Science.gov

Sample records for epithelial beas-2b cells

  1. Alcohol increases the permeability of airway epithelial tight junctions in Beas-2B and NHBE cells.

    PubMed

    Simet, Samantha M; Wyatt, Todd A; DeVasure, Jane; Yanov, Daniel; Allen-Gipson, Diane; Sisson, Joseph H

    2012-03-01

    Tight junctions form a continuous belt-like structure between cells and act to regulate paracellular signaling. Protein kinase C (PKC) has been shown to regulate tight junction assembly and disassembly and is activated by alcohol. Previous research has shown that alcohol increases the permeability of tight junctions in lung alveolar cells. However, little is known about alcohol's effect on tight junctions in epithelium of the conducting airways. We hypothesized that long-term alcohol exposure reduces zonula occluden-1 (ZO-1) and claudin-1 localization at the cell membrane and increases permeability through a PKC-dependent mechanism. To test this hypothesis, we exposed normal human bronchial epithelial (NHBE) cells, cells from a human bronchial epithelial transformed cell line (Beas-2B), and Beas-2B expressing a PKCα dominant negative (DN) to alcohol (20, 50, and 100 mM) for up to 48 hours. Immunofluorescence was used to assess changes in ZO-1, claudin-1, claudin-5, and claudin-7 localization. Electric cell-substrate impedance sensing was used to measure the permeability of tight junctions between monolayers of NHBE, Beas-2B, and DN cells. Alcohol increased tight junction permeability in a concentration-dependent manner and decreased ZO-1, claudin-1, claudin-5, and claudin-7 localization at the cell membrane. To determine a possible signaling mechanism, we measured the activity of PKC isoforms (alpha, delta, epsilon, and zeta). PKCα activity significantly increased in Beas-2B cells from 1 to 6 hours of 100 mM alcohol exposure, while PKCζ activity significantly decreased at 1 hour and increased at 3 hours. Inhibiting PKCα with Gö-6976 prevented the alcohol-induced protein changes in both ZO-1 and claudin-1 at the cell membrane. PKCα DN Beas-2B cells were resistant to alcohol-induced protein alterations. These results suggest that alcohol disrupts ZO-1, claudin-1, claudin-5, and claudin-7 through the activation of PKCα, leading to an alcohol-induced "leakiness

  2. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B.

    PubMed

    Lv, Xiang; Zhou, Xuhui; Yan, Jia; Jiang, Jue; Jiang, Hong

    2017-03-01

    Lipopolysaccharide (LPS) plays an important role in lung endothelial apoptosis which is crucial for lung fibrogenesis in ARDS progression. Reactive oxygen species (ROS) has been reported to be involved in LPS-induced lung epithelial cell apoptosis. Propofol is a commonly used intravenous anesthetic agent in clinic and it could attenuate LPS-induced epithelial cells oxidation and apoptosis. However, the mechanisms are still obscure. In this study, we examined whether and how propofol attenuates LPS-induced oxidation and apoptosis in BEAS-2B cells. Compared with control group, LPS up-regulated Pin-1, phosphatase A2 (PP2A) expression, induced p66(Shc)-Ser(36) phosphorylation, and facilitated p66(Shc) mitochondrial translocation, thus leading to superoxide anion (O2(-)) generation, mitochondrial cytochrome c release, active caspase 3 over-expression and cell viability inhibition. Importantly, propofol was shown to down-regulate LPS-induced PP2A expression, limit p66(Shc) mitochondrial translocation, decrease O2(-) generation, inhibit mitochondrial cytochrome c release, reduce active caspase 3 expression, and recover cells viability, while propofol had no effects on LPS-induced Pin-1 expression and p66(Shc)-Ser(36) phosphorylation. Moreover, the protective effects of propofol on LPS-induced BEAS-2B cells apoptosis were similar to that of calyculin A, which is an inhibitor of PP2A. We also found that FTY720, which is an activator of PP2A, can effectively reverse the protective function of propofol. Our data illustrated that propofol could alleviate LPS-induced BEAS-2B cells oxidation and apoptosis through down-regulating PP2A expression, limiting p66(Shc)-Ser(36) dephosphorylation and p66(Shc) mitochondrial translocation, decreasing O2(-) generation, mitochondrial cytochrome c release, activating caspase 3 expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis.

    PubMed

    Park, Youn-Hee; Kim, Donghern; Dai, Jin; Zhang, Zhuo

    2015-09-15

    Occupational and environmental exposure to arsenic (III) and chromium VI (Cr(VI)) have been confirmed to cause lung cancer. Mechanisms of these metals carcinogenesis are still under investigation. Selection of cell lines to be used is essential for the studies. Human bronchial epithelial BEAS-2B cells are the cells to be utilized by most of scientists. However, due to p53 missense mutation (CCG→TCG) at codon 47 and the codon 72 polymorphism (CGC→CCC) in BEAS-2B cells, its usage has frequently been questioned. The present study has examined activity and expression of 53 and its downstream target protein p21 upon acute or chronic exposure of BEAS-2B cells to arsenic and Cr(VI). The results show that short-term exposure of BEAS-2B cells to arsenic or Cr(VI) was able to activate both p53 and p21. Chronic exposure of BEAS-2B cells to these two metals caused malignant cell transformation and tumorigenesis. In arsenic-transformed BEAS-2B cells reductions in p53 promoter activity, mRNA expression, and phosphorylation of p53 at Ser392 were observed, while the total p53 protein level remained the same compared to those in passage-matched parent ones. p21 promoter activity and expression were decreased in arsenic-transformed cells. Cr(VI)-transformed cells exhibit elevated p53 promoter activity, mRNA expression, and phosphorylation at Ser15, but reduced phosphorylation at Ser392 and total p53 protein level compared to passage-matched parent ones. p21 promoter activity and expression were elevated in Cr(VI)-transformed cells. These results demonstrate that p53 is able to respond to exposure of arsenic or Cr(VI), suggesting that BEAS-2B cells are an appropriate in vitro model to investigate arsenic or Cr(VI) induced lung cancer.

  4. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis

    SciTech Connect

    Park, Youn-hee; Kim, Donghern; Dai, Jin; Zhang, Zhuo

    2015-09-15

    Occupational and environmental exposure to arsenic (III) and chromium VI (Cr(VI)) have been confirmed to cause lung cancer. Mechanisms of these metals carcinogenesis are still under investigation. Selection of cell lines to be used is essential for the studies. Human bronchial epithelial BEAS-2B cells are the cells to be utilized by most of scientists. However, due to p53 missense mutation (CCG → TCG) at codon 47 and the codon 72 polymorphism (CGC → CCC) in BEAS-2B cells, its usage has frequently been questioned. The present study has examined activity and expression of 53 and its downstream target protein p21 upon acute or chronic exposure of BEAS-2B cells to arsenic and Cr(VI). The results show that short-term exposure of BEAS-2B cells to arsenic or Cr(VI) was able to activate both p53 and p21. Chronic exposure of BEAS-2B cells to these two metals caused malignant cell transformation and tumorigenesis. In arsenic-transformed BEAS-2B cells reductions in p53 promoter activity, mRNA expression, and phosphorylation of p53 at Ser392 were observed, while the total p53 protein level remained the same compared to those in passage-matched parent ones. p21 promoter activity and expression were decreased in arsenic-transformed cells. Cr(VI)-transformed cells exhibit elevated p53 promoter activity, mRNA expression, and phosphorylation at Ser15, but reduced phosphorylation at Ser392 and total p53 protein level compared to passage-matched parent ones. p21 promoter activity and expression were elevated in Cr(VI)-transformed cells. These results demonstrate that p53 is able to respond to exposure of arsenic or Cr(VI), suggesting that BEAS-2B cells are an appropriate in vitro model to investigate arsenic or Cr(VI) induced lung cancer. - Highlights: • Short-term exposure of BEAS-2B cells to arsenic or Cr(VI) activates p53 and p21. • Chronic exposure of BEAS-2B cells to arsenic or Cr(VI) causes cell transformation and tumorigenesis. • Arsenic-transformed cells exhibit

  5. Effects of Size-Fractionated Particulate Matter on Cellular Oxidant Radical Generation in Human Bronchial Epithelial BEAS-2B Cells

    PubMed Central

    Guan, Longfei; Rui, Wei; Bai, Ru; Zhang, Wei; Zhang, Fang; Ding, Wenjun

    2016-01-01

    The aim of the present study was to investigate the effects of size-fractionated (i.e., <1; 1–2.5, and 2.5–10 µm in an aerodynamic diameter) ambient particulate matter (PM) on reactive oxygen species (ROS) activity and cell viability in human bronchial epithelial cells (BEAS-2B). The PM samples were collected from an urban site (uPM) in Beijing and a steel factory site (sPM) in Anshan, China, from March 2013 to December 2014. Metal elements, organic and elemental carbon, and water-soluble inorganic ions in the uPM and sPM were analyzed. The cell viability and ROS generation in PM-exposed BEAS-2B cells were measured by MTS and DCFH-DA. The results showed that both uPM and sPM caused a decrease in the cell viability and an increase in ROS generation. The level of ROS measured in sPM1.0 was approximately triple that in uPM1.0. The results of correlation analysis showed that the ROS activity and cytotoxicity were related to different PM composition. Moreover, deferoxamine (DFO) significantly prevented the increase of ROS generation and the decrease of cell viability. Taken together, our results suggest that the metals absorbed on PM induced oxidant radical generation in BEAS-2B cells that could lead to impairment of pulmonary function. PMID:27171105

  6. Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway

    SciTech Connect

    Li Qin; Suen, T.-C.; Sun Hong; Arita, Adriana; Costa, Max

    2009-03-01

    Nickel compounds are carcinogenic to humans and have been shown to alter epigenetic homeostasis. The c-Myc protein controls 15% of human genes and it has been shown that fluctuations of c-Myc protein alter global epigenetic marks. Therefore, the regulation of c-Myc by nickel ions in immortalized but not tumorigenic human bronchial epithelial Beas-2B cells was examined in this study. It was found that c-Myc protein expression was increased by nickel ions in non-tumorigenic Beas-2B and human keratinocyte HaCaT cells. The results also indicated that nickel ions induced apoptosis in Beas-2B cells. Knockout of c-Myc and its restoration in a rat cell system confirmed the essential role of c-Myc in nickel ion-induced apoptosis. Further studies in Beas-2B cells showed that nickel ion increased the c-Myc mRNA level and c-Myc promoter activity, but did not increase c-Myc mRNA and protein stability. Moreover, nickel ion upregulated c-Myc in Beas-2B cells through the MEK/ERK pathway. Collectively, the results demonstrate that c-Myc induction by nickel ions occurs via an ERK-dependent pathway and plays a crucial role in nickel-induced apoptosis in Beas-2B cells.

  7. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    SciTech Connect

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  8. Human primary bronchial epithelial cells respond differently to titanium dioxide nanoparticles than the lung epithelial cell lines A549 and BEAS-2B.

    PubMed

    Ekstrand-Hammarström, Barbro; Akfur, Christine M; Andersson, Per Ola; Lejon, Christian; Osterlund, Lars; Bucht, Anders

    2012-09-01

    We have compared the cellular uptake and responses of five preparations of nanocrystalline titanium dioxide (TiO(2)) between normal human bronchial epithelial (NHBE) cells and epithelial cell lines (A549 and BEAS-2B). The P25 nanoparticles, containing both anatase and rutile modifications, induced reactive oxygen species (ROS) and secretion of the neutrophil chemoattractant IL-8 in all three cell types used. Pure anatase and rutile particles provoked differential IL-8 response in A549 and no response in BEAS-2B cells despite similar formation of ROS. The pure TiO(2) modifications also provoked release of the inflammatory mediators: IL-6, G-CSF and VEGF, in NHBE cells but not in the two cell lines. We conclude that the responsiveness of lung epithelial cells is strongly dependent on both the physicochemical properties of TiO(2) nanoparticles and the type of responder cells. The differential pro-inflammatory responsiveness of primary lung epithelial cells compared with immortalized cell lines should be considered in the assessment of adverse reactions to inhaled nanoparticles.

  9. Chromium VI-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and a lymphoblastic leukemia cell line (MOLT-4).

    PubMed

    Gambelunghe, Angela; Piccinini, Renza; Abbritti, Giuseppe; Ambrogi, Maura; Ugolini, Barbara; Marchetti, Cristina; Migliorati, Graziella; Balducci, Chiara; Muzi, Giacomo

    2006-03-01

    Hexavalent chromium compounds are well-documented human carcinogens. In vitro experiments show Cr (VI) induces cell death by apoptosis by activating p53 protein. The aim of this study was to evaluate Cr (VI)-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and in a lymphoblastic leukemia cell line (MOLT-4). Cr (VI) caused a dose- and time-dependent increase in the apoptosis rate in both cell lines. Western blotting showed increased p53 protein expression in MOLT-4 cells, but not in BEAS-2B cells, after exposure to 0.5 and 3 muM hexavalent chromium for 12 hours and 4 hours, respectively. Apoptotic cell death induced by Cr (VI) was not decreased by pretreatment with caspase-3, -8, and -9 inhibitors. These preliminary results provide evidence of Cr (VI)-induced apoptosis, which deserves further investigation in occupationally exposed workers.

  10. Arsenite-Induced Pseudo-Hypoxia Results in Loss of Anchorage-Dependent Growth in BEAS-2B Pulmonary Epithelial Cells

    PubMed Central

    Zhao, Fei; Malm, Scott W.; Hinchman, Alyssa N.; Li, Hui; Beeks, Connor G.; Klimecki, Walter T.

    2014-01-01

    Epidemiology studies have established a strong link between lung cancer and arsenic exposure. Currently, the role of disturbed cellular energy metabolism in carcinogenesis is a focus of scientific interest. Hypoxia inducible factor-1 alpha (HIF-1A) is a key regulator of energy metabolism, and it has been found to accumulate during arsenite exposure under oxygen-replete conditions. We modeled arsenic-exposed human pulmonary epithelial cells in vitro with BEAS-2B, a non-malignant lung epithelial cell line. Constant exposure to 1 µM arsenite (As) resulted in the early loss of anchorage-dependent growth, measured by soft agar colony formation, beginning at 6 weeks of exposure. This arsenite exposure resulted in HIF-1A accumulation and increased glycolysis, similar to the physiologic response to hypoxia, but in this case under oxygen-replete conditions. This “pseudo-hypoxia” response was necessary for the maximal acquisition of anchorage-independent growth in arsenite-exposed BEAS-2B. The HIF-1A accumulation and induction in glycolysis was sustained throughout a 52 week course of arsenite exposure in BEAS-2B. There was a time-dependent increase in anchorage-independent growth during the exposure to arsenite. When HIF-1A expression was stably suppressed, arsenite-induced glycolysis was abrogated, and the anchorage-independent growth was reduced. These findings establish that arsenite exerts a hypoxia-mimetic effect, which plays an important role in the subsequent gain of malignancy-associated phenotypes. PMID:25513814

  11. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM{sub 2.5} organic extract from Puerto Rico

    SciTech Connect

    Fuentes-Mattei, Enrique; Rivera, Evasomary; Gioda, Adriana; Sanchez-Rivera, Diana; Roman-Velazquez, Felix R.; Jimenez-Velez, Braulio D.

    2010-03-15

    Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g., asthma) in the United States. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from airborne particulate matter (PM{sub 2.5}) in Puerto Rico. Organic extracts from PM{sub 2.5} collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells were exposed to PM{sub 2.5} organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM{sub 2.5} consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1beta and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24 h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM{sub 2.5} organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico.

  12. Use of Human Bronchial Epithelial Cells (BEAS-2B) to Study Immunological Markers Resulting From Exposure to PM2.5 Organic Extract from Puerto Rico

    PubMed Central

    Fuentes-Mattei, Enrique; Rivera, Evasomary; Gioda, Adriana; Sanchez-Rivera, Diana; Roman-Velazquez, Felix R.; Jimenez-Velez, Braulio D.

    2010-01-01

    Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g. asthma) in the US. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from air-borne particulate matter (PM2.5) in Puerto Rico. Organic extracts from PM2.5 collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells were exposed to PM2.5 organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM2.5 consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1β and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM2.5 organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico. PMID:20026096

  13. Co-exposure to amorphous silica nanoparticles and benzo[a]pyrene at low level in human bronchial epithelial BEAS-2B cells.

    PubMed

    Wu, Jing; Shi, Yanfeng; Asweto, Collins Otieno; Feng, Lin; Yang, Xiaozhe; Zhang, Yannan; Hu, Hejing; Duan, Junchao; Sun, Zhiwei

    2016-11-01

    Both ultrafine particles (UFP) and polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment, thus increasing their chances of exposure to human in the daily life. However, the study on the combined toxicity of UFP and PAHs on respiratory system is still limited. In this study, we examined the potential interactive effects of silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P) in bronchial epithelial cells (BEAS-2B). Cells were exposed to SiNPs and B[a]P alone or in combination for 24 h. Co-exposure to SiNPs and B[a]P enhanced the malondialdehyde (MDA) contents and reduced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities significantly, while the reactive oxygen species (ROS) generation had a slight increase in the exposed groups compared to the control but not statistically significant. Cell cycle arrest induced by the co-exposure showed a significant percentage increase in G2/M phase cells and a decrease in G0/G1 phase cells. In addition, there was a significant increase in BEAS-2B cells multinucleation as well as DNA damage. Cellular apoptosis was markedly increased even at the low-level co-exposure. Our results suggest that co-exposure to SiNPs and B[a]P exerts synergistic and additive cytotoxic and genotoxic effects.

  14. PI3K-delta mediates double-stranded RNA-induced upregulation of B7-H1 in BEAS-2B airway epithelial cells

    SciTech Connect

    Kan-o, Keiko; Matsumoto, Koichiro; Asai-Tajiri, Yukari; Fukuyama, Satoru; Hamano, Saaka; Seki, Nanae; Nakanishi, Yoichi; Inoue, Hiromasa

    2013-05-31

    Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB.

  15. Differential effects of nitro-PAHs and amino-PAHs on cytokine and chemokine responses in human bronchial epithelial BEAS-2B cells

    SciTech Connect

    Ovrevik, J.; Arlt, V.M.; Oya, E.; Nagy, E.; Mollerup, S.; Phillips, D.H.; Lag, M.; Holme, J.A.

    2010-02-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are found in diesel exhaust and air pollution particles. Along with other PAHs, many nitro-PAHs possess mutagenic and carcinogenic properties, but their effects on pro-inflammatory processes and cell death are less known. In the present study we examined the effects of 1-nitropyrene (1-NP), 3-nitrofluoranthene (3-NF) and 3-nitrobenzanthrone (3-NBA) and their corresponding amino forms, 1-AP, 3-AF and 3-ABA, in human bronchial epithelial BEAS-2B cells. The effects of the different nitro- and amino-PAHs were compared to the well-characterized PAH benzo[a]pyrene (B[a]P). Expression of 17 cytokine and chemokine genes, measured by real-time PCR, showed that 1-NP and 3-NF induced a completely different cytokine/chemokine gene expression pattern to that of their amino analogues. 1-NP/3-NF-induced responses were dominated by maximum effects on CXCL8 (IL-8) and TNF-alpha expression, while 1-AP-/3-AF-induced responses were dominated by CCL5 (RANTES) and CXCL10 (IP-10) expression. 3-NBA and 3-ABA induced only marginal cytokine/chemokine responses. However, 3-NBA exposure induced considerable DNA damage resulting in accumulation of cells in S-phase and a marked increase in apoptosis. B[a]P was the only compound to induce expression of aryl hydrocarbon receptor (AhR)-regulated genes, such as CYP1A1 and CYP1B1, but did not induce cytokine/chemokine responses in BEAS-2B cells. Importantly, nitro-PAHs and amino-PAHs induced both qualitatively and quantitatively different effects on cytokine/chemokine expression, DNA damage, cell cycle alterations and cytotoxicity. The cytokine/chemokine responses appeared to be triggered, at least partly, through mechanisms separate from the other examined endpoints. These results confirm and extend previous studies indicating that certain nitro-PAHs have a considerable pro-inflammatory potential.

  16. Genome-wide analysis of HIF-2α chromatin binding sites under normoxia in human bronchial epithelial cells (BEAS-2B) suggests its diverse functions

    PubMed Central

    Lee, Meng-Chang; Huang, Hsin-Ju; Chang, Tzu-Hao; Huang, Hsieh-Chou; Hsieh, Shen-Yuan; Chen, Yi-Siou; Chou, Wei-Yuan; Chiang, Chiao-Hsi; Lai, Ching-Huang; Shiau, Chia-Yang

    2016-01-01

    Constitutive functional HIF-2α was recently identified in cancer and stem cell lines under normoxia. In this study, BEAS-2B, a bronchial epithelial cell line, was shown to constitutively express active HIF-2α under normoxia and exhibit markers of pluripotency including Oct-4, Nanog, and sphere formation. Oct-4 expression was reduced after knockdown of HIF-2α under normoxia. Global enrichment analysis of HIF-2α demonstrated the diverse functions of HIF-2α under normoxia. Bioinformatics analysis of the enriched loci revealed an enhancer role of HIF-2α binding sites, involvement of HIF-2α interacting proteins, and enriched de novo motifs which suggest the diverse role of HIF-2α in pseudohypoxia. The low ratio of the discovered loci overlapping with those revealed in cancer cell lines 786-O (16.1%) and MCF-7 (15.9%) under hypoxia indicated a prevailing non-canonical mechanism. Hypoxia had positive, marginal or adverse effects on the enrichment of the selected loci in ChIP-PCR assays. Deletion of the N-terminal activation domain (N-TAD) of HIF-2α disrupted the reporting activity of two of the loci annotated to ELN and ANKRD31. Hypoxia incurring abundance variation of HIF-2α may misrepresent the N-TAD functions as canonical hypoxia inducible features via C-TAD activation. Elucidation of the pseudohypoxia functions of constitutive HIF-2α is useful for resolving its role in malignancy and pluripotency. PMID:27373565

  17. Surface reactivity and in vitro toxicity on human bronchial epithelial cells (BEAS-2B) of nanomaterials intermediates of the production of titania-based composites.

    PubMed

    Vergaro, Viviana; Aldieri, Elisabetta; Fenoglio, Ivana; Marucco, Arianna; Carlucci, Claudia; Ciccarella, Giuseppe

    2016-08-01

    Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide in large quantities for use in a wide range of applications. Evaluating the hazards associated with TiO2 NPs is crucial as it enables risk assessment related to human and environmental exposure. In this study the in vitro human toxicity of a set of TiO2 NPs modified with acetic, oleic and boric acids were studied in order to assess the hazard in view of a future scale-up of the synthesis. The surface reactivity of the powders under simulated solar illumination and in the dark has been evaluated by means of EPR spectroscopy. Human bronchial epithelial cells (BEAS-2B) have been chosen as a model for lung epithelium. Cytotoxicity has been assessed by measuring the cells membrane integrity by lactate dehydrogenase (LDH) assay, and the inflammatory response evaluated as nitric oxide (NO) and TNF-α production, and oxidative stress measured as intracellular reduced glutathione (GSH) levels, and induced lipoperoxidation. Aeroxide P25 was used for comparison. The results demonstrated a low photoreactivity and toxic effects lower than Aeroxide P25 of the nano-TiO2 powders, probably as a consequence of the presence of acidic moieties at the surface.

  18. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells).

    PubMed

    Oh, Seung Min; Kim, Ha Ryong; Park, Yong Joo; Lee, Soo Yeun; Chung, Kyu Hyuck

    2011-08-16

    Traffic is a major source of particulate matter (PM), and ultrafine particulates and traffic intensity probably contribute significantly to PM-related health effects. As a strong relationship between air pollution and motor vehicle-originated pollutants has been shown to exist, air pollution genotoxicity studies of urban cities are steadily increasing. In Korea, the death rate caused by lung cancer is the most rapidly increased cancer death rate in the past 10 years. In this study, genotoxicity of PM2.5 (<2.5μm in aerodynamic diameter particles) collected from the traffic area in Suwon City, Korea, was studied using cultured human lung bronchial epithelial cells (BEAS-2B) as a model system for the potential inhalation health effects. Organic extract of PM2.5 (CE) generated significant DNA breakage and micronucleus formation in a dose-dependent manner (1μg/cm(3)-50μg/cm(3)). In the acid-base-neutral fractionation of PM2.5, neutral samples including the aliphatic (F3), aromatic (F4) and slightly polar (F5) fractions generated significant DNA breakage and micronucleus formation. These genotoxic effects were significantly blocked by scavenging agents [superoxide dismutase (SOD), sodium selenite (SS), mannitol (M), catalase (CAT)]. In addition, in the modified Comet assay using endonucleases (FPG and ENDOIII), CE and its fractions (F3, F4, and F5) increased DNA breakage compared with control groups, indicating that CE and fractions of PM2.5 induced oxidative DNA damage. These results clearly suggest that PM2.5 collected in the Suwon traffic area has genotoxic effects and that reactive oxygen species may play a distinct role in these effects. In addition, aliphatic/chlorinated hydrocarbons, PAH/alkylderivatives, and nitro-PAH/ketones/quinones may be important causative agents of the genotoxic effects. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis.

    PubMed

    Oya, Elisabeth; Ovrevik, Johan; Arlt, Volker M; Nagy, Eszter; Phillips, David H; Holme, Jørn A

    2011-11-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound.

  20. Perilla frutescens leaf extract inhibits mite major allergen Der p 2-induced gene expression of pro-allergic and pro-inflammatory cytokines in human bronchial epithelial cell BEAS-2B.

    PubMed

    Liu, Jer-Yuh; Chen, Yi-Ching; Lin, Chun-Hsiang; Kao, Shao-Hsuan

    2013-01-01

    Perilla frutescens has been used in traditional medicine for respiratory diseases due to its anti-bacterial and anti-inflammatory activity. This study aimed to investigate effects of Perilla frutescens leaf extract (PFE) on expression of pro-allergic and pro-inflammatory cytokines in airway epithelial cells exposed to mite major allergen Der p 2 (DP2) and the underlying mechanisms. Our results showed that PFE up to 100 µg/mL had no cytotoxic effect on human bronchial epithelial cell BEAS-2B. Further investigations revealed that PFE dose-dependently diminished mRNA expression of pro-allergic cytokine IL-4, IL-5, IL-13 and GM-CSF, as well as pro-inflammatory cytokine IL-6, IL-8 and MCP-1 in BEAS-2B cells treated with DP2. In parallel to mRNA, the DP-2-elevated levels of the tested cytokines were decreased. Further investigation showed that DP2-indued phosphorylation of p38 MAPK (P38) and JNK, but not Erk1/2, was also suppressed by PFE. In addition, PFE elevated cytosolic IκBα level and decreased nuclear NF-κB level in DP2-stimulated BEAS-2B cells. Taken together, these findings revealed that PFE significantly diminished both mRNA expression and protein levels of pro-allergic and pro-inflammatory cytokines in response to DP2 through inhibition of P38/JNK and NK-κB activation. These findings suggest that PFE should be beneficial to alleviate both allergic and inflammatory responses on airway epithelium in response to aeroallergens.

  1. Perilla frutescens Leaf Extract Inhibits Mite Major Allergen Der p 2-induced Gene Expression of Pro-Allergic and Pro-Inflammatory Cytokines in Human Bronchial Epithelial Cell BEAS-2B

    PubMed Central

    Liu, Jer-Yuh; Chen, Yi-Ching; Lin, Chun-Hsiang; Kao, Shao-Hsuan

    2013-01-01

    Perilla frutescens has been used in traditional medicine for respiratory diseases due to its anti-bacterial and anti-inflammatory activity. This study aimed to investigate effects of Perilla frutescens leaf extract (PFE) on expression of pro-allergic and pro-inflammatory cytokines in airway epithelial cells exposed to mite major allergen Der p 2 (DP2) and the underlying mechanisms. Our results showed that PFE up to 100 µg/mL had no cytotoxic effect on human bronchial epithelial cell BEAS-2B. Further investigations revealed that PFE dose-dependently diminished mRNA expression of pro-allergic cytokine IL-4, IL-5, IL-13 and GM-CSF, as well as pro-inflammatory cytokine IL-6, IL-8 and MCP-1 in BEAS-2B cells treated with DP2. In parallel to mRNA, the DP-2-elevated levels of the tested cytokines were decreased. Further investigation showed that DP2-indued phosphorylation of p38 MAPK (P38) and JNK, but not Erk1/2, was also suppressed by PFE. In addition, PFE elevated cytosolic IκBα level and decreased nuclear NF-κB level in DP2-stimulated BEAS-2B cells. Taken together, these findings revealed that PFE significantly diminished both mRNA expression and protein levels of pro-allergic and pro-inflammatory cytokines in response to DP2 through inhibition of P38/JNK and NK-κB activation. These findings suggest that PFE should be beneficial to alleviate both allergic and inflammatory responses on airway epithelium in response to aeroallergens. PMID:24204835

  2. Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response.

    PubMed

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Maruyama, Kayo; Usui, Yuki; Aoki, Kaoru; Takanashi, Seiji; Kobayashi, Shinsuke; Nomura, Hiroki; Okamoto, Masanori; Shimizu, Masayuki; Kato, Hiroyuki

    2013-09-01

    We examined the cytotoxicity of multi-walled carbon nanotubes (MWCNTs) and the resulting cytokine secretion in BEAS-2B cells or normal human bronchial epithelial cells (HBEpCs) in two types of culture media (Ham's F12 containing 10% FBS [Ham's F12] and serum-free growth medium [SFGM]). Cellular uptake of MWCNT was observed by fluorescent microscopy and analyzed using flow cytometry. Moreover, we evaluated whether MWCNT uptake was suppressed by 2 types of endocytosis inhibitors. We found that BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM showed similar biological responses, but BEAS-2B cells cultured in SFGM did not internalize MWCNTs, and the 50% inhibitory concentration value, i.e., the cytotoxicity, was increased by more than 10-fold. MWCNT uptake was suppressed by a clathrin-mediated endocytosis inhibitor and a caveolae-mediated endocytosis inhibitor in BEAS-2B cells cultured in Ham's F12 and HBEpCs cultured in SFGM. In conclusion, we suggest that BEAS-2B cells cultured in a medium containing serum should be used for the safety evaluation of nanomaterials as a model of normal human bronchial epithelial cells. However, the culture medium composition may affect the proteins that are expressed on the cytoplasmic membrane, which may influence the biological response to MWCNTs.

  3. Prooxidant and proinflammatory potency of air pollution particulate matter (PM₂.₅₋₀.₃) produced in rural, urban, or industrial surroundings in human bronchial epithelial cells (BEAS-2B).

    PubMed

    Dergham, Mona; Lepers, Capucine; Verdin, Anthony; Billet, Sylvain; Cazier, Fabrice; Courcot, Dominique; Shirali, Pirouz; Garçon, Guillaume

    2012-04-16

    Compelling evidence indicates that exposure to air pollution particulate matter (PM) affects human health. However, how PM composition interacts with PM-size to cause adverse health effects needs elucidation. In this study, we were also interested in the physicochemical characteristics and toxicological end points of PM₂.₅₋₀.₃ samples produced in rural, urban, or industrial surroundings, thereby expecting to differentiate their respective in vitro adverse health effects in human bronchial epithelial cells (BEAS-2B). Physicochemical characteristics of the three PM₂.₅₋₀.₃ samples, notably their inorganic and organic components, were closely related to their respective emission sources. Referring also to the dose/response relationships of the three PM₂.₅₋₀.₃ samples, the most toxicologically relevant exposure times (i.e., 24, 48, and 72 h) and doses (i.e., 3.75 μg PM/cm² and 15 μg PM/cm²) to use to study the underlying mechanisms of action involved in PM-induced lung toxicity were chosen. Organic chemicals adsorbed on the three PM₂.₅₋₀.₃ samples (i.e., polycyclic aromatic hydrocarbons) were able to induce the gene expression of xenobiotic-metabolizing enzymes (i.e., Cytochrome P4501A1 and 1B1, and, to a lesser extent, NADPH-quinone oxidoreductase-1). Moreover, intracellular reactive oxygen species within BEAS-2B cells exposed to the three PM₂.₅₋₀.₃ samples induced oxidative damage (i.e., 8-hydroxy-2'-deoxyguanosine formation, malondialdehyde production and/or glutathione status alteration). There were also statistically significant increases of the gene expression and/or protein secretion of inflammatory mediators (i.e., notably IL-6 and IL-8) in BEAS-2B cells after their exposure to the three PM₂.₅₋₀.₃ samples. Taken together, the present findings indicated that oxidative damage and inflammatory response preceeded cytotoxicity in air pollution PM₂.₅₋₀.₃-exposed BEAS-2B cells and supported the

  4. Reactive oxygen species induce apoptosis in bronchial epithelial BEAS-2B cells by inhibiting the antiglycation glyoxalase I defence: involvement of superoxide anion, hydrogen peroxide and NF-κB.

    PubMed

    Antognelli, Cinzia; Gambelunghe, Angela; Talesa, Vincenzo Nicola; Muzi, Giacomo

    2014-01-01

    Reactive oxygen species (ROS) are implicated in the regulation of apoptosis through a number of distinct mechanisms depending on cell type and stimulation conditions. Glyoxalase I (GI) metabolizes methylglyoxal (MG) and MG-derived advanced glycation end products (AGEs) known to cause apoptosis. This study examined the possible role of GI among the mechanisms of ROS-driven apoptosis in human bronchial epithelial BEAS-2B cells exposed to wood dust and signaling pathways by which these reactive species regulate GI expression. Our results showed that wood dust generated distinct ROS (superoxide anion, and hydrogen peroxide) by selectively inhibiting the enzymatic activity of superoxide dismutase or glutathione peroxidase and catalase enzymes. These ROS caused a dramatic inhibition of the antiglycation GI enzyme, leading to the intracellular accumulation of the pro-apoptotic AGE, argpyrimidine (AP) and programmed cell death via a mitochondrial pathway. Pre-treatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, prevented these events. Hence, ROS-induced apoptosis in BEAS-2B cells occurred via a novel mechanism relying on GI inhibition and AP accumulation. We interestingly found that superoxide anion and hydrogen peroxide induced a diverse apoptosis level by differently inhibiting GI via NF-κB pathway. Since maintenance of an intact epithelium is a critically important determinant of normal respiratory function, the knowledge of the mechanisms underlying its disruption may provide insight into the genesis of a number of pathological conditions commonly occurring in wood dust occupational exposure. Our findings suggest that the antioxidant NAC may merit investigation as a potential preventive agent in wood dust exposure-induced respiratory diseases.

  5. Proinflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells-The FuelHealth project.

    PubMed

    Skuland, Tonje S; Refsnes, Magne; Magnusson, Pål; Oczkowski, Michał; Gromadzka-Ostrowska, Joanna; Kruszewski, Marcin; Mruk, Remigiusz; Myhre, Oddvar; Lankoff, Anna; Øvrevik, Johan

    2017-06-01

    Biodiesel fuel fuels are introduced at an increasing extent as a more carbon-neutral alternative to reduce CO2-emissions, compared to conventional diesel fuel. In the present study we have investigated the impact of increasing the use of 1st generation fatty acid methyl ester (FAME) biodiesel from current 7% blend (B7) to 20% blend (B20), or by increasing the biodiesel content by adding 2nd generation hydrotreated vegetable oil (HVO) based biodiesel (SHB; Synthetic Hydrocarbon Biofuel) on toxicity of diesel exhaust particles (DEP) in an in vitro system. Human bronchial epithelial BEAS-2B cells were exposed for 4 and 20h to DEP from B7, B20 and SHB at different concentrations, and examined for effects on gene expression of interleukin 6 (IL-6), CXCL8 (IL-8), CYP1A1 and heme oxygenase-1 (HO-1). The results show that both B20 and SHB were more potent inducers of IL-6 expression compared to B7. Only B20 induced statistically significant increases in CXCL8 expression. By comparison the rank order of potency to induce CYP1A1 was SHB>B7>B20. No statistically significant difference were observed form HO-1 expression, suggesting that the differences in cytokine responses were not due to oxidative stress. The results show that even moderate increases in biodiesel blends, from 7% to 20%, may increase the proinflammatory potential of emitted DEP in BEAS-2B cells. This effect was observed for both addition of 1st generation FAME and 2nd generation HVO biodiesel. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Proteomic analysis of proteins associated with tt-DDE induced toxicity in BEAS-2B cells.

    PubMed

    Lin, Pin-Pin; Yang, Ming-Hui; Liao, Pao-Chi; Wu, Hsin-Yi; Chang, Louis W; Tsai, Hui-Ti; Tyan, Yu-Chang

    2008-11-21

    Trans, trans-2,4-decadienal (tt-DDE), a specific type of dienaldehyde, is abundant in heated oils or cooking oil fumes. Ingestion of heated oils and exposure to cooking oil fumes has been suggested to have a great health impact in a variety of organs, including the lungs. Previous studies have demonstrated that acute exposures to high doses of tt-DDE have induced oxidative stress, genotoxicity, and cytotoxicity in human lung cells. The objective in utilizing proteomic techniques of this study was to identify protein biomarkers associated with tt-DDE-induced oxidative stress and cytotoxicity in human bronchial epithelial cells BEAS-2B. Experimental results suggested that DJ-1 and cofilin proteins were protein biomarkers for tt-DDE-induced cytotoxicity and oxidative stress in lung cells. DJ-1 was especially an early biomarker for tt-DDE exposure.

  7. Decreasing SMPD1 activity in BEAS-2B bronchial airway epithelial cells results in increased NRF2 activity, cytokine synthesis and neutrophil recruitment.

    PubMed

    MacFadden-Murphy, Elyse; Roussel, Lucie; Martel, Guy; Bérubé, Julie; Rousseau, Simon

    2017-01-22

    Niemann-Pick disease (NPD) type B is a rare autosomal recessive disease characterized by variable levels of impairment in sphingomyelin phosphodiesterase 1 (SMPD1) activity. Lung involvement is the most important prognostic factor in NPD-B, with recurrent respiratory infections starting in infancy being the major cause of morbidity and mortality. We hypothesized that decreased SMPD1 activity impaired airway epithelium host defense response. SMPD1 activity was reduced using inducible shRNA. Surprisingly, decreasing SMPD1 activity by 50%, resulted in increased neutrophil recruitment, both at baseline and in response to bacterial stimulation. This correlated with elevated levels of cytokine mRNA shown to contribute to neutrophil recruitment in unstimulated (e.g. IL-8 and GRO-α) and infected cells (e.g. IL-8, GRO-α, GM-CSF and CCL20). Instead of preventing the host defence responses, decreased SMPD1 activity results in an inflammatory response even in the absence of infection. Moreover, decreasing SMPD1 activity resulted in a pro-oxidative shift. Accordingly, expression of an inactive mutant, SMPD1[L225P] but not the WT enzyme increased activation of the antioxidant transcription factor NRF2. Therefore, decreasing SMPD1 activity by 50% in airway epithelial cells, the equivalent of the loss of one allele, results in the accumulation of oxidants that activates NRF2 and a concomitant increased cytokine production as well as neutrophil recruitment. This can result in a chronic inflammatory state that impairs host defence similar to scenarios observe in other chronic inflammatory lung disease such as Chronic Obstructive Pulmonary Disease or Cystic Fibrosis.

  8. Signaling factors and pathways of α-particle irradiation induced bilateral bystander responses between Beas-2B and U937 cells.

    PubMed

    Fu, Jiamei; Wang, Juan; Wang, Xiangdong; Wang, Ping; Xu, Jinping; Zhou, Cuiping; Bai, Yang; Shao, Chunlin

    2016-07-01

    Although radiation induced bystander effects (RIBE) have been investigated for decades for their potential health risk, the underlying gene regulation is still largely unclear, especially the roles of immune system and inflammatory response in RIBE. In the present study, macrophage U937 cells and epithelial Beas-2B cells were co-cultured to disclose the cascades of bystander signaling factors and intercellular communications. After α-particle irradiation, both ERK and p38 pathways were activated in Beas-2B cells and were associated with the autocrine and paracrine signaling of TNF-α and IL-8, resulting in direct damage to the irradiated cells. Similar upregulation of TNF-α and IL-8 was induced in the bystander U937 cells after co-culture with α-irradiated Beas-2B cells. This upregulation was dependent on the activation of NF-κB pathway and was responsible for the enhanced damage of α-irradiated Beas-2B cells. Interestingly, the increased expressions of TNF-α and IL-8 mRNAs in the bystander U937 cells were clearly relayed on the activated ERK and p38 pathways in the irradiated Beas-2B cells, and the upregulation of TNF-α and IL-8 mRNAs in co-cultured Beas-2B cells was also partly due to the activated NF-κB pathway in the bystander U937 cells. With the pretreatment of U0126 (MEK1/2 inhibitor), SB203580 (p38 inhibitor) or BAY 11-7082 (NF-κB inhibitor), the aggravated damage in the α-irradiated Beas-2B cells could be largely alleviated. Our results disclosed novel signaling cascades of macrophage-mediated bilateral bystander responses that the release of TNF-α and IL-8 regulated by MAPK and NF-κB pathways synergistically increased cellular injury after α-particle irradiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. An analysis of glucocorticoid receptor-mediated gene expression in BEAS-2B human airway epithelial cells identifies distinct, ligand-directed, transcription profiles with implications for asthma therapeutics.

    PubMed

    Joshi, T; Johnson, M; Newton, R; Giembycz, M

    2015-03-01

    International asthma guidelines recommend that inhaled glucocorticoids be used as a monotherapy in all patients with mild to moderate disease because of their ability to suppress airways inflammation. Current evidence suggests that the therapeutic benefit of glucocorticoids is due to the transactivation and transrepression of anti-inflammatory and pro-inflammatory genes respectively. However, the extent to which clinically relevant glucocorticoids are equivalent in their ability to modulate gene expression is unclear. A pharmacodynamics investigation of glucocorticoid receptor (GR)-mediated gene transactivation in BEAS-2B human airway epithelial cells was performed using a glucocorticoid response element luciferase reporter coupled with an analysis of glucocorticoid-inducible genes encoding proteins with anti-inflammatory and adverse-effect potential. Using transactivation as a functionally relevant output, a given glucocorticoid displayed a unique, gene expression 'fingerprint' where intrinsic efficacy and GR density were essential determinants. We showed that depending on the gene selected for analysis, a given glucocorticoid can behave as an antagonist, partial agonist, full agonist or even 'super agonist'. In the likely event that different, tissue-dependent gene expression profiles are reproduced in vivo, then the anti-inflammatory and adverse-effect potential of many glucocorticoids currently available as asthma therapeutics may not be equivalent. The generation of gene expression 'fingerprints' in target and off-target human tissues could assist the rational design of GR agonists with improved therapeutic ratios. This approach could identify compounds that are useful in the management of severe asthma and other inflammatory disorders where systemic exposure is desirable. © 2014 The British Pharmacological Society.

  10. Long-term exposures to low doses of silver nanoparticles enhanced in vitro malignant cell transformation in non-tumorigenic BEAS-2B cells.

    PubMed

    Choo, Wun Hak; Park, Cho Hee; Jung, Shi Eun; Moon, Byeonghak; Ahn, Huiyeon; Ryu, Jung Seok; Kim, Keun-Soo; Lee, Yong Hwa; Yu, Il Je; Oh, Seung Min

    2016-12-01

    To predict carcinogenic potential of AgNPs on the respiratory system, BEAS-2B cells (human bronchial epithelial cells) were chronically exposed to low- and non-cytotoxic dose (0.13 and 1.33μg/ml) of AgNPs for 4months (#40 passages). To assess malignant cell transformation of chronic exposure to AgNPs, several bioassays including anchorage independent agar colony formation, cell migration/invasion assay, and epithelial-mesenchymal transition (EMT) were performed in BEAS-2B cells. Chronic exposure to AgNPs showed a significant increase of anchorage independent agar colony formation and cell migration/invasion. EMT, which is the loss of epithelial markers (E-Cadherin and Keratin) and the gain of mesenchymal marker (N-cadherin and Vimentin), was induced by chronic exposure to AgNPs. These responses indicated that chronic exposure to AgNPs could acquire characteristics of tumorigenic cells from normal BEAS-2B cells. In addition, caspase-3, p-p53, p-p38, and p-JNK were significantly decreased, while p-ERK1/2 was significantly increased. MMP-9 related to cell migration/invasion was upregulated, while a MMP-9 inhibitor, TIMP-1 was down-regulated. These results indicated that BEAS-2B cells exposed to AgNPs could induce anti-apoptotic response/anoikis resistance, and cell migration/invasion by complex regulation of MAPK kinase (p38, JNK, and ERK) and p53 signaling pathways. Therefore, we suggested that long-term exposure to low-dose of AgNPs could enhance malignant cell transformation in non-tumorigenic BEAS-2B cells. Our findings provide useful information needed to assess the carcinogenic potential of AgNPs.

  11. Aldehyde dehydrogenase 1A1 up-regulates stem cell markers in benzo[a]pyrene-induced malignant transformation of BEAS-2B cells.

    PubMed

    Liu, Yonghong; Lu, Ruitao; Gu, Junlian; Chen, Yanxuan; Zhang, Xueyan; Zhang, Lan; Wu, Hao; Hua, Wenfeng; Zeng, Jun

    2016-07-01

    Recently, Aldehyde dehydrogenase 1A1 (ALDH1A1) has been proposed to be a common marker of cancer stem cells and can be induced by benzo[a]pyrene (B[a]P) exposure. However, the underlying mechanism of how ALDH1A1 contributes to B[a]P-induced carcinogenesis in human bronchial epithelial cells remains unclear. Here, we found that B[a]P up-regulated expression levels of stem cell markers (ABCG2, SOX2, c-Myc and Klf4), epithelial-mesenchymal transition (EMT) associated genes (SNAIL1, ZEB1, TWIST and β-CATENIN) and cancer-related long non-coding RNAs (lncRNAs; HOTAIR and MALAT-1) in malignant B[a]P-transformed human bronchial epithelial cells (BEAS-2B-T cells), and these up-regulations were dependent on increased expression of ALDH1A1. The inhibition of endogenous ALDH1A1 expression down-regulated expression levels of stem cell markers and reversed the malignant phenotype as well as reduced the chemoresistance of BEAS-2B-T cells. In contrast, the overexpression of ALDH1A1 in BEAS-2B cells increased the expression of stem cell markers, facilitated cell transformation, promoted migratory ability and enhanced the drug resistance of BEAS-2B cells. Overall, our data indicates that ALDH1A1 promotes a stemness phenotype and plays a critical role in the BEAS-2B cell malignant transformation induced by B[a]P.

  12. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells

    PubMed Central

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Usui, Yuki; Maruyama, Kayo; Takanashi, Seiji; Aoki, Kaoru; Kobayashi, Shinsuke; Nomura, Hiroki; Tanaka, Manabu; Okamoto, Masanori; Kato, Hiroyuki

    2014-01-01

    This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) – and three CSCNTs of different lengths (CS-L, 20–80 μm; CS-S, 0.5–20 μm; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 μg/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 μg/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs. PMID:24790438

  13. Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells.

    PubMed

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Usui, Yuki; Maruyama, Kayo; Takanashi, Seiji; Aoki, Kaoru; Kobayashi, Shinsuke; Nomura, Hiroki; Tanaka, Manabu; Okamoto, Masanori; Kato, Hiroyuki

    2014-01-01

    This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs - VGCF(®)-X, VGCF(®)-S, and VGCF(®) (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) - and three CSCNTs of different lengths (CS-L, 20-80 μm; CS-S, 0.5-20 μm; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1-50 μg/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 μg/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs.

  14. Drug Transporter Protein Quantification of Immortalized Human Lung Cell Lines Derived from Tracheobronchial Epithelial Cells (Calu-3 and BEAS2-B), Bronchiolar-Alveolar Cells (NCI-H292 and NCI-H441), and Alveolar Type II-like Cells (A549) by Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Sakamoto, Atsushi; Matsumaru, Takehisa; Yamamura, Norio; Suzuki, Shinobu; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya

    2015-09-01

    Understanding the mechanisms of drug transport in the human lung is an important issue in pulmonary drug discovery and development. For this purpose, there is an increasing interest in immortalized lung cell lines as alternatives to primary cultured lung cells. We recently reported the protein expression in human lung tissues and pulmonary epithelial cells in primary culture, (Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) whereas comprehensive quantification of protein expressions in immortalized lung cell lines is sparse. Therefore, the aim of the present study was to clarify the drug transporter protein expression of five commercially available immortalized lung cell lines derived from tracheobronchial cells (Calu-3 and BEAS2-B), bronchiolar-alveolar cells (NCI-H292 and NCI-H441), and alveolar type II cells (A549), by liquid chromatography-tandem mass spectrometry-based approaches. Among transporters detected, breast cancer-resistance protein in Calu-3, NCI-H292, NCI-H441, and A549 and OCTN2 in BEAS2-B showed the highest protein expression. Compared with data from our previous study,(Sakamoto A, Matsumaru T, Yamamura N, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. 2013. J Pharm Sci 102(9):3395-3406) NCI-H441 was the most similar with primary lung cells from all regions in terms of protein expression of organic cation/carnitine transporter 1 (OCTN1). In conclusion, the protein expression profiles of transporters in five immortalized lung cell lines were determined, and these findings may contribute to a better understanding of drug transport in immortalized lung cell lines.

  15. Poly (I:C), an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells

    PubMed Central

    2012-01-01

    Background Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-β in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-α/β production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7–10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. Results The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-β and increased the expression of anti-viral genes, including IFN-α, IFN-β, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. Conclusions CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells. PMID:22698190

  16. Differential activation of the inflammasome in THP-1 cells exposed to chrysotile asbestos and Libby "six-mix" amphiboles and subsequent activation of BEAS-2B cells.

    PubMed

    Li, Muyao; Gunter, Mickey E; Fukagawa, Naomi K

    2012-12-01

    Inflammatory responses of THP-1 cells (macrophage cell line) exposed to chrysotile asbestos (Chry) and Libby six-mix (LIB) and the subsequent impact on bronchial epithelial cells were determined. Direct treatment of THP-1 cells with Chry caused cell death, activation of caspase-1 and release of IL-1β, while the addition of caspase-1 inhibitor, Z-YVAD-FMK, reduced IL-1β, suggesting that Chry activated the caspase-1 mediated Nod-like receptor protein 3 (NLRP3) inflammasome; by comparison, LIB had less effects on all of these parameters. Expression of antioxidant enzymes, protein oxidation and nitration, and lipid peroxides in THP-1 cells treated with the two particles suggest that LIB generated more reactive oxygen species (ROS) than the same dose of Chry. Differences in fiber length and surface area suggest a possible role for particulate size in the differential activation of the inflammasome. BEAS-2B cells, representing the bronchial epithelium, treated with supernatants of medium from Chry- or LIB-treated THP-1 cells (conditioned medium) activated the MAPK cascade, increased phosphorylation of ERK and Cot (MAP3K8), increased AP-1 binding activity and induced IL-6 release. To verify that IL-1β from THP-1 cells was responsible for activation of BEAS-2B, conditioned medium with added IL-1Ra, an IL-1β antagonist, was applied to BEAS-2B. Results show that IL-1Ra attenuated effects of conditioned medium, supporting a role of IL-1β, as a secondary mediator, in the transduction of inflammatory signaling from the macrophage to epithelial cells. The effects of LIB-conditioned medium appeared to be less dependent on IL-1β. In conclusion, Chry and LIB induce differential inflammatory responses in THP-1 cells that subsequently lead to differential effects in epithelial cells.

  17. RNA-binding motif protein 5 inhibits the proliferation of cigarette smoke-transformed BEAS-2B cells through cell cycle arrest and apoptosis.

    PubMed

    Lv, Xue-Jiao; Du, Yan-Wei; Hao, Yu-Qiu; Su, Zhen-Zhong; Zhang, Lin; Zhao, Li-Jing; Zhang, Jie

    2016-04-01

    Cigarette smoking has been shown to be the most significant risk factor for lung cancer. Recent studies have also indicated that RNA-binding motif protein 5 (RBM5) can modulate apoptosis and suppress tumor growth. The present study focused on the role of RBM5 in the regulation of cigarette smoke extract (CSE)-induced transformation of bronchial epithelial cells into the cancerous phenotype and its mechanism of action. Herein, we exposed normal BEAS-2B cells for 8 days to varying concentrations of CSE or dimethylsulfoxide (DMSO), followed by a recovery period of 2 weeks. Next, the RBM5 protein was overexpressed in these transformed BEAS-2B cells though lentiviral infection. Later, the morphological changes, cell proliferation, cell cycle, apoptosis, invasion and migration were assessed. In addition, we analyzed the role of RBM5 in xenograft growth. The expression of RBM5 along with the genes related to cell cycle regulation, apoptosis and invasion were also examined. Finally, our results revealed that BEAS-2B cells exposed to 100 µg/ml CSE acquired phenotypic changes and formed tumors in nude mice, indicative of their cancerous transformation and had reduced RBM5 expression. Subsequent overexpression of RBM5 in these cells significantly inhibited their proliferation, induced G1/S arrest, triggered apoptosis and inhibited their invasion and migration, including xenograft growth. Thus, we established an in vitro model of CSE-induced cancerous transformation and concluded that RBM5 overexpression inhibited the growth of these transformed cells through cell cycle arrest and induction of apoptosis. Therefore, our study suggests the importance of RBM5 in the pathogenesis of smoking-related cancer.

  18. Proliferative activity of a blend of Echinacea angustifolia and Echinacea purpurea root extracts in human vein epithelial, HeLa, and QBC-939 cell lines, but not in Beas-2b cell lines

    PubMed Central

    Cichello, Simon Angelo; Yao, Qian; He, Xiao Qiong

    2015-01-01

    Echinacea is used for its immunostimulating properties and may have a role in modulating adverse immune effects of chemotherapy (i.e., use of 5-fluorouracil (5-FU); fluorouracil and its immunosuppressive effect). Patients may seek herbal remedies such as Echinacea (Echinacea angustifolia and Echinacea purpurea) for immune stimulation. Echinacea extracts have been prescribed to supplement cancer chemotherapy for their immune-supportive effects; however, the extracts may also influence tumourgenesis. Our study aimed to determine the proliferative effect of the ethanolic blend of E. angustifolia and E. purpurea on various cancer cervical and bile duct cell lines, including HELA and QBC-939. Various cancer cells (HeLa and QBC-939) and human vein epithelial cells (HUVEC) were treated with the Echinacea blend sample that was evaporated and reconstituted in Dimethyl sulfoxide (DMSO). As the extract concentration of Echinacea was increased from 12.5 μg/mL to 25 μg/mL, there was an increase in cell inhibition up to 100%, which then reduced to 90% over the next three concentrations, 50 μg/mL, 100 μg/mL, and 200 μg/mL, in HeLa cells; further inhibitory effects were observed in QBC-939 cells, from 9% inhibition at a concentration of 25 μg/mL up to 37.96% inhibition at 100 μg/mL concentration. Moreover, this is the first study to report the growth-promoting effects of this Echinacea blend in HUVEC, up to 800% at a dose concentration of 200 μg/mL. Previous studies have suggested that chicoric acid of Echinacea spp. is responsible for the increased cell growth. The results of this study show that the hydroethanolic extract of Echinacea herbal medicine promotes the growth of HeLa cells and QBC-939 cancer cell proliferation, and may interfere with cancer treatment (i.e., chemotherapy drugs such as 5-fluorouracil and Cisplatin (DDP)). However, the Echinacea blend shows potential in neurodegenerative diseases with growth-promoting effects in HUVEC. Further animal

  19. Proliferative activity of a blend of Echinacea angustifolia and Echinacea purpurea root extracts in human vein epithelial, HeLa, and QBC-939 cell lines, but not in Beas-2b cell lines.

