elif Acar; Claustres, Mireille; Tranchant, Christine; Topaloglu, Haluk; Koenig, Michel

    2016-08-01

    Ataxia is a symptom that is often associated with syndromic inherited diseases. We previously reported the linkage of a novel syndrome, ataxia with blindness and deafness (SCAR3/SCABD, OMIM# 271250), to chromosome 6p21-p23 by linkage mapping of an Arab Israeli consanguineous family. We have now identified by whole-exome sequencing a homozygous missense mutation in the Arab Israeli family in the SLC52A2 gene located in 8qter, therefore excluding linkage of this family to 6p. We confirmed the involvement of SLC52A2 by the identification of a second mutation in an independent family with an identical syndromic presentation, which we suggest to name SCABD2. SCABD2 is therefore allelic to Brown-Vialleto-Van Laere syndrome type 2 defined by prominent motoneuronopathy and deafness, and also caused by SLC52A2 mutations. In the course of this project, we identified a clinically similar family with a homozygous missense mutation in PEX6, which is located in 6p21. Therefore, despite false linkage in the initial family, SCABD1/SCAR3 is located in 6p21 and is caused by PEX6 mutations. Both SLC52A2 and PEX6 should be included in screening panels for the diagnosis of syndromic inherited ataxias, particularly as patients with mutations in SLC52A2 can be ameliorated by riboflavin supplementation.

  18. A Case of Subacute Ataxia in the Summertime: Tick Paralysis.

    PubMed

    Laufer, Christin B; Chiota-McCollum, Nicole

    2015-08-01

    Tick paralysis is caused by a neurotoxin secreted in the saliva of a gravid female tick, and manifests with ataxia, areflexia, ascending paralysis, bulbar palsy, and ophthalmoparesis. An 84-year-old man presented in June in coastal Mississippi with several days of subacute ataxia, bulbar palsy, unilateral weakness, and absent deep tendon reflexes. MRI/MRA and extensive serum and cerebrospinal fluid investigations were unrevealing. His symptoms progressed over several days, until his nurse discovered and removed an engorged tick from his gluteal fold. Within hours of tick removal, his subacute symptoms completely resolved. While tick paralysis is rare in adults, it is a condition that internists should be familiar with, particularly in seasons and areas with high prevalence of disease. This case also highlights the importance of performing a thorough skin exam on patients with the aforementioned neurologic abnormalities. PMID:25794538

  19. Crossed optic ataxia: possible role of the dorsal splenium.

    PubMed Central

    Ferro, J M; Bravo-Marques, J M; Castro-Caldas, A; Antunes, L

    1983-01-01

    An unusual combination of disconnective syndromes is reported: transcortical motor aphasia, left arm apraxia and optic ataxia. Neuropathological examination showed a left parieto-occipital and a subcortical frontal infarct and a lesion of the dorsal part of the posterior two-fifths of the callosum. The frontal lesion caused the transcortical motor aphasia and produced the left arm apraxia. Visuomotor incoordination in the right hemispace was due to the left parieto-occipital infarct, while the crossed optic ataxia in the left hemispace was attributed to the callosal lesion. It is proposed that the pathway that serves crossed visual reaching passes through the dorsal part of the posterior callosum. This case reinforces the growing evidence that fibres in the corpus callosum are arranged in ventro-dorsal functional lamination. Images PMID:6875586

  20. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice

    PubMed Central

    Elson, Ari; Wang, Yaoqi; Daugherty, Cathie J.; Morton, Cynthia C.; Zhou, Fen; Campos-Torres, Juanita; Leder, Philip

    1996-01-01

    We have generated a mouse model for ataxia-telangiectasia by using gene targeting to generate mice that do not express the Atm protein. Atm-deficient mice are retarded in growth, do not produce mature sperm, and exhibit severe defects in T cell maturation while going on to develop thymomas. Atm-deficient fibroblasts grow poorly in culture and display a high level of double-stranded chromosome breaks. Atm-deficient thymocytes undergo spontaneous apoptosis in vitro significantly more than controls. Atm-deficient mice then exhibit many of the same symptoms found in ataxia-telangiectasia patients and in cells derived from them. Furthermore, we demonstrate that the Atm protein exists as two discrete molecular species, and that loss of one or of both of these can lead to the development of the disease. PMID:8917548

  1. Mapping of mutation causing Friedreich's ataxia to human chromosome 9.

    PubMed

    Chamberlain, S; Shaw, J; Rowland, A; Wallis, J; South, S; Nakamura, Y; von Gabain, A; Farrall, M; Williamson, R

    1988-07-21

    Friedreich's ataxia is an autosomal recessive disease with progressive degeneration of the central and peripheral nervous system. The biochemical abnormality underlying the disorder has not been identified. Prompted by the success in localizing the mutations causing Duchenne muscular dystrophy, Huntington's disease and cystic fibrosis, we have undertaken molecular genetic linkage studies to determine the chromosomal site of the Friedreich's ataxia mutation as an initial step towards the isolation and characterization of the defective gene. We report the assignment of the gene mutation for this disorder to chromosome 9p22-CEN by genetic linkage to an anonymous DNA marker MCT112 and the interferon-beta gene probe. In contrast to the clinical variation seen for the disorder, no evidence of genetic heterogeneity is observed.

  2. Quantitative Phosphoproteomics of the Ataxia Telangiectasia-Mutated (ATM) and Ataxia Telangiectasia-Mutated and Rad3-related (ATR) Dependent DNA Damage Response in Arabidopsis thaliana*

    PubMed Central

    Roitinger, Elisabeth; Hofer, Manuel; Köcher, Thomas; Pichler, Peter; Novatchkova, Maria; Yang, Jianhua; Schlögelhofer, Peter; Mechtler, Karl

    2015-01-01

    The reversible phosphorylation of proteins on serine, threonine, and tyrosine residues is an important biological regulatory mechanism. In the context of genome integrity, signaling cascades driven by phosphorylation are crucial for the coordination and regulation of DNA repair. The two serine/threonine protein kinases ataxia telangiectasia-mutated (ATM) and Ataxia telangiectasia-mutated and Rad3-related (ATR) are key factors in this process, each specific for different kinds of DNA lesions. They are conserved across eukaryotes, mediating the activation of cell-cycle checkpoints, chromatin modifications, and regulation of DNA repair proteins. We designed a novel mass spectrometry-based phosphoproteomics approach to study DNA damage repair in Arabidopsis thaliana. The protocol combines filter aided sample preparation, immobilized metal affinity chromatography, metal oxide affinity chromatography, and strong cation exchange chromatography for phosphopeptide generation, enrichment, and separation. Isobaric labeling employing iTRAQ (isobaric tags for relative and absolute quantitation) was used for profiling the phosphoproteome of atm atr double mutants and wild type plants under either regular growth conditions or challenged by irradiation. A total of 10,831 proteins were identified and 15,445 unique phosphopeptides were quantified, containing 134 up- and 38 down-regulated ATM/ATR dependent phosphopeptides. We identified known and novel ATM/ATR targets such as LIG4 and MRE11 (needed for resistance against ionizing radiation), PIE1 and SDG26 (implicated in chromatin remodeling), PCNA1, WAPL, and PDS5 (implicated in DNA replication), and ASK1 and HTA10 (involved in meiosis). PMID:25561503

  3. Altered corticomotor-cerebellar integrity in young ataxia telangiectasia patients.

    PubMed

    Sahama, Ishani; Sinclair, Kate; Fiori, Simona; Pannek, Kerstin; Lavin, Martin; Rose, Stephen

    2014-09-01

    Magnetic resonance imaging (MRI) research in identifying altered brain structure and function in ataxia-telangiectasia, an autosomal recessive neurodegenerative disorder, is limited. Diffusion-weighted MRI were obtained from 11 ataxia telangiectasia patients (age range, 7-22 years; mean, 12 years) and 11 typically developing age-matched participants (age range, 8-23 years; mean, 13 years). Gray matter volume alterations in patients were compared with those of healthy controls using voxel-based morphometry, whereas tract-based spatial statistics was employed to elucidate white matter microstructure differences between groups. White matter microstructure was probed using quantitative fractional anisotropy and mean diffusivity measures. Reduced gray matter volume in both cerebellar hemispheres and in the precentral-postcentral gyrus in the left cerebral hemisphere was observed in ataxia telangiectasia patients compared with controls (P < 0.05, corrected for multiple comparisons). A significant reduction in fractional anisotropy in the cerebellar hemispheres, anterior/posterior horns of the medulla, cerebral peduncles, and internal capsule white matter, particularly in the left posterior limb of the internal capsule and corona radiata in the left cerebral hemisphere, was observed in patients compared with controls (P < 0.05). Mean diffusivity differences were observed within the left cerebellar hemisphere and the white matter of the superior lobule of the right cerebellar hemisphere (P < 0.05). Cerebellum-localized gray matter changes are seen in young ataxia telangiectasia patients along with white matter tract degeneration projecting from the cerebellum into corticomotor regions. The lack of cortical involvement may reflect early-stage white matter motor pathway degeneration within young patients. PMID:25042086

  4. Friedreich Ataxia: From the Eye of a Molecular Biologist.

    PubMed

    Muthuswamy, Srinivasan; Agarwal, Sarita

    2015-09-01

    Friedreich ataxia (FRDA) is caused by the expansion of a GAA triplet repeat in the first intron of the FXN gene. This disease was named after Nicholaus Friedreich, Germany, who depicted the essential finding. Among ataxias, FRDA is the most common hereditary ataxia. It has the autosomal recessive pattern of inheritance. The expansion of the GAA triplet repeat hinders the transcription, thereby reducing the level of the FXN transcript and consequently reducing the level of frataxin, a 210-amino acid protein. The disease pathogenesis is fundamentally due to a lack of frataxin, which is claimed to play a role in iron-sulfur cluster synthesis. Oxidative stress builds up as a result of Fe accumulation in the mitochondria, causing degeneration of the cells, which primarily occurs in the neurons and later in the cardiac tissues, and to some extent in the pancreas. The therapeutic interventions are at infancy; however, current treatments are targeted toward the reduction of iron overload and its effects. PMID:26375377

  5. MME mutation in dominant spinocerebellar ataxia with neuropathy (SCA43)

    PubMed Central

    Depondt, Chantal; Donatello, Simona; Rai, Myriam; Wang, François Charles; Manto, Mario; Simonis, Nicolas

    2016-01-01

    Objective: To identify the causative gene mutation in a 5-generation Belgian family with dominantly inherited spinocerebellar ataxia and polyneuropathy, in which known genetic etiologies had been excluded. Methods: We collected DNA samples of 28 family members, including 7 living affected individuals, whose clinical records were reviewed by a neurologist experienced in ataxia. We combined linkage data of 21 family members with whole exome sequencing in 2 affected individuals to identify shared heterozygous variants mapping to potentially linked regions. Variants were screened for rarity and for predicted damaging effect. A candidate mutation was confirmed by Sanger sequencing and tested for cosegregation with the disease. Results: Affected individuals presented with late-onset sensorimotor axonal polyneuropathy; all but one also had cerebellar ataxia. We identified a variant in the MME gene, p.C143Y, that was absent from control databases, cosegregated with the phenotype, and was predicted to have a strong damaging effect on the encoded protein by all algorithms we used. Conclusions: MME encodes neprilysin (NEP), a zinc-dependent metalloprotease expressed in most tissues, including the central and peripheral nervous systems. The mutated cysteine 143 forms a disulfide bridge, which is 100% conserved in NEP and in similar enzymes. The recent identification of recessive MME mutations in 10 unrelated individuals from Japan with axonal polyneuropathy further supports the causality of the mutation, despite the dominant mode of inheritance and the presence of cerebellar involvement in our study family. Functional studies are needed to identify the mechanisms underlying these differences. PMID:27583304

  6. New findings in the ataxia of Charlevoix-Saguenay.

    PubMed

    Gazulla, José; Benavente, Isabel; Vela, Ana Carmen; Marín, Miguel Angel; Pablo, Luis Emilio; Tessa, Alessandra; Barrena, María Rosario; Santorelli, Filippo Maria; Nesti, Claudia; Modrego, Pedro; Tintoré, María; Berciano, José

    2012-05-01

    The aim of the study was to enhance our understanding of the pathogenesis of the ataxia of Charlevoix-Saguenay, based on the findings presented herein. Five patients with a molecular diagnosis of this disease underwent clinical, radiological, ophthalmologic and electrophysiological examinations. Five novel mutations, which included nonsense and missense variants, were identified, with these resulting in milder phenotypes. In addition to the usual manifestations, a straight dorsal spine was found in every case, and imaging techniques showed loss of the dorsal kyphosis. Cranial MRI demonstrated hypointense linear striations at the pons. Tensor diffusion MRI sequences revealed that these striations corresponded with hyperplastic pontocerebellar fibres, and tractographic sequences showed interrupted pyramidal tracts at the pons. Ocular coherence tomography demonstrated abnormal thickness of the nerve fibre layer. Electrophysiological studies showed nerve conduction abnormalities compatible with a dysmyelinating neuropathy, with signs of chronic denervation in distal muscles. The authors suggest that the hyperplastic pontocerebellar fibres compress the pyramidal tracts at the pons, and that the amount of retinal fibres traversing the optic discs is enlarged. These facts point to the contribution of an abnormal developmental mechanism in the ataxia of Charlevoix-Saguenay. Accordingly, spasticity would be mediated by compression of the pyramidal tracts, neuromuscular symptoms by secondary axonal degeneration superimposed on the peripheral myelinopathy, while the cause of the progressive ataxia remains speculative. The distinctive aspect of the dorsal spine could be of help in the clinical diagnosis. PMID:21993619

  7. Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities

    PubMed Central

    Lefevre, Sophie; Sliwa, Dominika; Seguin, Alexandra; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2010-01-01

    Abstract Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron–sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment. Antioxid. Redox Signal. 13, 0000–0000. PMID:20156111

  8. Ataxia-telangiectasia: some historic, clinical and pathologic observations.

    PubMed

    Boder, E

    1975-01-01

    Although an isolated clinical case report was published in 1926 and another in 1941, ataxia-telangiectasia (A-T) was not established as a distinct entity until 1957, when it was first delineated clinicopathologically. Susceptibility to sinopulmonary infection was identified as the main cause of death and as the third major component of the syndrome; its heredofamilial nature was documented, and it was designated "ataxia-telangiectasia." In a later review of 101 published cases, lymphoreticular malignancy emerged as the second most frequent cause of death. Although the thymus was found to be absent in the first reported autopsy in 1957 and the serum IgA deficiency was first recorded in 1961, A-T was not established as an immunodeficiency disease until 1963. Thymic abnormality and dysgammaglobulinemia explain the 2 main causes of death, sinopulmonary and neoplastic, but the immunodeficiency is probably not the central defect. It does not appear to explain either of the 2 main clinical diagnostic keys, the ataxia and the telangiectasia, or any of the other seemingly unrealted multisystemic facets of this complex disorder. Some of our most provocative long-term clinical observations and recent pathologic findings in our series of 9 autopsies are discussed.

  9. Factitious psychogenic nonepileptic paroxysmal episodes

    PubMed Central

    Romano, Alissa; Alqahtani, Saeed; Griffith, James; Koubeissi, Mohamad Z.

    2014-01-01

    Mistaking psychogenic nonepileptic paroxysmal episodes (PNEPEs) for epileptic seizures (ES) is potentially dangerous, and certain features should alert physicians to a possible PNEPE diagnosis. Psychogenic nonepileptic paroxysmal episodes due to factitious seizures carry particularly high risks of morbidity or mortality from nonindicated emergency treatment and, often, high costs in wasted medical treatment expenditures. We report a case of a 28-year-old man with PNEPEs that were misdiagnosed as ES. The patient had been on four antiseizure medications (ASMs) with therapeutic serum levels and had had multiple intubations in the past for uncontrolled episodes. He had no episodes for two days of continuous video-EEG monitoring. He then disconnected his EEG cables and had an episode of generalized stiffening and cyanosis, followed by jerking and profuse bleeding from the mouth. The manifestations were unusually similar to those of ES, except that he was clearly startled by spraying water on his face, while he was stiff in all extremities and unresponsive. There were indications that he had sucked blood from his central venous catheter to expel through his mouth during his PNEPEs while consciously holding his breath. Normal video-EEG monitoring; the patient's volitional and deceptive acts to fabricate the appearance of illness, despite pain and personal endangerment; and the absence of reward other than remaining in a sick role were all consistent with a diagnosis of factitious disorder. PMID:25667902

  10. Factitious psychogenic nonepileptic paroxysmal episodes.

    PubMed

    Romano, Alissa; Alqahtani, Saeed; Griffith, James; Koubeissi, Mohamad Z

    2014-01-01

    Mistaking psychogenic nonepileptic paroxysmal episodes (PNEPEs) for epileptic seizures (ES) is potentially dangerous, and certain features should alert physicians to a possible PNEPE diagnosis. Psychogenic nonepileptic paroxysmal episodes due to factitious seizures carry particularly high risks of morbidity or mortality from nonindicated emergency treatment and, often, high costs in wasted medical treatment expenditures. We report a case of a 28-year-old man with PNEPEs that were misdiagnosed as ES. The patient had been on four antiseizure medications (ASMs) with therapeutic serum levels and had had multiple intubations in the past for uncontrolled episodes. He had no episodes for two days of continuous video-EEG monitoring. He then disconnected his EEG cables and had an episode of generalized stiffening and cyanosis, followed by jerking and profuse bleeding from the mouth. The manifestations were unusually similar to those of ES, except that he was clearly startled by spraying water on his face, while he was stiff in all extremities and unresponsive. There were indications that he had sucked blood from his central venous catheter to expel through his mouth during his PNEPEs while consciously holding his breath. Normal video-EEG monitoring; the patient's volitional and deceptive acts to fabricate the appearance of illness, despite pain and personal endangerment; and the absence of reward other than remaining in a sick role were all consistent with a diagnosis of factitious disorder. PMID:25667902

  11. SETX mutations are a frequent genetic cause of juvenile and adult onset cerebellar ataxia with neuropathy and elevated serum alpha-fetoprotein

    PubMed Central

    2013-01-01

    Objectives/background Ataxia with oculomotor apraxia defines a group of genetically distinct recessive ataxias including ataxia-telangectasia (A-T, ATM gene), ataxia with oculomotor apraxia type 1 (AOA1, APTX gene) and type 2 (AOA2, SETX gene). Although, a few unique clinical features differentiate each of these forms, the patients also share common clinical signs, such as the presence of cerebellar atrophy, sensorimotor axonal neuropathy, and elevated alpha-fetoprotein (AFP) serum level. Materials and methods We selected 22 Italian patients from 21 families, presenting progressive cerebellar ataxia, axonal neuropathy, and elevated serum AFP. We screened the coding regions of ATM, APTX and SETX genes for point mutations by direct sequencing or DHPLC, and searched genomic rearrangements in SETX by MLPA analysis. In selected cases, quantification of ATM and senataxin proteins was performed by Western blot. Clinical, neurophysiological, and neuroimaging data were collected. Results Thirteen patients (12 families) carried SETX mutations (AOA2, 57%), two were mutated in ATM (A-T), and three in APTX (AOA1). In three remaining patients, we could not find pathogenic mutations, and in one case we found, in homozygosis, the SETX p.K992R polymorphism (population frequency 1-2%). In AOA2 cases, we identified 14 novel and three reported SETX mutations. Signs at onset were gait ataxia and facial dyskinesia, and the age ranged between 11 and 18 years. None had obvious oculomotor apraxia at the latest examination (age 14–45 years). The patient carrying the p.K992R SETX polymorphism had a phenotype similar to that of the diagnosed AOA2 patients, while the other three undiagnosed subjects had a very late onset and a few distinguishing clinical features. Discussion and conclusions We describe a large series of 13 AOA2 Italian patients. The phenotype was consistent with previous descriptions of AOA2, except for a higher frequency of strabism, and for the absence of oculomotor

  12. Fragile X-associated tremor/ataxia syndrome: An under-recognised cause of tremor and ataxia.

    PubMed

    Kalus, Sarah; King, John; Lui, Elaine; Gaillard, Frank

    2016-01-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive degenerative movement disorder resulting from a fragile X "premutation", defined as 55-200 CGG repeats in the 5'-untranslated region of the FMR1 gene. The FMR1 premutation occurs in 1/800 males and 1/250 females, with FXTAS affecting 40-45% of male and 8-16% of female premutation carriers over the age of 50. FXTAS typically presents with kinetic tremor and cerebellar ataxia. FXTAS has a classical imaging profile which, in concert with clinical manifestations and genetic testing, participates vitally in its diagnosis. The revised FXTAS diagnostic criteria include two major radiological features. The "MCP sign", referring to T2 hyperintensity in the middle cerebellar peduncle, has long been considered the radiological hallmark of FXTAS. Recently included as a major radiological criterion in the diagnosis of FXTAS is T2 hyperintensity in the splenium of the corpus callosum. Other imaging features of FXTAS include T2 hyperintensities in the pons, insula and periventricular white matter as well as generalised brain and cerebellar atrophy. FXTAS is an under-recognised and misdiagnosed entity. In patients with unexplained tremor, ataxia and cognitive decline, the presence of middle cerebellar peduncle and/or corpus callosum splenium hyperintensity should raise suspicion of FXTAS. Diagnosis of FXTAS has important implications not only for the patient but also, through genetic counselling and testing, for future generations.