    PubMed

    Cichello, Simon Angelo; Yao, Qian; He, Xiao Qiong

    2016-04-01

    Echinacea is used for its immunostimulating properties and may have a role in modulating adverse immune effects of chemotherapy (i.e., use of 5-fluorouracil (5-FU); fluorouracil and its immunosuppressive effect). Patients may seek herbal remedies such as Echinacea (Echinacea angustifolia and Echinacea purpurea) for immune stimulation. Echinacea extracts have been prescribed to supplement cancer chemotherapy for their immune-supportive effects; however, the extracts may also influence tumourgenesis. Our study aimed to determine the proliferative effect of the ethanolic blend of E. angustifolia and E. purpurea on various cancer cervical and bile duct cell lines, including HELA and QBC-939. Various cancer cells (HeLa and QBC-939) and human vein epithelial cells (HUVEC) were treated with the Echinacea blend sample that was evaporated and reconstituted in Dimethyl sulfoxide (DMSO). As the extract concentration of Echinacea was increased from 12.5 μg/mL to 25 μg/mL, there was an increase in cell inhibition up to 100%, which then reduced to 90% over the next three concentrations, 50 μg/mL, 100 μg/mL, and 200 μg/mL, in HeLa cells; further inhibitory effects were observed in QBC-939 cells, from 9% inhibition at a concentration of 25 μg/mL up to 37.96% inhibition at 100 μg/mL concentration. Moreover, this is the first study to report the growth-promoting effects of this Echinacea blend in HUVEC, up to 800% at a dose concentration of 200 μg/mL. Previous studies have suggested that chicoric acid of Echinacea spp. is responsible for the increased cell growth. The results of this study show that the hydroethanolic extract of Echinacea herbal medicine promotes the growth of HeLa cells and QBC-939 cancer cell proliferation, and may interfere with cancer treatment (i.e., chemotherapy drugs such as 5-fluorouracil and Cisplatin (DDP)). However, the Echinacea blend shows potential in neurodegenerative diseases with growth-promoting effects in HUVEC. Further animal

  20. Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype.

    PubMed

    Antognelli, Cinzia; Gambelunghe, Angela; Muzi, Giacomo; Talesa, Vincenzo Nicola

    2016-03-01

    Glyoxalase I (Glo1) is the main scavenging enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). AGEs are known to control multiple biological processes, including epithelial to mesenchymal transition (EMT), a multistep phenomenon associated with cell transformation, playing a major role in a variety of diseases, including cancer. Crystalline silica is a well-known occupational health hazard, responsible for a great number of human pulmonary diseases, such as silicosis. There is still much debate concerning the carcinogenic role of crystalline silica, mainly due to the lack of a causal demonstration between silica exposure and carcinogenesis. It has been suggested that EMT might play a role in crystalline silica-induced lung neoplastic transformation. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 is involved in Min-U-Sil 5 (MS5) crystalline silica-induced EMT in BEAS-2B human bronchial epithelial cells chronically exposed, and whether this is associated with the beginning of a neoplastic-like transformation process. By using gene silencing/overexpression and scavenging/inhibitory agents, we demonstrated that MS5 induced hydrogen peroxide-mediated c-Jun-dependent Glo1 up-regulation which resulted in a decrease in the Argpyrimidine-modified Hsp70 protein level which triggered EMT in a novel mechanism involving miR-21 and SMAD signalling. The observed EMT was associated with a neoplastic-like phenotype. The results obtained provide a causal in vitro demonstration of the MS5 pro-carcinogenic transforming role and more importantly they provide new insights into the mechanisms involved in this process, thus opening new paths in research concerning the in vivo study of the carcinogenic potential of crystalline silica.

  1. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    SciTech Connect

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo; Lee, Jeong-Chae; Shi, Xianglin

    2012-10-15

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. -- Highlights: ► Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ► ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ► Cadmium activates ROS-dependent AKT/GSK-3β/β-catenin-mediated signaling. ► ROS

  2. Xenobiotic metabolism induction and bulky DNA adducts generated by particulate matter pollution in BEAS-2B cell line: geographical and seasonal influence.

    PubMed

    Lepers, Capucine; André, Véronique; Dergham, Mona; Billet, Sylvain; Verdin, Anthony; Garçon, Guillaume; Dewaele, Dorothée; Cazier, Fabrice; Sichel, François; Shirali, Pirouz

    2014-06-01

    Airborne particulate matter (PM) toxicity is of growing interest as diesel exhaust particles have been classified as carcinogenic to humans. However, PM is a mixture of chemicals, and respective contribution of organic and inorganic fractions to PM toxicity remains unclear. Thus, we analysed the link between chemical composition of PM samples and bulky DNA adduct formation supported by CYP1A1 and 1B1 genes induction and catalytic activities. We used six native PM samples, collected in industrial, rural or urban areas, either during the summer or winter, and carried out our experiments on the human bronchial epithelial cell line BEAS-2B. Cell exposure to PM resulted in CYP1A1 and CYP1B1 genes induction. This was followed by an increase in EROD activity, leading to bulky DNA adduct formation in exposed cells. Bulky DNA adduct intensity was associated to global EROD activity, but this activity was poorly correlated with CYPs mRNA levels. However, EROD activity was correlated with both metal and polycyclic aromatic hydrocarbon (PAH) content. Finally, principal components analysis revealed three clusters for PM chemicals, and suggested synergistic effects of metals and PAHs on bulky DNA adduct levels. This study showed the ability of PM samples from various origins to generate bulky DNA adducts in BEAS-2B cells. This formation was promoted by increased expression and activity of CYPs involved in PAHs activation into reactive metabolites. However, our data highlight that bulky DNA adduct formation is only partly explained by PM content in PAHs, and suggest that inorganic compounds, such as iron, may promote bulky DNA adduct formation by supporting CYP activity.

  3. The crosstalk between α-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-κB signaling pathways.

    PubMed

    Fu, Jiamei; Yuan, Dexiao; Xiao, Linlin; Tu, Wenzhi; Dong, Chen; Liu, Weili; Shao, Chunlin

    2016-01-01

    Although accumulated evidence suggests that α-particle irradiation induced bystander effect may relevant to lung injury and cancer risk assessment, the exact mechanisms are not yet elucidated. In the present study, a cell co-culture system was used to investigate the interaction between α-particle irradiated human bronchial epithelial cells (Beas-2B) and its bystander macrophage U937 cells. It was found that the cell co-culture amplified the detrimental effects of α-irradiation including cell viability decrease and apoptosis promotion on both irradiated cells and bystander cells in a feedback loop which was closely relevant to the activation of MAPK and NF-κB pathways in the bystander U937 cells. When these two pathways in U937 cells were disturbed by special pharmacological inhibitors before cell co-culture, it was found that a NF-κB inhibitor of BAY 11-7082 further enhanced the proliferation inhibition and apoptosis induction in bystander U937 cells, but MAPK inhibitors of SP600125 and SB203580 protected cells from viability loss and apoptosis and U0126 presented more beneficial effect on cell protection. For α-irradiated epithelial cells, the activation of NF-κB and MAPK pathways in U937 cells participated in detrimental cellular responses since the above inhibitors could largely attenuate cell viability loss and apoptosis of irradiated cells. Our results demonstrated that there are bilateral bystander responses between irradiated lung epithelial cells and macrophages through MAPK and NF-κB signaling pathways, which accounts for the enhancement of α-irradiation induced damage.

  4. Roles of MAPK pathway activation during cytokine induction in BEAS-2B cells exposed to fine World Trade Center (WTC) dust.

    PubMed

    Wang, Shang; Prophete, Colette; Soukup, Joleen M; Chen, Lung-Chi; Costa, Max; Ghio, Andrew; Qu, Qingshan; Cohen, Mitchell D; Chen, Haobin

    2010-01-01

    The World Trade Center (WTC) collapse on September 11, 2001 released copious amounts of particulate matter (PM) into the atmosphere of New York City. Follow-up studies on persons exposed to the dusts have revealed a severely increased rate for asthma and other respiratory illnesses. There have only been a few studies that have sought to discern the possible mechanisms underlying these untoward pathologies. In one study, an increased cytokine release was detected in cells exposed to WTC fine dusts (PM₂.₅ fraction or WTC₂.₅). However, the mechanism(s) for these increases has yet to be fully defined. Because activation of the mitogen-activated protein kinase (MAPK) signaling pathways is known to cause cytokine induction, the current study was undertaken to analyze the possible involvement of these pathways in any increased cytokine formation by lung epithelial cells (as BEAS-2B cells) exposed to WTC₂.₅. Our results showed that exposure to WTC₂.₅ for 5 hr increased interleukin-6 (IL-6) mRNA expression in BEAS-2B cells, as well as its protein levels in the culture media, in a dose-dependent manner. Besides IL-6, cytokine multiplex analyses revealed that formation of IL-8 and -10 was also elevated by the exposure. Both extracellular signal-regulated kinase (ERK) and p38, but not c-Jun N-terminal protein kinase, signaling pathways were found to be activated in cells exposed to WTC₂.₅. Inactivation of ERK signaling pathways by PD98059 effectively blocked IL-6, -8, and -10 induction by WTC₂.₅; the p38 kinase inhibitor SB203580 significantly decreased induction of IL-8 and -10. Together, our data demonstrated activation of MAPK signaling pathway(s) likely played an important role in the WTC₂.₅-induced formation of several inflammatory (and, subsequently, anti-inflammatory) cytokines. The results are important in that they help to define one mechanism via which the WTC dusts may have acted to cause the documented increases in asthma and other

  5. Roles of MAPK Pathway Activation During Cytokine Induction in BEAS-2B Cells Exposed to Fine World Trade Center (WTC) Dust

    PubMed Central

    Wang, Shang; Prophete, Colette; Soukup, Joleen M.; Chen, Lung-chi; Costa, Max; Ghio, Andrew; Qu, Qingshan; Chen, Haobin

    2014-01-01

    The World Trade Center (WTC) collapse on September 11, 2001 released copious amounts of particulate matter into the atmosphere of New York City. Follow-up studies on persons exposed to the dusts have revealed a severely increased rate for asthma and other respiratory illnesses. There have only been a few studies that have sought to discern the possible mechanisms underlying these untoward pathologies. In one study, an increased cytokine release was detected in cells exposed to WTC fine dusts (PM2.5 fraction or WTC2.5). However, the mechanism(s) for these increases has yet to be fully defined. Because activation of the MAPK signaling pathways is known to cause cytokine induction, the current study was undertaken to analyze the possible involvement of these pathways in any increased cytokine formation by lung epithelial cells (as BEAS-2B cells) exposed to WTC2.5. Our results showed that exposure to WTC2.5 for 5 hr increased IL-6 mRNA expression in BEAS-2B cells, as well as its protein levels in the culture media, in a dose-dependent manner. Besides IL-6, Cytokine Multiplex analyses revealed that formation of IL-8 and -10 was also elevated by the exposure. Both ERK and p38, but not JNK, signaling pathways were found to be activated in cells exposed to WTC2.5. Inactivation of ERK signaling pathways by PD98059 effectively blocked IL-6, -8, and -10 induction by WTC2.5; the p38 kinase inhibitor SB203580 significantly decreased induction of IL-8 and -10. Together, our data demonstrated activation of MAPK signaling pathway(s) likely played an important role in the WTC2.5-induced formation of several inflammatory (and, subsequently, anti-inflammatory) cytokines. The results are important in that they help to define one mechanism via which the WTC dusts may have acted to cause the documented increases in asthma and other inflammation-associated respiratory dysfunctions in the individuals exposed to the dusts released from the WTC collapse. PMID:20731619

  6. Proliferative and Inhibitory Activity of Siberian ginseng (Eleutherococcus senticosus) Extract on Cancer Cell Lines; A-549, XWLC-05, HCT-116, CNE and Beas-2b.

    PubMed

    Cichello, Simon Angelo; Yao, Qian; Dowell, Ashley; Leury, Brian; He, Xiao-Qiong

    2015-01-01

    Siberian ginseng (Eleutherococcus senticosus) is used primarily as an adaptogen herb and also for its immune stimulant properties in Western herbal medicine. Another closely related species used in East Asian medicine systems i.e. Kampo, TCM (Manchuria, Korea, Japan and Ainu of Hokkaido) and also called Siberian ginseng (Acanthopanax senticosus) also displays immune-stimulant and anti-cancer properties. These may affect tumour growth and also provide an anti-fatigue effect for cancer patients, in particular for those suffering from lung cancer. There is some evidence that a carbohydrate in Siberian ginseng may possess not only immune stimulatory but also anti-tumour effects and also display other various anti-cancer properties. Our study aimed to determine the inhibitory and also proliferative effects of a methanol plant extract of Siberan ginseng (E. senticosus) on various cancer and normal cell lines including: A-549 (small cell lung cancer), XWLC-05 (Yunnan lung cancer cell line), CNE (human nasopharyngeal carcinoma cell line), HCT-116 (human colon cancer) and Beas-2b (human lung epithelial). These cell lines were treated with an extract from E. senticosus that was evaporated and re- constituted in DMSO. Treatment of A-549 (small cell lung cancer) cells with E. senticosus methanolic extract showed a concentration-dependent inhibitory trend from 12.5 - 50μg/mL, and then a plateau, whereas at 12.5 and 25 μg/mL, there is a slight growth suppression in QBC-939 cells, but then a steady suppression from 50, 100 and 200μg/mL. Further, in XWLC-05 (Yunnan lung cancer cell line), E. senticosus methanolic extract displayed an inhibitory effect which plateaued with increasing dosage. Next, in CNE (human nasopharyngeal carcinoma cell line) there was a dose dependent proliferative response, whereas in Beas-2 (human lung epithelial cell line), an inhibitory effect. Finally in colon cancer cell line (HCT-116) we observed an initially weak inhibitory effect and then plateau.

  7. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation.

    PubMed

    Zhou, Wei; Tian, Dongdong; He, Jun; Wang, Yimei; Zhang, Lijun; Cui, Lan; Jia, Li; Zhang, Li; Li, Lizhong; Shu, Yulei; Yu, Shouzhong; Zhao, Jun; Yuan, Xiaoyan; Peng, Shuangqing

    2016-04-12

    Long-term exposure to fine particulate matter (PM2.5) has been reported to be closely associated with the increased lung cancer risk in populations, but the mechanisms underlying PM-associated carcinogenesis are not yet clear. Previous studies have indicated that aberrant epigenetic alterations, such as genome-wide DNA hypomethylation and gene-specific DNA hypermethylation contribute to lung carcinogenesis. And silence or mutation of P53 tumor suppressor gene is the most prevalent oncogenic driver in lung cancer development. To explore the effects of PM2.5 on global and P53 promoter methylation changes and the mechanisms involved, we exposed human bronchial epithelial cells (BEAS-2B) to low concentrations of PM2.5 for 10 days. Our results indicated that PM2.5-induced global DNA hypomethylation was accompanied by reduced DNMT1 expression. PM2.5 also induced hypermethylation of P53 promoter and inhibited its expression by increasing DNMT3B protein level. Furthermore, ROS-induced activation of Akt was involved in PM2.5-induced increase in DNMT3B. In conclusion, our results strongly suggest that repeated exposure to PM2.5 induces epigenetic silencing of P53 through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation, which not only provides a possible explanation for PM-induced lung cancer, but also may help to identify specific interventions to prevent PM-induced lung carcinogenesis.

  8. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation

    PubMed Central

    Zhou, Wei; Tian, Dongdong; He, Jun; Wang, Yimei; Zhang, Lijun; Cui, Lan; jia, Li; Zhang, Li; Li, Lizhong; Shu, Yulei; Yu, Shouzhong; Zhao, Jun; Yuan, Xiaoyan; Peng, Shuangqing

    2016-01-01

    Long-term exposure to fine particulate matter (PM2.5) has been reported to be closely associated with the increased lung cancer risk in populations, but the mechanisms underlying PM-associated carcinogenesis are not yet clear. Previous studies have indicated that aberrant epigenetic alterations, such as genome-wide DNA hypomethylation and gene-specific DNA hypermethylation contribute to lung carcinogenesis. And silence or mutation of P53 tumor suppressor gene is the most prevalent oncogenic driver in lung cancer development. To explore the effects of PM2.5 on global and P53 promoter methylation changes and the mechanisms involved, we exposed human bronchial epithelial cells (BEAS-2B) to low concentrations of PM2.5 for 10 days. Our results indicated that PM2.5-induced global DNA hypomethylation was accompanied by reduced DNMT1 expression. PM2.5 also induced hypermethylation of P53 promoter and inhibited its expression by increasing DNMT3B protein level. Furthermore, ROS-induced activation of Akt was involved in PM2.5-induced increase in DNMT3B. In conclusion, our results strongly suggest that repeated exposure to PM2.5 induces epigenetic silencing of P53 through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation, which not only provides a possible explanation for PM-induced lung cancer, but also may help to identify specific interventions to prevent PM-induced lung carcinogenesis. PMID:26942697

  9. Inflammatory Cytokines and Cell Death in BEAS-2B Lung Cells Treated with Soil Dust, Lipopolysaccharide, and Surface-Modified Particles

    PubMed Central

    Veranth, John M.; Reilly, Christopher A.; Veranth, Martha M.; Moss, Tyler A.; Langelier, Charles R.; Lanza, Diane L.; Yost, Garold S.

    2008-01-01

    Cultured human lung epithelial cells (BEAS-2B) were treated in vitro with PM2.5-enriched particles of soil-derived mineral dust from nine sites in the western United States. The particle samples simulate windblown dust and vehicle-generated emissions from unpaved roads. Five of the sites yielded relatively benign dust. Particles from three sites caused IL-6 release when cells were treated for 24 h at doses from 20 to 80 μg/cm2, and particles from one site were highly cytotoxic. The particle components or characteristics that caused the IL-6 release were stable at temperatures below 150°C, but were inactivated by treatment at 300–550°C. The active factors were also associated predominantly with the insoluble fraction, and were partially attenuated by leaching with aqueous and organic solvents. The IL-6 release caused by the particles was much greater than the cytokine response to either lipopolysaccharide (LPS) or to surrogate particles of titanium dioxide mixed with LPS, suggesting that endotoxin was not a major factor in the inflammatory response. The release of IL-8 in response to particle treatment was qualitatively similar to the IL-6 response, but release of TNF-α was not detected at the 24-h time point. The combined results support the hypothesis that some ambient dusts from geological sources can cause cell death and cytokine release in a lung cell line that is widely used as an in vitro model to study mechanisms of environmental respiratory injury. PMID:15310859

  10. The microRNA-200 family targets multiple non-small cell lung cancer prognostic markers in H1299 cells and BEAS-2B cells.

    PubMed

    Pacurari, Maricica; Addison, Joseph B; Bondalapati, Naveen; Wan, Ying-Wooi; Luo, Dajie; Qian, Yong; Castranova, Vincent; Ivanov, Alexey V; Guo, Nancy Lan

    2013-08-01

    Lung cancer remains the leading cause of cancer-related mortality for both men and women. Tumor recurrence and metastasis is the major cause of lung cancer treatment failure and death. The microRNA‑200 (miR-200) family is a powerful regulator of the epithelial-mesenchymal transition (EMT) process, which is essential in tumor metastasis. Nevertheless, miR-200 family target genes that promote metastasis in non-small cell lung cancer (NSCLC) remain largely unknown. Here, we sought to investigate whether the microRNA-200 family regulates our previously identified NSCLC prognostic marker genes associated with metastasis, as potential molecular targets. Novel miRNA targets were predicted using bioinformatics tools based on correlation analyses of miRNA and mRNA expression in 57 squamous cell lung cancer tumor samples. The predicted target genes were validated with quantitative RT-PCR assays and western blot analysis following re-expression of miR-200a, -200b and -200c in the metastatic NSCLC H1299 cell line. The results show that restoring miR-200a or miR-200c in H1299 cells induces downregulation of DLC1, ATRX and HFE. Reinforced miR-200b expression results in downregulation of DLC1, HNRNPA3 and HFE. Additionally, miR-200 family downregulates HNRNPR3, HFE and ATRX in BEAS-2B immortalized lung epithelial cells in quantitative RT-PCR and western blot assays. The miR-200 family and these potential targets are functionally involved in canonical pathways of immune response, molecular mechanisms of cancer, metastasis signaling, cell-cell communication, proliferation and DNA repair in Ingenuity pathway analysis (IPA). These results indicate that re-expression of miR-200 downregulates our previously identified NSCLC prognostic biomarkers in metastatic NSCLC cells. These results provide new insights into miR-200 regulation in lung cancer metastasis and consequent clinical outcome, and may provide a potential basis for innovative therapeutic approaches for the treatment of this

  11. Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3β/β-catenin signaling

    PubMed Central

    Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo; Lee, Jeong-Chae; Shi, Xianglin

    2012-01-01

    Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3β, and β-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or β-catenin almost completely suppressed the cadmium-mediated increase in total and active β-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3β, β-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3β/β-catenin signaling in this process. PMID:22884995

  12. Cellular interactions and biological responses to titanium dioxide nanoparticles in HepG2 and BEAS-2B cells: role of cell culture media.

    PubMed

    Prasad, Raju Y; Simmons, Steven O; Killius, Micaela G; Zucker, Robert M; Kligerman, Andrew D; Blackman, Carl F; Fry, Rebecca C; Demarini, David M

    2014-05-01

    We showed previously that exposure of human lung cells (BEAS-2B) to TiO2 nanoparticles (nano-TiO2 ) produced micronuclei (MN) only when the final concentration of protein in the cell-culture medium was at least 1%. Nanoparticles localize in the liver; thus, we exposed human liver cells (HepG2) to nano-TiO2 and found the same requirement for MN induction. Nano-TiO2 also formed small agglomerates in medium containing as little as 1% protein and caused cellular interaction as measured by side scatter by flow cytometry and DNA damage (comet assay) in HepG2 cells. Nano-TiO2 also increased the activity of the inflammatory factor NFkB but not of AP1 in a reporter-gene HepG2 cell line. Suspension of nano-TiO2 in medium containing 0.1% protein was sufficient for induction of MN by the nanoparticles in either BEAS-2B or HepG2 cells as long the final concentration of protein in the cell-culture medium was at least 1%. Copyright © 2014 Wiley Periodicals, Inc.

  13. [Evaluation of the viability of BEAS-2B cells exposed to gasoline engine exhaust with different particle sizes by air-liquid interface].

    PubMed

    Yu, T; Zhang, X Y; Wang, Z X; Li, B; Zheng, Y X; Bin, P

    2017-06-20

    Objective: To evaluate the viability of gasoline engine exhaust (GEE) with different particle sizes on human lung cell line BEAS-2B in vitro by air-liquid interface (ALI) . Methods: GEE were collected with a Tedlar bag and their particulate matter (PM) number, surface and mass concentration in three kind of GEE (filtered automobile exhaust, non-filtered automobile exhaust and motorcycle exhaust without three-way catalytic converter) were measured by two type of particle size spectrometer including TSI-3321 and SMPS-3938. Five groups were included, which divided into blank control group, clean air group, filtered automobile exhaust group, non-filtered automobile exhaust group and motorcycle exhaust without three-way catalytic converter group. Except the blank control group, BEAS-2B cells, cultured on the surface of Transwells, were treated with clean air or GEE by ALI method at a flow rate of 25 ml/min, 37 ℃ for 60 min in vitro. CCK-8 cytotoxicity test kit was used to determine the cell relative viability of BEAS-2B cells. Results: In the filtered automobile exhaust, non-filtered automobile exhaust and motorcycle exhaust without three-way catalytic converter, high concentrations of fine particles can be detected, but the coarse particles only accounted for a small proportion, and the sequence of PM concentration was motorcycle exhaust without three-way catalytic converter group> non-filtered automobile exhaust group> filtered automobile exhaust group (P<0.001) . Compared with the clean air group, the cell relative viability in the 3 GEE-exposed groups were significantly lower (P<0.001) . Among the comparisons of GEE exposure groups with different particle size spectra, the sequence of the cell relative viability was filtered automobile exhaust group >non-filtered automobile exhaust group> motorcycle exhaust without three-way catalytic converter group (P<0.001) . When took the clean air control group as a reference, the mean of the cell relative viability in the

  14. Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells

    PubMed Central

    Libalova, Helena; Rossner,, Pavel; Vrbova, Kristyna; Brzicova, Tana; Sikorova, Jitka; Vojtisek-Lom, Michal; Beranek, Vit; Klema, Jiri; Ciganek, Miroslav; Neca, Jiri; Pencikova, Katerina; Machala, Miroslav; Topinka, Jan

    2016-01-01

    This study used toxicogenomics to identify the complex biological response of human lung BEAS-2B cells treated with organic components of particulate matter in the exhaust of a diesel engine. First, we characterized particles from standard diesel (B0), biodiesel (methylesters of rapeseed oil) in its neat form (B100) and 30% by volume blend with diesel fuel (B30), and neat hydrotreated vegetable oil (NEXBTL100). The concentration of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in organic extracts was the lowest for NEXBTL100 and higher for biodiesel. We further analyzed global gene expression changes in BEAS-2B cells following 4 h and 24 h treatment with extracts. The concentrations of 50 µg extract/mL induced a similar molecular response. The common processes induced after 4 h treatment included antioxidant defense, metabolism of xenobiotics and lipids, suppression of pro-apoptotic stimuli, or induction of plasminogen activating cascade; 24 h treatment affected fewer processes, particularly those involved in detoxification of xenobiotics, including PAHs. The majority of distinctively deregulated genes detected after both 4 h and 24 h treatment were induced by NEXBTL100; the deregulated genes included, e.g., those involved in antioxidant defense and cell cycle regulation and proliferation. B100 extract, with the highest PAH concentrations, additionally affected several cell cycle regulatory genes and p38 signaling. PMID:27827897

  15. Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells.

    PubMed

    Libalova, Helena; Rossner, Pavel; Vrbova, Kristyna; Brzicova, Tana; Sikorova, Jitka; Vojtisek-Lom, Michal; Beranek, Vit; Klema, Jiri; Ciganek, Miroslav; Neca, Jiri; Pencikova, Katerina; Machala, Miroslav; Topinka, Jan

    2016-11-03

    This study used toxicogenomics to identify the complex biological response of human lung BEAS-2B cells treated with organic components of particulate matter in the exhaust of a diesel engine. First, we characterized particles from standard diesel (B0), biodiesel (methylesters of rapeseed oil) in its neat form (B100) and 30% by volume blend with diesel fuel (B30), and neat hydrotreated vegetable oil (NEXBTL100). The concentration of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in organic extracts was the lowest for NEXBTL100 and higher for biodiesel. We further analyzed global gene expression changes in BEAS-2B cells following 4 h and 24 h treatment with extracts. The concentrations of 50 µg extract/mL induced a similar molecular response. The common processes induced after 4 h treatment included antioxidant defense, metabolism of xenobiotics and lipids, suppression of pro-apoptotic stimuli, or induction of plasminogen activating cascade; 24 h treatment affected fewer processes, particularly those involved in detoxification of xenobiotics, including PAHs. The majority of distinctively deregulated genes detected after both 4 h and 24 h treatment were induced by NEXBTL100; the deregulated genes included, e.g., those involved in antioxidant defense and cell cycle regulation and proliferation. B100 extract, with the highest PAH concentrations, additionally affected several cell cycle regulatory genes and p38 signaling.

  16. PLD1 activation mediates Amb a 1-induced Th2-associated cytokine expression via the JNK/ATF-2 pathway in BEAS-2B cells.

    PubMed

    Kim, Joo-Hwa; Choi, Hye-Jin; Oh, Cheong-Hae; Oh, Jae-Won; Han, Joong-Soo

    2015-01-01

    The purpose of this study was to identify the role of phospholipase D1 (PLD1) in Amb a 1-induced IL-5 and IL-13 expression. When BEAS-2B cells were stimulated with Amb a 1, PLD activity increased, and knockdown of PLD1 decreased Amb a 1-induced IL-5 and IL-13 expression. Amb a 1 also activated the PLCγ/p70S6K/JNK pathway. Furthermore, Amb a 1-induced PLD activation was also attenuated by PLCγ inhibition, and knockdown of PLD1 decreased Amb a 1-induced activation of P70S6K and JNK. When ATF-2 activity was blocked with ATF-2 siRNA, Amb a 1-induced IL-5 and IL-13 expression was completely abolished, indicating that ATF-2 is a transcriptional factor required for the expression of IL-5 and IL-13 in response to Amb a 1. Taken together, we suggest that PLD1 acts as an important regulator in Amb a 1-induced expression of IL-5 and IL-13 via a PLCγ/p70S6K/JNK/ATF-2 pathway in BEAS-2B cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Effect of silymarin and harpagoside on inflammation reaction of BEAS-2B cells, on ciliary beat frequency (CBF) of trachea explants and on mucociliary clearance (MCC).

    PubMed

    Boeckenholt, Corinna; Begrow, Frank; Verspohl, Eugen J

    2012-05-01

    Silymarin and harpagoside are derived from drugs which are used for their protective effects against hepatotoxicity and inflammatory processes. Both are now investigated with respect to the respiratory tract. They were able to reduce the release of the inflammatory cytokine RANTES (regulated on activation, normal T cells expressed and secreted) from BEAS-2B cells in a concentration-dependent manner when stimulated by a cytokine mix (10 ng/mL of TNF- α and IFN- γ). This effect was not due to a possible toxic effect (control experiments using LDH release as a marker). Silymarin but not harpagoside was able to increase ciliary beat frequency. Effects were comparable to positive controls (isoprenaline and salbutamol). Silymarin also increases mucociliary clearance. In conclusion, silymarin should be further investigated for its clinical use in distinct respiratory diseases.

  18. Long-term exposures to low doses of titanium dioxide nanoparticles induce cell transformation, but not genotoxic damage in BEAS-2B cells.

    PubMed

    Vales, Gerard; Rubio, Laura; Marcos, Ricard

    2015-01-01

    There is a great interest in a better knowledge of the health effects caused by nanomaterials exposures and, in particular to those induced by titanium dioxide nanoparticles (nano-TiO2) due to its high use and increasing presence in the environment. To add new information on its potential genotoxic/carcinogenic risk, we have carried out experiments using chronic exposures (up to 4 weeks), low doses, and the BEAS-2B cell line that, as a human bronchial epithelium cells, can be considered a good cell target. Cell uptake has been assessed by transmission electron microscopy (TEM) and flow cytometry (FC); genotoxicity was evaluated using the comet and the micronucleus (MN) assays; and cell-transforming ability was evaluated using the soft-agar assay to detect anchorage-independent cell growth. Results show an important cell uptake at all the tested doses and sampling times used (except for 1 µg/mL and 24-h exposure). Nevertheless, no genotoxic effects were observed in the comet and in the MN assays. This lack of genotoxic effect agrees with the FC results showing no induction of intracellular reactive oxygen species (ROS), the data from the comet assay with formamidopyrimidine DNA glycosylase (FPG) enzyme showing no induction of oxidized bases, and the lack of induction of expression of heme-oxygenase (HO-1) gene both at the RNA and protein level. On the contrary, significant increases in the number of clones growing in an anchorage-independent way were observed. This study would indicate a potential carcinogenic risk associated to nano-TiO2 exposure, not mediated by a genotoxic mechanism.

  19. Downregulation of B-cell lymphoma/leukemia-2 by overexpressed microRNA 34a enhanced titanium dioxide nanoparticle-induced autophagy in BEAS-2B cells

    PubMed Central

    Bai, Wenlin; Chen, Yujiao; Sun, Pengling; Gao, Ai

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (TNPs) are manufactured worldwide for a wide range of applications and the toxic effect of TNPs on biological systems is gaining attention. Autophagy is recognized as an emerging toxicity mechanism triggered by nanomaterials. MicroRNA 34a (miR34a) acts as a tumor suppressor gene by targeting many oncogenes, but how it affects autophagy induced by TNPs is not completely understood. Here, we observed the activation of TNP-induced autophagy through monodansylcadaverine staining and LC3-I/LC3-II conversion. Meanwhile, the transmission electron microscope ultrastructural analysis showed typical morphological characteristics in autophagy process. We detected the expression of miR34a and B-cell lymphoma/leukemia-2 (Bcl-2). In addition, the underlying mechanism of TNP-induced autophagy was performed using overexpression of miR34a by lentivirus vector transfection. Results showed that TNPs induced autophagy generation evidently. Typical morphological changes in the process of autophagy were observed by the transmission electron microscope ultrastructural analysis and LC3-I/LC3-II conversion increased significantly in TNP-treated cells. Meanwhile, TNPs induced the downregulation of miR34a and increased the expression of Bcl-2. Furthermore, overexpressed miR34a decreased the expression of Bcl-2 both in messenger RNA and protein level, following which the level of autophagy and cell death rate increased after the transfected cells were incubated with TNPs for 24 hours. These findings provide the first evidence that overexpressed miR34a enhanced TNP-induced autophagy and cell death through targeted downregulation of Bcl-2 in BEAS-2B cells. PMID:27226226

  20. Downregulation of B-cell lymphoma/leukemia-2 by overexpressed microRNA 34a enhanced titanium dioxide nanoparticle-induced autophagy in BEAS-2B cells.

    PubMed

    Bai, Wenlin; Chen, Yujiao; Sun, Pengling; Gao, Ai

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (TNPs) are manufactured worldwide for a wide range of applications and the toxic effect of TNPs on biological systems is gaining attention. Autophagy is recognized as an emerging toxicity mechanism triggered by nanomaterials. MicroRNA 34a (miR34a) acts as a tumor suppressor gene by targeting many oncogenes, but how it affects autophagy induced by TNPs is not completely understood. Here, we observed the activation of TNP-induced autophagy through monodansylcadaverine staining and LC3-I/LC3-II conversion. Meanwhile, the transmission electron microscope ultrastructural analysis showed typical morphological characteristics in autophagy process. We detected the expression of miR34a and B-cell lymphoma/leukemia-2 (Bcl-2). In addition, the underlying mechanism of TNP-induced autophagy was performed using overexpression of miR34a by lentivirus vector transfection. Results showed that TNPs induced autophagy generation evidently. Typical morphological changes in the process of autophagy were observed by the transmission electron microscope ultrastructural analysis and LC3-I/LC3-II conversion increased significantly in TNP-treated cells. Meanwhile, TNPs induced the downregulation of miR34a and increased the expression of Bcl-2. Furthermore, overexpressed miR34a decreased the expression of Bcl-2 both in messenger RNA and protein level, following which the level of autophagy and cell death rate increased after the transfected cells were incubated with TNPs for 24 hours. These findings provide the first evidence that overexpressed miR34a enhanced TNP-induced autophagy and cell death through targeted downregulation of Bcl-2 in BEAS-2B cells.

  1. DNA Hypermethylation of CREB3L1 and Bcl-2 Associated with the Mitochondrial-Mediated Apoptosis via PI3K/Akt Pathway in Human BEAS-2B Cells Exposure to Silica Nanoparticles

    PubMed Central

    Zou, Yang; Li, Qiuling; Jiang, Lizhen; Guo, Caixia; Li, Yanbo; Yu, Yang; Li, Yang; Duan, Junchao; Sun, Zhiwei

    2016-01-01

    The toxic effects of silica nanoparticles (SiNPs) are raising concerns due to its widely applications in biomedicine. However, current information about the epigenetic toxicity of SiNPs is insufficient. In this study, the epigenetic regulation of low-dose exposure to SiNPs was evaluated in human bronchial epithelial BEAS-2B cells over 30 passages. Cell viability was decreased in a dose- and passage-dependent manner. The apoptotic rate, the expression of caspase-9 and caspase-3, were significantly increased induced by SiNPs. HumanMethylation450 BeadChip analysis identified that the PI3K/Akt as the primary apoptosis-related pathway among the 25 significant altered processes. The differentially methylated sites of PI3K/Akt pathway involved 32 differential genes promoters, in which the CREB3L1 and Bcl-2 were significant hypermethylated. The methyltransferase inhibitor, 5-aza, further verified that the DNA hypermethylation status of CREB3L1 and Bcl-2 were associated with downregulation of their mRNA levels. In addition, mitochondrial-mediated apoptosis was triggered by SiNPs via the downregulation of PI3K/Akt/CREB/Bcl-2 signaling pathway. Our findings suggest that long-term low-dose exposure to SiNPs could lead to epigenetic alterations. PMID:27362941

  2. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    EPA Science Inventory

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  3. Cellular Interactions and Biological Responses to Titanium Dioxide Nanoparticles in HepG2 and BEAS-2B Cells: Role of Cell Culture Media

    EPA Science Inventory

    ABSTRACT We have shown previously that the composition of the biological medium used in vitro can affect the cellular interaction and biological response of titanium dioxide nanoparticles (nano-TiO2) in human lung epithelial cells. However, it is unclear if these effects are co...

  4. Signal Transductions of BEAS-2B Cells in Response to Carcinogenic PM2.5 Exposure Based on a Microfluidic System.

    PubMed

    Zheng, Lulu; Liu, Sixiu; Zhuang, Guoshun; Xu, Jian; Liu, Qi; Zhang, Xinlian; Deng, Congrui; Guo, Zhigang; Zhao, Wang; Liu, Tingna; Wang, Yiqi; Zhang, Yuxiao; Lin, Jing; Wang, Qiongzhen; Sui, Guodong

    2017-05-16

    PM2.5 (particulate matter less than 2.5 μm in diameter) is considered as a harmful carcinogen. Determining the precise relationship between the chemical constituents of PM2.5 in the air and cancer progression could aid the treatment of environment related disease and establishing risk reduction strategies. Herein, we used transcriptomics (RNA-seq) and an integrated microfluidic system to identify the global gene expression and differential target proteins expression induced by ambient fine particles collected from the heavy haze in China. The results clearly indicated that cancer related pathways exhibited the strongest dysregulation. The ambient fine particles could be uptaken into the cells by pinocytosis, mainly promoting the PI3K-Akt pathway, FGF/FGFR/MAPK/VEGF signaling, and the JAK-STAT pathway, leading to evading apoptosis, sustained angiogenesis, and cell proliferation, which are the most important hallmarks of cancer. And fine particles also have been demonstrated to create intracellular reactive oxygen species (ROS) and mitochondrial ROS, change intracellular free Ca(2+), and induce apoptosis, which are all key players in mediating cancer progression. It was observed by transmission electron microscopy (TEM) that the particles from the haze could enter the mitochondria, resulting in disturbance of the mitochondrial membrane and disruption of the mitochondria, and these particles can even enter inside the nucleus. It was also found in our study of organics (OC, PAHs) and metals (Zn, As, V) that compounds of fine particles were more closely associated with the exacerbation of cancer and secondary aerosols generated by traffic had the largest impact on cancer related signal transductions.

  5. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    PubMed Central

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study , we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA – mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. PMID:26780400

  6. [Inductive effect of zinc oxide nanoparticles on interleukin 8 gene expression in human bronchial epithelial cells and its regulatory mechanism].

    PubMed

    Lu, Yang; Xu, Lei; Yan, Zhen; Wu, Yi-ming; Wu, Wei-dong

    2013-02-01

    To clarify the effect of zinc oxide nanoparticles (ZnO-NPs) (30 nm in diameter) on the interleukin 8 (IL-8) gene expression in human bronchial epithelial cells (BEAS-2B) and its regulatory mechanism. BEAS-2B cells were used in the study. The MTT assay was employed to evaluate the damage to BEAS-2B cells by ZnO-NPs. RT-PCR and ELISA were used to measure the mRNA and protein expression levels of IL-8 in the BEAS-2B cells exposed to ZnO-NPs. The IL-8 mRNA decay assay was used to determine the effect of ZnO-NPs on IL-8 mRNA stability. Exposure to ZnO-NPs significantly increased the level of IL-8 mRNA in BEAS-2B cells and the level of IL-8 protein in supernatant medium. The transcription inhibitor significantly reduced the mRNA expression of IL-8 induced by ZnO-NPs. ZnO-NPs significantly delayed IL-8 mRNA degradation in the BEAS-2B cells that were pretreated with actinomycin D for terminating IL-8 mRNA synthesis. ZnO-NPs can increase the mRNA and protein expression levels of IL-8 and IL-8 mRNA stability in BEAS-2B cells.

  7. Montelukast suppresses epithelial to mesenchymal transition of bronchial epithelial cells induced by eosinophils.

    PubMed

    Hosoki, Koa; Kainuma, Keigo; Toda, Masaaki; Harada, Etsuko; Chelakkot-Govindalayathila, Ayshwarya-Lakshmi; Roeen, Ziaurahman; Nagao, Mizuho; D'Alessandro-Gabazza, Corina N; Fujisawa, Takao; Gabazza, Esteban C

    2014-07-04

    Epithelial to mesenchymal transition (EMT) is a mechanism by which eosinophils can induce airway remodeling. Montelukast, an antagonist of the cysteinyl leukotriene receptor, can suppress airway remodeling in asthma. The purpose of this study was to evaluate whether montelukast can ameliorate airway remodeling by blocking EMT induced by eosinophils. EMT induced was assessed using a co-culture system of human bronchial epithelial cells and human eosinophils or the eosinophilic leukemia cell lines, Eol-1. Montelukast inhibited co-culture associated morphological changes of BEAS-2b cells, decreased the expression of vimentin and collagen I, and increased the expression of E-cadherin. Montelukast mitigated the rise of TGF-β1 production and Smad3 phosphorylation. Co-culture of human eosinophils with BEAS-2B cells significantly enhanced the production of CysLTs compared with BEAS-2B cells or eosinophils alone. The increase of CysLTs was abolished by montelukast pre-treatment. Montelukast had similar effects when co-culture system of Eol-1 and BEAS-2B was used. This study showed that montelukast suppresses eosinophils-induced EMT of airway epithelial cells. This finding may explain the mechanism of montelukast-mediated amelioration of airway remodeling in bronchial asthma.

  8. Macrophages Facilitate Coal Tar Pitch Extract-Induced Tumorigenic Transformation of Human Bronchial Epithelial Cells Mediated by NF-κB

    PubMed Central

    Feng, Feifei; Wu, Yiming; Zhang, Shaofeng; Liu, Yu; Qin, Lijuan; Wu, Yongjun; Yan, Zhen; Wu, Weidong

    2012-01-01

    Objective Chronic respiratory inflammation has been associated with lung cancer. Tumor-associated macrophages (TAMs) play a critical role in the formation of inflammation microenvironment. We sought to characterize the role of TAMs in coal tar pitch extract (CTPE)-induced tumorigenic transformation of human bronchial epithelial cells and the underlying mechanisms. Methods The expression of TAMs-specific CD68 in lung cancer tissues and paired adjacent tissues from cancer patients was determined using immunostaining. Co-culture of human bronchial epithelial cells (BEAS-2B) and macrophage-like THP-1 cells were conducted to evaluate the promotive effect of macrophages on CTPE-induced tumorigenic transformation of BEAS-2B cells. BEAS-2B cells were first treated with 2.4 µg/mL CTPE for 72 hours. After removal of CTPE, the cells were continuously cultured either with or without THP-1 cells and passaged using trypsin-EDTA. Alterations of cell cycle, karyotype, colony formation in soft agar and tumor xenograft growth in nude mice of BEAS-2B cells at passages 10, 20 and 30, indicative of tumorigenecity, were determined, respectively. In addition, mRNA and protein levels of NF-κB in BEAS-2B cells were measured with RT-PCR and western blot, respectively. B(a)P was used as the positive control. Results The over-expression of TAMs-specific CD68 around lung tumor tissues was detected and associated with lung cancer progression. The tumorigenic alterations of BEAS-2B cells including increase in cell growth rate, number of cells with aneuploidy, clonogenicity in soft agar, and tumor size in nude mice in vivo occurred at passage 10, becoming significant at passages 20 and 30 of the co-culture following CTPE removal in compared to BEAS-2B cells alone. In addition, the expression levels of NF-κB in BEAS-2B cells were positively correlated to the malignancy of BEAS-2B cells under different conditions of treatment. Conclusion The presence of macrophages facilitated CTPE

  9. microRNA-21 Mediates the Protective Effects of Mesenchymal Stem Cells Derived from iPSCs to Human Bronchial Epithelial Cell Injury Under Hypoxia.

    PubMed

    Li, Cheng-Lin; Xu, Zhi-Bin; Fan, Xing-Liang; Chen, He-Xin; Yu, Qiu-Ning; Fang, Shu-Bin; Wang, Shu-Yue; Lin, Yong-Dong; Fu, Qing-Ling

    2017-03-17

    Airway epithelial cell injury is a key triggering event to activate allergic airway inflammation, such as asthma. We previously reported that administration of mesenchymal stem cells significantly alleviated allergic inflammation in a mouse model of asthma, and the mmu-miR-21/ACVR2A axis may be involved. However, whether MSCs protect against bronchial epithelial cell injury induced by hypoxia and the underlying mechanism remain unknown. In our study, the human bronchial epithelial cell line BEAS-2B was induced to undergo apoptosis with a hypoxia mimic of CoCl2 damage. Treatment of MSCs derived from induced pluripotent stem cells (iPSCs) significantly decreased apoptosis of BEAS-2B cells. There was high miR-21 expression in injured BEAS-2B cells after MSCs treatment. Transfection of the miR-21 mimic significantly decreased apoptosis of BEAS-2B, and transfection of a miR-21 inhibitor significantly increased apoptosis. More importantly, the protective effects of MSCs on injured BEAS-2B were reversed by transfection of the miR-21 inhibitor. Binding sites of human miR-21 were identified in the 3'UTR of human ACVR2A. We further determined that CoCl2 stimulation increased ACVR2A expression at both the mRNA and protein levels. Moreover, transfection of the miR-21 mimic further up-regulated ACVR2A expression induced by CoCl2, whereas transfection of the miR-21 inhibitor down-regulated ACVR2A expression. In addition, MSCs increased ACVR2A expression in BEAS-2B cells; however, this effect was reversed after transfection of the miR-21 inhibitor. Our data suggested that MSCs protect bronchial epithelial cells from hypoxic injury via miR-21, which may represent an important target. These findings suggest the potentially wide application of MSCs for epithelial cell injury during hypoxia.

  10. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  11. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  12. Loss of fructose-1,6-bisphosphatase induces glycolysis and promotes apoptosis resistance of cancer stem-like cells: an important role in hexavalent chromium-induced carcinogenesis.

    PubMed

    Dai, Jin; Ji, Yanli; Wang, Wei; Kim, Donghern; Fai, Leonard Yenwong; Wang, Lei; Luo, Jia; Zhang, Zhuo

    2017-09-15

    Hexavalent chromium (Cr(VI)) compounds are confirmed human carcinogens for lung cancer. Our previous studies has demonstrated that chronic exposure of human bronchial epithelial BEAS-2B cells to low dose of Cr(VI) causes malignant cell transformation. The acquisition of cancer stem cell-like properties is involved in the initiation of cancers. The present study has observed that a small population of cancer stem-like cells (BEAS-2B-Cr-CSC) exists in the Cr(VI)-transformed cells (BEAS-2B-Cr). Those BEAS-2B-Cr-CSC exhibit extremely reduced capability of generating reactive oxygen species (ROS) and apoptosis resistance. BEAS-2B-Cr-CSC are metabolic inactive as evidenced by reductions in oxygen consumption, glucose uptake, ATP production, and lactate production. Most importantly, BEAS-2B-Cr-CSC are more tumorigenic with high levels of cell self-renewal genes, Notch1 and p21. Further study has found that fructose-1,6-bisphosphatase (FBP1), an rate-limiting enzyme driving glyconeogenesis, was lost in BEAS-2B-Cr-CSC. Forced expression of FBP1 in BEAS-2B-Cr-CSC restored ROS generation, resulting in increased apoptosis, leading to inhibition of tumorigenesis. In summary, the present study suggests that loss of FBP1 is a critical event in tumorigenesis of Cr(VI)-transformed cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

    PubMed Central

    Lee, Chang-Hoon; Lee, Kyoung-Hee; Jang, An-Hee

    2017-01-01

    Background Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions. PMID:28119751

  14. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    SciTech Connect

    Hirano, Seishiro; Fujitani, Yuji; Furuyama, Akiko; Kanno, Sanae

    2010-11-15

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC{sub 50} of MWCNT was 12 {mu}g/ml, whereas that of asbestos (crocidolite) was 678 {mu}g/ml. Over the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 {mu}g/ml. BEAS-2B cells were exposed to 2, 5, or 10 {mu}g/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-{kappa}B or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-{kappa}B was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-{kappa}B, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.

  15. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    PubMed Central

    Aldhahrani, Adil; Verdon, Bernard; Pearson, Jeffery

    2017-01-01

    Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B). The immortalised human bronchial epithelial cell line (BEAS-2B) was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL)-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury. PMID:28344983

  16. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line.

    PubMed

    Veronesi, B; Oortgiesen, M; Carter, J D; Devlin, R B

    1999-01-01

    Recent experiments have shown that human bronchial epithelial cells (i.e., BEAS-2B) release pro-inflammatory cytokines (i.e., IL-6 and TNFalpha) in a receptor-mediated fashion in response to the neuropeptides, substance P (SP), calcitonin gene-related protein (CGRP), and the prototype botanical irritant capsaicin. In the present experiments, we examined the relevance of these receptors to particulate matter (PM)-associated cellular inflammation. BEAS-2B cells, exposed to residual oil fly ash particles (ROFA), responded with an immediate (<30 s) increase in intracellular calcium levels ([Ca2+]i), increases of key inflammatory cytokine transcripts (i.e., IL-6, IL-8, TNFalpha) within 2 h exposure, and subsequent release of IL-6 and IL-8 cytokine protein after 4 h exposure. Pretreatment of BEAS-2B cells with pharmacological antagonists selective for the SP or CGRP receptors reduced the ROFA-stimulated IL-6 cytokine production by approximately 25 and 50%, respectively. However, pretreatment of these cells with capsazepine (CPZ), an antagonist for capsaicin (i.e., vanilloid) receptors, inhibited the immediate increases in [Ca2+]i, diminished transcript (i.e., IL-6, IL-8, TNFalpha) levels and reduced IL-6 cytokine release to control levels. BEAS-2B cells exposed to ROFA in calcium-free media failed to demonstrate increases of [Ca2+]i and showed reduced levels of cytokine transcript (i.e., IL-6, IL-8, TNFalpha) and IL-6 release, suggesting that ROFA-stimulated cytokine formation was partially dependent on extracellular calcium sources. A final set of experiments compared the inflammatory properties of the soluble and acidic insoluble components of ROFA. BEAS-2B cells, exposed to ROFA or ROFA that had been filtered through a 0.2-micrometer pore filter, produced equivocal IL-6. BEAS-2B cells exposed to pH 5.0 media for 15 min released moderate amounts of IL-6, 4 h later. This cytokine release could be blocked by amiloride, a pH receptor antagonist, but not by CPZ. BEAS-2B

  17. [Subcellular distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells].

    PubMed

    Zhao, Guangqiang; Huang, Yunchao; Li, Guangjian; Li, Sen; Zhou, Yongchun; Lei, Yujie; Chen, Xiaobo; Yang, Kaiyun; Chen, Ying; Yang, Kun

    2013-03-01

    Silicon nanoparticles are widely used in daily life. Therefore, they attract increased attention because of their potential biotoxicity to the lungs when inhaled. The aims of this study are to explore the organism distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells (BEAS-2B). The biodistribution of silica with different particle sizes in human bronchial epithelial cells was observed by transmission electron microscopy (TEM). DNA damage was detected by single-cell gel electrophoresis (comet assay). TEM revealed that SiO₂ nanoparticles with different sizes can be uptaken by cells and be localized in the cytoplasm and the nucleus. Compared with micro-silica, nano-silica in BEAS-2B cells can inflict more severe DNA damage (P<0.05). The particle size of silica nanoparticles can be used to determine their distribution in biological cells. Compared with micro-silica, nano-silica has higher genotoxicity.

  18. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    PubMed Central

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  19. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    SciTech Connect

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  20. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells

    PubMed Central

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-01-01

    5,7-Dihydroxy-3′,4′,6′-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules. PMID:22862554

  1. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells.

    PubMed

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-09-01

    5,7-Dihydroxy-3',4',6'-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules.

  2. Evaluation of Differentiated Human Bronchial Epithelial Cell Culture Systems for Asthma Research

    PubMed Central

    Stewart, Ceri E.; Torr, Elizabeth E.; Mohd Jamili, Nur H.; Bosquillon, Cynthia; Sayers, Ian

    2012-01-01

    The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions. PMID:22287976

  3. Role of Carum copticum seeds in modulating chromium-induced toxicity on human bronchial epithelial cells and human peripheral blood lymphocytes.

    PubMed

    Deb, Dipanwita Dutta; Parimala, G; Devi, S Saravana; Chakrabarti, T

    2012-11-01

    Carum copticum seeds are well known for ailment of various diseases since ancient times. The present study pertains to investigate modulatory effects of methanolic extract of C. copticum seeds (MCE) against hexavalent chromium induced cytotoxicity, genotoxicity, apoptosis and oxidative stress on human bronchial epithelial cells (BEAS-2B) and isolated human peripheral blood lymphocyte (PBL) in vitro. Treatment of BEAS-2B and PBL with MCE prior to potassium dichromate (K(2)Cr(2)O(7)) treatment exhibited an increase in cell viability and decrease of DNA damage as compared to K(2)Cr(2)O(7) treatment alone, as evaluated by WST-8 and Comet assay respectively. Further, MCE administration 1h prior to graded doses of K(2)Cr(2)O(7) significantly decreased reactive oxygen species (ROS) level, increased the mitochondrial membrane potential, reduced apoptosis and caspase 3 activity. MCE also ameliorated K(2)Cr(2)O(7) induced decrease in superoxide dismutase (SOD), glutathione peroxidase (GPx) antioxidant enzyme levels in BEAS-2B and PBL cells accompanied by reduction in lipid peroxides with maximum effect at 50 μg/ml. Thus, this study provides strong evidence to support the beneficial effect of MCE in preventing Cr(VI) induced toxicity in BEAS-2B and PBL cells.

  4. Hexavalent chromium induces malignant transformation of human lung bronchial epithelial cells via ROS-dependent activation of miR-21-PDCD4 signaling

    PubMed Central

    Divya, Sasidharan Padmaja; Turcios, Lilia; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Shi, Xianglin

    2016-01-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with an increased risk of lung cancer. However, the mechanisms underlying Cr(VI)-induced carcinogenesis remain unclear. MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. Studies have shown that miR-21 exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the role of miR-21-PDCD4 signaling in Cr(VI)-induced cell transformation and tumorigenesis. Results showed that Cr(VI) induces ROS generation in human bronchial epithelial (BEAS-2B) cells. Chronic exposure to Cr(VI) is able to cause malignant transformation in BEAS-2B cells. Cr(VI) caused a significant increase of miR-21 expression associated with an inhibition of PDCD4 expression. Notably, STAT3 transcriptional activation by IL-6 is crucial for the Cr(VI)-induced miR-21 elevation. Stable knockdown of miR-21 or overexpression of PDCD4 in BEAS-2B cells significantly reduced the Cr(VI)-induced cell transformation. Furthermore, the Cr(VI) induced inhibition of PDCD4 suppressed downstream E-cadherin protein expression, but promoted β-catenin/TCF-dependent transcription of uPAR and c-Myc. We also found an increased miR-21 level and decreased PDCD4 expression in xenograft tumors generated with chronic Cr(VI)-exposed BEAS-2B cells. In addition, stable knockdown of miR-21 and overexpression of PDCD4 reduced the tumorogenicity of chronic Cr(VI)-exposed BEAS-2B cells in nude mice. Taken together, these results demonstrate that the miR-21-PDCD4 signaling axis plays an important role in Cr(VI)-induced carcinogenesis. PMID:27323401

  5. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  6. Transport of ipratropium, an anti-chronic obstructive pulmonary disease drug, is mediated by organic cation/carnitine transporters in human bronchial epithelial cells: implications for carrier-mediated pulmonary absorption.

    PubMed

    Nakamura, Toshimichi; Nakanishi, Takeo; Haruta, Tsunemitsu; Shirasaka, Yoshiyuki; Keogh, John P; Tamai, Ikumi

    2010-02-01

    Ipratropium bromide, an anticholinergic drug used for the treatment of asthma and chronic obstructive pulmonary disease, has low oral bioavailability, but systemic exposure, superior to oral administration, can be achieved by inhalation. Therefore, we investigated the pulmonary absorption mechanism of ipratropium using human bronchial epithelial BEAS-2B cells. [3H]Ipratropium uptake by BEAS-2B cells was temperature-dependent and saturable, with a K(m) value of 78.0 microM, suggesting involvement of carrier-mediated uptake. An RT-PCR study showed that organic cation/carnitine transporters OCTN1 and OCTN2 are expressed in BEAS-2B cells, but organic cation transporters (OCTs) are not. Uptake of [3H]ipratropium by HEK293 cells expressing OCTN1 (HEK293/OCTN1) and OCTN2 (HEK293/OCTN2) was significantly increased, compared with mock-transfected cells, and the estimated K(m) values were 444 microM and 53.0 microM, respectively. Finally, the contributions of OCTN1 and OCTN2 to ipratropium uptake were evaluated by measuring [3H]ipratropium uptake by BEAS-2B cells in which OCTN1 or OCTN2 gene expression had been silenced. Knock-down of OCTN1 or OCTN2 suppressed the uptake of [3H]ipratropium to 78.2% and 14.8% of that by control BEAS-2B cells, respectively. In addition, another anticholinergic, tiotropium, was also taken up by both HEK293/OCTN1 and HEK293/OCTN2 cells. Therefore, ipratropium and tiotropium are taken up primarily by OCTN2, and to a lesser extent by OCTN1, in bronchial epithelial cells. These findings are consistent with the pharmacological activity of the drugs after administration via inhalation.

  7. Dectin-1-Mediated Pathway Contributes to Fusarium proliferatum-Induced CXCL-8 Release from Human Respiratory Epithelial Cells

    PubMed Central

    Yeh, Chang-Ching; Horng, Huann-Cheng; Chou, Hong; Tai, Hsiao-Yun; Shen, Horng-Der; Hsieh, Shie-Liang; Wang, Peng-Hui

    2017-01-01

    Fusarium species are causative agents of human respiratory disorders and are distributed widely in our environment. Little is known of their interaction with human respiratory epithelial cells, which may contribute to allergic airway responses. In this study, we report on the release of C–X–C motif chemokine ligand 8 (CXCL-8) from human bronchial epithelial BEAS-2B cells upon stimulation with Fusarium proliferatum extracts. F. proliferatum-induced cytokine release from BEAS-2B cells was determined by cytokine array and CXCL-8 enzyme-linked immunosorbent assay (ELISA) kits. Blocking antibodies and signaling pathway inhibitors were employed to delineate cell surface receptors and signaling pathways participating in CXCL-8 release. F. proliferatum extracts induced the release of CXCL-8 in a time-dependent manner. The dectin-1 receptor ligands, curdlan and laminarin, reduced CXCL-8 release. Cells pre-treated with anti-Dectin-1 antibodies (2 µg/mL) decreased CXCL-8 release by 24%. Furthermore, F. proliferatum-stimulated CXCL-8 release was reduced by 32%, 53%–81%, 40% and 26% after BEAS-2B cells were pretreated with activation inhibitors of spleen tyrosine kinase (Syk)—piceatannol—, mitogen-activated protein kinases (MAPKs)—PD98059, U0126, SB202190, SP600125—, phosphatidylinositol-3-kinase (PI3K)—LY294002—and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)—BAY117082—, respectively. These results suggest that Dectin-1-mediated activation of the Syk, MAPKs, PI3K and NF-κB signaling pathways contributes to F. proliferatum-stimulated CXCL-8 release from BEAS-2B cells and provides an important basis for developing novel therapeutic strategies in clinical allergy. PMID:28335387

  8. Identification of gene biomarkers for respiratory synctial virus infection in a bronchical epithelial cell line

    EPA Science Inventory

    Abstract: Respiratory syncytial virus (RSV) infection involves complex virus-host interplay. In this study, we analyzed gene expression in RSV-infected BEAS-2B cells to discover novel signaling pathways and biomarkers. We hybridized RNAs from RSV- or vehicle-treated BEAS-2B to ...

  9. Cooperation of c-raf-1 and c-myc protooncogenes in the neoplastic transformation of simian virus 40 large tumor antigen-immortalized human bronchial epithelial cells.

    PubMed Central

    Pfeifer, A M; Mark, G E; Malan-Shibley, L; Graziano, S; Amstad, P; Harris, C C

    1989-01-01

    Overexpression of c-raf-1 and the myc family of protooncogenes is primarily associated with small cell carcinoma, which accounts for approximately 25% of human lung cancer. To determine the functional significance of the c-raf-1 and/or c-myc gene expression in lung carcinogenesis and to delineate the relationship between protooncogene expression and tumor phenotype, we introduced both protooncogenes, alone or in combination, into human bronchial epithelial cells. Two retroviral recombinants, pZip-raf and pZip-myc, containing the complete coding sequences of the human c-raf-1 and murine c-myc genes, respectively, were constructed and transfected into simian virus 40 large tumor antigen-immortalized bronchial epithelial cells (BEAS-2B); this was followed by selection for G418 resistance. BEAS-2B cells expressing both the transfected c-raf-1 and c-myc sequences formed large cell carcinomas in athymic nude mice with a latency of 4-21 weeks, whereas either pZip-raf- or pZip-myc-transfected cells were nontumorigenic after 12 months. Cell lines established from tumors (designated RMT) revealed the presence of the cotransfected c-raf-1 and c-myc sequences and expressed morphological, chromosomal, and isoenzyme markers, which identified BEAS-2B cells as the progenitor line of the tumors. A significant increase in the mRNA levels of neuron-specific enolase was detected in BEAS-2B cells containing both the c-raf-1 and c-myc genes and derived tumor cell lines. The data demonstrate that the concomitant expression of the c-raf and c-myc protooncogenes causes neoplastic transformation of human bronchial epithelial cells resulting in large cell carcinomas with certain neuroendocrine markers. The presented model system should be useful in studies of molecular events involved in multistage lung carcinogenesis. Images PMID:2557616

  10. Activation of transcription factors in human bronchial epithelial cells exposed to aqueous extracts of mainstream cigarette smoke in vitro.

    PubMed

    Sekine, Takashi; Hirata, Tadashi; Mine, Toshiki; Fukano, Yasuo

    2016-01-01

    This study aimed to identify the most sensitive transcription factor activated by cigarette smoke extract (CSE) and to explore cigarette smoke components that have high biological activities in a cell-base assay. Previously, we found evidence that implicated 10 different transcription factors as having a high biological activity to CSE in vitro, based on the results of a comprehensive gene expression profile. For this study, luciferase reporter assays for each transcription factor were developed in two types of human bronchial epithelial cells: NCI-H292 and BEAS-2B cells. The results demonstrated that the nuclear factor erythroid 2-related factor 2 (NRF2)/anti-oxidant response element (ARE) pathway was the most sensitive in response to CSE. Consistently, hemo oxygenase-1 (HO-1), a downstream target gene of NRF2, was effectively up-regulated in BEAS-2B cells exposed to CSE. Moreover, among 1395 cigarette smoke components, naphthoquinones including 9,10-phenaotrenquinone, quinones, benzenediols and α, β-unsaturated carbonyls, were identified as major smoke components that contribute to activating the NRF2/ARE pathway, as indicated by the ARE-reporter assay in BEAS-2B cells. Taken together, NRF2 appears to be a key molecule in the CSE-induced cellular response, and the employed methodology is helpful for the analysis of molecular and cellular effects by CSE.

  11. Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce their responsiveness to a negative growth factor, transforming growth factor beta 1.

    PubMed Central

    Gerwin, B I; Spillare, E; Forrester, K; Lehman, T A; Kispert, J; Welsh, J A; Pfeifer, A M; Lechner, J F; Baker, S J; Vogelstein, B

    1992-01-01

    Loss of normal functions and gain of oncogenic functions when the p53 tumor suppressor gene is mutated are considered critical events in the development of the majority of human cancers. Human bronchial epithelial cells (BEAS-2B) provide an in vitro model system to study growth, differentiation, and neoplastic transformation of progenitor cells of lung carcinoma. When wild-type (WT) or mutant (MT; codon 143Val-Ala) human p53 cDNA was transfected into nontumorigenic BEAS-2B cells, we observed that (i) transfected WT p53 suppresses and MT p53 enhances the colony-forming efficiency of these cells, (ii) MT p53 increases resistance to transforming growth factor beta 1, and (iii) clones of MT p53 transfected BEAS-2B cells are tumorigenic when inoculated into athymic nude mice. These results are consistent with the hypothesis that certain mutations in p53 may function in multistage lung carcinogenesis by reducing the responsiveness of bronchial epithelial cells to negative growth factors. Images PMID:1557382

  12. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    PubMed

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  13. NOD-like receptors mediated activation of eosinophils interacting with bronchial epithelial cells: a link between innate immunity and allergic asthma.

    PubMed

    Wong, Chun Kwok; Hu, Shuiqing; Leung, Karen Ming-Lam; Dong, Jie; He, Lan; Chu, Yi Jun; Chu, Ida Miu-Ting; Qiu, Huai-Na; Liu, Kelly Yan-Ping; Lam, Christopher Wai-Kei

    2013-07-01

    Key intracytosolic pattern recognition receptors of innate immunity against bacterial infections are nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). We elucidated the NOD1 and NOD2-mediated activation of human eosinophils, the principal effector cells for allergic inflammation, upon interacting with human bronchial epithelial BEAS-2B cells in allergic asthma. Eosinophils constitutively expressed NOD1,2 but exhibited nonsignificant responses to release chemokines upon the stimulation by NOD1 ligand γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and NOD2 ligand muramyl dipeptide (MDP). However, iE-DAP and MDP could significantly upregulate cell surface expression of CD18 and intercellular adhesion molecule (ICAM)-1 on eosinophils and ICAM-1 on BEAS-2B cells, as well as induce chemokines CCL2 and CXCL8 release in the coculture system (all P<0.05). Both eosinophils and BEAS-2B cells were the main source for CXCL8 and CCL2 release in the coculture system upon iE-DAP or MDP stimulation. Direct interaction between eosinophils and BEAS-2B cells is responsible for CCL2 release, and soluble mediators are implicated in CXCL8 release. ERK and NF-κB play regulatory roles for the expression of adhesion molecules and chemokines in coculture. Treatment with NOD1,2 ligand could induce the subepithelial fibrosis and significantly enhance the serum concentration of total IgE, chemokine CCL5 for eosinophils and T helper type 2 (Th2) cells and asthma Th2 cytokine IL-13 in bronchoalveolar lavage fluid of ovalbumin-sensitized allergic asthmatic mice (all P<0.05). This study provides further evidence of bacterial infection-mediated activation of NOD1,2 in triggering allergic asthma via the activation of eosinophils interacting with bronchial epithelial cells at inflammatory airway.

  14. Effect of Ambroxol and Beclomethasone on Lipopolysaccharide-Induced Nitrosative Stress in Bronchial Epithelial Cells.

    PubMed

    Ricciardolo, Fabio L M; Sorbello, Valentina; Benedetto, Sabrina; Paleari, Davide

    2015-01-01

    Nitrosative stress is involved in different airway diseases. Lipopolysaccharide (LPS) induces neutrophil-related cytokine release and nitrosative stress in human bronchial epithelial (BEAS-2B) cells alone or with human polymorphonuclear neutrophils (PMNs). Ambroxol protects against oxidative stress, and beclomethasone dipropionate is an anti-inflammatory drug. We evaluated the ability of ambroxol and/or beclomethasone dipropionate to inhibit LPS-induced expression/release of RANTES, IL-8, inducible NO synthase (iNOS), myeloperoxidase (MPO) and 3-nitrotyrosine (3-NT: nitrosative stress biomarker) in BEAS-2B ± PMNs stimulated with LPS (1 μg/ml). The effect of ambroxol and/or beclomethasone dipropionate on IL-8, RANTES and iNOS levels was assessed by Western blot analysis; IL-8, MPO and 3-NT levels were measured by ELISA. Cell viability was assessed by the trypan blue exclusion test. In BEAS-2B alone, LPS (at 12 h) increased RANTES/iNOS expression and IL-8 levels (p < 0.001). Ambroxol suppressed LPS-induced RANTES expression and IL-8 release (p < 0.001), whilst inhibiting iNOS expression (p < 0.05). Beclomethasone dipropionate had no effect on RANTES but halved iNOS expression and IL-8 release. Coculture of BEAS-2B with PMNs stimulated IL-8, MPO and 3-NT production (p < 0.001), potentiated by LPS (p < 0.001). Ambroxol and beclomethasone dipropionate inhibited LPS-stimulated IL-8, MPO and 3-NT release (p < 0.05). Ambroxol/beclomethasone dipropionate combination potentiated the inhibition of IL-8 and 3-NT production in BEAS-2B with PMNs (p < 0.05 and p < 0.01, respectively). Ambroxol and/or beclomethasone dipropionate inhibited nitrosative stress and the release of neutrophilic inflammatory products in vitro. The additive effect of ambroxol and beclomethasone dipropionate on IL-8 and 3-NT inhibition suggests new therapeutic options in the treatment of neutrophil-related respiratory diseases such as chronic obstructive pulmonary disease and respiratory infections.

  15. Adhesion and invasion of Streptococcus pneumoniae to primary and secondary respiratory epithelial cells

    PubMed Central

    Novick, Sara; Shagan, Marilous; Blau, Karin; Lifshitz, Sarit; Givon-Lavi, Noga; Grossman, Nili; Bodner, Lipa; Dagan, Ron; Nebenzahl, Yaffa Mizrachi

    2017-01-01

    The interaction between Streptococcus pneumoniae (S. pneumoniae) and the mucosal epithelial cells of its host is a prerequisite for pneumococcal disease development, yet the specificity of this interaction between different respiratory cells is not fully understood. In the present study, three areas were examined: i) The capability of the encapsulated S. pneumoniae serotype 3 strain (WU2) to adhere to and invade primary nasal-derived epithelial cells in comparison to primary oral-derived epithelial cells, A549 adenocarcinoma cells and BEAS-2B viral transformed bronchial cells; ii) the capability of the unencapsulated 3.8DW strain (a WU2 derivative) to adhere to and invade the same cells over time; and iii) the ability of various genetically-unrelated encapsulated and unencapsulated S. pneumoniae strains to adhere to and invade A549 lung epithelial cells. The results of the present study demonstrated that the encapsulated WU2 strain adhesion to and invasion of primary nasal epithelial cells was greatest, followed by BEAS-2B, A549 and primary oral epithelial cells. By contrast, the unencapsulated 3.8-DW strain invaded oral epithelial cells significantly more efficiently when compared to the nasal epithelial cells. In addition, unencapsulated S. pneumoniae strains adhered to and invaded the A459 cells significantly more efficiently than the encapsulated strains; this is consistent with previously published data. In conclusion, the findings presented in the current study indicated that the adhesion and invasion of the WU2 strain to primary nasal epithelial cells was more efficient compared with the other cultured respiratory epithelial cells tested, which corresponds to the natural course of S. pneumoniae infection and disease development. The target cell preference of unencapsulated strains was different from that of the encapsulated strains, which may be due to the exposure of cell wall proteins. PMID:27922699

  16. [Effects of cyclic stretch on the induction of the transdifferentiation in human lung epithelial cells].

    PubMed

    Zhang, Rong; Mao, Pu; Fu, Wei; Pang, Xiao-qing; Wang, Yin-yan; Yang, Chun; He, Wei-qun; Liu, Xiao-qing; Li, Yi-min

    2013-08-01

    To investigate the effect of mechanical stretch induced epithelial-mesenchymal transition in human lung epithelial cells BEAS-2B in vitro. The human lung epithelial cells BEAS-2B were subjected to cyclic stretch by the FX-5000T system at 0.33 Hz of 10% or 20% elongation for 24, 48 and 72 hours respectively. The morphologic changes were observed by microscopy. The mRNA and protein expressions of E-cadherin, Cytokeratin-8 (CK-8), α-smooth muscle actin (α-SMA) and Vimentin were evaluated by immunofluorescence before and after mechanical stretch and fluorescent quantitation reverse transcription-polymerase chain reaction (qRT-PCR). (1) When stretch by 20% elongation for 48 hours, the morphological changes in BEAS-2B cells from cobblestone-like structure to elongated shape and obviously when stretch for up to 72 hours, while 10% elongation showed no significant morphological changes comparing to control. (2) Decreasing E-cadherin and CK-8 protein expression was associated with increased immunostaining for α-SMA protein at 72 hours after 20% mechanical stretch. (3) Expression of E-cadherin mRNA was decreased to 0.388±0.056 and 0.247±0.064 after 20% mechanical stretch for 48 hours and 72 hours compared with control without stretch (set 1, both P<0.05), expression of CK-8 mRNA was decreased to 0.436±0.060 at 72 hours after 20% mechanical stretch (P<0.01), α-SMA mRNA was increased to 1.437±0.267 (48 hours) and 1.261±0.247 (72 hours) after 20% mechanical stretch (both P<0.05), and Vimentin mRNA was increased to 1.679±0.172 (48 hours) after 20% mechanical stretch (P<0.05). Expression of E-cadherin mRNA was decreased to 0.387±0.081 at 72 hours after 10% mechanical stretch (P<0.05), Vimentin mRNA was increased to 1.688±0.179 at 48 hours after 10% mechanical stretch while other markers showed no significant changes comparing with control. Excessive mechanical stretch could induce epithelial-mesenchymal transition in lung epithelial cells BEAS-2B in vitro.

  17. Oncogenic transformation of human lung bronchial epithelial cells induced by arsenic involves ROS-dependent activation of STAT3-miR-21-PDCD4 mechanism

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Wang, Lei; Zhang, Zhuo; Shi, Xianglin

    2016-01-01

    Arsenic is a well-documented human carcinogen. The present study explored the role of the onco-miR, miR-21 and its target protein, programmed cell death 4 (PDCD4) in arsenic induced malignant cell transformation and tumorigenesis. Our results showed that treatment of human bronchial epithelial (BEAS-2B) cells with arsenic induces ROS through p47phox, one of the NOX subunits that is the key source of arsenic-induced ROS. Arsenic exposure induced an upregulation of miR-21 expression associated with inhibition of PDCD4, and caused malignant cell transformation and tumorigenesis of BEAS-2B cells. Indispensably, STAT3 transcriptional activation by IL-6 is crucial for the arsenic induced miR-21 increase. Upregulated miR-21 levels and suppressed PDCD4 expression was also observed in xenograft tumors generated with chronic arsenic exposed BEAS-2B cells. Stable shut down of miR-21, p47phox or STAT3 and overexpression of PDCD4 or catalase in BEAS-2B cells markedly inhibited the arsenic induced malignant transformation and tumorigenesis. Similarly, silencing of miR-21 or STAT3 and forced expression of PDCD4 in arsenic transformed cells (AsT) also inhibited cell proliferation and tumorigenesis. Furthermore, arsenic suppressed the downstream protein E-cadherin expression and induced β-catenin/TCF-dependent transcription of uPAR and c-Myc. These results indicate that the ROS-STAT3-miR-21-PDCD4 signaling axis plays an important role in arsenic -induced carcinogenesis. PMID:27876813

  18. Malignant human cell transformation of Marcellus shale gas drilling flow back water

    PubMed Central

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation is known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these waste waters, flow back water from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy / energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependant. In addition, flow back water-transformed BEAS-2B cells show a better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. PMID:26210350

  19. Malignant human cell transformation of Marcellus Shale gas drilling flow back water.

    PubMed

    Yao, Yixin; Chen, Tingting; Shen, Steven S; Niu, Yingmei; DesMarais, Thomas L; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max; Zelikoff, Judith

    2015-10-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining.

  20. Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

    PubMed Central

    Park, Soyoung; Li, Cen; Zhao, Hong; Darzynkiewicz, Zbigniew; Xu, Dazhong

    2016-01-01

    Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI). PMID:26760771

  1. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    SciTech Connect

    Wu Weidong Silbajoris, Robert A.; Cao Dongsun; Bromberg, Philip A.; Zhang Qiao; Peden, David B.; Samet, James M.

    2008-09-01

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional and posttranscriptional events that regulate COX-2 expression in a human bronchial epithelial cell line BEAS-2B exposed to Zn{sup 2+}. Zn{sup 2+} exposure resulted in pronounced increases in COX-2 mRNA and protein expression, which were prevented by pretreatment with the transcription inhibitor actinomycin D, implying the involvement of transcriptional regulation. This was supported by the observation of increased COX-2 promoter activity in Zn{sup 2+}-treated BEAS-2B cells. Mutation of the cAMP response element (CRE), but not the {kappa}B-binding sites in the COX-2 promoter markedly reduced COX-2 promoter activity induced by Zn{sup 2+}. Inhibition of NF{kappa}B activation did not block Zn{sup 2+}-induced COX-2 expression. Measurement of mRNA stability demonstrated that Zn{sup 2+} exposure impaired the degradation of COX-2 mRNA in BEAS-2B cells. This message stabilization effect of Zn{sup 2+} exposure was shown to be dependent on the integrity of the 3'-untranslated region found in the COX-2 transcript. Taken together, these data demonstrate that the CRE and mRNA stability regulates COX-2 expression induced in BEAS-2B cells exposed to extracellular Zn{sup 2+}.

  2. OXIDANTT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS

    EPA Science Inventory

    Lung injury following asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the matrix, complexed to the surface, or both. We hypothesized that the cellular response to asbestos includes the transport and sequestration of iron by 1) generation of s...

  3. Genomic-wide analysis of BEAS-2B cells exposed to Trivalent Arsenicals and Dimethylthioarsinic acid

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans by both oral and inhalation routes. However, the carcinogenic mode of action of arsenicals is unknown. We investigated the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsinous acid (D...

  4. OXIDANTT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS

    EPA Science Inventory

    Lung injury following asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the matrix, complexed to the surface, or both. We hypothesized that the cellular response to asbestos includes the transport and sequestration of iron by 1) generation of s...

  5. Genomic-wide analysis of BEAS-2B cells exposed to Trivalent Arsenicals and Dimethylthioarsinic acid

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans by both oral and inhalation routes. However, the carcinogenic mode of action of arsenicals is unknown. We investigated the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsinous acid (D...

  6. *OXIDANT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS

    EPA Science Inventory

    Lung injury after asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the fiber matrix, complexed to the surface, or both. We tested the hypothesis that the cellular response to asbestos includes the transport and sequestration of this iron throu...

  7. OXIDANT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS

    EPA Science Inventory

    Lung injury following asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the fiber matrix, complexed to the surface, or both. We tested the hypothesis that the cellular response to asbestos includes the transport and sequestration of this iron ...

  8. *OXIDANT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS

    EPA Science Inventory

    Lung injury after asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the fiber matrix, complexed to the surface, or both. We tested the hypothesis that the cellular response to asbestos includes the transport and sequestration of this iron throu...

  9. OXIDANT GENERATION PROMOTES IRON SEQUESTRATION IN BEAS-2B CELLS EXPOSED TO ASBESTOS

    EPA Science Inventory

    Lung injury following asbestos exposure is associated with an oxidative stress that is catalyzed by iron in the fiber matrix, complexed to the surface, or both. We tested the hypothesis that the cellular response to asbestos includes the transport and sequestration of this iron ...

  10. Urokinase induces activation of STAT3 in lung epithelial cells.

    PubMed

    Shetty, Sreerama; Rao, Gadiparthi N; Cines, Douglas B; Bdeir, Khalil

    2006-10-01

    Urokinase-type plasminogen activator (uPA) is a serine protease that plays a major role in diverse physiological and pathological processes. Studies from our laboratory have shown that exposure of human lung epithelial cells to uPA induces proliferation. To understand uPA mitogenic signaling events, we sought to elucidate its effects on tyrosine phosphorylation in a human bronchial epithelial cell line (Beas2B). uPA induced tyrosine phosphorylation of several proteins in a time-dependent manner. One of these proteins was identified as the 91-kDa signal transduction activator transcription (Stat)3 moiety. Tyrosine phosphorylation of Stat3 by uPA was time dependent. uPA induced Stat3-DNA binding activity in a time-dependent manner. uPA-induced Stat3 activation does not require uPA catalytic activity, as the uPA amino-terminal fragment alone was as potent as active two-chain uPA (tcuPA) in causing this effect. Single-chain uPA likewise induced tyrosine phosphorylation of Stat3 to a similar extent as intact tcuPA. Plasmin did not alter uPA-induced Stat3 activation. Furthermore, transfection of Beas2B cells with dominant-negative Stat3 blocked uPA-induced DNA synthesis. These results reveal for the first time that the uPA-uPAR interaction leads to activation of Stat3, independent of its catalytic activity but dependent on its interaction with its receptor, uPAR, leading to DNA synthesis in lung epithelial cells.

  11. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, a component of tobacco smoke, modulates mediator release from human bronchial and alveolar epithelial cells.

    PubMed

    Proulx, L I; Gaudreault, M; Turmel, V; Augusto, L A; Castonguay, A; Bissonnette, E Y

    2005-04-01

    Respiratory epithelial cells are known to contribute to immune responses through the release of mediators. The aim of this study was to characterize the immunomodulatory effects of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco carcinogen, on respiratory epithelial cells and to compare two metabolic pathways, alpha-methylhydroxylation and alpha-methylenehydroxylation, involved in these effects using selective precursors, 4-(acetoxy-methylnitrosamino)-1-(3-pyridil)-1-butanone (NNKOAc) and N-nitroso (acetoxymethyl) methylamine (NDMAOAc), respectively. Human bronchial and alveolar epithelial cell lines, BEAS-2B and A549, respectively, were treated with NNK, NNKOAc and NDMAOAc for 24 h with and without tumour necrosis factor (TNF) and mediators released in cell-free supernatants were measured by enzyme-linked immunosorbent assay (ELISA). NNK significantly inhibited interleukin (IL)-8, IL-6 and monocyte chemoattractant protein-1 (MCP-1) production in both cell types. Similar results were observed with primary bronchial and alveolar epithelial cells. Although NNK increased prostaglandin E(2) (PGE(2)) production by A549 cells, its immunomodulatory effects were not mediated by PGE(2) according to the results with cyclo-oxygenase inhibitors. NNKOAc mimicked NNK effects, whereas NDMAOAc significantly inhibited IL-8 production in BEAS-2B cells and MCP-1 in both cell types. These results demonstrate that NNK and its reactive metabolites have immunosuppressive effects on respiratory epithelial cells, which could contribute to the increased respiratory infections observed in smokers and the development and/or the progression of lung cancer.

  12. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells.

    PubMed

    Capasso, Laura; Camatini, Marina; Gualtieri, Maurizio

    2014-04-07

    Nickel oxide nanoparticles (NiONPs) toxicity has been evaluated in the human pulmonary epithelial cell lines: BEAS-2B and A549. The nanoparticles, used at the doses of 20, 40, 60, 80, 100 μg/ml, induced a significant reduction of cell viability and an increase of apoptotic and necrotic cells at 24h. A significant release of interleukin-6 and -8 was assessed after 24h of treatment, even intracellular ROS increased already at 45 min after exposure. The results obtained evidenced that the cytokines release was dependent on mitogen activated protein kinases (MAPK) cascade through the induction of NF-kB pathway. NiONPs induced cell cycle alteration in both the cell lines even in different phases and these modifications may be induced by the NPs genotoxic effect, suggested by the nuclear translocation of phospho-ATM and phospho-ATR. Our results confirm the cytotoxic and pro-inflammatory potential of NiONPs. Moreover their ability in inducing DNA damage responses has been demonstrated. Such effects were present in A549 cells which internalize the NPs and BEAS-2B cells in which endocytosis has not been observed.

  13. Constitutive expression of vascular endothelial cell growth factor (VEGF) gene family ligand and receptors on human upper and lower airway epithelial cells.

    PubMed

    Lee, Hyun Sil; Kim, Jean

    2014-01-01

    We previously reported that vascular endothelial cell growth factor (VEGF) is abundantly expressed by primary human nasal epithelial cells (PNECs) and functions to promote cell hyperplasia in polyposis. Therefore, we aimed to examine the full expression profile of other members of the VEGF gene family of ligands and receptors, which may play a role in cell growth and the development of chronic rhinosinusitis with nasal polyposis (CRSwNP). Messenger RNA (mRNA) and protein expression of VEGF genes, receptors, and co-receptors was examined from cultured PNECs (n = 4) and compared to that from primary human bronchial epithelial cells (PBECs; n = 4) and the BEAS2B cell line (n = 4) by real-time polymerase chain reaction (PCR) and flow cytometry. We report abundant expression of VEGFA, VEGFB, and VEGFC, detected by mRNA and flow cytometric analysis on PNECs. We herein report the novel finding that there is significant expression of VEGFR1, VEGFR2, VEGFR3, and both neuropilin co-receptors, NP1 and NP2, at baseline conditions on PNECs. Lower airway PBECs and BEAS2B cells displayed similar patterns of expression. PNECs express high constitutive levels of the VEGF gene family homolog of ligands and receptors. Expression of multiple VEGF ligand-receptor combinations may function as redundant pathways to promote upper and lower airway epithelial cell growth during inflammation.

  14. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity.

    PubMed

    Chen, De-Ju; Xu, Yan-Ming; Zheng, Wei; Huang, Dong-Yang; Wong, Wing-Yan; Tai, William Chi-Shing; Cho, Yong-Yeon; Lau, Andy T Y

    2015-09-01

    For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro.

    PubMed

    Lindberg, Hanna K; Falck, Ghita C-M; Singh, Rajinder; Suhonen, Satu; Järventaus, Hilkka; Vanhala, Esa; Catalán, Julia; Farmer, Peter B; Savolainen, Kai M; Norppa, Hannu

    2013-11-08

    Although some types of carbon nanotubes (CNTs) have been described to induce mesothelioma in rodents and genotoxic effects in various cell systems, there are few previous studies on the genotoxicity of CNTs in mesothelial cells. Here, we examined in vitro DNA damage induction by short multi-wall CNTs (MWCNTs; 10-30 nm × 1-2 μm) and single-wall CNTs (SWCNTs; >50% SWCNTs, ~40% other CNTs; <2 nm × 1-5 μm) in human mesothelial (MeT-5A) cells and bronchial epithelial (BEAS 2B) cells, using the single cell gel electrophoresis (comet) assay and the immunoslot blot assay for the detection of malondialdehyde (M1dG) DNA adducts. In BEAS 2B cells, we also studied the induction of micronuclei (MN) by the CNTs using the cytokinesis-block method. The cells were exposed to the CNTs (5-200 μg/cm(2), corresponding to 19-760 μg/ml) for 24 and 48h in the comet assay and for 48 and 72 h in the MN and M1dG assays. Transmission electron microscopy (TEM) showed more MWCNT fibres and SWCNT clusters in BEAS 2B than MeT-5A cells, but no significant differences were seen in intracellular dose expressed as area of SWCNT clusters between TEM sections of the cell lines. In MeT-5A cells, both CNTs caused a dose-dependent induction of DNA damage (% DNA in comet tail) in the 48-h treatment and SWCNTs additionally in the 24-h treatment, with a statistically significant increase at 40 μg/cm(2) of SWCNTs and (after 48 h) 80 μg/cm(2) of both CNTs. SWCNTs also elevated the level of M1dG DNA adducts at 1, 5, 10 and 40 μg/cm(2) after the 48-h treatment, but both CNTs decreased M1dG adduct level at several doses after the 72-h treatment. In BEAS 2B cells, SWCNTs induced a statistically significant increase in DNA damage at 80 and 120 μg/cm(2) after the 24-h treatment and in M1dG adduct level at 5 μg/cm(2) after 48 h and 10 and 40 μg/cm(2) after 72 h; MWCNTs did not affect the level of DNA damage but produced a decrease in M1dG adducts in the 72-h treatment. The CNTs did not affect the level of

  16. Multiplexed quantitative high content screening reveals that cigarette smoke condensate induces changes in cell structure and function through alterations in cell signaling pathways in human bronchial cells.

    PubMed

    Carter, Charleata A; Hamm, Jonathan T

    2009-07-10

    Human bronchial cells are one of the first cell types exposed to environmental toxins. Toxins often activate nuclear factor-kappaB (NF-kappaB) and protein kinase C (PKC). We evaluated the hypothesis that cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke, activates PKC-alpha and NF-kappaB, and concomitantly disrupts the F-actin cytoskeleton, induces apoptosis and alters cell function in BEAS-2B human bronchial epithelial cells. Compared to controls, exposure of BEAS-2B cells to doses of 30mug/ml CSC significantly activated PKC-alpha, while CSC doses above 20mug/ml CSC significantly activated NF-kappaB. As NF-kappaB was activated, cell number decreased. CSC treatment of BEAS-2B cells induced a decrease in cell size and an increase in cell surface extensions including filopodia and lamellipodia. CSC treatment of BEAS-2B cells induced F-actin rearrangement such that stress fibers were no longer prominent at the cell periphery and throughout the cells, but relocalized to perinuclear regions. Concurrently, CSC induced an increase in the focal adhesion protein vinculin at the cell periphery. CSC doses above 30mug/ml induced a significant increase in apoptosis in BEAS-2B cells evidenced by an increase in activated caspase 3, an increase in mitochondrial mass and a decrease in mitochondrial membrane potential. As caspase 3 increased, cell number decreased. CSC doses above 30mug/ml also induced significant concurrent changes in cell function including decreased cell spreading and motility. CSC initiates a signaling cascade in human bronchial epithelial cells involving PKC-alpha, NF-kappaB and caspase 3, and consequently decreases cell spreading and motility. These CSC-induced alterations in cell structure likely prevent cells from performing their normal function thereby contributing to smoke-induced diseases.

  17. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    PubMed

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface

  18. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography–Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts

    PubMed Central

    Gerloff, Janice; Sundar, Isaac K.; Freter, Robert; Sekera, Emily R.; Friedman, Alan E.; Robinson, Risa; Pagano, Todd

    2017-01-01

    Abstract Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography–mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell

  19. Staphylococcus aureus Inhibits IL-8 Responses Induced by Pseudomonas aeruginosa in Airway Epithelial Cells.

    PubMed

    Chekabab, Samuel M; Silverman, Richard J; Lafayette, Shantelle L; Luo, Yishan; Rousseau, Simon; Nguyen, Dao

    2015-01-01

    Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) are major respiratory pathogens and can concurrently colonize the airways of patients with chronic obstructive diseases, such as cystic fibrosis (CF). Airway epithelial cell signalling is critical to the activation of innate immune responses. In the setting of polymicrobial colonization or infection of the respiratory tract, how epithelial cells integrate different bacterial stimuli remains unknown. Our study examined the inflammatory responses to PA and SA co-stimulations. Immortalised airway epithelial cells (Beas-2B) exposed to bacteria-free filtrates from PA (PAF) induced a robust production of the neutrophil chemoattractant IL-8 while bacteria-free filtrates from SA (SAF) had a minimal effect. Surprisingly, co-stimulation with PAF+SAF demonstrated that SAF strongly inhibited the PAF-driven IL-8 production, showing that SAF has potent anti-inflammatory effects. Similarly SAF decreased IL-8 production induced by the TLR1/TLR2 ligand Pam3CysSK4 but not the TLR4 ligand LPS nor TLR5 ligand flagellin in Beas-2B cells. Moreover, SAF greatly dampened TLR1/TLR2-mediated activation of the NF-κB pathway, but not the p38 MAPK pathway. We observed this SAF-dependent anti-inflammatory activity in several SA clinical strains, as well as in the CF epithelial cell line CFBE41o-. These findings show a novel direct anti-inflammatory effect of SA on airway epithelial cells, highlighting its potential to modulate inflammatory responses in the setting of polymicrobial infections.

  20. Epithelium-derived chemokines induce airway smooth muscle cell migration.

    PubMed

    Takeda, N; Sumi, Y; Préfontaine, D; Al Abri, J; Al Heialy, N; Al-Ramli, W; Michoud, M-C; Martin, J G; Hamid, Q

    2009-07-01

    The remodelling of airway smooth muscle (ASM) associated with asthma severity may involve the migration of ASM cells towards the epithelium. However, little is known about the mechanisms of cell migration and the effect of epithelial-derived mediators on this process. The main objective of the current study is to assess the effects of epithelial-derived chemokines on ASM cell migration. Normal human ASM cells were incubated with supernatants from cells of the bronchial epithelial cell line BEAS-2B and normal human bronchial epithelial (NHBE) cells. To induce chemokine production, epithelial cells were treated with TNF-alpha. Chemokine expression by epithelial cells was evaluated by quantitative real-time PCR, ELISA and membrane antibody array. To identify the role of individual chemokines in ASM cell migration, we performed migration assays with a modified Boyden chamber using specific neutralizing antibodies to block chemokine effects. Supernatants from BEAS-2B cells treated with TNF-alpha increased ASM cell migration; migration was increased 1.6 and 2.5-fold by supernatant from BEAS-2B cells treated with 10 and 100 ng/mL TNF-alpha, respectively. Protein levels in supernatants and mRNA expression by BEAS-2B cells of regulated on activation, normal T cell expressed and secreted (RANTES) and IL-8 were significantly increased by 100 ng/mL TNF-alpha treatment. The incubation of supernatant with antibodies to RANTES or IL-8 significantly reduced ASM cell migration, and the combined antibodies further inhibited the cell migration. The migratory effects of supernatants and inhibiting effects of RANTES and/or IL-8 were confirmed also using NHBE cells. The results show that chemokines from airway epithelial cells cause ASM cell migration and might potentially play a role in the process of airway remodelling in asthma.

  1. Comparison of cellular and transcriptomic effects between electronic cigarette vapor and cigarette smoke in human bronchial epithelial cells.

    PubMed

    Anthérieu, Sébastien; Garat, Anne; Beauval, Nicolas; Soyez, Mélissa; Allorge, Delphine; Garçon, Guillaume; Lo-Guidice, Jean-Marc

    2017-01-05

    The use of electronic cigarette (e-cig) can be considered as an alternative to smoking. However, due to a lack of thorough toxicological studies, absolute safety of these products cannot be guaranteed. The aim of this in vitro work was to investigate the potential toxicity of e-vapors generated by a smoking machine in human bronchial epithelial BEAS-2B cells cultured at air-liquid interface, in comparison to cigarette smoke (CS). Although CS decreased strongly cell viability from 48min exposure, e-vapors induced no cytotoxicity up to 288min exposure. Moreover, oxidative stress was evidenced only after exposure to CS, with a decrease secretion of GRO-ɑ from 8min and of IL-8 and MCP-1 after 48min exposure. Only a low increase of IL-6 secretion was measured in cells exposed to e-vapors. Finally, transcriptomic data of exposed cells indicated that a large number of genes were deregulated in response to CS, especially genes involved in important biological functions as oxidative stress and cell death, while e-vapors elicited very discrete modulation. These results strongly suggest a lower toxicity of e-vapors compared to CS in the BEAS-2B cell line and constitute a baseline for further experimental studies with a larger spectrum of e-liquids and e-cig models.

  2. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells.

    PubMed

    Gualtieri, Maurizio; Øvrevik, Johan; Holme, Jørn A; Perrone, M Grazia; Bolzacchini, Ezio; Schwarze, Per E; Camatini, Marina

    2010-02-01

    Air pollution in Milan causes health concern due to the high concentrations of particulate matter (PM10 and PM2.5). The aim of this study was to investigate possible seasonal differences in PM10 and PM2.5 chemical composition and their biological effects on pro-inflammatory cytokine release and cytotoxicity. The PM was sampled during winter and summer seasons. The winter PMs had higher levels of PAHs than the summer samples which contained a greater amount of mineral dust elements. The PM toxicity was tested in the human pulmonary epithelial cell lines BEAS-2B and A549. The winter PMs were more cytotoxic than summer samples, whereas the summer PM10 exhibited a higher pro-inflammatory potential, as measured by ELISA. This inflammatory potential seemed partly due to biological components such as bacterial lipopolysaccharides (LPS), as evaluated by the use of Polymixin B. Interestingly, in the BEAS-2B cells the winter PM2.5 reduced proliferation due to a mitotic delay/arrest, while no such effects were observed in the A549 cells. These results underline that the in vitro responsiveness to PM may be cell line dependent and suggest that the PM different properties may trigger different endpoints such as inflammation, perturbation of cell cycle and cell death.

  3. Trans, trans-2,4-decadienal, a product found in cooking oil fumes, induces cell proliferation and cytokine production due to reactive oxygen species in human bronchial epithelial cells.

    PubMed

    Chang, Louis W; Lo, Wai-Sze; Lin, Pinpin

    2005-10-01

    Dienaldehydes are by-products of peroxidation of polyunsaturated lipids and commonly found in many foods or food-products. Both National Cancer Institute (NCI) and NTP have expressed great concern on the potential genotoxicity and carcinogenicity of dienaldehydes. Trans, trans-2,4-decadienal (tt-DDE or 2,4-De), a specific type of dienaldehyde, is abundant in heated oils and has been associated with lung adenocarcinoma development in women due to their exposure to oil fumes during cooking. Cultured human bronchial epithelial cells (BEAS-2B cells) were exposed to 0.1 or 1.0 microM tt-DDE for 45 days, and oxidative stress, reactive oxygen species (ROS) production, GSH/GSSG ratio, cell proliferation, and expression of TNFalpha and IL-1beta were measured. The results show that tt-DDE induced oxidative stress, an increase in ROS production, and a decrease in GSH/GSSG ratio (glutathione status) in a dose-dependent manner. Treatment of BEAS-2B cells with 1.0 microM tt-DDE for 45 days increased cell proliferation and the expression and release of pro-inflammatory cytokines TNFalpha and IL-1beta. Cotreatment of BEAS-2B cells with antioxidant N-acetylcysteine prevented tt-DDE-induced cell proliferation and release of cytokines. Therefore, these results suggest that tt-DDE-induced changes may be due to increased ROS production and enhanced oxidative stress. Since increased cell proliferation and the release of TNF-alpha and IL-1beta are believed to be involved in tumor promotion, our results suggest that tt-DDE may play a role in cancer promotion. Previous studies on dienaldehydes have focused on their genotoxic or carcinogenic effects in the gastrointestinal tract; the present study suggests a potential new role of tt-DDE as a tumor promoter in human lung epithelial cells.

  4. Cadmium induces cytotoxicity in human bronchial epithelial cells through upregulation of eIF5A1 and NF-kappaB

    SciTech Connect

    Chen, De-Ju; Xu, Yan-Ming; Du, Ji-Ying; Huang, Dong-Yang; Lau, Andy T.Y.

    2014-02-28

    Highlights: • Normal human bronchial epithelial cells (BEAS-2B) were dosed with cadmium (Cd). • A low level (2 μM) of Cd treatment for 36 h elicited negligible cytotoxicity. • High levels (20 or 30 μM) of Cd treatment for 36 h induced cell death. • High levels of Cd can upregulate the protein levels of eIF5A1 and NF-κB p65. • We suggest that eIF5A1 level is possibly modulated by NF-κB. - Abstract: Cadmium (Cd) and Cd compounds are widely-distributed in the environment and well-known carcinogens. Here, we report that in CdCl{sub 2}-exposed human bronchial epithelial cells (BEAS-2B), the level of p53 is dramatically decreased in a time- and dose-dependent manner, suggesting that the observed Cd-induced cytotoxicity is not likely due to the pro-apoptotic function of p53. Therefore, this prompted us to further study the responsive pro-apoptotic factors by proteomic approaches. Interestingly, we identified that high levels (20 or 30 μM) of Cd can significantly upregulate the protein levels of eukaryotic translation initiation factor 5A1 (eIF5A1) and redox-sensitive transcription factor NF-κB p65. Moreover, there is an enhanced NF-κB nuclear translocation as well as chromatin-binding in Cd-treated BEAS-2B cells. We also show that small interfering RNA-specific knockdown of eIF5A1 in Cd-exposed cells attenuated the Cd cytotoxicity, indicating the potential role of eIF5A1 in Cd cytotoxicity. As eIF5A1 is reported to be related with cell apoptosis but little is known about its transcriptional control, we hypothesize that NF-κB might likely modulate eIF5A1 gene expression. Notably, by bioinformatic analysis, several potential NF-κB binding sites on the upstream promoter region of eIF5A1 gene can be found. Subsequent chromatin immunoprecipitation assay revealed that indeed there is enhanced NF-κB binding on eIF5A1 promoter region of Cd-treated BEAS-2B cells. Taken together, our findings suggest for the first time a regulatory mechanism for the pro

  5. Monocyte/macrophage-derived microparticles up-regulate inflammatory mediator synthesis by human airway epithelial cells.

    PubMed

    Cerri, Chiara; Chimenti, Daniele; Conti, Ilaria; Neri, Tommaso; Paggiaro, Pierluigi; Celi, Alessandro

    2006-08-01

    Cell-derived microparticles (MP) are membrane fragments shed by virtually all eukaryotic cells upon activation or during apoptosis that play a significant role in physiologically relevant processes, including coagulation and inflammation. We investigated whether MP derived from monocytes/macrophages have the potential to modulate human airway epithelial cell activation. Monocytes/macrophages were isolated from the buffy coats of blood donors by Ficoll gradient centrifugation, followed by overnight culture of the mononuclear cell fraction. Adherent cells were washed and incubated with the calcium ionophore, A23187, or with histamine. The MP-containing supernatant was incubated with cells of the human bronchial epithelial line BEAS-2B and of the human alveolar line A549. IL-8, MCP-1, and ICAM-1 production was assessed by ELISA and by RT-PCR. In some experiments, monocytes/macrophages were stained with the fluorescent lipid intercalating dye PKH67, and the supernatant was analyzed by FACS. Stimulation of monocytes/macrophages with A23187 caused the release of particles that retain their fluorescent lipid intercalating label, indicating that they are derived from cell membranes. Incubation with A549 and BEAS-2B cells up-regulate IL-8 synthesis. Ultrafiltration and ultracentrifugation of the material abolished the effect, indicating that particulate matter, rather than soluble molecules, is responsible for it. Up-regulation of MCP-1 and ICAM-1 was also demonstrated in A549 cells. Similar results were obtained with histamine. Our data show that human monocytes/macrophages release MP that have the potential to sustain the innate immunity of the airway epithelium, as well as to contribute to the pathogenesis of inflammatory diseases of the lungs through up-regulation of proinflammatory mediators.

  6. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    PubMed Central

    2012-01-01

    Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis), and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B) exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2). Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE) were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75) and high (150 × 106μm2/cm2) amounts, respectively (p < 0.05/cut off ≥ 2.0-fold change). Exposure to amorphous silica micro-particles at high amounts (150 × 106μm2/cm2) induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p < 0.05) induced by crystalline silica, but none were induced by amorphous silica. QRT-PCR revealed that cristobalite selectively up-regulated stress-related genes and cytokines (FOS, ATF3, IL6 and IL8) early and over time (2, 4, 8, and 24 h). Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2) revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells

  7. In Vitro Modeling of RSV Infection and Cytopathogenesis in Well-Differentiated Human Primary Airway Epithelial Cells (WD-PAECs).

    PubMed

    Broadbent, Lindsay; Villenave, Remi; Guo-Parke, Hong; Douglas, Isobel; Shields, Michael D; Power, Ultan F

    2016-01-01

    The choice of model used to study human respiratory syncytial virus (RSV) infection is extremely important. RSV is a human pathogen that is exquisitely adapted to infection of human hosts. Rodent models, such as mice and cotton rats, are semi-permissive to RSV infection and do not faithfully reproduce hallmarks of RSV disease in humans. Furthermore, immortalized airway-derived cell lines, such as HEp-2, BEAS-2B, and A549 cells, are poorly representative of the complexity of the respiratory epithelium. The development of a well-differentiated primary pediatric airway epithelial cell models (WD-PAECs) allows us to simulate several hallmarks of RSV infection of infant airways. They therefore represent important additions to RSV pathogenesis modeling in human-relevant tissues. The following protocols describe how to culture and differentiate both bronchial and nasal primary pediatric airway epithelial cells and how to use these cultures to study RSV cytopathogenesis.

  8. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment.

    PubMed

    Bodas, Manish; Van Westphal, Colin; Carpenter-Thompson, Rhett; K Mohanty, Dillip; Vij, Neeraj

    2016-08-01

    Waterpipe smoking and e-cigarette vaping, the non-combustible sources of inhaled nicotine exposure are increasingly becoming popular and marketed as safer alternative to cigarette smoking. Hence, this study was designed to investigate the impact of inhaled nicotine exposure on disease causing COPD-emphysema mechanisms. For in vitro studies, human bronchial epithelial cells (Beas2b) were treated with waterpipe smoke extract (WPSE, 5%), nicotine (5mM), and/or cysteamine (250μM, an autophagy inducer and anti-oxidant drug), for 6hrs. We observed significantly (p<0.05) increased ubiquitinated protein-accumulation in the insoluble protein fractions of Beas2b cells treated with WPSE or nicotine that could be rescued by cysteamine treatment, suggesting aggresome-formation and autophagy-impairment. Moreover, our data also demonstrate that both WPSE and nicotine exposure significantly (p<0.05) elevates Ub-LC3β co-localization to aggresome-bodies while inducing Ub-p62 co-expression/accumulation, verifying autophagy-impairment. We also found that WPSE and nicotine exposure impacts Beas2b cell viability by significantly (p<0.05) inducing cellular apoptosis/senescence via ROS-activation, as it could be controlled by cysteamine, which is known to have an anti-oxidant property. For murine studies, C57BL/6 mice were administered with inhaled nicotine (intranasal, 500μg/mouse/day for 5 days), as an experimental model of non-combustible nicotine exposure. The inhaled nicotine exposure mediated oxidative-stress induces autophagy-impairment in the murine lungs as seen by significant (p<0.05, n=4) increase in the expression levels of nitrotyrosine protein-adduct (oxidative-stress marker, soluble-fraction) and Ub/p62/VCP (impaired-autophagy marker, insoluble-fraction). Overall, our data shows that nicotine, a common component of WPS, e-cigarette vapor and cigarette smoke, induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment as a potential

  9. Inhibition of the interactions between eosinophil cationic protein and airway epithelial cells by traditional Chinese herbs

    PubMed Central

    2010-01-01

    Background The eosinophil cationic protein (ECP) is cytotoxic to bacteria, viruses, parasites and mammalian cells. Cells are damaged via processes of pore formation, permeability alteration and membrane leaking. Some clinical studies indicate that ECP gathers in the bronchial tract of asthma sufferers, damages bronchial and airway epithelial cells, and leads to in breathing tract inflammation; therefore, prevention of the cytotoxicity caused by ECP may serve as an approach to treat airway inflammation. To achieve the purpose, reduction of the ECP-cell interactions is rational. In this work, the Chinese herbal combinative network was generated to predict and identify the functional herbs from the pools of prescriptions. It was useful to select the node herbs and to demonstrate the relative binding ability between ECP and Beas-2B cells with or withour herb treatments. Results Eighty three Chinese herbs and prescriptions were tested and five effective herbs and six prescription candidates were selected. On the basis of effective single-herbal drugs and prescriptions, a combinative network was generated. We found that a single herb, Gan-cao, served as a node connecting five prescriptions. In addition, Sheng-di-huang, Dang-guei and Mu-tong also appeared in five, four and three kinds of prescriptions, respectively. The extracts of these three herbs indeed effectively inhibited the interactions between ECP and Beas-2B cells. According to the Chinese herbal combinative network, eight of the effective herbal extracts showed inhibitory effects for ECP internalizing into Beas-2B cells. The major components of Gang-cao and Sheng-di-huang, glycyrrhizic acid and verbascose, respectively, reduced the binding affinity between ECP and cells effectively. Conclusions Since these Chinese herbs reduced the binding affinity between ECP and cells and inhibited subsequent ECP entrance into cells, they were potential for mitigating the airway inflammation symptoms. Additionally, we

  10. [Effects of indium chloride on proliferation of human lung epithelial cells and its mechanism].

    PubMed

    Liu, Jia; Zhao, Yinmin; Tang, Liang; Yu, Ping; Sun, Daoyuan

    2015-08-01

    To investigate the effects of different concentrations of indium chloride (InCl3) on the proliferation of human lung epithelial (Beas-2B) cells and its potential mechanism. Beas-2B cells were exposed to different concentrations of InCl3 (0.3, 1.0, 3.0, 10.0, 30.0, 90.0, 270.0, and 810.0 µmol/L) for 24, 48, and 72 h, respectively. The effects of InCl3 on cell proliferation were determined by the CCK-8 assay. The effects of InCl3 on apoptosis were evaluated using annexin V-PI staining followed by flow cytometry. The level of intracellular reactive oxygen species (ROS) in Beas-2B cells after exposure to InCl3 was determined using 2', 7'-dichlorofluorescein diacetate labeling followed by flow cytometry. Compared with the control group, InCl3 at a relatively low concentration (0.3~3.0 µmol/L) significantly promoted cell proliferation (P < 0.05), while InCl3 at a relatively high concentration (30.0~80.0 µmol/L) significantly inhibited cell proliferation after 72 h (P < 0.05). InCl3 at a concentration of 0.3 µmol/L failed to induce apoptosis within 72 h; however, InCl3 at a concentration of 30.0 or 810.0 µmol/L induced substantial early apoptosis after 72 h. Compared with the control group, cells exposed to 0.3 µmol/L InCl3 showed a slight decrease in the level of intracellular ROS within 72 h, while cells exposed to 30.0 or 810.0 µmol/L InCl3 showed a significant increase in the level of intracellular ROS after 72 h (P < 0.05). At a low concentration, InCl3 stimulates cell proliferation by reducing intracellular ROS. However, at a high concentration, InCl3 inhibits cell viability by elevating intracellular ROS and inducing apoptosis.