  13. Episodic Memory: A Comparative Approach

    PubMed Central

    Martin-Ordas, Gema; Call, Josep

    2013-01-01

    Historically, episodic memory has been described as autonoetic, personally relevant, complex, context-rich, and allowing mental time travel. In contrast, semantic memory, which is theorized to be free of context and personal relevance, is noetic and consists of general knowledge of facts about the world. The field of comparative psychology has adopted this distinction in order to study episodic memory in non-human animals. Our aim in this article is not only to reflect on the concept of episodic memory and the experimental approaches used in comparative psychology to study this phenomenon, but also to provide a critical analysis of these paradigms. We conclude the article by providing new avenues for future research. PMID:23781179

  14. Evaluating cost-effectiveness using episodes of care.

    PubMed

    Lasdon, G S; Sigmann, P

    1977-03-01

    To test the feasibility of defining episodes of care as a cost-effectiveness measure, a pilot study was carried out in conjunction with an ongoing quality assessment program which involved abstracting prospective data from charts of patients treated for hypertension in the Primary Care Clinic of Hahnemann Medical College and Hospital. For comparison, data were abstracted retrospectively on hypertensive patients treated by faculty general internists in a fee-for-service private practice. The 12-month course of each patient was divided into controlled and uncontrolled episodes for which visit frequency rate and mean laboratory test utilization was calculated. Patient cost for each type of episode in each setting was calculated using standard charges. Results indicate that the episode definition is feasible and provides a measure for comparing the cost-effectiveness of different delivery systems treating the same health care problem. Factors omitted from the study that could affect cost-effectiveness are also discussed.

  15. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay.

    PubMed

    Kim, Myungjin; Sandford, Erin; Gatica, Damian; Qiu, Yu; Liu, Xu; Zheng, Yumei; Schulman, Brenda A; Xu, Jishu; Semple, Ian; Ro, Seung-Hyun; Kim, Boyoung; Mavioglu, R Nehir; Tolun, Aslıhan; Jipa, Andras; Takats, Szabolcs; Karpati, Manuela; Li, Jun Z; Yapici, Zuhal; Juhasz, Gabor; Lee, Jun Hee; Klionsky, Daniel J; Burmeister, Margit

    2016-01-01

    Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health. PMID:26812546

  16. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    NASA Technical Reports Server (NTRS)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  17. The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review.

    PubMed

    Marquer, A; Barbieri, G; Pérennou, D

    2014-03-01

    Gait and balance disorders are often major causes of handicap in patients with cerebellar ataxia. Although it was thought that postural and balance disorders in cerebellar ataxia were not treatable, recent studies have demonstrated the beneficial effects of rehabilitation programs. This article is the first systematic review on the treatment of postural disorders in cerebellar ataxia. Nineteen articles were selected, of which three were randomized, controlled trials. Various aetiologies of cerebellar ataxia were studied: five studies assessed patients with multiple sclerosis, four assessed patients with degenerative ataxia, two assessed stroke patients and eight assessed patients with various aetiologies. Accurate assessment of postural disorders in cerebellar ataxia is very important in both clinical trials and clinical practice. The Scale for the Assessment and Rating of Ataxia (SARA) is a simple, validated measurement tool, for which 18 of the 40 points are related to postural disorders. This scale is useful for monitoring ataxic patients with postural disorders. There is now moderate level evidence that rehabilitation is efficient to improve postural capacities of patients with cerebellar ataxia - particularly in patients with degenerative ataxia or multiple sclerosis. Intensive rehabilitation programs with balance and coordination exercises are necessary. Although techniques such as virtual reality, biofeedback, treadmill exercises with supported bodyweight and torso weighting appear to be of value, their specific efficacy has to be further investigated. Drugs have only been studied in degenerative ataxia, and the level of evidence is low. There is now a need for large, randomized, controlled trials testing rehabilitation programs suited to postural and gait disorders of patients with cerebellar ataxia.

  18. RAGG - R EPISODIC AGGREGATION PACKAGE

    EPA Science Inventory

    The RAGG package is an R implementation of the CMAQ episodic model aggregation method developed by Constella Group and the Environmental Protection Agency. RAGG is a tool to provide climatological seasonal and annual deposition of sulphur and nitrogen for multimedia management. ...

  19. Principal Component Analysis of Cerebellar Shape on MRI Separates SCA Types 2 and 6 into Two Archetypal Modes of Degeneration

    PubMed Central

    Jung, Brian C.; Choi, Soo I.; Du, Annie X.; Cuzzocreo, Jennifer L.; Geng, Zhuo Z.; Ying, Howard S.; Perlman, Susan L.; Toga, Arthur W.; Prince, Jerry L.

    2014-01-01

    Although “cerebellar ataxia” is often used in reference to a disease process, presumably there are different underlying pathogenetic mechanisms for different subtypes. Indeed, spinocerebellar ataxia (SCA) types 2 and 6 demonstrate complementary phenotypes, thus predicting a different anatomic pattern of degeneration. Here, we show that an unsupervised classification method, based on principal component analysis (PCA) of cerebellar shape characteristics, can be used to separate SCA2 and SCA6 into two classes, which may represent disease-specific archetypes. Patients with SCA2 (n=11) and SCA6 (n=7) were compared against controls (n=15) using PCA to classify cerebellar anatomic shape characteristics. Within the first three principal components, SCA2 and SCA6 differed from controls and from each other. In a secondary analysis, we studied five additional subjects and found that these patients were consistent with the previously defined archetypal clusters of clinical and anatomical characteristics. Secondary analysis of five subjects with related diagnoses showed that disease groups that were clinically and pathophysiologically similar also shared similar anatomic characteristics. Specifically, Archetype #1 consisted of SCA3 (n=1) and SCA2, suggesting that cerebellar syndromes accompanied by atrophy of the pons may be associated with a characteristic pattern of cerebellar neurodegeneration. In comparison, Archetype #2 was comprised of disease groups with pure cerebellar atrophy (episodic ataxia type 2 (n=1), idiopathic late-onset cerebellar ataxias (n=3), and SCA6). This suggests that cerebellar shape analysis could aid in discriminating between different pathologies. Our findings further suggest that magnetic resonance imaging is a promising imaging biomarker that could aid in the diagnosis and therapeutic management in patients with cerebellar syndromes. PMID:22258915

  20. Is the ataxia of Charlevoix-Saguenay a developmental disease?

    PubMed

    Gazulla, José; Vela, Ana Carmen; Marín, Miguel Angel; Pablo, Luis; Santorelli, Filippo Maria; Benavente, Isabel; Modrego, Pedro; Tintoré, María; Berciano, José

    2011-09-01

    The autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is considered a neurodegenerative disease caused by mutations in the SACS gene, located on chromosome 13q12.12. It is a syndrome that comprises skeletal, retinal and neurological manifestations, among which feature spasticity, cerebellar ataxia and peripheral neuropathy. Five patients with a molecular diagnosis of ARSACS underwent clinical, radiological, and ophthalmologic examinations. Every one of the identified causal mutations was novel. Spastic ataxia, peripheral neuropathy, pes cavus, and hammertoes were found in every case. T2 and T2-fluid attenuation inversion recovery-weighted MRI sequences demonstrated cerebellar atrophy and a hypointense linear striation at the pons. Tensor diffusion sequences revealed that the hypointense striation corresponded with hyperplasia of the pontocerebellar fibres, which gave place to abnormally thick middle cerebellar peduncles. Stereophotographs of the optic discs showed an increased number of retinal fibres, and ocular coherence tomography, increased thickness of the retinal nerve fibre layer. The authors suggest that the hyperplasic pontocerebellar fibres compress the pyramidal tracts at the pons since a very early stage of central nervous system development, causing spasticity, and may also cause cerebellar atrophy by means of glutamate-induced excitotoxicity. The abnormal amount of retinal fibres traversing the optic discs could have caused the detected mild peripheral visual field defects. Taken together, these facts point to a developmental cause in ARSACS, as it does not exhibit the tissue atrophy characteristic of degenerative diseases. Clinical deterioration in ARSACS seems to be mediated by phenomena (compression of the pyramidal tracts and cerebellar glutamate-mediated excitotoxicity) derived from the developmental anomalies referred to, while the neuromuscular symptoms are caused by a peripheral neuropathy with pathologic features suggestive

  1. There May Be More to Reaching than Meets the Eye: Re-Thinking Optic Ataxia

    ERIC Educational Resources Information Center

    Jackson, Stephen R.; Newport, Roger; Husain, Masud; Fowlie, Jane E.; O'Donoghue, Michael; Bajaj, Nin

    2009-01-01

    Optic ataxia (OA) is generally thought of as a disorder of visually guided reaching movements that cannot be explained by any simple deficit in visual or motor processing. In this paper we offer a new perspective on optic ataxia; we argue that the popular characterisation of this disorder is misleading and is unrepresentative of the pattern of…

  2. Autosomal recessive cerebellar ataxia of adult onset due to STUB1 mutations.

    PubMed

    Depondt, Chantal; Donatello, Simona; Simonis, Nicolas; Rai, Myriam; van Heurck, Roxane; Abramowicz, Marc; D'Hooghe, Marc; Pandolfo, Massimo

    2014-05-13

    Autosomal recessive ataxias affect about 1 person in 20,000. Friedreich ataxia accounts for one-third of the cases in Caucasians; the others are due to a growing list of very rare molecular defects, including mild forms of metabolic diseases. In nearly 50%, the genetic cause remains undetermined.

  3. Ataxia-telangiectasia - A historical review and a proposal for a new designation: ATM syndrome.

    PubMed

    Teive, Hélio A G; Moro, Adriana; Moscovich, Mariana; Arruda, Walter O; Munhoz, Renato P; Raskin, Salmo; Ashizawa, Tetsuo

    2015-08-15

    The authors review ataxia telangiectasia, emphasizing historical aspects, genetic discoveries, and the clinical presentations of the classical and atypical forms. In fact, ataxia telangiectasia represents a multisystem entity with pleomorphic neurological and systemic manifestations. ATM syndrome is proposed as a more adequate designation for this entity.

  4. Impaired Inhibition of Prepotent Motor Tendencies in Friedreich Ataxia Demonstrated by the Simon Interference Task

    ERIC Educational Resources Information Center

    Corben, L. A.; Akhlaghi, H.; Georgiou-Karistianis, N.; Bradshaw, J. L.; Egan, G. F.; Storey, E.; Churchyard, A. J.; Delatycki, M. B.

    2011-01-01

    Friedreich ataxia (FRDA) is the most common of the genetically inherited ataxias. We recently demonstrated that people with FRDA have impairment in motor planning--most likely because of pathology affecting the cerebral cortex and/or cerebello-cortical projections. We used the Simon interference task to examine how effective 13 individuals with…

  5. Disturbed calcium signaling in spinocerebellar ataxias and Alzheimer's disease.

    PubMed

    Egorova, Polina; Popugaeva, Elena; Bezprozvanny, Ilya

    2015-04-01

    Neurodegenerative disorders, such as spinocerebellar ataxias (SCAs) and Alzheimer's disease (AD) represent a huge scientific and medical question, but the molecular mechanisms of these diseases are still not clear. There is increasing evidence that neuronal calcium signaling is abnormal in many neurodegenerative disorders. Abnormal neuronal calcium release from the endoplasmic reticulum may result in disturbances of cell homeostasis, synaptic dysfunction, and eventual cell death. Neuronal loss is observed in most cases of neurodegenerative diseases. Recent experimental evidence supporting the role of neuronal calcium signaling in the pathogenesis of SCAs and AD is discussed in this review.

  6. The thermal sensitivity of normal and ataxia telangiectasia human fibroblasts

    SciTech Connect

    Raaphorst, G.P.; Azzam, E.I.

    1982-01-01

    Human normal and ataxia telangiectasia (AT) heterozygote and homozygote cell strains were heated at 42.0 and 45.0/sup 0/C to determine their thermal responses. All cell strains had approximately the same thermal sensitivity and were less thermally sensitive than Chinese hamster cells or many other rodent cell lines reported in the literature. No shoulders were observed on the survival curves for heating at 42.0 or 45.0/sup 0/C. Thermal tolerance developed in both the normal and AT cell strains with heating for prolonged intervals at 42.0/sup 0/C.

  7. The thermal sensitivity of normal and ataxia telangiectasia human fibroblasts

    SciTech Connect

    Raaphorst, G.P.; Azzam, E.I.

    1982-11-01

    Human normal and ataxia telangiectasia (AT) heterozygote and homozygote cell strains were heated at 42.0 and 45.0/sup 0/C to determine their thermal responses. All cell strains had approximately the same thermal sensitivity and were less thermally sensitive than Chinese hamster cells or many other rodent cell lines reported in the literature. No shoulders were observed on the survival curves for heating at 42.0 or 45.0/sup 0/C. Thermal tolerance developed in both the normal and AT cells strains with heating for prolonged intervals at 42.0GAMMA.

  8. Disabled early recruitment of antioxidant defenses in Friedreich's ataxia.

    PubMed

    Chantrel-Groussard, K; Geromel, V; Puccio, H; Koenig, M; Munnich, A; Rötig, A; Rustin, P

    2001-09-15

    Friedreich's ataxia (FRDA) results from a generalized deficiency of mitochondrial iron-sulfur protein activity ascribed to mitochondrial iron overload. However, iron overload appears to be a late event in the disease. Here we show that neither superoxide dismutases nor the import iron machinery was induced by an endogenous oxidative stress in FRDA patients' fibroblasts in contrast to control cells. Superoxide dismutase activity was not induced in the heart of conditional frataxin-KO mice either. This suggests that continuous oxidative damage to iron-sulfur clusters, resulting from hampered superoxide dismutase signaling, is causative of the mitochondrial deficiency and long term mitochondrial iron overload occurring in FRDA.

  9. [Ataxia telangiectasia. Diagnosis and follow-up in 4 cases].