  11. Lung epithelial cells induce both phenotype alteration and senescence in breast cancer cells.

    PubMed

    Furukawa, Masashi; Wheeler, Sarah; Clark, Amanda M; Wells, Alan

    2015-01-01

    The lung is one of the most common sites of breast cancer metastasis. While metastatic seeding is often accompanied by a dormancy-promoting mesenchymal to epithelial reverting transitions (MErT), we aimed to determine whether lung epithelial cells can impart this phenotype on aggressive breast cancer cells. Co-culture experiments of normal lung epithelial cell lines (SAEC, NHBE or BEAS-2B) and breast cancer cell lines (MCF-7 or MDA-MB-231) were conducted. Flow cytometry analysis, immunofluorescence staining for E-cadherin or Ki-67 and senescence associated beta-galactosidase assays assessed breast cancer cell outgrowth and phenotype. Co-culture of the breast cancer cells with the normal lung cells had different effects on the epithelial and mesenchymal carcinoma cells. The epithelial MCF-7 cells were increased in number but still clustered even if in a slightly more mesenchymal-spindle morphology. On the other hand, the mesenchymal MDA-MB-231 cells survived but did not progressively grow out in co-culture. These aggressive carcinoma cells underwent an epithelial shift as indicated by cuboidal morphology and increased E-cadherin. Disruption of E-cadherin expressed in MDA-MB-231 using shRNA prevented this phenotypic reversion in co-culture. Lung cells limited cancer cell growth kinetics as noted by both (1) some of the cells becoming larger and positive for senescence markers/negative for proliferation marker Ki-67, and (2) Ki-67 positive cells significantly decreasing in MDA-MB-231 and MCF-7 cells after co-culture. Our data indicate that normal lung epithelial cells can drive an epithelial phenotype and suppress the growth kinetics of breast cancer cells coincident with changing their phenotypes.

  12. Wood dusts induce the production of reactive oxygen species and caspase-3 activity in human bronchial epithelial cells.

    PubMed

    Pylkkänen, Lea; Stockmann-Juvala, Helene; Alenius, Harri; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai

    2009-08-21

    Wood dusts are associated with several respiratory symptoms, e.g. impaired lung function and asthma, in exposed workers. However, despite the evidence from epidemiological studies, the underlying mechanisms are not well understood. In the present study, we investigated different wood dusts for their capacity to induce cytotoxicity and production of radical oxygen species (ROS) as well as activation of the apoptotic caspase-3 enzyme in human bronchial epithelial cells (BEAS-2B). Dusts from three different tree species widely used in wood industry were studied; birch and oak represented hardwood species, and pine a common softwood species. All the experiments were carried out in three different concentrations (10, 50, and 500 microg/ml) and the analysis was performed after 0.5, 2, 6, and 24h exposure. All wood dusts studied were cytotoxic to human bronchial epithelial cells in a dose-dependent manner after 2 and 6h treatment. Exposure to pine, birch, or oak dust had a significant stimulating effect on the production of ROS. Also an induction in caspase-3 protease activity, one of the central components of the apoptotic cascade, was seen in BEAS-2B cells after 2 and 6h exposure to each of the wood dusts studied. In summary, we demonstrate that dusts from pine, birch and oak are cytotoxic, able to increase the production of ROS and the apoptotic response in human broncho-epithelial cells in vitro. Thus, our current data suggest oxidative stress by ROS as an important mechanism likely to function in wood dust related pulmonary toxicity although details of the cellular targets and cell-particle interactions remain to be solved. It is though tempting to speculate that redox-regulated transcription factors such as NFkappaB or AP-1 may play a role in this wood dust-evoked process leading to apparently induced apoptosis of target cells.

  13. Functional activity of L-carnitine transporters in human airway epithelial cells.

    PubMed

    Ingoglia, Filippo; Visigalli, Rossana; Rotoli, Bianca Maria; Barilli, Amelia; Riccardi, Benedetta; Puccini, Paola; Dall'Asta, Valeria

    2016-02-01

    Carnitine plays a physiologically important role in the β-oxidation of fatty acids, facilitating the transport of long-chain fatty acids across the inner mitochondrial membrane. Distribution of carnitine within the body tissues is mainly performed by novel organic cation transporter (OCTN) family, including the isoforms OCTN1 (SLC22A4) and OCTN2 (SLC22A5) expressed in human. We performed here a characterization of carnitine transport in human airway epithelial cells A549, Calu-3, NCl-H441, and BEAS-2B, by means of an integrated approach combining data of mRNA/protein expression with the kinetic and inhibition analyses of L-[(3)H]carnitine transport. Carnitine uptake was strictly Na(+)-dependent in all cell models. In A549 and BEAS-2B cells, carnitine uptake was mediated by one high-affinity component (Km<2 μM) identifiable with OCTN2. In both these cell models, indeed, carnitine uptake was maximally inhibited by betaine and strongly reduced by SLC22A5/OCTN2 silencing. Conversely, Calu-3 and NCl-H441 exhibited both a high (Km~20 μM) and a low affinity (Km>1 mM) transport component. While the high affinity component is identifiable with OCTN2, the low affinity uptake is mediated by ATB(0,+), a Na(+), and Cl(-)-coupled transport system for neutral and cationic amino acids, as demonstrated by the inhibition by leucine and arginine, as well as by SLC6A14/ATB(0,+) silencing. The presence of this transporter leads to a massive accumulation of carnitine inside the cells and may be of peculiar relevance in pathologic conditions of carnitine deficiency, such as those associated to OCTN2 defects.

  14. Trans, trans-2,4-decadienal induced cell proliferation via p27 pathway in human bronchial epithelial cells

    SciTech Connect

    Chang, Y.-C.; Lin Pinpin

    2008-04-01

    Lung cancer is the leading cause of cancer deaths worldwide. Epidemiological studies have shown that exposure to cooking oil fumes (COF) is a risk factor for lung cancer. Trans, trans-2,4-decadienal (tt-DDE), a dienaldehyde, is abundant in heated oils and COF. Previously, we found that long-term exposure (45 days) to a sub-lethal dose (1 {mu}M) of tt-DDE significantly increased growth of human bronchial epithelial cells (BEAS-2B). Aims of this study are to understand the mechanism of tt-DDE-induced cell proliferation and possible protective effects of antioxidant, vitamin C and N-acetylcysteine (NAC) in BEAS-2B cells. Utilizing the real-time RT-PCR and Western immunoblotting, we found that p27 mRNA and protein levels were significantly increased by 1 {mu}M tt-DDE treatment. Co-treatment with vitamin C or NAC partially prevented tt-DDE-induced cell proliferation. In addition, the downstream targets of p27, including CDK4, cyclin D{sub 1} and phosphorylated-Rb proteins, increased in 1 {mu}M tt-DDE-treated cells and these changes were prevented by NAC co-treatment. Therefore, these results suggest that tt-DDE increased cell proliferation via inhibition of p27 expression, increase in CDK4/cyclin D{sub 1} protein accumulation and enhancement of Rb phosphorylation. Increased cell proliferation is considered as the early stages of lung carcinogenesis. Administration of antioxidants may prevent COF-associated lung carcinogenesis.

  15. XB130 translocation to microfilamentous structures mediates NNK-induced migration of human bronchial epithelial cells.

    PubMed

    Wu, Qifei; Nadesalingam, Jeya; Moodley, Serisha; Bai, Xiaohui; Liu, Mingyao

    2015-07-20

    Cigarette smoking contributes to the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nicotine-derived nitrosamine ketone (NNK) is the most potent carcinogen among cigarette smoking components, and is known to enhance migration of cancer cells. However, the effect of NNK on normal human bronchial epithelial cells is not well studied. XB130 is a member of actin filament associated protein family and is involved in cell morphology changes, cytoskeletal rearrangement and outgrowth formation, as well as cell migration. We hypothesized that XB130 mediates NNK-induced migration of normal human bronchial epithelial cells. Our results showed that, after NNK stimulation, XB130 was translocated to the cell periphery and enriched in cell motility-associated structures, such as lamellipodia, in normal human bronchial epithelial BEAS2B cells. Moreover, overexpression of XB130 significantly enhanced NNK-induced migration, which requires both the N- and C-termini of XB130. Overexpression of XB130 enhanced NNK-induced protein tyrosine phosphorylation and promoted matrix metalloproteinase-14 translocation to cell motility-associated cellular structures after NNK stimulation. XB130-mediated NNK-induced cell migration may contribute to airway epithelial repair; however, it may also be involved in cigarette smoking-related chronic obstructive pulmonary disease and lung cancer.

  16. Effects of submicrometer particle compositions on cytokine production and lipid peroxidation of human bronchial epithelial cells.

    PubMed Central

    Huang, Song-Lih; Hsu, Miao-Kan; Chan, Chang-Chuan

    2003-01-01

    To identify the size and components related to toxicity of ambient particles, we used a trichotomous impactor to collect 17 sets of particles in three size ranges--submicrometer (diameters < 1 microm; PM1.0, fine (diameters between 1 and 2.5 microm; PM1.0-2.5, and coarse (diameters between 2.5 and 10 microm; PM2.5-10--at stations monitoring background, urban, traffic, and industrial air in Taiwan. Elemental contents, carbon contents, soluble ions, and endotoxin content of particles were determined by X-ray fluorescence spectrometry, thermal analysis, ion chromatography, and the Limulus amebocyte lysate assay, respectively. Human bronchial epithelial BEAS-2B cells were exposed to particle extracts at 100 micro g/mL for 8 hr, and interleukin-8 (IL-8) concentrations in the medium and lipid peroxidation products were measured. Particle-induced tumor necrosis factor-alpha (TNF-alpha) production by mouse macrophage RAW 264.7 cells was also measured. PM1.0 stimulation resulted in significantly higher IL-8 production and lipid peroxidation than PM2.5-10, whereas the responses elicited by PM1.0-2.5 were not significantly higher than blank filters. Untreated and polymyxin B-pretreated PM1.0 also stimulated more TNF-alpha production by RAW 264.7 cells than PM2.5-10 and PM1.0-2.5. Cytokine production was significantly associated with metal contents of PM1.0: IL-8 correlated with Cr and Mn, and TNF-alpha correlated with Fe and Cr. Lipid peroxidation in BEAS-2B cells correlated with elemental and organic carbon contents. Our study found that size and composition of ambient particles were both important factors in inducing cytokine production and lipid peroxidation. PMID:12676602

  17. Inhibition of endotoxin-induced airway epithelial cell injury by a novel family of pyrrol derivates.

    PubMed

    Cabrera-Benítez, Nuria E; Pérez-Roth, Eduardo; Ramos-Nuez, Ángela; Sologuren, Ithaisa; Padrón, José M; Slutsky, Arthur S; Villar, Jesús

    2016-06-01

    Inflammation and apoptosis are crucial mechanisms for the development of the acute respiratory distress syndrome (ARDS). Currently, there is no specific pharmacological therapy for ARDS. We have evaluated the ability of a new family of 1,2,3,5-tetrasubstituted pyrrol compounds for attenuating lipopolysaccharide (LPS)-induced inflammation and apoptosis in an in vitro LPS-induced airway epithelial cell injury model based on the first steps of the development of sepsis-induced ARDS. Human alveolar A549 and human bronchial BEAS-2B cells were exposed to LPS, either alone or in combination with the pyrrol derivatives. Rhein and emodin, two representative compounds with proven activity against the effects of LPS, were used as reference compounds. The pyrrol compound that was termed DTA0118 had the strongest inhibitory activity and was selected as the lead compound to further explore its properties. Exposure to LPS caused an intense inflammatory response and apoptosis in both A549 and BEAS-2B cells. DTA0118 treatment downregulated Toll-like receptor-4 expression and upregulated nuclear factor-κB inhibitor-α expression in cells exposed to LPS. These anti-inflammatory effects were accompanied by a significantly lower secretion of interleukin-6 (IL-6), IL-8, and IL-1β. The observed antiapoptotic effect of DTA0118 was associated with the upregulation of antiapoptotic Bcl-2 and downregulation of proapoptotic Bax and active caspase-3 protein levels. Our findings demonstrate the potent anti-inflammatory and antiapoptotic properties of the pyrrol DTA0118 compound and suggest that it could be considered as a potential drug therapy for the acute phase of sepsis and septic ARDS. Further investigations are needed to examine and validate these mechanisms and effects in a clinically relevant animal model of sepsis and sepsis-induced ARDS.

  18. Secretoglobin 3A2 attenuates lipopolysaccharide-induced inflammation through inhibition of ERK and JNK pathways in bronchial epithelial cells.

    PubMed

    Wang, Xintao; Tanino, Yoshinori; Sato, Suguru; Nikaido, Takefumi; Misa, Kenichi; Fukuhara, Naoko; Fukuhara, Atsuro; Saito, Junpei; Yokouchi, Hiroshi; Ishida, Takashi; Fujita, Teizo; Munakata, Mitsuru

    2015-04-01

    Secretoglobin (SCGB) 3A2, previously known as uteroglobin-related protein 1, is a secreted protein highly expressed in the epithelial cells of the airways. It has been demonstrated that SCGB3A2 is involved in allergic airway inflammation such as bronchial asthma. However, the role of SCGB3A2 in lipopolysaccharide (LPS)-induced airway inflammation has yet to be reported. The goal of this study was therefore to clarify the role of SCGB3A2 in LPS-induced airway inflammation. We stimulated BEAS-2B, human bronchial epithelial cells, with LPS and analyzed messenger RNA (mRNA) expression of tumor necrosis factor (TNF)-α and CXCL8 with or without pre-incubation of SCGB3A2. The mRNA expression of TNF-α and CXCL8 was clearly upregulated 3 h after LPS stimulation, and pre-incubation of SCGB3A2 significantly inhibited the upregulation of the mRNA expression. The pre-incubation of SCGB3A2 also inhibited LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase in BEAS-2B cells. Furthermore, PD98059, a specific inhibitor for ERK, as well as SP600125, a specific inhibitor for JNK, inhibited LPS-induced mRNA upregulation of inflammatory mediators. These results demonstrate the novel biological activity of SCGB3A2, which is that it attenuates LPS-induced inflammation in bronchial epithelial cells through inhibition of ERK and JNK activation.

  19. Low-dose gamma-irradiation inhibits IL-6 secretion from human lung fibroblasts that promotes bronchial epithelial cell transformation by cigarette-smoke carcinogen.

    PubMed

    Chen, Wenshu; Xu, Xiuling; Bai, Lang; Padilla, Mabel T; Gott, Katherine M; Leng, Shuguang; Tellez, Carmen S; Wilder, Julie A; Belinsky, Steven A; Scott, Bobby R; Lin, Yong

    2012-07-01

    Despite decades of research in defining the health effects of low-dose (<100 mGy) ionizing photon radiation (LDR), the relationship between LDR and human cancer risk remains elusive. Because chemical carcinogens modify the tumor microenvironment, which is critical for cancer development, we investigated the role and mechanism of LDR in modulating the response of stromal cells to chemical carcinogen-induced lung cancer development. Secretion of proinflammatory cytokines such as interleukin-6 (IL-6), CXCL1 and CXCL5 from human lung fibroblasts was induced by cigarette-smoke carcinogen benzo[a]pyrene diol epoxide (BPDE), which was inhibited by a single dose of LDR. The activation of NF-κB, which is important for BPDE-induced IL-6 secretion, was also effectively suppressed by LDR. In addition, conditioned media from BPDE-treated fibroblasts activated STAT3 in the immortalized normal human bronchial epithelial cell line Beas-2B, which was blocked with an IL-6 neutralizing antibody. Conditioned medium from LDR-primed and BPDE-treated fibroblast showed diminished capacity in activating STAT3. Furthermore, IL-6 enhanced BPDE-induced Beas-2B cell transformation in vitro. These results suggest that LDR inhibits cigarette smoke-induced lung carcinogenesis by suppressing secretion of cytokines such as IL-6 from fibroblasts in lung tumor-prone microenvironment.

  20. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    PubMed Central

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Paena, Massimilano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-01-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten’s ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer related pathways in transformed clones as determined by RNA seq. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data shows the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  1. Wound-induced ATP release and EGF receptor activation in epithelial cells

    PubMed Central

    Yin, Jia; Xu, Keping; Zhang, Jing; Kumar, Ashok; Yu, Fu-Shin X.

    2007-01-01

    Summary We have shown previously that wounding of human corneal epithelial (HCE) cells resulted in epidermal growth factor receptor (EGFR) transactivation through ectodomain shedding of heparin-binding EGF-like growth factor (HB-EGF). However, the initial signal to trigger these signaling events in response to cell injury remains elusive. In the present study, we investigated the role of ATP released from the injured cells in EGFR transactivation in HCE cells as well as in BEAS 2B cells, a bronchial epithelial cell line. Wounding of epithelial monolayer resulted in the release of ATP into the culture medium. The wound-induced rapid activation of phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) pathways in HCE cells was attenuated by eliminating extracellular ATP, ADP and adenosine. The nonhydrolyzable ATP analog ATP-γ-S induced rapid and sustained EGFR activation that depended on HB-EGF shedding and ADAM (a disintegrin and metalloproteinase). Targeting pathways leading to HB-EGF shedding and EGFR activation attenuated ATP-γ-S-enhanced closure of small scratch wounds. The purinoceptor antagonist reactive blue 2 decreased wound closure and attenuated ATP-γ-S induced HB-EGF shedding. Taken together, our data suggest that ATP, released upon epithelial injury, acts as an early signal to trigger cell responses including an increase in HB-EGF shedding, subsequent EGFR transactivation and its downstream signaling, resulting in wound healing. PMID:17284517

  2. RELEASE OF IL-8 AND IL-6 BY BEAS-2B CELLS FOLLOWING IN VITRO EXPOSURE TO BIODIESEL PM EXTRACTS

    EPA Science Inventory

    Abstract Body: Biodiesel, an alkyl ester of plant oils that can be used in an unmodified diesel engine, is a renewable fuel alternative which show signs of becoming a commercially accepted part of our nation¿s energy infrastructure. Biodiesel exhaust has been physicochemically ch...

  3. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    EPA Science Inventory

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  4. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Titanium Dioxide Nanoparticles

    EPA Science Inventory

    Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...

  5. Proteome Profiling of BEAS-2B Cells Treated with Titanium Dioxide Reveals Potential Toxicity of and Detoxification Pathways for Nanomaterial

    EPA Science Inventory

    Oxidative stress is known to play important roles in nanomaterial-induced toxicities. However, the proteins and signaling pathways associated with nanomaterial-mediated oxidative stress and toxicity are largely unknown. To identify oxidative stress-responding toxicity pathways an...

  6. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    EPA Science Inventory

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  7. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Titanium Dioxide Nanoparticles

    EPA Science Inventory

    Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...

  8. Proteome Profiling of BEAS-2B Cells Treated with Titanium Dioxide Reveals Potential Toxicity of and Detoxification Pathways for Nanomaterial

    EPA Science Inventory

    Oxidative stress is known to play important roles in nanomaterial-induced toxicities. However, the proteins and signaling pathways associated with nanomaterial-mediated oxidative stress and toxicity are largely unknown. To identify oxidative stress-responding toxicity pathways an...

  9. Proteomic Responses of BEAS-2B Cells to Nontoxic and Toxic Chromium: Protein Indicators of Cytotoxicity Conversion

    EPA Science Inventory

    Hexavalent chromium (Cr (VI)) is an environmental human carcinogen which primarily targets lungs. Among a variety of toxic mechanisms, disruption of biological pathways via translational and post-translational modifications represents a key mechanism through which Cr (VI) induces...

  10. RELEASE OF IL-8 AND IL-6 BY BEAS-2B CELLS FOLLOWING IN VITRO EXPOSURE TO BIODIESEL PM EXTRACTS

    EPA Science Inventory

    Abstract Body: Biodiesel, an alkyl ester of plant oils that can be used in an unmodified diesel engine, is a renewable fuel alternative which show signs of becoming a commercially accepted part of our nation¿s energy infrastructure. Biodiesel exhaust has been physicochemically ch...

  11. Proteomic Responses of BEAS-2B Cells to Nontoxic and Toxic Chromium: Protein Indicators of Cytotoxicity Conversion

    EPA Science Inventory

    Hexavalent chromium (Cr (VI)) is an environmental human carcinogen which primarily targets lungs. Among a variety of toxic mechanisms, disruption of biological pathways via translational and post-translational modifications represents a key mechanism through which Cr (VI) induces...

  12. Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro.

    PubMed

    Ruosaari, Salla T; Nymark, Penny E H; Aavikko, Mervi M; Kettunen, Eeva; Knuutila, Sakari; Hollmén, Jaakko; Norppa, Hannu; Anttila, Sisko L

    2008-05-01

    Exposure to asbestos is known to induce lung cancer, and our previous studies have suggested that specific chromosomal regions, such as 19p13, are preferentially aberrant in lung tumours of asbestos-exposed patients. Here, we further examined the association between the 19p region and exposure to asbestos using array comparative genomic hybridization and fluorescence in situ hybridization (FISH) in lung tumours and FISH characterization of asbestos-induced micronuclei (MN) in human bronchial epithelial BEAS 2B cells in vitro. We detected an increased number of 19p losses in the tumours of asbestos-exposed patients in comparison with tumours from non-exposed subjects with similar distribution of tumour histology in both groups (13/33; 39% versus 3/25; 12%, P = 0.04). In BEAS 2B cells, a 48 h exposure to crocidolite asbestos (2.0 microg/cm(2)) was found to induce centromere-negative MN-harbouring chromosomal fragments. Furthermore, an increased frequency of rare MN containing a 19p fragment was observed after the crocidolite treatment in comparison with untreated controls (6/6000 versus 1/10 000, P = 0.01). The results suggest that 19p has significance in asbestos-associated carcinogenesis and that asbestos may be capable of inducing specific chromosome aberrations.

  13. Graphene-induced apoptosis in lung epithelial cells through EGFR

    NASA Astrophysics Data System (ADS)

    Tsai, Shih-Ming; Bangalore, Preeti; Chen, Eric Y.; Lu, David; Chiu, Meng-Hsuen; Suh, Andrew; Gehring, Matthew; Cangco, John P.; Garcia, Santiago G.; Chin, Wei-Chun

    2017-07-01

    Expanding interest in nanotechnology applied to electronic and biomedical fields has led to fast-growing development of various nanomaterials. Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms with unique physical and chemical properties. Recently, graphene has been used in many studies on electronics, photonics, composite materials, energy generation and storage, sensors, and biomedicine. However, the current health risk assessment for graphene has been relatively limited and inconclusive. This study evaluated the toxicity effects of graphene on the airway epithelial cell line BEAS-2B, which represents the first barrier of the human body to interact with airborne graphene particles. Our result showed that graphene can induce the cellular Ca2+ by phospholipase C (PLC) associated pathway by activating epidermal growth factor receptor (EGFR). Subsequently, inositol 1,4,5-triphosphate (IP3) receptors activate the release of Ca2+ from the endoplasmic reticulum (ER) Ca2+ stores. Those Ca2+ signals further trigger the calcium-regulated apoptosis in the cell. Furthermore, the stimulation can cause EGFR upregulation, which have been demonstrated to associate with diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and cardiovascular diseases. This study highlights the additional health risk considering that it can function as a contributing factor for other respiratory diseases.

  14. Elucidation mechanism of different biological responses to multi-walled carbon nanotubes using four cell lines

    PubMed Central

    Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Kim, Yoong-Ahm; Park, Ki Chul; Tsukahara, Tamotsu; Usui, Yuki; Aoki, Kaoru; Shimizu, Masayuki; Ogihara, Nobuhide; Hara, Kazuo; Takanashi, Seiji; Okamoto, Masanori; Ishigaki, Norio; Nakamura, Koichi; Kato, Hiroyuki

    2011-01-01

    We examined differences in cellular responses to multi-walled carbon nanotubes (MWCNTs) using malignant pleural mesothelioma cells (MESO-1), bronchial epithelial cells (BEAS-2B), neuroblastoma cells (IMR-32), and monoblastic cells (THP-1), before and after differentiation. MESO-1, BEAS-2B and differentiated THP-1 cells actively endocytosed MWCNTs, resulting in cytotoxicity with lysosomal injury. However, cytotoxicity did not occur in IMR-32 or undifferentiated THP-1 cells. Both differentiated and undifferentiated THP-1 cells exhibited an inflammatory response. Carbon blacks were endocytosed by the same cell types without lysosomal damage and caused cytokine secretion, but they did not cause cytotoxicity. These results indicate that the cytotoxicity of MWCNTs requires not only cellular uptake but also lysosomal injury. Furthermore, it seems that membrane permeability or cytokine secretion without cytotoxicity results from several active mechanisms. Clarification of the cellular recognition mechanism for MWCNTs is important for developing safer MWCNTs. PMID:22267932

  15. Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence.

    PubMed

    Hara, Hiromichi; Araya, Jun; Takasaka, Naoki; Fujii, Satoko; Kojima, Jun; Yumino, Yoko; Shimizu, Kenichiro; Ishikawa, Takeo; Numata, Takanori; Kawaishi, Makoto; Saito, Keisuke; Hirano, Jun; Odaka, Makoto; Morikawa, Toshiaki; Hano, Hiroshi; Nakayama, Katsutoshi; Kuwano, Kazuyoshi

    2012-03-01

    Cigarette smoke induces damage to proteins and organelles by oxidative stress, resulting in accelerated epithelial cell senescence in the lung, which is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Although the detailed molecular mechanisms are not fully understood, cellular energy status is one of the most crucial determinants for cell senescence. Creatine kinase (CK) is a constitutive enzyme, playing regulatory roles in energy homeostasis of cells. Among two isozymes, brain-type CK (CKB) is the predominant CK in lung tissue. In this study, we investigated the role of CKB in cigarette smoke extract (CSE)-induced cellular senescence in human bronchial epithelial cells (HBECs). Primary HBECs and Beas2B cells were used. Protein carbonylation was evaluated as a marker of oxidative protein damage. Cellular senescence was evaluated by senescence-associated β-galactosidase staining. CKB inhibition was examined by small interfering RNA and cyclocreatine. Secretion of IL-8, a hallmark of senescence-associated secretary phenotype, was measured by ELISA. CKB expression levels were reduced in HBECs from patients with COPD compared with that of HBECs from nonsmokers. CSE induced carbonylation of CKB and subsequently decreased CKB protein levels, which was reversed by a proteasome inhibitor. CKB inhibition alone induced cell senescence, and further enhanced CSE-induced cell senescence and IL-8 secretion. CSE-induced oxidation of CKB is a trigger for proteasomal degradation. Concomitant loss of enzymatic activity regulating energy homeostasis may lead to the acceleration of bronchial epithelial cell senescence, which is implicated in the pathogenesis of COPD.

  16. Role of nuclear factor-kappa B in the regulation of intercellular adhesion molecule 1 after infection of human bronchial epithelial cells by Bordetella pertussis.

    PubMed

    Ishibashi, Yoshio; Nishikawa, Akemi

    2003-10-01

    Previous work has demonstrated that infection of human bronchial epithelial cells by Bordetella pertussis up-regulates intercellular adhesion molecule-1 (ICAM-1) gene and protein expression. It has also been shown that interaction of the Arg-Gly-Asp (RGD) site of filamentous hemagglutinin (FHA) with host cell very late antigen (VLA)-5 (alpha 5 beta 1 integrin) is required for the up-regulation of epithelial ICAM-1 expression, and that pertussis toxin (PT) impairs this response. We therefore examined the molecular mechanisms leading to B. pertussis-induced ICAM-1 up-regulation in BEAS-2B human bronchial epithelial cells. A colorimetric nuclear factor kappa B (NF-kappa B) activation assay demonstrated that NF-kappa B was activated in response to infection of these cells with B. pertussis. This activation occurred in an FHA(RGD)-dependent manner, and was blocked by an antibody against VLA-5, implying that binding of the RGD to VLA-5 integrin is involved in NF-kappa B activation. Western blot analysis revealed that the activation of NF-kappa B by B. pertussis was preceded by degradation of I kappa B alpha, a major cytoplasmic inhibitor of NF-kappa B. Pretreatment of the BEAS-2B cells with the NF-kappa B inhibitors pyrrolidine dithiocarbamate (PDTC), MG-132, and SN50 resulted in a marked decrease in B. pertussis-induced ICAM-1 expression, implying the involvement of NF-kappa B in ICAM-1 expression. Purified PT abrogated both NF-kappa B activation and I kappa B alpha degradation. These results suggest that ligation of VLA-5 integrin by FHA induces RGD-dependent NF-kappa B activation, thus leading to the up-regulation of epithelial ICAM-1 expression, and that a PT-sensitive G protein may be involved in this signaling pathway.

  17. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    PubMed Central

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a six month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. PMID:22521957

  18. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells.

    PubMed

    Stueckle, Todd A; Lu, Yongju; Davis, Mary E; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B; Rojanasakul, Yon

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A 'pro-cancer' gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment.

  19. Impairment of cell cycle progression by sterigmatocystin in human pulmonary cells in vitro.

    PubMed

    Huang, Shujuan; Wang, Juan; Xing, Lingxiao; Shen, Haitao; Yan, Xia; Wang, Junling; Zhang, Xianghong

    2014-04-01

    Sterigmatocystin (ST) is a carcinogenic mycotoxin that is commonly found in human food, animal feed and in the indoor environment. Although the correlation between ST exposure and lung cancer has been widely reported in many studies, the cytotoxicity of ST on human pulmonary cells is not yet fully understood. In the current study, we found that ST could induce DNA double-strand breaks in a human immortalized bronchial epithelial cell line (BEAS-2B cells) and a human lung cancer cell line (A549 cells). In addition, the effects of ST on cell cycle arrest were complex and dependent on the tested ST concentration and cell type. Low concentrations of ST arrested cells in the G2/M phase in BEAS-2B cells and in the S phase in A549 cells, while at high concentration both cells lines were arrested in S and G2/M phases. Furthermore, we observed that the modulation of cyclins and CDK expression showed concomitant changes with cell cycle arrest upon ST exposure in BEAS-2B and A549 cells. In conclusion, ST induced DNA damage and affected key proteins involved in cell cycle regulation to trigger genomic instability, which may be a potential mechanism underlying the developmental basis of lung carcinogenesis.

  20. The Phosphatidylcholine Transfer Protein Stard7 is Required for Mitochondrial and Epithelial Cell Homeostasis.

    PubMed

    Yang, Li; Na, Cheng-Lun; Luo, Shiyu; Wu, David; Hogan, Simon; Huang, Taosheng; Weaver, Timothy E

    2017-04-12

    Mitochondria synthesize select phospholipids but lack the machinery for synthesis of the most abundant mitochondrial phospholipid, phosphatidylcholine (PC). Although the phospholipid transfer protein Stard7 promotes uptake of PC by mitochondria, the importance of this pathway for mitochondrial and cellular homeostasis represents a significant knowledge gap. Haploinsufficiency for Stard7 is associated with significant exacerbation of allergic airway disease in mice, including an increase in epithelial barrier permeability. To test the hypothesis that Stard7 deficiency leads to altered barrier structure/function downstream of mitochondrial dysfunction, Stard7 expression was knocked down in a bronchiolar epithelial cell line (BEAS-2B) and specifically deleted in lung epithelial cells of mice (Stard7(epi∆/∆)). Stard7 deficiency was associated with altered mitochondrial size and membrane organization both in vitro and in vivo. Altered mitochondrial structure was accompanied by disruption of mitochondrial homeostasis, including decreased aerobic respiration, increased oxidant stress, and mitochondrial DNA damage that, in turn, was linked to altered barrier integrity and function. Both mitochondrial and barrier defects were largely corrected by targeting Stard7 to mitochondria or treating epithelial cells with a mitochondrial-targeted antioxidant. These studies suggest that Stard7-mediated transfer of PC is crucial for mitochondrial homeostasis and that mitochondrial dysfunction contributes to altered barrier permeability in Stard7-deficient mice.

  1. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    PubMed

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  2. [Grape seed proanthocyanidins inhibits the invasion and migration of A549 lung cancer cells].

    PubMed

    Zhou, Yehan; Ye, Xiufeng; Shi, Yao; Wang, Ke; Wan, Dan

    2016-02-01

    To explore the effect of grape seed proanthocyanidins (GSPs) on the invasion and migration of A549 lung cancer cells and the underlying mechanism. Trypan blue dye exclusion assay was used to determine the cytotoxic effect of varying doses of GSPs on the BEAS-2B normal human pulmonary epithelial cells. After treated with 0, 10, 20, 40, 80 μg/mL GSP, the proliferation of A549 cells was detected by MTT assay; the invasion and migration of A549 cells were determined by Transwell(TM) assay and scratch wound assay, respectively. The levels of epithelial growth factor receptor (EGFR), E-cadherin, N-cadherin in A549 cells treated with GSPs were detected by Western blotting. (0-40) μg/mL GSPs had no significant toxic effect on BEAS-2B cells, while 80 μg/mL GSPs had significant cytotoxicity to BEAS-2B cells. The proliferation of A549 cells was significantly inhibited within limited dosage in a dose-dependent manner, and the abilities of invasion and migration of A549 cells were also inhibited. Western blotting showed that the expression of EGFR and N-cadherin decreased, while E-cadherin increased after GSPs treatment. GSPs could inhibit the abilities of proliferation, invasion and migration of A549 cells, which might be related to the dow-regulation of EGFR and N-cadherin and the up-regulation of E-cadherin.

  3. SILAC-Based Quantitative Proteomic Analysis of Human Lung Cell Response to Copper Oxide Nanoparticles

    PubMed Central

    Edelmann, Mariola J.; Shack, Leslie A.; Naske, Caitlin D.; Walters, Keisha B.; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level. PMID:25470785

  4. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles.

    PubMed

    Edelmann, Mariola J; Shack, Leslie A; Naske, Caitlin D; Walters, Keisha B; Nanduri, Bindu

    2014-01-01

    Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.

  5. An antagonist of the platelet-activating factor receptor inhibits adherence of both nontypeable Haemophilus influenzae and Streptococcus pneumoniae to cultured human bronchial epithelial cells exposed to cigarette smoke

    PubMed Central

    Shukla, Shakti D; Fairbairn, Rory L; Gell, David A; Latham, Roger D; Sohal, Sukhwinder S; Walters, Eugene H; O’Toole, Ronan F

    2016-01-01

    Background COPD is emerging as the third largest cause of human mortality worldwide after heart disease and stroke. Tobacco smoking, the primary risk factor for the development of COPD, induces increased expression of platelet-activating factor receptor (PAFr) in the lung epithelium. Nontypeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae adhere to PAFr on the luminal surface of human respiratory tract epithelial cells. Objective To investigate PAFr as a potential drug target for the prevention of infections caused by the main bacterial drivers of acute exacerbations in COPD patients, NTHi and S. pneumoniae. Methods Human bronchial epithelial BEAS-2B cells were exposed to cigarette smoke extract (CSE). PAFr expression levels were determined using immunocytochemistry and quantitative polymerase chain reaction. The epithelial cells were challenged with either NTHi or S. pneumoniae labeled with fluorescein isothiocyanate, and bacterial adhesion was measured using immunofluorescence. The effect of a well-evaluated antagonist of PAFr, WEB-2086, on binding of the bacterial pathogens to BEAS-2B cells was then assessed. In silico studies of the tertiary structure of PAFr and the binding pocket for PAF and its antagonist WEB-2086 were undertaken. Results PAFr expression by bronchial epithelial cells was upregulated by CSE, and significantly associated with increased bacterial adhesion. WEB-2086 reduced the epithelial adhesion by both NTHi and S. pneumoniae to levels observed for non-CSE-exposed cells. Furthermore, it was nontoxic toward the bronchial epithelial cells. In silico analyses identified a binding pocket for PAF/WEB-2086 in the predicted PAFr structure. Conclusion WEB-2086 represents an innovative class of candidate drugs for inhibiting PAFr-dependent lung infections caused by the main bacterial drivers of smoking-related COPD. PMID:27524890

  6. Cell-contact dependent inhibition of monocytes by airway epithelial cells and reversion by infection with Respiratory Syncytial Virus.

    PubMed

    Oumouna, Mustapha; Weitnauer, Michael; Mijošek, Vedrana; Schmidt, Lotte M; Eigenbrod, Tatjana; Dalpke, Alexander H

    2015-11-01

    Airway epithelial cells (AEC) are the first line of defense against airborne infectious microbes and play an important role in regulating the local immune response. However, the interplay of epithelial cells and professional immune cells during both homeostasis and infection has only been partially studied. The present study was performed to determine how bronchial epithelial cells affect the activation of monocytes. Under healthy conditions, AECs were shown to inhibit reactivity of monocytes. We hypothesized that upon infection, monocytes might be released from inhibition by AECs. We report that direct contact of monocytes with unstimulated BEAS2B epithelial cells results in inhibition of TNF secretion by activated monocytes. In addition to the known soluble modulators, we show that cell contacts between epithelial cells and monocytes or macrophages also contribute to homeostatic inhibitory actions. We find AECs to express the inhibitory molecule PD-L1 and blockade of PD-L1 results in increased secretion of pro-inflammatory cytokines from monocytes. Contrary to the inhibitory activities during homeostasis, epithelial cells infected with Respiratory Syncitial Virus (RSV) induce a significant release of inhibition. However, release of inhibition was not due to modulation of PD-L1 expression in AECs. We conclude that airway epithelial cells control the reactivity of monocytes through direct and indirect interactions; however tonic inhibition can be reverted upon stimulation of AECs with RSV and thereof derived molecular patterns. The study confirms the important role of airway epithelial cells for local immune reactions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Early detection of ozone-induced hydroperoxides in epithelial cells by a novel infrared spectroscopic method.

    PubMed

    Hemmingsen, A; Allen, J T; Zhang, S; Mortensen, J; Spiteri, M A

    1999-11-01

    In the lower atmosphere ozone is a toxic and an unwanted oxidising pollutant causing injury to the airway epithelial cells by lipid peroxidation to yield products such as phospholipid hydroperoxides (PLHP). Measurements of PLHP, which are primary oxidation products, may reflect an early susceptibility of the target cell to oxidative stress. Biphasic cultures of bronchial epithelial cells (BEAS-2B) were exposed to ozone at environmentally relevant concentrations (0.1-1.0 ppm) for 4 and 12 h. Detection of PLHP was made using a novel technique based on fourier transform infrared spectroscopy (FTIR) in combination with high performance thin-layer chromatography (HPTLC). Six phospholipids were identified on the HPTLC plate; lysophosphatidylcholine (LPC), sphingomyelin (SM), phosphatidylcholine (PC), lysophosphatidylethanolamine (LPE), phosphatidylinositol (PI), and phosphatidylethanolamine (PE). From the FTIR spectra, O-O stretching of hydroperoxides was identified in the range 890-820cm(-1). Multivariate data analysis revealed a positive correlation (r = 0.99 for 4 h exposure and r = 0.98 for 12h exposure) between ozone exposure levels and the region of the FTIR-spectrum comprising the main wavelengths for hydroperoxides. These data support this alternative, versatile and novel spectroscopic approach for the early detection of ozone-mediated damage in human airway epithelial cells.

  8. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes.

    PubMed

    Boggaram, Vijay; Loose, David S; Gottipati, Koteswara R; Natarajan, Kartiga; Mitchell, Courtney T

    2016-04-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells.

  9. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes

    PubMed Central

    Loose, David S.; Gottipati, Koteswara R.; Natarajan, Kartiga; Mitchell, Courtney T.

    2016-01-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells. PMID:26884459

  10. Human bronchial epithelial cells injury and cytokine production induced by Tityus serrulatus scorpion venom: An in vitro study.

    PubMed

    Rigoni, Vera Lucia Silva; Kwasniewski, Fabio H; Vieira, Rodolfo Paula; Linhares, Ingrid Sestrem; da Silva, Joelmir Lucena Veiga; Nogueira-Pedro, Amanda; Zamuner, Stella Regina

    2016-09-15

    Tityus serrulatus is the scorpion specie responsible for the majority of scorpion sting accidents in Brazil. Symptoms of envenomation by Tityus serrulatus range from local pain to severe systemic reactions such as cardiac dysfunction and pulmonary edema. Thus, this study has evaluated the participation of bronchial epithelial cells in the pulmonary effects of Tityus serrulatus scorpion venom (Tsv). Human bronchial epithelial cell line BEAS-2B were utilized as a model target and were incubated with Tsv (10 or 50 μg/mL) for 1, 3, 6 and 24 h. Effects on cellular response of venom-induce cytotoxicity were examined including cell viability, cell integrity, cell morphology, apoptosis/necrosis as well as cell activation through the release of pro-inflammatory cytokines IL-1β, IL-6 and IL-8. Tsv caused a decrease in cell viability at 10 and 50 μg/mL, which was confirmed by lactate dehydrogenase (LDH) measurement. Flow cytometry analyses revealed necrosis as the main cell death pathway caused by Tsv. Furthermore, Tsv induced the release of IL-1β, IL-6 and IL-8. Altogether, these results demonstrate that Tsv induces cytotoxic effects on bronchial epithelial cells, involving necrosis and release of pro-inflammatory cytokines, suggesting that bronchial epithelial cells may play a role in the pulmonary injury caused by Tsv. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    SciTech Connect

    Yang, Xuejiao; Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan; Wang, Shou-Lin

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  12. Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy

    PubMed Central

    Alcaraz, Jordi; Buscemi, Lara; Grabulosa, Mireia; Trepat, Xavier; Fabry, Ben; Farré, Ramon; Navajas, Daniel

    2003-01-01

    Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G*(ω)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1–100 Hz) and at different loading forces (0.1–0.9 nN) with atomic force microscopy. G*(ω) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic viscous drag. Both cell types displayed similar viscoelastic properties. The storage modulus G′(ω) increased with frequency following a power law with exponent ∼0.2. The loss modulus G″(ω) was ∼2/3 lower and increased similarly to G′(ω) up to ∼10 Hz, but exhibited a steeper rise at higher frequencies. The cells showed a weak force dependence of G′(ω) and G″(ω). G*(ω) conformed to the power-law model with a structural damping coefficient of ∼0.3, indicating a coupling of elastic and dissipative processes within the cell. Power-law behavior implies a continuum distribution of stress relaxation time constants. This complex dynamics is consistent with the rheology of soft glassy materials close to a glass transition, thereby suggesting that structural disorder and metastability may be fundamental features of cell architecture. PMID:12609908

  13. The response of a human bronchial epithelial cell line to histamine: Intracellular calcium changes and extracellular release of inflammatory mediators

    SciTech Connect

    Noah, T.L.; Paradiso, A.M.; Madden, M.C.; McKinnon, K.P.; Devlin, R.B. )

    1991-11-01

    Epithelial cells are likely to modulate inflammation and tissue repair in the airways, but the factors responsible for these processes remain unclear. Because human airway epithelia are infrequently available for in vitro studies, transformed epithelial cell lines are of interest as models. The authors therefore investigated the response of an SV-40/adenovirus-transformed human bronchial epithelial cell line (BEAS-2B) to histamine, a mediator with relevance for airway diseases. The intracellular calcium response to histamine (10(-4) M) was measured, using Fura-2 and microspectrofluorimetry. Histamine induced a transient increase in intracellular calcium that originated from intracellular sources; this effect was inhibited by the H1 receptor antagonist diphenhydramine, suggesting that BEAS cells retain functioning histamine receptors. BEAS cells were grown to confluence on microporous, collagen-coated filters, allowing measurement of vectorial release of soluble mediators. Monolayers exposed to histamine for 30 min released interleukin-6 and fibronectin in the apical direction, in a dose-dependent manner. Little eicosanoid production was induced by histamine, either in the apical or the basolateral direction, although BEAS cells constitutively produced small amounts of prostaglandin E2 and 15-HETE. However, these cells formed large amounts of eicosanoids in response to ozone exposure as a positive control. Comparison of their data with published reports for human airway epithelia in primary culture suggests that the BEAS cell line is, in a number of respects, a relevant model for the study of airway epithelial responses to a variety of stimuli.

  14. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    SciTech Connect

    Tsukahara, Tamotsu; Matsuda, Yoshikazu; Usui, Yuki; Haniu, Hisao

    2013-10-18

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition.

  15. Coroglaucigenin enhances the radiosensitivity of human lung cancer cells through Nrf2/ROS pathway.

    PubMed

    Sun, Meng; Pan, Dong; Chen, Yaxiong; Li, Ya; Gao, Kun; Hu, Burong

    2017-05-16

    Seven cardenolides isolated from the ethanol extract of the stems of Calotropis gigantea were evaluated in vitro against human cancer cells and the structure-activity relationships were discussed. The results demonstrated that a compound, named CGN (coroglaucigenin), had better anti-proliferative activity with the IC50 value less than 6 μM among these compounds. Further, we found that CGN displayed much lower cytotoxicity to normal lung epithelial cells (BEAS-2B) than cancer cells (A549). Especially, our results demonstrated that treatment with CGN (1 μM) combined with X-ray irradiation induced higher radiosensitivity in human lung cancer cells (A549, NCI-H460, NCI-H446) but not in BEAS-2B. The expression levels of nuclear transcription factor Nrf2 and Nrf2-driven antioxidant molecule NQO-1 reduced in A549 cells after combined treatment compared to the radiation only. However, CGN had no toxicity and the levels of antioxidant molecules expression were higher in BEAS-2B cells when given the similar treatment as A549 cells. These results suggest that CGN is a very promising potential sensitizer for cancer radiotherapy, which not only inhibits the proliferation of cancer cells but also enhances the radiosensitivity of cancer cells through suppressing the expression of antioxidant molecules while there is no influence for normal cells.

  16. Particulate matter inflammation and receptor sensitivity are target cell specific.

    PubMed

    Veronesi, Bellina; de Haar, Colin; Roy, Josee; Oortgiesen, Marga

    2002-02-01

    The complexity of primary source particulate matter (PM) and the various cell types encountered by its inhalation raise the possibility that target cells are differentially activated. Since epithelial cells, which line the nasal-tracheal-bronchial airways, and sensory C fibers, which terminate throughout this epithelial layer, are initially targeted by inhaled PM, we compared their relative biological response in vitro to PM originating from volcanic (MSH), anthropogenic (diesel), residential (woodstove), urban ambient (St. Louis, Ottawa), and industrial emission (coal fly ash, CFA; residual oil fly ash, ROFA; oil fly ash, OFA) sources. Increases in intracellular calcium (i.e., [Ca(2+)](i)) are a second-messenger event that indicates cellular activation and signal transduction, in both nerve and epithelial cells. Single-cell calcium imaging recordings were taken of human bronchial epithelial cells (BEAS-2B) exposed to selected PM (50 microg/ml or 30 microg/cm(2)). These cells responded with variable increases in [Ca(2+)](i) ranging from abrupt increases, which returned to baseline upon washing of the cells, to oscillations of the [Ca(2+)](i) that did not wash out. Increases in [Ca(2+)](i) and inflammatory cytokine (i.e., interleukin 6, IL-6) release were measured in populations of BEAS-2B cells exposed to PM (50 microg/ml) and were shown to significantly correlate (r(2) =.80). BEAS-2B cells, stained histochemically with cobalt, displayed a concentration-dependent precipitation in response to acid pH and capsaicin, indicating the presence of acid-sensitive pathways (e.g., VR1 and acid-sensitive receptors). To demonstrate the relevance of these pathways to inflammatory cytokine (i.e., IL-6) release, BEAS-2B cells were pretreated (15 min) with antagonists to the vanilloid (VR1) receptor (i.e., capsazepine, CPZ) or acid-sensitive pathways (i.e., amiloride) before their exposure to the selected PM. A significant reduction of IL-6 release occurred in response to all PM

  17. Mutant AKT1-E17K is oncogenic in lung epithelial cells

    PubMed Central

    De Marco, Carmela; Malanga, Donatella; Rinaldo, Nicola; De Vita, Fernanda; Scrima, Marianna; Lovisa, Sara; Fabris, Linda; Carriero, Maria Vincenza; Franco, Renato; Rizzuto, Antonia; Baldassarre, Gustavo; Viglietto, Giuseppe

    2015-01-01

    The hotspot E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6–2% of human lung cancers. In this manuscript, we sought to determine whether this AKT1 variant is a bona-fide activating mutation and plays a role in the development of lung cancer. Here we report that in immortalized human bronchial epithelial cells (BEAS-2B cells) mutant AKT1-E17K promotes anchorage-dependent and -independent proliferation, increases the ability to migrate, invade as well as to survive and duplicate in stressful conditions, leading to the emergency of cells endowed with the capability to form aggressive tumours at high efficiency. We provide also evidence that the molecular mechanism whereby AKT1-E17K is oncogenic in lung epithelial cells involves phosphorylation and consequent cytoplasmic delocalization of the cyclin-dependent kinase (cdk) inhibitor p27. In agreement with these results, cytoplasmic p27 is preferentially observed in primary NSCLCs with activated AKT and predicts poor survival. PMID:26053093

  18. Analytical constraints for the analysis of human cell line secretomes by shotgun proteomics.

    PubMed

    Malard, Véronique; Chardan, Laetitia; Roussi, Stamatiki; Darolles, Carine; Sage, Nicole; Gaillard, Jean-Charles; Armengaud, Jean

    2012-01-04

    Human cell line secretome represents a valuable source of therapeutic targets and candidate biomarkers. Secreted proteins found in biological fluids or culture media are by essence highly diluted. Secretome investigation with proteomic approaches is hardly compatible with the high content of proteins found in complete cell culture media. Therefore, many studies are currently done with media containing few or no protein. Such conditions may perturb cell metabolism and proliferation. Here, we compared seventeen different compositions of culture media for the human bronchial epithelial BEAS-2B cell line. Cell viability, proliferation rate and initial protein charge were systematically compared. We have shown that an important difficulty for the proteomic analysis is due to the presence of detergents such as Pluronic F-68 which hinders peptide mass spectrometry. The high glucose containing DMEM medium which is free of proteins was shown to preserve a good viability and proliferation of cells. With this conditioning medium, we identified 81 extracellular proteins in the secretome of BEAS-2B cells. Moreover, to illustrate this approach, we exposed BEAS-2B cells to a low toxic dose of CoCl(2,) and found 24 extracellular proteins modulated by cobalt. This study highlights the possible contribution of such proteomic approach in the field of toxicology.

  19. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    SciTech Connect

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn; Sohn, Myung Hyun

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Hyperoxia induces apoptosis and chitinase 3-like 1 expression in human airway epithelial cells. Black-Right-Pointing-Pointer Presence of chitinase 3-like 1 affects airway epithelial cell death after hyperoxic exposure. Black-Right-Pointing-Pointer Silencing chitinase 3-like 1 manipulate the phosphorylation of ERK, p38 and Akt. -- Abstract: Background: Exposure to 100% oxygen causes hyperoxic acute lung injury characterized by cell death and injury of alveolar epithelial cells. Recently, the role of chitinase 3-like 1 (CHI3L1), a member of the glycosyl hydrolase 18 family that lacks chitinase activity, in oxidative stress was demonstrated in murine models. High levels of serum CHI3L1 have been associated with various diseases of the lung, such as asthma, chronic obstructive pulmonary disease, and cancer. However, the role of CHI3L1 in human airway epithelial cells undergoing oxidative stress remains unknown. In addition, the signaling pathways associated with CHI3L1 in this process are poorly understood. Purpose: In this study, we demonstrate the role of CHI3L1, along with the MAPK and PI3K signaling pathways, in hyperoxia-exposed airway epithelial cells. Method: The human airway epithelial cell line, BEAS-2B, was exposed to >95% oxygen (hyperoxia) for up to 72 h. Hyperoxia-induced cell death was determined by assessing cell viability, Annexin-V FITC staining, caspase-3 and -7 expression, and electron microscopy. CHI3L1 knockdown and overexpression studies were conducted in BEAS-2B cells to examine the role of CHI3L1 in hyperoxia-induced apoptosis. Activation of the MAPK and PI3K pathways was also investigated to determine the role of these signaling cascades in this process. Results: Hyperoxia exposure increased CHI3L1 expression and apoptosis in a time-dependent manner. CHI3L1 knockdown protected cells from hyperoxia-induced apoptosis. In contrast, CHI3L1 overexpression promoted cell death after hyperoxia exposure. Finally

  20. Induction of regulator of G-protein signaling 2 expression by long-acting β2-adrenoceptor agonists and glucocorticoids in human airway epithelial cells.

    PubMed

    Holden, Neil S; George, Tresa; Rider, Christopher F; Chandrasekhar, Ambika; Shah, Suharsh; Kaur, Manminder; Johnson, Malcolm; Siderovski, David P; Leigh, Richard; Giembycz, Mark A; Newton, Robert

    2014-01-01

    In asthma and chronic obstructive pulmonary disease (COPD) multiple mediators act on Gαq-linked G-protein-coupled receptors (GPCRs) to cause bronchoconstriction. However, acting on the airway epithelium, such mediators may also elicit inflammatory responses. In human bronchial epithelial BEAS-2B cells (bronchial epithelium + adenovirus 12-SV40 hybrid), regulator of G-protein signaling (RGS) 2 mRNA and protein were synergistically induced in response to combinations of long-acting β2-adrenoceptor agonist (LABA) (salmeterol, formoterol) plus glucocorticoid (dexamethasone, fluticasone propionate, budesonide). Equivalent responses occurred in primary human bronchial epithelial cells. Concentrations of glucocorticoid plus LABA required to induce RGS2 expression in BEAS-2B cells were consistent with the levels achieved therapeutically in the lungs. As RGS2 is a GTPase-activating protein that switches off Gαq, intracellular free calcium ([Ca(2+)]i) flux was used as a surrogate of responses induced by histamine, methacholine, and the thromboxane receptor agonist U46619 [(Z)-7-[(1S,4R,5R,6S)-5-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxabicyclo[2.2.1]heptan-6-yl]hept-5-enoic acid]. This was significantly attenuated by salmeterol plus dexamethasone pretreatment, or RGS2 overexpression, and the protective effect of salmeterol plus dexamethasone was abolished by RGS2 RNA silencing. Although methacholine and U46619 induced interleukin-8 (IL-8) release and this was inhibited by RGS2 overexpression, the repression of U46619-induced IL-8 release by salmeterol plus dexamethasone was unaffected by RGS2 knockdown. Given a role for Gαq-mediated pathways in inducing IL-8 release, we propose that RGS2 acts redundantly with other effector processes to repress IL-8 expression. Thus, RGS2 expression is a novel effector mechanism in the airway epithelium that is induced by glucocorticoid/LABA combinations. This could contribute to the efficacy of glucocorticoid/LABA combinations in asthma and

  1. IL-4 promotes asymmetric dimethylarginine accumulation, oxo-nitrative stress, and hypoxic response-induced mitochondrial loss in airway epithelial cells.

    PubMed

    Pattnaik, Bijay; Bodas, Manish; Bhatraju, Naveen Kumar; Ahmad, Tanveer; Pant, Richa; Guleria, Randeep; Ghosh, Balaram; Agrawal, Anurag

    2016-07-01

    Obesity is known to increase asthma risk and severity. Increased levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, are associated with mitochondrial toxicity, asthma, and metabolic syndrome. IL-4 upregulates the expression of protein arginine methyltransferases, which are essential for ADMA formation. Importantly, cross-talk between IL-4, ADMA, and mitochondrial dysfunction could explain how obesity and IL-4 can synergize to exacerbate allergic inflammation. We sought to investigate how IL-4, a key asthma-associated cytokine, can influence ADMA-related effects on lungs. BEAS2B (bronchial epithelial) cells were treated with IL-4 followed by ADMA and investigated for oxo-nitrative stress and resultant mitochondrial toxicity after 48 hours by using flow cytometry, confocal imaging, immunoblotting, and fluorimetric assays. IL-4-induced mitotoxicity in BEAS2B cells was significantly higher in the presence of exogenous ADMA. IL-4 treatment led to proteolytic degradation of dimethylarginine dimethylaminohydrolase 2, which catabolizes ADMA. IL-4 pretreatment was associated with increased intracellular ADMA accumulation and increased ADMA-induced mitotoxicity. Airway epithelial cells treated with IL-4 followed by ADMA showed exaggerated oxo-nitrative stress and potent induction of the cellular hypoxic response, despite normoxic conditions. The hypoxic response was associated with reduced mitochondrial function but was reversible by overexpression of the mitochondrial biogenesis factor, mitochondrial transcription factor A. We conclude that IL-4 promotes intracellular ADMA accumulation, leading to mitochondrial loss through oxo-nitrative stress and hypoxic response. This provides a novel understanding of how obesity, with high ADMA levels, and asthma, with high IL-4 levels, might potentiate each other and highlights the potential of mitochondrial-targeted therapeutics in obese subjects with asthma. Copyright © 2016 American

  2. Signal Transducer and Activator of Transcription 1 (STAT1) is Essential for Chromium Silencing of Gene Induction in Human Airway Epithelial Cells

    PubMed Central

    Nemec, Antonia A.; Barchowsky, Aaron

    2009-01-01

    Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)–dependent pathway to silence nickel (Ni)–induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase–activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1α (HIF-1α) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1α activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells. PMID:19403854

  3. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    PubMed

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  4. The role of IL-6 released from pulmonary epithelial cells in diesel UFP-induced endothelial activation.

    PubMed

    Bengalli, Rossella; Longhin, Eleonora; Marchetti, Sara; Proverbio, Maria C; Battaglia, Cristina; Camatini, Marina

    2017-09-12

    Diesel exhaust particles (DEP) and their ultrafine fraction (UFP) are known to induce cardiovascular effects in exposed subjects. The mechanisms leading to these outcomes are still under investigation, but the activation of respiratory endothelium is likely to be involved. Particles translocation through the air-blood barrier and the release of mediators from the exposed epithelium have been suggested to participate in the process. Here we used a conditioned media in vitro model to investigate the role of epithelial-released mediators in the endothelial cells activation. Diesel UFP were sampled from a Euro 4 vehicle run over a chassis dyno and lung epithelial BEAS-2B cells were exposed for 20 h (dose 5 μg/cm(2)). The exposure media were collected and used for endothelial HPMEC-ST1.6R cells treatment for 24 h. The processes related to oxidative stress and inflammation were investigated in the epithelial cells, accordingly to the present knowledge on DEP toxicity. The release of IL-6 and VEGF was significantly augmented in diesel exposed cells. In endothelial cells, VCAM-1 and ICAM-1 adhesion molecules levels were increased after exposure to the conditioned media. By interfering with IL-6 binding to its endothelial receptor, we demonstrate the role of this interleukin in inducing the endothelial response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Neutrophil and asbestos fiber-induced cytotoxicity in cultured human mesothelial and bronchial epithelial cells.

    PubMed

    Kinnula, V L; Raivio, K O; Linnainmaa, K; Ekman, A; Klockars, M

    1995-03-01

    This study investigates reactive oxygen species generation and oxidant-related cytotoxicity induced by amosite asbestos fibers and polymorphonuclear leucocytes (PMNs) in human mesothelial cells and human bronchial epithelial cells in vitro. Transformed human pleural mesothelial cells (MET 5A) and bronchial epithelial cells (BEAS 2B) were treated with amosite (2 micrograms/cm2) for 48 h. After 24 h of incubation, the cells were exposed for 1 h to nonactivated or amosite (50 micrograms) activated PMNs, washed, and incubated for another 23 h. Reactive oxygen species generation by the PMNs and the target cells was measured by chemiluminescence. Cell injury was assessed by cellular adenine nucleotide depletion, extracellular release of nucleotides, and lactate dehydrogenase (LDH). Amosite-activated (but also to a lesser degree nonactivated) PMNs released substantial amounts of reactive oxygen metabolites, whereas the chemiluminescence of amosite-exposed mesothelial cells and epithelial cells did not differ from the background. Amosite treatment (48 h) of the target cells did not change intracellular adenine nucleotides (ATP, ADP, AMP) or nucleotide catabolite products (xanthine, hypoxanthine, and uric acid). When the target cells were exposed to nonactivated PMNs, significant adenine nucleotide depletion and nucleotide catabolite accumulation was observed in mesothelial cells only. In separate experiments, when the target cells were exposed to amosite-activated PMNs, the target cell injury was further potentiated compared with the amosite treatment alone or exposure to nonactivated PMNs. In conclusion, this study suggests the importance of inflammatory cell-derived free radicals in the development of amosite-induced mesothelial cell injury.

  6. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    PubMed Central

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  7. Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling

    SciTech Connect

    Skuland, Tonje Øvrevik, Johan; Låg, Marit; Schwarze, Per; Refsnes, Magne

    2014-08-15

    Amorphous silica nanoparticles (SiNPs) have previously been shown to induce marked cytokine (interleukin-6; IL-6 and interleukin-8; CXCL8/IL-8) responses independently of particle uptake in human bronchial epithelial BEAS-2B cells. In this study the involvement of the mitogen-activated protein kinases (MAP-kinases), nuclear factor-kappa Β (NF-κΒ) and in particular tumour necrosis factor-α converting enzyme (TACE) and—epidermal growth factor receptor (EGFR) signalling pathways were examined in triggering of IL-6 and CXCL8 release after exposure to a 50 nm silica nanoparticle (Si50). Exposure to Si50 increased phosphorylation of NF-κΒ p65 and MAP-kinases p38 and JUN-N-terminal protein kinase pathways (JNK), but not extracellular signal regulated kinases (ERK). Inhibition of NF-κΒ and p38 reduced the cytokine responses to Si50, whereas neither JNK- nor ERK-inhibition exerted any significant effect on the responses to Si50. Increases in membrane-bound transforming growth factor-α (TGF-α) release and EGFR phosphorylation were also observed after Si50 exposure, and pre-treatment with inhibitors of these pathways reduced the release of IL-6 and CXCL8, but did not affect the Si50-induced phosphorylation of p38 and p65. In contrast, p38-inhibition partially reduced Si50-induced TGF-α release, while the p65-inhibition was without effect. Overall, our results indicate that Si50-induced IL-6 and CXCL8 responses in BEAS-2B cells were regulated through combined activation of several pathways, including NF-κΒ and p38/TACE/TGF-α/EGFR signalling. The study identifies critical, initial events in the triggering of pro-inflammatory responses by nanoparticles. - Highlights: • Silica nanoparticles induce IL-6 and CXCL8 via NFκB and MAPKinase p38 in BEAS-2B • Silica nanoparticles induce release of the EGF-receptor ligand TGF-α • TGF-α release contributes to the IL-6 and CXCL8 release • Phosphorylation of p38 is involved in release of TGF-α.

  8. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells

    SciTech Connect

    Duan, Wei-Xia; He, Min-Di; Mao, Lin; Qian, Feng-Hua; Li, Yu-Ming; Pi, Hui-Feng; Liu, Chuan; Chen, Chun-Hai; Lu, Yong-Hui; Cao, Zheng-Wang; Zhang, Lei; Yu, Zheng-Ping; Zhou, Zhou

    2015-07-15

    With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni{sup 2+} inside the cells. NiONPs at doses of 5, 10, and 20 μg/cm{sup 2} inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity. - Highlights: • NiONPs were taken up by BEAS-2B cells and released Ni{sup 2+}. • NiONPs produced cytotoxicity was demonstrated through an apoptotic process. • NiONPs repressed SIRT1 expression and activated p53 and Bax. • Overexpression of SIRT1 attenuated NiONPs-induced apoptosis via deacetylation p53.

  9. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells

    PubMed Central

    Kluz, Thomas; Cohen, Lisa; Shen, Steven S.; Costa, Max

    2016-01-01

    Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM) and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress. PMID:27186882

  10. Molecular Mechanisms of Malignant Transformation by Low Dose Cadmium in Normal Human Bronchial Epithelial Cells.

    PubMed

    Cartularo, Laura; Kluz, Thomas; Cohen, Lisa; Shen, Steven S; Costa, Max

    2016-01-01

    Cadmium is a carcinogenic metal, the mechanisms of which are not fully understood. In this study, human bronchial epithelial cells were transformed with sub-toxic doses of cadmium (0.01, 0.05, and 0.1 μM) and transformed clones were characterized for gene expression changes using RNA-seq, as well as other molecular measurements. 440 genes were upregulated and 47 genes were downregulated in cadmium clones relative to control clones over 1.25-fold. Upregulated genes were associated mostly with gene ontology terms related to embryonic development, immune response, and cell movement, while downregulated genes were associated with RNA metabolism and regulation of transcription. Several embryonic genes were upregulated, including the transcription regulator SATB2. SATB2 is critical for normal skeletal development and has roles in gene expression regulation and chromatin remodeling. Small hairpin RNA knockdown of SATB2 significantly inhibited growth in soft agar, indicating its potential as a driver of metal-induced carcinogenesis. An increase in oxidative stress and autophagy was observed in cadmium clones. In addition, the DNA repair protein O6-methylguanine-DNA-methyltransferase was depleted by transformation with cadmium. MGMT loss caused significant decrease in cell viability after treatment with the alkylating agent temozolomide, demonstrating diminished capacity to repair such damage. Results reveal various mechanisms of cadmium-induced malignant transformation in BEAS-2B cells including upregulation of SATB2, downregulation of MGMT, and increased oxidative stress.

  11. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells

    PubMed Central

    Berger, John P.; Simet, Samantha M.; DeVasure, Jane M.; Boten, Jessica A.; Sweeter, Jenea M.; Kharbanda, Kusum K.; Sisson, Joseph H.; Wyatt, Todd A.

    2014-01-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3–7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3–7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium. PMID:24880893

  12. Malondialdehyde-acetaldehyde (MAA) adducted proteins bind to scavenger receptor A in airway epithelial cells.

    PubMed

    Berger, John P; Simet, Samantha M; DeVasure, Jane M; Boten, Jessica A; Sweeter, Jenea M; Kharbanda, Kusum K; Sisson, Joseph H; Wyatt, Todd A

    2014-08-01

    Co-exposure to cigarette smoke and ethanol generates malondialdehyde and acetaldehyde, which can subsequently lead to the formation of aldehyde-adducted proteins. We have previously shown that exposure of bronchial epithelial cells to malondialdehyde-acetaldehyde (MAA) adducted protein increases protein kinase C (PKC) activity and proinflammatory cytokine release. A specific ligand to scavenger receptor A (SRA), fucoidan, blocks this effect. We hypothesized that MAA-adducted protein binds to bronchial epithelial cells via SRA. Human bronchial epithelial cells (BEAS-2B) were exposed to MAA-adducted protein (either bovine serum albumin [BSA-MAA] or surfactant protein D [SPD-MAA]) and SRA examined using confocal microscopy, fluorescent activated cell sorting (FACS), and immunoprecipitation. Differentiated mouse tracheal epithelial cells (MTEC) cultured by air-liquid interface were assayed for MAA-stimulated PKC activity and keratinocyte-derived chemokine (KC) release. Specific cell surface membrane dye co-localized with upregulated SRA after exposure to MAA for 3-7 min and subsided by 20 min. Likewise, MAA-adducted protein co-localized to SRA from 3 to 7 min with a subsequent internalization of MAA by 10 min. These results were confirmed using FACS analysis and revealed a reduced mean fluorescence of SRA after 3 min. Furthermore, increased amounts of MAA-adducted protein could be detected by Western blot in immunoprecipitated SRA samples after 3 min treatment with MAA. MAA stimulated PKCε-mediated KC release in wild type, but not SRA knockout mice. These data demonstrate that aldehyde-adducted proteins in the lungs rapidly bind to SRA and internalize this receptor prior to the MAA-adducted protein stimulation of PKC-dependent inflammatory cytokine release in airway epithelium.

  13. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    SciTech Connect

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  14. Abiotic stress of ambient cold temperature regulates the host receptivity to pathogens by cell surfaced sialic acids.

    PubMed

    Moon, Seong-Cheol; Joo, Su-Yeon; Chung, Tae-Wook; Choi, Hee-Jung; Park, Mi-Ju; Choi, Hee-Jin; Bae, Sung-Jin; Kim, Keuk-Jun; Kim, Cheorl-Ho; Joo, Myungsoo; Ha, Ki-Tae

    2016-07-29

    Ambient cold temperature, as an abiotic stress, regulates the survival, stability, transmission, and infection of pathogens. However, the effect of cold temperature on the host receptivity to the pathogens has not been fully studied. In this study, the expression of terminal α-2,3- and α-2,6-sialic acids were increased in murine lung tissues, especially bronchial epithelium, by exposure to cold condition. The expression of several sialyltransferases were also increased by exposure to cold temperature. Furthermore, in human bronchial epithelial BEAS-2B cells, the expressions of α-2,3- and α-2,6-sialic acids, and mRNA levels of sialyltransferases were increased in the low temperature condition at 33 °C. On the other hand, the treatment of Lith-Gly, a sialyltransferase inhibitor, blocked the cold-induced expression of sialic acids on surface of BEAS-2B cells. The binding of influenza H1N1 hemagglutinin (HA) toward BEAS-2B cells cultured at low temperature condition was increased, compared to 37 °C. In contrast, the cold-increased HA binding was blocked by treatment of lithocholicglycine and sialyl-N-acetyl-D-lactosamines harboring α-2,3- and α-2,6-sialyl motive. These results suggest that the host receptivity to virus at cold temperature results from the expressions of α-2,3- and α-2,6-sialic acids through the regulation of sialyltransferase expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Exposure of airway epithelial cells to Pseudomonas aeruginosa biofilm-derived quorum sensing molecules decrease the activity of the anti-oxidant response element bound by NRF2.

    PubMed

    Roussel, Lucie; Rousseau, Simon

    2017-02-05

    Chronic bacterial infections in cystic fibrosis lung disease are often characterized by Pseudomonas aeruginosa biofilms that are regulated by bacterial intercellular signals termed quorum sensing (QS), such as N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL). This study reports that biofilm-derived exoproducts decrease the transcriptional activity of the anti-oxidant response element in bronchial epithelial cells. In a live co-culture assay of BEAS-2B cells and P. aeruginosa biofilm, the QS molecule 3OC12-HSL was an important but not sole contributor to the inhibition of basal NRF2 luciferase reporter activity. Moreover, biofilm-derived exoproducts and 3OC12-HSL decrease the expression of endogenous antioxidant response element-regulated genes hemeoxygenase-1 (HO-1) and NAD(P)H Quinone Dehydrogenase-1 (NQO-1) while they increase IL-8 expression. As previously reported, IL-8 expression is partially dependent on p38 MAPK activity, but the inhibitory effect of biofilm QS molecules on HO-1 and NQO-1 expression occurs independently of this protein kinase. Finally, the transfection of CFTRdelF508 but not its wild type counterpart decreases basal, planktonic PsaDM and sulforaphane-driven NRF2 luciferase reporter activity in BEAS-2B cells. Therefore, the presence of quorum sensing molecules derived from bacterial biofilms lowers the transcriptional activity of the anti-oxidant response element, which may contribute to the establishment of chronic bacterial infections, especially in the presence of mutated CFTR. Increasing NRF2 activity may thus be a promising strategy to potentiate anti-biofilm activity in cystic fibrosis lung disease.

  16. Particle complexation of mitochondrial iron produces superoxide generation and activates MAP kinases, NF-kappa B, nrf-2 in human respiratory epithelial cell

    EPA Science Inventory

    The biological effect of particles is associated with a disruption in cell iron homeostasis. We tested the postulate that complexation of cell iron by silica (Si02) results in both an oxidative stress and biological effect. BEAS-2B cells were exposed to either media or 100 ug/ml....

  17. Particle complexation of mitochondrial iron produces superoxide generation and activates MAP kinases, NF-kappa B, nrf-2 in human respiratory epithelial cell

    EPA Science Inventory

    The biological effect of particles is associated with a disruption in cell iron homeostasis. We tested the postulate that complexation of cell iron by silica (Si02) results in both an oxidative stress and biological effect. BEAS-2B cells were exposed to either media or 100 ug/ml....

  18. Synergistic inflammatory effect of PM10 with mycotoxin deoxynivalenol on human lung epithelial cells.

    PubMed

    Capasso, Laura; Longhin, Eleonora; Caloni, Francesca; Camatini, Marina; Gualtieri, Maurizio

    2015-09-15

    The presence of deoxynivalenol (DON), a mycotoxin produced by Fusarium species, has been reported worldwide in food and feedstuffs. Even though oral intake is the main route of exposure, DON inhalation is also of concern in workers and exposed population. Particulate matter (PM) is one of the most important causes of air quality detriment and it induces several adverse health effects. Therefore it is of primary importance to understand possible combined effects of DON and PM. The alveolar type II, A549, and the bronchial epithelial, BEAS-2B, cell lines were exposed for 24 h to different concentrations of DON (10-1000 ng/ml), PM10 (5 μg/cm(2), sampled in summer or winter season), and a combination of these pollutants. Cell death, interleukins release and cell cycle alteration were analysed; protein array technique was also applied to evaluate proteins activation related to MAP-kinases cascade. Our results demonstrate that low doses of PM and DON used alone have scarce toxic effects, while induce cytotoxicity and inflammation when used in combination. This observation outlines the importance of investigation on the combined effects of air pollutants for their possible outcomes on human health.

  19. Monolayer culture systems with respiratory epithelial cells for evaluation of bacterial invasiveness.

    PubMed

    Hirakata, Yoichi; Yano, Hisakazu; Arai, Kazuaki; Endo, Shiro; Kanamori, Hajime; Aoyagi, Tetsuji; Hirotani, Ayako; Kitagawa, Miho; Hatta, Masumitsu; Yamamoto, Natsuo; Kunishima, Hiroyuki; Kawakami, Kazuyoshi; Kaku, Mitsuo

    2010-01-01

    Pseudomonas (P.) aeruginosa is a major opportunistic pathogen especially in immunocompromised patients. To evaluate the invasiveness of respiratory pathogens, we developed monolayer culture systems and examined the degree of invasion by P. aeruginosa and invasive Salmonella (S.) typhimurium strains using human respiratory cell lines: A549 (derived from lung cancer), BEAS-2B (normal bronchial epithelium), and Calu-3 (pleural effusion of a patient with adenocarcinoma of the lung). Cells were seeded into filter units containing 0.33 cm(2) filter membranes with 3.0 microm pores, and were incubated at 37 degrees C under 5% CO(2) for 4-10 days. By monitoring the trans-monolayer electrical resistance (TER), we judged that BEAS-2B cells (TER values: 436.2 +/- 16.8 to 628.8 +/- 66.3 Omega cm(2)) and Calu-3 cells (TER values: 490.5 +/- 25.2 to 547.8 +/- 21.6 Omega cm(2)) formed monolayers with tight junctions, but not A549 cells. On day 8 of culture, monolayer cultures were infected with bacteria, and the number of microorganisms penetrating into the basolateral medium was counted. Wild-type P. aeruginosa PAO1 (PAO1 WT) and S. typhimurium SL1344 were detected in the basolateral medium of BEAS-2B monolayer system by 3 h after inoculation, while only P. aeruginosa PAO1 WT was detected in the basolateral medium of Calu-3 monolayer, indicating poor invasiveness of S. typhimurium SL1344 in the Calu-3 system. These findings suggest that BEAS-2B or Calu-3 monolayer system could be useful for evaluating the invasiveness of respiratory pathogens. Because of the difference in bacterial invasiveness, we may need to choose a suitable cell system for each target pathogen.

  20. Rhinovirus-bacteria coexposure synergistically induces CCL20 production from human bronchial epithelial cells.

    PubMed

    Maciejewski, Barbara A; Jamieson, Kyla C; Arnason, Jason W; Kooi, Cora; Wiehler, Shahina; Traves, Suzanne L; Leigh, Richard; Proud, David

    2017-05-01

    Exacerbations of chronic obstructive pulmonary disease are triggered by viral or bacterial pathogens, with human rhinovirus (HRV) and nontypeable Hemophilus influenzae (NTHI) among the most commonly detected pathogens. Patients who suffer from concomitant viral and bacterial infection have more severe exacerbations. The airway epithelial cell is the initial site of viral and bacterial interactions, and CCL20 is an epithelial chemokine that attracts immature dendritic cells to the airways and can act as an antimicrobial. As such, it contributes to innate and adaptive immune responses to infection. We used primary cultures of human bronchial epithelial cells and the BEAS-2B cell line to examine the effects of bacterial-viral coexposure, as well as each stimulus alone, on epithelial expression of CXCL8 and, in particular, CCL20. HRV-bacterial coexposure induced synergistic production of CXCL8 and CCL20 compared with the sum of each stimulus alone. Synergistic induction of CCL20 did not require viral replication and occurred with two different HRV serotypes that use different viral receptors. Synergy was also seen with either NTHI or Pseudomonas aeruginosa Synergistic induction of CCL20 was transcriptionally regulated. Although NF-κB was required for transcription, it did not regulate synergy, but NF-IL-6 did appear to contribute. Among MAPK inhibitors studied, neither SB203580 nor PD98059 had any effect on synergy, whereas U0126 prevented synergistic induction of CCL20 by HRV and bacteria, apparently via "off-target" effects. Thus bacterial-viral coexposure synergistically increases innate immune responses compared with individual infections. We speculate that this increased inflammatory response leads to worse clinical outcomes. Copyright © 2017 the American Physiological Society.

  1. Residual oil fly ash and charged polymers activate epithelial cells and nociceptive sensory neurons.

    PubMed

    Oortgiesen, M; Veronesi, B; Eichenbaum, G; Kiser, P F; Simon, S A

    2000-04-01

    Residual oil fly ash (ROFA) is an industrial pollutant that contains metals, acids, and unknown materials complexed to a particulate core. The heterogeneous composition of ROFA hampers finding the mechanism(s) by which it and other particulate pollutants cause airway toxicity. To distinguish culpable factors contributing to the effects of ROFA, synthetic polymer microsphere (SPM) analogs were synthesized that resembled ROFA in particle size (2 and 6 microm in diameter) and zeta potential (-29 mV). BEAS-2B human bronchial epithelial cells and dorsal root ganglion neurons responded to both ROFA and charged SPMs with an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and the release of the proinflammatory cytokine interleukin-6, whereas neutral SPMs bound with polyethylene glycol (0-mV zeta potential) were relatively ineffective. In dorsal root ganglion neurons, the SPM-induced increases in [Ca(2+)](i) were correlated with the presence of acid- and/or capsaicin-sensitive pathways. We hypothesized that the acidic microenvironment associated with negatively charged colloids like ROFA and SPMs activate irritant receptors in airway target cells. This causes subsequent cytokine release, which mediates the pathophysiology of neurogenic airway inflammation.

  2. Air pollution-related metals induce differential cytokine responses in bronchial epithelial cells.

    PubMed

    Låg, M; Øvrevik, J; Totlandsdal, A I; Lilleaas, E M; Thormodsæter, A; Holme, J A; Schwarze, P E; Refsnes, M

    2016-10-01

    Different transition metals have been shown to induce inflammatory responses in lung. We have compared eight different metal ions with regard to cytokine responses, cytotoxicity and signalling mechanisms in a human lung epithelial cell model (BEAS-2B). Among the metal ions tested, there were large differences with respect to pro-inflammatory potential. Exposure to Cd(2+), Zn(2+) and As(3+) induced CXCL8 and IL-6 release at concentrations below 100μM, and Mn(2+) and Ni(2+) at concentrations above 200μM. In contrast, VO4(3-), Cu(2+) and Fe(2+) did not induce any significant increase of these cytokines. An expression array of 20 inflammatory relevant genes also showed a marked up-regulation of CXCL10, IL-10, IL-13 and CSF2 by one or more of the metal ions. The most potent metals, Cd(2+), Zn(2+) and As(3+) induced highest levels of oxidative activity, and ROS appeared to be central in their CXCL8 and IL-6 responses. Activation of the MAPK p38 seemed to be a critical mediator. However, the NF-κB pathway appeared predominately to be involved only in Zn(2+)- and As(3+)-induced CXCL8 and IL-6 responses. Thus, the most potent metals Cd(2+), Zn(2+) and As(3+) seemed to induce a similar pattern for the cytokine responses, and with some exceptions, via similar signalling mechanisms.

  3. Identifying contact-mediated, localized toxic effects of MWCNT aggregates on epithelial monolayers: a single-cell monitoring toxicity assay.

    PubMed

    Rotoli, Bianca M; Gatti, Rita; Movia, Dania; Bianchi, Massimiliano G; Di Cristo, Luisana; Fenoglio, Ivana; Sonvico, Fabio; Bergamaschi, Enrico; Prina-Mello, Adriele; Bussolati, Ovidio

    2015-03-01

    Aggregates of multiwalled carbon nanotubes (MWCNT) impair the barrier properties of human airway cell monolayers. To resolve the mechanism of the barrier alteration, monolayers of Calu-3 human airway epithelial cells were exposed to aggregated MWCNT. At the cell-population level, trans-epithelial electrical resistance (TEER) was used as an indicator of barrier competence, caspase activity was assessed with standard biochemical assays, and cell viability was investigated by biochemical techniques and high-throughput screening (HTS) technique based on automated epifluorescence microscopy. At cell level, the response to MWCNT was investigated with confocal microscopy, by evaluating cell death (calcein/propidium iodide (PI)), proliferation (Ki-67), and apoptosis (caspase activity). At the cell-population level, exposure to aggregated MWCNT caused a decrease in TEER, which was not associated with a decrease in cell viability or onset of apoptosis even after an 8-d exposure. In contrast, confocal imaging demonstrated contact with MWCNT aggregates triggered cell death after 24 h of exposure. In the presence of a natural surfactant, both TEER decrease and contact-mediated toxicity were mitigated. With confocal imaging, increased proliferation and apoptosis were detected in Calu-3 cells next to the aggregates. Contact-mediated cytotoxicity was recorded in two additional cell lines (BEAS-2B and A549) derived from human airways. Similar results were confirmed by adopting two additional MWCNT preparations with different physico-chemical features. This indicates MWCNT caused localized damage to airway epithelial monolayers in vitro and altered the apoptotic and proliferative rate of epithelial cells in close proximity to the aggregates. These findings provide evidence on the pathway by which MWCNT aggregates impair airway barrier function, and support the use of imaging techniques as a possible regulatory-decision supporting tool to identify effects of aggregated nanomaterials

  4. Nicotine mediates oxidative stress and apoptosis through cross talk between NOX1 and Bcl-2 in lung epithelial cells.

    PubMed

    Zanetti, Filippo; Giacomello, Marta; Donati, Yves; Carnesecchi, Stephanie; Frieden, Maud; Barazzone-Argiroffo, Constance

    2014-11-01

    Nicotine contributes to the onset and progression of several pulmonary diseases. Among the various pathophysiological mechanisms triggered by nicotine, oxidative stress and cell death are reported in several cell types. We found that chronic exposure to nicotine (48h) induced NOX1-dependent oxidative stress and apoptosis in primary pulmonary cells. In murine (MLE-12) and human (BEAS-2B) lung epithelial cell lines, nicotine acted as a sensitizer to cell death and synergistically enhanced apoptosis when cells were concomitantly exposed to hyperoxia. The precise signaling pathway was investigated in MLE-12 cells in which NOX1 was abrogated by a specific inhibitor or stably silenced by shRNA. In the early phase of exposure (1h), nicotine mediated intracellular Ca(2+) fluxes and activation of protein kinase C, which in its turn activated NOX1, leading to cellular and mitochondrial oxidative stress. The latter triggered the intrinsic apoptotic machinery by modulating the expression of Bcl-2 and Bax. Overexpression of Bcl-2 completely prevented nicotine's detrimental effects, suggesting Bcl-2as a downstream key regulator in nicotine/NOX1-induced cell damage. These results suggest that NOX1 is a major contributor to the generation of intracellular oxidative stress induced by nicotine and might be an important molecule to target in nicotine-related lung pathologies.

  5. Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway epithelial cell cytokine production.

    PubMed Central

    Spannhake, E William; Reddy, Sekhar P M; Jacoby, David B; Yu, Xiao-Ying; Saatian, Bahman; Tian, Jingyan

    2002-01-01

    Of the several factors believed to exacerbate asthmatic symptoms, air pollution and viral infections are considered to be particularly important. Although evidence indicates that each of these respiratory insults individually can increase asthma severity in susceptible individuals, we know little about the extent to which exposure to environmental oxidant pollutants can influence the course of respiratory viral infection and its associated inflammation. To investigate the interaction of these two stimuli within their common epithelial cell targets in the upper and lower respiratory tracks, we infected primary human nasal epithelial cells and cells of the BEAS-2B line grown at the air-liquid interface with human rhinovirus type 16 (RV16) and exposed them to NO2 (2.0 ppm) or O3 (0.2 ppm) for 3 hr. Independently, RV16, NO2, and O3 rapidly increased release of the inflammatory cytokine interleukin-8 through oxidant-dependent mechanisms. The combined effect of RV16 and oxidant ranged from 42% to 250% greater than additive for NO2 and from 41% to 67% for O3. We abrogated these effects by treating the cells with the antioxidant N-acetylcysteine. Surface expression of intercellular adhesion molecule 1 (ICAM-1) underwent additive enhancement in response to combined stimulation. These data indicate that oxidant pollutants can amplify the generation of proinflammatory cytokines by RV16-infected cells and suggest that virus-induced inflammation in upper and lower airways may be exacerbated by concurrent exposure to ambient levels of oxidants commonly encountered the indoor and outdoor environments. PMID:12117643

  6. Bordetella pertussis infection of human respiratory epithelial cells up-regulates intercellular adhesion molecule-1 expression: role of filamentous hemagglutinin and pertussis toxin.

    PubMed

    Ishibashi, Yoshio; Nishikawa, Akemi

    2002-09-01

    Adhesion molecules on respiratory epithelial cells play a critical role in inflammatory cell recruitment and accumulation at sites of inflammation. Bordetella pertussis colonizes the human respiratory tract by infecting epithelial cells, leading to an inflammatory response. In this study, the role of bacterial factors in the expression of intercellular adhesion molecule-1 (ICAM-1) on human respiratory epithelial cells was investigated in response to B. pertussis. Flow cytometry and real time RT-PCR analysis showed that BEAS-2B human bronchial epithelial cells expressed increased levels of ICAM-1 mRNA and surface protein in response to B. pertussis infection. Filamentous hemagglutinin (FHA) played a role in this response because of the impaired capability of a FHA-deficient isogenic strain. A mutant strain in which an Arg-Gly-Asp (RGD) site of FHA had been changed to Arg-Ala-Asp had diminished ability to up-regulate ICAM-1 expression. RGD sequence-associated up-regulation of ICAM-1 expression was also observed in primary normal human bronchial epithelial cells. Pretreatment of cells with integrin antagonists such as RGD-containing peptide and antibody against very late antigen-5 (VLA-5) inhibited the up-regulation of ICAM-1 expression, suggesting the participation of VLA-5 integrin in this response. Pertussis toxin (PT) prevented the up-regulation of ICAM-1 expression because a PT-deficient mutant strain induced higher levels of ICAM-1 mRNA and surface protein than the parental strain. Consistent with this, purified PT suppressed the up-regulation of epithelial ICAM-1 expression. These findings demonstrate that B. pertussis FHA up-regulates ICAM-1 expression on respiratory epithelial cells through interaction of its RGD site with host cell VLA-5 integrin, and that PT impairs this response.

  7. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    PubMed

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells.

  8. The Effect of Therapeutic Blockades of Dust Particles-Induced Ca2+ Signaling and Proinflammatory Cytokine IL-8 in Human Bronchial Epithelial Cells

    PubMed Central

    Yoon, Ju Hee; Jeong, Sung Hwan; Hong, Jeong Hee

    2015-01-01

    Bronchial epithelial cells are the first barrier of defense against respiratory pathogens. Dust particles as extracellular stimuli are associated with inflammatory reactions after inhalation. It has been reported that dust particles induce intracellular Ca2+ signal, which subsequently increases cytokines production such as interleukin- (IL-) 8. However, the study of therapeutic blockades of Ca2+ signaling induced by dust particles in human bronchial epithelial cells is poorly understood. We investigated how to modulate dust particles-induced Ca2+ signaling and proinflammatory cytokine IL-8 expression. Bronchial epithelial BEAS-2B cells were exposed to PM10 dust particles and subsequent mediated intracellular Ca2+ signaling and reactive oxygen species signal. Our results show that exposure to several inhibitors of Ca2+ pathway attenuated the PM10-induced Ca2+ response and subsequent IL-8 mRNA expression. PM10-mediated Ca2+ signal and IL-8 expression were attenuated by several pharmacological blockades such as antioxidants, IP3-PLC blockers, and TRPM2 inhibitors. Our results show that blockades of PLC or TRPM2 reduced both of PM10-mediated Ca2+ signal and IL-8 expression, suggesting that treatment with these blockades should be considered for potential therapeutic trials in pulmonary epithelium for inflammation caused by environmental events such as seasonal dust storm. PMID:26640326

  9. Proteases and oxidant stress control organic dust induction of inflammatory gene expression in lung epithelial cells.

    PubMed

    Natarajan, Kartiga; Gottipati, Koteswara R; Berhane, Kiflu; Samten, Buka; Pendurthi, Usha; Boggaram, Vijay

    2016-10-22

    Persistant inflammatory responses to infectious agents and other components in organic dust underlie lung injury and development of respiratory diseases. Organic dust components responsible for eliciting inflammation and the mechanisms by which they cause lung inflammation are not fully understood. We studied the mechanisms by which protease activities in poultry dust extracts and intracellular oxidant stress induce inflammatory gene expression in A549 and Beas2B lung epithelial cells. The effects of dust extracts on inflammatory gene expression were analyzed by quantitative polymerase chain reaction (qPCR), enzyme linked immunosorbent (ELISA) and western blot assays. Oxidant stress was probed by dihydroethidium (DHE) labeling, and immunostaining for 4-hydroxynonenal (4-HNE). Effects on interleukin-8 (IL-8) promoter regulation were determined by transient transfection assay. Dust extracts contained trypsin and elastase activities, and activated protease activated receptor (PAR)-1 and -2. Serine protease inhibitors and PAR-1 or PAR-2 knockdown suppressed inflammatory gene induction. Dust extract induction of IL-8 gene expression was associated with increased DHE-fluorescence and 4-HNE staining, and antioxidants suppressed inflammatory gene induction. Protease inhibitors and antioxidants suppressed protein kinase C and NF-κB activation and induction of IL-8 promoter activity in cells exposed to dust extract. Our studies demonstrate that proteases and intracellular oxidants control organic dust induction of inflammatory gene expression in lung epithelial cells. Targeting proteases and oxidant stress may serve as novel approaches for the treatment of organic dust induced lung diseases. This is the first report on the involvement of oxidant stress in the induction of inflammatory gene expression by organic dust.

  10. In vitro cadmium effects on ECM gene expression in human bronchial epithelial cells.

    PubMed

    Baroni, Tiziano; Lilli, Cinzia; Bellucci, Catia; Luca, Giovanni; Mancuso, Francesca; Fallarino, Francesca; Falabella, Giulia; Arato, Iva; Calvitti, Mario; Marinucci, Lorella; Muzi, Giacomo; Dell'Omo, Marco; Gambelunghe, Angela; Bodo, Maria

    2015-03-01

    Occupational and environmental exposure to the heavy metal cadmium (Cd) and its inhalation from cigarette smoke are associated with emphysema. Many growth factors and extracellular matrix (ECM) cell signaling molecules are directly involved in the epithelial bronchial cell pathway. This study investigated the direct effects of Cd on the production of several ECM components in human bronchial epithelial cells (BEAS-2B) that were exposed in vitro for 48 h to sub-toxic and toxic concentrations of Cd. Gene expression of collagens, metalloproteases (MMPs), integrins, tenascin and vitronectin were quantified by RT-PCR. To study apoptosis cascade, annexin assay and cellular cytotoxicity by MTT assay were performed. We also investigated whether an imbalance in the TGFβ/TGFβ receptor (TGFβR) expression mediated Cd effects. The results showed the sub-toxic Cd dose significantly increased tenascin, vitronectin, β1 and β5 integrin gene expression. The toxic Cd dose decreased type IV and V collagen, α1, α2 and β3 integrins. Both Cd doses down-regulated type I collagen and up-regulated metalloproteases. Each Cd dose caused a different imbalance in the complex pattern of TGFβ and its receptors. No alteration in classic apoptotic marker protein expression was observed in presence of the sub-toxic dose of Cd, suggesting this metal alters ECM production without apoptotic activation. In conclusion, all these data show even sub-toxic Cd dose exposure alters the specific gene expression of several ECM components that are crucially implicated in the mechanical properties of lung parenchyma supporting the hypothesis that the mechanism underlying Cd-induced lung disease may involve downstream changes in TGFβ/TGFβR signaling.

  11. Phosphodiesterase 4 inhibitors augment the ability of formoterol to enhance glucocorticoid-dependent gene transcription in human airway epithelial cells: a novel mechanism for the clinical efficacy of roflumilast in severe chronic obstructive pulmonary disease.

    PubMed

    Moodley, Thunicia; Wilson, Sylvia M; Joshi, Taruna; Rider, Christopher F; Sharma, Pawan; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-04-01

    Post-hoc analysis of two phase III clinical studies found that the phosphodiesterase 4 (PDE4) inhibitor, roflumilast, reduced exacerbation frequency in patients with severe chronic obstructive pulmonary disease (COPD) who were taking inhaled corticosteroids (ICS) concomitantly, whereas patients not taking ICS derived no such benefit. In contrast, in two different trials also performed in patients with severe COPD, roflumilast reduced exacerbation rates in the absence of ICS, indicating that PDE4 inhibition alone is sufficient for therapeutic activity to be realized. Given that roflumilast is recommended as an "add-on" medication to patients with severe disease who will inevitably be taking a long-acting β2-adrenoceptor agonist (LABA)/ICS combination therapy, we tested the hypothesis that roflumilast augments the ability of glucocorticoids to induce genes with anti-inflammatory activity. Using a glucocorticoid response element (GRE) luciferase reporter transfected into human airway epithelial cells [both bronchial epithelium + adenovirus 12 - SV40 hybrid (BEAS-2B) cells and primary cultures], roflumilast enhanced fluticasone propionate-induced GRE-dependent transcription. Roflumilast also produced a sinistral displacement of the concentration-response curves that described the augmentation of GRE-dependent transcription by the LABA formoterol. In BEAS-2B cells and primary airway epithelia, roflumilast interacted with formoterol in a positive cooperative manner to enhance the expression of several glucocorticoid-inducible genes that have anti-inflammatory potential. We suggest that the ability of roflumilast and formoterol to interact in this way supports the concept that these drugs together may impart clinical benefit beyond that achievable by an ICS alone, a PDE4 inhibitor alone, or an ICS/LABA combination therapy. Roflumilast may, therefore, be especially effective in patients with severe COPD.

  12. Indications for distinct pathogenic mechanisms of asbestos and silica through gene expression profiling of the response of lung epithelial cells

    PubMed Central

    Perkins, Timothy N.; Peeters, Paul M.; Shukla, Arti; Arijs, Ingrid; Dragon, Julie; Wouters, Emiel F.M.; Reynaert, Niki L.; Mossman, Brooke T.

    2015-01-01

    Occupational and environmental exposures to airborne asbestos and silica are associated with the development of lung fibrosis in the forms of asbestosis and silicosis, respectively. However, both diseases display distinct pathologic presentations, likely associated with differences in gene expression induced by different mineral structures, composition and bio-persistent properties. We hypothesized that effects of mineral exposure in the airway epithelium may dictate deviating molecular events that may explain the different pathologies of asbestosis versus silicosis. Using robust gene expression-profiling in conjunction with in-depth pathway analysis, we assessed early (24 h) alterations in gene expression associated with crocidolite asbestos or cristobalite silica exposures in primary human bronchial epithelial cells (NHBEs). Observations were confirmed in an immortalized line (BEAS-2B) by QRT-PCR and protein assays. Utilization of overall gene expression, unsupervised hierarchical cluster analysis and integrated pathway analysis revealed gene alterations that were common to both minerals or unique to either mineral. Our findings reveal that both minerals had potent effects on genes governing cell adhesion/migration, inflammation, and cellular stress, key features of fibrosis. Asbestos exposure was most specifically associated with aberrant cell proliferation and carcinogenesis, whereas silica exposure was highly associated with additional inflammatory responses, as well as pattern recognition, and fibrogenesis. These findings illustrate the use of gene-profiling as a means to determine early molecular events that may dictate pathological processes induced by exogenous cellular insults. In addition, it is a useful approach for predicting the pathogenicity of potentially harmful materials. PMID:25351596

  13. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    PubMed Central

    Erle, David J.

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin. PMID

  14. Nanodiamond internalization in cells and the cell uptake mechanism

    NASA Astrophysics Data System (ADS)

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-08-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  15. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment.

    PubMed

    Pichavant, Muriel; Charbonnier, Anne-Sophie; Taront, Solenne; Brichet, Anne; Wallaert, Benoît; Pestel, Joel; Tonnel, André-Bernard; Gosset, Philippe

    2005-04-01

    Airway dendritic cells (DCs) are crucial for allergen-induced sensitization and inflammation in allergic asthma. After allergen challenge, an increased number of DCs is observed in airway epithelium from patients with allergy. Because Der p 1, a cysteine protease allergen from Dermatophagoides pteronyssinus , induces chemokine production by bronchial epithelial cells (BECs), the purpose of this investigation was to evaluate the capacity of BEC exposed to Der p 1 to recruit DCs. Chemotactic activity of BEAS-2B, a bronchial epithelial cell line, and BECs from nonatopic controls and patients with allergic asthma was evaluated on the migration of precursors, immature and mature monocyte-derived DCs (MDDCs), and CD34 + -derived Langerhans cells (LCs). C-C chemokine ligand (CCL)-2, CCL5, and C-X-C chemokine ligand 10 production by BEAS-2B and BEC was increased after Der p 1 exposure, whereas the proenzyme proDer p 1 devoid of enzymatic activity had no effect. Der p 1 stimulation of BEAS-2B and BEC from both groups increased significantly the recruitment of MDDC precursors, depending on CCL2, CCL5, and C-X-C chemokine ligand 10 production. In a reconstituted polarized epithelium, apical application of Der p 1 enhanced MDDC precursor migration into the epithelial layer. Moreover, Der p 1 stimulation of BEC from patients with asthma but not from controls increased the migration of LC precursors, mainly dependent on CCL20 secretion. No migration of immature and mature DCs was observed. These data confirmed that BECs participate in the homeostasis of the DC network present within the bronchial epithelium through the secretion of chemokines. In allergic asthma, upregulation of CCL20 production induced LC recruitment, the role of which remains to be determined.

  16. Proteomic Assessment of Biochemical Pathways That Are Critical to Nickel-Induced Toxicity Responses in Human Epithelial Cells

    PubMed Central

    Ge, Yue; Bruno, Maribel; Haykal-Coates, Najwa; Wallace, Kathleen; Andrews, Debora; Swank, Adam; Winnik, Witold; Ross, Jeffrey A.

    2016-01-01

    Understanding the mechanisms underlying toxicity initiated by nickel, a ubiquitous environmental contaminant and known human carcinogen is necessary for proper assessment of its risks to human and environment. Among a variety of toxic mechanisms, disruption of protein responses and protein response-based biochemical pathways represents a key mechanism through which nickel induces cytotoxicity and carcinogenesis. To identify protein responses and biochemical pathways that are critical to nickel-induced toxicity responses, we measured cytotoxicity and changes in expression and phosphorylation status of 14 critical biochemical pathway regulators in human BEAS-2B cells exposed to four concentrations of nickel using an integrated proteomic approach. A subset of the pathway regulators, including interleukin-6, and JNK, were found to be linearly correlated with cell viability, and may function as molecular determinants of cytotoxic responses of BEAS-2B cells to nickel exposures. In addition, 128 differentially expressed proteins were identified by two dimensional electrophoresis (2-DE) and mass spectrometry. Principal component analysis, hierarchical cluster analyses, and ingenuity signaling pathway analysis (IPA) identified putative nickel toxicity pathways. Some of the proteins and pathways identified have not previously been linked to nickel toxicity. Based on the consistent results obtained from both ELISA and 2-DE proteomic analysis, we propose a core signaling pathway regulating cytotoxic responses of human BEAS-2B cells to nickel exposures, which integrates a small set of proteins involved in glycolysis and gluconeogenesis pathways, apoptosis, protein degradation, and stress responses including inflammation and oxidative stress. PMID:27626938

  17. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    PubMed

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  18. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...

    EPA Pesticide Factsheets

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st

  19. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    SciTech Connect

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin . E-mail: pplin@nhri.org.tw

    2007-05-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17{beta}-estradiol (E{sub 2}) resulted from an interaction between TCDD and E{sub 2} could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE{sub 2}), especially 4-MeOE{sub 2}, accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E{sub 2}. In the present study, we demonstrate unique accumulation of 4-MeOE{sub 2}, as a result of TCDD/E{sub 2} interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE{sub 2}-treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE{sub 2}-treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE{sub 2} were unaffected by NAC. We concluded that 4-MeOE{sub 2} accumulation resulting from TCDD and E{sub 2} interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD.

  20. Analysis of coal tar pitch and smoke extract components and their cytotoxicity on human bronchial epithelial cells.

    PubMed

    Li, Zhitao; Wu, Yongjun; Zhao, Yong; Wang, Lixia; Zhu, Hansong; Qin, Lijuan; Feng, Feifei; Wang, Wei; Wu, Yiming

    2011-02-28

    Coal tar pitch and its smoke are considered hazardous by-products and common pollutant generated from coal industry processing. In this study, coal tar pitch and its smoke extracts were characterized by gas chromatography/mass spectrometry (GC/MS) with dimethylsulfoxide. We identified only 0.3025% of components in the total coal tar pitch using GC/MS. Among 18 identified compounds, polycyclic aromatic hydrocarbons (PAHs) has the highest relative abundance (0.19%). The remaining components were composed of monocyclic aromatic hydrocarbons, heterocyclic compounds and alkenes. In contrast, among 38 coal tar pitch smoke extract constituents that have been profiled, 87.91% were PAHs, and the remaining 12.09% were composed of monocyclic aromatic hydrocarbons, heterocyclic compounds and alkenes. The cytotoxic effect of coal tar pitch and its smoke extracts on BEAS-2B cells were also evaluated by MTT assay. BEAS-2B cells exposed to coal tar pitch showed a non dose-dependent U-shaped cytotoxicity with a dosage for maximal inhibitory of 3.75 mg/L. In contrast, BEAS-2B cells exposed to coal tar pitch smoke extracts showed a dose dependent cytotoxicity with a LC(50) of 8.64 mg/L. Our study demonstrated the significant different composition and cytotoxicity of coal tar pitch and its extracts, suggesting two different underlying mechanisms that are pending future investigation.

  1. Human bronchial epithelial cell injuries induced by fine particulate matter from sandstorm and non-sandstorm periods: Association with particle constituents.

    PubMed

    Wang, Bin; Li, Ning; Deng, Furong; Buglak, Nicholas; Park, George; Su, Shu; Ren, Aiguo; Shen, Guofeng; Tao, Shu; Guo, Xinbiao

    2016-09-01

    Epidemiological studies have demonstrated the exacerbation of respiratory diseases following sandstorm-derived particulate matter (PM) exposure. The presence of anthropogenic and biological agents on the sandstorm PM and the escalation of PM<2.5μm (PM2.5) pollution in China have led to serious concerns regarding the health effects of PM2.5 during Asian sandstorms. We investigated how changes in PM2.5 composition, as the weather transitioned towards a sandstorm, affected human airway epithelial cells. Six PM2.5 samples covering two sandstorm events and their respective background and transition periods were collected in Baotou, an industrial city near the Gobi Desert in China. PM samples from all three periods had mild cytotoxicity in human bronchial epithelial cell line BEAS-2B, which was positively correlated with the contents of polycyclic aromatic hydrocarbons and several metals. All PM samples potently increased the release of interleukin-6 (IL-6) and interleukin-8 (IL-8). Endotoxin in all samples contributed significantly to the IL-6 response, with only a minor effect on IL-8. Cr was positively correlated with both IL-6 and IL-8 release, while Si was only associated with the increase of IL-6. Our study suggests that local agricultural and industrial surroundings in addition to the sandstorm play important roles in the respiratory effects of sandstorm-derived PM.

  2. Transcriptional mechanisms and protein kinase signaling mediate organic dust induction of IL-8 expression in lung epithelial and THP-1 cells

    PubMed Central

    Gottipati, Koteswara R.; Bandari, Shiva Kumar; Nonnenmann, Matthew W.; Levin, Jeffrey L.; Dooley, Gregory P.; Reynolds, Stephen J.

    2014-01-01

    Exposure to the agricultural work environment is a risk factor for the development of respiratory symptoms and chronic lung diseases. Inflammation is an important contributor to the pathogenesis of tissue injury and disease. Cellular and molecular mechanisms mediating lung inflammatory responses to agricultural dust are not yet fully understood. We studied the effects of poultry dust extract on molecular regulation of interleukin-8 (IL-8), a proinflammatory cytokine, in A549 and Beas2B lung epithelial and THP-1 monocytic cells. Our findings indicate that poultry dust extract potently induces IL-8 levels by increasing IL-8 gene transcription without altering IL-8 mRNA stability. Increase in IL-8 promoter activity was due to enhanced binding of activator protein 1 and NF-κB. IL-8 induction was associated with protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation and inhibited by PKC and MAPK inhibitors. IL-8 increase was not inhibited by polymyxin B or l-nitroarginine methyl ester, indicating lack of involvement of lipopolysaccharide and nitric oxide in the induction. Lung epithelial and THP-1 cells share common mechanisms for induction of IL-8 levels. Our findings identify key roles for transcriptional mechanisms and protein kinase signaling pathways for IL-8 induction and provide insights into the mechanisms regulating lung inflammatory responses to organic dust exposure. PMID:25398986

  3. Three-Dimensional Human Bronchial-Tracheal Epithelial Tissue-Like Assemblies (TLAs) as Hosts for Severe Acute Respiratory Syndrome (SARS)-CoV Infection

    NASA Technical Reports Server (NTRS)

    Suderman, M. T.; McCarthy, M.; Mossell, E.; Watts, D. M.; Peters, C. J.; Shope, R.; Goodwin, T. J.

    2006-01-01

    A three-dimensional (3-D) tissue-like assembly (TLA) of human bronchial-tracheal mesenchymal (HBTC) cells with an overlay of human bronchial epithelial (BEAS-2B) cells was constructed using a NASA Bioreactor to survey the infectivity of SARS-CoV. This TLA was inoculated with a low passage number Urbani strain of SARS-CoV. At selected intervals over a 10-day period, media and cell aliquots of the 3-D TLA were harvested for viral titer assay and for light and electron microscopy examination. All viral titer assays were negative in both BEAS-2B two-dimensional monolayer and TLA. Light microscopy immunohistochemistry demonstrated antigen-antibody reactivity with anti-SARS-CoV polyclonal antibody to spike and nuclear proteins on cell membranes and cytoplasm. Coronavirus Group 2 cross-reactivity was demonstrated by positive reaction to anti-FIPV 1 and anti-FIPV 1 and 2 antibodies. TLA examination by transmission electron microscopy indicated increasing cytoplasmic vacuolation with numerous electron-dense bodies measuring 45 to 270 nm from days 4 through 10. There was no evidence of membrane blebbing, membrane duplication, or fragmentation of organelles in the TLAs. However, progressive disruption of endoplasmic reticulum was observed throughout the cells. Antibody response to SARS-CoV specific spike and nucleocapsid glycoproteins, cross-reactivity with FIPV antibodies, and the cytoplasmic pathology suggests this HBTE TLA model is permissive to SARS-CoV infection.

  4. Cadmium Increases HIF-1 and VEGF Expression through ROS, ERK, and AKT Signaling Pathways and Induces Malignant Transformation of Human Bronchial Epithelial Cells

    PubMed Central

    Jing, Yi; Liu, Ling-Zhi; Zhu, Yingxue; Guo, Nancy Lan; Barnett, John; Rojanasakul, Yon; Agani, Faton; Jiang, Bing-Hua

    2012-01-01

    Cadmium is categorized as a human carcinogen especially involved in lung cancers. Angiogenesis is considered a fundamental requirement for tumorigenesis, but the mechanisms underlying the tumor angiogenesis induced by cadmium are poorly understood. Using in vitro and in vivo models, we investigated the angiogenic mechanisms of cadmium in human bronchial epithelial cells and tumor formation. Our results demonstrated that cadmium (CdCl2) activated extracellular signal-regulated kinases (ERK) and AKT signaling and elevated the expression of a key downstream proangiogenic molecule hypoxia-inducible factor-1 (HIF-1) in immortalized human lung epithelial BEAS-2B cells. Cadmium also induced reactive oxygen species (ROS) production, which could be inhibited by ROS scavengers, catalase and diphenyleneiodonium chloride. Inhibition of ROS generation also attenuated ERK, AKT, p70S6K1 activation, and HIF-1α expression. Similar results were obtained in normal human bronchial epithelial (NHBE) cells, showing that cadmium induced HIF-1 expression via ROS/ERK/AKT signaling pathway. Furthermore, cadmium induced vascular endothelial growth factor expression and transcriptional activation through ROS, ERK, and AKT pathways. Finally, cadmium transformed human bronchial epithelial cells in culture; the transformed cells induced tube formation in vitro, angiogenesis on chicken chorioallantoic membrane, and formed tumors in nude mice. Taken together, the results of this study provide explanation for the role and molecular mechanisms of cadmium in promoting angiogenesis in lung epithelial cells and malignant transformation and will be helpful for improved occupational protection, prevention, as well as chemotherapy of human lung cancers caused by heavy metal cadmium. PMID:21984483

  5. Antioxidative and antiinflammatory activities of asiatic acid, glycyrrhizic acid, and oleanolic acid in human bronchial epithelial cells.

    PubMed

    Tsao, Shih-Ming; Yin, Mei-Chin

    2015-04-01

    Protective effects of triterpenic acids, asiatic acid (AA), glycyrrhizic acid (GA), or oleanolic acid (OA), for two human bronchial epithelial cells, 16HBE and BEAS-2B cells, against hydrogen peroxide (H2O2) induced injury were examined. Cells were pretreated by triterpenic acid at 4 or 8 μmol/L and followed by H2O2 treatment. Results showed that H2O2 significantly upregulated both Bax and cleaved caspase-3 expression, and also downregulated Bcl-2 expression in test cells. AA at these doses retained Bcl-2 expression, but GA and OA only at 8 μmol/L reserved Bcl-2 expression. Test triterpenic acids lowered cleaved caspase-3 expression dose-dependently. H2O2 treatment lowered Na(+)-K(+)-ATPase activity and mitochondrial membrane potential in cells. Triterpenic acid pretreatments significantly maintained mitochondrial membrane potential and Na(+)-K(+)-ATPase activity. H2O2 enhanced reactive oxygen species, interleukin-6, tumor necrosis factor-α, and prostaglandin E2 levels in test cells. Three triterpenic acid treatments dose-dependently reversed these changes. H2O2 promoted the protein expression of p47(phox), gp91(phox), cyclooxygenase-2 (COX-2), mitogen-activated protein kinase, and nuclear factor-κB (NF-κB). AA, GA, or OA pretreatments dose-dependently downregulated the expression of p47(phox), COX-2, NF-κB p65, and p-p38 but only at 8 μmol/L decreased gp91(phox) expression. These results support that these triterpenic acids could protect bronchial epithelial cells to attenuate apoptotic, oxidative, and inflammatory stress.