    PubMed

    Monterrubio Ledezma, César Eduardo; Corona Rivera, Alfredo; Corona Rivera, Jorge Román; Rodríguez Casillas, Lourdes Jocelyn; Hernández Rocha, Juan; Barros Nuñez, Patricio; Bobadilla Morales, Lucina

    2013-01-01

    Ataxia telangiectasia (AT) is a chromosomal instability syndrome with autosomal recessive inheritance, it is caused by more than 500 mutations of the ATM gene, which is involved in the cellular response to DNA damage. The diagnosis becomes difficult due to the evolution of the disease, their poor knowledge, and limited access to diagnostic tests. Chromosomal damage induced by ionizing radiation (IR) assay is still a sensitive method for early diagnosis, and it is essential for better management and genetic counseling. This paper shows diagnosis and follow-up in four cases with AT. PMID:23999637

  10. Classification of ischaemic episodes with ST/HR diagrams.

    PubMed

    Faganeli Pucer, Jana; Demšar, Janez; Kukar, Matjaž

    2012-01-01

    Coronary artery disease is the developed world's premier cause of mortality and the most probable cause of myocardial ischaemia. More advanced diagnostic tests aside, in electrocardiogram (ECG) analysis it manifests itself as a ST segment deviation, targeted by both exercise ECG and ambulatory ECG. In ambulatory ECG, besides ischaemic ST segment deviation episodes there are also non-ischaemic heart rate related episodes which aggravate real ischaemia detection. We present methods to transform the features developed for the heart rate adjustment of ST segment depression in exercise ECG for use in ambulatory ECG. We use annotations provided by the Long-Term ST Database to plot the ST/HR diagrams and then estimate the overall and maximal slopes of the diagrams in the exercise and recovery phase for each ST segment deviation episode. We also estimate the angle at the extrema of the ST/HR diagrams. Statistical analysis shows that ischaemic ST segment deviation episodes have significantly steeper overall and maximal slopes than heart rate related episodes, which indicates the explored features' utility for distinguishing between the two types of episodes. This makes the proposed features very useful in automated ECG analysis. PMID:22874369

  11. Subjective Experience of Episodic Memory and Metacognition: A Neurodevelopmental Approach

    PubMed Central

    Souchay, Céline; Guillery-Girard, Bérengère; Pauly-Takacs, Katalin; Wojcik, Dominika Zofia; Eustache, Francis

    2013-01-01

    Episodic retrieval is characterized by the subjective experience of remembering. This experience enables the co-ordination of memory retrieval processes and can be acted on metacognitively. In successful retrieval, the feeling of remembering may be accompanied by recall of important contextual information. On the other hand, when people fail (or struggle) to retrieve information, other feelings, thoughts, and information may come to mind. In this review, we examine the subjective and metacognitive basis of episodic memory function from a neurodevelopmental perspective, looking at recollection paradigms (such as source memory, and the report of recollective experience) and metacognitive paradigms such as the feeling of knowing). We start by considering healthy development, and provide a brief review of the development of episodic memory, with a particular focus on the ability of children to report first-person experiences of remembering. We then consider neurodevelopmental disorders (NDDs) such as amnesia acquired in infancy, autism, Williams syndrome, Down syndrome, or 22q11.2 deletion syndrome. This review shows that different episodic processes develop at different rates, and that across a broad set of different NDDs there are various types of episodic memory impairment, each with possibly a different character. This literature is in agreement with the idea that episodic memory is a multifaceted process. PMID:24399944

  12. Classification of ischaemic episodes with ST/HR diagrams.

    PubMed

    Faganeli Pucer, Jana; Demšar, Janez; Kukar, Matjaž

    2012-01-01

    Coronary artery disease is the developed world's premier cause of mortality and the most probable cause of myocardial ischaemia. More advanced diagnostic tests aside, in electrocardiogram (ECG) analysis it manifests itself as a ST segment deviation, targeted by both exercise ECG and ambulatory ECG. In ambulatory ECG, besides ischaemic ST segment deviation episodes there are also non-ischaemic heart rate related episodes which aggravate real ischaemia detection. We present methods to transform the features developed for the heart rate adjustment of ST segment depression in exercise ECG for use in ambulatory ECG. We use annotations provided by the Long-Term ST Database to plot the ST/HR diagrams and then estimate the overall and maximal slopes of the diagrams in the exercise and recovery phase for each ST segment deviation episode. We also estimate the angle at the extrema of the ST/HR diagrams. Statistical analysis shows that ischaemic ST segment deviation episodes have significantly steeper overall and maximal slopes than heart rate related episodes, which indicates the explored features' utility for distinguishing between the two types of episodes. This makes the proposed features very useful in automated ECG analysis.

  13. Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice.

    PubMed

    Todorov, Boyan; Kros, Lieke; Shyti, Reinald; Plak, Petra; Haasdijk, Elize D; Raike, Robert S; Frants, Rune R; Hess, Ellen J; Hoebeek, Freek E; De Zeeuw, Chris I; van den Maagdenberg, Arn M J M

    2012-03-01

    The Cacna1a gene encodes the α(1A) subunit of voltage-gated Ca(V)2.1 Ca(2+) channels that are involved in neurotransmission at central synapses. Ca(V)2.1-α(1)-knockout (α1KO) mice, which lack Ca(V)2.1 channels in all neurons, have a very severe phenotype of cerebellar ataxia and dystonia, and usually die around postnatal day 20. This early lethality, combined with the wide expression of Ca(V)2.1 channels throughout the cerebellar cortex and nuclei, prohibited determination of the contribution of particular cerebellar cell types to the development of the severe neurobiological phenotype in Cacna1a mutant mice. Here, we crossed conditional Cacna1a mice with transgenic mice expressing Cre recombinase, driven by the Purkinje cell-specific Pcp2 promoter, to specifically ablate the Ca(V)2.1-α(1A) subunit and thereby Ca(V)2.1 channels in Purkinje cells. Purkinje cell Ca(V)2.1-α(1A)-knockout (PCα1KO) mice aged without difficulties, rescuing the lethal phenotype seen in α1KO mice. PCα1KO mice exhibited cerebellar ataxia starting around P12, much earlier than the first signs of progressive Purkinje cell loss, which appears in these mice between P30 and P45. Secondary cell loss was observed in the granular and molecular layers of the cerebellum and the volume of all individual cerebellar nuclei was reduced. In this mouse model with a cell type-specific ablation of Ca(V)2.1 channels, we show that ablation of Ca(V)2.1 channels restricted to Purkinje cells is sufficient to cause cerebellar ataxia. We demonstrate that spatial ablation of Ca(V)2.1 channels may help in unraveling mechanisms of human disease.

  14. NPC1 is enriched in unexplained early onset ataxia: a targeted high-throughput screening.

    PubMed

    Synofzik, Matthis; Harmuth, Florian; Stampfer, Miriam; Müller Vom Hagen, Jennifer; Schöls, Ludger; Bauer, Peter

    2015-11-01

    Niemann-Pick disease type C (NP-C) is a rare autosomal-recessive neurodegenerative disease featuring pleiotropic neurological, psychiatric and visceral manifestations. Since many of the adult manifestations can be non-specific or missed, NP-C often goes undetected in adult-onset patients. Here we hypothesized that targeted high-throughput sequencing allows identifying NP-C patients among subjects with unexplained early-onset ataxia (EOA) and, moreover, that this population is enriched for NPC1 mutations. From 204 consecutive EOA patients, all 108 subjects with an established diagnosis were removed (including 4 NPC1 patients), yielding a target cohort of 96 subjects with unexplained EOA, but without primary suspicion of NP-C. This cohort was investigated for NPC1/NPC2 mutations using a high-coverage HaloPlex gene panel including 122 ataxia genes. Among 96 samples, we identified 4 known NPC1 mutations, 3 novel NPC1 missense variants of uncertain significance (VUS) and 1 novel NPC2 missense VUS. The total mutant allele frequency (8/192 = 4.17 %) was significantly enriched compared with control population data (1.57 %; p = 0.011). Two NPC1-positive patients were identified (both with non-specific incipient clinical features), giving a NPC1 patient frequency of 2/96 = 2.1 % in unexplained EOA and of 6/204 = 2.9 % in the total EOA series. NPC1 mutations are substantially enriched in unexplained EOA, demonstrating EOA as a risk-group for NP-C disease. Targeted high-throughput sequencing allows to identify also those NP-C patients with non-specific conditions where the diagnosis has initially been missed. This method does not require having considered NP-C during differential diagnosis, but allows identification of NP-C as part of the default analysis.

  15. Spontaneous shaker rat mutant – a new model for X-linked tremor/ataxia

    PubMed Central

    Figueroa, Karla P.; Paul, Sharan; Calì, Tito; Lopreiato, Raffaele; Karan, Sukanya; Frizzarin, Martina; Ames, Darren; Zanni, Ginevra; Brini, Marisa; Dansithong, Warunee; Milash, Brett; Scoles, Daniel R.; Carafoli, Ernesto; Pulst, Stefan M.

    2016-01-01

    ABSTRACT The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca2+ transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3R35C function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes. PMID:27013529

  16. UBA5 Mutations Cause a New Form of Autosomal Recessive Cerebellar Ataxia

    PubMed Central

    Yu, Li; Zhang, Gehan; Li, Jia; Lin, Yunting; Guo, Jifeng; Wang, Junling; Shen, Lu; Jiang, Hong; Wang, Guanghui; Tang, Beisha

    2016-01-01

    Autosomal recessive cerebellar ataxia (ARCA) comprises a large and heterogeneous group of neurodegenerative disorders. For many affected patients, the genetic cause remains undetermined. Through whole-exome sequencing, we identified compound heterozygous mutations in ubiquitin-like modifier activating enzyme 5 gene (UBA5) in two Chinese siblings presenting with ARCA. Moreover, copy number variations in UBA5 or ubiquitin-fold modifier 1 gene (UFM1) were documented with the phenotypes of global developmental delays and gait disturbances in the ClinVar database. UBA5 encodes UBA5, the ubiquitin-activating enzyme of UFM1. However, a crucial role for UBA5 in human neurological disease remains to be reported. Our molecular study of UBA5-R246X revealed a dramatically decreased half-life and loss of UFM1 activation due to the absence of the catalytic cysteine Cys250. UBA5-K310E maintained its interaction with UFM1, although with less stability, which may affect the ability of this UBA5 mutant to activate UFM1. Drosophila modeling revealed that UBA5 knockdown induced locomotive defects and a shortened lifespan accompanied by aberrant neuromuscular junctions (NMJs). Strikingly, we found that UFM1 and E2 cofactor knockdown induced markedly similar phenotypes. Wild-type UBA5, but not mutant UBA5, significantly restored neural lesions caused by the absence of UBA5. The finding of a UBA5 mutation in cerebellar ataxia suggests that impairment of the UFM1 pathway may contribute to the neurological phenotypes of ARCA. PMID:26872069

  17. A new model for quantifying climate episodes

    NASA Astrophysics Data System (ADS)

    Biondi, Franco; Kozubowski, Tomasz J.; Panorska, Anna K.

    2005-07-01

    When long records of climate (precipitation, temperature, stream runoff, etc.) are available, either from instrumental observations or from proxy records, the objective evaluation and comparison of climatic episodes becomes necessary. Such episodes can be quantified in terms of duration (the number of time intervals, e.g. years, the process remains continuously above or below a reference level) and magnitude (the sum of all series values for a given duration). The joint distribution of duration and magnitude is represented here by a stochastic model called BEG, for bivariate distribution with exponential and geometric marginals. The model is based on the theory of random sums, and its mathematical derivation confirms and extends previous empirical findings. Probability statements that can be obtained from the model are illustrated by applying it to a 2300-year dendroclimatic reconstruction of water-year precipitation for the eastern Sierra Nevada-western Great Basin. Using the Dust Bowl drought period as an example, the chance of a longer or greater drought is 8%. Conditional probabilities are much higher, i.e. a drought of that magnitude has a 62% chance of lasting for 11 years or longer, and a drought that lasts 11 years has a 46% chance of having an equal or greater magnitude. In addition, because of the bivariate model, we can estimate a 6% chance of witnessing a drought that is both longer and greater. Additional examples of model application are also provided. This type of information provides a way to place any climatic episode in a temporal perspective, and such numerical statements help with reaching science-based management and policy decisions.

  18. Episodic transdermal delivery of testosterone.

    PubMed

    Malik, Ritu; Venkatesh, K S; Dwivedi, Anil Kumar; Misra, Amit

    2012-06-01

    Film-forming lotions, precast films and adhesive patches containing testosterone (T) were prepared by compounding vinylic, acrylic and cellulosic polymers with a variety of excipients in order to achieve distribution of T in domains of heterogeneity within multicomponent matrices. The feasibility of this approach in achieving episodic transdermal delivery of testosterone (T) was investigated. Composition-dependent differences in extent of in vitro drug release and periodicity were observed. Representative formulations showing the most pronounced episodic T release in vitro were tested in female rats. Whereas intravenously administered T decayed exponentially, three maxima of T in serum were observed upon application of selected formulations. Thus, peak serum concentrations of 240, 36, and 29 ng/dL were observed at 0.2, 5, and 16.8 h after application of the preferred lotion formulation, and 89, 65, and 64 ng/dL at 1, 16.4, and 48.8 h after patches. Deconvolution, noncompartment pharmacokinetic analysis and multiple peak fitting also indicated episodicity. These results suggest the feasibility of using transdermal systems for pulsatile T delivery in a variety of clinical applications, including hormone supplementation and male contraception.

  19. Nonalcoholic Steatohepatitis in a Patient with Ataxia-Telangiectasia

    PubMed Central

    Caballero, Trinidad; Caba-Molina, Mercedes; Salmerón, Javier; Gómez-Morales, Mercedes

    2014-01-01

    Ataxia-telangiectasia (A-T) is a rare disease characterized by neurodegenerative alterations, telangiectasia, primary immunodeficiency, extreme sensitivity to radiation, and susceptibility to neoplasms. A-T patients have inactivation of ataxia-telangiectasia-mutated (ATM) protein, which controls DNA double-strand break repair and is involved in oxidative stress response, among other functions; dysfunctional control of reactive oxygen species may be responsible for many of the clinical manifestations of this disease. To the best of our knowledge, hepatic lesions of steatohepatitis have not previously been reported in A-T patients. The present study reports the case of a 22-year-old man diagnosed with A-T at the age of 6 years who was referred to our Digestive Disease Unit with a three-year history of hyperlipidemia and liver test alterations. Core liver biopsy showed similar lesions to those observed in nonalcoholic steatohepatitis. Immunohistochemical staining disclosed the absence of ATM protein in hepatocyte nuclei. We suggest that the liver injury may be mainly attributable to the oxidative stress associated with ATM protein deficiency, although other factors may have made a contribution. We propose the inclusion of A-T among the causes of nonalcoholic steatohepatitis, which may respond to antioxidant therapy. PMID:25374730

  20. Fragile X-associated tremor/ataxia syndrome

    PubMed Central

    Hagerman, Paul J; Hagerman, Randi J

    2014-01-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some but not all carriers of small, non-coding CGG-repeat expansions (55–200 repeats; premutation) within the fragile X gene (FMR1). Principal features of FXTAS include intention tremor, cerebellar ataxia, Parkinsonism, memory and executive function deficits, autonomic dysfunction, brain atrophy with white matter disease, and cognitive decline. Although FXTAS was originally considered to be confined to the premutation range, rare individuals with a gray zone (45 to 54 repeats) or an unmethylated full mutation (>200 repeats) allele have now been described; the constant feature of the disorder remaining the requirement for FMR1 expression, in contradistinction to the gene silencing mechanism of fragile X syndrome. Although transcriptional activity is required for FXTAS pathogenesis, the specific trigger(s) for FXTAS pathogenesis remains elusive, highlighting the need for more research in this area. This need is underscored by recent neuroimaging findings of changes in the central nervous system that consistently appear well before the onset of clinical symptoms, thus creating an opportunity to delay or prevent the appearance of FXTAS. PMID:25622649

  1. Fragile X-associated tremor/ataxia syndrome.

    PubMed

    Hagerman, Paul J; Hagerman, Randi J

    2015-03-01

    Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some but not all carriers of small, noncoding CGG-repeat expansions (55-200 repeats; premutation) within the fragile X gene (FMR1). Principal features of FXTAS include intention tremor, cerebellar ataxia, Parkinsonism, memory and executive function deficits, autonomic dysfunction, brain atrophy with white matter disease, and cognitive decline. Although FXTAS was originally considered to be confined to the premutation range, rare individuals with a gray zone (45-54 repeats) or an unmethylated full mutation (>200 repeats) allele have now been described, the constant feature of the disorder remaining the requirement for FMR1 expression, in contradistinction to the gene silencing mechanism of fragile X syndrome. Although transcriptional activity is required for FXTAS pathogenesis, the specific trigger(s) for FXTAS pathogenesis remains elusive, highlighting the need for more research in this area. This need is underscored by recent neuroimaging findings of changes in the central nervous system that consistently appear well before the onset of clinical symptoms, thus creating an opportunity to delay or prevent the appearance of FXTAS.

  2. Altered lipid metabolism in a Drosophila model of Friedreich's ataxia.

    PubMed

    Navarro, Juan A; Ohmann, Elisabeth; Sanchez, Diego; Botella, José A; Liebisch, Gerhard; Moltó, María D; Ganfornina, María D; Schmitz, Gerd; Schneuwly, Stephan

    2010-07-15

    Friedreich's ataxia (FRDA) is the most common form of autosomal recessive ataxia caused by a deficit in the mitochondrial protein frataxin. Although demyelination is a common symptom in FRDA patients, no multicellular model has yet been developed to study the involvement of glial cells in FRDA. Using the recently established RNAi lines for targeted suppression of frataxin in Drosophila, we were able to study the effects of general versus glial-specific frataxin downregulation. In particular, we wanted to study the interplay between lowered frataxin content, lipid accumulation and peroxidation and the consequences of these effects on the sensitivity to oxidative stress and fly fitness. Interestingly, ubiquitous frataxin reduction leads to an increase in fatty acids catalyzing an enhancement of lipid peroxidation levels, elevating the intracellular toxic potential. Specific loss of frataxin in glial cells triggers a similar phenotype which can be visualized by accumulating lipid droplets in glial cells. This phenotype is associated with a reduced lifespan, an increased sensitivity to oxidative insult, neurodegenerative effects and a serious impairment of locomotor activity. These symptoms fit very well with our observation of an increase in intracellular toxicity by lipid peroxides. Interestingly, co-expression of a Drosophila apolipoprotein D ortholog (glial lazarillo) has a strong protective effect in our frataxin models, mainly by controlling the level of lipid peroxidation. Our results clearly support a strong involvement of glial cells and lipid peroxidation in the generation of FRDA-like symptoms.

  3. Common data elements for clinical research in Friedreich's ataxia.

    PubMed

    Lynch, David R; Pandolfo, Massimo; Schulz, Jorg B; Perlman, Susan; Delatycki, Martin B; Payne, R Mark; Shaddy, Robert; Fischbeck, Kenneth H; Farmer, Jennifer; Kantor, Paul; Raman, Subha V; Hunegs, Lisa; Odenkirchen, Joanne; Miller, Kristy; Kaufmann, Petra

    2013-02-01

    To reduce study start-up time, increase data sharing, and assist investigators conducting clinical studies, the National Institute of Neurological Disorders and Stroke embarked on an initiative to create common data elements for neuroscience clinical research. The Common Data Element Team developed general common data elements, which are commonly collected in clinical studies regardless of therapeutic area, such as demographics. In the present project, we applied such approaches to data collection in Friedreich's ataxia (FRDA), a neurological disorder that involves multiple organ systems. To develop FRDA common data elements, FRDA experts formed a working group and subgroups to define elements in the following: ataxia and performance measures; biomarkers; cardiac and other clinical outcomes; and demographics, laboratory tests, and medical history. The basic development process included identification of international experts in FRDA clinical research, meeting by teleconference to develop a draft of standardized common data elements recommendations, vetting of recommendations across the subgroups, and dissemination of recommendations to the research community for public comment. The full recommendations were published online in September 2011 at http://www.commondataelements.ninds.nih.gov/FA.aspx. The subgroups' recommendations are classified as core, supplemental, or exploratory. Template case report forms were created for many of the core tests. The present set of data elements should ideally lead to decreased initiation time for clinical research studies and greater ability to compare and analyze data across studies. Their incorporation into new, ongoing studies will be assessed in an ongoing fashion to define their utility in FRDA.

  4. Predicting and correcting ataxia using a model of cerebellar function

    PubMed Central

    Bhanpuri, Nasir H.; Okamura, Allison M.

    2014-01-01

    Cerebellar damage results in uncoordinated, variable and dysmetric movements known as ataxia. Here we show that we can reliably model single-joint reaching trajectories of patients (n = 10), reproduce patient-like deficits in the behaviour of controls (n = 11), and apply patient-specific compensations that improve reaching accuracy (P < 0.02). Our approach was motivated by the theory that the cerebellum is essential for updating and/or storing an internal dynamic model that relates motor commands to changes in body state (e.g. arm position and velocity). We hypothesized that cerebellar damage causes a mismatch between the brain’s modelled dynamics and the actual body dynamics, resulting in ataxia. We used both behavioural and computational approaches to demonstrate that specific cerebellar patient deficits result from biased internal models. Our results strongly support the idea that an intact cerebellum is critical for maintaining accurate internal models of dynamics. Importantly, we demonstrate how subject-specific compensation can improve movement in cerebellar patients, who are notoriously unresponsive to treatment. PMID:24812203

  5. Planning Physical Education Lessons as Teaching "Episodes"

    ERIC Educational Resources Information Center

    Chatoupis, Constantine

    2016-01-01

    An "episode" is a unit of time within which teachers and students are working on the same objective and are engaged in the same teaching/learning style. The duration of each episode, as well as the number of them in a single lesson, may vary. Additionally, the multiple episodes of a lesson may have similar objectives, offer similar…

  6. Characterization of aerosol episodes in the greater Mediterranean Sea area from satellite observations (2000-2007)

    NASA Astrophysics Data System (ADS)

    Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Torres, O.

    2016-03-01

    An algorithm able to identify and characterize episodes of different aerosol types above sea surfaces of the greater Mediterranean basin (GMB), including the Black Sea and the Atlantic Ocean off the coasts of Iberia and northwest Africa, is presented in this study. Based on this algorithm, five types of intense (strong and extreme) aerosol episodes in the GMB are identified and characterized using daily aerosol optical properties from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. These aerosol episodes are: (i) biomass-burning/urban-industrial (BU), (ii) desert dust (DD), (iii) dust/sea-salt (DSS), (iv) mixed (MX) and (v) undetermined (UN). The identification and characterization is made with our algorithm using a variety of aerosol properties, namely aerosol optical depth (AOD), Ångström exponent (α), fine fraction (FF), effective radius (reff) and Aerosol Index (AI). During the study period (2000-2007), the most frequent aerosol episodes are DD, observed primarily in the western and central Mediterranean Sea, and off the northern African coasts, 7 times/year for strong episodes and 4 times/year for extreme ones, on average. The DD episodes yield 40% of all types of strong aerosol episodes in the study region, while they account for 71.5% of all extreme episodes. The frequency of occurrence of strong episodes exhibits specific geographical patterns, for example the BU are mostly observed along the coasts of southern Europe and off the Atlantic coasts of Portugal, the MX episodes off the Spanish Mediterranean coast and over the Adriatic and northern Aegean Sea, while the DSS ones over the western and central Mediterranean Sea. On the other hand, the extreme episodes for all but DD aerosol display more patchy spatial patterns. The strong episodes exhibit AOD at 550 nm as high as 1.6 in the southernmost parts of central and eastern Mediterranean Sea, which rise up to 5 for the extreme, mainly DD and DSS, episodes. Although more

  7. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia.

    PubMed

    Sinha, Siddharth; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Somvanshi, Pallavi; Grover, Abhinav

    2016-10-01

    Expansion of polyglutamine (CAG) triplets within the coding gene ataxin 2 results in transcriptional repression, forming the molecular basis of the neurodegenerative disorder named spinocerebellar ataxia type-2 (SCA2). HDAC inhibitors (HDACi) have been elements of great interest in polyglutamine disorders such as Huntington's and Ataxia's. In this study, we have selected hydroxamic acid derivatives as HDACi and performed fragment-based G-QSAR, molecular docking studies and molecular dynamics simulations for elucidating the dynamic mode of action of HDACi with His-Asp catalytic dyad of HDAC4. The model was statistically validated to establish its predictive robustness. The model was statistically significant with r(2) value of .6297, cross-validated co-relation coefficient q(2) value of .5905 and pred_r(2) (predicted square co-relation coefficient) value of .85. An F-test value of 56.11 confirms absolute robustness of the model. Two combinatorial libraries comprising of 3180 compounds were created with hydroxamate moiety as the template and their pIC50 activities were predicted based on the G-QSAR model. The combinatorial library created was screened on the basis of predicted activity (pIC50), with two resultant top scoring compounds, HIC and DHC. The interaction of the compounds with His-Asp dyad in terms of H-bond interactions with His802, Asp840, Pro942, and Gly975 residues of HDAC4 was evaluated by docking and 20 ns long molecular dynamics simulations. This study provides valuable leads for structural substitutions required for hydroxamate moiety to exhibit enhanced inhibitory activity against HDAC4. The reported compounds demonstrated good binding and thus can be considered as potent therapeutic leads against ataxia. PMID:26510381

  8. A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia.

    PubMed

    Musova, Zuzana; Kaiserova, Michaela; Kriegova, Eva; Fillerova, Regina; Vasovcak, Peter; Santava, Alena; Mensikova, Katerina; Zumrova, Alena; Krepelova, Anna; Sedlacek, Zdenek; Kanovsky, Petr

    2014-06-01

    Spinocerebellar ataxia type 28 (SCA28) is an autosomal dominant neurodegenerative disorder caused by missense AFG3L2 mutations. To examine the occurrence of SCA28 in the Czech Republic, we screened 288 unrelated ataxic patients with hereditary (N = 49) and sporadic or unknown (N = 239) form of ataxia for mutations in exons 15 and 16, the AFG3L2 mutation hotspots. A single significant variant, frameshift mutation c.1958dupT leading to a premature termination codon, was identified in a patient with slowly progressive speech and gait problems starting at the age of 68 years. Neurological examination showed cerebellar ataxia, mild Parkinsonian features with predominant bradykinesia, polyneuropathy of the lower limbs, and cognitive decline. However, other common SCA28 features like pyramidal tract signs (lower limb hyperreflexia, positive Babinski sign), ophthalmoparesis or ptosis were absent. The mutation was also found in a patient's unaffected daughter in whom a targeted examination at 53 years of age revealed mild imbalance signs. RNA analysis showed a decreased ratio of the transcript from the mutated AFG3L2 allele relative to the normal transcript in the peripheral lymphocytes of both patients. The ratio was increased by puromycin treatment, indicating that the mutated transcript can be degraded via nonsense-mediated RNA decay. The causal link between the mutation and the phenotype of the patient is currently unclear but a pathogenic mechanism based on AFG3L2 haploinsufficiency rather than the usual dominant-negative effect of missense AFG3L2 mutations reported in SCA28, cannot be excluded.

  9. Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia.

    PubMed

    Sinha, Siddharth; Tyagi, Chetna; Goyal, Sukriti; Jamal, Salma; Somvanshi, Pallavi; Grover, Abhinav

    2016-10-01

    Expansion of polyglutamine (CAG) triplets within the coding gene ataxin 2 results in transcriptional repression, forming the molecular basis of the neurodegenerative disorder named spinocerebellar ataxia type-2 (SCA2). HDAC inhibitors (HDACi) have been elements of great interest in polyglutamine disorders such as Huntington's and Ataxia's. In this study, we have selected hydroxamic acid derivatives as HDACi and performed fragment-based G-QSAR, molecular docking studies and molecular dynamics simulations for elucidating the dynamic mode of action of HDACi with His-Asp catalytic dyad of HDAC4. The model was statistically validated to establish its predictive robustness. The model was statistically significant with r(2) value of .6297, cross-validated co-relation coefficient q(2) value of .5905 and pred_r(2) (predicted square co-relation coefficient) value of .85. An F-test value of 56.11 confirms absolute robustness of the model. Two combinatorial libraries comprising of 3180 compounds were created with hydroxamate moiety as the template and their pIC50 activities were predicted based on the G-QSAR model. The combinatorial library created was screened on the basis of predicted activity (pIC50), with two resultant top scoring compounds, HIC and DHC. The interaction of the compounds with His-Asp dyad in terms of H-bond interactions with His802, Asp840, Pro942, and Gly975 residues of HDAC4 was evaluated by docking and 20 ns long molecular dynamics simulations. This study provides valuable leads for structural substitutions required for hydroxamate moiety to exhibit enhanced inhibitory activity against HDAC4. The reported compounds demonstrated good binding and thus can be considered as potent therapeutic leads against ataxia.

  10. Childhood Ataxia: Clinical Features, Pathogenesis, Key Unanswered Questions, and Future Directions

    PubMed Central

    Ashley, Claire N.; Hoang, Kelly D.; Lynch, David R.; Perlman, Susan L.; Maria, Bernard L.

    2013-01-01

    Childhood ataxia is characterized by impaired balance and coordination primarily due to cerebellar dysfunction. Friedreich ataxia, a form of childhood ataxia, is the most common multisystem autosomal recessive disease. Most of these patients are homozygous for the GAA repeat expansion located on the first intron of the frataxin gene on chromosome 9. Mutations in the frataxin gene impair mitochondrial function, increase reactive oxygen species, and trigger redistribution of iron in the mitochondria and cytosol. Targeted therapies for Friedreich ataxia are undergoing testing. In addition, a centralized database, patient registry, and natural history study have been launched to support clinical trials in Friedreich ataxia. The 2011 Neurobiology of Disease in Children symposium, held in conjunction with the 40th annual Child Neurology Society meeting, aimed to (1) describe clinical features surrounding Friedreich ataxia, including cardiomyopathy and genetics; (2) discuss recent advances in the understanding of the pathogenesis of Friedreich ataxia and developments of clinical trials; (3) review new investigations of characteristic symptoms; (4) establish clinical and biochemical overlaps in neurodegenerative diseases and possible directions for future basic, translational, and clinical studies. PMID:22859693

  11. Food-based classification of eating episodes (FBCE).

    PubMed

    Lennernäs, M; Andersson, I

    1999-02-01

    The concept for categorization of eating episodes in dietary surveys was originally developed in studies of shift workers to compare "meal patterns" between night and day work shifts. The concept has been further improved through experience from applications in dietary surveys in other populations. In this paper, results from categorization of eating episodes in shift workers, elderly women and men during life transition periods, elderly female leg ulcer patients and obese men and their lean controls are shown and discussed. The categorization concept is based on seven food categories with food items of similar nutrient characteristics within each category. Each eating event is categorized as any of four types of "meals" or four types of "snacks" due to its combination of food categories. Thus, categorization is based on visible properties (food types) but at the same time reflecting invisible properties (nutrients). Criteria is also established to sub-categorize the "meal" types as being either "prepared" or "quick-prepared" from a behavioural perspective. Use of a defined and reliable concept for categorization is necessary to study eating episodes in dietary surveys, their determinants and also consequences on health and performance. Nocturnal eating during the circadian nadir might affect nutritional status. Since increasingly western populations appear to be moving from regular and planned meals to more episodic eating "around the clock", such analyses are of increasing interest in a bio-social perspective.

  12. Food-based classification of eating episodes (FBCE).

    PubMed

    Lennernäs, M; Andersson, I

    1999-02-01

    The concept for categorization of eating episodes in dietary surveys was originally developed in studies of shift workers to compare "meal patterns" between night and day work shifts. The concept has been further improved through experience from applications in dietary surveys in other populations. In this paper, results from categorization of eating episodes in shift workers, elderly women and men during life transition periods, elderly female leg ulcer patients and obese men and their lean controls are shown and discussed. The categorization concept is based on seven food categories with food items of similar nutrient characteristics within each category. Each eating event is categorized as any of four types of "meals" or four types of "snacks" due to its combination of food categories. Thus, categorization is based on visible properties (food types) but at the same time reflecting invisible properties (nutrients). Criteria is also established to sub-categorize the "meal" types as being either "prepared" or "quick-prepared" from a behavioural perspective. Use of a defined and reliable concept for categorization is necessary to study eating episodes in dietary surveys, their determinants and also consequences on health and performance. Nocturnal eating during the circadian nadir might affect nutritional status. Since increasingly western populations appear to be moving from regular and planned meals to more episodic eating "around the clock", such analyses are of increasing interest in a bio-social perspective. PMID:9989914

  13. Inventory of Non-Ataxia Signs (INAS): validation of a new clinical assessment instrument.

    PubMed

    Jacobi, H; Rakowicz, M; Rola, R; Fancellu, R; Mariotti, C; Charles, P; Dürr, A; Küper, M; Timmann, D; Linnemann, C; Schöls, L; Kaut, O; Schaub, C; Filla, A; Baliko, L; Melegh, B; Kang, J-S; Giunti, P; van de Warrenburg, B P C; Fimmers, R; Klockgether, T

    2013-06-01

    Although ataxia is by definition the prominent symptom of ataxia disorders, there are various neurological signs that may accompany ataxia in affected patients. Reliable and quantitative assessment of these signs is important because they contribute to disability, but may also interfere with ataxia. Therefore we devised the Inventory of Non-Ataxia Signs (INAS), a list of neurological signs that allows determining the presence and severity of non-ataxia signs in a standardized way. INAS underwent a rigorous validation procedure that involved a trial of 140 patients with spinocerebellar ataxia (SCA) for testing of inter-rater reliability and another trial of 28 SCA patients to assess short-term intra-rater reliability. In addition, data of the ongoing EUROSCA natural history study were used to determine the reproducibility, responsiveness and validity of INAS. Inter-rater reliability and short-term test-retest reliability was high, both for the total count and for most of the items. However, measures of responsiveness, such as the smallest detectable change and the clinically important change were not satisfactory. In addition, INAS did not differentiate between subjects that were subjectively stable and those that worsened in the 2-year observation period. In summary, INAS and INAS count showed good reproducibility, but unsatisfactory responsiveness. The present analysis and published data from the EUROSCA natural history study suggest that INAS is a valid measure of extracerebellar involvement in progressive ataxia disorders. As such, it is useful as a supplement to the measures of ataxia, but not as a primary outcome measure in future interventional trials.

  14. Exome analysis reveals a Japanese family with spinocerebellar ataxia, autosomal recessive 1.

    PubMed

    Ichikawa, Yaeko; Ishiura, Hiroyuki; Mitsui, Jun; Takahashi, Yuji; Kobayashi, Shunsuke; Takuma, Hiroshi; Kanazawa, Ichiro; Doi, Koichiro; Yoshimura, Jun; Morishita, Shinichi; Goto, Jun; Tsuji, Shoji

    2013-08-15

    Spinocerebellar ataxia autosomal recessive 1 (SCAR1/AOA2) is clinically characterized by an early-onset progressive cerebellar ataxia with axonal neuropathy, ocular motor apraxia, and elevation of serum alpha-fetoprotein level. The disorder is caused by mutations in senataxin (SETX) gene. Here, we report a Japanese SCAR1/AOA2 family with a homozygous nonsense mutation (p.Q1441X) of SETX that was identified by exome sequencing. The family was previously reported as early-onset ataxia of undetermined cause. The present study emphasized the role of whole exome-sequence analysis to establish the molecular diagnosis of neurodegenerative disease presenting with diverse clinical presentations.

  15. Episodic Memories in Anxiety Disorders: Clinical Implications

    PubMed Central

    Zlomuzica, Armin; Dere, Dorothea; Machulska, Alla; Adolph, Dirk; Dere, Ekrem; Margraf, Jürgen

    2014-01-01

    The aim of this review is to summarize research on the emerging role of episodic memories in the context of anxiety disorders (AD). The available literature on explicit, autobiographical, and episodic memory function in AD including neuroimaging studies is critically discussed. We describe the methodological diversity of episodic memory research in AD and discuss the need for novel tests to measure episodic memory in a clinical setting. We argue that alterations in episodic memory functions might contribute to the etiology of AD. We further explain why future research on the interplay between episodic memory function and emotional disorders as well as its neuroanatomical foundations offers the promise to increase the effectiveness of modern psychological treatments. We conclude that one major task is to develop methods and training programs that might help patients suffering from AD to better understand, interpret, and possibly actively use their episodic memories in a way that would support therapeutic interventions and counteract the occurrence of symptoms. PMID:24795583

  16. Effects on incidental memory of affective tone in associated past and future episodes: influence of emotional intelligence.

    PubMed

    Toyota, Hiroshi

    2011-02-01

    The present study examined the effects of emotion elicited by episodes (past events or expected future events) and the relationship between individual differences in emotional intelligence and memory. Participants' emotional intelligence was assessed on the Japanese version of Emotional Skills and Competence Questionnaire. They rated the pleasantness of episodes they associated with targets, and then performed unexpected free recall tests. When the targets were associated with episodes that were past events, all participants recalled more of the targets associated with pleasant and unpleasant episodes than those associated with neutral episodes. However, when the targets were associated with episodes expected to occur in the future, only participants with higher emotional intelligence scores recalled more of the targets associated with pleasant and unpleasant episodes. The participants with lower emotional intelligence scores recalled the three target types with similar accuracy. These results were interpreted as showing that emotional intelligence is associated with the processing of targets associated with future episodes as retrieval cues.

  17. Effect of hypertonicity and X radiation on DNA synthesis in normal and ataxia-telangiectasia cells

    SciTech Connect

    Painter, R.B.; Young, B.R.

    1982-12-01

    Normal human cells and cells from patients with ataxia-telangiectasia (A-T) were exposed to culture medium made hypertonic by raising the NaCl concentration. The rate of DNA synthesis in both types of cells was depressed as a function of increasing hypertonicity. When cells of both types were exposed to X radiation and incubated in hypertonic medium, DNA synthesis appeared to be more radioresistant than in cells incubated in normal medium. Velocity sedimentation analysis showed that this was due to a hypertonicity-induced inhibition of replicon initiation, which is the same process affected by X radiation, indicating that the two treatments were not additive. After a 5-hr incubation in hypertonic medium, there was a new steady state of replicon initiation and elongation similar to that existing in cells grown in normal medium, except that fewer replicons were participating. At this time DNA synthesis in each type of cell had a characteristic response to radiation, i.e., radiosenstivie in normal cells and radioresistant in A-T cells. These results suggest that radioresistant DNA synthesis in A-T cells is not due to increased condensation of chromatin.

  18. Interdependence of episodic and semantic memory: evidence from neuropsychology.

    PubMed

    Greenberg, Daniel L; Verfaellie, Mieke

    2010-09-01

    Tulving's (1972) theory of memory draws a distinction between general knowledge (semantic memory) and memory for events (episodic memory). Neuropsychological studies have generally examined each type of memory in isolation, but theorists have long argued that these two forms of memory are interdependent. Here we review several lines of neuropsychological research that have explored the interdependence of episodic and semantic memory. The studies show that these forms of memory can affect each other both at encoding and at retrieval. We suggest that theories of memory should be revised to account for all of the interdependencies between episodic and semantic memory; they should also incorporate forms of memory that do not fit neatly into either category.