  6. Single-cell RNA sequencing reveals an altered gene expression pattern as a result of CRISPR/cas9-mediated deletion of Gene 33/Mig6 and chronic exposure to hexavalent chromium in human lung epithelial cells.

    PubMed

    Park, Soyoung; Zhang, Xiaowen; Li, Cen; Yin, Changhong; Li, Jiangwei; Fallon, John T; Huang, Weihua; Xu, Dazhong

    2017-09-01

    Gene 33 (Mig6, ERRFI1) is an adaptor protein with multiple cellular functions. We recently reported that depletion of this protein promotes lung epithelial cell transformation induced by hexavalent chromium [Cr(VI)]. However, the early molecular events that mediate this process are not clear. In the present study, we used single-cell RNA sequencing to compare gene expression profiles between BEAS-2B lung epithelial cells chronically exposed to a sublethal dose of Cr(VI) with or without CRISPR/cas9-mediated deletion of Gene 33. Our data reveal 83 differentially expressed genes. The most notable changes are genes associated with cell adhesion, oxidative stresses, protein ubiquitination, epithelial-mesenchymal transition/metastasis, and WNT signaling. Up-regulation of some neuro-specific genes is also evident, particularly ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), a deubiquitinase and potential biomarker for lung cancer. Gene 33 deletion and/or Cr(VI) exposure did not cause discernable changes in cell morphology. However, Gene 33 deletion led to a modest but significant reduction of cells in the G2/M phase of the cell cycle regardless of Cr(VI) exposure. Gene 33 deletion also significantly reduced cell proliferation. Interestingly, Cr(VI) exposure eliminated the difference in cell proliferation between the two genotypes. Gene 33 deletion also significantly elevated cell migration. Our data indicate that combined Gene 33 deletion and chronic Cr(VI) exposure produces a gene expression pattern and a phenotype resemble those of the transformed lung epithelial cells. Given the known association of UCHL1 with lung cancer, we propose that UCHL1 is an important player in the early stage of lung epithelial cell transformation and tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Enriched inorganic compounds in diesel exhaust particles induce mitogen-activated protein kinase activation, cytoskeleton instability, and cytotoxicity in human bronchial epithelial cells.

    PubMed

    Seriani, Robson; Junqueira, Mara S; Carvalho-Sousa, Claudia E; Arruda, Alessandra C T; Martinez, Diana; Alencar, Adriano M; Garippo, Ana L; Brito, Jôse Mara; Martins, Milton A; Saldiva, Paulo H N; Negri, Elnara M; Mauad, Thais; Macchione, Mariangela

    2015-04-01

    This study assessed the effects of the diesel exhaust particles on ERK and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERK were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MTT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.

  8. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    SciTech Connect

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  9. Moraxella catarrhalis decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53 in human bronchial epithelial cells.

    PubMed

    Heinrich, Annina; Haarmann, Helge; Zahradnik, Sabrina; Frenzel, Katrin; Schreiber, Frauke; Klassert, Tilman E; Heyl, Kerstin A; Endres, Anne-Sophie; Schmidtke, Michaela; Hofmann, Jörg; Slevogt, Hortense

    2016-06-01

    Chronic obstructive pulmonary disease (COPD) is complicated by infectious exacerbations with acute worsening of respiratory symptoms. Coinfections of bacterial and viral pathogens are associated with more severe exacerbations. Moraxella catarrhalis is one of the most frequent lower respiratory tract pathogens detected in COPD. We therefore studied the impact of M. catarrhalis on the antiviral innate immune response that is mediated via TLR3 and p53. Molecular interactions between M. catarrhalis and normal human bronchial epithelial (NHBE) cells as well as Beas-2B cells were studied using flow cytometry, quantitative PCR analysis, chromatin immunoprecipitation, RNA interference, and ELISA. M. catarrhalis induces a significant down-regulation of TLR3 in human bronchial epithelial cells. In M. catarrhalis-infected cells, expression of p53 was decreased. We detected a reduced binding of p53 to the tlr3 promoter, resulting in reduced TLR3 gene transcription. M. catarrhalis diminished the TLR3-dependent secretion of IFN-β, IFN-λ, and chemokine (C-X-C motif) ligand 8. In addition in M. catarrhalis infected cells, expression of rhinovirus type 1A RNA was increased compared with uninfected cells. M. catarrhalis reduces antiviral defense functions of bronchial epithelial cells, which may increase susceptibility to viral infections.-Heinrich, A., Haarmann, H., Zahradnik, S., Frenzel, K., Schreiber, F., Klassert, T. E., Heyl, K. A., Endres, A.-S., Schmidtke, M., Hofmann, J., Slevogt, H. Moraxella catarrhalis decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53 in human bronchial epithelial cells.

  10. Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells

    NASA Astrophysics Data System (ADS)

    Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are found in ambient aerosols and particulate matter. Experimental studies have shown that PAHs and related chemicals can induce toxicological effects. The present study aimed to investigate the effects of PAHs and their derivatives on the respiratory and immune systems and the underlying mechanisms. The human bronchial epithelial cell line BEAS-2B was exposed to PAHs and their derivatives, and the cytotoxicity and proinflammatory protein expression were then investigated. A cytotoxic effect was observed in BEAS-2B exposed to PAH derivatives such as naphthoquinone (NQ), phenanthrenequinone (PQ), 1-nitropyrene (1-NP), and 1-aminopyrene (1-AP). In addition, 1,2-NQ and 9,10-PQ showed more effective cytotoxicity than 1,4-NQ and 1,4-PQ, respectively. Pyrene showed a weak cytotoxic effect. On the other hand, naphthalene and phenanthrene showed no significant effects. Pyrene, 1-NP, and 1-AP also increased intercellular adhesion molecule-1 expression and interleukin-6 production in BEAS-2B. The increase was partly suppressed by protein kinase inhibitors such as the epidermal growth factor receptor-selective tyrosine kinase inhibitor and nuclear receptor antagonists such as the thyroid hormone receptor antagonist. The present study suggests that the toxicological effects of chemicals may be related to the different activities resulting from their structures, such as numbers of benzene rings and functional groups. Furthermore, the chemical-induced increase in proinflammatory protein expression in bronchial epithelial cells was possibly a result of the activation of protein kinase pathways and nuclear receptors. The increase may partly contribute to the adverse health effects of atmospheric PAHs.

  11. AT-RvD1 Modulates CCL-2 and CXCL-8 Production and NF-κB, STAT-6, SOCS1, and SOCS3 Expression on Bronchial Epithelial Cells Stimulated with IL-4

    PubMed Central

    de Oliveira, Jhony Robison; Favarin, Daniely Cornélio; Tanaka, Sarah Cristina Sato Vaz; Balarin, Marly Aparecida Spadotto; Silva Teixeira, David Nascimento; Rogério, Alexandre de Paula

    2015-01-01

    Bronchial epithelial cells represent the first line of defense against microorganisms and allergens in the airways and play an important role in chronic inflammatory processes such as asthma. In an experimental model, both RvD1 and AT-RvD1, lipid mediators of inflammation resolution, ameliorated some of the most important phenotypes of experimental asthma. Here, we extend these results and demonstrate the effect of AT-RvD1 on bronchial epithelial cells (BEAS-2B) stimulated with IL-4. AT-RvD1 (100 nM) decreased both CCL2 and CXCL-8 production, in part by decreasing STAT6 and NF-κB pathways. Furthermore, the effects of AT-RvD1 were ALX/FRP2 receptor dependent, as the antagonist of this receptor (BOC1) reversed the inhibition of these chemokines by AT-RvD1. In addition, AT-RvD1 decreased SOCS1 and increased SOCS3 expression, which play important roles in Th1 and Th17 modulation, respectively. In conclusion, AT-RvD1 demonstrated significant effects on the IL-4-induced activation of bronchial epithelial cells and consequently the potential to modulate neutrophilic and eosinophilic airway inflammation in asthma. Taken together, these findings identify AT-RvD1 as a potential proresolving therapeutic agent for allergic responses in the airways. PMID:26075216

  12. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells.

    PubMed

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F; Lundy, Fionnuala; McGarvey, Lorcan P A; Cosby, S Louise

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough.

  13. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells

    PubMed Central

    Omar, Shadia; Clarke, Rebecca; Abdullah, Haniah; Brady, Clare; Corry, John; Winter, Hanagh; Touzelet, Olivier; Power, Ultan F.; Lundy, Fionnuala; McGarvey, Lorcan P. A.

    2017-01-01

    Receptors implicated in cough hypersensitivity are transient receptor potential vanilloid 1 (TRPV1), transient receptor potential cation channel, Subfamily A, Member 1 (TRPA1) and acid sensing ion channel receptor 3 (ASIC3). Respiratory viruses, such as respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with these receptors on sensory nerves and epithelial cells in the airways. We used in vitro models of sensory neurones (SHSY5Y or differentiated IMR-32 cells) and human bronchial epithelium (BEAS-2B cells) as well as primary human bronchial epithelial cells (PBEC) to study the effect of MV and RSV infection on receptor expression. Receptor mRNA and protein levels were examined by qPCR and flow cytometry, respectively, following infection or treatment with UV inactivated virus, virus-induced soluble factors or pelleted virus. Concentrations of a range of cytokines in resultant BEAS-2B and PBEC supernatants were determined by ELISA. Up-regulation of TRPV1, TRPA1 and ASICS3 expression occurred by 12 hours post-infection in each cell type. This was independent of replicating virus, within the same cell, as virus-induced soluble factors alone were sufficient to increase channel expression. IL-8 and IL-6 increased in infected cell supernatants. Antibodies against these factors inhibited TRP receptor up-regulation. Capsazepine treatment inhibited virus induced up-regulation of TRPV1 indicating that these receptors are targets for treating virus-induced cough. PMID:28187208

  14. Airway epithelial-derived factor relaxes pulmonary vascular smooth muscle.

    PubMed

    Farah, Omar R; Li, Dongge; McIntyre, Brendan A S; Pan, Jingyi; Belik, Jaques

    2009-01-01

    The factors controlling the pulmonary vascular resistance under physiological conditions are poorly understood. We have previously reported on an apparent cross talk between the airway and adjacent pulmonary arterial bed where a factor likely derived from the bronchial epithelial cells reduced the magnitude of agonist-stimulated force in the vascular smooth muscle. The main purpose of this investigation was to evaluate whether bronchial epithelial cells release a pulmonary arterial smooth muscle relaxant factor. Conditioned media from SPOC-1 or BEAS-2B, a rat- and a human-derived bronchial epithelial cell line, respectively, were utilized. This media significantly relaxed precontracted adult but not fetal pulmonary arterial muscle in an oxygen tension-dependent manner. This response was mediated via soluble guanylate cyclase, involving AKT/PI3-kinase and neuronal nitric oxide synthase. Airway epithelial cell-conditioned media increased AKT phosphorylation in pulmonary smooth muscle cells (SMC) and reduced intracellular calcium change following ATP stimulation to a significantly greater extent than observed for bronchial SMC. The present data strongly support the evidence for bronchial epithelial cells releasing a stable and soluble factor capable of inducing pulmonary arterial SMC relaxation. We speculate that under physiological conditions, the maintenance of a low pulmonary vascular resistance, postnatally, is in part modulated by the airway epithelium.

  15. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress

    NASA Astrophysics Data System (ADS)

    Mittal, Sandeep; Kumar, Veeresh; Dhiman, Nitesh; Chauhan, Lalit Kumar Singh; Pasricha, Renu; Pandey, Alok Kumar

    2016-12-01

    Goraphene derivatives (GD) are currently being evaluated for technological and biomedical applications owing to their unique physico-chemical properties over other carbon allotrope such as carbon nanotubes (CNTs). But, the possible association of their properties with underlying in vitro effects have not fully examined. Here, we assessed the comparative interaction of three GD - graphene oxide (GO), thermally reduced GO (TRGO) and chemically reduced GO (CRGO), which significantly differ in their lateral size and functional groups density, with phenotypically different human lung cells; bronchial epithelial cells (BEAS-2B) and alveolar epithelial cells (A549). The cellular studies demonstrate that GD significantly ineternalize and induce oxidative stress mediated cytotoxicity in both cells. The toxicity intensity was in line with the reduced lateral size and increased functional groups revealed more toxicity potential of TRGO and GO respectively. Further, A549 cells showed more susceptibility than BEAS-2B which reflected cell type dependent differential cellular response. Molecular studies revealed that GD induced differential cell death mechanism which was efficiently prevented by their respective inhibitors. This is prior study to the best of our knowledge involving TRGO for its safety evaluation which provided invaluable information and new opportunities for GD based biomedical applications.

  16. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress

    PubMed Central

    Mittal, Sandeep; Kumar, Veeresh; Dhiman, Nitesh; Chauhan, Lalit Kumar Singh; Pasricha, Renu; Pandey, Alok Kumar

    2016-01-01

    Goraphene derivatives (GD) are currently being evaluated for technological and biomedical applications owing to their unique physico-chemical properties over other carbon allotrope such as carbon nanotubes (CNTs). But, the possible association of their properties with underlying in vitro effects have not fully examined. Here, we assessed the comparative interaction of three GD - graphene oxide (GO), thermally reduced GO (TRGO) and chemically reduced GO (CRGO), which significantly differ in their lateral size and functional groups density, with phenotypically different human lung cells; bronchial epithelial cells (BEAS-2B) and alveolar epithelial cells (A549). The cellular studies demonstrate that GD significantly ineternalize and induce oxidative stress mediated cytotoxicity in both cells. The toxicity intensity was in line with the reduced lateral size and increased functional groups revealed more toxicity potential of TRGO and GO respectively. Further, A549 cells showed more susceptibility than BEAS-2B which reflected cell type dependent differential cellular response. Molecular studies revealed that GD induced differential cell death mechanism which was efficiently prevented by their respective inhibitors. This is prior study to the best of our knowledge involving TRGO for its safety evaluation which provided invaluable information and new opportunities for GD based biomedical applications. PMID:28000740

  17. Silymarin attenuates cigarette smoke extract-induced inflammation via simultaneous inhibition of autophagy and ERK/p38 MAPK pathway in human bronchial epithelial cells

    PubMed Central

    Li, Diandian; Hu, Jun; Wang, Tao; Zhang, Xue; Liu, Lian; Wang, Hao; Wu, Yanqiu; Xu, Dan; Wen, Fuqiang

    2016-01-01

    Cigarette smoke (CS) is a major risk of chronic obstructive pulmonary disease (COPD), contributing to airway inflammation. Our previous study revealed that silymarin had an anti-inflammatory effect in CS-exposed mice. In this study, we attempt to further elucidate the molecular mechanisms of silymarin in CS extract (CSE)-induced inflammation using human bronchial epithelial cells. Silymarin significantly suppressed autophagy activation and the activity of ERK/p38 mitogen-activated protein kinase (MAPK) pathway in Beas-2B cells. We also observed that inhibiting the activity of ERK with specific inhibitor U0126 led to reduced autophagic level, while knockdown of autophagic gene Beclin-1 and Atg5 decreased the levels of ERK and p38 phosphorylation. Moreover, silymarin attenuated CSE-induced upregulation of inflammatory cytokines TNF-α, IL-6 and IL-8 which could also be dampened by ERK/p38 MAPK inhibitors and siRNAs for Beclin-1 and Atg5. Finally, we validated decreased levels of both autophagy and inflammatory cytokines (TNF-α and KC) in CS-exposed mice after silymarin treatment. The present research has demonstrated that CSE-induced autophagy in bronchial epithelia, in synergism with ERK MAPK pathway, may initiate and exaggerate airway inflammation. Silymarin could attenuate inflammatory responses through intervening in the crosstalk between autophagy and ERK MAPK pathway, and might be an ideal agent treating inflammatory pulmonary diseases. PMID:27874084

  18. Role of size and surface area for pro-inflammatory responses to silica nanoparticles in epithelial lung cells: importance of exposure conditions.

    PubMed

    Skuland, T; Ovrevik, J; Låg, M; Refsnes, M

    2014-03-01

    The present study compared non-crystalline silica particles of nano (50nm)- and submicro (500nm)-size (Si50 and Si500) for the potential to induce cytokine responses in bronchial epithelial lung cells (BEAS-2B). The cell cultures were exposed to equal mass and surface area concentrations of the two particles in different exposure media; LHC-9 and DMEM:F12. The state of agglomeration was different in the two media; with marked agglomeration in LHC-9 and nearly no agglomeration in DMEM:F12. On a mass basis, Si50 was more potent than Si500 in inducing cytokine responses in both exposure media. In contrast, upon exposure to similar surface area concentrations, Si500 was more potent than Si50 in DMEM:F12. This might be due to different agglomeration/sedimentation properties of Si50 versus Si500 in the two media. However, influence of differences in particle reactivity or particle uptake cannot be excluded. The data indicated no qualitative changes in the cytokine gene-expression patterns induced by the two particles, suggesting effects through similar mechanisms. These aspects might be of importance for interpretation of in vitro studies of nanomaterials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Analysis of miRNA profiles identified miR-196a as a crucial mediator of aberrant PI3K/AKT signaling in lung cancer cells.

    PubMed

    Guerriero, Ilaria; D'Angelo, Daniela; Pallante, Pierlorenzo; Santos, Mafalda; Scrima, Marianna; Malanga, Donatella; De Marco, Carmela; Ravo, Maria; Weisz, Alessandro; Laudanna, Carmelo; Ceccarelli, Michele; Falco, Geppino; Rizzuto, Antonia; Viglietto, Giuseppe

    2016-11-17

    Hyperactivation of the PI3K/AKT pathway is observed in most human cancer including lung carcinomas. Here we have investigated the role of miRNAs as downstream targets of activated PI3K/AKT signaling in Non Small Cell Lung Cancer (NSCLC). To this aim, miRNA profiling was performed in human lung epithelial cells (BEAS-2B) expressing active AKT1 (BEAS-AKT1-E17K), active PI3KCA (BEAS-PIK3CA-E545K) or with silenced PTEN (BEAS-shPTEN).Twenty-four differentially expressed miRNAs common to BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells were identified through this analysis, with miR-196a being the most consistently up-regulated miRNA. Interestingly, miR-196a was significantly overexpressed also in human NSCLC-derived cell lines (n=11) and primary lung cancer samples (n=28).By manipulating the expression of miR-196a in BEAS-2B and NCI-H460 cells, we obtained compelling evidence that this miRNA acts downstream the PI3K/AKT pathway, mediating some of the proliferative, pro-migratory and tumorigenic activity that this pathway exerts in lung epithelial cells, possibly through the regulation of FoxO1, CDKN1B (hereafter p27) and HOXA9.

  20. Analysis of miRNA profiles identified miR-196a as a crucial mediator of aberrant PI3K/AKT signaling in lung cancer cells

    PubMed Central

    Guerriero, Ilaria; D’Angelo, Daniela; Pallante, Pierlorenzo; Santos, Mafalda; Scrima, Marianna; Malanga, Donatella; De Marco, Carmela; Weisz, Alessandro; Laudanna, Carmelo; Ceccarelli, Michele; Falco, Geppino; Rizzuto, Antonia; Viglietto, Giuseppe

    2017-01-01

    Hyperactivation of the PI3K/AKT pathway is observed in most human cancer including lung carcinomas. Here we have investigated the role of miRNAs as downstream targets of activated PI3K/AKT signaling in Non Small Cell Lung Cancer (NSCLC). To this aim, miRNA profiling was performed in human lung epithelial cells (BEAS-2B) expressing active AKT1 (BEAS-AKT1-E17K), active PI3KCA (BEAS-PIK3CA-E545K) or with silenced PTEN (BEAS-shPTEN). Twenty-four differentially expressed miRNAs common to BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells were identified through this analysis, with miR-196a being the most consistently up-regulated miRNA. Interestingly, miR-196a was significantly overexpressed also in human NSCLC-derived cell lines (n=11) and primary lung cancer samples (n=28). By manipulating the expression of miR-196a in BEAS-2B and NCI-H460 cells, we obtained compelling evidence that this miRNA acts downstream the PI3K/AKT pathway, mediating some of the proliferative, pro-migratory and tumorigenic activity that this pathway exerts in lung epithelial cells, possibly through the regulation of FoxO1, CDKN1B (hereafter p27) and HOXA9. PMID:27880728

  1. Lung Epithelial Progenitor Cells

    PubMed Central

    Rawlins, Emma L.

    2008-01-01

    The current enthusiasm for stem cell research stems from the hope that damaged or diseased tissues may one day be repaired through the manipulation of endogenous or exogenous stem cells. The postnatal human respiratory system is highly accessible and provides unique opportunities for the application of such techniques. Several putative adult lung epithelial stem cells have been identified in the mouse model system. However, their in vivo capabilities to contribute to different lineages, and their control mechanisms, remain unclear. If stem cell–based therapies are to be successful in the lung, it is vitally important that we understand the normal behavior of adult lung stem cells, and how this is regulated. Lung embryonic progenitor cells are much better defined and characterized than their adult counterparts. Moreover, experiments on a variety of developing tissues are beginning to uncover general mechanisms by which embryonic progenitors influence final organ size and structure. This provides a framework for the study of lung embryonic progenitor cells, facilitating experimental design and interpretation. A similar approach to investigating adult lung stem cells could produce rapid advances in the field. PMID:18684716

  2. The Effects of Acrolein on Peroxiredoxins, Thioredoxins, and Thioredoxin Reductase in Human Bronchial Epithelial Cells

    PubMed Central

    Myers, Charles R.; Myers, Judith M.

    2009-01-01

    Inhalation is a common form of exposure to acrolein, a toxic reactive volatile aldehyde that is a ubiquitous environmental pollutant. Bronchial epithelial cells would be directly exposed to inhaled acrolein. The thioredoxin (Trx) system is essential for the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, thioredoxin reductase (TrxR) maintains the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins in the reduced state, and the thioredoxins keep the peroxiredoxins (Prx) reduced, thereby supporting their peroxidase function. The effects of acrolein on TrxR, Trx and Prx in human bronchial epithelial (BEAS-2B) cells were determined. A 30-min exposure to 5 μM acrolein oxidized both Trx1 and Trx2, although significant effects were noted for Trx1 at even lower acrolein concentrations. The effects on Trx1 and Trx2 could not be reversed by treatment with disulfide reductants. TrxR activity was inhibited 60% and >85% by 2.5 and 5 μM acrolein, respectively. The endogenous electron donor for TrxR, NADPH, could not restore its activity, and activity did not recover in cells during a 4-hr acrolein-free period in complete medium. The effects of acrolein on TrxR and Trx therefore extend beyond the duration of exposure. While there was a strong correlation between TrxR inhibition and Trx1 oxidation, the irreversible effects on Trx1 suggest direct effects of acrolein rather than loss of reducing equivalents from TrxR. Trx2 did not become oxidized until ≥90% of TrxR was inhibited, but irreversible effects on Trx2 also suggest direct effects of acrolein. Prx1 (cytosolic) and Prx3 (mitochondrial) shifted to a largely oxidized state only when >90 and 100% of their respective Trxs were oxidized. Prx oxidation was readily reversed with a disulfide reductant, suggesting that Prx oxidation resulted from lack of reducing equivalents from Trx and not direct reaction with acrolein. The effects of acrolein on the thioredoxin system and

  3. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    SciTech Connect

    Sun, Daqing; Wang, Jing; Yang, Niandi; Ma, Haixin

    2016-08-12

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion molecules in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.

  4. Macrophage/epithelial cell CCL2 contributes to rhinovirus-induced hyperresponsiveness and inflammation in a mouse model of allergic airways disease.

    PubMed

    Schneider, Dina; Hong, Jun Young; Bowman, Emily R; Chung, Yutein; Nagarkar, Deepti R; McHenry, Christina L; Goldsmith, Adam M; Bentley, J Kelley; Lewis, Toby C; Hershenson, Marc B

    2013-02-01

    Human rhinovirus (HRV) infections lead to exacerbations of lower airways disease in asthmatic patients but not in healthy individuals. However, underlying mechanisms remain to be completely elucidated. We hypothesized that the Th2-driven allergic environment enhances HRV-induced CC chemokine production, leading to asthma exacerbations. Ovalbumin (OVA)-sensitized and -challenged mice inoculated with HRV showed significant increases in the expression of lung CC chemokine ligand (CCL)-2/monocyte chemotactic protein (MCP)-1, CCL4/macrophage inflammatory protein (MIP)-1β, CCL7/MCP-3, CCL19/MIP-3β, and CCL20/MIP3α compared with mice treated with OVA alone. Inhibition of CCL2 with neutralizing antibody significantly attenuated HRV-induced airways inflammation and hyperresponsiveness in OVA-treated mice. Immunohistochemical stains showed colocalization of CCL2 with HRV in epithelial cells and CD68-positive macrophages, and flow cytometry showed increased CCL2(+), CD11b(+) cells in the lungs of OVA-treated, HRV-infected mice. Compared with lung macrophages from naïve mice, macrophages from OVA-exposed mice expressed significantly more CCL2 in response to HRV infection ex vivo. Pretreatment of mouse lung macrophages and BEAS-2B human bronchial epithelial cells with interleukin (IL)-4 and IL-13 increased HRV-induced CCL2 expression, and mouse lung macrophages from IL-4 receptor knockout mice showed reduced CCL2 expression in response to HRV, suggesting that exposure to these Th2 cytokines plays a role in the altered HRV response. Finally, bronchoalveolar macrophages from children with asthma elaborated more CCL2 upon ex vivo exposure to HRV than cells from nonasthmatic patients. We conclude that CCL2 production by epithelial cells and macrophages contributes to HRV-induced airway hyperresponsiveness and inflammation in a mouse model of allergic airways disease and may play a role in HRV-induced asthma exacerbations.

  5. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    SciTech Connect

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.

  6. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    SciTech Connect

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  7. Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate.

    PubMed

    Miyayama, Takamitsu; Arai, Yuta; Suzuki, Noriyuki; Hirano, Seishiro

    2013-03-08

    Silver (Ag) possesses antibacterial activity and has been used in wound dressings and deodorant powders worldwide. However, the metabolic behavior and biological roles of Ag in mammals have not been well characterized. In the present study, we exposed human bronchial epithelial cells (BEAS-2B) to AgNO3 and investigated uptake and intracellular distribution of Ag, expression of metallothionein (MT), generation of reactive oxygen species (ROS), and changes in mitochondrial respiration. The culture medium concentration of Ag decreased with time and stabilized at 12h. The concentration of both Ag and MT in the soluble cellular fraction increased up to 3h and then decreased, indicating that cytosolic Ag relocated to the insoluble fraction of the cells. The levels of mRNAs for the major human MT isoforms MT-I and MT-II paralleled with the protein levels of Ag-MT. The intensity of fluorescence derived from ROS was elevated in the mitochondrial region at 24h. Ag decreased mitochondrial oxygen consumption in a dose-dependent manner and the activity of mitochondrial complex I-IV enzymes was significantly inhibited following exposure to Ag. In a separate experiment, we found that hydrogen peroxide (H2O2) at concentrations as low as 0.001% (equivalent to the concentration of H2O2 in Ag-exposed cells) removed Ag from MT. These results suggest MT was decomposed by cytosolic H2O2, and then Ag released from MT relocated to insoluble cellular fractions and inhibited electron chain transfer of mitochondrial complexes, which eventually led to cell damage. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Quantitative evaluation of berberine subcellular distribution and cellular accumulation in non-small cell lung cancer cells by UPLC-MS/MS.

    PubMed

    Yuan, Zhong-Wen; Leung, Elaine Lai-Han; Fan, Xing-Xing; Zhou, Hua; Ma, Wen-Zhe; Liu, Liang; Xie, Ying

    2015-11-01

    Berberine, an isoquinoline alkaloid, has been demonstrated to be a safe anti-cancer agent with multiple effects on mitochondria. Intracellular concentration and distribution around the targeting sites are determinants of efficacy, but subcellular distribution of berberine has not been fully elucidated yet, which relies on the sensitive and robustness assay. In this study, a sensitive and robust UPLC-MS/MS method has been developed and validated with optimized extraction solvents and detection conditions. Key factors such as the purity and integrity of isolated organelle fractions, and the effects of isolation procedures on the subcellular concentration of berberine were systemically evaluated. With the developed assay, we found that the intracellular accumulations of berberine in two gefitinib resistant NSCLC cell lines H1650 and H1975 were 2-3 folds higher than that of normal epithelial cells BEAS-2B. Moreover, significantly different subcellular distribution profiles in NSCLC cancer cells from that of BEAS-2B cells with a striking increase in content in most organelles may contribute to its selective cytotoxicity to cancer cells. Furthermore, a predominant accumulation of berberine was observed for the first time in microsomal fraction for all three cell lines. Therefore, this method could be used for quantitative evaluation of subcellular distribution and cellular accumulation of berberine and for further evaluation of the concentration-effects relationship.

  9. Let-7a modulates particulate matter (≤ 2.5 μm)-induced oxidative stress and injury in human airway epithelial cells by targeting arginase 2.

    PubMed

    Song, Lei; Li, Dan; Gu, Yue; Li, Xiaoping; Peng, Liping

    2016-10-01

    Epidemiological studies show that particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm (PM2.5) is associated with cardiorespiratory diseases via the induction of excessive oxidative stress. However, the precise mechanism underlying PM2.5-mediated oxidative stress injury has not been fully elucidated. Accumulating evidence has indicated the microRNA let-7 family might play a role in PM-mediated pathological processes. In this study, we investigated the role of let-7a in oxidative stress and cell injury in human bronchial epithelial BEAS2B (B2B) cells after PM2.5 exposure. The let-7a level was the most significantly decreased in B2B cells after PM2.5 exposure. The overexpression of let-7a suppressed intracellular reactive oxygen species levels and the percentage of apoptotic cells after PM2.5 exposure, while the let-7a level decreased arginase 2 (ARG2) mRNA and protein levels in B2B cells by directly targeting the ARG2 3'-untranslated region. ARG2 expression was upregulated in B2B cells during PM2.5 treatment, and ARG2 knockdown could remarkably reduce oxidative stress and cellular injury. Moreover, its restoration could abrogate the protective effects of let-7a against PM2.5-induced injury. In conclusion, let-7a decreases and ARG2 increases resulting from PM2.5 exposure may exacerbate oxidative stress, cell injury and apoptosis of B2B cells. The let-7a/ARG2 axis is a likely therapeutic target for PM2.5-induced airway epithelial injury. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Integrins and epithelial cell polarity.

    PubMed

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.

  11. s-Ethyl Cysteine and s-Methyl Cysteine Protect Human Bronchial Epithelial Cells Against Hydrogen Peroxide Induced Injury.

    PubMed

    Hsia, Te-chun; Yin, Mei-chin

    2015-09-01

    Protective effects and actions from s-ethyl cysteine (SEC) and s-methyl cysteine (SMC) for BEAS-2B cells were examined. BEAS-2B cells were pretreated with SEC or SMC at 4, 8, or 16 μmol/L, and followed by hydrogen peroxide (H2 O2 ) treatment. Data showed that H2 O2 enhanced Bax, caspase-3 and caspase-8 expression, and declined Bcl-2 expression. However, SEC or SMC dose-dependently decreased caspase-3 expression and reserved Bcl-2 expression. H2 O2 increased reactive oxygen species (ROS) production, and lowered glutathione level, glutathione peroxide, and glutathione reductase activities in BEAS-2B cells. SEC or SMC pretreatments reduced ROS generation, and maintained glutathione redox cycle in those cells. H2 O2 upregulated the expression of both p47(phox) and gp91(phox) . SEC and SMC downregulated p47(phox) expression. SEC or SMC at 8 and 16 μmol/L decreased H2 O2 -induced release of inflammatory cytokines. H2 O2 stimulated the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase. SEC and SMC pretreatments dose-dependently downregulated NF-κB p65 and p-p38 expression. Pyrrolidine dithiocarbamate or SB203580 inhibited NF-κB activation and p38 phosphorylation; thus, SEC or SMC pretreatments failed to affect protein expression of these factors. These novel findings suggest that SEC or SMC could protect bronchial cells and benefit respiratory epithelia stability and functions.

  12. Mechanism of Dose-Dependent Regulation of UBE1L by Polyphenols in Human Bronchial Epithelial Cells.

    PubMed

    Jiang, Apei; Li, Yuan; Wang, Pengqi; Shan, Xiaoyun; Jiang, Pan; Wang, Xuemin; Feng, Qing

    2015-08-01

    Ubiquitin activating enzyme E1-like (UBE1L) is the activating enzyme for ISG15ylation (ISG15, interferon stimulated gene 15). UBE1L is thought to be a candidate tumor suppressor gene and has positive activity against stress responses such as viral infections. Both type I interferon and retinoic acid are known to induce UBE1L expression. However, the molecular mechanism of UBE1L regulation is unclear. Here, the effect of several chemopreventive polyphenols on UBE1L expression in human bronchial epithelial cells (Beas-2B) was investigated. Lower concentrations of curcumin, (-)-epigallocatechin-3-gallate (EGCG) and resveratrol upregulated UBE1L, while high concentrations of curcumin, EGCG and resveratrol downregulated UBE1L levels. Interestingly, curcumin, EGCG and resveratrol diminished intracellular reactive oxygen species (ROS) at lower concentrations but generated ROS at higher concentrations. The antioxidant N-acetylcysteine (NAC) increased UBE1L protein levels, while pro-oxidants such as hydrogen peroxide and tert-butyl hydroperoxide (tBHP) decreased UBE1L protein levels, indicating that the intracellular redox status is associated with UBE1L expression. Kinase inhibitors were used to examine the contribution of mitogen-activated protein kinase (MAPK) activity to the polyphenol-regulated UBE1L. Only the inhibition of c-Jun N-terminal kinase (JNK) significantly reduced UBE1L expression. Knockdown of nuclear factor erythroid-2 related factor-2 (Nrf2) caused a concomitant decrease in UBE1L protein levels. It is concluded from the above mentioned results that JNK/Nrf2 signal pathway is involved in the regulation of UBE1L via intracellular ROS status when cells came in contact with polyphenols.

  13. Effect of particle size and dispersion status on cytotoxicity and genotoxicity of zinc oxide in human bronchial epithelial cells.

    PubMed

    Roszak, Joanna; Catalán, Julia; Järventaus, Hilkka; Lindberg, Hanna K; Suhonen, Satu; Vippola, Minnamari; Stępnik, Maciej; Norppa, Hannu

    2016-07-01

    Data available on the genotoxicity of zinc oxide (ZnO) nanoparticles (NPs) are controversial. Here, we examined the effects of particle size and dispersion status on the cytotoxicity and genotoxicity of nanosized and fine ZnO, in the presence and absence of bovine serum albumin (BSA; 0.06%) in human bronchial epithelial BEAS-2B cells. Dynamic light scattering analysis showed the most homogenous dispersions in water alone for nanosized ZnO and in water with BSA for fine ZnO. After a 48-h treatment, both types of ZnO were cytotoxic within a similar, narrow dose range (1.5-3.0μg/cm(2)) and induced micronuclei at a near toxic dose range (1.25-1.75μg/cm(2)), both with and without BSA. In the comet assay, nanosized ZnO (1.25-1.5μg/cm(2)), in the absence of BSA, caused a statistically significant increase in DNA damage after 3-h and 6-h treatments, while fine ZnO did not. Our findings may be explained by better uptake or faster intracellular dissolution of nanosized ZnO without BSA during short treatments (3-6h; the comet assay), with less differences between the two ZnO forms after longer treatments (>48h; the in vitro micronucleus test). As ZnO is genotoxic within a narrow dose range partly overlapping with cytotoxic doses, small experimental differences e.g. in the dispersion of ZnO particles may have a substantial effect on the genotoxicity of the nominal doses added to the cell culture.

  14. Role of H2O2 in the oxidative effects of zinc exposure in human airway epithelial cells.

    PubMed

    Wages, Phillip A; Silbajoris, Robert; Speen, Adam; Brighton, Luisa; Henriquez, Andres; Tong, Haiyan; Bromberg, Philip A; Simmons, Steven O; Samet, James M

    2014-01-01

    Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn(2+)) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn(2+) toxicity is not fully understood. H2O2 and Zn(2+) have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn(2+) to cause cellular H2O2 production. To determine the role of Zn(2+)-induced H2O2 production in the human airway epithelial cell response to Zn(2+) exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2) or roGFP2 (EGSH) in the cytosol or mitochondria were exposed to 50µM Zn(2+) for 5min in the presence of 1µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn(2+) exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn(2+)-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn(2+)-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn(2+) leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms.

  15. DNA Damage Potential of Engine Emissions Measured In Vitro by Micronucleus Test in Human Bronchial Epithelial Cells.

    PubMed

    Cervena, Tereza; Rossnerova, Andrea; Sikorova, Jitka; Beranek, Vit; Vojtisek-Lom, Michal; Ciganek, Miroslav; Topinka, Jan; Rossner, Pavel

    2016-10-26

    Internal combustion engine emissions belong among the major anthropogenic sources of air pollution in urban areas. According to the International Agency for Research on Cancer, there is sufficient evidence of the carcinogenicity of diesel exhaust in human beings. Although alternative fuels, mainly biodiesel, have recently become popular, little is still known about the genotoxicity of emissions from these fuels. We analysed DNA damage expressed as the frequency of micronuclei (MN) in human bronchial epithelial cells (BEAS-2B), induced by extractable organic matter (EOM; tested concentrations: 1, 10 and 25 μg/ml) obtained from particle emissions from various blends of biodiesel with diesel fuels (including neat diesel fuel (B0), a blend of 70% B0 and 30% biodiesel (B30) and neat biodiesel (B100)). We also tested the effect of selected diesel exhaust organic/genotoxic components [benzo[a]pyrene (B[a]P) concentrations: 25, 100 and 200 μM; 1-nitropyrene (1-NP) concentrations: 1, 5 and 10 μM; 3-nitrobenzanthrone (3-NBA) concentrations: 1, 5 and 50 μM]. The cells were treated with the compounds for 28 and 48 hr. Our results showed that most of the tested compounds (except for the 25 μM B[a]P, 28-hr treatment) significantly increased MN frequency. The genotoxicity of EOMs from the engine emissions of diesel and biodiesel engines was comparable. Both nitro-PAH compounds demonstrated higher genotoxic potential in comparison with B[a]P. Considering our results and due to increasing popularity of alternative fuels, it is prudent that the potential genotoxic effects of various fuels are investigated across engine technologies and operating conditions in a relevant model system.

  16. High-throughput, quantitative analysis of acrolein-derived DNA adducts in human oral cells by immunohistochemistry.

    PubMed

    Greenspan, Emily J; Lee, Hanjoo; Dyba, Marcin; Pan, Jishen; Mekambi, Kepher; Johnson, Tierra; Blancato, Jan; Mueller, Susette; Berry, Deborah L; Chung, Fung-Lung

    2012-11-01

    Acrolein (Acr) is a ubiquitous environmental pollutant as well as an endogenous compound. Acrolein-derived 1,N(2)-propanodeoxyguanosines (Acr-dG) are exocyclic DNA adducts formed following exposure to cigarette smoke or from lipid peroxidation. Acr-dG is mutagenic and potentially carcinogenic and may represent a useful biomarker for the early detection of cancers related to smoking or other oxidative conditions, such as chronic inflammation. In this study, we have developed a high-throughput, automated method using a HistoRx PM-2000 imaging system combined with MetaMorph software for quantifying Acr-dG adducts in human oral cells by immunohistochemical detection using a monoclonal antibody recently developed by our laboratory. This method was validated in a cell culture system using BEAS-2B human bronchial epithelial cells treated with known concentrations of Acr. The results were further verified by quantitative analysis of Acr-dG in DNA of BEAS-2B cells using a liquid chromatography/tandem mass spectrometry/multiple-reaction monitoring method. The automated method is a quicker, more accurate method than manual evaluation of counting cells expressing Acr-dG and quantifying fluorescence intensity. It may be applied to other antibodies that are used for immunohistochemical detection in tissues as well as cell lines, primary cultures, and other cell types.

  17. Interactive effect of cigarette smoke extract and world trade center dust particles on airway cell cytotoxicity.

    PubMed

    Xu, Alice; Prophete, Colette; Chen, Lung-chi; Emala, Charles W; Cohen, Mitchell D

    2011-01-01

    Rescue workers and residents exposed to the environment surrounding the collapse of the World Trade Center (WTC) on September 11, 2001, have suffered a disproportionate incidence of chronic lung disease attributed to the inhalation of airborne dust. To date, the pathophysiology of this lung disease is poorly understood. The aim of this study was to examine whether airborne dust contaminants recovered from the surrounding area 24-48 h after the collapse of the WTC demonstrate direct cytotoxicity to two airway cell types that were most directly exposed to inhaled dust, airway epithelial and smooth muscle cells. It was also of interest to determine whether the presence of these dusts could modulate the effects of cigarette smoke on these cell types in that some of the individuals who responded to the collapse site were also smokers. Human cultured airway epithelial (BEAS-2B) cells were exposed to 10% cigarette smoke extract (CSE), WTC dust particles (10-53 μm; 0.01-0.5 μg/μl), or a combination of the two for 2-24 h. Cell viability was measured by determining mitochondrial integrity (MTT assays) and apoptosis (poly-ADP-ribose polymerase [PARP] immunoblotting). Conditioned cell culture media recovered from the CSE- and/or WTC dust-exposed BEAS-2B cells were then applied to cultured human airway smooth muscle cells that were subsequently assayed for mitochondrial integrity and their ability to synthesize cyclic AMP (a regulator of airway smooth muscle constriction). BEAS-2B cells underwent necrotic cell death following exposure to WTC dust or CSE for 2-24 h without evidence of apoptosis. Smooth muscle cells demonstrated cellular toxicity and enhanced cyclic AMP synthesis following exposure to conditioned media from WTC- or CSE-exposed epithelial cells. These acute toxicity assays of WTC dust and CSE offer insights into lung cell toxicity that may contribute to the pathophysiology of chronic lung disease in workers and residents exposed to WTC dust. These studies

  18. WNT/β-catenin pathway modulates the TNF-α-induced inflammatory response in bronchial epithelial cells.

    PubMed

    Jang, Jaewoong; Jung, Yoonju; Chae, Seyeon; Chung, Sang-In; Kim, Seok-Min; Yoon, Yoosik

    2017-03-04

    In this study, TNF-α was found to activate the WNT/β-catenin pathway in BEAS-2B human bronchial epithelial cells. Levels of phospho-LRP6, Dvl-2, and phospho-GSK-3β were elevated, while that of Axin was reduced by TNF-α treatment. Nuclear translocation of β-catenin and the reporter activity of a β-catenin-responsive promoter were increased by TNF-α treatment. Under the same experimental conditions, TNF-α activated the NF-κB signaling, which includes the phosphorylation and degradation of IκB and nuclear translocation and target DNA binding of NF-κB, and it was found that an inhibitor of NF-κB activation, JSH-23, inhibited TNF-α-induced Wnt signaling as well as NF-κB signaling. It was also found that recombinant Wnt proteins induced NF-κB nuclear translocations and its target DNA binding, suggesting that Wnt signaling and NF-κB signaling were inter-connected. TNF-α-induced modulations of IκB and NF-κB as well as pro-inflammatory cytokine expression were significantly suppressed by the transfection of β-catenin siRNA compared to that of control siRNA. Transfection of a β-catenin expression plasmid augmented the TNF-α-induced modulations of IκB and NF-κB as well as pro-inflammatory cytokine expression. These results clearly demonstrated that the WNT/β-catenin pathway modulates the inflammatory response induced by TNF-α, suggesting that this pathway may be a useful target for the effective treatment of bronchial inflammation.

  19. The Effects of Hexavalent Chromium on Thioredoxin Reductase and Peroxiredoxins in Human Bronchial Epithelial Cells

    PubMed Central

    Myers, Judith M.; Myers, Charles R.

    2009-01-01

    Inhalational exposure to hexavalent chromium [Cr(VI)] compounds (e.g. chromates) is of concern in many Cr-related industries and their surrounding environments. The bronchial epithelium is directly exposed to inhaled Cr(VI). Cr(VI) species gain easy access inside cells where they are reduced to reactive Cr species which may also contribute to the generation of reactive oxygen species (ROS). The thioredoxin (Trx) system promotes cell survival and has a major role in maintaining intracellular thiol redox balance. Previous studies with normal human bronchial epithelial cells (BEAS-2B) demonstrated that chromates cause dose- and time-dependent oxidation of Trx1 and Trx2. The Trxs keep many intracellular proteins reduced including the peroxiredoxins (Prx). Prx1 (cytosolic) and Prx3 (mitochondrial) were oxidized by Cr(VI) treatments that oxidized all, or nearly all, of the respective Trxs. Prx oxidation is therefore likely the result of a lack of reducing equivalents from Trx. Trx reductases (TrxR) maintain the Trxs largely in the reduced state. Cr(VI) caused pronounced inhibition of TrxR, but the levels of TrxR protein remained unchanged. The inhibition of TrxR was not reversed by removal of residual Cr(VI) or by NADPH, the endogenous electron donor for TrxR. In contrast, the oxidation of Trx1, Trx2, and Prx3 were reversible by disulfide reductants. Prolonged inhibition of TrxR in Cr(VI)-treated cells might contribute to the sustained oxidation of Trxs and Prxs. Reduced Trx binds to an N-terminal domain of apoptosis signaling kinase (ASK1), keeping ASK1 inactive. Cr(VI) treatments that significantly oxidized Trx1 resulted in pronounced dissociation of Trx1 from ASK1. Overall, the effects of Cr(VI) on the redox state and function of the Trxs, Prxs, and TrxR in the bronchial epithelium could have important implications for redox-sensitive cell signaling and tolerance to oxidant insults. PMID:19703554

  20. Mammalian cells exhibit a range of sensitivities to silver nanoparticles that are partially explicable by variations in antioxidant defense and metallothionein expression

    PubMed Central

    Zhang, Haiyuan; Wang, Xiang; Wang, Meiying; Li, Linjiang; Chang, Chong Hyun; Ji, Zhaoxia; Xia, Tian; Nel, Andre E.

    2015-01-01

    While it is well known that there are interspecies differences in Ag sensitivity, we have also observed differences in the cytotoxic responses of mammalian cells to silver nanoparticles (Ag NPs). In order to explore these response outcomes, six cell lines, including epithelial cells (Caco-2, NHBE, RLE-6TN and BEAS-2B) and macrophages (RAW 264.7 and THP-1) of human and rodent origin were exposed to 20 nm citrate- and PVP-coated AgNPs with Au cores as well as 20 nm citrate-coated particles without cores. A MTS assay showed that while Caco-2 and NHBE cells were resistant to particles over a 0.1- 50 μg/mL dose range, RAW 264.7, THP-1, RLE-6TN and BEAS-2B cells were more susceptible. While there were small differences in dissolution rates, there were no major differences in the cytotoxic potential of the different particles. However, we did observe differences in anti-oxidant defense and metallothionein expression among different cell types, which can partially explain differential AgNP sensitivity. So it is important to consider these differences in understanding the potential heterogeneous effects of nano Ag on mammalian biological systems. PMID:25930061

  1. Chronic Arsenic Exposure and Angiogenesis in Human Bronchial Epithelial Cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway

    PubMed Central

    He, Jun; Wang, Min; Jiang, Yue; Chen, Qiudan; Xu, Shaohua; Xu, Qing; Jiang, Bing-Hua

    2014-01-01

    Background: Environmental and occupational exposure to arsenic is a major public health concern. Although it has been identified as a human carcinogen, the molecular mechanism underlying the arsenic-induced carcinogenesis is not well understood. Objectives: We aimed to determine the role and mechanisms of miRNAs in arsenic-induced tumor angiogenesis and tumor growth. Methods: We utilized an in vitro model in which human lung epithelial BEAS-2B cells were transformed through long-term exposure to arsenic. A human xenograft tumor model was established to assess tumor angiogenesis and tumor growth in vivo. Tube formation assay and chorioallantoic membranes assay were used to assess tumor angiogenesis. Results: We found that miR-199a-5p expression levels were more than 100-fold lower in arsenic-transformed cells than parental cells. Re-expression of miR-199a-5p impaired arsenic-induced angiogenesis and tumor growth through its direct targets HIF-1α and COX-2. We further showed that arsenic induced COX-2 expression through HIF-1 regulation at the transcriptional level. In addition, we demonstrated that reactive oxygen species are an upstream event of miR-199a-5p/ HIF-1α/COX-2 pathway in arsenic-induced carcinogenesis. Conclusion: The findings establish critical roles of miR-199a-5p and its downstream targets HIF-1/COX-2 in arsenic-induced tumor growth and angiogenesis. Citation: He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ. 2014. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway. Environ Health Perspect 122:255–261; http://dx.doi.org/10.1289/ehp.1307545 PMID:24413338

  2. Streptococcus pneumoniae-Induced Oxidative Stress in Lung Epithelial Cells Depends on Pneumococcal Autolysis and Is Reversible by Resveratrol.

    PubMed

    Zahlten, Janine; Kim, Ye-Ji; Doehn, Jan-Moritz; Pribyl, Thomas; Hocke, Andreas C; García, Pedro; Hammerschmidt, Sven; Suttorp, Norbert; Hippenstiel, Stefan; Hübner, Ralf-Harto

    2015-06-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia worldwide. During pneumococcal pneumonia, the human airway epithelium is exposed to large amounts of H2O2 as a product of host and pathogen oxidative metabolism. Airway cells are known to be highly vulnerable to oxidant damage, but the pathophysiology of oxidative stress induced by S. pneumoniae and the role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant systems of the host are not well characterized. For gluthation/gluthathion disulfide analysis BEAS-2B cells, primary broncho-epithelial cells (pBEC), explanted human lung tissue and mouse lungs were infected with different S. pneumoniae strains (D39, A66, R6x, H2O2/pneumolysin/LytA- deficient mutants of R6x). Cell death was proven by LDH assay and cell viability by IL-8 ELISA. The translocation of Nrf2 and the expression of catalase were shown via Western blot. The binding of Nrf2 at the catalase promoter was analyzed by ChIP. We observed a significant induction of oxidative stress induced by S. pneumoniae in vivo, ex vivo, and in vitro. Upon stimulation, the oxidant-responsive transcription factor Nrf2 was activated, and catalase was upregulated via Nrf2. The pneumococci-induced oxidative stress was independent of S. pneumoniae-derived H2O2 and pneumolysin but depended on the pneumococcal autolysin LytA. The Nrf2 inducer resveratrol, as opposed to catalase, reversed oxidative stress in lung epithelial cells. These observations indicate a H2O2-independent induction of oxidative stress in lung epithelial cells via the release of bacterial factors of S. pneumoniae. Resveratrol might be an option for prevention of acute lung injury and inflammatory responses observed in pneumococcal pneumonia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Integrins and epithelial cell polarity

    PubMed Central

    Lee, Jessica L.; Streuli, Charles H.

    2014-01-01

    ABSTRACT Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell–matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical–basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity. For further reading, please see related articles: ‘ERM proteins at a glance’ by Andrea McClatchey (J. Cell Sci. 127, 3199–3204). ‘Establishment of epithelial polarity – GEF who's minding the GAP?’ by Siu Ngok et al. (J. Cell Sci. 127, 3205–3215). PMID:24994933

  4. Oxidative stress dependent microRNA-34a activation via PI3Kα reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells

    PubMed Central

    Baker, J. R.; Vuppusetty, C.; Colley, T.; Papaioannou, Andriana I.; Fenwick, P.; Donnelly, Louise; Ito, K.; Barnes, P. J.

    2016-01-01

    Sirtuin-1 (SIRT1) and SIRT6, NAD+-dependent Class III protein deacetylases, are putative anti-aging enzymes, down-regulated in patients with chronic obstructive pulmonary disease (COPD), which is characterized by the accelerated ageing of the lung and associated with increased oxidative stress. Here, we show that oxidative stress (hydrogen peroxide) selectively elevates microRNA-34a (miR-34a) but not the related miR-34b/c, with concomitant reduction of SIRT1/-6 in bronchial epithelial cells (BEAS2B), which was also observed in peripheral lung samples from patients with COPD. Over-expression of a miR-34a mimic caused a significant reduction in both mRNA and protein of SIRT1/-6, whereas inhibition of miR-34a (antagomir) increased these sirtuins. Induction of miR-34a expression with H2O2 was phosphoinositide-3-kinase (PI3K) dependent as it was associated with PI3Kα activation as well as phosphatase and tensin homolog (PTEN) reduction. Importantly, miR-34a antagomirs increased SIRT1/-6 mRNA levels, whilst decreasing markers of cellular senescence in airway epithelial cells from COPD patients, suggesting that this process is reversible. Other sirtuin isoforms were not affected by miR-34a. Our data indicate that miR-34a is induced by oxidative stress via PI3K signaling, and orchestrates ageing responses under oxidative stress, therefore highlighting miR-34a as a new therapeutic target and biomarker in COPD and other oxidative stress-driven aging diseases. PMID:27767101

  5. GS-5759, a Bifunctional β2-Adrenoceptor Agonist and Phosphodiesterase 4 Inhibitor for Chronic Obstructive Pulmonary Disease with a Unique Mode of Action: Effects on Gene Expression in Human Airway Epithelial Cells.