  19. Significance of autobiographical episodes and spacing effects in incidental memory.

    PubMed

    Toyota, Hiroshi

    2013-10-01

    Participants were presented with target words on two occasions, and were asked each time to generate a memory of a past episode associated with the targets. Participants were also instructed to rate the importance (significance elaboration) or pleasantness of the pisode (pleasantness elaboration) in an orienting task, followed by an unexpect d recall test. Significance elaboration led to better recall than pleasantness elaboration, but only in the spaced presentation. The spaced presentation led to better tree recall than massed presentation with significance elaboration, but the difference between the two types of presentation was not observed with pleasantness elaboration. These results suggest that the significance of an episode is more critical than the pleasantness of an episode in determining the effectiveness of autobiographical elaboration in facilitating recall.

  20. Vitamin B12 deficiency presenting as acute ataxia.

    PubMed

    Crawford, John Ross; Say, Daphne

    2013-03-26

    A previously healthy 7-year-old Caucasian boy was hospitalised for evaluation of acute ataxia and failure to thrive, initially suspicious for an intracranial mass. Weight and body mass index were below the third percentile and he demonstrated loss of joint position and vibratory sense on examination. Laboratory studies revealed megaloblastic anaemia while an initial MRI of the brain showed no evidence of mass lesions or other abnormalities. A dietary history revealed the child subscribed to a restrictive vegan diet with little to no intake of animal products or other fortified foods. The child was diagnosed with presumed vitamin B12 deficiency and was treated with intramuscular B12 injections. Neurological symptoms resolved promptly within several days after starting therapy. This case underlines the importance of assessing nutritional status in the evaluation of neurological dysfunction in the pediatric patient.

  1. Vitamin B12 deficiency presenting as acute ataxia.

    PubMed

    Crawford, John Ross; Say, Daphne

    2013-01-01

    A previously healthy 7-year-old Caucasian boy was hospitalised for evaluation of acute ataxia and failure to thrive, initially suspicious for an intracranial mass. Weight and body mass index were below the third percentile and he demonstrated loss of joint position and vibratory sense on examination. Laboratory studies revealed megaloblastic anaemia while an initial MRI of the brain showed no evidence of mass lesions or other abnormalities. A dietary history revealed the child subscribed to a restrictive vegan diet with little to no intake of animal products or other fortified foods. The child was diagnosed with presumed vitamin B12 deficiency and was treated with intramuscular B12 injections. Neurological symptoms resolved promptly within several days after starting therapy. This case underlines the importance of assessing nutritional status in the evaluation of neurological dysfunction in the pediatric patient. PMID:23536622

  2. Exome sequencing in undiagnosed inherited and sporadic ataxias

    PubMed Central

    Pyle, Angela; Smertenko, Tania; Bargiela, David; Griffin, Helen; Duff, Jennifer; Appleton, Marie; Douroudis, Konstantinos; Pfeffer, Gerald; Santibanez-Koref, Mauro; Eglon, Gail; Yu-Wai-Man, Patrick; Ramesh, Venkateswaran; Horvath, Rita

    2015-01-01

    Inherited ataxias are clinically and genetically heterogeneous, and a molecular diagnosis is not possible in most patients. Having excluded common sporadic, inherited and metabolic causes, we used an unbiased whole exome sequencing approach in 35 affected individuals, from 22 randomly selected families of white European descent. We defined the likely molecular diagnosis in 14 of 22 families (64%). This revealed de novo dominant mutations, validated disease genes previously described in isolated families, and broadened the clinical phenotype of known disease genes. The diagnostic yield was the same in both young and older-onset patients, including sporadic cases. We have demonstrated the impact of exome sequencing in a group of patients notoriously difficult to diagnose genetically. This has important implications for genetic counselling and diagnostic service provision. PMID:25497598

  3. Ataxia induced by a thymic neuroblastoma in the elderly patient.

    PubMed

    Wiesel, Ory; Bhattacharyya, Shamik; Vaitkevicius, Henrikas; Prasad, Sashank; McNamee, Ciaran

    2015-05-12

    Thymic neuroblastoma is a rare tumor with only few reports in modern literature. Whereas most data is taken from childhood neuroblastoma, little is known about the characteristics of the disease in the adult and elderly population. There are significant differences between adult and childhood neuroblastoma which are reviewed below. We report a case of a 62-year-old male who presented with neurological symptoms of ataxia and opsoclonus and an anterior mediastinal mass. Ultimately, the patient underwent a resection of the mass and pathologic review identified a thymic neuroblastoma. This is the first case of thymic neuroblastoma associated with symptomatic central nervous system disease; it is presented with an up-to-date review of the previous cases in the field as well with a review of the literature of post adolescent neuroblastoma.

  4. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia.

    PubMed

    Bhatt, Jayesh M; Bush, Andrew; van Gerven, Marjo; Nissenkorn, Andreea; Renke, Michael; Yarlett, Lian; Taylor, Malcolm; Tonia, Thomy; Warris, Adilia; Zielen, Stefan; Zinna, Shairbanu; Merkus, Peter J F M

    2015-12-01

    Ataxia telangiectasia (A-T) is a rare, progressive, multisystem disease that has a large number of complex and diverse manifestations which vary with age. Patients with A-T die prematurely with the leading causes of death being respiratory diseases and cancer. Respiratory manifestations include immune dysfunction leading to recurrent upper and lower respiratory infections; aspiration resulting from dysfunctional swallowing due to neurodegenerative deficits; inefficient cough; and interstitial lung disease/pulmonary fibrosis. Malnutrition is a significant comorbidity. The increased radiosensitivity and increased risk of cancer should be borne in mind when requesting radiological investigations. Aggressive proactive monitoring and treatment of these various aspects of lung disease under multidisciplinary expertise in the experience of national multidisciplinary clinics internationally forms the basis of this statement on the management of lung disease in A-T. Neurological management is outwith the scope of this document.

  5. High spontaneous intrachromosomal recombination rates in ataxia-telangiectasia

    SciTech Connect

    Meyn, M.S. )

    1993-05-28

    Ataxia-telangiectasia (A-T) is an inherited human disease associated with neurologic degeneration, immune dysfunctions, and high cancer risk. It has been proposed that the underlying abnormality in A-T is a defect in genetic recombination that interferes with immune gene rearrangements and the repair of DNA damage. Recombination was studied in A-T and control human fibroblast lines by means of two recombination vectors. Unexpectedly, spontaneous intrachromosomal recombination rates were 30 to 200 times higher in A-T fibroblast lines than in normal cells, whereas extrachromosomal recombination frequencies were near normal. Increased recombination is thus a component of genetic instability in A-T and may contribute to the cancer risk seen in A-T patients. 2 refs., 1 fig., 3 tabs.

  6. Assessment of the radiosensitivity of ataxia-telangiectasia heterozygotes

    SciTech Connect

    Arlett, C.F.; Priestley, A.

    1985-01-01

    Heterozygotes of ataxia-telangiectasia (AT) can, in certain parts of the world, represent a significant proportion of the population. Epidemiological studies suggest that they are more cancer prone than normal individuals. Fibroblasts of five AT heterozygotes are significantly more sensitive to gamma irradiation (mean D0 = 1.18 Gy) than five normals (mean D0 = 1.49 Gy) although some overlap in response is observed. Experiments designed to maximize differences in survival by allowing a period for the repair of potentially lethal damage (PLD) showed that only one out of five AT heterozygotes was defective in the repair of PLD. This technique does not, therefore, permit an improved discrimination of AT heterozygotes. Two AT heterozygotes were tested for their ability to repair lesions that give rise to micronuclei. Both, like the homozygote, were seen to be defective in this capacity. Defects in the repair of chromosome damage may permit a cellular discrimination of the heterozygotes.

  7. Ataxia telangiectasia in Chinese children. A clinical and electrophysiological study.

    PubMed

    Wong, V; Yu, Y L; Chan-Lui, W Y; Woo, E; Yeung, C Y

    1987-01-01

    The clinical manifestations, immunological, chromosomal, and multimodal electrophysiological studies of five Chinese patients with ataxia telangiectasia are described. One died of hepatocellular carcinoma not associated with Hepatitis B-antigenaemia. Another died of respiratory failure. Two siblings are free of sinopulmonary infections although they are wheelchair bound. Computed tomography of the brain showed cerebellar atrophy in four cases. Nerve conduction studies showed evidence of axonal neuropathy in all cases with the earliest detection at six years. Electromyography showed mild denervation changes in two cases. Two patients had abnormal somatosensory evoked potentials and one had abnormal visual and brain stem auditory evoked potentials. The level of alpha foetal protein was elevated whereas the serum carcino-embryonic antigen was normal in all patients. PMID:3665286

  8. Walking unsteadily: a case of acute cerebellar ataxia.

    PubMed

    Simonetta, Federico; Christou, Fotini; Vandoni, Riccardo E; Nierle, Thomas

    2013-01-01

    Acute cerebellar ataxia is an infrequent neurological syndrome in adults especially if complicated by additional neurological deficits. We report the case of a 69-year-old woman who presented with sudden onset of left facial droop, dizziness, slurred speech and impaired balance. Her medical history included paroxysmal atrial fibrillation and a sigmoid diverticular abscess treated with ciprofloxacin and metronidazole. Cranial computed tomographic angiography and MRI showed no signs of acute ischaemia or haemorrhage but demonstrated symmetrically distributed lesions in the cerebellar dentate nuclei. A diagnosis of metronidazole-induced encephalopathy was suspected. Metronidazole was stopped and the patient completely recovered. Metronidazole is a commonly prescribed medication. Clinicians should be aware of the clinical and radiological presentation of metronidazole-induced encephalopathy so that this serious but completely reversible condition can be promptly diagnosed. PMID:23283615

  9. ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia.

    PubMed

    Bhatt, Jayesh M; Bush, Andrew; van Gerven, Marjo; Nissenkorn, Andreea; Renke, Michael; Yarlett, Lian; Taylor, Malcolm; Tonia, Thomy; Warris, Adilia; Zielen, Stefan; Zinna, Shairbanu; Merkus, Peter J F M

    2015-12-01

    Ataxia telangiectasia (A-T) is a rare, progressive, multisystem disease that has a large number of complex and diverse manifestations which vary with age. Patients with A-T die prematurely with the leading causes of death being respiratory diseases and cancer. Respiratory manifestations include immune dysfunction leading to recurrent upper and lower respiratory infections; aspiration resulting from dysfunctional swallowing due to neurodegenerative deficits; inefficient cough; and interstitial lung disease/pulmonary fibrosis. Malnutrition is a significant comorbidity. The increased radiosensitivity and increased risk of cancer should be borne in mind when requesting radiological investigations. Aggressive proactive monitoring and treatment of these various aspects of lung disease under multidisciplinary expertise in the experience of national multidisciplinary clinics internationally forms the basis of this statement on the management of lung disease in A-T. Neurological management is outwith the scope of this document. PMID:26621971

  10. Episodic future thinking and episodic counterfactual thinking: Intersections between memory and decisions

    PubMed Central

    Schacter, Daniel L.; Benoit, Roland G.; De Brigard, Felipe; Szpunar, Karl K.

    2014-01-01

    This article considers two recent lines of research concerned with the construction of imagined or simulated events that can provide insight into the relationship between memory and decision making. One line of research concerns episodic future thinking, which involves simulating episodes that might occur in one’s personal future, and the other concerns episodic counterfactual thinking, which involves simulating episodes that could have happened in one’s personal past. We first review neuroimaging studies that have examined the neural underpinnings of episodic future thinking and episodic counterfactual thinking. We argue that these studies have revealed that the two forms of episodic simulation engage a common core network including medial parietal, prefrontal, and temporal regions that also supports episodic memory. We also note that neuroimaging studies have documented neural differences between episodic future thinking and episodic counterfactual thinking, including differences in hippocampal responses. We next consider behavioral studies that have delineated both similarities and differences between the two kinds of episodic simulation. The evidence indicates that episodic future and counterfactual thinking are characterized by similarly reduced levels of specific detail compared with episodic memory, but that the effects of repeatedly imagining a possible experience have sharply contrasting effects on the perceived plausibility of those events during episodic future thinking versus episodic counterfactual thinking. Finally, we conclude by discussing the functional consequences of future and counterfactual simulations for decisions. PMID:24373942

  11. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms.

    PubMed

    Dar, M Saeed

    2015-08-01

    The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.

  12. Ayurvedic approach in the management of spinocerebellar ataxia-2

    PubMed Central

    Singh, Sarvesh Kumar; Rajoria, Kshipra

    2016-01-01

    Spinocerebellar ataxia -2 is a progressive, degenerative genetic disease caused by an expanded (CAG) trinucleotide repetition on the chromosome 12 resulting in production of an abnormal protein called ataxin-2. There is no known effective management or cure in biomedicine for this genetic disease. In the present study a case of SCA2 that was treated with Ayurvedic intervention is reported. Ayurvedic treatments in this case were directed towards alleviating symptoms and to reduce severe disability due to progressive nature of disease. A 42 year old male patient was diagnosed for Vāta vyādhi (group of various neurological disorders) and was- treated with Śālisastika pinda svedana (sudation with bolus of medicated cooked rice) for 30 days-, Śirobasti (sudation of head with the help of a cap on head) with Aśvagandhā taila for 45 days and Balādi ksīra basti (enema with medicated milk) with Aśvagandhā taila anuvāsana (enema with oil) for 30 days in Karma basti krama (30 days regime of purification and oleation enema) along with a combination of Ayurvedic oral drugs which consisted of Brahadvātacintāmanirasa – 125 mg, Vasantāmaltī rasa- 125 mg, Daśamūla kvātha- 40 ml, Aśvagandhā cūrṇa (powder of Withania somnifera DUNAL)- 3g, Amrtā cūrṇa (powder of Tinospora cordifolia Willd.)- 500 mg, Muktāśukti pisti – 500 mg, Yogarāja Guggulu – 500 mg twice a day for 2 months. Patient's condition was assessed on the Scale for Assessment and Rating of Ataxia (SARA). Before treatment, mean SARA score was 35. This reduced to 15 after treatment. Good relief in dysarthria, fasciculation, heaviness in eye, blurred vision, axial tremor; constipation and quality of life were observed in this case. PMID:27143801

  13. Ayurvedic approach in the management of spinocerebellar ataxia-2.

    PubMed

    Singh, Sarvesh Kumar; Rajoria, Kshipra

    2016-01-01

    Spinocerebellar ataxia -2 is a progressive, degenerative genetic disease caused by an expanded (CAG) trinucleotide repetition on the chromosome 12 resulting in production of an abnormal protein called ataxin-2. There is no known effective management or cure in biomedicine for this genetic disease. In the present study a case of SCA2 that was treated with Ayurvedic intervention is reported. Ayurvedic treatments in this case were directed towards alleviating symptoms and to reduce severe disability due to progressive nature of disease. A 42 year old male patient was diagnosed for Vāta vyādhi (group of various neurological disorders) and was- treated with Śālisastika pinda svedana (sudation with bolus of medicated cooked rice) for 30 days-, Śirobasti (sudation of head with the help of a cap on head) with Aśvagandhā taila for 45 days and Balādi ksīra basti (enema with medicated milk) with Aśvagandhā taila anuvāsana (enema with oil) for 30 days in Karma basti krama (30 days regime of purification and oleation enema) along with a combination of Ayurvedic oral drugs which consisted of Brahadvātacintāmanirasa - 125 mg, Vasantāmaltī rasa- 125 mg, Daśamūla kvātha- 40 ml, Aśvagandhā cūrṇa (powder of Withania somnifera DUNAL)- 3g, Amrtā cūrṇa (powder of Tinospora cordifolia Willd.)- 500 mg, Muktāśukti pisti - 500 mg, Yogarāja Guggulu - 500 mg twice a day for 2 months. Patient's condition was assessed on the Scale for Assessment and Rating of Ataxia (SARA). Before treatment, mean SARA score was 35. This reduced to 15 after treatment. Good relief in dysarthria, fasciculation, heaviness in eye, blurred vision, axial tremor; constipation and quality of life were observed in this case. PMID:27143801

  14. The cerebellar component of Friedreich’s ataxia

    PubMed Central

    Davis, Ashley N.; Morral, Jennifer A.

    2016-01-01

    Lack of frataxin in Friedreich’s ataxia (FRDA) causes a complex neurological and pathological phenotype. Progressive atrophy of the dentate nucleus (DN) is a major intrinsic central nervous system lesion. Antibodies to neuron-specific enolase (NSE), calbindin, glutamic acid decarboxylase (GAD), and vesicular glutamate transporters 1 and 2 (VGluT1, VGluT2) allowed insight into the disturbed synaptic circuitry of the DN. The available case material included autopsy specimens of 24 patients with genetically defined FRDA and 14 normal controls. In FRDA, the cerebellar cortex revealed intact Purkinje cell somata and dendrites as assessed by calbindin immunore-activity. The DN, however, displayed severe loss of large NSE-reactive neurons. Small neurons remained intact. Labeling of Purkinje cells, basket fibers, Golgi neurons, and Golgi axonal plexuses with antibodies to GAD indicated normal intrinsic circuitry of the cerebellar cortex involving γ-aminobutyric acid (GABA). In contrast, the DN displayed severe loss of GABA-ergic terminals and formation of GAD- and calbindin-reactive grumose degeneration. The surviving small GAD-positive DN neurons provided normal GABA-ergic terminals to intact inferior olivary nuclei. The olives also received normal glutamatergic terminals as shown by VGluT2-reactivity. VGluT1-immunocytochemistry of the cerebellar cortex confirmed normal glutamatergic input to the molecular layer by parallel fibers and the granular layer by mossy fibers. VGluT2-immunoreactivity visualized normal climbing fibers and mossy fiber terminals. The DN, however, showed depletion of VGluT1- and VGluT2-reactive terminals arising from climbing and mossy fiber collaterals. The main functional deficit underlying cerebellar ataxia in FRDA is defective processing of inhibitory and excitatory impulses that converge on the large neurons of the DN. The reason for the selective vulnerability of these nerve cells remains elusive. PMID:21638087

  15. Ayurvedic approach in the management of spinocerebellar ataxia-2.

    PubMed

    Singh, Sarvesh Kumar; Rajoria, Kshipra

    2016-01-01

    Spinocerebellar ataxia -2 is a progressive, degenerative genetic disease caused by an expanded (CAG) trinucleotide repetition on the chromosome 12 resulting in production of an abnormal protein called ataxin-2. There is no known effective management or cure in biomedicine for this genetic disease. In the present study a case of SCA2 that was treated with Ayurvedic intervention is reported. Ayurvedic treatments in this case were directed towards alleviating symptoms and to reduce severe disability due to progressive nature of disease. A 42 year old male patient was diagnosed for Vāta vyādhi (group of various neurological disorders) and was- treated with Śālisastika pinda svedana (sudation with bolus of medicated cooked rice) for 30 days-, Śirobasti (sudation of head with the help of a cap on head) with Aśvagandhā taila for 45 days and Balādi ksīra basti (enema with medicated milk) with Aśvagandhā taila anuvāsana (enema with oil) for 30 days in Karma basti krama (30 days regime of purification and oleation enema) along with a combination of Ayurvedic oral drugs which consisted of Brahadvātacintāmanirasa - 125 mg, Vasantāmaltī rasa- 125 mg, Daśamūla kvātha- 40 ml, Aśvagandhā cūrṇa (powder of Withania somnifera DUNAL)- 3g, Amrtā cūrṇa (powder of Tinospora cordifolia Willd.)- 500 mg, Muktāśukti pisti - 500 mg, Yogarāja Guggulu - 500 mg twice a day for 2 months. Patient's condition was assessed on the Scale for Assessment and Rating of Ataxia (SARA). Before treatment, mean SARA score was 35. This reduced to 15 after treatment. Good relief in dysarthria, fasciculation, heaviness in eye, blurred vision, axial tremor; constipation and quality of life were observed in this case.

  16. Genetics Home Reference: autosomal recessive spastic ataxia of Charlevoix-Saguenay

    MedlinePlus

    ... with ARSACS have also been identified in Japan, Turkey, Tunisia, Spain, Italy, and Belgium. The signs and ... spastic ataxia of Charlevoix-Saguenay (ARSACS) families from Turkey. Neurogenetics. 2004 Sep;5(3):165-70. Epub ...

  17. Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia

    PubMed Central

    Becker, Esther B E; Zuliani, Luigi; Pettingill, Rosemary; Lang, Bethan; Waters, Patrick; Dulneva, Anna; Sobott, Frank; Wardle, Mark; Graus, Francesc; Bataller, Luis; Robertson, Neil P

    2012-01-01

    Background Relatively few studies have searched for potentially pathogenic antibodies in non-paraneoplastic patients with cerebellar ataxia. Methods and Results We first screened sera from 52 idiopathic ataxia patients for binding of serum IgG antibodies to cerebellar neurons. One strong-binding serum was selected for immunoprecipitation and mass spectrometry, which resulted in the identification of contactin-associated protein 2 (CASPR2) as a major antigen. CASPR2 antibodies were then found by a cell-based assay in 9/88 (10%) ataxia patients, compared to 3/144 (2%) multiple sclerosis or dementia controls (p=0.011). CASPR2 is strongly expressed in the cerebellum, only partly in association with voltage-gated potassium channels. Conclusions Prospective studies are now needed to see whether identification of CASPR2 antibodies has relevance for the diagnosis and treatment of idiopathic cerebellar ataxia. PMID:22338029

  18. The effect of bleomycin on DNA synthesis in ataxia telangiectasia lymphoid cells

    SciTech Connect

    Cohen, M.M.; Simpson, S.J.

    1982-01-01

    Bleomycin, a radiomimetic glycopeptide, inhibits de novo DNA synthesis in ataxia telangiectasia lymphoblastoid B cells to a markedly lesser extent than in normal and xeroderma pigmentosum lymphoid cells. This observation is similar to that following ionizing radiation; however, the effect is slower following the chemical treatment. Recovery of the normal cells occurs 15-18 hours after treatment, whereas the ataxia telangiectasia lines do not attain normal levels of DNA synthesis during the entire 24-hour observation period. Similar differences were not observed following treatment with mitomycin C, a bifunctional alkylating agent, indicating a specific effect of bleomycin on DNA synthesis in ataxia telangiectasia cells. Following bleomycin treatment and preincubation with hydroxyurea, residual DNA synthesis in ataxia telangiectasia cells was similar to that in both normal and xeroderma pigmentosum lymphoid lines, suggesting that the capacity to repair the induced DNA lesion is present.

  19. Machado-Joseph disease is genetically different from Holguin dominant ataxia (SCA2)

    SciTech Connect

    Silveria, I.; Manaia, A. Hopital Necker-Enfants Malades, Paris ); Melki, J.; Burlet, P.; Rozet, J.M.; Munnich, A. ); Magarino, C.; Gispert, S. Centro Nacional Genetica Medica, Havana ); Lunkes, A.; Auburger, G. )

    1993-09-01

    Machado-Joseph disease (MJD) and Holguin ataxia (SCA2) are autosomal dominant multisystem degenerations with spinocerebellar involvement that are predominant among people of Portuguese-Azorean and of Cuban descent, respectively. Their clinical distinction may at times be difficult to make in individual patients, due to significant phenotypic overlapping (similar overall age-of-onset and duration of cerebellar ataxia, eye movement, and, often, other common problems). The recent mapping of SCA2 to chromosome 12q provided another candidate region for linkage studies of MJD. Original data on 10 families with Holguin ataxia show that the locus of phenylalanine hydroxylase (PAH) on chromosome 12q is linked to SCA2 at 4 cM and is thus far its closest marker. The exclusion of linkage 15 cM on each side of PAH in 16 families with MJD shows that these two forms of dominant ataxia are genetically distinct and at different chromosomal locations (nonallelic). 20 refs., 2 tabs.

  20. Inherited cerebellar ataxia in childhood: a pattern-recognition approach using brain MRI.

    PubMed

    Vedolin, L; Gonzalez, G; Souza, C F; Lourenço, C; Barkovich, A J

    2013-05-01

    Ataxia is the principal symptom of many common neurologic diseases in childhood. Ataxias caused by dysfunction of the cerebellum occur in acute, intermittent, and progressive disorders. Most of the chronic progressive processes are secondary to degenerative and metabolic diseases. In addition, congenital malformation of the midbrain and hindbrain can also be present, with posterior fossa symptoms related to ataxia. Brain MR imaging is the most accurate imaging technique to investigate these patients, and imaging abnormalities include size, shape, and/or signal of the brain stem and/or cerebellum. Supratentorial and cord lesions are also common. This review will discuss a pattern-recognition approach to inherited cerebellar ataxia in childhood. The purpose is to provide a comprehensive discussion that ultimately could help neuroradiologists better manage this important topic in pediatric neurology.

  1. Dexamethasone Partially Rescues Ataxia Telangiectasia-mutated (ATM) Deficiency in Ataxia Telangiectasia by Promoting a Shortened Protein Variant Retaining Kinase Activity*

    PubMed Central

    Menotta, Michele; Biagiotti, Sara; Bianchi, Marzia; Chessa, Luciana; Magnani, Mauro

    2012-01-01

    Ataxia telangiectasia (AT) is a rare genetic disease, still incurable, resulting from biallelic mutations in the ataxia telangiectasia-mutated (ATM) gene. Recently, short term treatment with glucocorticoid analogues improved neurological symptoms characteristic of this syndrome. Nevertheless, the molecular mechanism involved in glucocorticoid action in AT patients is not yet known. Here we describe, for the first time in mammalian cells, a short direct repeat-mediated noncanonical splicing event induced by dexamethasone, which leads to the skipping of mutations upstream of nucleotide residue 8450 of ATM coding sequence. The resulting transcript provides an alternative ORF translated in a new ATM variant with the complete kinase domain. This miniATM variant was also highlighted in lymphoblastoid cell lines from AT patients and was shown to be likely active. In conclusion, dexamethasone treatment may partly restore ATM activity in ataxia telangiectasia cells by a new molecular mechanism that overcomes most of the mutations so far described within this gene. PMID:23055520

  2. Dexamethasone partially rescues ataxia telangiectasia-mutated (ATM) deficiency in ataxia telangiectasia by promoting a shortened protein variant retaining kinase activity.

    PubMed

    Menotta, Michele; Biagiotti, Sara; Bianchi, Marzia; Chessa, Luciana; Magnani, Mauro

    2012-11-30

    Ataxia telangiectasia (AT) is a rare genetic disease, still incurable, resulting from biallelic mutations in the ataxia telangiectasia-mutated (ATM) gene. Recently, short term treatment with glucocorticoid analogues improved neurological symptoms characteristic of this syndrome. Nevertheless, the molecular mechanism involved in glucocorticoid action in AT patients is not yet known. Here we describe, for the first time in mammalian cells, a short direct repeat-mediated noncanonical splicing event induced by dexamethasone, which leads to the skipping of mutations upstream of nucleotide residue 8450 of ATM coding sequence. The resulting transcript provides an alternative ORF translated in a new ATM variant with the complete kinase domain. This miniATM variant was also highlighted in lymphoblastoid cell lines from AT patients and was shown to be likely active. In conclusion, dexamethasone treatment may partly restore ATM activity in ataxia telangiectasia cells by a new molecular mechanism that overcomes most of the mutations so far described within this gene.

  3. [Anaesthesia for correction of scoliosis in pediatric patient with Friedreich's ataxia].

    PubMed

    Agámez Medina, G L; Pantin, E J; Lorthé, J; Therrien, P J

    2015-01-01

    Friedreich ataxia (FA) is an inherited autosomal recessive disease characterized by a neurological degenerative process of the cerebellum, spinal cord, and peripheral nerves. FA is associated with ataxia, dysarthria, motor and sensory impairment, scoliosis, cardiomyopathy, and diabetes. There is a significant risk of perioperative major complications during the anesthetic management of these patients. We present the case of a fourteen-year-old patient with FA, who had a posterior spinal fusion and instrumentation underwent to total intravenous anesthesia.

  4. Spinocerebellar ataxia with axonal neuropathy: consequence of a Tdp1 recessive neomorphic mutation?

    PubMed Central

    Hirano, Ryuki; Interthal, Heidrun; Huang, Cheng; Nakamura, Tomonori; Deguchi, Kimiko; Choi, Kunho; Bhattacharjee, Meenakshi B; Arimura, Kimiyoshi; Umehara, Fujio; Izumo, Shuji; Northrop, Jennifer L; Salih, Mustafa A M; Inoue, Ken; Armstrong, Dawna L; Champoux, James J; Takashima, Hiroshi; Boerkoel, Cornelius F

    2007-01-01

    Tyrosyl-DNA phosphodiesterase 1 (Tdp1) cleaves the phosphodiester bond between a covalently stalled topoisomerase I (Topo I) and the 3′ end of DNA. Stalling of Topo I at DNA strand breaks is induced by endogenous DNA damage and the Topo I-specific anticancer drug camptothecin (CPT). The H493R mutation of Tdp1 causes the neurodegenerative disorder spinocerebellar ataxia with axonal neuropathy (SCAN1). Contrary to the hypothesis that SCAN1 arises from catalytically inactive Tdp1, Tdp1−/− mice are indistinguishable from wild-type mice, physically, histologically, behaviorally, and electrophysiologically. However, compared to wild-type mice, Tdp1−/− mice are hypersensitive to CPT and bleomycin but not to etoposide. Consistent with earlier in vitro studies, we show that the H493R Tdp1 mutant protein retains residual activity and becomes covalently trapped on the DNA after CPT treatment of SCAN1 cells. This result provides a direct demonstration that Tdp1 repairs Topo I covalent lesions in vivo and suggests that SCAN1 arises from the recessive neomorphic mutation H493R. This is a novel mechanism for disease since neomorphic mutations are generally dominant. PMID:17948061

  5. Ataxia telangiectasia: A report of two cousins and review of literature

    PubMed Central

    Sharma, Anjali; Buxi, Gurdeep; Yadav, Rajbala; Kohli, Ashok

    2011-01-01

    Ataxia telangiectasia (AT) is a rare multisystem, neurodegenerative genetic disorder. Due to its wide clinical heterogeneity, it often leads physicians to an incorrect or missed diagnosis, and insight into this rare disease is important. Here is a case report of two cousins from the same family who showed salient characteristic features of AT along with the incidental finding of co-inheritance of hemoglobin E trait. Though both of them were from the same family, they showed differences in the type of humoral immune deficiencies, laboratory findings, and their susceptibility to develop different types of malignancies. One of them developed T cell acute lymphoblastic leukemia, isolated immunoglobulin A deficiency, and normal serum carcinoembryonic antigen (CEA) and carbohydrate antigen 19.9 (CA 19.9) levels. He expired at the age of nine years. The other, though a year older, has still got normal blood counts, normal immunoglobulin levels, and elevated serum CEA and CA 19.9 levels. Thus, insight into this disease is very important as AT patients require protection from unnecessary exposure to ionizing radiation to prevent malignancies. Diagnosis of AT allows appropriate genetic counseling for the family. PMID:22563157

  6. Magnetic resonance imaging biomarkers in patients with progressive ataxia: current status and future direction.

    PubMed

    Currie, Stuart; Hadjivassiliou, Marios; Craven, Ian J; Wilkinson, Iain D; Griffiths, Paul D; Hoggard, Nigel

    2013-04-01

    A diagnostic challenge commonly encountered in neurology is that of an adult patient presenting with ataxia. The differential is vast and clinical assessment alone may not be sufficient due to considerable overlap between different causes of ataxia. Magnetic resonance (MR)-based biomarkers such as voxel-based morphometry, MR spectroscopy, diffusion-weighted and diffusion-tensor imaging and functional MR imaging are gaining great attention for their potential as indicators of disease. A number of studies have reported correlation with clinical severity and underlying pathophysiology, and in some cases, MR imaging has been shown to allow differentiation of conditions causing ataxia. However, despite recent advances, their sensitivity and specificity vary. In addition, questions remain over their validity and reproducibility, especially when applied in routine clinical practice. This article extensively reviews the current literature regarding MR-based biomarkers for the patient with predominantly adult-onset ataxia. Imaging features characteristic of a particular ataxia are provided and features differentiating ataxia groups and subgroups are discussed. Finally, discussion will turn to the feasibility of applying these biomarkers in routine clinical practice.

  7. Monitoring progression in Friedreich ataxia (FRDA): the use of clinical scales.

    PubMed

    Bürk, Katrin; Schulz, Stefanie R; Schulz, Jörg B

    2013-08-01

    Friedreich ataxia (FRDA) is a progressive neurodegenerative disorder associated with ataxia, dysarthria, pyramidal tract signs, sensory loss, cardiomyopathy and diabetes. There is no cure for FRDA so far. Studies of the natural history of the disease and future therapeutic trials require development of appropriate outcome markers. Since any therapeutic benefit is expected to modulate deterioration over time rather than to reverse disability, potential outcome measures must be sensitive instruments carefully analysed for their significance. Clinical scales may represent an appropriate measuring tool. Over the last few years the construction, evaluation and validation of sensitive clinical scales for the assessment of disease severity and progression in ataxia have had considerable impact on our understanding of the disease. Currently, there are three different scales that are most frequently applied: The International Cooperative Ataxia Rating Scale (ICARS), the Friedreich Ataxia Rating Scale (FARS) and the Scale for the Assessment and Rating of Ataxia (SARA). All scales have been validated and compared with regard to their testing properties.

  8. Episodic memory--from brain to mind.

    PubMed

    Ferbinteanu, Janina; Kennedy, Pamela J; Shapiro, Matthew L

    2006-01-01

    Neuronal mechanisms of episodic memory, the conscious recollection of autobiographical events, are largely unknown because electrophysiological studies in humans are conducted only in exceptional circumstances. Unit recording studies in animals are thus crucial for understanding the neurophysiological substrate that enables people to remember their individual past. Two features of episodic memory--autonoetic consciousness, the self-aware ability to "travel through time", and one-trial learning, the acquisition of information in one occurrence of the event--raise important questions about the validity of animal models and the ability of unit recording studies to capture essential aspects of memory for episodes. We argue that autonoetic experience is a feature of human consciousness rather than an obligatory aspect of memory for episodes, and that episodic memory is reconstructive and thus its key features can be modeled in animal behavioral tasks that do not involve either autonoetic consciousness or one-trial learning. We propose that the most powerful strategy for investigating neurophysiological mechanisms of episodic memory entails recording unit activity in brain areas homologous to those required for episodic memory in humans (e.g., hippocampus and prefrontal cortex) as animals perform tasks with explicitly defined episodic-like aspects. Within this framework, empirical data suggest that the basic structure of episodic memory is a temporally extended representation that distinguishes the beginning from the end of an event. Future research is needed to fully understand how neural encodings of context, sequences of items/events, and goals are integrated within mnemonic representations of autobiographical events.

  9. Pharmacometabolomic signature of ataxia SCA1 mouse model and lithium effects.

    PubMed

    Perroud, Bertrand; Jafar-Nejad, Paymaan; Wikoff, William R; Gatchel, Jennifer R; Wang, Lu; Barupal, Dinesh K; Crespo-Barreto, Juan; Fiehn, Oliver; Zoghbi, Huda Y; Kaddurah-Daouk, Rima

    2013-01-01

    We have shown that lithium treatment improves motor coordination in a spinocerebellar ataxia type 1 (SCA1) disease mouse model (Sca1(154Q/+)). To learn more about disease pathogenesis and molecular contributions to the neuroprotective effects of lithium, we investigated metabolomic profiles of cerebellar tissue and plasma from SCA1-model treated and untreated mice. Metabolomic analyses of wild-type and Sca1(154Q/+) mice, with and without lithium treatment, were performed using gas chromatography time-of-flight mass spectrometry and BinBase mass spectral annotations. We detected 416 metabolites, of which 130 were identified. We observed specific metabolic perturbations in Sca1(154Q/+) mice and major effects of lithium on metabolism, centrally and peripherally. Compared to wild-type, Sca1(154Q/+) cerebella metabolic profile revealed changes in glucose, lipids, and metabolites of the tricarboxylic acid cycle and purines. Fewer metabolic differences were noted in Sca1(154Q/+) mouse plasma versus wild-type. In both genotypes, the major lithium responses in cerebellum involved energy metabolism, purines, unsaturated free fatty acids, and aromatic and sulphur-containing amino acids. The largest metabolic difference with lithium was a 10-fold increase in ascorbate levels in wild-type cerebella (p<0.002), with lower threonate levels, a major ascorbate catabolite. In contrast, Sca1(154Q/+) mice that received lithium showed no elevated cerebellar ascorbate levels. Our data emphasize that lithium regulates a variety of metabolic pathways, including purine, oxidative stress and energy production pathways. The purine metabolite level, reduced in the Sca1(154Q/+) mice and restored upon lithium treatment, might relate to lithium neuroprotective properties.

  10. Cytokines in Machado Joseph Disease/Spinocerebellar Ataxia 3.

    PubMed

    da Silva Carvalho, Gerson; Saute, Jonas Alex Morales; Haas, Clarissa Branco; Torrez, Vitor Rocco; Brochier, Andressa Wigner; Souza, Gabriele Nunes; Furtado, Gabriel Vasata; Gheno, Tailise; Russo, Aline; Monte, Thais Lampert; Schumacher-Schuh, Artur; D'Avila, Rui; Donis, Karina Carvalho; Castilhos, Raphael Machado; Souza, Diogo Onofre; Saraiva-Pereira, Maria Luiza; Torman, Vanessa Leotti; Camey, Suzi; Portela, Luis Valmor; Jardim, Laura Bannach

    2016-08-01

    The aim of the present study is to describe the serum concentrations of a broad spectrum of cytokines in symptomatic and asymptomatic carriers of Machado Joseph disease (SCA3/MJD) CAG expansions. Molecularly confirmed carriers and controls were studied. Age at onset, disease duration, and clinical scales Scale for the Assessment and Rating of Ataxia (SARA), Neurological Examination Score for Spinocerebellar Ataxias (NESSCA), SCA Functional Index (SCAFI), and Composite Cerebellar Functional Score (CCFS) were obtained from the symptomatic carriers. Serum was obtained from all individuals and a cytokine panel "consisted of" eotaxin, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, IL-1RA, IL-2, IL-2R, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, interferon gamma-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-a, MIP-b, regulated on activation, normal T cell expressed and secreted (RANTES) and tumor necrosis factor (TNF)-α was analyzed. In a subgroup of symptomatic carriers, the cytokine panel was repeated after 360 days. Cytokine distribution among groups was studied by discriminant analysis; changes in serum levels after 360 days were studied by generalized estimation equation. Sixty-six symptomatic carriers, 13 asymptomatic carriers, and 43 controls were studied. No differences in cytokine patterns were found between controls and carriers of the CAG expansions or between controls and symptomatic carriers only. In contrast, eotaxin concentrations were significantly higher in asymptomatic than in symptomatic carriers or in controls (p = 0.001, ANCOVA). Eotaxin did not correlate with age, disease duration, CAG expansion, NESSCA score, and SARA score. Among symptomatic carriers, eotaxin dropped after 360 days (p = 0.039, GEE). SCA3/MJD patients presented a benign pattern of

  11. Psychiatric disorders and muscle tenderness in episodic and chronic migraine.

    PubMed

    Mongini, Franco; Deregibus, Andrea; Rota, Eugenia

    2005-09-01

    This review first reports on the data concerning the relationship between migraine and personality traits and psychiatric disorders. The relationship between migraine and tenderness of the pericranial and cervical muscles is then discussed. In one study, a psychologic assessment was performed in 56 women with migraine, and the Minnesota Multiphase Personality Inventory (MMPI) and State Trait Anxiety Inventory were administered at baseline (T0) and after 6-7 years (T2). Frequency, severity and duration of migraine were recorded at T0, after treatment (T1) and at T2, and their relationship to the prevalence of depression, MMPI and State Trait Anxiety Inventory data were examined. Pain parameters improved in all patients in T0-1, but were higher at T2 in patients with depression at T0. The patients whose migraine improved at T2 had significantly lower MMPI and State Trait Anxiety Inventory scores at T0 and T2. Moreover, the prevalence of depression of the patients whose migraine improved at T2 was 37.5% at T0 and decreased to 12.5% at T2. The authors subsequently studied the function of the frontal lobe in 23 female patients previously treated for chronic migraine and 23 controls by applying three neuropsychologic tests (gambling task, tower of hanoi-3 and object alternation test). The patient group performed significantly worse on the tower of hanoi-3 and the object alternation test. In order to assess the extent to which muscle tenderness may relate to psychiatric disorders in patients with migraine and tension-type headache, diagnosed according International Headache Society criteria [2004], a psychologic assessment was performed and palpation tenderness scores calculated for the pericranial and cervical muscles in 459 patients. In total, 125 patients had frequent episodic migraine, 97 had chronic migraine, 82 had frequent episodic tension-type headache and chronic tension-type headache was present in 83. In a further 72 patients, both episodic migraine and

  12. SNP Analysis and Whole Exome Sequencing: Their Application in the Analysis of a Consanguineous Pedigree Segregating Ataxia

    PubMed Central

    Nickerson, Sarah L.; Marquis-Nicholson, Renate; Claxton, Karen; Ashton, Fern; Leong, Ivone U. S.; Prosser, Debra O.; Love, Jennifer M.; George, Alice M.; Taylor, Graham; Wilson, Callum; McKinlay Gardner, R. J.; Love, Donald R.

    2015-01-01

    Autosomal recessive cerebellar ataxia encompasses a large and heterogeneous group of neurodegenerative disorders. We employed single nucleotide polymorphism (SNP) analysis and whole exome sequencing to investigate a consanguineous Maori pedigree segregating ataxia. We identified a novel mutation in exon 10 of the SACS gene: c.7962T>G p.(Tyr2654*), establishing the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Our findings expand both the genetic and phenotypic spectrum of this rare disorder, and highlight the value of high-density SNP analysis and whole exome sequencing as powerful and cost-effective tools in the diagnosis of genetically heterogeneous disorders such as the hereditary ataxias.

  13. Spontaneous downbeat nystagmus as a clue for the diagnosis of ataxia associated with anti-GAD antibodies.

    PubMed

    Vale, Thiago Cardoso; Pedroso, José Luiz; Alquéres, Rafaela Almeida; Dutra, Lívia Almeida; Barsottini, Orlando Graziani Povoas

    2015-12-15

    Glutamic acid decarboxylase (GAD) is the enzyme that catalyzes the conversion of glutamic acid to the neurotransmitter gamma-amino butyric acid. Antibodies against GAD (anti-GAD-Ab) are associated with an array of autoimmune-related neurological conditions, such as stiff-person syndrome, cerebellar ataxia, epilepsy and limbic encephalitis. The clinical spectrum of ataxia associated with anti-GAD-Ab comprises slowly progressive cerebellar ataxia syndrome evolving in months or years, associated with cerebellar atrophy on brain MRI. There are few reports of patients with ataxia associated with anti-GAD-Ab presenting with abnormal ocular movements, such as downbeat nystagmus (DBN).We present two patients with ataxia associated with anti-GAD-Ab from a large series of ataxic subjects who presented with cerebellar ataxia combined with spontaneous DBN. All patients underwent a thorough neurological evaluation with the use of ataxia scales, brain MRI scans, cerebrospinal fluid examination, 18FDG-PET/CT scans, laboratory work-up with on coneural and immune encephalitis antibodies, serum and cerebrospinal fluid levels of anti-GAD-Ab, and the antibody specificity index to measure the intrathecal synthesis of anti-GAD-Ab. All patients were treated with cycles of intravenous immunoglobulin and had mild/partial ataxia improvement and no improvement of DBN. The finding of DBN may work as a diagnostic clue in the context of adult-onset non-hereditary ataxias.

  14. A Transactional Approach to Transfer Episodes

    ERIC Educational Resources Information Center

    Jornet, Alfredo; Roth, Wolff-Michael; Krange, Ingeborg

    2016-01-01

    In this article we present an analytical framework for approaching transfer episodes--episodes in which participants declare or can be declared to bring prior experience to bear on the current task organization. We build on Dewey's writings about the continuity of experience, Vygotsky's ideas of unit analysis, as well as more recent developments…

  15. Training Lessons Learned from Peak Performance Episodes.

    ERIC Educational Resources Information Center

    Fobes, James L.

    A major challenge confronting the United States Army is to obtain optimal performance from both its human and machine resources. This study examines episodes of peak performance in soldiers and athletes. Three cognitive components were found to enable episodes of peak performance: psychological readiness (activating optimal arousal and emotion…

  16. Tracking the Construction of Episodic Future Thoughts

    ERIC Educational Resources Information Center

    D'Argembeau, Arnaud; Mathy, Arnaud

    2011-01-01

    The ability to mentally simulate possible futures ("episodic future thinking") is of fundamental importance for various aspects of human cognition and behavior, but precisely how humans construct mental representations of future events is still essentially unknown. We suggest that episodic future thoughts consist of transitory patterns of…

  17. Police Response to Family Abduction Episodes.

    ERIC Educational Resources Information Center

    Plass, Peggy S.; And Others

    1995-01-01

    Examines role of police in responding to family abduction episodes using data from a national survey. Addresses questions concerning frequency of police involvement, how abductions to which police respond differ from those to which they don't, actions taken by police, and the effects of their actions on episode outcomes. (LKS)

  18. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.

    PubMed

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D

    2016-01-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells. PMID:27248057

  19. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay

    PubMed Central

    Kim, Myungjin; Sandford, Erin; Gatica, Damian; Qiu, Yu; Liu, Xu; Zheng, Yumei; Schulman, Brenda A; Xu, Jishu; Semple, Ian; Ro, Seung-Hyun; Kim, Boyoung; Mavioglu, R Nehir; Tolun, Aslıhan; Jipa, Andras; Takats, Szabolcs; Karpati, Manuela; Li, Jun Z; Yapici, Zuhal; Juhasz, Gabor; Lee, Jun Hee; Klionsky, Daniel J; Burmeister, Margit

    2016-01-01

    Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health. DOI: http://dx.doi.org/10.7554/eLife.12245.001 PMID:26812546

  20. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10

    PubMed Central

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S.; Disney, Matthew D.

    2016-01-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells. PMID:27248057

  1. The Friedreich's ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals.

    PubMed

    Thierbach, René; Drewes, Gunnar; Fusser, Markus; Voigt, Anja; Kuhlow, Doreen; Blume, Urte; Schulz, Tim J; Reiche, Carina; Glatt, Hansruedi; Epe, Bernd; Steinberg, Pablo; Ristow, Michael

    2010-11-15

    DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron-sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs. Frataxin deficiency causes a neurodegenerative disorder named Friedreich's ataxia in humans. Various types of cancer occurring at young age are associated with this disease, and hence with frataxin deficiency. Mice carrying a hepatocyte-specific disruption of the frataxin gene develop multiple liver tumours for unresolved reasons. In the present study, we show that frataxin deficiency in murine liver is associated with increased basal levels of oxidative DNA base damage. Accordingly, eukaryotic V79 fibroblasts overexpressing human frataxin show decreased basal levels of these modifications, while prokaryotic Salmonella enterica serotype Typhimurium TA104 strains transformed with human frataxin show decreased mutation rates. The repair rates of oxidative DNA base modifications in V79 cells overexpressing frataxin were significantly higher than in control cells. Lastly, cleavage activity related to the ISC-independent repair enzyme 8-oxoguanine glycosylase was found to be unaltered by frataxin overexpression. These findings indicate that frataxin modulates DNA-repair mechanisms probably due to its impact on ISC-dependent repair proteins, linking mitochondrial dysfunction to DNA repair and tumour initiation.

  2. Episodic plate tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald

    1992-01-01

    Studies of impact craters on Venus from the Magellan images have placed important constraints on surface volcanism. Some 840 impact craters have been identified with diameters ranging from 2 to 280 km. Correlations of this impact flux with craters on the Moon, Earth, and Mars indicate a mean surface age of 0.5 +/- 0.3 Ga. Another important observation is that 52 percent of the craters are slightly fractured and only 4.5 percent are embayed by lava flows. These observations led researchers to hypothesize that a pervasive resurfacing event occurred about 500 m.y. ago and that relatively little surface volcanism has occurred since. Other researchers have pointed out that a global resurfacing event that ceased about 500 MYBP is consistent with the results given by a recent study. These authors carried out a series of numerical calculations of mantle convection in Venus yielding thermal evolution results. Their model considered crustal recycling and gave rapid planetary cooling. They, in fact, suggested that prior to 500 MYBP plate tectonics was active in Venus and since 500 MYBP the lithosphere has stabilized and only hot-spot volcanism has reached the surface. We propose an alternative hypothesis for the inferred cessation of surface volcanism on Venus. We hypothesize that plate tectonics on Venus is episodic. Periods of rapid plate tectonics result in high rates of subduction that cool the interior resulting in more sluggish mantle convection.

  3. The genetics of ataxia: through the labyrinth of the Minotaur, looking for Ariadne's thread.

    PubMed

    Mancuso, M; Orsucci, D; Siciliano, G; Bonuccelli, U

    2014-09-01

    Among the hereditary cerebellar ataxias (CAs), there are at least 36 different forms of autosomal dominant cerebellar ataxia (ADCAs), 20 autosomal recessive cerebellar ataxias (ARCAs), two X-linked ataxias, and several forms of ataxia associated with mitochondrial defects. Despite the steady increase in the number of newly discovered CA genes, patients, especially those with putative ARCAs, cannot yet be genotyped. Moreover, in daily clinical practice, ataxia may present as an isolated cerebellar syndrome or, more often, it is associated with a broad spectrum of neurological manifestations including pyramidal, extrapyramidal, sensory, and cognitive dysfunction. Furthermore, non-neurological symptoms may also coexist. A close integration between clinical records, neurophysiological, neuroradiological and, in some instances, biochemical findings will help physicians in the diagnostic work-up (including selection of the correct genetic tests) and may lead to timely therapy. Some inherited CAs are in fact potentially treatable, and the efficacy of the therapy is directly related to the severity of the cerebellar atrophy and to the time of onset of the disease. Most cases of CA are sporadic, and the diagnostic work-up remains a challenge. Detailed anamnesis and deep investigation of the family pedigree are usually enough to discriminate between acquired and genetic conditions. In the case of ADCA, molecular testing should be guided by taking into account the main associated symptoms. In sporadic cases, a multi-disciplinary approach is needed and should consider the following points: (1) onset and clinical course; (2) associated features; (3) neurophysiological parameters, with special attention to the occurrence of peripheral neuropathy; (4) neuroimaging results; and (5) laboratory findings. A late-onset sporadic ataxia, in which other possible causes have been excluded by following the proposed steps, might be attributable to metabolic disorders, which in some

  4. Neurodegeneration in ataxia-telangiectasia is caused by horror autotoxicus.

    PubMed

    Kuljis, R O; Aguila, M C

    1999-05-01

    Ataxia-telangiectasia (A-T) is a pleiotropic, multi-system disorder with manifestations that include immune deficiency, sensitivity to ionizing radiation and neoplasms. Many of these manifestations are understood in principle since the identification in A-T patients of mutations in a gene encoding a protein kinase that plays a key role in signaling and repair of DNA damage. However, the cause of the neurodegeneration that afflicts patients with A-T for at least a decade before they succumb to overwhelming infections or malignancy remains mysterious. Based on our work in a mouse model of A-T and previous evidence of extra-neural autoimmune disorders in A-T, we postulate that the neurodegenerative process in A-T is not due to a function for A-T mutated (ATM) essential for the postnatal brain, but to an autoimmune process (hence 'horror autotoxicus', Paul Ehrlich's term for autoimmune disorder). This hypothetical mechanism may be analogous to that in the so-called 'paraneoplastic' neurodegenerative syndromes in patients with various malignancies. Thus, alterations in the balance between cellular and humoral immunity in A-T probably result in autoantibodies to cerebral epitopes shared with cells of the immune system. This hypothesis has important implications for the understanding and development of effective palliative and even preventative strategies for A-T, and probably for other so far relentlessly progressive neurodegenerative disorders.

  5. The Chemical Form of Mitochondrial Iron in Friedreich's Ataxia

    SciTech Connect

    Popescu, B.F.Gh.; Pickering, I.J.; George, G.N.; Nichol, H.; /Saskatchewan U.

    2007-07-12

    Friedreich's ataxia (FRDA) results from cellular damage caused by a deficiency in the mitochondrial matrix protein frataxin. To address the effect of frataxin deficiency on mitochondrial iron chemistry, the heavy mitochondrial fraction (HMF) was isolated from primary fibroblasts from FRDA affected and unaffected individuals. X-ray absorption spectroscopy was used to characterize the chemical form of iron. Near K-edge spectra were fitted with a series of model iron compounds to determine the proportion of each iron species. Most of the iron in both affected and unaffected fibroblasts was ferrihydrite. The iron K-edge from unaffected HMFs were best fitted with poorly organized ferrihydrite modeled by frataxin whereas HMFs from affected cells were best fitted with highly organized ferrihydrite modeled by ferritin. Both had several minor iron species but these did not differ consistently with disease. Since the iron K-edge spectra of ferritin and frataxin are very similar, we present additional evidence for the presence of ferritin-bound iron in HMF. The predominant ferritin subunit in HMFs from affected cells resembled mitochondrial ferritin (MtFt) in size and antigenicity. Western blotting of native gels showed that HMF from affected cells had 3-fold more holoferritin containing stainable iron. We conclude that most of the iron in fibroblast HMF from both affected and unaffected cells is ferrihydrite but only FRDA affected cells mineralize significant iron in mitochondrial ferritin.

  6. Evaluation and Management of Pulmonary Disease in Ataxia-Telangiectasia

    PubMed Central

    McGrath-Morrow, Sharon A.; Gower, W. Adam; Rothblum-Oviatt, Cynthia; Brody, Alan S.; Langston, Claire; Fan, Leland L.; Lefton-Greif, Maureen A.; Crawford, Thomas O.; Troche, Michelle; Sandlund, John T; Auwaerter, Paul G.; Easley, Blaine; Loughlin, Gerald M.; Carroll, John L.; Lederman, Howard M.

    2014-01-01

    Summary Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder caused by mutations in the ATM gene, resulting in faulty repair of breakages in double-stranded DNA. The clinical phenotype is complex, and is characterized by neurologic abnormalities, immunodeficiencies, susceptibility to malignancies, recurrent sinopulmonary infections, and cutaneous abnormalities. Lung disease is common in patients with A-T and often progresses with age and neurological decline. Diseases of the respiratory system cause significant morbidity and are a frequent cause of death in the A-T population. Lung disease in this population is thought to exhibit features of one or more of the following phenotypes: recurrent sinopulmonary infections with bronchiectasis, interstitial lung disease, and lung disease associated with neurological abnormalities. Here, we review available evidence and present expert opinion on the diagnosis, evaluation, and management of lung disease in A-T, as discussed in a recent multidisciplinary workshop. Although more data are emerging on this unique population, many recommendations are made based on similarities to other more well-studied diseases. Gaps in current knowledge and areas for future research in the field of pulmonary disease in A-T are also outlined. PMID:20583220

  7. Riboflavin-responsive glutaric aciduria type II presenting as a leukodystrophy.

    PubMed

    Uziel, G; Garavaglia, B; Ciceri, E; Moroni, I; Rimoldi, M

    1995-11-01

    The clinical phenotype of multiple acyl-CoA dehydrogenase deficiency in infancy is characterized by recurrent episodes of hypoketotic hypoglycemia and lipid storage myopathy. Brain damage has been described only as a consequence of severe and protracted hypoglycemia. We describe a child who experienced normal physical and psychomotor development until the age of 3 years, who then developed progressive intention tremors, dysarthria, ataxia, and spastic tetraparesis. Episodes of acute metabolic distress were never observed. Magnetic resonance imaging disclosed abnormal signals within the white matter of the brain and cerebellum, suggesting leukodystrophy. Gas chromatography/mass spectrometry analysis revealed abnormally high levels of glutaric acid, dicarboxylic acids, and glycine derivatives in urine. Riboflavin therapy was initiated at 4 years of age, when the patient had already lost control of trunk and head posture. Consistent improvement rapidly occurred after riboflavin supplementation. Glutaric aciduria type II may cause brain damage, in spite of the absence of acute metabolic distress, and should be considered in the differential diagnosis of leukodystrophies. PMID:8771170

  8. Episodic coma in a new leukodystrophy.

    PubMed

    Espay, Alberto J; Bodensteiner, John B; Patel, Hema

    2002-02-01

    Among the leukodystrophies of a hypomyelinating nature, childhood ataxia with diffuse central nervous system hypomyelination exhibits the unique feature of rapid decrease in mental status after relatively minor head injuries or otherwise noncomplicated febrile illnesses. This article reports the case of a child with progressive spastic quadriparesis in whom unconsciousness developed repeatedly as a result of minor head trauma and required prolonged critical-care nursing. Although cognition is believed to be relatively preserved in this disorder, this child developed progressive cognitive decline. A detailed review of the literature is presented along with discussion of the potential mechanisms of neurologic deterioration. PMID:11897479

  9. Host cell reactivation of sunlamp-exposed adenovirus in fibroblasts from patients with Bloom's syndrome, ataxia telangiectasia, and Huntington's disease

    SciTech Connect

    Rainbow, A.J. )

    1991-01-01

    In this study, a sensitive host cell reactivation (HCR) technique was used to examine the repair capacity for DNA damaged by sunlamp exposure in fibroblast strains derived from 5 normal individuals and 8 patients representing three different diseases associated with DNA repair deficiencies. Adenovirus type 2 (Ad 2) was exposed to radiation from a GE 275 W sunlamp and subsequently used to infect fibroblast monolayers. At 48 hr after infection, cells were scored for the presence of viral structural antigens (Vag) using indirect immunofluorescent staining. Previous reports using this technique showed a substantial reduction in the HCR of sunlamp-exposed Ad 2 for infection of excision repair deficient fibroblasts from patients with xeroderma pigmentosum. In contrast, the HCR of Vag synthesis for sunlamp-exposed Ad 2 was in the normal range for the three ataxia telangiectasia, three Bloom's syndrome, and two Huntington's disease fibroblasts strains.

  10. How do episodic and semantic memory contribute to episodic foresight in young children?

    PubMed Central

    Martin-Ordas, Gema; Atance, Cristina M.; Caza, Julian S.

    2014-01-01

    Humans are able to transcend the present and mentally travel to another time, place, or perspective. Mentally projecting ourselves backwards (i.e., episodic memory) or forwards (i.e., episodic foresight) in time are crucial characteristics of the human memory system. Indeed, over the past few years, episodic memory has been argued to be involved both in our capacity to retrieve our personal past experiences and in our ability to imagine and foresee future scenarios. However, recent theory and findings suggest that semantic memory also plays a significant role in imagining future scenarios. We draw on Tulving’s definition of episodic and semantic memory to provide a critical analysis of their role in episodic foresight tasks described in the developmental literature. We conclude by suggesting future directions of research that could further our understanding of how both episodic memory and semantic memory are intimately connected to episodic foresight. PMID:25071690

  11. Does modulation of the endocannabinoid system have potential therapeutic utility in cerebellar ataxia?

    PubMed Central

    2016-01-01

    Abstract Cerebellar ataxias represent a spectrum of disorders which are, however, linked by common symptoms of motor incoordination and typically associated with deficiency in Purkinje cell firing activity and, often, degeneration. Cerebellar ataxias currently lack a curative agent. The endocannabinoid (eCB) system includes eCB compounds and their associated metabolic enzymes, together with cannabinoid receptors, predominantly the cannabinoid CB1 receptor (CB1R) in the cerebellum; activation of this system in the cerebellar cortex is associated with deficits in motor coordination characteristic of ataxia, effects which can be prevented by CB1R antagonists. Of further interest are various findings that CB1R deficits may also induce a progressive ataxic phenotype. Together these studies suggest that motor coordination is reliant on maintaining the correct balance in eCB system signalling. Recent work also demonstrates deficient cannabinoid signalling in the mouse ‘ducky2J’ model of ataxia. In light of these points, the potential mechanisms whereby cannabinoids may modulate the eCB system to ameliorate dysfunction associated with cerebellar ataxias are considered. PMID:26970080

  12. ANO10 mutations cause ataxia and coenzyme Q₁₀ deficiency.

    PubMed

    Balreira, Andrea; Boczonadi, Veronika; Barca, Emanuele; Pyle, Angela; Bansagi, Boglarka; Appleton, Marie; Graham, Claire; Hargreaves, Iain P; Rasic, Vedrana Milic; Lochmüller, Hanns; Griffin, Helen; Taylor, Robert W; Naini, Ali; Chinnery, Patrick F; Hirano, Michio; Quinzii, Catarina M; Horvath, Rita

    2014-11-01

    Inherited ataxias are heterogeneous disorders affecting both children and adults, with over 40 different causative genes, making molecular genetic diagnosis challenging. Although recent advances in next-generation sequencing have significantly improved mutation detection, few treatments exist for patients with inherited ataxia. In two patients with adult-onset cerebellar ataxia and coenzyme Q10 (CoQ10) deficiency in muscle, whole exome sequencing revealed mutations in ANO10, which encodes anoctamin 10, a member of a family of putative calcium-activated chloride channels, and the causative gene for autosomal recessive spinocerebellar ataxia-10 (SCAR10). Both patients presented with slowly progressive ataxia and dysarthria leading to severe disability in the sixth decade. Epilepsy and learning difficulties were also present in one patient, while retinal degeneration and cataract were present in the other. The detection of mutations in ANO10 in our patients indicate that ANO10 defects cause secondary low CoQ10 and SCAR10 patients may benefit from CoQ10 supplementation.

  13. Autosomal recessive spinocerebellar ataxia and peripheral neuropathy with raised alpha-fetoprotein.

    PubMed

    Izatt, Louise; Németh, Andrea H; Meesaq, Anjela; Mills, Kerry R; Taylor, A Malcolm R; Shaw, Christopher E

    2004-07-01

    We describe three patients from two families with progressive spinocerebellar ataxia, peripheral neuropathy, raised alpha-fetoprotein (AFP) and hypercholesterolaemia. Two siblings had identical clinical features, with late childhood onset of symptoms and slow progression, requiring crutches to walk at ages 37 and 38 years. Another patient developed ataxia aged 13 years and became wheel-chair bound by 20 years of age. Although they all had raised serum AFP levels, their clinical, immunological, biochemical, cytogenetic and molecular genetic studies failed to support a diagnosis of Ataxia Telangiectasia. Extensive investigation including imaging, biochemical and genetic studies excluded other known ataxias. Their clinical features most closely resemble the phenotype of a single consanguineous Japanese family with four individuals affected by spinocerebellar ataxia, peripheral neuropathy, raised AFP and hypercholesterolaemia. Homozygosity mapping has identified a locus in this Japanese family at 9q34. Haplotype analysis of our cases demonstrated possible linkage to 9q34, suggesting these may be the first Caucasian families described with this disorder.

  14. Episodic acidification of small streams in the northeastern united states: ionic controls of episodes

    USGS Publications Warehouse

    Wigington, P.J.; DeWalle, David R.; Murdoch, Peter S.; Kretser, W.A.; Simonin, H.A.; Van Sickle, J.; Baker, J.P.

    1996-01-01

    As part of the Episodic Response Project (ERP), we intensively monitored discharge and stream chemistry of 13 streams located in the Northern Appalachian region of Pennsylvania and in the Catskill and Adirondack Mountains of New York from fall 1988 to spring 1990. The ERP clearly documented the occurrence of acidic episodes with minimum episodic pH ??? 5 and inorganic monomeric Al (Alim) concentrations >150 ??g/L in at least two study streams in each region. Several streams consistently experienced episodes with maximum Alim concentrations >350 ??g/L. Acid neutralizing capacity (ANC) depressions resulted from complex interactions of multiple ions. Base cation decreases often made the most important contributions to ANC depressions during episodes. Organic acid pulses were also important contributors to ANC depressions in the Adirondack streams, and to a lesser extent, in the Catskill and Pennsylvania streams. Nitrate concentrations were low in the Pennsylvania streams, whereas the Catskill and Adirondack study streams had high NO3- concentrations and large episodic pulses (???54 ??eq/L). Most of the Pennsylvania study streams also frequently experienced episodic pulses of SO42- (???78 ??eq/L), whereas the Adirondack and Catskill streams did not. High baseline concentrations of SO42- (all three study areas) and NO3- (Adirondacks and Catskills) reduced episodic minimum ANC, even when these ions did not change during episodes. The ion changes that controlled the most severe episodes (lowest minimum episodic ANC) differed from the ion changes most important to smaller, more frequent episodes. Pulses of NO3- (Catskills and Adirondacks), SO42- (Pennsylvania), or organic acids became more important during major episodes. Overall, the behavior of streamwater SO42- and NO4- is an indicator that acidic deposition has contributed to the severity of episodes in the study streams.

  15. The case for episodic memory in animals.

    PubMed

    Dere, E; Kart-Teke, E; Huston, J P; De Souza Silva, M A

    2006-01-01

    The conscious recollection of unique personal experiences in terms of their details (what), their locale (where) and temporal occurrence (when) is known as episodic memory and is thought to require a 'self-concept', autonoetic awareness/conciousness, and the ability to subjectively sense time. It has long been held that episodic memory is unique to humans, because it was accepted that animals lack a 'self-concept', 'autonoetic awareness', and the ability to 'subjectively sense time'. These assumptions are now being questioned by behavioral evidence showing that various animal species indeed show behavioral manifestations of different features of episodic memory such as, e.g. 'metacognition', 'conscious recollection' of past events, 'temporal order memory', 'mental time travel' and have the capacity to remember personal experiences in terms of what happened, where and when. The aim of this review is to provide a comprehensive overview on the current progress in attempts to model different prerequisites and features of human episodic memory in animals and to identify possible neural substrates of animal episodic memory. The literature covered includes behavioral and physiological studies performed with different animal species, such as non-human primates, rodents, dolphins and birds. The search for episodic memory in animals has forced researchers to define objective behavioral criteria by which different features of episodic memory can be operationalized experimentally and assessed in both animals and humans. This is especially important because the current definition of episodic memory in terms of mentalistic constructs such as 'self', 'autonoetic awareness/consciousness', and 'subjectively sensed time', not only hinders animal research on the neurobiology of episodic memory but also research with healthy human subjects as well as neuropsychiatric patients with impaired language or in children with less-developed verbal abilities.

  16. Episodic dust formation by HD 192641 (WR 137) - II

    NASA Astrophysics Data System (ADS)

    Williams, P. M.; Kidger, M. R.; van der Hucht, K. A.; Morris, P. W.; Tapia, M.; Perinotto, M.; Morbidelli, L.; Fitzsimmons, A.; Anthony, D. M.; Caldwell, J. J.; Alonso, A.; Wild, V.

    2001-06-01

    We present new infrared photometry of the WC7-type Wolf-Rayet star HD 192641 (WR137) from 1985 to 1999. These data track the cooling of the dust cloud formed in the 1982-84 dust-formation episode from 1985 to 1991, the increase of the infrared flux from 1994.5 to a new dust-formation maximum in 1997 and its subsequent fading. From these and earlier data we derive a period of 4765+/-50d (13.05+/-0.15yr) for the dust-formation episodes. Between dust-emission episodes, the infrared spectral energy distribution has the form of a power law, λFλ~λ-1.86. The rising branch of the infrared light curve (1994-97) differs in form from that of the episodic dust-maker WR125. Time-dependent modelling shows that this difference can be attributed to a different time dependence of dust formation in WR137, which occurred approximately ~t2 until maximum, whereas that of WR125 could be described by a step function, akin to a threshold effect. For an adopted distance of 1.6kpc, the rate of dust formation was found to be 5.0×10-8Msolaryr-1 at maximum, accounting for a fraction fC~1.5×10-3 of the carbon flowing in the stellar wind. The fading branches of the light curves show evidence for secondary `mini-eruptions' in 1987, 1988 and 1990, behaviour very different from that of the prototypical episodic dust-maker HD 193793 (WR140), and suggesting the presence in the WR137 stellar wind of large-scale structures that are crossed by the wind-wind collision region.

  17. An action to an object does not improve its episodic encoding but removes distraction.

    PubMed

    Laurent, Xavier; Ensslin, Astrid; Marí-Beffa, Paloma

    2016-04-01

    There is some debate as to whether responding to objects in our environment improves episodic memory or does not impact it. Some authors claim that actively encoding objects improves their representation in episodic memory. Conversely, episodic memory has also been shown to improve in passive conditions, suggesting that the action itself could interfere with the encoding process. This study looks at the impact of attention and action on episodic memory using a novel what-where-when (WWW) task that includes information about object identity (what) and spatial (where) and temporal (when) properties. With this approach, we studied the episodic memory of 2 types of objects: a target, where attention or an action is defined, and a distractor, an object to be ignored, following 2 selective states: active versus passive selection. When targets were actively selected, we found no evidence of episodic memory enhancement compared to passive selection; instead, memory from irrelevant sources was suppressed. The pattern was replicated across a 2-D static display and a more realistic 3-D virtual environment. This selective attention effect on episodic memory was not observed on nonepisodic measures, demonstrating a link between attention and the encoding of episodic experiences. (PsycINFO Database Record

  18. Characterization of intense aerosol episodes in the Mediterranean basin from satellite observations

    NASA Astrophysics Data System (ADS)

    Gkikas, Antonis; Hatzianastassiou, Nikos; Mihalopoulos, Nikolaos

    2014-05-01

    The properties and distribution of aerosols over the broader Mediterranean region are complex since particles of different nature are either produced within its boundaries or transported from other regions. Thus, coarse dust aerosols are transported primarily from Sahara and secondarily from Middle East, while fine polluted aerosols are either produced locally from anthropogenic activities or they are transported from neighbouring or remote European areas. Also during summer biomass aerosols are transported towards the Mediterranean, originating from massive and extended fires occurring in northern Balkans and Eastern Europe and favoured by the prevailing synoptic conditions. In addition, sea-salt aerosols originate from the Mediterranean Sea or the Atlantic Ocean. Occasionally, aerosols are encountered at very high concentrations (aerosol episodes or events) significantly affecting atmospheric dynamics and climate as well as human health. Given the coexistence of different aerosols as internal and external mixtures characterizing and discriminating between the different types of aerosol episodes is a big challenge. A characterization and classification of intense aerosol episodes in the Mediterranean basin (March 2000 - February 2007) is attempted in the present study. This is achieved by implementing an objective and dynamic algorithm which uses daily aerosol optical properties derived from satellite measurements, namely MODIS-Terra, Earth Probe (EP)-TOMS and OMI-Aura. The aerosol episodes are first classified into strong and extreme ones, according to their intensity, by means of aerosol optical depth at 550nm (AOD550nm). Subsequently, they are discriminated into the following aerosol types: (i) biomass/urban-industrial (BU), (ii) desert dust (DD), (iii) sea-salt like (SS), (iv) mixed (MX) and (v) undetermined (UN). The classification is based on aerosol optical properties accounting for the particles' size (Ångström exponent, Effective radius), the

  19. Modelisation of northerly snow episodes over Andorra (Pyrenees) using WRF

    NASA Astrophysics Data System (ADS)

    Trapero, L.; Esteban, P.

    2010-09-01

    North episodes over the Pyrenees represent a challenge in terms of forecasting associated effects, especially during the winter season. Andorra, a small country located in the Pyrenees, between France and Spain, is highly sensitive to these episodes. Usually these episodes generate heavy snowfalls and intense windstorms which can substantially increase hazards and accident occurrence in this mountainous region. Slight variations of the forecasted snowfall distribution and accumulation can cause a severe impact to the population: avalanche hazard, incidents on the communication systems and transports and other derivates social impacts. With north episodes, precipitation mainly affects the North Slope of the Pyrenees and nearby areas. However, in some cases, certain factors allow the precipitation to cross over to the leeward mountain slope and intense snowfalls can affect an extended area and low elevations. The challenge comes down to the difficulty that the models have in forecasting the regional effects of these events and how far over the southern side of the Pyrenees range will precipitation extend. The episode that took place on the 10-11th February 2009 is a recent example. Previous research done by Esteban et al. (2005) over this area, examined the relationship between circulation types and heavy snowfall days in Andorra. Additionally, this study has provided a first climatology of N-NW episodes with at least 30 cm of snow in a 24h period during the winter seasons from 1986 to 2001 and has pointed out differences between similar atmospheric fluxes in the snow precipitation amount and distribution. The specific objective of this study is to determine common features of these events and evaluate the ability of the high-resolution Weather Research and Forecast model (WRF) over complex terrain to predict them, especially the spatial precipitation distribution. Preliminary experiments for 10-11 February 2009 case have tested the performance of two different land

  20. Novel aberrant genetic and epigenetic events in Friedreich's ataxia.

    PubMed

    Quesada, Mari Paz; Jones, Jonathan; Rodríguez-Lozano, F J; Moraleda, Jose M; Martinez, Salvador

    2015-07-01

    It is generally accepted that Friedreich's ataxia (FRDA) is caused by a deficiency in frataxin expression, a mitochondrial protein involved in iron homeostasis, which mainly affects the brain, dorsal root ganglia of the spinal cord, heart and in certain cases the pancreas. However, there is little knowledge as to other possible genes that may be affected in this disorder, and which can contribute to its complexity. In the current study we compared human periodontal ligament cells gene expression of healthy individuals and FRDA patients. The expression of active-caspase 3, as well as other apoptosis-related genes, was increased in the FRDA cells. Furthermore, iron-sulphur cluster genes, as well as oxidative stress-related genes were overexpressed in FRDA. Moreover, brain-derived neurotrophic factor, neuregulin 1 and miR-132 were all upregulated. These three genes are capable of regulating the expression of each other. Interestingly, when the cells from FRDA patients were co-cultured in the presence of idebenone and deferiprone, caspase expression decreased while antioxidant gene expression, as well as frataxin expression, increased. Regarding epigenetic mechanisms, the frataxin gene was hypermethylated, compared to the healthy counterparts, in the upstream GAA repetitive region. Of the three DNA methyltransferases, DNMT1 but not DNMT3׳s gene expression was higher in FRDA cells. In conclusion, our data show that FRDA cells present altered expression of genes related to cell cycle, oxidative stress and iron homeostasis which may be implicated in the increased apoptotic levels. Also, the altered expression is in a certain degree normalized in the presence of idebenone and deferiprone. PMID:25929520