    PubMed

    Joshi, Taruna; Yan, Dong; Hamed, Omar; Tannheimer, Stacey L; Phillips, Gary B; Wright, Clifford D; Kim, Musong; Salmon, Michael; Newton, Robert; Giembycz, Mark A

    2017-02-01

    (R)-6-[(3-{[4-(5-{[2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl]amino}pent-1-yn-1-yl)phenyl] carbamoyl}phenyl)sulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide trifluoroacetic acid (GS-5759) is a bifunctional ligand composed of a quinolinone-containing pharmacophore [β2-adrenoceptor agonist orthostere (β2A)] found in several β2-adrenoceptor agonists, including indacaterol, linked covalently to a phosphodiesterase 4 (PDE4) inhibitor related to 6-[3-(dimethylcarbamoyl)benzenesulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide (GSK 256066) by a pent-1-yn-1-ylbenzene spacer. GS-5759 had a similar affinity for PDE4B1 and the native β2-adrenoceptor expressed on BEAS-2B human airway epithelial cells. However, compared with the monofunctional parent compound, β2A, the KA of GS-5759 for the β2-adrenoceptor was 35-fold lower. Schild analysis determined that the affinities of the β-adrenoceptor antagonists, (2R,3R)-1-[(2,3-dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl) amino]-2-butanol (ICI 118551) and propranolol, were agonist-dependent, being significantly lower for GS-5759 than β2A. Collectively, these data can be explained by "forced proximity," bivalent binding where the pharmacophore in GS-5759 responsible for PDE4 inhibition also interacts with a nonallosteric domain within the β2-adrenoceptor that enhances the affinity of β2A for the orthosteric site. Microarray analyses revealed that, after 2-hour exposure, GS-5759 increased the expression of >3500 genes in BEAS-2B cells that were highly rank-order correlated with gene expression changes produced by indacaterol and GSK 256066 in combination (Ind/GSK). Moreover, the line of regression began close to the origin with a slope of 0.88, indicating that the magnitude of most gene expression changes produced by Ind/GSK was quantitatively replicated by GS-5759. Thus, GS-5759 is a novel compound exhibiting dual β2-adrenoceptor agonism and PDE4 inhibition

  6. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  7. Vam3, a resveratrol dimer, inhibits cigarette smoke-induced cell apoptosis in lungs by improving mitochondrial function

    PubMed Central

    Xuan, Ling-ling; Shi, Ji; Yao, Chun-suo; Bai, Jin-ye; Qu, Feng; Zhang, Jin-lan; Hou, Qi

    2014-01-01

    Aim: To investigate the effects of Vam3 (a resveratrol dimer extracted from Vitis amurensis Rupr) on cigarette smoke (CS)-induced cell apoptosis in lungs in vitro and in vivo and the underlying mechanisms of action. Methods: Human bronchial epithelial cell line BEAS-2B was exposed to cigarette smoke condensate (CSC, 300 mg/L), and cell apoptosis was determined using flow cytometry and Hoechst staining. Mitochondrial membrane potential was examined with TMRE staining. ROS and ceramide levels were detected with DCFH-DA fluorescence and HPLC-MS/MS, respectively. Cytochrome c release was detected using immunofluorescence. Caspase-9 and neutral sphingomyelinase 2 expression was measured with Western blotting. The breast carcinoma cell line MCF7 stably expressing GFP-tagged Bax was used to elucidate the role of mitochondria in CS-induced apoptosis. For in vivo study, male mice were exposed to CS for 5 min twice a day for 4 weeks. The mice were orally administered Vam3 (50 mg·kg−1·d−1) or resveratrol (30 mg·kg−1·d−1) each day 1 h before the first CS exposure. Results: Pretreatment of BEAS-2B cells with Vam3 (5 μmol/L) or resveratrol (5 μmol/L) significantly suppressed CSC-induced apoptosis, and prevented CSC-induced Bax level increase in the mitochondria, mitochondrial membrane potential loss, cytochrome c release and caspase-9 activation. Furthermore, pretreatment of BEAS-2B cells with Vam3 or resveratrol significantly suppressed CSC-stimulated intracellular ceramide production, and CSC-induced upregulation of neutral sphingomyelinase 2, the enzyme responsible for ceramide production in bronchial epithelial cells. Similar results were obtained in C6-pyridinium ceramide-induced apoptosis of GFP-Bax-stable MCF7 cells in vitro, and in the lungs of CS-exposed mice that were treated with oral administration of Vam3 or resveratrol. Conclusion: Vam3 protects bronchial epithelial cells from CS-induced apoptosis in vitro and in vivo by preventing mitochondrial

  8. Vam3, a resveratrol dimer, inhibits cigarette smoke-induced cell apoptosis in lungs by improving mitochondrial function.

    PubMed

    Xuan, Ling-Ling; Shi, Ji; Yao, Chun-Suo; Bai, Jin-Ye; Qu, Feng; Zhang, Jin-Lan; Hou, Qi

    2014-06-01

    To investigate the effects of Vam3 (a resveratrol dimer extracted from Vitis amurensis Rupr) on cigarette smoke (CS)-induced cell apoptosis in lungs in vitro and in vivo and the underlying mechanisms of action. Human bronchial epithelial cell line BEAS-2B was exposed to cigarette smoke condensate (CSC, 300 mg/L), and cell apoptosis was determined using flow cytometry and Hoechst staining. Mitochondrial membrane potential was examined with TMRE staining. ROS and ceramide levels were detected with DCFH-DA fluorescence and HPLC-MS/MS, respectively. Cytochrome c release was detected using immunofluorescence. Caspase-9 and neutral sphingomyelinase 2 expression was measured with Western blotting. The breast carcinoma cell line MCF7 stably expressing GFP-tagged Bax was used to elucidate the role of mitochondria in CS-induced apoptosis. For in vivo study, male mice were exposed to CS for 5 min twice a day for 4 weeks. The mice were orally administered Vam3 (50 mg·kg(-1)·d(-1)) or resveratrol (30 mg·kg(-1)·d(-1)) each day 1 h before the first CS exposure. Pretreatment of BEAS-2B cells with Vam3 (5 μmol/L) or resveratrol (5 μmol/L) significantly suppressed CSC-induced apoptosis, and prevented CSC-induced Bax level increase in the mitochondria, mitochondrial membrane potential loss, cytochrome c release and caspase-9 activation. Furthermore, pretreatment of BEAS-2B cells with Vam3 or resveratrol significantly suppressed CSC-stimulated intracellular ceramide production, and CSC-induced upregulation of neutral sphingomyelinase 2, the enzyme responsible for ceramide production in bronchial epithelial cells. Similar results were obtained in C6-pyridinium ceramide-induced apoptosis of GFP-Bax-stable MCF7 cells in vitro, and in the lungs of CS-exposed mice that were treated with oral administration of Vam3 or resveratrol. Vam3 protects bronchial epithelial cells from CS-induced apoptosis in vitro and in vivo by preventing mitochondrial dysfunction.

  9. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro.

    PubMed

    Fu, Ting; Wang, Ling; Jin, Xiang-nan; Sui, Hai-juan; Liu, Zhou; Jin, Ying

    2016-04-01

    Hyperoside (quercetin-3-O-β-D-galactopyranoside) is a flavonol glycoside found in plants of the genera Hypericum and Crataegus, which exhibits anticancer, anti-oxidant, and anti-inflammatory activities. In this study we investigated whether autophagy was involved in the anticancer mechanisms of hyperoside in human non-small cell lung cancer cells in vitro. Human non-small cell lung cancer cell line A549 was tested, and human bronchial epithelial cell line BEAS-2B was used for comparison. The expression of LC3-II, apoptotic and signaling proteins was measured using Western blotting. Autophagosomes were observed with MDC staining, LC3 immunocytochemistry, and GFP-LC3 fusion protein techniques. Cell viability was assessed using MTT assay. Hyperoside (0.5, 1, 2 mmol/L) dose-dependently increased the expression of LC3-II and autophagosome numbers in A549 cells, but had no such effects in BEAS-2B cells. Moreover, hyperoside dose-dependently inhibited the phosphorylation of Akt, mTOR, p70S6K and 4E-BP1, but increased the phosphorylation of ERK1/2 in A549 cells. Insulin (200 nmol/L) markedly enhanced the phosphorylation of Akt and decreased LC3-II expression in A549 cells, which were reversed by pretreatment with hyperoside, whereas the MEK1/2 inhibitor U0126 (20 μmol/L) did not blocked hyperoside-induced LC3-II expression. Finally, hyperoside dose-dependently suppressed the cell viability and induced apoptosis in A549 cells, which were significantly attenuated by pretreatment with the autophagy inhibitor 3-methyladenine (2.5 mmol/L). Hyperoside induces both autophagy and apoptosis in human non-small cell lung cancer cells in vitro. The autophagy is induced through inhibiting the Akt/mTOR/p70S6K signal pathways, which contributes to anticancer actions of hyperoside.

  10. The role of C/EBPβ phosphorylation in modulating membrane phospholipids repairing in LPS-induced human lung/bronchial epithelial cells.

    PubMed

    Shu, Shiyu; Xu, Yan; Xie, Ling; Ouyang, Yufang

    2017-09-20

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common critical emergency with high mortality in clinical practice. The key mechanism of ALI/ARDS is that the excessive inflammatory response damages the integrity of alveolar and bronchial cell membrane and thus affects their basic function. Phospholipids are the main component of cell membranes. Phospholipase A2 (PLA2), which catalyzes the cleavage of membrane phospholipids, is the most important inflammatory mediator of ALI. However, clara cell secretory protein 1 (CCSP1), an endogenous PLA2 inhibitor can increase the self-defense of membrane phospholipids. Thus, CCSP1 up-regulation and PLA2 inhibition constitutes an effective method for ensuring the stability of membrane phospholipids and for the treatment of ALI/ARDS. In the present study, we developed an in vitro model of ALI via lipopolysaccharide (LPS) stimulation of a human bronchial epithelial cell line, BEAS-2B, and assessed the mRNA and protein levels of CCSP1 and PLA2 in the model cells. The results demonstrated LPS induction inhibited the transcription and protein expression of CCSP1, but only the protein level of membrane associated PLA2 was increased, suggesting that in the in vitro ALI model, abnormally regulated CCSP1 transcription plays a crucial role in the damage of cell membrane. To find out the reason that CCSP1 expression was decreased in the ALI model, we predicted, by means of bioinformatics, putative transcription factors which would bind to CCSP1 promoter, examined their background and expression, and found that a transcription factor, CCAAT/enhancer binding protein β (C/EBP β), was correlated with the transcription of CCSP1 in the in vitro ALI model, and its phosphorylation in the model was decreased. CHIP-PCR and luciferase reporter assay revealed that C/EBP β bound to CCSP1 promoter and facilitated its transcription. Therefore, we conclude that there is a C/EBP β/CCSP1/PLA2 pathway in the in vitro ALI model. The

  11. Progress Towards Drosophila Epithelial Cell Culture

    PubMed Central

    Simcox, Amanda

    2015-01-01

    Drosophila epithelial research is at the forefront of the field; however, there are no well-characterized epithelial cell lines that could provide a complementary in vitro model for studies conducted in vivo. Here, a protocol is described that produces epithelial cell lines. The method uses genetic manipulation of oncogenes or tumor suppressors to induce embryonic primary culture cells to rapidly progress to permanent cell lines. It is, however, a general method and the type of cells that comprise a given line is not controlled experimentally. Indeed, only a small fraction of the lines produced are epithelial in character. For this reason, additional work needs to be done to develop a more robust epithelial cell-specific protocol. It is expected that Drosophila epithelial cell lines will have great utility for in vitro analysis of epithelial biology, particularly high-throughput analyses such as RNAi screens. PMID:23097097

  12. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved.

    PubMed

    Longhin, Eleonora; Holme, Jørn A; Gutzkow, Kristine B; Arlt, Volker M; Kucab, Jill E; Camatini, Marina; Gualtieri, Maurizio

    2013-12-19

    This study explores and characterizes cell cycle alterations induced by urban PM2.5 in the human epithelial cell line BEAS-2B, and elucidates possible mechanisms involved. The cells were exposed to a low dose (7.5 μg/cm(2)) of Milan winter PM2.5 for different time points, and the cell cycle progression was analyzed by fluorescent microscopy and flow cytometry. Activation of proteins involved in cell cycle control was investigated by Western blotting and DNA damage by (32)P-postlabelling, immunostaining and comet assay. The formation of reactive oxygen species (ROS) was quantified by flow cytometry. The role of PM organic fraction versus washed PM on the cell cycle alterations was also examined. Finally, the molecular pathways activated were further examined using specific inhibitors. Winter PM2.5 induced marked cell cycle alteration already after 3 h of exposure, represented by an increased number of cells (transient arrest) in G2. This effect was associated with an increased phosphorylation of Chk2, while no changes in p53 phosphorylation were observed at this time point. The increase in G2 was followed by a transient arrest in the metaphase/anaphase transition point (10 h), which was associated with the presence of severe mitotic spindle aberrations. The metaphase/anaphase delay was apparently followed by mitotic slippage at 24 h, resulting in an increased number of tetraploid G1 cells and cells with micronuclei (MN), and by apoptosis at 40 h. Winter PM2.5 increased the level of ROS at 2 h and DNA damage (8-oxodG, single- and double stand breaks) was detected after 3 h of exposure. The PM organic fraction caused a similar G2/M arrest and augmented ROS formation, while washed PM had no such effects. DNA adducts were detected after 24 h. Both PM-induced DNA damage and G2 arrest were inhibited by the addition of antioxidants and α-naphthoflavone, suggesting the involvement of ROS and reactive electrophilic metabolites formed via a P450-dependent reaction. Milan

  13. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved

    PubMed Central

    2013-01-01

    Background This study explores and characterizes cell cycle alterations induced by urban PM2.5 in the human epithelial cell line BEAS-2B, and elucidates possible mechanisms involved. Methods The cells were exposed to a low dose (7.5 μg/cm2) of Milan winter PM2.5 for different time points, and the cell cycle progression was analyzed by fluorescent microscopy and flow cytometry. Activation of proteins involved in cell cycle control was investigated by Western blotting and DNA damage by 32P-postlabelling, immunostaining and comet assay. The formation of reactive oxygen species (ROS) was quantified by flow cytometry. The role of PM organic fraction versus washed PM on the cell cycle alterations was also examined. Finally, the molecular pathways activated were further examined using specific inhibitors. Results Winter PM2.5 induced marked cell cycle alteration already after 3 h of exposure, represented by an increased number of cells (transient arrest) in G2. This effect was associated with an increased phosphorylation of Chk2, while no changes in p53 phosphorylation were observed at this time point. The increase in G2 was followed by a transient arrest in the metaphase/anaphase transition point (10 h), which was associated with the presence of severe mitotic spindle aberrations. The metaphase/anaphase delay was apparently followed by mitotic slippage at 24 h, resulting in an increased number of tetraploid G1 cells and cells with micronuclei (MN), and by apoptosis at 40 h. Winter PM2.5 increased the level of ROS at 2 h and DNA damage (8-oxodG, single- and double stand breaks) was detected after 3 h of exposure. The PM organic fraction caused a similar G2/M arrest and augmented ROS formation, while washed PM had no such effects. DNA adducts were detected after 24 h. Both PM-induced DNA damage and G2 arrest were inhibited by the addition of antioxidants and α-naphthoflavone, suggesting the involvement of ROS and reactive electrophilic metabolites formed via a P

  14. Temporal-spatial analysis of U.S.-Mexico border environmental fine and coarse PM air sample extract activity in human bronchial epithelial cells

    SciTech Connect

    Lauer, Fredine T.; Mitchell, Leah A.; Bedrick, Edward; McDonald, Jacob D.; Lee, Wen-Yee; Li, Wen-Whai; Olvera, Hector; Amaya, Maria A.; Berwick, Marianne; Gonzales, Melissa; Currey, Robert; Pingitore, Nicholas E.

    2009-07-01

    Particulate matter less than 10 {mu}m (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every 7 days for a period of 1 year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border crossings.

  15. The long-acting β2 -adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner.

    PubMed

    Joshi, T; Johnson, M; Newton, R; Giembycz, M A

    2015-05-01

    Inhaled glucocorticoid (ICS)/long-acting β2 -adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues. © 2015 The British Pharmacological Society.

  16. The long-acting β2-adrenoceptor agonist, indacaterol, enhances glucocorticoid receptor-mediated transcription in human airway epithelial cells in a gene- and agonist-dependent manner

    PubMed Central

    Joshi, T; Johnson, M; Newton, R; Giembycz, M A

    2015-01-01

    Background and Purpose Inhaled glucocorticoid (ICS)/long-acting β2-adrenoceptor agonist (LABA) combination therapy is a recommended treatment option for patients with moderate/severe asthma in whom adequate control cannot be achieved by an ICS alone. Previously, we discovered that LABAs can augment dexamethasone-inducible gene expression and proposed that this effect may explain how these two drugs interact to deliver superior clinical benefit. Herein, we extended that observation by analysing, pharmacodynamically, the effect of the LABA, indacaterol, on glucocorticoid receptor (GR)-mediated gene transcription induced by seven ligands with intrinsic activity values that span the spectrum of full agonism to antagonism. Experimental Approach BEAS-2B human airway epithelial cells stably transfected with a 2× glucocorticoid response element luciferase reporter were used to model gene transcription together with an analysis of several glucocorticoid-inducible genes. Key Results Indacaterol augmented glucocorticoid-induced reporter activation in a manner that was positively related to the intrinsic activity of the GR agonist. This effect was demonstrated by an increase in response maxima without a change in GR agonist affinity or efficacy. Indacaterol also enhanced glucocorticoid-inducible gene expression. However, the magnitude of this effect was dependent on both the GR agonist and the gene of interest. Conclusions and Implications These data suggest that indacaterol activates a molecular rheostat, which increases the transcriptional competency of GR in an agonist- and gene-dependent manner without apparently changing the relationship between fractional GR occupancy and response. These findings provide a platform to rationally design ICS/LABA combination therapy that is based on the generation of agonist-dependent gene expression profiles in target and off-target tissues. PMID:25598440

  17. Temporal-spatial analysis of U.S.-Mexico border environmental fine and coarse PM air sample extract activity in human bronchial epithelial cells.

    PubMed

    Lauer, Fredine T; Mitchell, Leah A; Bedrick, Edward; McDonald, Jacob D; Lee, Wen-Yee; Li, Wen-Whai; Olvera, Hector; Amaya, Maria A; Berwick, Marianne; Gonzales, Melissa; Currey, Robert; Pingitore, Nicholas E; Burchiel, Scott W

    2009-07-01

    Particulate matter less than 10 microm (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every 7 days for a period of 1 year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border crossings.

  18. Inflammatory stimuli inhibit glucocorticoid-dependent transactivation in human pulmonary epithelial cells: rescue by long-acting beta2-adrenoceptor agonists.

    PubMed

    Rider, Christopher F; King, Elizabeth M; Holden, Neil S; Giembycz, Mark A; Newton, Robert

    2011-09-01

    By repressing inflammatory gene expression, glucocorticoids are the most effective treatment for chronic inflammatory diseases such as asthma. However, in some patients with severe disease, or who smoke or suffer from chronic obstructive pulmonary disease, glucocorticoids are poorly effective. Although many investigators focus on defects in the repression of inflammatory gene expression, glucocorticoids also induce (transactivate) the expression of numerous genes to elicit anti-inflammatory effects. Using human bronchial epithelial (BEAS-2B) and pulmonary (A549) cells, we show that cytokines [tumor necrosis factor α (TNFα) and interleukin 1β], mitogens [fetal calf serum (FCS) and phorbol ester], cigarette smoke, and a G(q)-linked G protein-coupled receptor agonist attenuate simple glucocorticoid response element (GRE)-dependent transcription. With TNFα and FCS, this effect was not overcome by increasing concentrations of dexamethasone, budesonide, or fluticasone propionate. Thus, the maximal ability of the glucocorticoid to promote GRE-dependent transcription was reduced, and this was shown additionally for the glucocorticoid-induced gene p57(KIP2). The long-acting β(2)-adrenoceptor agonists (LABAs) formoterol fumarate and salmeterol xinafoate enhanced simple GRE-dependent transcription to a level that could not be achieved by glucocorticoid alone. In the presence of TNFα or FCS, which repressed glucocorticoid responsiveness, these LABAs restored glucocorticoid-dependent transcription to levels that were achieved by glucocorticoid alone. Given the existence of genes, such as p57(KIP2), which may mediate anti-inflammatory actions of glucocorticoids, we propose that repression of transactivation represents a mechanism for glucocorticoid resistance and for understanding the clinical benefit of LABAs as an add-on therapy in asthma and chronic obstructive pulmonary disease.

  19. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    PubMed

    Yasukawa, Atsushi; Hosoki, Koa; Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N; Suga, Shigeru; Kobayashi, Tetsu; Fujisawa, Takao; Taguchi, Osamu; Gabazza, Esteban C

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  20. Diatom-Derived Polyunsaturated Aldehydes Activate Cell Death in Human Cancer Cell Lines but Not Normal Cells

    PubMed Central

    Sansone, Clementina; Braca, Alessandra; Ercolesi, Elena; Romano, Giovanna; Palumbo, Anna; Casotti, Raffaella; Francone, Maria; Ianora, Adrianna

    2014-01-01

    Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs) that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD), 2-trans,4-trans-octadienal (OD) and 2-trans,4-trans-heptadienal (HD) on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1) and Fas Associated Death Domain (FADD) leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP). The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms. PMID:24992192

  1. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    PubMed

    Sansone, Clementina; Braca, Alessandra; Ercolesi, Elena; Romano, Giovanna; Palumbo, Anna; Casotti, Raffaella; Francone, Maria; Ianora, Adrianna

    2014-01-01

    Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs) that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD), 2-trans,4-trans-octadienal (OD) and 2-trans,4-trans-heptadienal (HD) on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1) and Fas Associated Death Domain (FADD) leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP). The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  2. Exposure to PM2.5 induces aberrant activation of NF-κB in human airway epithelial cells by downregulating miR-331 expression.

    PubMed

    Song, Lei; Li, Dan; Li, Xiaoping; Ma, Lianjun; Bai, Xiaoxue; Wen, Zhongmei; Zhang, Xiufang; Chen, Dong; Peng, Liping

    2017-03-01

    Exposure to particulate matter (PM) with an aerodynamic diameter≤2.5μm (PM2.5) induces reactive oxygen species (ROS) and pro-inflammatory cytokine production, leading to airway epithelial injury. However, the mechanisms underlying the toxicity of PM2.5 have not been clarified. Here, we show that exposure to PM2.5 induces sustained activation of the nuclear factor kappa B (NF-κB) signaling in human airway epithelial Beas-2B (B2B) cells. In addition, PM2.5 exposure significantly decreased miR-331 expression in B2B cells, which was abrogated by inhibition of ROS or phosphoinositide 3-kinase (PI3K)/Akt pathway. Induction of miR-331 overexpression attenuated the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Furthermore, miR-331 targeted the inhibitor of NF-κB kinase beta (IKK-β) by down-regulating the IKK-β-regulated luciferase activity in HEK293 cells. Moreover, induction of miR-331 over-expression inhibited IKK-β expression while induction of IKK-β over-expression prevented the inhibition of miR-331 on the PM2.5 exposure-induced NF-kBp65 nuclear translocation, IL-6 and IL-8 expression in B2B cells. Therefore, PM2.5 exposure decreased miR-331 expression via the ROS/PI3K/Akt pathway, resulting in an increase in the IKK-β expression and sustained NF-κB activation in human airway epithelial cells. Our findings may provide new insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure and aid in design of new therapeutic strategies to prevent PM2.5-induced toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway.

    PubMed

    Polimeni, Manuela; Gulino, Giulia Rossana; Gazzano, Elena; Kopecka, Joanna; Marucco, Arianna; Fenoglio, Ivana; Cesano, Federico; Campagnolo, Luisa; Magrini, Andrea; Pietroiusti, Antonio; Ghigo, Dario; Aldieri, Elisabetta

    2016-06-01

    Multi-walled carbon nanotubes (MWCNT) are currently under intense toxicological investigation due to concern on their potential health effects. Current in vitro and in vivo data indicate that MWCNT exposure is strongly associated with lung toxicity (inflammation, fibrosis, granuloma, cancer and airway injury) and their effects might be comparable to asbestos-induced carcinogenesis. Although fibrosis is a multi-origin disease, epithelial-mesenchymal transition (EMT) is recently recognized as an important pathway in cell transformation. It is known that MWCNT exposure induces EMT through the activation of the TGF-β/Smad signalling pathway thus promoting pulmonary fibrosis, but the molecular mechanisms involved are not fully understood. In the present work we propose a new mechanism involving a TGF-β-mediated signalling pathway. Human bronchial epithelial cells were incubated with two different MWCNT samples at various concentrations for up to 96 h and several markers of EMT were investigated. Quantitative real time PCR, western blot, immunofluorescent staining and gelatin zymographies were performed to detect the marker protein alterations. ELISA was performed to evaluate TGF-β production. Experiments with neutralizing anti-TGF-β antibody, specific inhibitors of GSK-3β and Akt and siRNA were carried out in order to confirm their involvement in MWCNT-induced EMT. In vivo experiments of pharyngeal aspiration in C57BL/6 mice were also performed. Data were analyzed by a one-way ANOVA with Tukey's post-hoc test. Fully characterized MWCNT (mean length < 5 μm) are able to induce EMT in an in vitro human model (BEAS-2B cells) after long-term incubation at sub-cytotoxic concentrations. MWCNT stimulate TGF-β secretion, Akt activation and GSK-3β inhibition, which induces nuclear accumulation of SNAIL-1 and its transcriptional activity, thus contributing to switch on the EMT program. Moreover, a significant increment of nuclear β-catenin - due to E

  4. A Novel Natural Product, KL-21, Inhibits Proliferation and Induces Apoptosis in Chronic Lymphocytic Leukemia Cells

    PubMed Central

    Adan Gökbulut, Aysun; Yaşar, Mustafa; Baran, Yusuf

    2015-01-01

    Objective: The aims of this study were to examine the cytotoxic and apoptotic effects of KL-21, a novel plant product (produced by Naturin Natural Products, İzmir, Turkey), on 232B4 chronic lymphocytic leukemia (CLL) cells and to determine the cytotoxic effects on healthy BEAS-2B human bronchial epithelial cells. Materials and Methods: The cytotoxic effect of KL-21 was determined by MTT cell proliferation assay. Changes in caspase-3 enzyme activity were measured using the caspase-3 colorimetric assay. Changes in mitochondrial membrane potential were determined using the JC-1 dye-based method. Annexin V-FITC/PI double staining was performed to measure the apoptotic cell population. Effects of KL-21 on cell cycle profiles of CLL cells were investigated by flow cytometry. Results: We detected time- and concentration-dependent increases in the cytotoxic effect of KL-21 on 232B4 CLL cells. However, we also showed that, especially at higher concentrations, KL-21 was less cytotoxic towards BEAS-2B healthy cells than towards CLL cells. Annexin-V/PI double staining results showed that the apoptotic cell population increased in 232B4 cells. Increasing concentrations of KL-21 increased caspase-3 enzyme activity and induced loss of mitochondrial membrane potential. KL-21 administration resulted in small increases in the percentage of the cells in the G0/G1 phase while it decreased the S phase cell population up to 1 mg/mL. At the highest concentration, most of the cells accumulated in the G0/G1 phase. Conclusion: KL-21 has a growth-inhibitory effect on 232B4 CLL cells. KL-21 causes apoptosis and cell cycle arrest at G0/G1. PMID:26316479

  5. Wood Smoke Particle Sequesters Cell Iron to Impact a Biological Effect.

    PubMed

    Ghio, Andrew J; Soukup, Joleen M; Dailey, Lisa A; Tong, Haiyan; Kesic, Matthew J; Budinger, G R Scott; Mutlu, Gökhan M

    2015-11-16

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We tested the postulate that (1) wood smoke particle (WSP) sequesters host cell iron resulting in a disruption of metal homeostasis, (2) this loss of essential metal results in both an oxidative stress and biological effect in respiratory epithelial cells, and (3) humic-like substances (HULIS), a component of WSP, have a capacity to appropriate cell iron and initiate a biological effect. BEAS-2B cells exposed to WSP resulted in diminished concentrations of mitochondrial (57)Fe, whereas preincubation with ferric ammonium citrate (FAC) prevented significant mitochondrial iron loss after such exposure. Cellular oxidant generation was increased after WSP exposure, but this signal was diminished by coincubation with FAC. Similarly, exposure of BEAS-2B cells to 100 μg/mL WSP activated mitogen-activated protein (MAP) kinases, elevated NF-E2-related factor 2/antioxidant responsive element (Nrf2 ARE) expression, and provoked interleukin (IL)-6 and IL-8 release, but all these changes were diminished by coincubation with FAC. The biological response to WSP was reproduced by exposure to 100 μg/mL humic acid, a polyphenol comparable to HULIS included in the WSP that complexes iron. We conclude that (1) the biological response following exposure to WSP is associated with sequestration of cell iron by the particle, (2) increasing available iron in the cell diminished the biological effects after particle exposure, and (3) HULIS included in WSP can sequester the metal initiating the cell response.

  6. Patterning Bacterial Communities on Epithelial Cells

    PubMed Central

    Dwidar, Mohammed; Leung, Brendan M.; Yaguchi, Toshiyuki; Takayama, Shuichi; Mitchell, Robert J.

    2013-01-01

    Micropatterning of bacteria using aqueous two phase system (ATPS) enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv) gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions. PMID:23785519

  7. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    PubMed Central

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells. PMID:26345201

  8. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus.

    PubMed

    Chang, Hong-Bin; Chen, Bing-Huei

    2015-01-01

    The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell) was selected for comparison. A high-performance liquid chromatography (HPLC) method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 μg/mL), demethoxycurcumin (1,147.4 μg/mL), and bisdemethoxycurcumin (190.2 μg/mL). A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 μg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.

  9. Epithelial TRPV1 Signaling Accelerates Gingival Epithelial Cell Proliferation

    PubMed Central

    Takahashi, N.; Matsuda, Y.; Yamada, H.; Tabeta, K.; Nakajima, T.; Murakami, S.; Yamazaki, K.

    2014-01-01

    Transient receptor potential cation channel subfamily V member 1 (TRPV1), a member of the calcium-permeable thermosensitive transient receptor potential superfamily, is a sensor of thermal and chemical stimuli. TRPV1 is activated by noxious heat (> 43°C), acidic conditions (pH < 6.6), capsaicin, and endovanilloids. This pain receptor was discovered on nociceptive fibers in the peripheral nervous system. TRPV1 was recently found to be expressed by non-neuronal cells, such as epithelial cells. The oral gingival epithelium is exposed to multiple noxious stimuli, including heat and acids derived from endogenous and exogenous substances; however, whether gingival epithelial cells (GECs) express TRPV1 is unknown. We show that both TRPV1 mRNA and protein are expressed by GECs. Capsaicin, a TRPV1 agonist, elevated intracellular Ca2+ levels in the gingival epithelial cell line, epi 4. Moreover, TRPV1 activation in epi 4 cells accelerated proliferation. These responses to capsaicin were inhibited by a specific TRPV1 antagonist, SB-366791. We also observed GEC proliferation in capsaicin-treated mice in vivo. No effects were observed on GEC apoptosis by epithelial TRPV1 signaling. To examine the molecular mechanisms underlying this proliferative effect, we performed complementary (c)DNA microarray analysis of capsaicin-stimulated epi 4 cells. Compared with control conditions, 227 genes were up-regulated and 232 genes were down-regulated following capsaicin stimulation. Several proliferation-related genes were validated by independent experiments. Among them, fibroblast growth factor-17 and neuregulin 2 were significantly up-regulated in capsaicin-treated epi 4 cells. Our results suggest that functional TRPV1 is expressed by GECs and contributes to the regulation of cell proliferation. PMID:25266715

  10. Cell Type-Dependent Changes in CdSe/ZnS Quantum Dot Uptake and Toxic Endpoints

    PubMed Central

    Soenen, Stefaan J.; Al-Ali, Abdullah; Brown, Andy; Hondow, Nicole; Wills, John; Jenkins, Gareth J. S.; Doak, Shareen H.

    2015-01-01

    Toxicity of nanoparticles (NPs) is often correlated with the physicochemical characteristics of the materials. However, some discrepancies are noted in in-vitro studies on quantum dots (QDs) with similar physicochemical properties. This is partly related to variations in cell type. In this study, we show that epithelial (BEAS-2B), fibroblast (HFF-1), and lymphoblastoid (TK6) cells show different biological responses following exposure to QDs. These cells represented the 3 main portals of NP exposure: bronchial, skin, and circulatory. The uptake and toxicity of negatively and positively charged CdSe:ZnS QDs of the same core size but with different surface chemistries (carboxyl or amine polymer coatings) were investigated in full and reduced serum containing media following 1 and 3 cell cycles. Following thorough physicochemical characterization, cellular uptake, cytotoxicity, and gross chromosomal damage were measured. Cellular damage mechanisms in the form of reactive oxygen species and the expression of inflammatory cytokines IL-8 and TNF-α were assessed. QDs uptake and toxicity significantly varied in the different cell lines. BEAS-2B cells demonstrated the highest level of QDs uptake yet displayed a strong resilience with minimal genotoxicity following exposure to these NPs. In contrast, HFF-1 and TK6 cells were more susceptible to toxicity and genotoxicity, respectively, as a result of exposure to QDs. Thus, this study demonstrates that in addition to nanomaterial physicochemical characterization, a clear understanding of cell type-dependent variation in uptake coupled to the inherently different capacities of the cell types to cope with exposure to these exogenous materials are all required to predict genotoxicity. PMID:25601991

  11. Human bronchial epithelial cells exposed in vitro to diesel exhaust particles exhibit alterations in cell rheology and cytotoxicity associated with decrease in antioxidant defenses and imbalance in pro- and anti-apoptotic gene expression.

    PubMed

    Seriani, Robson; de Souza, Claudia Emanuele Carvalho; Krempel, Paloma Gava; Frias, Daniela Perroni; Matsuda, Monique; Correia, Aristides Tadeu; Ferreira, Márcia Zotti Justo; Alencar, Adriano Mesquita; Negri, Elnara Marcia; Saldiva, Paulo Hilário Nascimento; Mauad, Thais; Macchione, Mariangela

    2016-05-01

    Diesel exhaust particles (DEPs) from diesel engines produce adverse alterations in cells of the airways by activating intracellular signaling pathways and apoptotic gene overexpression, and also by influencing metabolism and cytoskeleton changes. This study used human bronchial epithelium cells (BEAS-2B) in culture and evaluates their exposure to DEPs (15ug/mL for 1 and 2 h) in order to determine changes to cell rheology (viscoelasticity) and gene expression of the enzymes involved in oxidative stress, apoptosis, and cytotoxicity. BEAS-2B cells exposed to DEPs were found to have a significant loss in stiffness, membrane stability, and mitochondrial activity. The genes involved in apoptosis [B cell lymphoma 2 (BCL-2 and caspase-3)] presented inversely proportional expressions (p = 0.05, p = 0.01, respectively), low expression of the genes involved in antioxidant responses [SOD1 (superoxide dismutase 1); SOD2 (superoxide dismutase 2), and GPx (glutathione peroxidase) (p = 0.01)], along with an increase in cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) (p = 0.01). These results suggest that alterations in cell rheology and cytotoxicity could be associated with oxidative stress and imbalance between pro- and anti-apoptotic genes.

  12. Airway epithelial cell responses to ozone injury

    SciTech Connect

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  13. Bone marrow-derived lung epithelial cells.

    PubMed

    Krause, Diane S

    2008-08-15

    Bone marrow-derived cells can take on the phenotype of epithelial cells and express epithelial-specific genes in multiple organs. Here, we focus on recent data on the appearance of marrow-derived epithelial cells in the adult lung. These findings have garnered significant skepticism because in most cases marrow-derived epithelial cells are very rare, the marrow cell of origin is not known, the techniques for detection have needed improvement, and there seem to be multiple mechanisms by which this occurs. Recent studies have focused on these concerns. Once these important concerns are addressed, further studies on the function(s) of these cells will need to be performed to determine whether this engraftment has any clinical significance-either beneficial or detrimental.

  14. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2007-10-01

    Epithelial Stem Cells PRINCIPAL INVESTIGATOR: Peter D. Eirew CONTRACTING ORGANIZATION: British Columbia Cancer Agency...NUMBER Characterization of Human Mammary Epithelial Stem Cells 5b. GRANT NUMBER W81XWH-06-1-0702 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Abstract The mammary epithelium in normal adult female mice contains undifferentiated stem cells with extensive in vivo regenerative and self-renewal

  15. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  16. Cobalt chloride speciation, mechanisms of cytotoxicity on human pulmonary cells, and synergistic toxicity with zinc.

    PubMed

    Bresson, Carole; Darolles, Carine; Carmona, Asuncion; Gautier, Céline; Sage, Nicole; Roudeau, Stéphane; Ortega, Richard; Ansoborlo, Eric; Malard, Véronique

    2013-02-01

    Cobalt is used in numerous industrial sectors, leading to occupational diseases, particularly by inhalation. Cobalt-associated mechanisms of toxicity are far from being understood and information that could improve knowledge in this area is required. We investigated the impact of a soluble cobalt compound, CoCl(2)·6H(2)O, on the BEAS-2B lung epithelial cell line, as well as its impact on metal homeostasis. Cobalt speciation in different culture media, in particular soluble and precipitated cobalt species, was investigated via theoretical and analytical approaches. The cytotoxic effects of cobalt on the cells were assessed. Upon exposure of BEAS-2B cells to cobalt, intracellular accumulation of cobalt and zinc was demonstrated using direct in situ microchemical analysis based on ion micro-beam techniques and analysis after cell lysis by inductively coupled plasma mass spectrometry (ICP-MS). Microchemical imaging revealed that cobalt was rather homogeneously distributed in the nucleus and in the cytoplasm whereas zinc was more abundant in the nucleus. The modulation of zinc homeostasis led to the evaluation of the effect of combined cobalt and zinc exposure. In this case, a clear synergistic increase in toxicity was observed as well as a substantial increase in zinc content within cells. Western blots performed under the same coexposure conditions revealed a decrease in ZnT1 expression, suggesting that cobalt could inhibit zinc release through the modulation of ZnT1. Overall, this study highlights the potential hazard to lung function, of combined exposure to cobalt and zinc.

  17. Selective cytotoxicity and combined effects of camptothecin or paclitaxel with sodium-R-alpha lipoate on A549 human non-small cell lung cancer cells.

    PubMed

    Ibrahim, Sherif; Gao, Dayuan; Sinko, Patrick J

    2014-01-01

    Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer and remains the deadliest form of cancer in the United States and worldwide. New therapies are highly sought after to improve outcome. The effect of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity was evaluated on A549 NSCLC and BEAS-2B "normal" lung epithelial cells. Combination indices (CI) and dose reduction indices (DRI) were investigated by studying the cytotoxicity of sodium-R-alpha lipoate (0-16 mM), camptothecin (0-25 nM) and paclitaxel (0-0.06 nM) alone and in combination. 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium-bromide (MTT) was used to assess cytotoxicity. The combinational cytotoxic effects of sodium-R-alpha lipoate with camptothecin or paclitaxel were analyzed using a simulation of dose effects (CompuSyn® 3.01). The effects of sodium-R-alpha lipoate on camptothecin- and paclitaxel-induced cytotoxicity varied based on concentrations and treatment times. It was found that sodium-R-alpha lipoate wasn't cytotoxic toward BEAS-2B cells at any of the concentrations tested. For A549 cells, CIs [(additive (CI = 1); synergistic (CI < 1); antagonistic (CI < 1)] were lower and DRIs were higher for the camptothecin/sodium-R-alpha-lipoate combination (CI = ∼0.17-1.5; DRI = ∼2.2-22.6) than the paclitaxel/sodium-R-alpha-lipoate combination (CI = ∼0.8-9.9; DRI = ∼0.10-5.8) suggesting that the camptothecin regimen was synergistic and that the addition of sodium-R-alpha lipoate was important for reducing the camptothecin dose and potential for adverse effects.

  18. Different roles of ROS and Nrf2 in Cr(VI)-induced inflammatory responses in normal and Cr(VI)-transformed cells.

    PubMed

    Roy, Ram Vinod; Pratheeshkumar, Poyil; Son, Yong-Ok; Wang, Lei; Hitron, John Andrew; Divya, Sasidharan Padmaja; Zhang, Zhuo; Shi, Xianglin

    2016-09-15

    Hexavalent chromium (Cr(VI)) is classified as a human carcinogen. Cr(VI) has been associated with adenocarcinomas and squamous cell carcinoma of the lung. The present study shows that acute Cr(VI) treatment in human bronchial epithelial cells (BEAS-2B) increased inflammatory responses (TNF-α, COX-2, and NF-кB/p65) and expression of Nrf2. Cr(VI)-induced generation of reactive oxygen species (ROS) are responsible for increased inflammation. Despite the fact that Nrf2 is a master regulator of response to oxidative stress, silencing of Nrf2 in the acute Cr(VI) treatment had no effect on Cr(VI)-induced inflammation. In contrast, in Cr(VI)-transformed (CrT) cells, Nrf2 is constitutively activated. Knock-down of this protein resulted in decreased inflammation, while silencing of SOD2 and CAT had no effect in the expression of these inflammatory proteins. Results obtained from the knock-down of Nrf2 in CrT cells are very different from the results obtained in the acute Cr(VI) treatment. In BEAS-2B cells, knock-down of Nrf2 had no effect in the inflammation levels, while in CrT cells a decrease in the expression of inflammation markers was observed. These results indicate that before transformation, ROS plays a critical role while Nrf2 not in Cr(VI)-induced inflammation, whereas after transformation (CrT cells), Nrf2 is constitutively activated and this protein maintains inflammation while ROS not. Constitutively high levels of Nrf2 in CrT binds to the promoter regions of COX-2 and TNF-α, leading to increased inflammation. Collectively, our results demonstrate that before cell transformation ROS are important in Cr(VI)-induced inflammation and after transformation a constitutively high level of Nrf2 is important.

  19. Anti-Inflammatory Activity of a Novel Family of Aryl Ureas Compounds in an Endotoxin-Induced Airway Epithelial Cell Injury Model

    PubMed Central

    Cabrera-Benitez, Nuria E.; Pérez-Roth, Eduardo; Casula, Milena; Ramos-Nuez, Ángela; Ríos-Luci, Carla; Rodríguez-Gallego, Carlos; Sologuren, Ithaisa; Jakubkiene, Virginija; Slutsky, Arthur S.; Padrón, José M.; Villar, Jesús

    2012-01-01

    Background Despite our increased understanding of the mechanisms involved in acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS), there is no specific pharmacological treatment of proven benefit. We used a novel screening methodology to examine potential anti-inflammatory effects of a small structure-focused library of synthetic carbamate and urea derivatives in a well established cell model of lipopolysaccharide (LPS)-induced ALI/ARDS. Methodology/Principal Findings After a pilot study to develop an in vitro LPS-induced airway epithelial cell injury model, a library of synthetic carbamate and urea derivates was screened against representative panels of human solid tumor cell lines and bacterial and fungal strains. Molecules that were non-cytotoxic and were inactive in terms of antiproliferative and antimicrobial activities were selected to study the effects on LPS-induced inflammatory response in an in vitro cell culture model using A549 human alveolar and BEAS-2B human bronchial cells. These cells were exposed for 18 h to LPS obtained from Escherichia coli, either alone or in combination with the test compounds. The LPS antagonists rhein and emodin were used as reference compounds. The most active compound (CKT0103) was selected as the lead compound and the impact of CKT0103 on pro-inflammatory IL-6 and IL-8 cytokine levels, expression of toll-like receptor-4 (TLR4) and nuclear factor kappa B inhibitor alpha (IκBα) was measured. CKT0103 significantly inhibited the synthesis and release of IL-6 and IL-8 induced by LPS. This suppression was associated with inhibition of TLR4 up-regulation and IκBα down-regulation. Immunocytochemical staining for TLR4 and IκBα supported these findings. Conclusions/Significance Using a novel screening methodology, we identified a compound – CKT0103 – with potent anti-inflammatory effects. These findings suggest that CKT0103 is a potential target for the treatment of the acute phase of sepsis and

  20. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  1. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  2. Purification of kidney epithelial cell growth inhibitors.

    PubMed Central

    Holley, R W; Böhlen, P; Fava, R; Baldwin, J H; Kleeman, G; Armour, R

    1980-01-01

    Two high molecular weight growth inhibitors have been isolated from the culture medium of BSC-1 cells, epithelial cells of African green monkey kidney. The purified kidney epithelial cell growth inhibitors, at ng/ml concentrations, reversibly arrest the growth of BSC-1 cells in the G1 phase of the cell cycle. Their action is selective; they are most active on BSC-1 cells, are less active as inhibitors of the growth of rat lung and human breast epithelial cells, and do not inhibit the growth of 3T3 mouse embryo fibroblasts ad human skin fibroblasts in culture. Their growth inhibitory action on BSC-1 cell cultures is counteracted by epidermal growth factor or calf serum. PMID:6969400

  3. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    PubMed

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-08

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes.

  4. Odontogenic epithelial stem cells: hidden sources.

    PubMed

    Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh

    2015-12-01

    The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed.

  5. Control of lens epithelial cell survival

    PubMed Central

    1993-01-01

    We have studied the survival requirements of developing lens epithelial cells to test the hypothesis that most cells are programmed to kill themselves unless they are continuously signaled by other cells not to do so. The lens cells survived for weeks in both explant cultures and high-density dissociated cell cultures in the absence of other cells or added serum or protein, suggesting that they do not require signals from other cell types to survive. When cultured at low density, however, they died by apoptosis, suggesting that they depend on other lens epithelial cells for their survival. Lens epithelial cells cultured at high density in agarose gels also survived for weeks, even though they were not in direct contact with one another, suggesting that they can promote one another's survival in the absence of cell- cell contact. Conditioned medium from high density cultures promoted the survival of cells cultured at low density, suggesting that lens epithelial cells support one another's survival by secreting survival factors. We show for the first time that normal cell death occurs within the anterior epithelium in the mature lens, but this death is strictly confined to the region of the anterior suture. PMID:8491781

  6. Growth requirements of human mammary epithelial cells in culture.

    PubMed

    Taylor-Papadimitriou, J; Shearer, M; Stoker, M G

    1977-12-15

    Colony-forming epithelial cells can be separated from the non-dividing "foam cells" in human milk by differential adhesion to glass and freezing. The growth of such partially purified mammary epithelial cells is stimulated by co-culture with non-dividing feeder cells. Foam cells, mitomycin-treated mouse fibroblast lines and human mammary fibroblasts and calf lens epithelial cells are all effective in promoting mammary epithelial cell growth. Contact between epithelial cells and feeders is not required for the growth-promoting effect. The mitogenic effect of epidermal growth factor on mammary epithelial cells also requires feeder cell activity.

  7. Antioxidant components of naturally-occurring oils exhibit marked anti-inflammatory activity in epithelial cells of the human upper respiratory system

    PubMed Central

    2011-01-01

    Background The upper respiratory tract functions to protect lower respiratory structures from chemical and biological agents in inspired air. Cellular oxidative stress leading to acute and chronic inflammation contributes to the resultant pathology in many of these exposures and is typical of allergic disease, chronic sinusitis, pollutant exposure, and bacterial and viral infections. Little is known about the effective means by which topical treatment of the nose can strengthen its antioxidant and anti-inflammatory defenses. The present study was undertaken to determine if naturally-occurring plant oils with reported antioxidant activity can provide mechanisms through which upper respiratory protection might occur. Methods Controlled exposure of the upper respiratory system to ozone and nasal biopsy were carried out in healthy human subjects to assess mitigation of the ozone-induced inflammatory response and to assess gene expression in the nasal mucosa induced by a mixture of five naturally-occurring antioxidant oils - aloe, coconut, orange, peppermint and vitamin E. Cells of the BEAS-2B and NCI-H23 epithelial cell lines were used to investigate the source and potential intracellular mechanisms of action responsible for oil-induced anti-inflammatory activity. Results Aerosolized pretreatment with the mixed oil preparation significantly attenuated ozone-induced nasal inflammation. Although most oil components may reduce oxidant stress by undergoing reduction, orange oil was demonstrated to have the ability to induce long-lasting gene expression of several antioxidant enzymes linked to Nrf2, including HO-1, NQO1, GCLm and GCLc, and to mitigate the pro-inflammatory signaling of endotoxin in cell culture systems. Nrf2 activation was demonstrated. Treatment with the aerosolized oil preparation increased baseline levels of nasal mucosal HO-1 expression in 9 of 12 subjects. Conclusions These data indicate that selected oil-based antioxidant preparations can effectively

  8. The use of a 0.20 μm particulate matter filter decreases cytotoxicity in lung epithelial cells following air-liquid interface exposure to motorcycle exhaust.

    PubMed

    Yu, Tao; Zhang, Xueyan; Zhong, Lei; Cui, Qiang; Hu, Xiaoyu; Li, Bin; Wang, Zhongxu; Dai, Yufei; Zheng, Yuxin; Bin, Ping

    2017-08-01

    This study was designed to investigate whether the use of a 0.20 μm particulate matter (PM) filter reduced the cytotoxicity induced by motorcycle exhaust (ME), a mixture of gases and particles, in lung epithelial cells cultured in air-liquid interface (ALI) inserts. The concentrations of PM, carbon monoxide, carbon dioxide, total hydrocarbons (THC), total volatile organic compounds, and nitrogen oxides in both filtered ME (fME) by a 0.20 μm filter and non-filtered ME (non-fME) were measured. Lung epithelial cells were exposed to clean air, fME, or non-fME in the ALI chamber. Cell relative viabilities (CRV) and the reactive oxygen species (ROS) generation were determined. Our results revealed that PM2.5 was the main compound of PM in ME. After filtration, PM and THC levels were significantly reduced, as compared with non-fME. When compared with the clean air exposed group, the CRV in both fME and non-fME-exposed group was significantly reduced (p < 0.001), while their ROS generation were markedly increased (p < 0.001). When compared with non-fME-exposed group, the CRV and ROS generation were significantly improved following fME exposure (p < 0.05). As a result, of PM and THC concentrations were decreased approximately 90% and 22.71%, respectively, the CRV was improved from 40.4% (non-fME) to 55.7% (fME), and the increased ROS generation by non-fME was decreased about 51.6%. When BEAS-2B cells were exposed to fME, a time-dependent reduction in CRV was observed. In conclusion, our findings suggest that ME-exposure in the ALI system induces cytotoxicity and oxidative stress responses. The addition of a 0.20 μm PM filter significantly modifies the particulate composition in PM and the concentration of THC, and shows protective effects by improving the survival of exposed lung epithelial cells and reducing the ROS generation. Therefore, emission factors such as different size of PM and THC from motorcycles may play a role in ME-induced toxicity. Copyright

  9. Evidence for epithelial-mesenchymal transitions in adult liver cells.

    PubMed

    Sicklick, Jason K; Choi, Steve S; Bustamante, Marcia; McCall, Shannon J; Pérez, Elizabeth Hernández; Huang, Jiawen; Li, Yin-Xiong; Rojkind, Marcos; Diehl, Anna Mae

    2006-10-01

    Both myofibroblastic hepatic stellate cells (HSC) and hepatic epithelial progenitors accumulate in damaged livers. In some injured organs, the ability to distinguish between fibroblastic and epithelial cells is sometimes difficult because cells undergo epithelial-mesenchymal transitions (EMT). During EMT, cells coexpress epithelial and mesenchymal cell markers. To determine whether EMT occurs in adult liver cells, we analyzed the expression profile of primary HSC, two HSC lines, and hepatic epithelial progenitors. As expected, all HSC expressed HSC markers. Surprisingly, these markers were also expressed by epithelial progenitors. In addition, one HSC line expressed typical epithelial progenitor mRNAs, and these epithelial markers were inducible in the second HSC line. In normal and damaged livers, small ductular-type cells stained positive for an HSC marker. In conclusion, HSC and hepatic epithelial progenitors both coexpress epithelial and mesenchymal markers, providing evidence that EMT occurs in adult liver cells.

  10. Epithelial stem cells and intestinal cancer.

    PubMed

    Tan, Shawna; Barker, Nick

    2015-06-01

    The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised.

  11. Epithelial cell extrusion: Pathways and pathologies.

    PubMed

    Gudipaty, Swapna Aravind; Rosenblatt, Jody

    2016-05-19

    To remove dying or unwanted cells from an epithelium while preserving the barrier function of the layer, epithelia use a unique process called cell extrusion. To extrude, the cell fated to die emits the lipid Sphingosine 1 Phosphate (S1P), which binds the G-protein-coupled receptor Sphingosine 1 Phosphate receptor 2 (S1P2) in the neighboring cells that activates Rho-mediated contraction of an actomyosin ring circumferentially and basally. This contraction acts to squeeze the cell out apically while drawing together neighboring cells and preventing any gaps to the epithelial barrier. Epithelia can extrude out cells targeted to die by apoptotic stimuli to repair the barrier in the face of death or extrude live cells to promote cell death when epithelial cells become too crowded. Indeed, because epithelial cells naturally turn over by cell death and division at some of the highest rates in the body, epithelia depend on crowding-induced live cell extrusion to preserve constant cell numbers. If extrusion is defective, epithelial cells rapidly lose contact inhibition and form masses. Additionally, because epithelia act as the first line of defense in innate immunity, preservation of this barrier is critical for preventing pathogens from invading the body. Given its role in controlling constant cell numbers and maintaining barrier function, a number of different pathologies can result when extrusion is disrupted. Here, we review mechanisms and signaling pathways that control epithelial extrusion and discuss how defects in these mechanisms can lead to multiple diseases. We also discuss tactics pathogens have devised to hijack the extrusion process to infect and colonize epithelia.

  12. Prevention of influenza virus induced bacterial superinfection by standardized Echinacea purpurea, via regulation of surface receptor expression in human bronchial epithelial cells.

    PubMed

    Vimalanathan, Selvarani; Schoop, Roland; Suter, Andy; Hudson, James

    2017-04-02

    Viral infections may predispose the airways to secondary bacterial infections that can lead to unfavorable progression of principally self-limiting illnesses. Such complicated respiratory infections include pneumonia, bronchitis, sinusitis, acute otitis media, and sepsis, which cause high morbidity and lethality. Some of the pathogenic consequences of viral infections, like the expression of bacterial adhesion receptors and the disturbance of physical barrier integrity due to inflammation, may create permissive conditions for co-infections. Influenza virus A (H3N2) is a major pathogen that causes secondary bacterial infections and inflammation that lead to pneumonia. The herbal medicine Echinacea purpurea, on the other hand, has been widely used to prevent and treat viral respiratory infections, and recent clinical data suggest that it may prevent secondary infection complications as well. We investigated the role of standardized E. purpurea (Echinaforce(®) extract or EF) on H3N2-induced adhesion of live nontypeable Haemophilus influenzae (NTHi) and Staphylococcus aureus, along with the expression of bacterial receptors, intracellular adhesion molecule-1 (ICAM-1), fibronectin, and platelet activating factor receptor (PAFr), by BEAS-2B cells. Inflammatory processes were investigated by determining the cellular expression of IL-6 and IL-8 and the involvement of Toll-like receptor (TLR-4) and NFκB p65. We found that influenza virus A infection increased the adhesion of H. influenzae and S. aureus to bronchial epithelial cells via upregulated expression of the ICAM-1 receptor and, to some extent, of fibronectin and PAFr. Echinaforce (EF) significantly reduced the expression of ICAM-1, fibronectin, and PAFr and consequently the adhesion of both bacterial strains. EF also effectively prevented the super-expression of inflammatory cytokines by suppressing the expression of NFκB and possibly TLR-4. These results indicate that E. purpurea has the potential to reduce the

  13. ExoU-induced procoagulant activity in Pseudomonas aeruginosa-infected airway cells.

    PubMed

    Plotkowski, M C; Feliciano, L F P; Machado, G B S; Cunha, L G; Freitas, C; Saliba, A M; de Assis, M C

    2008-12-01

    The present study addressed the question whether ExoU, a Pseudomonas aeruginosa toxin with phospholipase A2 (PLA2) activity, may induce airway epithelial cells to overexpress tissue factor (TF) and exhibit a procoagulant phenotype. Cells from the human bronchial epithelial BEAS-2B line were infected with an ExoU-producing P. aeruginosa strain, pre-treated or not with the cytosolic PLA2 inhibitor methylarachidonyl fluorophosphate (MAFP), or with two ExoU-deficient mutants. Control noninfected and infected cells were assessed for the expression of: 1) TF mRNA by RT-PCR; 2) cell-associated TF by enzyme immunoassay and flow cytometry; 3) procoagulant activity by a colorimetric assay; and 4) microparticle-associated TF by flow cytometry. An enzyme immunoassay was also used to assess cell-associated TF in lung extracts from mice infected intratracheally with ExoU-producing and -deficient bacteria. Cells infected with the wild-type bacteria had higher levels of TF mRNA, cell-associated TF expression, procoagulant activity and released microparticle-associated TF than cells infected with the mutants. Bacterial treatment with MAFP significantly reduced the expression of TF by infected cells. Lung samples from mice infected with the wild-type bacteria exhibited higher levels of cell-associated TF and procoagulant activity. The present results demonstrate that ExoU may contribute to the pathogenesis of lung injury by inducing a tissue factor-dependent procoagulant activity in airway epithelial cells.

  14. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration.

    PubMed

    Coraux, Christelle; Roux, Jacqueline; Jolly, Thomas; Birembaut, Philippe

    2008-08-15

    In healthy subjects, the respiratory epithelium forms a continuous lining to the airways and to the environment, and plays a unique role as a barrier against external deleterious agents to protect the airways from the insults. In respiratory diseases such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), chronic bronchitis, or asthma, the airway epithelium is frequently remodeled and injured, leading to the impairment of its defense functions. The rapid restoration of the epithelial barrier is crucial for these patients. The complete regeneration of the airway epithelium is a complex phenomenon, including not only the epithelial wound repair but also the epithelial differentiation to reconstitute a fully well differentiated and functional epithelium. The regeneration implies two partners: the epithelial stem/progenitor cells and factors able to regulate this process. Among these factors, epithelial cells-extracellular matrix (ECM) interactions play a crucial role. The secretion of a provisional ECM, the cell-ECM relationships through epithelial receptors, and the remodeling of the ECM by proteases (mainly matrix metalloproteinases) contribute not only to airway epithelial repair by modulating epithelial cell migration and proliferation, but also to the differentiation of repairing cells leading to the complete restoration of the wounded epithelium. A better characterization of resident stem cells and of effectors of the regeneration process is an essential prerequisite to propose new regenerative therapeutics to patients suffering from infectious/inflammatory respiratory diseases.

  15. Epithelial: lamina propria lymphocyte interactions promote epithelial cell differentiation

    PubMed Central

    Dahan, Stephanie; Roda, Giulia; Pinn, David; Roth-Walter, Franziska; Kamalu, Okebugwu; Martin, Andrea P.; Mayer, Lloyd

    2010-01-01

    Background & Aims Lymphoepithelial interactions in the gut can occur in the epithelium and the sub-epithelial space. We asked whether Normal, Crohn’s Disease (CD) or Ulcerative colitis (UC) lamina propria lymphocytes (LPL) could promote intestinal epithelial cell (IEC) growth and differentiation. Methods T84 cells were co-cultured with freshly isolated LPL for varying periods. After removal of LPL, IECs were lysed and subjected to i) measurement of intestinal alkaline phosphatase (IAP) activity; ii) Western blot analysis for MAPK and Akt activation; and iii) Real Time-PCR to assess CDX2 mRNA levels. Tissue sections were immunostained for evidence of MAPK and PI3K activation, CDX2 and IAP; and CDX2 mRNA expression was assessed on human colonic biopsies. Results IAP activity was increased in T84 cells co-cultured for 8 days with Normal LPL (p<0.05), and even greater with CD LPL (p<0.001). Crypt IECs in active CD mucosa expressed IAP ex vivo. Phospho-MAPK (ERK1/2, p38, and JNK) and phospho-Akt were seen as early as 30 min after co-culture. MAPK activation was greatest in T84 cells co-cultured with CD LPL. There was a specific increase in P-p38 MAPK and P-Akt staining in the nuclei of crypt IECs in active vs inactive CD, normal mucosa and UC mucosa. CDX2 mRNA expression was increased in CD LPL co-cultured T84 cells which not correlated with the CDX2 protein localization ex vivo. Conclusion Our observations indicate that there is crosstalk between LPL and IECs, which leads to IEC differentiation. Moreover, in CD mucosa, the differentiation of IEC is accelerated. PMID:18045591

  16. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  17. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  18. TEMPORAL-SPATIAL ANALYSIS OF U.S.- MEXICO BORDER ENVIRONMENTAL FINE AND COARSE PM AIR SAMPLE EXTRACT ACTIVITY IN HUMAN BRONCHIAL EPITHELIAL CELLS

    PubMed Central

    Lauer, Fredine T.; Mitchell, Leah A.; Bedrick, Edward; McDonald, Jacob D.; Lee, Wen-Yee; Li, Wen-Whai; Olvera, Hector; Amaya, Maria A.; Berwick, Marianne; Gonzales, Melissa; Currey, Robert; Pingitore, Nicholas E.; Burchiel, Scott W.

    2009-01-01

    Particulate matter less than 10 μm (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM 2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every seven days for a period of one year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM 2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border

  19. Cyto-genotoxic effects of smoke from commercial filter and non-filter cigarettes on human bronchial and pulmonary cells.

    PubMed

    Cavallo, Delia; Ursini, Cinzia L; Fresegna, Anna M; Maiello, Raffaele; Ciervo, Aureliano; Ferrante, Riccardo; Buresti, Giuliana; Iavicoli, Sergio

    2013-01-20

    Cigarette smoke is a complex mixture of chemicals, some of which are known as carcinogens. The cyto-genotoxic effects of cigarette-smoke extract (CSE) from commercial cigarettes without (A and B) and with filter (C and D) were evaluated at different CSE concentrations on A549 and BEAS-2B cells. The particle content of the cigarette smoke and the metal composition of the CSE were also analyzed. The cells were exposed to 1-10% of the CSE from one cigarette per experiment. Cytotoxicity was evaluated by use of the MTT assay after 24h, and the lactate dehydrogenase (LDH) assay after 30min and 24h. The Fpg-modified comet assay was used to evaluate direct-oxidative DNA damage on cells exposed for 30min. As expected, unfiltered cigarette smoke (particularly from the B cigarette) contained a higher number of particles than filtered smoke. With smoke extract from the B cigarette we found a decrease in cell viability only in BEAS-2B cells. The results of the LDH test showed membrane damage for B-cigarette smoke extract, particularly in BEAS-2B cells. Extracts from unfiltered cigarette smoke induced significant direct DNA damage, to a larger extent in A549 cells. Filtered cigarette-smoke extract induced a significant direct DNA damage at 5-10%. A significant induction of oxidative DNA damage was found at the highest CSE concentration in both cell types (by smoke extracts from B and C cigarettes in A549 cells, and from A and D cigarettes in BEAS-2B cells). Smoke extracts from filter cigarettes induced less direct DNA damage than those from unfiltered cigarettes in A549 cells, probably due to a protective effect of filter. In BEAS-2B cells the smoke extract from the B-cigarette showed the highest genotoxic effect, with a concentration-dependent trend. These findings show a higher cyto-genotoxicity for smoke extracts from the B-cigarette and oxidative effects for those from the A and D cigarettes, particularly in BEAS-2B cells. Moreover, there was a higher responsiveness of A549

  20. Cell fusion between gastric epithelial cells and mesenchymal stem cells results in epithelial-to-mesenchymal transition and malignant transformation.

    PubMed

    He, Xianghui; Li, Baosong; Shao, Yang; Zhao, Na; Hsu, Yiling; Zhang, Zhixiang; Zhu, Liwei

    2015-01-30

    The discovery of cancer stem cells and tumor heterogeneity prompted the exploration of additional mechanisms aside from genetic mutations for carcinogenesis and cancer progression. The aim of the present study was to investigate the effect of cell fusion between mesenchymal stem cells and the gastric epithelial cells in tumorigenesis. Cell fusion between cord blood mesenchymal stem cells and human gastric epithelial cells was performed in vitro. Cell scratch and transwell assays were performed to determine migration and invasion abilities of the hybrids. The expressions of epithelial-mesenchymal transition-related proteins and genes were analyzed by immunocytochemistry and real time quantitative PCR. Tumorigenesis of the hybrids was evaluated through in vivo inoculation in nude mice. Hybrids expressed the phenotypes of both donor cells. Aneuploidy was observed in 84.1% of cells. The hybrids showed increased proliferation, migration and invasion abilities compared with the parental cells. In addition, the expression of N-cadherin and vimentin in the hybrids was significantly higher than that of the epithelial cells, and the mRNA expression of the epithelial-mesenchymal transition-related genes, Twist and Slug, in the hybrids was also increased compared with that of the parental epithelial cells. Furthermore, the hybrids formed masses of epithelial origin with glandular structures in BALB/c nude mice. These findings suggest that cell fusion between gastric epithelial cells and mesenchymal stem cells may result in epithelial to mesenchymal transition and malignant transformation.

  1. Comparative DNA damage and transcriptomic effects of engineered nanoparticles in human lung cells in vitro

    EPA Science Inventory

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), various types of DNA damage, and transcriptional changes in human respiratory BEAS-2B cells exposed in vitro at se...

  2. Comparative DNA damage and transcriptomic effects of engineered nanoparticles in human lung cells in vitro

    EPA Science Inventory

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), various types of DNA damage, and transcriptional changes in human respiratory BEAS-2B cells exposed in vitro at se...

  3. Association of mesenchymal cells and immunoglobulins with differentiating epithelial cells

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R; Keenan, Jeffrey A; Upadhyaya, Nirmala B; Van Meter, Stuart E; Wimalasena, Jay; Elder, Robert F

    2001-01-01

    Background Mesenchymal-epithelial interactions play an important role in the physiology and pathology of epithelial tissues. Mesenchymal cells either associate with epithelium basement membrane [pericytes and perivascular monocyte-derived cells (MDC)] or reside within epithelium (MDC and T cells). Although intraepithelial mesenchymal cells were suggested to contribute to the epithelium physiology, their association with particular steps in differentiation of epithelial cells, interactions among themselves, and their fate remain unclear. We studied epitopes of mesenchymal cells and their products (immunoglobulins) in stratified epithelium of uterine ectocervix, which is one of the prototypes of complete cellular differentiation from stem into the aged cells. Results Perivascular CD14 primitive MDC associated with basal (stem) epithelial cells. Thy-1 pericytes of microvasculature secreted intercellular vesicles, which associated with Ki67 postmitotic epithelial cells expressing MHC class I. Intraepithelial T cells showed an association with veiled type MDC [dendritic cell (DC) precursors] among parabasal cells, and exhibited fragmentation after entering intermediate (mature) epithelial layers. Mature DC secreted CD68 and exhibited fragmentation after reaching mid intermediate layers. Binding of IgM was detected at the top of each layer: in the upper parabasal, upper intermediate, and most surface epithelial cells. IgG was confined to the entire superficial layer. Conclusions These data suggest that the phylogenetically and ontogenetically developed hierarchy of mesenchymal cells (MDC, pericytes, T cells) and immunoglobulins (IgM, IgG) accompanies differentiation of epithelial cells from immature into the mature and aged phenotype. Further studies of an involvement of mesenchymal cells in the regulation of tissue homeostasis may bring novel approaches to the prevention and therapy of tissue dysfunctions characterized by permanent tissue immaturity (muscular dystrophy

  4. Protons sensitize epithelial cells to mesenchymal transition.

    PubMed

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M; Pluth, Janice M; Cucinotta, Francis A

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  5. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    PubMed Central

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  6. Airway epithelial cells: current concepts and challenges.

    PubMed

    Crystal, Ronald G; Randell, Scott H; Engelhardt, John F; Voynow, Judith; Sunday, Mary E

    2008-09-15

    The adult human bronchial tree is covered with a continuous layer of epithelial cells that play a critical role in maintaining the conduit for air, and which are central to the defenses of the lung against inhaled environmental concomitants. The epithelial sheet functions as an interdependent unit with the other lung components. Importantly, the structure and/or function of airway epithelium is deranged in major lung disorders, including chronic obstructive pulmonary disease, asthma, and bronchogenic carcinoma. Investigations regarding the airway epithelium have led to many advances over the past few decades, but new developments in genetics and stem cell/progenitor cell biology have opened the door to understanding how the airway epithelium is developed and maintained, and how it responds to environmental stress. This article provides an overview of the current state of knowledge regarding airway epithelial stem/progenitor cells, gene expression, cell-cell interactions, and less frequent cell types, and discusses the challenges for future areas of investigation regarding the airway epithelium in health and disease.

  7. Adherence of skin bacteria to human epithelial cells.

    PubMed Central

    Romero-Steiner, S; Witek, T; Balish, E

    1990-01-01

    Aerobic and anaerobic bacteria isolated from human axillae were tested for their capacity to adhere to buccal epithelial cells, immortalized human epithelial (HEp-2) cells, and undifferentiated and differentiated human epithelial cells. In general, both aerobic and anaerobic diphtheroids adhered better to differentiated human epithelial cells than to HEp-2 and undifferentiated human epithelial cells (P less than 0.05). Mannose, galactose, fucose, N-acetyl-D-glucosamine, and fibronectin were also assayed for their capacity to inhibit the adherence of diphtheroids to human epithelial cells. A great deal of variability was observed in the capacity of the latter compounds to inhibit the attachment of aerobic diphtheroids to undifferentiated and differentiated epithelial cells. Overall, mannose appeared to be best at inhibiting the adherence of the aerobic diphtheroids to undifferentiated human epithelial cells. Galactose, fucose, N-acetyl-D-glucosamine, and fibronectin showed a greater capacity to inhibit attachment of aerobic diphtheroids to differentiated than to undifferentiated human epithelial cells. The inhibition of adherence to differentiated human epithelial cells varied with the microorganism and the compound tested; however, the highest and most consistent inhibition of adherence (76.1 to 88.6%) was observed with a 5% solution of N-acetyl-D-glucosamine. The in vitro adherence and adherence inhibition assays presented here demonstrate that a number of adhesins and receptors are involved in the adherence of skin bacteria to human epithelial cells and receptors on human epithelial cells are apparently altered during differentiation. PMID:2298877

  8. CCN1 induces a reversible epithelial-mesenchymal transition in gastric epithelial cells.

    PubMed

    Chai, Jianyuan; Norng, Manith; Modak, Cristina; Reavis, Kevin M; Mouazzen, Wasim; Pham, Jennifer

    2010-08-01

    CCN1 is a matricellular protein that activates many genes related to wound healing and tissue remodeling in fibroblasts, but its effect on epithelial cells remains unclear. This study examined the role of CCN1 in epithelial wound healing using rat gastric epithelial cells and rat stomach ulcer as in vitro and in vivo models, respectively. We found that CCN1 expression is highly upregulated in the epithelial cells adjacent to a wound and remains high until the wound is healed. Upregulation of CCN1 activates a transient epithelial-mesenchymal transition in the epithelial cells at the migrating front and drives wound closure. Once the wound is healed, these epithelial cells and their progeny can resume their original epithelial phenotype. We also found that CCN1-induced E-cadherin loss is not due to transcriptional regulation but rather protein degradation due to the collapse of adherens junctions, which is contributed by beta-catenin translocation. CCN1-activated integrin-linked kinase mediates this process. Finally, our in vivo study showed that locally neutralizing CCN1 drastically impairs wound closure, whereas local injection of recombinant CCN1 protein induces expression of vimentin and smooth muscle alpha-actin in normal gastric mucosal epithelial cells and accelerates re-epithelialization during ulcer healing. In conclusion, our study indicates that CCN1 can induce reversible epithelial-mesenchymal transition, and this feature may have great value for clinical wound healing.

  9. Isolation of epithelial cells with hepatobiliary phenotype.

    PubMed

    Castorina, Sergio; Luca, Tonia; Torrisi, Antonella; Privitera, Giovanna; Panebianco, Mariangela

    2008-01-01

    The regenerative capacity of the liver after partial hepatectomy or chemical injury is well known. In human liver, the resident progenitor cells are called "hepatic progenitor cells" (HPCs) while the term "oval cells" should be discouraged in order to indicate the stem cell compartment. The aim of our study was first to analyse the cellular aspects of liver regeneration through differentiation in cholangiocytes and hepatocytes, and then to characterise resident progenitor cells, using "primary cultured hepatocytes" derived from healthy adult human livers. Human hepatocytes were isolated from fresh surgical specimens of patients who underwent hepatic resections in our Clinical Centre surgery operating room. Hepatic differentiation and function were analysed by immunocytochemistry techniques and the presence of liver epithelial cell populations within normal adult human liver, was demonstrated by immunohistochemistry analysis. These cells expanded in vitro and showed the capacity for self-renewal and multipotent differentiation. Human liver stem cells expressed several mesenchymal markers, such as CD44, but not haematopoietic stem cell markers. In addition, these cells expressed alpha-fetoprotein, albumin, CK7 and CK19, indicating a partial commitment to hepatic and biliary cells. Interestingly the expression of both hepatocytes and biliary markers in HPCs reflects the bipotential nature of the hepatic stem cells toward both the hepatic and biliary lineage. According to their immature and bipotential phenotype, hepatic epithelial cells might represent a pool of precursors in the healthy human adult liver.

  10. The human airway epithelial basal cell transcriptome.

    PubMed

    Hackett, Neil R; Shaykhiev, Renat; Walters, Matthew S; Wang, Rui; Zwick, Rachel K; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G

    2011-05-04

    The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  11. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  12. Reversible transdifferentiation of alveolar epithelial cells.

    PubMed

    Danto, S I; Shannon, J M; Borok, Z; Zabski, S M; Crandall, E D

    1995-05-01

    Alveolar epithelial type II (AT2) cells have been thought to be the progenitors of terminally differentiated type I (AT1) cells in the adult animal in vivo. In this study, we used an AT1 cell-specific monoclonal antibody (mAb VIII B2) to investigate expression of the AT1 cell phenotype accompanying reversible changes in expression of the AT2 cell phenotype. AT2 cells were isolated and cultured either on attached collagen gels or on gels detached 1 or 4 days after plating and maintained thereafter as floating gels. Monolayers on both attached and floating gels were harvested on days 4 and 8 and analyzed by electron microscopy for changes in morphology and binding of mAb VIII B2. Results indicate that: (1) alveolar epithelial cells (AEC) on attached gels develop characteristics of the AT1 cell phenotype, (2) AEC on gels detached on day 1 maintain features of the AT2 cell phenotype (and do not react with mAb VIII B2), and (3) the expression of AT1 cell phenotypic traits seen by day 4 on attached gels is reversed after detachment. We conclude that commitment to the AT1 and AT2 cell lineages requires continuous regulatory input to maintain the differentiated states, and that transdifferentiation between AT2 and AT1 cells may be reversible.

  13. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    SciTech Connect

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  14. Force mapping in epithelial cell migration

    PubMed Central

    du Roure, Olivia; Saez, Alexandre; Buguin, Axel; Austin, Robert H.; Chavrier, Philippe; Siberzan, Pascal; Ladoux, Benoit

    2005-01-01

    We measure dynamic traction forces exerted by epithelial cells on a substrate. The force sensor is a high-density array of elastomeric microfabricated pillars that support the cells. Traction forces induced by cell migration are deduced from the measurement of the bending of these pillars and are correlated with actin localization by fluorescence microscopy. We use a multiple-particle tracking method to estimate the mechanical activity of cells in real time with a high-spatial resolution (down to 2 μm) imposed by the periodicity of the post array. For these experiments, we use differentiated Madin-Darby canine kidney (MDCK) epithelial cells. Our data provide definite information on mechanical forces exerted by a cellular assembly. The maximum intensity of the forces is localized on the edge of the epithelia. Hepatocyte growth factor promotes cell motility and induces strong scattering activity of MDCK cells. Thus, we compare forces generated by MDCK cells in subconfluent epithelia versus isolated cells after hepatocyte growth factor treatment. Maximal-traction stresses at the edge of a monolayer correspond to higher values than those measured for a single cell and may be due to a collective behavior. PMID:15695588

  15. Isolation by Size of Epithelial Tumor Cells

    PubMed Central

    Vona, Giovanna; Sabile, Abdelmajid; Louha, Malek; Sitruk, Veronique; Romana, Serge; Schütze, Karin; Capron, Frédérique; Franco, Dominique; Pazzagli, Mario; Vekemans, Michel; Lacour, Bernard; Bréchot, Christian; Paterlini-Bréchot, Patrizia

    2000-01-01

    We have developed a new assay, ISET (isolation by size of epithelial tumor cells), which allows the counting and the immunomorphological and molecular characterization of circulating tumor cells in patients with carcinoma, using peripheral blood sample volumes as small as 1 ml. Using this assay, epithelial tumor cells can be isolated individually by filtration because of their larger size when compared to peripheral blood leukocytes. ISET parameters were defined using peripheral blood spiked with tumor cell lines (HepG2, Hep3B, MCF-7, HeLa, and LNCaP). ISET can detect a single, micropipetted tumor cell, added to 1 ml of blood. We also demonstrate that fluorescence in situ hybridization can be used to perform chromosomal analyses on tumor cells collected using ISET. Polymerase chain reaction-based genetic analyses can be applied to ISET-isolated cells, and, as an example, we demonstrate homozygous p53 deletion in single Hep3B cells after filtration and laser microdissection. Finally, we provide evidence for the in vivo feasibility of ISET in patients with hepatocellular carcinoma undergoing tumor resection. ISET, but not reverse transcriptase-polymerase chain reaction, allowed analysis of cell morphology, counting of tumor cells, and demonstration of tumor microemboli spread into peripheral blood during surgery. Overall, ISET constitutes a novel approach that should open new perpectives in molecular medicine. PMID:10623654

  16. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    PubMed Central

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing. Images PMID:3771800

  17. Traction forces exerted by epithelial cell sheets

    NASA Astrophysics Data System (ADS)

    Saez, A.; Anon, E.; Ghibaudo, M.; du Roure, O.; Di Meglio, J.-M.; Hersen, P.; Silberzan, P.; Buguin, A.; Ladoux, B.

    2010-05-01

    Whereas the adhesion and migration of individual cells have been well described in terms of physical forces, the mechanics of multicellular assemblies is still poorly understood. Here, we study the behavior of epithelial cells cultured on microfabricated substrates designed to measure cell-to-substrate interactions. These substrates are covered by a dense array of flexible micropillars whose deflection enables us to measure traction forces. They are obtained by lithography and soft replica molding. The pillar deflection is measured by video microscopy and images are analyzed with home-made multiple particle tracking software. First, we have characterized the temporal and spatial distributions of traction forces of cellular assemblies of various sizes. The mechanical force balance within epithelial cell sheets shows that the forces exerted by neighboring cells strongly depend on their relative position in the monolayer: the largest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. The average traction stress rapidly decreases from its maximum value at the edge but remains much larger than the inherent noise due to the force resolution of our pillar tracking software, indicating an important mechanical activity inside epithelial cell islands. Moreover, these traction forces vary linearly with the rigidity of the substrate over about two decades, suggesting that cells exert a given amount of deformation rather than a force. Finally, we engineer micropatterned substrates supporting pillars with anisotropic stiffness. On such substrates cellular growth is aligned with respect to the stiffest direction in correlation with the magnitude of the applied traction forces.

  18. Traction forces exerted by epithelial cell sheets.

    PubMed

    Saez, A; Anon, E; Ghibaudo, M; du Roure, O; Di Meglio, J-M; Hersen, P; Silberzan, P; Buguin, A; Ladoux, B

    2010-05-19

    Whereas the adhesion and migration of individual cells have been well described in terms of physical forces, the mechanics of multicellular assemblies is still poorly understood. Here, we study the behavior of epithelial cells cultured on microfabricated substrates designed to measure cell-to-substrate interactions. These substrates are covered by a dense array of flexible micropillars whose deflection enables us to measure traction forces. They are obtained by lithography and soft replica molding. The pillar deflection is measured by video microscopy and images are analyzed with home-made multiple particle tracking software. First, we have characterized the temporal and spatial distributions of traction forces of cellular assemblies of various sizes. The mechanical force balance within epithelial cell sheets shows that the forces exerted by neighboring cells strongly depend on their relative position in the monolayer: the largest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. The average traction stress rapidly decreases from its maximum value at the edge but remains much larger than the inherent noise due to the force resolution of our pillar tracking software, indicating an important mechanical activity inside epithelial cell islands. Moreover, these traction forces vary linearly with the rigidity of the substrate over about two decades, suggesting that cells exert a given amount of deformation rather than a force. Finally, we engineer micropatterned substrates supporting pillars with anisotropic stiffness. On such substrates cellular growth is aligned with respect to the stiffest direction in correlation with the magnitude of the applied traction forces.

  19. Cells of Origin of Epithelial Ovarian Cancers

    DTIC Science & Technology

    2015-09-01

    lethal malignancy of the female reproductive system , largely due to the fact that most EOCs are diagnosed only after the cancer has metastasized into the...Epithelial ovarian cancer (EOC) is the most lethal malignancy of the female reproductive system , largely due to the fact that most EOCs are diagnosed only...ovarian cancer by defined multiple genetic changes in a mouse model system . Cancer Cell 1, 53-62. Quartuccio, S.M., Lantvit, D.D., Bosland, M.C., and

  20. Cell density determines epithelial migration in culture.

    PubMed Central

    Rosen, P; Misfeldt, D S

    1980-01-01

    The dog kidney epithelial cell line (MDCK) has been shown to exhibit a density-correlated inhibition of growth at approxmately 6.6 X 10(5) cells per cm2. When a confluent monolayer at its maximal density was wounded by removal of a wide swath of cells, migration of the cell sheet into the denuded area occurred. Precise measurements of the rate of migration for 5 day showed that the cells accelerated at a uniform rate of 0.24 micrometer . hr-2 and, by extrapolation, possessed an apparent initial velocity of 2.8 micrometer . hr-1 at the time of wounding. The apparent initial velocity was considered to be the result of a brief (< 10 hr) and rapid acceleration dependent on cell density. To verify this, wounds were made at different densities below the maximum. In these experiments, the cells did not migrate until a "threshold" density of 2.0 X 10(5) cells per cm2 was reached regardless of the density at the time of wounding. At the threshold density, the cell sheet began to accelerate at the previously measured rate (0.24 micrometer . hr-2). Any increase in density by cell division was balanced by cell migration, so that the same threshold density was maintained by the migrating cells. Each migrating cell sustained the movement of the cell sheet at a constant rate of acceleration. It is proposed that an acceleration is, in general, characteristic of the vectorial movement of an epithelial cell sheet. Images PMID:6933523

  1. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1

    PubMed Central

    Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-01-01

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib. PMID:26513172

  2. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1.

    PubMed

    Schellhorn, Melina; Haustein, Maria; Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-11-17

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib.

  3. Epithelial BMP signaling is required for proper specification of epithelial cell lineages and gastric endocrine cells

    PubMed Central

    Maloum, Faïza; Allaire, Joannie M.; Gagné-Sansfaçon, Jessica; Roy, Evelyne; Belleville, Karine; Sarret, Philippe; Morisset, Jean; Carrier, Julie C.; Mishina, Yuji; Kaestner, Klaus H.

    2011-01-01

    Bone morphogenetic protein (BMP) signaling within the gastrointestinal tract is complex. BMP ligands and their receptors are expressed in both epithelial and mesenchymal compartments, suggesting bidirectional signaling between these two entities. Despite an increasing interest in BMP signaling in gut physiology and pathologies, the distinct contribution of BMP signaling in the epithelium vs. the mesenchyme in gastrointestinal homeostasis remains to be established. We aimed to investigate the role of epithelial BMP signaling in gastric organogenesis, gland morphogenesis, and maintenance of epithelial cell functions. Using the Cre/loxP system, we generated a mouse model with an early deletion during development of BMP receptor 1A (Bmpr1a) exclusively in the foregut endoderm. Bmpr1aΔGEC mice showed no severe abnormalities in gastric organogenesis, gland epithelial proliferation, or morphogenesis, suggesting only a minor role for epithelial BMP signaling in these processes. However, early loss of BMP signaling in foregut endoderm did impact on gastric patterning, leading to an anteriorization of the stomach. In addition, numbers of parietal cells were reduced in Bmpr1aΔGEC mice. Epithelial BMP deletion significantly increased the numbers of chromogranin A-, ghrelin-, somatostatin-, gastrin-, and serotonin-expressing gastric endocrine cells. Cancer never developed in young adult (<100 days) Bmpr1a-inactivated mice although a marker of spasmolytic polypeptide-expressing metaplasia was upregulated. Using this model, we have uncovered that BMP signaling negatively regulates the proliferation and commitment of endocrine precursor cells. Our data also indicate that loss of BMP signaling in epithelial gastric cells alone is not sufficient to induce gastric neoplasia. PMID:21415412

  4. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Chiu, Hui-Wen; Xia, Tian; Lee, Yu-Hsuan; Chen, Chun-Wan; Tsai, Jui-Chen; Wang, Ying-Jan

    2014-12-01

    Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung epithelial (BEAS-2B) cells. Furthermore, NH2-PS could induce autophagic cell death. NH2-PS increased autophagic flux due to reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress caused by misfolded protein aggregation. The inhibition of ER stress decreased cytotoxicity and autophagy in the NH2-PS-treated cells. In addition, the Akt/mTOR and AMPK signaling pathways were involved in the regulation of NH2-PS-triggered autophagic cell death. These results suggest an important role of autophagy in cationic NP-induced cell death and provide mechanistic insights into the inhibition of the toxicity and safe material design.Nanoparticles (NPs) have been used to produce a wide range of products that have applications in imaging and drug delivery in medicine. Due to their chemical stability, well-controlled sizes and surface charges, polystyrene (PS) NPs have been developed as biosensors and drug delivery carriers. However, the possible adverse biological effects and underlying mechanisms are still unclear. Recently, autophagy has been implicated in the regulation of cell death. In this study, we evaluated a library of PS NPs with different surface charges. We found that NH2-labeled polystyrene (NH2-PS) nanospheres were highly toxic with enhanced uptake in macrophage (RAW 264.7) and lung

  5. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    breast is highly expressed by luminal epithelial cells and is less expressed by basal cells19,20. In contrast, CD49f (a6 integrin) has an inverse pattern...mouse stretched on its back. The hose and nose cone from the anesthetic vaporizer are securely attached to one side of the plate, and a heated pad is...the mouse by a nose cone. Check that the mouse has reached surgical anesthesia by loss of pedal withdrawal reflex . ! cautIon Institutional review

  6. Transcriptional Landscape of Glomerular Parietal Epithelial Cells

    PubMed Central

    Gharib, Sina A.; Pippin, Jeffrey W.; Ohse, Takamoto; Pickering, Scott G.; Krofft, Ronald D.; Shankland, Stuart J.

    2014-01-01

    Very little is known about the function of glomerular parietal epithelial cells (PECs). In this study, we performed genome-wide expression analysis on PEC-enriched capsulated vs. PEC-deprived decapsulated rat glomeruli to determine the transcriptional state of PECs under normal conditions. We identified hundreds of differentially expressed genes that mapped to distinct biologic modules including development, tight junction, ion transport, and metabolic processes. Since developmental programs were highly enriched in PECs, we characterized several of their candidate members at the protein level. Collectively, our findings confirm that PECs are multifaceted cells and help define their diverse functional repertoire. PMID:25127402

  7. Detection of Bone Marrow Derived Lung Epithelial Cells

    PubMed Central

    Kassmer, Susannah H.; Krause, Diane S.

    2010-01-01

    Studies on the ability of bone marrow derived cells to adopt the morphology and protein expression of epithelial cells in vivo have expanded rapidly over the last decade, and hundreds of publications report that bone marrow derived cells can become epithelial cells of multiple organs including lung, liver, GI tract, skin, pancreas and others. In this review, we critically evaluate the literature related to engraftment of bone marrow derived cells as epithelial cells in the lung. Over 40 manuscripts focused on whether bone marrow cells can differentiate into lung epithelial cells have been published, nearly all of which claim to identify marrow derived epithelial cells. A few investigations have concluded that no such cells are present and that the phenomenon of marrow derived epithelial cells is based on detection artifacts. Here we discuss the problems that exist in published papers identifying marrow derived epithelial cells, and propose standards for detection methods that provide the most definitive data. Identification of BM derived epithelial cells requires reliable and sensitive techniques for their detection, which must include cell identification based on the presence of an epithelial marker and the absence of blood cell markers as well as a marker for donor BM origin. In order for these studies to be rigorous, they must also use approaches to rule out cell overlap by microscopy or single cell isolation. Once these stringent criteria for identification of marrow derived epithelial cells are used universally, then the field can move forward to address the critical questions regarding which bone marrow derived cells are responsible for engraftment as epithelial cells, the mechanisms by which this occurs, whether these cells play a role in normal tissue repair, and whether specific cell subsets can be used for therapeutic benefit. PMID:20447442

  8. Control of local immunity by airway epithelial cells.

    PubMed

    Weitnauer, M; Mijošek, V; Dalpke, A H

    2016-03-01

    The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans.

  9. Lactobacillus Decelerates Cervical Epithelial Cell Cycle Progression

    PubMed Central

    Vielfort, Katarina; Weyler, Linda; Söderholm, Niklas; Engelbrecht, Mattias; Löfmark, Sonja; Aro, Helena

    2013-01-01

    We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells. PMID:23675492

  10. Selective killing of cancer cells by nanoparticle-assisted ultrasound.

    PubMed

    Kosheleva, Olga K; Lai, Tsung-Ching; Chen, Nelson G; Hsiao, Michael; Chen, Chung-Hsuan

    2016-06-14

    Intense ultrasound, such as that used for tumor ablation, does not differentiate between cancerous and normal cells. A method combining ultrasound and biocompatible gold or magnetic nanoparticles (NPs) was developed under in vitro conditions using human breast and lung epithelial cells, which causes ultrasound to preferentially destroy cancerous cells. Co-cultures of BEAS-2B normal lung cells and A549 cancerous lung cells labeled with green and red fluorescent proteins, respectively, were treated with focused ultrasound beams with the addition of gold and magnetic nanoparticles. There were significantly more necrotic A549 cells than BEAS-2 cells when gold nanoparticles were added to the culture medium [(50.6 ± 15.1) vs. (7.4 ± 2.9) %, respectively, P < 0.01]. This selective damage to cancer cells was also observed for MDA-MB231 breast cancer cells relative to MCF-10A normal breast cells after treatment with magnetic nanoparticles. The data obtained for different cell lines indicate that nanoparticle-assisted ultrasound therapy (NAUT) could be an effective new tool for cancer-specific treatment and could potentially be combined with conventional methods of cancer diagnosis and therapy to further increase the overall cancer cure rate.

  11. HDAC2 promotes the migration and invasion of non-small cell lung cancer cells via upregulation of fibronectin.

    PubMed

    Li, Li; Mei, Dr Tonghua; Zeng, Yun

    2016-12-01

    Recent studies indicated that histone deacetylases (HDACs) can modulate the tumorigenesis and development of cancer cells. We evaluated the expression of class I HDACs in non-small cell lung cancer (NSCLC) cells and found that HDAC2 was significantly increased in NSCLC cells as compared with the normal bronchial epithelial cell line BEAS-2B. Silencing of HDAC2 by its specific siRNAs can significantly inhibit the in vitro migration and invasion of A549 and H1395 cells. While over expression of HDAC2 by transfection of pcDNA/HDAC2 plasmid can trigger the motility of NSCLC cells. Over expression of HDAC2 increased the protein and mRNA expression of firbronectin (FN), which can accelerate the metastasis of cancer cells. Similarly, knock down of HDAC2 suppressed the expression of FN. The inhibitor of NF-κB, while not ERK1/2 or PI3K/Akt, attenuated HDAC2 induced up regulation of FN and invasion of NSCLC cells. Furthermore, HDAC2 can markedly increase both mRNA and protein levels of p65 in NSCLC cells. Collectively, our data revealed that HDAC2 can trigger migration and invasion of NSCLC cells via up regulation FN through activation of NF-κB. It suggested HDAC2 might be a potential therapeutic target for the drug development of NSCLC patients.

  12. Cell reintegration: Stray epithelial cells make their way home.

    PubMed

    Wilson, Tyler J; Bergstralh, Dan T

    2017-06-01

    Ongoing work shows that misplaced epithelial cells have the capacity to reintegrate back into tissue layers. This movement appears to underlie tissue stability and may also control aspects of tissue structure. A recent study reveals that cell reintegration in at least one tissue, the Drosophila follicular epithelium, is based on adhesion molecules that line lateral cell surfaces. In this article we will review these observations, discuss their implications for epithelial tissue development and maintenance, and identify future directions for study. © 2017 WILEY Periodicals, Inc.

  13. Phenotypic plasticity in normal breast derived epithelial cells

    PubMed Central

    2014-01-01

    Background Normal, healthy human breast tissue from a variety of volunteer donors has become available for research thanks to the establishment of the Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center (KTB). Multiple epithelial (K-HME) and stromal cells (K-HMS) were established from the donated tissue. Explant culture was utilized to isolate the cells from pieces of breast tissue. Selective media and trypsinization were employed to select either epithelial cells or stromal cells. The primary, non-transformed epithelial cells, the focus of this study, were characterized by immunohistochemistry, flow cytometry, and in vitro cell culture. Results All of the primary, non-transformed epithelial cells tested have the ability to differentiate in vitro into a variety of cell types when plated in or on biologic matrices. Cells identified include stratified squamous epithelial, osteoclasts, chondrocytes, adipocytes, neural progenitors/neurons, immature muscle and melanocytes. The cells also express markers of embryonic stem cells. Conclusions The cell culture conditions employed select an epithelial cell that is pluri/multipotent. The plasticity of the epithelial cells developed mimics that seen in metaplastic carcinoma of the breast (MCB), a subtype of triple negative breast cancer; and may provide clues to the origin of this particularly aggressive type of breast cancer. The KTB is a unique biorepository, and the normal breast epithelial cells isolated from donated tissue have significant potential as new research tools. PMID:24915897

  14. Spontaneous Production of Immunoglobulin M in Human Epithelial Cancer Cells

    PubMed Central

    Hu, Fanlei; Zhang, Li; Zheng, Jie; Zhao, Ling; Huang, Jing; Shao, Wenwei; Liao, Qinyuan; Ma, Teng; Geng, Li; Yin, C. Cameron; Qiu, Xiaoyan

    2012-01-01

    It is well known that B-1 B cells are the main cell type that is responsible for the production of natural immunoglobulin M (IgM) and can respond to infection by increasing IgM secretion. However, we unexpectedly found that some epithelial cells also can express rearranged IgM transcript that has natural IgM characteristics, such as germline-encoded and restricted rearrangement patterns. Here we studied IgM expression in human non-B cells and found that IgM was frequently expressed by many human epithelial cancer cells as well as non-cancer epithelial cells. Moreover, CD79A and CD79B, two molecules that are physically linked to membranous IgM on the surface of B cells to form the B cell antigen receptor complex, were also expressed on the cell surface of epithelial cancer cells and co-located with IgM. Like the natural IgM, the epithelial cancer cell-derived IgM recognized a series of microbial antigens, such as single-stranded DNA, double-stranded DNA, lipopolysaccharide, and the HEp-2 cell antigen. More important, stimulation of the toll-like receptor 9 (TLR9), which mimics bacterial infection, substantially increased the secretion of IgM in human epithelial cancer cells. These findings indicate that human epithelial cancer cells as well as non-cancer epithelial cells can spontaneously produce IgM with natural antibody activity. PMID:23251529

  15. Promoter methylation in epithelial-enriched and epithelial-depleted cell populations isolated from breast milk.

    PubMed

    Browne, Eva P; Dinc, Signem E; Punska, Elizabeth C; Agus, Sami; Vitrinel, Ayca; Erdag, Gulay Ciler; Anderton, Douglas L; Arcaro, Kathleen F; Yilmaz, Bayram

    2014-11-01

    Breast cancer is the most frequently diagnosed cancer among Turkish women and both the incidence and associated mortality appear to be increasing. Of particular concern is the percentage of young women diagnosed with breast cancer; roughly 20% of all breast cancer diagnoses in Turkey are in women younger than 40 years. Increased DNA methylation in the promoter region of tumor suppressor genes is a promising molecular biomarker, and human milk provides exfoliated breast epithelial cells appropriate for DNA methylation analyses. Comparisons between DNA methylation patterns in epithelial (epithelial-enriched) and nonepithelial (epithelial-depleted) cell fractions from breast milk have not been reported previously. In the present study, we examined promoter methylation of 3 tumor suppressor genes in epithelial-enriched and epithelial-depleted cell fractions isolated from breast milk of 43 Turkish women. Percentage methylation in the promoter region of Rass association domain family 1 (RASSF1), secreted frizzle related protein 1 (SFRP1), and glutathione-S-transferase class pi 1 was determined by pyrosequencing of the epithelial-enriched and epithelial-depleted cell fractions. Pyrosequencing identified a few subjects with significantly increased methylation in 1 or more genes. There was little correlation between the 2 cell fractions within individuals; only 1 woman had increased methylation for 1 gene (SFRP1) in both her enriched and depleted cell fractions. Methylation was positively associated with age for SFRP1 (epithelial-depleted fraction) and with body mass index for RASSF1 (epithelial-enriched cell fraction), respectively. Overall, results show that the methylation signals vary between different cell types in breast milk and suggest that breast milk can be used to assess DNA methylation patterns associated with increased breast cancer risk. © The Author(s) 2014.

  16. Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse.

    PubMed

    Yamben, Idella F; Rachel, Rivka A; Shatadal, Shalini; Copeland, Neal G; Jenkins, Nancy A; Warming, Soren; Griep, Anne E

    2013-12-01

    The integrity and function of epithelial tissues depend on the establishment and maintenance of defining characteristics of epithelial cells, cell-cell adhesion and cell polarity. Disruption of these characteristics can lead to the loss of epithelial identity through a process called epithelial to mesenchymal transition (EMT), which can contribute to pathological conditions such as tissue fibrosis and invasive cancer. In invertebrates, the epithelial polarity gene scrib plays a critical role in establishing and maintaining cell adhesion and polarity. In this study we asked if the mouse homolog, Scrib, is required for establishment and/or maintenance of epithelial identity in vivo. To do so, we conditionally deleted Scrib in the head ectoderm tissue that gives rise to both the ocular lens and the corneal epithelium. Deletion of Scrib in the lens resulted in a change in epithelial cell shape from cuboidal to flattened and elongated. Early in the process, the cell adhesion protein, E-cadherin, and apical polarity protein, ZO-1, were downregulated and the myofibroblast protein, αSMA, was upregulated, suggesting EMT was occurring in the Scrib deficient lenses. Correlating temporally with the upregulation of αSMA, Smad3 and Smad4, TGFβ signaling intermediates, accumulated in the nucleus and Snail, a TGFβ target and transcriptional repressor of the gene encoding E-cadherin, was upregulated. Pax6, a lens epithelial transcription factor required to maintain lens epithelial cell identity also was downregulated. Loss of Scrib in the corneal epithelium also led to molecular changes consistent with EMT, suggesting that the effect of Scrib deficiency was not unique to the lens. Together, these data indicate that mammalian Scrib is required to maintain epithelial identity and that loss of Scrib can culminate in EMT, mediated, at least in part, through TGFβ signaling.

  17. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2009-10-01

    Appendix……………………………………………………………………………… 11 Eirew,P., Stingl,J., Raouf,A., Turashvili,G., Aparicio ,S., Emerman,J.T., and Eaves,C.J. A method for... Aparicio , Joanne Emerman and Connie Eaves. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability...Abstracts Peter Eirew, John Stingl, Afshin Raouf, Gulisa Turshvili, Sam Aparicio , Joanne Emerman and Connie Eaves, “Identification of Human Mammary

  18. Interaction with epithelial cells modifies airway macrophage response to ozone.

    PubMed

    Bauer, Rebecca N; Müller, Loretta; Brighton, Luisa E; Duncan, Kelly E; Jaspers, Ilona

    2015-03-01

    The initial innate immune response to ozone (O3) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived signals affect Mac response to O3. Macs from the bronchoalveolar lavage (BAL) of healthy volunteers were cocultured with the human bronchial epithelial (16HBE) or alveolar (A549) epithelial cell lines. Cocultures, Mac monocultures, and epithelial cell monocultures were exposed to O3 or air, and Mac immunophenotype, phagocytosis, and cytotoxicity were assessed. Quantities of hyaluronic acid (HA) and IL-8 were compared across cultures and in BAL fluid from healthy volunteers exposed to O3 or air for in vivo confirmation. We show that Macs in coculture had increased markers of alternative activation, enhanced cytotoxicity, and reduced phagocytosis compared with Macs in monoculture that differed based on coculture with A549 or 16HBE. Production of HA by epithelial cell monocultures was not affected by O3, but quantities of HA in the in vitro coculture and BAL fluid from volunteers exposed in vivo were increased with O3 exposure, indicating that O3 exposure impairs Mac regulation of HA. Together, we show epithelial cell-Mac coculture models that have many similarities to the in vivo responses to O3, and demonstrate that epithelial cell-derived signals are important determinants of Mac immunophenotype and response to O3.

  19. Quercetin Blocks Airway Epithelial Cell Chemokine Expression

    PubMed Central

    Nanua, Suparna; Zick, Suzanna M.; Andrade, Juan E.; Sajjan, Umadevi S.; Burgess, John R.; Lukacs, Nicholas W.; Hershenson, Marc B.

    2006-01-01

    Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a dietary flavonoid, is an inhibitor of phosphatidylinositol (PI) 3-kinase and potent antioxidant. We hypothesized that quercetin blocks airway epithelial cell chemokine expression via PI 3-kinase–dependent mechanisms. Pretreatment with quercetin and the PI 3–kinase inhibitor LY294002 each reduced TNF-α–induced IL-8 and monocyte chemoattractant protein (MCP)-1 (also called CCL2) expression in cultured human airway epithelial cells. Quercetin also inhibited TNF-α–induced PI 3-kinase activity, Akt phosphorylation, intracellular H2O2 production, NF-κB transactivation, IL-8 promoter activity, and steady-state mRNA levels, consistent with the notion that quercetin inhibits chemokine expression by attenuating NF-κB transactivation via a PI 3-kinase/Akt-dependent pathway. Quercetin also reduced TNF-α–induced chemokine secretion in the presence of the transcriptional inhibitor actinomycin D, while inducing phosphorylation of eukaryotic translation initiation factor (eIF)-2α, suggesting that quercetin attenuates chemokine expression by post-transcriptional as well as transcriptional mechanisms. Finally, we tested the effects of quercetin in cockroach antigen–sensitized and –challenged mice. These mice show MCP-1–dependent airways hyperresponsiveness and inflammation. Quercetin significantly reduced lung MCP-1 and methacholine responsiveness. We conclude that quercetin blocks airway cell chemokine expression via transcriptional and post-transcriptional pathways. PMID:16794257

  20. Concurrent agonism of adenosine A2B and glucocorticoid receptors in human airway epithelial cells cooperatively induces genes with anti-inflammatory potential: a novel approach to treat chronic obstructive pulmonary disease.

    PubMed

    Greer, Stephanie; Page, Cara W; Joshi, Taruna; Yan, Dong; Newton, Robert; Giembycz, Mark A

    2013-09-01

    Chronic obstructive pulmonary disease (COPD) is a neutrophilic inflammatory disorder that is weakly responsive to glucocorticoids. Identification of ways to enhance the anti-inflammatory activity of glucocorticoids is, therefore, a major research objective. Adenosine receptor agonists that target the A2B-receptor subtype are efficacious in several cell-based assays and preclinical models of inflammation. Accordingly, the present study was designed to determine if a selective A2B-receptor agonist, 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulphanyl]acetamide (Bay 60-6583), and a glucocorticoid, dexamethasone, in combination display putative anti-inflammatory activity that is superior to either drug alone. In BEAS-2B human airway epithelial cells stably transfected with cAMP-response element (CRE) and glucocorticoid response element (GRE) reporter constructs, Bay 60-6583 promoted CRE-dependent transcription and enhanced GRE-dependent transcription by an adenosine A2B-receptor-mediated mechanism that was associated with cAMP formation and abolished by an inhibitor of cAMP-dependent protein kinase. Analysis of the concentration-response relationship that described the enhancement of GRE-dependent transcription showed that Bay 60-6583 increased the magnitude of response without affecting the potency of dexamethasone. Bay 60-6583 and dexamethasone also induced a panel of genes that, collectively, could have benefit in COPD. These were categorized into genes that were induced in a positive cooperative manner (RGS2, p57(kip2)), an additive manner (TTP, BRL-1), or by Bay 60-6583 (CD200, CRISPLD2, SOCS3) or dexamethasone (GILZ) only. Thus, the gene induction "fingerprints" produced by Bay 60-6583 and dexamethasone, alone and in combination, were distinct. Collectively, through their actions on gene expression, an adenosine A2B-receptor agonist and a glucocorticoid administered together may have utility in the treatment of inflammatory disorders that

  1. [Research progress of corneal epithelial basal cells and basement membrane].

    PubMed

    Qu, J H; Sun, X G

    2016-09-11

    The cylinder cells at the bottom of corneal epithelial cells are basal cells. Their cytoplasm contains keratin intermediate filament which is important in secretion of basement membrane. Corneal epithelial dysfunction due to diabetes or ocular surgery is intimately related with basal cell abnormality. Corneal epithelial basement membrane is a highly specific extracellular matrix which is made up of lamina lucida and lamina densa. It plays an extremely important role in renewal and restoration. Many ocular abnormalities and diseases have been described to relate to the corneal epithelial basement membrane, such as traumatic recurrent corneal erosion, corneal dystrophy and keratoconus. (Chin J Ophthalmol, 2016, 52: 703-707).

  2. Henipavirus pathogenesis in human respiratory epithelial cells.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz; Rockx, Barry

    2013-03-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.

  3. Henipavirus Pathogenesis in Human Respiratory Epithelial Cells

    PubMed Central

    Escaffre, Olivier; Borisevich, Viktoriya; Carmical, J. Russ; Prusak, Deborah; Prescott, Joseph; Feldmann, Heinz

    2013-01-01

    Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection. PMID:23302882

  4. Glucocorticoid receptor in human respiratory epithelial cells.

    PubMed

    Pujolsa, Laura; Mullol, Joaquim; Picado, Cèsar

    2009-01-01

    Inhaled and intranasal glucocorticoids (GCs) are the most common and effective drugs for controlling symptoms and airway inflammation in respiratory diseases such as allergic rhinitis, chronic rhinosinusitis with/without nasal polyps, and asthma, and the respiratory epithelium is a primary target of GC anti-inflammatory actions. GC effects are mediated through the GC receptor (GR). In humans, one single GR gene gives rise to two main GR products, namely GRalpha and GRbeta, which are subject to translational and posttranslational modifications. GRalpha is expressed in virtually all human cells and tissues, including respiratory epithelial cells, and - at least in vitro - is downregulated by GC. GRalpha mediates the anti-inflammatory actions of GC by activating transcription of anti-inflammatory genes through binding of GRalpha to glucocorticoid response elements (GRE) located in the promoter region of target genes, repressing transcription of proinflammatory genes through direct interaction between GRalpha and proinflammatory transcription factors, such as AP-1 and NF-kappaB (transrepression), and also by destabilizing the mRNA of proinflammatory mediators. GRbeta acts as a dominant negative inhibitor of GRalpha-mediated transactivation and transrepression in certain in vitro studies with transfected cells. The GRbeta message is expressed at low levels in numerous tissues and its protein is mainly expressed in inflammatory cells, although it has also been detected in airway epithelial cells. Increased GRbeta expression has been reported in bronchial asthma and nasal polyposis, and after incubation of cells with certain proinflammatory stimuli. However, the role of GRbeta in modulating GC sensitivity in vivo has been highly debated and is as yet unclear.

  5. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells

    PubMed Central

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C.; Liu, Jinsong

    2016-01-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  6. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  7. Nuclear microscopy of rat colon epithelial cells

    NASA Astrophysics Data System (ADS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  8. Epithelial Cell Innate Response to Candida albicans

    PubMed Central

    Naglik, J.R.; Moyes, D.

    2011-01-01

    With the advent of treatments and diseases such as AIDS resulting in increasing numbers of patients with suppressed immune systems, fungal diseases are an escalating problem. Candida albicans is the most common of these fungal pathogens, causing infections in many of these patients. It is therefore important to understand how immunity to this fungus is regulated and how it might be manipulated. Although work has been done to identify the receptors, fungal moieties, and responses involved in anti-Candida immunity, most studies have investigated interactions with myeloid or lymphoid cells. Given that the first site of contact of C. albicans with its host is the mucosal epithelial surface, recent studies have begun to focus on interactions of C. albicans with this site. The results are startling yet in retrospect obvious, indicating that epithelial cells play an important role in these interactions, initiating responses and even providing a level of protection. These findings have obvious implications, not just for fungal pathogens, but also for identifying how host organisms can distinguish between commensal and pathogenic microbes. This review highlights some of these recent findings and discusses their importance in the wider context of infection and immunity. PMID:21441481

  9. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions.

    PubMed

    Van Landeghem, Laurianne; Mahé, Maxime M; Teusan, Raluca; Léger, Jean; Guisle, Isabelle; Houlgatte, Rémi; Neunlist, Michel

    2009-11-02

    Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently unknown. To achieve this goal, we aimed at identifying the impact of EGC upon IEC transcriptome by performing microarray studies. EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC. This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions.

  10. Dedifferentiation of committed epithelial cells into stem cells in vivo

    PubMed Central

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Cho, Josalyn L.; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2014-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts to repair epithelial injury. Indeed, single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. In contrast, direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming, the propensity of committed cells to dedifferentiate was inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may play a more general role in the regeneration of many tissues and in multiple disease states, notably cancer. PMID:24196716

  11. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  12. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  13. Arsenic exposure induces the Warburg effect in cultured human cells

    SciTech Connect

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  14. Release of HIV-1 sequestered in the vesicles of oral and genital mucosal epithelial cells by epithelial-lymphocyte interaction

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina

    2017-01-01

    Oropharyngeal mucosal epithelia of fetuses/neonates/infants and the genital epithelia of adults play a critical role in HIV-1 mother-to-child transmission and sexual transmission of virus, respectively. To study the mechanisms of HIV-1 transmission through mucosal epithelium, we established polarized tonsil, cervical and foreskin epithelial cells. Analysis of HIV-1 transmission through epithelial cells showed that approximately 0.05% of initially inoculated virions transmigrated via epithelium. More than 90% of internalized virions were sequestered in the endosomes of epithelial cells, including multivesicular bodies (MVBs) and vacuoles. Intraepithelial HIV-1 remained infectious for 9 days without viral release. Release of sequestered intraepithelial HIV-1 was induced by the calcium ionophore ionomycin and by cytochalasin D, which increase intracellular calcium and disrupt the cortical actin of epithelial cells, respectively. Cocultivation of epithelial cells containing HIV-1 with activated peripheral blood mononuclear cells and CD4+ T lymphocytes led to the disruption of epithelial cortical actin and spread of virus from epithelial cells to lymphocytes. Treatment of epithelial cells with proinflammatory cytokines tumor necrosis factor-alpha and interferon gamma also induced reorganization of cortical actin and release of virus. Inhibition of MVB formation by small interfering RNA (siRNA)-mediated silencing of its critical protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) expression reduced viral sequestration in epithelial cells and its transmission from epithelial cells to lymphocytes by ~60–70%. Furthermore, inhibition of vacuole formation of epithelial cells by siRNA-inactivated rabankyrin-5 expression also significantly reduced HIV-1 sequestration in epithelial cells and spread of virus from epithelial cells to lymphocytes. Interaction of the intercellular adhesion molecule-1 of epithelial cells with the function-associated antigen-1

  15. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial