Sample records for epithelial cell clusters

  1. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis

    PubMed Central

    Jolly, Mohit Kumar; Boareto, Marcelo; Huang, Bin; Jia, Dongya; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.; Levine, Herbert

    2015-01-01

    Transitions between epithelial and mesenchymal phenotypes – the epithelial to ­mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis. PMID:26258068

  2. Mapping the dynamics of force transduction at cell–cell junctions of epithelial clusters

    PubMed Central

    Ng, Mei Rosa; Besser, Achim; Brugge, Joan S; Danuser, Gaudenz

    2014-01-01

    Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both sub-cellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions. DOI: http://dx.doi.org/10.7554/eLife.03282.001 PMID:25479385

  3. Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells.

    PubMed

    Lefevre, James G; Chiu, Han S; Combes, Alexander N; Vanslambrouck, Jessica M; Ju, Ali; Hamilton, Nicholas A; Little, Melissa H

    2017-03-15

    Human pluripotent stem cells, after directed differentiation in vitro , can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation. © 2017. Published by The Company of Biologists Ltd.

  4. An Acidic Cluster in the Cytosolic Domain of Human Cytomegalovirus Glycoprotein B Is a Signal for Endocytosis from the Plasma Membrane

    PubMed Central

    Tugizov, Sharof; Maidji, Ekaterina; Xiao, Jianqiao; Pereira, Lenore

    1999-01-01

    We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is transported to apical membranes in CMV-infected polarized retinal pigment epithelial (ARPE-19) cells and in Madin-Darby canine kidney (MDCK) epithelial cells constitutively expressing gB. The cytosolic domain of gB contains a cluster of acidic amino acids, a motif that plays a pivotal role in vectorial trafficking in polarized epithelial cells and may also function as a signal for entry into the endocytic pathway. Here we compared gB internalization and recycling to the plasma membrane in CMV-infected human fibroblasts (HF) and ARPE-19 cells by using antibody-internalization experiments. Immunofluorescence and quantitative assays showed that gB was internalized from the cell surface into clathrin-coated transport vesicles and then recycled to the plasma membrane. gB colocalized with clathrin-coated vesicles containing the transferrin receptor in the early endocytic/recycling pathway, indicating that gB traffics in this pathway. The specific role of the acidic cluster in regulating the sorting of gB-containing vesicles in the early endocytic/recycling pathway was examined in MDCK cells expressing mutated gB derivatives. Immunofluorescence assays showed that derivatives lacking the acidic cluster were impaired in internalization and failed to recycle. These findings, together with our earlier observation that the acidic cluster is a key determinant for targeting gB molecules to apical membranes in epithelial cells, establish that this signal is recognized by cellular proteins that participate in polarized sorting and transport in the early endocytic/recycling pathway. PMID:10482621

  5. Single-cell heterogeneity in ductal carcinoma in situ of breast.

    PubMed

    Gerdes, Michael J; Gökmen-Polar, Yesim; Sui, Yunxia; Pang, Alberto Santamaria; LaPlante, Nicole; Harris, Adrian L; Tan, Puay-Hoon; Ginty, Fiona; Badve, Sunil S

    2018-03-01

    Heterogeneous patterns of mutations and RNA expression have been well documented in invasive cancers. However, technological challenges have limited the ability to study heterogeneity of protein expression. This is particularly true for pre-invasive lesions such as ductal carcinoma in situ of the breast. Cell-level heterogeneity in ductal carcinoma in situ was analyzed in a single 5 μm tissue section using a multiplexed immunofluorescence analysis of 11 disease-related markers (EGFR, HER2, HER4, S6, pmTOR, CD44v6, SLC7A5 and CD10, CD4, CD8 and CD20, plus pan-cytokeratin, pan-cadherin, DAPI, and Na+K+ATPase for cell segmentation). Expression was quantified at cell level using a single-cell segmentation algorithm. K-means clustering was used to determine co-expression patterns of epithelial cell markers and immune markers. We document for the first time the presence of epithelial cell heterogeneity within ducts, between ducts and between patients with ductal carcinoma in situ. There was moderate heterogeneity in a distribution of eight clusters within each duct (average Shannon index 0.76; range 0-1.61). Furthermore, within each patient, the average Shannon index across all ducts ranged from 0.33 to 1.02 (s.d. 0.09-0.38). As the distribution of clusters within ducts was uneven, the analysis of eight ducts might be sufficient to represent all the clusters ie within- and between-duct heterogeneity. The pattern of epithelial cell clustering was associated with the presence and type of immune infiltrates, indicating a complex interaction between the epithelial tumor and immune system for each patient. This analysis also provides the first evidence that simultaneous analysis of both the epithelial and immune/stromal components might be necessary to understand the complex milieu in ductal carcinoma in situ lesions.

  6. Extracorporeal shockwave lithotripsy: urine cytology findings.

    PubMed

    Kumar, P V; Salami, K; Tadayyon, A R

    2008-12-01

    To describe the urine cytology findings before and after stone therapy with extracorporeal shock wave lithotripsy (ESWL) and discuss its importance. The study consisted of 100 patients with a urinary tract stone (79 renal pelvic stones and 21 upper ureteric stones), 74 were male and 26 were female. The ages ranged 30-55 years. The average duration of symptoms was 3-8 years. The size of the stones varied from case to case ranging from 10.2 to 40 mm. Urine samples were obtained on three consecutive days before and after lithotripsy. The smears were stained by the Papanicolaou method. The smears before lithotripsy revealed a few red blood cells, inflammatory cells, epithelial cells and crystals (calcium oxalate, uric acid and triple phosphate). Atypical malignant looking cells and epithelial cell clusters were not noticed. After lithotripsy, the urine samples were examined at different periods, 24 hours, 2 weeks, 1 month, 2 months and 3 months. The smears revealed papillary clusters in all 100 patients within 24 hours and were always associated with inflammation. Atypical malignant looking cells appeared later, within 1-2 months in 21 patients, and were associated with inflammation (19 patients), RBC, crystals and papillary clusters. Most of the papillary clusters and atypical malignant looking cells disappeared before 3 months. The epithelial cell clusters and atypical cells were seen in urine smears after ESWL. Without knowing the previous history these findings can be confused with urothelial neoplasms.

  7. Fine needle aspiration cytology of breast cancer in women aged 70 years and older.

    PubMed

    Tse, Gary M K; Somali, Anjali; Chan, Anthony W H; Chaiwun, Benjaporn; Lui, Philip C W; Moriya, Takuya; Hwang, Jacqueline S G; Chan, Norman H L; Tan, Puay Hoon

    2008-10-01

    Elderly breast cancers are associated with a more favourable biological marker profile and higher proportion of specific subtypes, some of which are of low histological grade. We reviewed the fine needle aspiration cytology (FNAC) to assess the cytological characteristics and any clues to assist in the diagnosis. The aspirates of 140 cancers of various histological types and grades and 39 benign lesions were evaluated for 13 cytological parameters including cellularity of the direct and cytospin smears, epithelial cell clusters, cellular atypism, cytoplasmic features, vacuoles, mitotic figures, presence of myoepithelial cells, single background epithelial cells, the presence of naked nuclei, stromal fragments and necrosis. We found that the presence of background single epithelial cells, atypism of such cells, absence of benign appearing epithelial fragments, nuclear atypism of the epithelial cells within the fragments, presence of moderate amount of cytoplasm of these cells, absence of myoepithelial cells within the cluster, and absence of bipolar nuclei in the background have a strong association with malignancy. Scoring only the presence of single cells in the background, single cell atypism and the absence of bipolar nuclei in a scoring system can differentiate between benign and malignant aspirates with high (>90%) sensitivity and specificity. Assessing the presence of single cells in the background, single cell atypism and the absence of bipolar nuclei facilitates identification of malignancy in the aspiration of breast lesions from elderly patients.

  8. Modalities to enumerate circulating tumor cells in the bloodstream for cancer prognosis and to monitor the response to the therapy.

    PubMed

    Romano, G

    2017-09-01

    Certain malignant cells may detach from the primary tumor and enter the vascular system, forming so-called circulating tumor cells (CTCs). Clusters of malignant cells associated with other cell types can also be observed in the peripheral blood of oncological patients. Such cell clusters are termed circulating tumor microemboli (CTM). The isolation and quantification of CTCs and/or CTM from blood samples allow for an accurate prognosis of the clinical course of the disease and to monitor the response to therapy. Current protocols rely on epithelial markers for the isolation of CTCs and/or CTM from hematopoietic cells. However, epithelial markers may be silenced during the progression of the epithelial-mesenchymal transition, which regulates the detachment and migration of malignant cells from the primary tumor. This review summarizes the achievements and challenges of various modalities for the isolation, enrichment, analysis and enumeration of CTCs and/or CTM, in order to assess the advancement of the disease and the response to therapy.

  9. KSA Antigen Ep-CAM Mediates Cell–Cell Adhesion of Pancreatic Epithelial Cells: Morphoregulatory Roles in Pancreatic Islet Development

    PubMed Central

    Cirulli, V.; Crisa, L.; Beattie, G.M.; Mally, M.I.; Lopez, A.D.; Fannon, A.; Ptasznik, A.; Inverardi, L.; Ricordi, C.; Deerinck, T.; Ellisman, M.; Reisfeld, R.A.; Hayek, A.

    1998-01-01

    Cell adhesion molecules (CAMs) are important mediators of cell–cell interactions and regulate cell fate determination by influencing growth, differentiation, and organization within tissues. The human pancarcinoma antigen KSA is a glycoprotein of 40 kD originally identified as a marker of rapidly proliferating tumors of epithelial origin. Interestingly, most normal epithelia also express this antigen, although at lower levels, suggesting that a dynamic regulation of KSA may occur during cell growth and differentiation. Recently, evidence has been provided that this glycoprotein may function as an epithelial cell adhesion molecule (Ep-CAM). Here, we report that Ep-CAM exhibits the features of a morphoregulatory molecule involved in the development of human pancreatic islets. We demonstrate that Ep-CAM expression is targeted to the lateral domain of epithelial cells of the human fetal pancreas, and that it mediates calcium-independent cell–cell adhesion. Quantitative confocal immunofluorescence in fetal pancreata identified the highest levels of Ep-CAM expression in developing islet-like cell clusters budding from the ductal epithelium, a cell compartment thought to comprise endocrine progenitors. A surprisingly reversed pattern was observed in the human adult pancreas, displaying low levels of Ep-CAM in islet cells and high levels in ducts. We further demonstrate that culture conditions promoting epithelial cell growth induce upregulation of Ep-CAM, whereas endocrine differentiation of fetal pancreatic epithelial cells, transplanted in nude mice, is associated with a downregulation of Ep-CAM expression. In addition, a blockade of Ep-CAM function by KS1/4 mAb induced insulin and glucagon gene transcription and translation in fetal pancreatic cell clusters. These results indicate that developmentally regulated expression and function of Ep-CAM play a morphoregulatory role in pancreatic islet ontogeny. PMID:9508783

  10. Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo

    PubMed Central

    Ohno, Yoshikazu; Otaki, Joji M.

    2015-01-01

    Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings. PMID:26107809

  11. Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo.

    PubMed

    Ohno, Yoshikazu; Otaki, Joji M

    2015-01-01

    Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.

  12. Two stages of enteropathogenic Escherichia coli intestinal pathogenicity are up and down-regulated by the epithelial cell differentiation.

    PubMed

    Gabastou, J M; Kernéis, S; Bernet-Camard, M F; Barbat, A; Coconnier, M H; Kaper, J B; Servin, A L

    1995-09-01

    Pathogens and eucaryotic cells are active partners during the process of pathogenicity. To gain access to enterocytes and to cross the epithelial membrane, many enterovirulent microorganisms interact with the brush border membrane-associated components as receptors. Recent reports provide evidence that intestinal cell differentiation plays a role in microbial pathogenesis. Human enteropathogenic Escherichia coli (EPEC) develop their pathogenicity upon infecting enterocytes. To determine if intestinal epithelial cell differentiation influences EPEC pathogenicity, we examined the infection of human intestinal epithelial cells by JPN 15 (pMAR7) [EAF+ eae+] EPEC strain as a function of the cell differentiation. The human embryonic intestinal INT407 cells, the human colonic T84 cells, the human undifferentiated HT-29 cells (HT-29 Std) and two enterocytic cell lines, HT-29 glc-/+ and Caco-2 cells, were used as cellular models. Cells were infected apically with the EPEC strain and the cell-association and cell-entry were examined by quantitative determination using metabolically radiolabeled bacteria, as well as by light, scanning and transmission electron microscopy. [EAF+ eae+] EPEC bacteria efficiently colonized the cultured human intestinal cells. Diffuse bacterial adhesion occurred to undifferentiated HT-29 Std and INT407 cells, whereas characteristic EPEC cell clusters were observed on fully differentiated enterocytic HT-29 glc-/+ cells and on colonic crypt T84 cells. As shown using the Caco-2 cell line, which spontaneously differentiates in culture, the formation of EPEC clusters increased as a function of the epithelial cell differentiation. In contrast, efficient cell-entry of [EAF+ eae+] EPEC bacteria occurred in recently differentiated Caco-2 cells and decreased when the cells were fully differentiated.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Golgi sorting regulates organization and activity of GPI-proteins at apical membranes

    PubMed Central

    Tivodar, Simona; Formiggini, Fabio; Ossato, Giulia; Gratton, Enrico; Tramier, Marc; Coppey-Moisan, Maïté; Zurzolo, Chiara

    2014-01-01

    Here, we combined classical biochemistry with novel biophysical approaches to study with high spatial and temporal resolution the organization of GPI-anchored proteins (GPI-APs) at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, following sorting in the Golgi, each GPI-AP reaches the apical surface in homo-clusters. Golgi-derived homo-clusters are required for their subsequent plasma membrane organization into cholesterol-dependent hetero-clusters. By contrast, in non-polarized MDCK cells GPI-APs are delivered to the surface as monomers in an unpolarized manner and are not able to form hetero-clusters. We further demonstrate that this GPI-AP organization is regulated by the content of cholesterol in the Golgi apparatus and is required to maintain the functional state of the protein at the apical membrane. Thus, different from fibroblasts, in polarized epithelial cells a selective cholesterol-dependent sorting mechanism in the Golgi regulates both the organization and the function of GPI-APs at the apical surface. PMID:24681536

  14. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity.

    PubMed

    Nguyen, Quy H; Pervolarakis, Nicholas; Blake, Kerrigan; Ma, Dennis; Davis, Ryan Tevia; James, Nathan; Phung, Anh T; Willey, Elizabeth; Kumar, Raj; Jabart, Eric; Driver, Ian; Rock, Jason; Goga, Andrei; Khan, Seema A; Lawson, Devon A; Werb, Zena; Kessenbrock, Kai

    2018-05-23

    Breast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell populations, one basal and two luminal cell types, which we identify as secretory L1- and hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation trajectories produces one continuous lineage hierarchy that closely connects the basal lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides insights into the cellular blueprint of the human breast epithelium and will form the foundation to understand how the system goes awry during breast cancer.

  15. Long-term culture and partial characterization of dog gallbladder epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, D.; Lee, S.P.; Hayashi, A.

    1991-05-01

    We describe the successful isolation and maintenance of primary cultures of dog gallbladder epithelial cells. The surgically removed gallbladder was treated with trypsin/EDTA for 45 minutes and epithelial cells were collected and resuspended in Eagle's minimum essential medium with 10% fetal calf serum, and plated on Vitrogen-coated culture dishes. Each gallbladder yielded approximately 12 to 15 x 10{sup 6} columnar epithelial cells, greater than 95% of which were viable by trypan blue exclusion. In culture, cells maintained their polarity. They were arranged and grew in small and tight clusters that coalesced at confluency. When examined using transmission electron microscopy, prominentmore » and numerous microville were identified on the apical portion of the plasma membrane. Cells were connected by well-formed desmosomes. Scanning electron microscopy revealed clusters of polyhedral cells with numerous papillary projections. Immunohistochemical studies demonstrated uniform staining of cells to keratin 35BH11 and AE1. Histochemical studies were positive for gamma-glutamyl transpeptidase and negative for glucose-6-phosphatase and albumin. Cells incorporated ({sup 3}H)uridine into intracellular proteins and ({sup 14}C)glucosamine into tissue and secreted mucous glycoproteins linearly over 2 to 24 hours. Flow cytometry studies demonstrated a consistent and reproducible number of cells (10 to 12%) at S-phase. However, the number of cells at S-phase was dramatically reduced to almost negligible as cells reached confluency. This method of culturing primary dog gallbladder epithelial cells is highly reproducible and reliable. These cells preserve their state of differentiation, polarity, histochemical and immunohistochemical profile, morphologic, and metabolic integrity with repeated passaging or after being frozen.« less

  16. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells.

    PubMed

    Neves, Rui; Scheel, Christina; Weinhold, Sandra; Honisch, Ellen; Iwaniuk, Katharina M; Trompeter, Hans-Ingo; Niederacher, Dieter; Wernet, Peter; Santourlidis, Simeon; Uhrberg, Markus

    2010-08-03

    The miR-200c/141 cluster has recently been implicated in the epithelial to mesenchymal transition (EMT) process. The expression of these two miRNAs is inversely correlated with tumorigenicity and invasiveness in several human cancers. The role of these miRNAs in cancer progression is based in part on their capacity to target the EMT activators ZEB1 and ZEB2, two transcription factors, which in turn repress expression of E-cadherin. Little is known about the regulation of the mir200c/141 cluster, whose targeting has been proposed as a promising new therapy for the most aggressive tumors. We show that the miR-200c/141 cluster is repressed by DNA methylation of a CpG island located in the promoter region of these miRNAs. Whereas in vitro methylation of the miR-200c/141 promoter led to shutdown of promoter activity, treatment with a demethylating agent caused transcriptional reactivation in breast cancer cells formerly lacking expression of miR-200c and miR-141. More importantly, we observed that DNA methylation of the identified miR-200c/141 promoter was tightly correlated with phenotype and the invasive capacity in a panel of 8 human breast cancer cell lines. In line with this, in vitro induction of EMT by ectopic expression of the EMT transcription factor Twist in human immortalized mammary epithelial cells (HMLE) was accompanied by increased DNA methylation and concomitant repression of the miR-200c/141 locus. The present study demonstrates that expression of the miR-200c/141 cluster is regulated by DNA methylation, suggesting epigenetic regulation of this miRNA locus in aggressive breast cancer cell lines as well as untransformed mammary epithelial cells. This epigenetic silencing mechanism might represent a novel component of the regulatory circuit for the maintenance of EMT programs in cancer and normal cells.

  17. Respiratory herpesvirus infection in two Indian Ringneck parakeets.

    PubMed

    Lazic, Tatjana; Ackermann, Mark R; Drahos, Jo M; Stasko, Judith; Haynes, Joseph S

    2008-03-01

    A flock of Indian Ringneck parakeets (Psittacula krameri manillensis) was imported to the United States from Australia. Soon after, 1 parakeet suddenly died, and a second parakeet died after a 2-day course of illness, which consisted of anorexia, lethargy, emaciation, and dyspnea. At necropsy, the affected birds had diffuse consolidation and red discoloration of the lungs, as well as thickened, congested air sacs. The microscopic examination revealed multifocal, necrotizing bronchitis, parabronchitis, and interstitial pneumonia. The lumen of the affected airways contained numerous, large syncytial cells with up to 15 nuclei. The nuclei of these syncytial cells often contained large, eosinophilic inclusion bodies, consistent with herpesvirus. The epithelium of the trachea and air sacs was hypertrophied and contained syncytial cells with intranuclear inclusion bodies similar to the bronchi. In addition, a few intranuclear inclusion bodies were also present in the epithelial cells that line the air capillaries. On ultrastructural examination, the nuclei of degenerating epithelial cells contained clusters of viral nucleocapsid proteins and unenveloped, icosahedral, viral particles that were approximately 90 nm in diameter. In addition, some epithelial cells contained clusters of enveloped viral particles approximately 105 nm in diameter, within the cytocavitary network. These lesions are characteristic of those caused by respiratory herpesvirus of parakeets.

  18. EphA2 and Src regulate equatorial cell morphogenesis during lens development

    PubMed Central

    Cheng, Catherine; Ansari, Moham M.; Cooper, Jonathan A.; Gong, Xiaohua

    2013-01-01

    High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2-/- mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2-/- cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2-/- lenses. Src-/- equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice. PMID:24026120

  19. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity

    PubMed Central

    Salomon, Julie; Gaston, Cécile; Magescas, Jérémy; Duvauchelle, Boris; Canioni, Danielle; Sengmanivong, Lucie; Mayeux, Adeline; Michaux, Grégoire; Campeotto, Florence; Lemale, Julie; Viala, Jérôme; Poirier, Françoise; Minc, Nicolas; Schmitz, Jacques; Brousse, Nicole; Ladoux, Benoit; Goulet, Olivier; Delacour, Delphine

    2017-01-01

    Monolayered epithelia are composed of tight cell assemblies that ensure polarized exchanges. EpCAM, an unconventional epithelial-specific cell adhesion molecule, is assumed to modulate epithelial morphogenesis in animal models, but little is known regarding its cellular functions. Inspired by the characterization of cellular defects in a rare EpCAM-related human intestinal disease, we find that the absence of EpCAM in enterocytes results in an aberrant apical domain. In the course of this pathological state, apical translocation towards tricellular contacts (TCs) occurs with striking tight junction belt displacement. These unusual cell organization and intestinal tissue defects are driven by the loss of actomyosin network homoeostasis and contractile activity clustering at TCs, yet is reversed by myosin-II inhibitor treatment. This study reveals that adequate distribution of cortical tension is crucial for individual cell organization, but also for epithelial monolayer maintenance. Our data suggest that EpCAM modulation protects against epithelial dysplasia and stabilizes human tissue architecture. PMID:28084299

  20. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    PubMed

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The role of membrane microdomains in transmembrane signaling through the epithelial glycoprotein Gp140/CDCP1

    PubMed Central

    Alvares, Stacy M.; Dunn, Clarence A.; Brown, Tod A.; Wayner, Elizabeth E.; Carter, William G.

    2008-01-01

    Cell adhesion to the extracellular matrix (ECM) via integrin adhesion receptors initiates signaling cascades leading to changes in cell behavior. While integrin clustering is necessary to initiate cell attachment to the matrix, additional membrane components are necessary to mediate the transmembrane signals and the cell adhesion response that alter downstream cell behavior. Many of these signaling components reside in glycosphingolipid-rich and cholesterol-rich membrane domains such as Tetraspanin Enriched Microdomains (TEMs)/Glycosynapse 3 and Detergent-Resistant Microdomains (DRMs), also known as lipid rafts. In the following article, we will review examples of how components in these membrane microdomains modulate integrin adhesion after initial attachment to the ECM. Additionally, we will present data on a novel adhesion-responsive transmembrane glycoprotein Gp140/CUB Domain Containing Protein 1, which clusters in epithelial cell-cell contacts. Gp140 can then be phosphorylated by Src Family Kinases at tyrosine 734 in response to outside-in signals- possibly through interactions involving the extracellular CUB domains. Data presented here suggests that outside-in signals through Gp140 in cell-cell contacts assemble membrane clusters that associate with membrane microdomains to recruit and activate SFKs. Active SFKs then mediate phosphorylation of Gp140, SFK and PKCδ with Gp140 acting as a transmembrane scaffold for these kinases. We propose that the clustering of Gp140 and signaling components in membrane microdomains in cell-cell contacts contributes to changes in cell behavior. PMID:18269919

  2. Epithelial Cell Rests of Malassez Contain Unique Stem Cell Populations Capable of Undergoing Epithelial–Mesenchymal Transition

    PubMed Central

    Xiong, Jimin; Mrozik, Krzysztof; Gronthos, Stan

    2012-01-01

    The epithelial cell rests of Malassez (ERM) are odontogenic epithelial cells located within the periodontal ligament matrix. While their function is unknown, they may support tissue homeostasis and maintain periodontal ligament space or even contribute to periodontal regeneration. We investigated the notion that ERM contain a subpopulation of stem cells that could undergo epithelial–mesenchymal transition and differentiate into mesenchymal stem-like cells with multilineage potential. For this purpose, ERM collected from ovine incisors were subjected to different inductive conditions in vitro, previously developed for the characterization of bone marrow mesenchymal stromal/stem cells (BMSC). We found that ex vivo-expanded ERM expressed both epithelial (cytokeratin-8, E-cadherin, and epithelial membrane protein-1) and BMSC markers (CD44, CD29, and heat shock protein-90β). Integrin α6/CD49f could be used for the enrichment of clonogenic cell clusters [colony-forming units-epithelial cells (CFU-Epi)]. Integrin α6/CD49f-positive-selected epithelial cells demonstrated over 50- and 7-fold greater CFU-Epi than integrin α6/CD49f-negative cells and unfractionated cells, respectively. Importantly, ERM demonstrated stem cell-like properties in their differentiation capacity to form bone, fat, cartilage, and neural cells in vitro. When transplanted into immunocompromised mice, ERM generated bone, cementum-like and Sharpey's fiber-like structures. Additionally, gene expression studies showed that osteogenic induction of ERM triggered an epithelial–mesenchymal transition. In conclusion, ERM are unusual cells that display the morphological and phenotypic characteristics of ectoderm-derived epithelial cells; however, they also have the capacity to differentiate into a mesenchymal phenotype and thus represent a unique stem cell population within the periodontal ligament. PMID:22122577

  3. A p21-ZEB1 Complex Inhibits Epithelial-Mesenchymal Transition through the MicroRNA 183-96-182 Cluster

    PubMed Central

    Li, Xiao Ling; Hara, Toshifumi; Choi, Youngeun; Subramanian, Murugan; Francis, Princy; Bilke, Sven; Walker, Robert L.; Pineda, Marbin; Zhu, Yuelin; Yang, Yuan; Luo, Ji; Wakefield, Lalage M.; Brabletz, Thomas; Park, Ben Ho; Sharma, Sudha; Chowdhury, Dipanjan; Meltzer, Paul S.

    2014-01-01

    The tumor suppressor p21 acts as a cell cycle inhibitor and has also been shown to regulate gene expression by functioning as a transcription corepressor. Here, we identified p21-regulated microRNAs (miRNAs) by sequencing small RNAs from isogenic p21+/+ and p21−/− cells. Three abundant miRNA clusters, miR-200b-200a-429, miR-200c-141, and miR-183-96-182, were downregulated in p21-deficient cells. Consistent with the known function of the miR-200 family and p21 in inhibition of the epithelial-mesenchymal transition (EMT), we observed EMT upon loss of p21 in multiple model systems. To explore a role of the miR-183-96-182 cluster in EMT, we identified its genome-wide targets and found that miR-183 and miR-96 repressed common targets, including SLUG, ZEB1, ITGB1, and KLF4. Reintroduction of miR-200, miR-183, or miR-96 in p21−/− cells inhibited EMT, cell migration, and invasion. Conversely, antagonizing miR-200 and miR-183-96-182 cluster miRNAs in p21+/+ cells increased invasion and elevated the levels of VIM, ZEB1, and SLUG mRNAs. Furthermore, we found that p21 forms a complex with ZEB1 at the miR-183-96-182 cluster promoter to inhibit transcriptional repression of this cluster by ZEB1, suggesting a reciprocal feedback loop. PMID:24277930

  4. A dynamic cellular vertex model of growing epithelial tissues

    NASA Astrophysics Data System (ADS)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  5. The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D

    PubMed Central

    Raza, Asad; Ki, Chang Seok; Lin, Chien-Chi

    2013-01-01

    A highly tunable synthetic biomimetic hydrogel platform was developed to study the growth and morphogenesis of pancreatic ductal epithelial cells (PDEC) under the influence of a myriad of instructive cues. A PDEC line, PANC-1, was used as a model system to illustrate the importance of matrix compositions on cell fate determination. PANC-1 is an immortalized ductal epithelial cell line widely used in the study of pancreatic tumor cell behaviors. PANC-1 cells are also increasingly explored as a potential cell source for endocrine differentiation. Thus far, most studies related to PANC-1, among other PDEC lines, are performed on 2D culture surfaces. Here, we evaluated the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D. Specifically, PANC-1 cells were encapsulated in PEG-based hydrogels prepared by step-growth thiol-ene photopolymerization. It was found that thiol-ene hydrogels provided a cytocompatible environment for encapsulation and 3D culture of PANC-1 cells. In contrast to a monolayer morphology on 2D culture surfaces, PANC-1 cells formed clusters in 3D thiol-ene hydrogels within 4 days of culture. After culturing for 10 days, however, the growth and structures of these clusters were significantly impacted by gel matrix properties, including sensitivity of the matrix to proteases, stiffness of the matrix, and ECM-mimetic motifs. The use of matrix metalloproteinase (MMP) sensitive linker or the immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated cells formed smaller and more compact aggregates in non-MMP responsive gels. The incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of epithelial cell markers including β-catenin and E-cadherin. These studies have established PEG-peptide hydrogels formed by thiol-ene photo-click reaction as a suitable platform for studying and manipulating pancreatic epithelial cell growth and morphogenesis in 3D. PMID:23602364

  6. Spatial Distribution of Niche and Stem Cells in Ex Vivo Human Limbal Cultures

    PubMed Central

    Kacham, Santhosh; Purushotham, Jyothi; Maddileti, Savitri; Siamwala, Jamila; Sangwan, Virender Singh

    2014-01-01

    Stem cells at the limbus mediate corneal epithelial regeneration and regulate normal tissue homeostasis. Ex vivo cultured limbal epithelial transplantations are being widely practiced in the treatment of limbal stem cell deficiency. In this report, we examined whether the limbal niche cells that nurture and regulate epithelial stem cells coexist in ex vivo limbal cultures. We also compared the inherent differences between explant and suspension culture systems in terms of spatial distribution of niche cells and their effect on epithelial stem cell proliferation, migration, and differentiation in vitro. We report that the stem cell content of both culture systems was similar, explaining the comparable clinical outcomes reported using these two methods. We also showed that the niche cells get expanded in culture and the nestin-positive cells migrate at the leading edges to direct epithelial cell migration in suspension cultures, whereas they are limited to the intact niche in explant cultures. We provide evidence that C/EBPδ-positive, p15-positive, and quiescent, label-retaining, early activated stem cells migrate at the leading edges to regulate epithelial cell proliferation in explant cultures, and this position effect is lost in early suspension cultures. However, in confluent suspension cultures, the stem cells and niche cells interact with each another, migrate in spiraling patterns, and self-organize to form three-dimensional niche-like compartments resembling the limbal crypts and thereby reestablish the position effect. These 3D-sphere clusters are enriched with nestin-, vimentin-, S100-, and p27-positive niche cells and p15-, p21-, p63α-, C/EBPδ-, ABCG2-, and Pax6-positive quiescent epithelial stem cells. PMID:25232182

  7. Optimization of fecal cytology in the dog: comparison of three sampling methods.

    PubMed

    Frezoulis, Petros S; Angelidou, Elisavet; Diakou, Anastasia; Rallis, Timoleon S; Mylonakis, Mathios E

    2017-09-01

    Dry-mount fecal cytology (FC) is a component of the diagnostic evaluation of gastrointestinal diseases. There is limited information on the possible effect of the sampling method on the cytologic findings of healthy dogs or dogs admitted with diarrhea. We aimed to: (1) establish sampling method-specific expected values of selected cytologic parameters (isolated or clustered epithelial cells, neutrophils, lymphocytes, macrophages, spore-forming rods) in clinically healthy dogs; (2) investigate if the detection of cytologic abnormalities differs among methods in dogs admitted with diarrhea; and (3) investigate if there is any association between FC abnormalities and the anatomic origin (small- or large-bowel diarrhea) or the chronicity of diarrhea. Sampling with digital examination (DE), rectal scraping (RS), and rectal lavage (RL) was prospectively assessed in 37 healthy and 34 diarrheic dogs. The median numbers of isolated ( p = 0.000) or clustered ( p = 0.002) epithelial cells, and of lymphocytes ( p = 0.000), differed among the 3 methods in healthy dogs. In the diarrheic dogs, the RL method was the least sensitive in detecting neutrophils, and isolated or clustered epithelial cells. Cytologic abnormalities were not associated with the origin or the chronicity of diarrhea. Sampling methods differed in their sensitivity to detect abnormalities in FC; DE or RS may be of higher sensitivity compared to RL. Anatomic origin or chronicity of diarrhea do not seem to affect the detection of cytologic abnormalities.

  8. Basolateral junctions are sufficient to suppress epithelial invasion during Drosophila oogenesis.

    PubMed

    Szafranski, Przemyslaw; Goode, Scott

    2007-02-01

    Epithelial junctions play crucial roles during metazoan evolution and development by facilitating tissue formation, maintenance, and function. Little is known about the role of distinct types of junctions in controlling epithelial transformations leading to invasion of neighboring tissues. Discovering the key junction complexes that control these processes and how they function may also provide mechanistic insight into carcinoma cell invasion. Here, using the Drosophila ovary as a model, we show that four proteins of the basolateral junction (BLJ), Fasciclin-2, Neuroglian, Discs-large, and Lethal-giant-larvae, but not proteins of other epithelial junctions, directly suppress epithelial tumorigenesis and invasion. Remarkably, the expression pattern of Fasciclin-2 predicts which cells will invade. We compared the apicobasal polarity of BLJ tumor cells to border cells (BCs), an epithelium-derived cluster that normally migrates during mid-oogenesis. Both tumor cells and BCs differentiate a lateralized membrane pattern that is necessary but not sufficient for invasion. Independent of lateralization, derepression of motility pathways is also necessary, as indicated by a strong linear correlation between faster BC migration and an increased incidence of tumor invasion. However, without membrane lateralization, derepression of motility pathways is also not sufficient for invasion. Our results demonstrate that spatiotemporal patterns of basolateral junction activity directly suppress epithelial invasion by organizing the cooperative activity of distinct polarity and motility pathways.

  9. Spontaneous rat nephroblastoma: ultrastructure of a transplant line.

    PubMed

    Hard, G C; Noble, R L

    1982-08-01

    Tumor tissue derived from a nephroblastoma arising spontaneously in an Nb hooded rat and carried for 56 generations as a subcutaneous syngeneic transplant was examined by electron microscopy. Histologically, the transplant showed the typical pattern of dense clusters or sheets of basophilic epithelioid cells set within ramifying tracts of fibrous mesenchyme. At the ultrastructural level, the tumor cells within dense clusters were arranged in anastomotic cords that circumscribed clear intervening spaces. The tumor cells were a monomorphic population possessing the morphologic characteristics of blast cells, including polyribosomes as the predominant cytoplasmic organelle. Furthermore, the close contiguity of cells within the cords, their polyhedral form, and their connection by intercellular junctions established the tumor cell type as epithelial. Consistent with benign stroma, mesenchymal tracts contained highly differentiated, mature fibroblasts, collagen, phagocytes, cells of the lymphoid series, and normal blood vessels. No transitional forms between epithelium and mesenchyme suggestive of bipotential differentiation were seen. Although the data represent only a single transplantation line, the observations support the contention (based on light microscopic appraisal of a number of primary tumors) that nephroblastoma in te rat can be a purely epithelial neoplasm.

  10. Nacre formation by epithelial cell cultures from mantle of the black-lip pearl oyster, Pinctada margaritifera.

    PubMed

    Jayasankar, Vidya; Vasudevan, Srinivasa Raghavan; Poulose, Suja C; Divipala, Indira

    2018-06-12

    Mantle tissue from the black-lip pearl oyster, Pinctada margaritifera, was cultured in vitro using sterilized seawater supplemented with 0.1% yeast extract as the culture medium. Granular and agranular epithelial cells, hyalinocytes, and fibroblast-like cells were observed in the initial stages of culture. Epithelial cells later formed pseudopodial cell networks containing clusters of granulated cells, which upon maturation released their colored granules. These granules induced formation of nacre crystal deposits on the bottom of the culture plate. Cultures comprised of only granulated epithelial cells were established through periodic sub-culturing of mantle cells and maintained for over 18 mo in a viable condition. Reverse transcriptase PCR of cultured cells demonstrated gene expression of the shell matrix protein, nacrein. To further evaluate the functional ability of cultured granulated epithelial cells, nuclear shell beads were incubated in culture medium containing these cells to induce nacre formation on the beads. Observation of the bead surface under a stereomicroscope at periodic intervals showed the gradual formation of blackish yellow colored nacre deposits. Examination of the bead surface by scanning electron microscopy and energy dispersive X-ray analysis at periodic intervals revealed a distinct brick and mortar formation characteristic of nacre, comprised of aragonite platelets and matrix proteins. Calcium, carbon, and oxygen were the major elements in all stages examined. Our study shows that mantle epithelial cells in culture retain the ability to secrete nacre and can therefore form the basis for future studies on the biomineralization process and its application in development of sustainable pearl culture.

  11. Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production

    PubMed Central

    Xiang, Ruidong; McNally, Jody; Rowe, Suzanne; Jonker, Arjan; Pinares-Patino, Cesar S.; Oddy, V. Hutton; Vercoe, Phil E.; McEwan, John C.; Dalrymple, Brian P.

    2016-01-01

    Ruminants obtain nutrients from microbial fermentation of plant material, primarily in their rumen, a multilayered forestomach. How the different layers of the rumen wall respond to diet and influence microbial fermentation, and how these process are regulated, is not well understood. Gene expression correlation networks were constructed from full thickness rumen wall transcriptomes of 24 sheep fed two different amounts and qualities of a forage and measured for methane production. The network contained two major negatively correlated gene sub-networks predominantly representing the epithelial and muscle layers of the rumen wall. Within the epithelium sub-network gene clusters representing lipid/oxo-acid metabolism, general metabolism and proliferating and differentiating cells were identified. The expression of cell cycle and metabolic genes was positively correlated with dry matter intake, ruminal short chain fatty acid concentrations and methane production. A weak correlation between lipid/oxo-acid metabolism genes and methane yield was observed. Feed consumption level explained the majority of gene expression variation, particularly for the cell cycle genes. Many known stratified epithelium transcription factors had significantly enriched targets in the epithelial gene clusters. The expression patterns of the transcription factors and their targets in proliferating and differentiating skin is mirrored in the rumen, suggesting conservation of regulatory systems. PMID:27966600

  12. Multicellular detachment generates metastatic spheroids during intra-abdominal dissemination in epithelial ovarian cancer.

    PubMed

    Al Habyan, Sara; Kalos, Christina; Szymborski, Joseph; McCaffrey, Luke

    2018-05-23

    Ovarian cancer is the most lethal gynecological cancer, where survival rates have had modest improvement over the last 30 years. Metastasis of cancer cells is a major clinical problem, and patient mortality occurs when ovarian cancer cells spread beyond the confinement of ovaries. Disseminated ovarian cancer cells typically spread within the abdomen, where ascites accumulation aids in their transit. Metastatic ascites contain multicellular spheroids, which promote chemo-resistance and recurrence. However, little is known about the origin and mechanisms through which spheroids arise. Using live-imaging of 3D culture models and animal models, we report that epithelial ovarian cancer (EOC) cells, the most common type of ovarian cancer, can spontaneously detach as either single cells or clusters. We report that clusters are more resistant to anoikis and have a potent survival advantage over single cells. Using in vivo lineage tracing, we found that multicellular spheroids arise preferentially from collective detachment, rather than aggregation in the abdomen. Finally, we report that multicellular spheroids from collective detachment are capable of seeding intra-abdominal metastases that retain intra-tumoral heterogeneity from the primary tumor.

  13. Network motifs that stabilize the hybrid epithelial/mesenchymal phenotype

    NASA Astrophysics Data System (ADS)

    Jolly, Mohit Kumar; Jia, Dongya; Tripathi, Satyendra; Hanash, Samir; Mani, Sendurai; Ben-Jacob, Eshel; Levine, Herbert

    Epithelial to Mesenchymal Transition (EMT) and its reverse - MET - are hallmarks of cancer metastasis. While transitioning between E and M phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) phenotype that enables collective cell migration as a cluster of Circulating Tumor Cells (CTCs). These clusters can form 50-times more tumors than individually migrating CTCs, underlining their importance in metastasis. However, this hybrid E/M phenotype has been hypothesized to be only a transient one that is attained en route EMT. Here, via mathematically modeling, we identify certain `phenotypic stability factors' that couple with the core three-way decision-making circuit (miR-200/ZEB) and can maintain or stabilize the hybrid E/M phenotype. Further, we show experimentally that this phenotype can be maintained stably at a single-cell level, and knockdown of these factors impairs collective cell migration. We also show that these factors enable the association of hybrid E/M with high stemness or tumor-initiating potential. Finally, based on these factors, we deduce specific network motifs that can maintain the E/M phenotype. Our framework can be used to elucidate the effect of other players in regulating cellular plasticity during metastasis. This work was supported by NSF PHY-1427654 (Center for Theoretical Biological Physics) and the CPRIT Scholar in Cancer Research of the State of Texas at Rice University.

  14. Clear cell trichoblastoma: a clinicopathological and ultrastructural study of two cases.

    PubMed

    Kazakov, Dmitry V; Mentzel, Thomas; Erlandson, Robert A; Mukensnabl, Petr; Michal, Michal

    2006-06-01

    Clear cell change in basal cell carcinomas is a well-recognized phenomenon, but is obviously rare in trichoblastomas. We present two cases of clear cell trichoblastoma in which clear cell change was very much prominent, and the results of an ultrastructural study intended to explore the basis of that feature. Both our patients were women, aged 56 and 77 years, who presented with solitary, slowly growing nodules that measured 3 to 5 cm in largest dimension and were located on the scalp and the flexor aspect of the lower arm. Microscopically, the tumors in both cases were symmetric, non-ulcerated, and composed of variably sized and shaped (cribriform, racemiform, strands, cords, nodules) aggregations of monomorphous basaloid epithelial cells that were associated with a specific trichogenic stroma. Common to both tumors was clear cell cytoplasm evident in the majority of the epithelial cells in one case and almost in the entire epithelial cell population in the other. In most epithelial aggregations the epithelial cells with clear cytoplasm often appeared columnar and were arranged in a palisade along a recognizable basal membrane, thus indicative of outer sheath differentiation at the bulb. There were other signs of follicular differentiation. Ultrastructurally, variably sized clusters of uniform small basaloid epithelial cells were separated from the stroma by a thin discontinuous basement membrane. In addition to the usual organelles, the cytoplasm contained fairly conspicuous tonofilaments and variably sized vacuoles devoid of a limiting membrane, located between the palisaded nuclei and the outer cell membrane. The majority of vacuoles were empty, although clumps of a finely granular substance were occasionally evident. No distinct lipid droplets or glycogen particles were identified. The basaloid cells were joined by scattered small desmosomes. These findings were consistent with trichilemmal differentiation at the bulb.

  15. Pili-taxis: Clustering of Neisseria gonorrhoeae bacteria

    NASA Astrophysics Data System (ADS)

    Taktikos, Johannes; Zaburdaev, Vasily; Biais, Nicolas; Stark, Holger; Weitz, David A.

    2012-02-01

    The first step of colonization of Neisseria gonorrhoeae bacteria, the etiological agent of gonorrhea, is the attachment to human epithelial cells. The attachment of N. gonorrhoeae bacteria to surfaces or other cells is primarily mediated by filamentous appendages, called type IV pili (Tfp). Cycles of elongation and retraction of Tfp are responsible for a common bacterial motility called twitching motility which allows the bacteria to crawl over surfaces. Experimentally, N. gonorrhoeae cells initially dispersed over a surface agglomerate into round microcolonies within hours. It is so far not known whether this clustering is driven entirely by the Tfp dynamics or if chemotactic interactions are needed. Thus, we investigate whether the agglomeration may stem solely from the pili-mediated attraction between cells. By developing a statistical model for pili-taxis, we try to explain the experimental measurements of the time evolution of the mean cluster size, number of clusters, and area fraction covered by the cells.

  16. Multiplexed multi-scale imaging: novel roles for the scaffold protein IQGAP1 in epithelial cell development (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schweikhard, Volker

    2016-02-01

    The precise sub-cellular spatial localization of multi-protein complexes is increasingly recognized as a key mechanism governing the organization of mammalian cells. Consequently, there is a need for novel microscopy techniques capable of investigating such sub-cellular architectures in comprehensive detail. Here, we applied a novel multiplexed STORM super-resolution microscopy technique, in combination with high-throughput immunofluorescence microscopy and live-cell imaging, to investigate the roles of the scaffold protein IQGAP1 in epithelial cells. IQGAP1 is known to orchestrate a wide range of biological processes, including intracellular signaling, cytoskeletal regulation, cell-cell adhesion, and protein trafficking, by forming distinct complexes with a number of known interaction partners, and recruiting these complexes to specific subcellular locations. Our results demonstrate that, in addition to supporting epithelial adherens junctions by associating with specialized cortical actin structures, IQGAP1 plays a second role in which it controls the confinement of a unique, previously undocumented class of membranous compartments to the basal actin cortex. These largely immotile yet highly dynamic structures appear transiently as cells merge into clusters and establish of apical-basolateral (epithelial) polarity, and are identified as an intermediate compartment in the endocytic recycling pathways for cell junction complexes and cell surface receptors. Although these two functions of IQGAP1 occur in parallel and largely independently of each other, they both support the maturation and maintenance of polarized epithelial cell architectures.

  17. Atypia in fine needle aspirates of breast lesions.

    PubMed

    Tran, Phuong Viet The; Lui, Philip C W; Yu, Alex M C; Vinh, Pham The; Chau, Helen H L; Ma, Tony K F; Tan, Puay-Hoon; Tse, Gary M

    2010-07-01

    The atypical category is controversial in fine needle aspiration cytology (FNAC) of the breast; most are benign, but a significant number are malignant. To date, no morphological criterion has been found to be consistent in predicting malignancy. To evaluate specific cytological parameters and assess their usefulness in predicting histological outcome in a cohort of atypical breast FNAC, in order to establish a set of objective criteria in defining 'high risk' atypical breast FNAC. A retrospective review of 98 cases of atypical breast FNAC with histological correlation was undertaken. The cytological preparations were evaluated for cellularity, percentage of epithelial cell cluster and single epithelial cells, nuclear atypia, nucleus:cytoplasm ratio, percentage of bipolar nuclei, and the presence of stromal fragments, histiocytes and necrosis. 66 of 98 cases (67.35%) showed benign histology and 32 cases (32.65%) showed malignant histology. Compared with the malignant group, the benign group had significantly lower patient age (p=0.05), higher bipolar nuclei (p<0.0001), less degree of nuclear pleomorphism (p<0.0001), lower nucleus:cytoplasm ratio (p<0.0001), lower cellularity (p=0.05) and less necrosis (p<0.001). There was no difference in the percentage of epithelial clusters and single cells, or the presence of stromal fragments and histiocytes. The presence of nuclear pleomorphism, high nucleus:cytoplasm ratio, epithelial cell atypia, low number of bipolar nuclei and necrosis are useful parameters to predict malignancy in atypical FNAC of the breast. Assessment of these factors in atypical FNAC may be helpful in predicting cancer risk and subsequent management decision making.

  18. Distinct Mutations Led to Inactivation of Type 1 Fimbriae Expression in Shigella spp.

    PubMed Central

    Bravo, Verónica; Puhar, Andrea; Sansonetti, Philippe; Parsot, Claude; Toro, Cecilia S.

    2015-01-01

    Shigella spp. are responsible for bacillary dysentery in humans. The acquisition or the modification of the virulence plasmid encoding factors promoting entry of bacteria into and dissemination within epithelial cells was a critical step in the evolution of these bacteria from their Escherichia coli ancestor(s). Incorporation of genomic islands (GI) and gene inactivation also shaped interactions between these pathogens and their human host. Sequence analysis of the GI inserted next to the leuX tRNA gene in S. boydii, S. dysenteriae, S. flexneri, S. sonnei and enteroinvasive E. coli (EIEC) suggests that this region initially carried the fec, yjhATS and fim gene clusters. The fim cluster encoding type I fimbriae is systematically inactivated in both reference strains and clinical isolates and distinct mutations are responsible for this inactivation in at least three phylogenetic groups. To investigate consequences of the presence of fimbriae on the outcome of the interaction of Shigella with host cells, we used a S. flexneri strain harboring a plasmid encoding the E. coli fim operon. Production of fimbriae by this recombinant strain increased the ability of bacteria to adhere to and enter into epithelial cells and had no effect on their ability to disseminate from cell to cell. The observations that production of type I fimbriae increases invasion of epithelial cells and that independent mutations abolish fimbriae production in Shigella suggest that these mutations correspond to pathoadaptive events. PMID:25811616

  19. Heterogeneous Cadherin Expression and Multicellular Aggregate Dynamics in Ovarian Cancer Dissemination.

    PubMed

    Klymenko, Yuliya; Johnson, Jeffrey; Bos, Brandi; Lombard, Rachel; Campbell, Leigh; Loughran, Elizabeth; Stack, M Sharon

    2017-07-01

    Epithelial ovarian carcinoma spreads via shedding of cells and multicellular aggregates (MCAs) from the primary tumor into peritoneal cavity, with subsequent intraperitoneal tumor cell:mesothelial cell adhesion as a key early event in metastatic seeding. Evaluation of human tumor extracts and tissues confirms that well-differentiated ovarian tumors express abundant E-cadherin (Ecad), whereas advanced lesions exhibit upregulated N-cadherin (Ncad). Two expression patterns are observed: "mixed cadherin," in which distinct cells within the same tumor express either E- or Ncad, and "hybrid cadherin," wherein single tumor cell(s) simultaneously expresses both cadherins. We demonstrate striking cadherin-dependent differences in cell-cell interactions, MCA formation, and aggregate ultrastructure. Mesenchymal-type Ncad+ cells formed stable, highly cohesive solid spheroids, whereas Ecad+ epithelial-type cells generated loosely adhesive cell clusters covered by uniform microvilli. Generation of "mixed cadherin" MCAs using fluorescently tagged cell populations revealed preferential sorting into cadherin-dependent clusters, whereas mixing of cell lines with common cadherin profiles generated homogeneous aggregates. Recapitulation of the "hybrid cadherin" Ecad+/Ncad+ phenotype, via insertion of the CDH2 gene into Ecad+ cells, resulted in the ability to form heterogeneous clusters with Ncad+ cells, significantly enhanced adhesion to organotypic mesomimetic cultures and peritoneal explants, and increased both migration and matrix invasion. Alternatively, insertion of CDH1 gene into Ncad+ cells greatly reduced cell-to-collagen, cell-to-mesothelium, and cell-to-peritoneum adhesion. Acquisition of the hybrid cadherin phenotype resulted in altered MCA surface morphology with increased surface projections and increased cell proliferation. Overall, these findings support the hypothesis that MCA cadherin composition impacts intraperitoneal cell and MCA dynamics and thereby affects ultimate metastatic success. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Micropatterns of Matrigel for three-dimensional epithelial cultures.

    PubMed

    Sodunke, Temitope R; Turner, Keneshia K; Caldwell, Sarah A; McBride, Kevin W; Reginato, Mauricio J; Noh, Hongseok Moses

    2007-09-01

    Three-dimensional (3D) epithelial culture models are widely used to promote a physiologically relevant microenvironment for the study of normal and aberrant epithelial organization. Despite the increased use of these models, their potential as a cell-based screening tool for therapeutics has been hindered by the lack of existing platforms for large-scale 3D cellular studies. Current 3D standard culture does not allow for single spheroid or 'acinus' analysis required for high-throughput systems. Here, we present general strategies for creating bulk micropatterns of Matrigel that can be used as a platform for 3D epithelial culture and cell-based assays at the single acinus level. Both buried and free-standing micropatterns of Matrigel were created using modified soft lithography techniques such as microtransfer molding (microTM) and dry lift-off technique. Surface modification of poly(dimethylsiloxane) (PDMS) with oxygen plasma followed by treatment with poly(2-hydroxy-ethylmethacrylate) (poly-HEMA) was sufficient to promote deformation-free release of Matrigel patterns. In addition, a novel dual-layer dry lift-off technique was developed to simultaneously generate patterns of Matrigel and poly-HEMA on a single substrate. We also demonstrate that the micropatterned Matrigel can support 3D culture originating from a single normal human mammary epithelial (MCF-10A) cell or a human breast cancer cell (MDA-MB-231) with comparable phenotypes to standard 3D culture techniques. Culture of normal MCF-10A cells on micropatterned Matrigel resulted in formation of structures with the characteristic apoptosis of centrally located cells and formation of hollow lumens. Moreover, the carcinoma cell line showed their characteristic formation of disorganized invasive cellular clusters, lacking the normal epithelial architecture on micropatterned Matrigel. Hence, micropatterned Matrigel can be used as a 3D epithelial cell-based platform for a wide variety of applications in epithelial and cancer biology, tissue engineering, as well as gene/drug screening technology.

  1. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    PubMed Central

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  2. Communication between corneal epithelial cells and trigeminal neurons is facilitated by purinergic (P2) and glutamatergic receptors.

    PubMed

    Oswald, Duane J; Lee, Albert; Trinidad, Monique; Chi, Cheryl; Ren, Ruiyi; Rich, Celeste B; Trinkaus-Randall, Vickery

    2012-01-01

    Previously, we demonstrated that nucleotides released upon mechanical injury to corneal epithelium activate purinergic (P2) receptors resulting in mobilization of a Ca(2+) wave. However, the tissue is extensively innervated and communication between epithelium and neurons is critical and not well understood. Therefore, we developed a co-culture of primary trigeminal neurons and human corneal limbal epithelial cells. We demonstrated that trigeminal neurons expressed a repertoire of P2Yand P2X receptor transcripts and responded to P2 agonists in a concentration-dependent manner. Mechanical injuries to epithelia in the co-cultures elicited a Ca(2+) wave that mobilized to neurons and was attenuated by Apyrase, an ectonucleotidase. To elucidate the role of factors released from each cell type, epithelial and neuronal cells were cultured, injured, and the wound media from one cell type was collected and added to the other cell type. Epithelial wound media generated a rapid Ca(2+) mobilization in neuronal cells that was abrogated in the presence of Apyrase, while neuronal wound media elicited a complex response in epithelial cells. The rapid Ca(2+) mobilization was detected, which was abrogated with Apyrase, but it was followed by Ca(2+) waves that occurred in cell clusters. When neuronal wound media was preincubated with a cocktail of N-methyl-D-aspartate (NMDA) receptor inhibitors, the secondary response in epithelia was diminished. Glutamate was detected in the neuronal wound media and epithelial expression of NMDA receptor subunit transcripts was demonstrated. Our results indicate that corneal epithelia and neurons communicate via purinergic and NMDA receptors that mediate the wound response in a highly orchestrated manner.

  3. Flat epithelial atypia of the breast: pathological-radiological correlation.

    PubMed

    Solorzano, Silma; Mesurolle, Benoît; Omeroglu, Attila; El Khoury, Mona; Kao, Ellen; Aldis, Ann; Meterissian, Sarkis

    2011-09-01

    This study was undertaken to determine the prevalence of flat epithelial atypia at ultrasound-guided and stereotactically guided needle biopsies, to describe the mammographic and sonographic features of flat epithelial atypia, and to determine the significance of lesions diagnosed as flat epithelial atypia at imaging-guided needle biopsies. Retrospective review of a database of 1369 consecutive sonographically and stereotactically guided needle biopsies performed during a 12-month period yielded 33 lesions with flat epithelial atypia as the most severe pathologic entity (32 patients). Two radiologists retrospectively reviewed the imaging presentation, by combined consensus, according to the BI-RADS lexicon. Twenty-two of 33 flat epithelial atypia diagnoses (67%) were obtained under stereotactic guidance, and 11 (33%) were obtained under sonographic guidance. Six patients had synchronous breast cancer. Flat epithelial atypia lesions presented mammographically most often as microcalcifications (20/33 [61%]) distributed in a cluster (14/20 [70%]) with amorphous morphology (13/20 [65%]). Sonographically, flat epithelial atypia lesions appeared most often as masses (9/11 [82%]), with an irregular shape (6/9 [67%]), microlobulated margins (5/9 [56%]), and hypoechoic or complex echotexture (7/9 [78%]). Twenty-eight of 33 lesions (85%) were surgically excised, confirming the flat epithelial atypia diagnosis in 11 of the 28 lesions (39%), yielding carcinoma in four (14%) and atypical ductal hyperplasia in six (21%). Columnar cell changes without atypia were diagnosed in four lesions (14%), and lobular carcinoma in situ was diagnosed in three lesions (11%). Mammographic and sonographic presentation of flat epithelial atypia is not specific (clustered amorphous microcalcifications and irregular, hypoechoic or complex masses). Given the underestimation rate of malignancy, surgical excision should be considered when imaging-guided biopsy yields flat epithelial atypia.

  4. The MUC1 Ectodomain: A Novel and Efficient Target for Gold Nanoparticle Clustering and Vapor Nanobubble Generation

    PubMed Central

    Danysh, Brian P.; Constantinou, Pamela E.; Lukianova-Hleb, Ekaterina Y.; Lapotko, Dmitri O.; Carson, Daniel D.

    2012-01-01

    MUC1 is a large, heavily glycosylated transmembrane glycoprotein that is proposed to create a protective microenvironment in many adenocarcinomas. Here we compare MUC1 and the well studied cell surface receptor target, EGFR, as gold nanoparticle (AuNP) targets and their subsequent vapor nanobubble generation efficacy in the human epithelial cell line, HES. Although EGFR and MUC1 were both highly expressed in these cells, TEM and confocal images revealed MUC1 as a superior target for nanoparticle intracellular accumulation and clustering. The MUC1-targeted AuNP intracellular clusters also generated significantly larger vapor nanobubbles. Our results demonstrate the promising opportunities MUC1 offers to improve the efficacy of targeted nanoparticle based approaches. PMID:22916077

  5. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells.

    PubMed

    Bolduc, Gilles R; Madoff, Lawrence C

    2007-12-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.

  6. Dynamic Transcription Factor Networks in Epithelial-Mesenchymal Transition in Breast Cancer Models

    PubMed Central

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J.; Shin, Seungjin; Jeruss, Jacqueline S.; Shea, Lonnie D.

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy. PMID:23593114

  7. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    PubMed

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  8. Expression and Function of αvβ3 and αvβ5 Integrins in the Developing Pancreas

    PubMed Central

    Cirulli, Vincenzo; Beattie, Gillian M.; Klier, George; Ellisman, Mark; Ricordi, Camillo; Quaranta, Vito; Frasier, Francine; Ishii, Jennifer K.; Hayek, Alberto; Salomon, Daniel R.

    2000-01-01

    Cell–cell and cell–matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that αvβ3 and αvβ5, two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of αvβ3 and αvβ5 integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins αvβ3 and αvβ5 and their ligands to morphogenetic events in the human endocrine pancreas. PMID:10995448

  9. Dietary flavonoid tangeretin induces reprogramming of epithelial to mesenchymal transition in prostate cancer cells by targeting the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Zhu, Wen-Bin; Xiao, Ning; Liu, Xing-Jie

    2018-01-01

    Tangeretin, a natural polymethoxyflavone present in the peel of citrus fruits is known to exhibit anticancer properties against a variety of carcinomas. Previous experimental evidence suggests that lifestyle and dietary habits affect the risk of prostate cancer to a certain extent. As the effect of tangeretin on prostate cancer is unexplored, the present study investigated the effect of tangeretin on androgen-insensitive PC-3 cells and androgen-sensitive LNCaP cells. Tangeretin reduced the cell viability of PC-3 cells in a dose- and time-dependent manner, with the half-maximal inhibitory concentration (IC 50 ) observed at 75 µM dose following 72 h of incubation, while in LNCaP cells, the IC 50 was identified to be ~65 µM. Expression levels of the mesenchymal proteins including vimentin, cluster of differentiation 44 and Neural cadherin in PC-3 cells were reduced by tangeretin treatment, whereas those of the epithelial proteins, including Epithelial cadherin and cytokeratin-19 were upregulated. Treatment of PC-3 cells also resulted in the downregulation of the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway. Therefore, it may be concluded that tangeretin induces reprogramming of epithelial-mesenchymal transition in PC-3 cells by targeting the PI3K/Akt/mTOR signaling pathway.

  10. Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro.

    PubMed

    Li, Fei-yan; Xie, Xi-sheng; Fan, Jun-ming; Li, Zi; Wu, Jiang; Zheng, Rong

    2009-09-01

    The effects of hydraulic pressure on renal tubular epithelial-myofibroblast transdifferentiation (TEMT) were investigated. We applied hydraulic pressure (50 cm H2O) to normal rat kidney tubular epithelial cells (NRK52E) for different durations. Furthermore, different pressure magnitudes were applied to cells. The morphology, cytoskeleton, and expression of myofibroblastic marker protein and transforming growth factor-beta1 (TGF-beta1) of NRK52E cells were examined. Disorganized actin filaments and formation of curling clusters in actin were seen in the cytoplasm of pressurized cells. We verified that de novo expression of alpha-smooth muscle actin induced by pressure, which indicated TEMT, was dependent on both the magnitude and duration of pressure. TGF-beta1 expression was significantly upregulated under certain conditions, which implies that the induction of TEMT by hydraulic pressure is related with TGF-beta1. We illustrate for the first time that hydraulic pressure can induce TEMT in a pressure magnitude- and duration-dependent manner, and that this TEMT is accompanied by TGF-beta1 secretion.

  11. Sequential development of apical-basal and planar polarities in aggregating epitheliomuscular cells of Hydra.

    PubMed

    Seybold, Anna; Salvenmoser, Willi; Hobmayer, Bert

    2016-04-01

    Apical-basal and planar cell polarities are hallmarks of metazoan epithelia required to separate internal and external environments and to regulate trans- and intracellular transport, cytoskeletal organization, and morphogenesis. Mechanisms of cell polarization have been intensively studied in bilaterian model organisms, particularly in early embryos and cultured cells, while cell polarity in pre-bilaterian tissues is poorly understood. Here, we have studied apical-basal and planar polarization in regenerating (aggregating) clusters of epitheliomuscular cells of Hydra, a simple representative of the ancestral, pre-bilaterian phylum Cnidaria. Immediately after dissociation, single epitheliomuscular cells do not exhibit cellular polarity, but they polarize de novo during aggregation. Reestablishment of the Hydra-specific epithelial bilayer is a result of short-range cell sorting. In the early phase of aggregation, apical-basal polarization starts with an enlargement of the epithelial apical-basal diameter and by the development of belt-like apical septate junctions. Specification of the basal pole of epithelial cells occurs shortly later and is linked to synthesis of mesoglea, development of hemidesmosome-like junctions, and formation of desmosome-like junctions connecting the basal myonemes of neighbouring cells. Planar polarization starts, while apical-basal polarization is already ongoing. It is executed gradually starting with cell-autonomous formation, parallelization, and condensation of myonemes at the basal end of each epithelial cell and continuing with a final planar alignment of epitheliomuscular cells at the tissue level. Our findings reveal that epithelial polarization in Hydra aggregates occurs in defined steps well accessible by histological and ultrastructural techniques and they will provide a basis for future molecular studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A Computational Study of the Development of Epithelial Acini: I. Sufficient Conditions for the Formation of a Hollow Structure

    PubMed Central

    Rejniak, Katarzyna A.; Anderson, Alexander R.A.

    2013-01-01

    Normal hollow epithelial acini are 3-dimensional culture structures that resemble the architecture and functions of normal breast glands and lobules. This experimental model enables in vitro investigations of genotypic and molecular abnormalities associated with epithelial cancers. However, the way in which the acinar structure is formed is not yet completely understood. Gaining more information about consecutive stages of acini development—starting from a single cell that gives rise to a cluster of randomly oriented cells, followed by cell differentiation that leads to a layer of polarised cells enclosing the hollow lumen—will provide insight into the transformations of eukaryotic cells that are necessary for their successful arrangement into an epithelium. In this paper, we introduce a two-dimensional single-cell-based model representing the cross section of a typical acinus. Using this model, we investigate mechanisms that lead to the unpolarised cell growth, cell polarisation, stabilisation of the acinar structure and maintenance of the hollow lumen and discuss the sufficient conditions for each stage of acinar formation. In the follow-up paper (Rejniak and Anderson, A computational study of the development of epithelial acini. II. Necessary conditions for structure and lumen stability), we investigate what morphological changes are observable in the growing acini when some assumptions of this model are relaxed. PMID:18188652

  13. A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells

    PubMed Central

    2011-01-01

    Background Cells of most human cancers have supernumerary centrosomes. To enable an accurate chromosome segregation and cell division, these cells developed a yet unresolved molecular mechanism, clustering their extra centrosomes at two poles, thereby mimicking mitosis in normal cells. Failure of this bipolar centrosome clustering causes multipolar spindle structures and aberrant chromosomes segregation that prevent normal cell division and lead to 'mitotic catastrophe cell death'. Methods We used cell biology and biochemical methods, including flow cytometry, immunocytochemistry and live confocal imaging. Results We identified a phenanthrene derived PARP inhibitor, known for its activity in neuroprotection under stress conditions, which exclusively eradicated multi-centrosomal human cancer cells (mammary, colon, lung, pancreas, ovarian) while acting as extra-centrosomes de-clustering agent in mitosis. Normal human proliferating cells (endothelial, epithelial and mesenchymal cells) were not impaired. Despite acting as PARP inhibitor, the cytotoxic activity of this molecule in cancer cells was not attributed to PARP inhibition alone. Conclusion We identified a water soluble phenanthridine that exclusively targets the unique dependence of most human cancer cells on their supernumerary centrosomes bi-polar clustering for their survival. This paves the way for a new selective cancer-targeting therapy, efficient in a wide range of human cancers. PMID:21943092

  14. Magnetic assembly of 3D cell clusters: visualizing the formation of an engineered tissue.

    PubMed

    Ghosh, S; Kumar, S R P; Puri, I K; Elankumaran, S

    2016-02-01

    Contactless magnetic assembly of cells into 3D clusters has been proposed as a novel means for 3D tissue culture that eliminates the need for artificial scaffolds. However, thus far its efficacy has only been studied by comparing expression levels of generic proteins. Here, it has been evaluated by visualizing the evolution of cell clusters assembled by magnetic forces, to examine their resemblance to in vivo tissues. Cells were labeled with magnetic nanoparticles, then assembled into 3D clusters using magnetic force. Scanning electron microscopy was used to image intercellular interactions and morphological features of the clusters. When cells were held together by magnetic forces for a single day, they formed intercellular contacts through extracellular fibers. These kept the clusters intact once the magnetic forces were removed, thus serving the primary function of scaffolds. The cells self-organized into constructs consistent with the corresponding tissues in vivo. Epithelial cells formed sheets while fibroblasts formed spheroids and exhibited position-dependent morphological heterogeneity. Cells on the periphery of a cluster were flattened while those within were spheroidal, a well-known characteristic of connective tissues in vivo. Cells assembled by magnetic forces presented visual features representative of their in vivo states but largely absent in monolayers. This established the efficacy of contactless assembly as a means to fabricate in vitro tissue models. © 2016 John Wiley & Sons Ltd.

  15. Systemic microsporidiosis in inland bearded dragons (Pogona vitticeps).

    PubMed

    Jacobson, E R; Green, D E; Undeen, A H; Cranfield, M; Vaughn, K L

    1998-09-01

    One laboratory-hatched and -reared inland bearded dragon (Pogona vitticeps) (No. 1) and two privately owned inland bearded dragons (Nos. 2 and 3) died, showing nonspecific signs of illness. Light microscopic examination of hematoxylin and eosin-stained tissue sections from lizard No. 1 revealed severe hepatic necrosis with clusters of light basophilic intracytoplasmic microorganisms packing and distending hepatocytes and free in areas of necrosis. Similar microorganisms were within cytoplasmic vacuoles in distended renal epithelial cells, pulmonary epithelial cells, gastric mucosal epithelial cells, enterocytes, and capillary endothelial cells and ventricular ependymal cells in the brain. In lizard Nos. 2 and 3, microorganisms of similar appearance were in macrophages in granulomatous inflammation in the colon, adrenal glands, and ovaries. The microorganism was gram positive and acid fast and had a small polar granule that stained using the periodic acid-Schiff reaction. Electron microscopic examination of deparaffinized liver of lizard No. 1 revealed merogonic and sporogonic stages of a protozoan compatible with members of the phylum Microspora. This report provides the first description of microsporidiosis in bearded dragons and is only the second report of this infection in a lizard.

  16. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state.

    PubMed

    Lim, Yat-Yuen; Wright, Josephine A; Attema, Joanne L; Gregory, Philip A; Bert, Andrew G; Smith, Eric; Thomas, Daniel; Lopez, Angel F; Drew, Paul A; Khew-Goodall, Yeesim; Goodall, Gregory J

    2013-05-15

    The miR-200 family is a key regulator of the epithelial-mesenchymal transition, however, its role in controlling the transition between cancer stem-cell-like and non-stem-cell-like phenotypes is not well understood. We utilized immortalized human mammary epithelial (HMLE) cells to investigate the regulation of the miR-200 family during their conversion to a stem-like phenotype. HMLE cells were found to be capable of spontaneous conversion from a non-stem to a stem-like phenotype and this conversion was accompanied by the loss of miR-200 expression. Stem-like cell fractions isolated from metastatic breast cancers also displayed loss of miR-200 indicating similar molecular changes may occur during breast cancer progression. The phenotypic change observed in HMLE cells was directly controlled by miR-200 because restoration of its expression decreased stem-like properties while promoting a transition to an epithelial phenotype. Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes. In particular, in the stem-like phenotype, the miR-200b-200a-429 cluster was silenced primarily through polycomb group-mediated histone modifications whereas the miR-200c-141 cluster was repressed by DNA methylation. These results indicate that the miR-200 family plays a crucial role in the transition between stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each miR-200 gene in this process. Therapy targeted against miR-200 family members and epigenetic modifications might therefore be applicable to breast cancer.

  17. Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9.

    PubMed

    Everman, Jamie L; Rios, Cydney; Seibold, Max A

    2018-01-01

    The adaptation of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated endonuclease 9 (CRISPR-Cas9) machinery from prokaryotic organisms has resulted in a gene editing system that is highly versatile, easily constructed, and can be leveraged to generate human cells knocked out (KO) for a specific gene. While standard transfection techniques can be used for the introduction of CRISPR-Cas9 expression cassettes to many cell types, delivery by this method is not efficient in many primary cell types, including primary human airway epithelial cells (AECs). More efficient delivery in AECs can be achieved through lentiviral-mediated transduction, allowing the CRISPR-Cas9 system to be integrated into the genome of the cell, resulting in stable expression of the nuclease machinery and increasing editing rates. In parallel, advancements have been made in the culture, expansion, selection, and differentiation of AECs, which allow the robust generation of a bulk edited AEC population from transduced cells. Applying these methods, we detail here our latest protocol to generate mucociliary epithelial cultures knocked out for a specific gene from donor-isolated primary human basal airway epithelial cells. This protocol includes methods to: (1) design and generate lentivirus which targets a specific gene for KO with CRISPR-Cas9 machinery, (2) efficiently transduce AECs, (3) culture and select for a bulk edited AEC population, (4) molecularly screen AECs for Cas9 cutting and specific sequence edits, and (5) further expand and differentiate edited cells to a mucociliary airway epithelial culture. The AEC knockouts generated using this protocol provide an excellent primary cell model system with which to characterize the function of genes involved in airway dysfunction and disease.

  18. Pericytes/vessel-associated mural cells (VAMCs) are the major source of key epithelial-mesenchymal transition (EMT) factors SLUG and TWIST in human glioma.

    PubMed

    Mäder, Lisa; Blank, Anna E; Capper, David; Jansong, Janina; Baumgarten, Peter; Wirsik, Naita M; Zachskorn, Cornelia; Ehlers, Jakob; Seifert, Michael; Klink, Barbara; Liebner, Stefan; Niclou, Simone; Naumann, Ulrike; Harter, Patrick N; Mittelbronn, Michel

    2018-05-08

    Epithelial-to-mesenchymal transition (EMT) is supposed to be responsible for increased invasion and metastases in epithelial cancer cells. The activation of EMT genes has further been proposed to be important in the process of malignant transformation of primary CNS tumors. Since the cellular source and clinical impact of EMT factors in primary CNS tumors still remain unclear, we aimed at deciphering their distribution in vivo and clinico-pathological relevance in human gliomas. We investigated 350 glioma patients for the expression of the key EMT factors SLUG and TWIST by immunohistochemistry and immunofluorescence related to morpho-genetic alterations such as EGFR -amplification, IDH-1 (R132H) mutation and 1p/19q LOH. Furthermore, transcriptional cluster and survival analyses were performed. Our data illustrate that SLUG and TWIST are overexpressed in gliomas showing vascular proliferation such as pilocytic astrocytomas and glioblastomas. EMT factors are exclusively expressed by non-neoplastic pericytes/vessel-associated mural cells (VAMCs). They are not associated with patient survival but correlate with pericytic/VAMC genes in glioblastoma cluster analysis. In summary, the upregulation of EMT genes in pilocytic astrocytomas and glioblastomas reflects the level of activation of pericytes/VAMCs in newly formed blood vessels. Our results underscore that the negative prognostic potential of the EMT signature in the group of diffuse gliomas of WHO grade II-IV does most likely not derive from glioma cells but rather reflects the degree of proliferating mural cells thereby constituting a potential target for future alternative treatment approaches.

  19. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

    PubMed

    Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K

    2017-03-01

    The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds

    PubMed Central

    Sequeira, Sharon J.; Soscia, David A.; Oztan, Basak; Mosier, Aaron P.; Jean-Gilles, Riffard; Gadre, Anand; Cady, Nathaniel C.; Yener, Bülent; Castracane, James; Larsen, Melinda

    2012-01-01

    Nanofiber scaffolds have been useful for engineering tissues derived from mesenchymal cells, but few studies have investigated their applicability for epithelial cell-derived tissues. In this study, we generated nanofiber (250 nm) or microfiber (1200 nm) scaffolds via electrospinning from the polymer, poly-L-lactic-co-glycolic acid (PLGA). Cell-scaffold contacts were visualized using fluorescent immunocytochemistry and laser scanning confocal microscopy. Focal adhesion (FA) proteins, such as phosphorylated FAK (Tyr397), paxillin (Tyr118), talin and vinculin were localized to FA complexes in adult cells grown on planar surfaces but were reduced and diffusely localized in cells grown on nanofiber surfaces, similar to the pattern observed in adult mouse salivary gland tissues. Significant differences in epithelial cell morphology and cell clustering were also observed and quantified, using image segmentation and computational cell-graph analyses. No statistically significant differences in scaffold stiffness between planar PLGA film controls compared to nanofibers scaffolds were detected using nanoindentation with atomic force microscopy, indicating that scaffold topography rather than mechanical properties accounts for changes in cell attachments and cell structure. Finally, PLGA nanofiber scaffolds could support the spontaneous self-organization and branching of dissociated embryonic salivary gland cells. Nanofiber scaffolds may therefore have applicability in the future for engineering an artificial salivary gland. PMID:22285464

  1. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells

    PubMed Central

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe

    2017-01-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. PMID:29046391

  2. Spatial control of active CDC-42 during collective migration of hypodermal cells in Caenorhabditis elegans.

    PubMed

    Ouellette, Marie-Hélène; Martin, Emmanuel; Lacoste-Caron, Germain; Hamiche, Karim; Jenna, Sarah

    2016-08-01

    Collective epithelial cell migration requires the maintenance of cell-cell junctions while enabling the generation of actin-rich protrusions at the leading edge of migrating cells. Ventral enclosure of Caenorhabditis elegans embryos depends on the collective migration of anterior-positioned leading hypodermal cells towards the ventral midline where they form new junctions with their contralateral neighbours. In this study, we characterized the zygotic function of RGA-7/SPV-1, a CDC-42/Cdc42 and RHO-1/RhoA-specific Rho GTPase-activating protein, which controls the formation of actin-rich protrusions at the leading edge of leading hypodermal cells and the formation of new junctions between contralateral cells. We show that RGA-7 controls these processes in an antagonistic manner with the CDC-42's effector WSP-1/N-WASP and the CDC-42-binding proteins TOCA-1/2/TOCA1. RGA-7 is recruited to spatially distinct locations at junctions between adjacent leading cells, where it promotes the accumulation of clusters of activated CDC-42. It also inhibits the spreading of these clusters towards the leading edge of the junctions and regulates their accumulation and distribution at new junctions formed between contralateral leading cells. Our study suggests that RGA-7 controls collective migration and junction formation between epithelial cells by spatially restricting active CDC-42 within cell-cell junctions. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  3. Caveolin Transfection Results in Caveolae Formation but Not Apical Sorting of Glycosylphosphatidylinositol (GPI)-anchored Proteins in Epithelial Cells

    PubMed Central

    Lipardi, Concetta; Mora, Rosalia; Colomer, Veronica; Paladino, Simona; Nitsch, Lucio; Rodriguez-Boulan, Enrique; Zurzolo, Chiara

    1998-01-01

    Most epithelial cells sort glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface. The “raft” hypothesis, based on data mainly obtained in the prototype cell line MDCK, postulates that apical sorting depends on the incorporation of apical proteins into cholesterol/glycosphingolipid (GSL) rafts, rich in the cholesterol binding protein caveolin/VIP21, in the Golgi apparatus. Fischer rat thyroid (FRT) cells constitute an ideal model to test this hypothesis, since they missort both endogenous and transfected GPI- anchored proteins to the basolateral plasma membrane and fail to incorporate them into cholesterol/glycosphingolipid clusters. Because FRT cells lack caveolin, a major component of the caveolar coat that has been proposed to have a role in apical sorting of GPI- anchored proteins (Zurzolo, C., W. Van't Hoff, G. van Meer, and E. Rodriguez-Boulan. 1994. EMBO [Eur. Mol. Biol. Organ.] J. 13:42–53.), we carried out experiments to determine whether the lack of caveolin accounted for the sorting/clustering defect of GPI- anchored proteins. We report here that FRT cells lack morphological caveolae, but, upon stable transfection of the caveolin1 gene (cav1), form typical flask-shaped caveolae. However, cav1 expression did not redistribute GPI-anchored proteins to the apical surface, nor promote their inclusion into cholesterol/GSL rafts. Our results demonstrate that the absence of caveolin1 and morphologically identifiable caveolae cannot explain the inability of FRT cells to sort GPI-anchored proteins to the apical domain. Thus, FRT cells may lack additional factors required for apical sorting or for the clustering with GSLs of GPI-anchored proteins, or express factors that inhibit these events. Alternatively, cav1 and caveolae may not be directly involved in these processes. PMID:9456321

  4. Eosinophilic Esophagitis: Relevance of Mast Cell Infiltration.

    PubMed

    Strasser, Daniel S; Seger, Shanon; Bussmann, Christian; Pierlot, Gabin M; Groenen, Peter M A; Stalder, Anna K; Straumann, Alex

    2018-05-17

    Eosinophilic esophagitis (EoE) is a chronic-inflammatory disease characterized clinically by symptoms of esophageal dysfunction and histopathologically by a prominent eosinophilic inflammation. Despite eosinophils having histologically a pre-dominant position, their role in the immunopathogenesis of the disease is still questionable. Several other inflammatory cells are involved and may play a critical role as well. The purpose of this study was to characterize the mast cell infiltration, and to correlate it with clinical state of EoE. Using immunohistochemistry and quantitative morphometry, we extensively investigated eosinophils and mast cells in esophageal biopsies from patients with active EoE and from patients with EoE in remission, and compared the findings with healthy individuals. In EoE, epithelium and lamina propria were similarly infiltrated with eosinophils. In contrast, mast cells infiltration was limited to the epithelium, displaying a localized immune response. Interestingly, whereas epithelial mast cells and eosinophils were high in active EoE, some patients in remission e.g. normalized epithelial eosinophils, showed remaining high numbers of mast cells. Patient clustering supported 2 groups of patients in clinical remission, differentiating based on presence or absence of epithelial mast cells. Active EoE is characterized - in addition to the well-known tissue eosinophilia by a marked epithelium-restricted mast cell infiltration. Of interest, in a subgroup of patients, mast cell infiltration persisted despite clinical remission. To elucidate the clinical consequence of persistent epithelial mast cells infiltration further studies are required following patients in clinical remission longitudinally. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Analysis of Cd44-Containing Lipid Rafts

    PubMed Central

    Oliferenko, Snezhana; Paiha, Karin; Harder, Thomas; Gerke, Volker; Schwärzler, Christoph; Schwarz, Heinz; Beug, Hartmut; Günthert, Ursula; Huber, Lukas A.

    1999-01-01

    CD44, the major cell surface receptor for hyaluronic acid (HA), was shown to localize to detergent-resistant cholesterol-rich microdomains, called lipid rafts, in fibroblasts and blood cells. Here, we have investigated the molecular environment of CD44 within the plane of the basolateral membrane of polarized mammary epithelial cells. We show that CD44 partitions into lipid rafts that contain annexin II at their cytoplasmic face. Both CD44 and annexin II were released from these lipid rafts by sequestration of plasma membrane cholesterol. Partition of annexin II and CD44 to the same type of lipid rafts was demonstrated by cross-linking experiments in living cells. First, when CD44 was clustered at the cell surface by anti-CD44 antibodies, annexin II was recruited into the cytoplasmic leaflet of CD44 clusters. Second, the formation of intracellular, submembranous annexin II–p11 aggregates caused by expression of a trans-dominant mutant of annexin II resulted in coclustering of CD44. Moreover, a frequent redirection of actin bundles to these clusters was observed. These basolateral CD44/annexin II–lipid raft complexes were stabilized by addition of GTPγS or phalloidin in a semipermeabilized and cholesterol-depleted cell system. The low lateral mobility of CD44 in the plasma membrane, as assessed with fluorescent recovery after photobleaching (FRAP), was dependent on the presence of plasma membrane cholesterol and an intact actin cytoskeleton. Disruption of the actin cytoskeleton dramatically increased the fraction of CD44 which could be recovered from the light detergent-insoluble membrane fraction. Taken together, our data indicate that in mammary epithelial cells the vast majority of CD44 interacts with annexin II in lipid rafts in a cholesterol-dependent manner. These CD44-containing lipid microdomains interact with the underlying actin cytoskeleton. PMID:10459018

  6. Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598.

    PubMed

    Koshelnick, Y; Ehart, M; Hufnagl, P; Heinrich, P C; Binder, B R

    1997-11-07

    The urokinase-type plasminogen activator (uPA) binds to cells via a specific receptor attached to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Despite the lack of a transmembrane domain, the urokinase receptor (uPAR) is capable of transducing extracellular signals affecting growth, migration, and adhesion. Several Tyr kinases of the src family as well as beta1, beta2, and beta3 integrins were found to be associated with the uPAR. We found that in the human kidney epithelial line TCL-598, also components of the JAK1/STAT1 signal transduction pathway including gp130, are associated with uPAR as revealed by coimmunoprecipitation and are co-localized in caveolae. Upon clustering of uPA.uPAR complex by a monoclonal antibody, JAK1 associates with uPAR, which in turn leads to STAT1 phosphorylation, dimerization, specific binding to DNA, and gene activation. To prove the dependence of STAT1 activation on the uPAR, TCL-598 cells were treated with sense and antisense uPAR oligonucleotides. In antisense-treated cells in which uPAR expression was reduced to less then one third, activation of STAT1 by the clustering antibody was abolished while STAT1 activation by interferon-gamma was unaffected. Therefore, in this cell line, uPA.uPAR also utilizes the JAK1/STAT1 pathway for signaling, and gp130 might be the transmembrane adapter for this signal transduction pathway.

  7. Developmental Decline in the MicroRNA 199a (miR-199a)/miR-214 Cluster in Human Fetal Lung Promotes Type II Cell Differentiation by Upregulating Key Transcription Factors.

    PubMed

    Mishra, Ritu; Benlhabib, Houda; Guo, Wei; Lerma Cervantes, Connie B; Mendelson, Carole R

    2018-06-01

    The major surfactant protein, SP-A (a product of the SFTPA gene), serves as a marker of type II pneumocyte differentiation and surfactant synthesis. SFTPA expression in cultured human fetal lung (HFL) epithelial cells is upregulated by hormones that increase cyclic AMP (cAMP) and activate TTF-1/NKX2.1 and NF-κB. To further define mechanisms for type II cell differentiation and induction of SP-A, we investigated roles of microRNAs (miRNAs). Using microarray to identify differentially expressed miRNAs in HFL epithelial cells during type II cell differentiation in culture, we observed that members of the miRNA 199a (miR-199a)/miR-214 cluster were significantly downregulated during differentiation. Validated and predicted targets of miR-199a-3p/miR-199a-5p and miR-214, which serve roles in type II cell differentiation (COX-2, NF-κB p50/p65, and CREB1), and the CREB1 target, C/EBPβ, were coordinately upregulated. Accordingly, overexpression of miR-199a-5p, miR-199a-3p, or miR-214 mimics in cultured HFL epithelial cells decreased COX-2, NF-κB p50/p65, CREB1, and C/EBPβ proteins, with an associated inhibition of SP-A expression. Interestingly, overexpression of the EMT factor, ZEB1, which declines during cAMP-induced type II cell differentiation, increased pri-miR-199a and reduced the expression of the targets NF-κB/p50 and COX-2. Collectively, these findings suggest that the developmental decline in miR-199a/miR-214 in HFL causes increased expression of critical targets that enhance type II cell differentiation and SP-A expression. Copyright © 2018 American Society for Microbiology.

  8. A taxonomy of epithelial human cancer and their metastases

    PubMed Central

    2009-01-01

    Background Microarray technology has allowed to molecularly characterize many different cancer sites. This technology has the potential to individualize therapy and to discover new drug targets. However, due to technological differences and issues in standardized sample collection no study has evaluated the molecular profile of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively investigated whether metastases resemble their tissue of origin or tissue of destination. Methods We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID functional enrichment analysis were used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to investigate prognostic significance of gene signatures. Results Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of colon and breast tumors correlated with clinico-pathological characteristics. Moreover, a signature was developed based on our unsupervised clustering of breast tumors and this was predictive for disease-specific survival in three independent studies. Next, the metastases from ovarian, breast, lung and vulva cluster with their tissue of origin while metastases from colon showed a bimodal distribution. A significant part clusters with tissue of origin while the remaining tumors cluster with the tissue of destination. Conclusion Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues. This may have a significant impact on the classification of many cancer sites and may guide pathologists, both in research and daily practice. Moreover, these results based on unsupervised analysis yielded a signature predictive of clinical outcome in breast cancer. Additionally, we hypothesize that metastases from gastrointestinal origin either remember their tissue of origin or adapt to the tissue of destination. More specifically, colon metastases in the liver show strong evidence for such a bimodal tissue specific profile. PMID:20017941

  9. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells.

    PubMed

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe; Zurzolo, Chiara

    2017-12-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. © 2017 The Author(s).

  10. Tubular Epithelial NF-κB Activity Regulates Ischemic AKI

    PubMed Central

    Vigolo, Emilia; Hinze, Christian; Park, Joon-Keun; Roël, Giulietta; Balogh, András; Choi, Mira; Wübken, Anne; Cording, Jimmi; Blasig, Ingolf E.; Luft, Friedrich C.; Scheidereit, Claus; Schmidt-Ott, Kai M.; Schmidt-Ullrich, Ruth; Müller, Dominik N.

    2016-01-01

    NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type–specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)–induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2–3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB–dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response. PMID:26823548

  11. Aberrant c-erbB2 expression in cell clusters overlying focally disrupted breast myoepithelial cell layers: a trigger or sign for emergence of more aggressive cell clones?

    PubMed Central

    Zhang, Xichen; Hashemi, Shahreyar Shar; Yousefi, Morvarid; Ni, Jinsong; Wang, Qiuyue; Gao, Ling; Gong, Pengtao; Gao, Chunling; Sheng, Joy; Mason, Jeffrey; Man, Yan-gao

    2008-01-01

    Our recent studies revealed that cell clusters overlying focal myoepithelial cell layer disruption (FMCLD) had a significantly higher frequency of genetic instabilities and expression of invasion-related genes than their adjacent counterparts within the same duct. Our current study attempted to assess whether these cell clusters would also have elevated c-erbB2 expression. Human breast tumors (n=50) with a high frequency of FMCLD were analyzed with double immunohistochemistry, real-time RT-PCR, and chromogenic in situ hybridization for c-erbB2 protein and gene expression. Of 448 FMCLD detected, 404 (90.2%) were associated with cell clusters that had intense c-erbB2 immunoreactivities primarily in their cytoplasm, in contrast to their adjacent counterparts within the same duct, which had no or barely detectable c-erbB2 expression. These c-erbB2 positive cells were arranged as tongue-like projections, “puncturing” into the stroma, and about 20% of them were in direct continuity with tube-like structures that resembled blood vessels. Aberrant c-erbB2 expression was also seen in clusters of architecturally normal-appearing ducts that had distinct cytological abnormalities in both ME and epithelial cells, whereas not in their clear-cut normal counterparts. Molecular assays detected markedly higher c-erbB2 mRNA and gene amplification in cell clusters associated with FMCLD than in those associated with non-disrupted ME cell layers. Our findings suggest that cell clusters overlying FMCLD may represent the precursors of pending invasive lesions, and that aberrant cerbB2 expression may trigger or signify the emergence of biologically more aggressive cell clones. PMID:18726004

  12. Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters.

    PubMed

    Beamish, Christine A; Strutt, Brenda J; Arany, Edith J; Hill, David J

    2016-04-18

    Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7, P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP(+/+) mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture, but remaining HPAP(+) cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP(+)Ck19(+) cells had derived from insulin-positive, glucose-transporter-2-low (Ins(+)Glut2(LO)) cells, representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of <5 β-cells. These insulin(+)Glut2(LO) cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin(+)Glut2(+) cells at P7, were retained into adulthood, and a subset differentiated into endocrine, ductal, and neural lineages, illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins(+)Glut2(LO) cells may represent a resident population of cells capable of forming new, functional β-cells, and which may be potentially exploited for regenerative therapies in the future.

  13. Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters

    PubMed Central

    Beamish, Christine A.; Strutt, Brenda J.; Arany, Edith J.; Hill, David J.

    2016-01-01

    ABSTRACT Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7, P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP+/+ mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture, but remaining HPAP+ cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP+Ck19+ cells had derived from insulin-positive, glucose-transporter-2-low (Ins+Glut2LO) cells, representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of <5 β-cells. These insulin+Glut2LO cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin+Glut2+ cells at P7, were retained into adulthood, and a subset differentiated into endocrine, ductal, and neural lineages, illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins+Glut2LO cells may represent a resident population of cells capable of forming new, functional β-cells, and which may be potentially exploited for regenerative therapies in the future. PMID:27010375

  14. Correlation of mRNA and protein levels: Cell type-specific gene expression of cluster designation antigens in the prostate

    PubMed Central

    Pascal, Laura E; True, Lawrence D; Campbell, David S; Deutsch, Eric W; Risk, Michael; Coleman, Ilsa M; Eichner, Lillian J; Nelson, Peter S; Liu, Alvin Y

    2008-01-01

    Background: Expression levels of mRNA and protein by cell types exhibit a range of correlations for different genes. In this study, we compared levels of mRNA abundance for several cluster designation (CD) genes determined by gene arrays using magnetic sorted and laser-capture microdissected human prostate cells with levels of expression of the respective CD proteins determined by immunohistochemical staining in the major cell types of the prostate – basal epithelial, luminal epithelial, stromal fibromuscular, and endothelial – and for prostate precursor/stem cells and prostate carcinoma cells. Immunohistochemical stains of prostate tissues from more than 50 patients were scored for informative CD antigen expression and compared with cell-type specific transcriptomes. Results: Concordance between gene and protein expression findings based on 'present' vs. 'absent' calls ranged from 46 to 68%. Correlation of expression levels was poor to moderate (Pearson correlations ranged from 0 to 0.63). Divergence between the two data types was most frequently seen for genes whose array signals exceeded background (> 50) but lacked immunoreactivity by immunostaining. This could be due to multiple factors, e.g. low levels of protein expression, technological sensitivities, sample processing, probe set definition or anatomical origin of tissue and actual biological differences between transcript and protein abundance. Conclusion: Agreement between these two very different methodologies has great implications for their respective use in both molecular studies and clinical trials employing molecular biomarkers. PMID:18501003

  15. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells.

    PubMed

    Kist, Ralf; Watson, Michelle; Crosier, Moira; Robinson, Max; Fuchs, Jennifer; Reichelt, Julia; Peters, Heiko

    2014-10-01

    In mammals, taste buds develop in different regions of the oral cavity. Small epithelial protrusions form fungiform papillae on the ectoderm-derived dorsum of the tongue and contain one or few taste buds, while taste buds in the soft palate develop without distinct papilla structures. In contrast, the endoderm-derived circumvallate and foliate papillae located at the back of the tongue contain a large number of taste buds. These taste buds cluster in deep epithelial trenches, which are generated by intercalating a period of epithelial growth between initial placode formation and conversion of epithelial cells into sensory cells. How epithelial trench formation is genetically regulated during development is largely unknown. Here we show that Pax9 acts upstream of Pax1 and Sox9 in the expanding taste progenitor field of the mouse circumvallate papilla. While a reduced number of taste buds develop in a growth-retarded circumvallate papilla of Pax1 mutant mice, its development arrests completely in Pax9-deficient mice. In addition, the Pax9 mutant circumvallate papilla trenches lack expression of K8 and Prox1 in the taste bud progenitor cells, and gradually differentiate into an epidermal-like epithelium. We also demonstrate that taste placodes of the soft palate develop through a Pax9-dependent induction. Unexpectedly, Pax9 is dispensable for patterning, morphogenesis and maintenance of taste buds that develop in ectoderm-derived fungiform papillae. Collectively, our data reveal an endoderm-specific developmental program for the formation of taste buds and their associated papilla structures. In this pathway, Pax9 is essential to generate a pool of taste bud progenitors and to maintain their competence towards prosensory cell fate induction.

  16. Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges.

    PubMed

    Servin, Alain L

    2014-10-01

    The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Pathogenesis of Human Diffusely Adhering Escherichia coli Expressing Afa/Dr Adhesins (Afa/Dr DAEC): Current Insights and Future Challenges

    PubMed Central

    2014-01-01

    SUMMARY The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as “silent pathogens” with the capacity to emerge as “pathobionts” for the development of inflammatory bowel disease and intestinal carcinogenesis. PMID:25278576

  18. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells.

    PubMed

    Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund

    2017-05-31

    Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.

  19. Efficient genome editing of differentiated renal epithelial cells.

    PubMed

    Hofherr, Alexis; Busch, Tilman; Huber, Nora; Nold, Andreas; Bohn, Albert; Viau, Amandine; Bienaimé, Frank; Kuehn, E Wolfgang; Arnold, Sebastian J; Köttgen, Michael

    2017-02-01

    Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.

  20. Host Cell Contact-Induced Transcription of the Type IV Fimbria Gene Cluster of Actinobacillus pleuropneumoniae

    PubMed Central

    Boekema, Bouke K. H. L.; Van Putten, Jos P. M.; Stockhofe-Zurwieden, Norbert; Smith, Hilde E.

    2004-01-01

    Type IV pili (Tfp) of gram-negative species share many characteristics, including a common architecture and conserved biogenesis pathway. Much less is known about the regulation of Tfp expression in response to changing environmental conditions. We investigated the diversity of Tfp regulatory systems by searching for the molecular basis of the reported variable expression of the Tfp gene cluster of the pathogen Actinobacillus pleuropneumoniae. Despite the presence of an intact Tfp gene cluster consisting of four genes, apfABCD, no Tfp were formed under standard growth conditions. Sequence analysis of the predicted major subunit protein ApfA showed an atypical alanine residue at position −1 from the prepilin peptidase cleavage site in 42 strains. This alanine deviates from the consensus glycine at this position in Tfp from other species. Yet, cloning of the apfABCD genes under a constitutive promoter in A. pleuropneumoniae resulted in pilin and Tfp assembly. Tfp promoter-luxAB reporter gene fusions demonstrated that the Tfp promoter was intact but tightly regulated. Promoter activity varied with bacterial growth phase and was detected only when bacteria were grown in chemically defined medium. Infection experiments with cultured epithelial cells demonstrated that Tfp promoter activity was upregulated upon adherence of the pathogen to primary cultures of lung epithelial cells. Nonadherent bacteria in the culture supernatant exhibited virtually no promoter activity. A similar upregulation of Tfp promoter activity was observed in vivo during experimental infection of pigs. The host cell contact-induced and in vivo-upregulated Tfp promoter activity in A. pleuropneumoniae adds a new dimension to the diversity of Tfp regulation. PMID:14742510

  1. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface

    PubMed Central

    Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin-α3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin-α3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin-α3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin-α3 failed to do so, suggesting that integrin-α3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin-α3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin-α3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and integrin-β1 via interaction with β1,6-branched N-glycans on RPE cells and hypothesize that Gal-3 acts as a positive regulator for CD147/integrin-β1 clustering and therefore modifies RPE cell behavior contributing to the pathogenesis of PVR. Further investigations at this pathway may aid in the development of specific therapies for PVR. PMID:23922889

  2. EphA2 Drives the Segregation of Ras-Transformed Epithelial Cells from Normal Neighbors.

    PubMed

    Porazinski, Sean; de Navascués, Joaquín; Yako, Yuta; Hill, William; Jones, Matthew Robert; Maddison, Robert; Fujita, Yasuyuki; Hogan, Catherine

    2016-12-05

    In epithelial tissues, cells expressing oncogenic Ras (hereafter RasV12 cells) are detected by normal neighbors and as a result are often extruded from the tissue [1-6]. RasV12 cells are eliminated apically, suggesting that extrusion may be a tumor-suppressive process. Extrusion depends on E-cadherin-based cell-cell adhesions and signaling to the actin-myosin cytoskeleton [2, 6]. However, the signals underlying detection of the RasV12 cell and triggering extrusion are poorly understood. Here we identify differential EphA2 signaling as the mechanism by which RasV12 cells are detected in epithelial cell sheets. Cell-cell interactions between normal cells and RasV12 cells trigger ephrin-A-EphA2 signaling, which induces a cell repulsion response in RasV12 cells. Concomitantly, RasV12 cell contractility increases in an EphA2-dependent manner. Together, these responses drive the separation of RasV12 cells from normal cells. In the absence of ephrin-A-EphA2 signals, RasV12 cells integrate with normal cells and adopt a pro-invasive morphology. We also show that Drosophila Eph (DEph) is detected in segregating clones of RasV12 cells and is functionally required to drive segregation of RasV12 cells in vivo, suggesting that our in vitro findings are conserved in evolution. We propose that expression of RasV12 in single or small clusters of cells within a healthy epithelium creates ectopic EphA2 boundaries, which drive the segregation and elimination of the transformed cell from the tissue. Thus, deregulation of Eph/ephrin would allow RasV12 cells to go undetected and expand within an epithelium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer.

    PubMed

    Robertson, A Gordon; Kim, Jaegil; Al-Ahmadie, Hikmat; Bellmunt, Joaquim; Guo, Guangwu; Cherniack, Andrew D; Hinoue, Toshinori; Laird, Peter W; Hoadley, Katherine A; Akbani, Rehan; Castro, Mauro A A; Gibb, Ewan A; Kanchi, Rupa S; Gordenin, Dmitry A; Shukla, Sachet A; Sanchez-Vega, Francisco; Hansel, Donna E; Czerniak, Bogdan A; Reuter, Victor E; Su, Xiaoping; de Sa Carvalho, Benilton; Chagas, Vinicius S; Mungall, Karen L; Sadeghi, Sara; Pedamallu, Chandra Sekhar; Lu, Yiling; Klimczak, Leszek J; Zhang, Jiexin; Choo, Caleb; Ojesina, Akinyemi I; Bullman, Susan; Leraas, Kristen M; Lichtenberg, Tara M; Wu, Catherine J; Schultz, Nicholaus; Getz, Gad; Meyerson, Matthew; Mills, Gordon B; McConkey, David J; Weinstein, John N; Kwiatkowski, David J; Lerner, Seth P

    2017-10-19

    We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Microarray identifies ADAM family members as key responders to TGF-beta1 in alveolar epithelial cells.

    PubMed

    Keating, Dominic T; Sadlier, Denise M; Patricelli, Andrea; Smith, Sinead M; Walls, Dermot; Egan, Jim J; Doran, Peter P

    2006-09-01

    The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-beta1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-beta1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-beta1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-beta1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  5. miR-17-92 Cluster Promotes Cholangiocarcinoma Growth

    PubMed Central

    Zhu, Hanqing; Han, Chang; Lu, Dongdong; Wu, Tong

    2015-01-01

    miR-17-92 is an oncogenic miRNA cluster implicated in the development of several cancers; however, it remains unknown whether the miR-17-92 cluster is able to regulate cholangiocarcinogenesis. This study was designed to investigate the biological functions and molecular mechanisms of the miR-17-92 cluster in cholangiocarcinoma. In situ hybridization and quantitative RT-PCR analysis showed that the miR-17-92 cluster is highly expressed in human cholangiocarcinoma cells compared with the nonneoplastic biliary epithelial cells. Forced overexpression of the miR-17-92 cluster or its members, miR-92a and miR-19a, in cultured human cholangiocarcinoma cells enhanced tumor cell proliferation, colony formation, and invasiveness, in vitro. Overexpression of the miR-17-92 cluster or miR-92a also enhanced cholangiocarcinoma growth in vivo in hairless outbred mice with severe combined immunodeficiency (SHO-PrkdcscidHrhr). The tumor-suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), was identified as a bona fide target of both miR-92a and miR-19a in cholangiocarcinoma cells via sequence prediction, 3′ untranslated region luciferase activity assay, and Western blot analysis. Accordingly, overexpression of the PTEN open reading frame protein (devoid of 3′ untranslated region) prevented miR-92a– or miR-19a–induced cholangiocarcinoma cell growth. Microarray analysis revealed additional targets of the miR-17-92 cluster in human cholangiocarcinoma cells, including APAF-1 and PRDM2. Moreover, we observed that the expression of the miR-17-92 cluster is regulated by IL-6/Stat3, a key oncogenic signaling pathway pivotal in cholangiocarcinogenesis. Taken together, our findings disclose a novel IL-6/Stat3–miR-17-92 cluster–PTEN signaling axis that is crucial for cholangiocarcinogenesis and tumor progression. PMID:25239565

  6. The expression of native and cultured human retinal pigment epithelial cells grown in different culture conditions.

    PubMed

    Tian, J; Ishibashi, K; Honda, S; Boylan, S A; Hjelmeland, L M; Handa, J T

    2005-11-01

    To determine the transcriptional proximity of retinal pigment epithelium (RPE) cells grown under different culture conditions and native RPE. ARPE-19 cells were grown under five conditions in 10% CO(2): "subconfluent" in DMEM/F12+10% FBS, "confluent" in serum and serum withdrawn, and "differentiated" for 2.5 months in serum and serum withdrawn medium. Native RPE was laser microdissected. Total RNA was extracted, reverse transcribed, and radiolabelled probes were hybridised to an array containing 5,353 genes. Arrays were evaluated by hierarchical cluster analysis and significance analysis of microarrays. 78% of genes were expressed by native RPE while 45.3--47.7% were expressed by ARPE-19 cells, depending on culture condition. While the most abundant genes were expressed by native and cultured cells, significant differences in low abundance genes were seen. Hierarchical cluster analysis showed that confluent and differentiated, serum withdrawn cultures clustered closest to native RPE, and that serum segregated cultured cells from native RPE. The number of differentially expressed genes and their function, and profile of expressed and unexpressed genes, demonstrate differences between native and cultured cells. While ARPE-19 cells have significant value for studying RPE behaviour, investigators must be aware of how culture conditions can influence the mRNA phenotype of the cell.

  7. Gap junctions favor normal rat kidney epithelial cell adaptation to chronic hypertonicity.

    PubMed

    Desforges, Bénédicte; Savarin, Philippe; Bounedjah, Ouissame; Delga, Stéphanie; Hamon, Loïc; Curmi, Patrick A; Pastré, David

    2011-09-01

    Upon hypertonic stress most often resulting from high salinity, cells need to balance their osmotic pressure by accumulating neutral osmolytes called compatible osmolytes like betaine, myo-inositol, and taurine. However, the massive uptake of compatible osmolytes is a slow process compared with other defense mechanisms related to oxidative or heat stress. This is especially critical for cycling cells as they have to double their volume while keeping a hospitable intracellular environment for the molecular machineries. Here we propose that clustered cells can accelerate the supply of compatible osmolytes to cycling cells via the transit, mediated by gap junctions, of compatible osmolytes from arrested to cycling cells. Both experimental results in epithelial normal rat kidney cells and theoretical estimations show that gap junctions indeed play a key role in cell adaptation to chronic hypertonicity. These results can provide basis for a better understanding of the functions of gap junctions in osmoregulation not only for the kidney but also for many other epithelia. In addition to this, we suggest that cancer cells that do not communicate via gap junctions poorly cope with hypertonic environments thus explaining the rare occurrence of cancer coming from the kidney medulla.

  8. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.

    PubMed

    Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E

    2007-01-01

    The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.

  9. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells

    PubMed Central

    Bechard, Matthew E.; Bankaitis, Eric D.; Hipkens, Susan B.; Ustione, Alessandro; Piston, David W.; Yang, Yu-Ping; Magnuson, Mark A.; Wright, Christopher V.E.

    2016-01-01

    The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9+ bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3TA.LO cell population, defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9+ Neurog3TA.LO progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3HI cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9+ Neurog3TA.LO progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9+ Neurog3TA.LO endocrine-biased progenitors feed production of Neurog3HI endocrine-committed cells during pancreas organogenesis. PMID:27585590

  10. Differential Gene Expression in Normal Human Mammary Epithelial Cells Treated with Malathion Monitored by DNA Microarrays

    PubMed Central

    Gwinn, Maureen R.; Whipkey, Diana L.; Tennant, Lora B.; Weston, Ainsley

    2005-01-01

    Organophosphate pesticides are a major source of occupational exposure in the United States. Moreover, malathion has been sprayed over major urban populations in an effort to control mosquitoes carrying West Nile virus. Previous research, reviewed by the U.S. Environmental Protection Agency, on the genotoxicity and carcinogenicity of malathion has been inconclusive, although malathion is a known endocrine disruptor. Here, interindividual variations and commonality of gene expression signatures have been studied in normal human mammary epithelial cells from four women undergoing reduction mammoplasty. The cell strains were obtained from the discarded tissues through the Cooperative Human Tissue Network (sponsors: National Cancer Institute and National Disease Research Interchange). Interindividual variation of gene expression patterns in response to malathion was observed in various clustering patterns for the four cell strains. Further clustering identified three genes with increased expression after treatment in all four cell strains. These genes were two aldo–keto reductases (AKR1C1 and AKR1C2) and an estrogen-responsive gene (EBBP). Decreased expression of six RNA species was seen at various time points in all cell strains analyzed: plasminogen activator (PLAT), centromere protein F (CPF), replication factor C (RFC3), thymidylate synthetase (TYMS), a putative mitotic checkpoint kinase (BUB1), and a gene of unknown function (GenBank accession no. AI859865). Expression changes in all these genes, detected by DNA microarrays, have been verified by real-time polymerase chain reaction. Differential changes in expression of these genes may yield biomarkers that provide insight into interindividual variation in malathion toxicity. PMID:16079077

  11. Generation of urine-derived induced pluripotent stem cells from a patient with phenylketonuria

    PubMed Central

    Qi, Zijuan; Cui, Yazhou; Shi, Liang; Luan, Jing; Zhou, Xiaoyan; Han, Jinxiang

    2018-01-01

    Summary The aim of the study was to establish an induced pluripotent stem cell line from urine-derived cells (UiPSCs) from a patient with phenylketonuria (PKU) in order to provide a useful research tool with which to examine the pathology of this rare genetic metabolic disease. Urine-derived epithelial cells (UCs) from a 15-year-old male patient with PKU were isolated and reprogrammed with integration-free episomal vectors carrying an OCT4, SOX2, KLF4, and miR-302-367 cluster. PKU-UiPSCs were verified as correct using alkaline phosphatase staining. Pluripotency markers were detected with real-time PCR and flow cytometry. Promoter methylation in two pluripotent genes, NANOG and OCT4, was analyzed using bisulphite sequencing. An embryoid body (EB) formation assay was also performed. An induced pluripotent stem cell line (iPSC) was generated from epithelial cells in urine from a patient with PKU. This cell line had increased expression of stem cell biomarkers, it efficiently formed EBs, it stained positive for alkaline phosphatase (ALP), and it had a marked decrease in promoter methylation in the NANOG and OCT4 genes. The PKU-UiPSCs created here had typical characteristics and are suitable for further differentiation.

  12. [The emerging technology of tissue engineering : Focus on stem cell niche].

    PubMed

    Schlötzer-Schrehardt, U; Freudenberg, U; Kruse, F E

    2017-04-01

    Limbal stem cells reside in a highly specialized complex microenvironment that is known as the stem cell niche, an anatomically protected region at the bottom of the Palisades of Vogt, where the stem cells are located and where their quiescence, proliferation and differentiation are maintained in balance. Besides the epithelial stem and progenitor cell clusters, the limbal niche comprises several types of supporting niche cells and a specific extracellular matrix mediating biochemical and biophysical signals. Stem cell-based tissue engineering aims to mimic the native stem cell niche and to present appropriate microenvironmental cues in a controlled and reproducible fashion in order to maintain stem cell function within the graft. Current therapeutic approaches for ex vivo expansion of limbal stem cells only take advantage of surrogate niches. However, new insights into the molecular composition of the limbal niche and innovative biosynthetic scaffolds have stimulated novel strategies for niche-driven stem cell cultivation. Promising experimental approaches include collagen-based organotypic coculture systems of limbal epithelial stem cells with their niche cells and biomimetic hydrogel platforms prefunctionalized with appropriate biomolecular and biophysical signals. Future translation of these novel regenerative strategies into clinical application is expected to improve long-term outcomes of limbal stem cell transplantation for ocular surface reconstruction.

  13. Mouse Hair Cycle Expression Dynamics Modeled as Coupled Mesenchymal and Epithelial Oscillators

    PubMed Central

    Tasseff, Ryan; Bheda-Malge, Anjali; DiColandrea, Teresa; Bascom, Charles C.; Isfort, Robert J.; Gelinas, Richard

    2014-01-01

    The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its regulation would shed light on many other complex systems relevant to biological and medical research. Currently, a systematic characterization of gene expression and summarization within the context of a mathematical model is not yet available. Given the cyclic nature of the hair cycle, we felt it was important to consider a subset of genes with periodic expression. To this end, we combined several mathematical approaches with high-throughput, whole mouse skin, mRNA expression data to characterize aspects of the dynamics and the possible cell populations corresponding to potentially periodic patterns. In particular two gene clusters, demonstrating properties of out-of-phase synchronized expression, were identified. A mean field, phase coupled oscillator model was shown to quantitatively recapitulate the synchronization observed in the data. Furthermore, we found only one configuration of positive-negative coupling to be dynamically stable, which provided insight on general features of the regulation. Subsequent bifurcation analysis was able to identify and describe alternate states based on perturbation of system parameters. A 2-population mixture model and cell type enrichment was used to associate the two gene clusters to features of background mesenchymal populations and rapidly expanding follicular epithelial cells. Distinct timing and localization of expression was also shown by RNA and protein imaging for representative genes. Taken together, the evidence suggests that synchronization between expanding epithelial and background mesenchymal cells may be maintained, in part, by inhibitory regulation, and potential mediators of this regulation were identified. Furthermore, the model suggests that impairing this negative regulation will drive a bifurcation which may represent transition into a pathological state such as hair miniaturization. PMID:25375120

  14. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    PubMed

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Identification of a novel putative signaling center, the tertiary enamel knot in the postnatal mouse molar tooth.

    PubMed

    Luukko, Keijo; Løes, Sigbjørn; Furmanek, Tomasz; Fjeld, Karianne; Kvinnsland, Inger Hals; Kettunen, Paivi

    2003-03-01

    The final shape of the molar tooth crown is thought to be regulated by the transient epithelial signaling centers in the cusp tips, the secondary enamel knots (SEKs), which are believed to disappear after initiation of the cusp growth. We investigated the developmental fate of the signaling center using the recently characterized Slit1 enamel knot marker as a lineage tracer during morphogenesis of the first molar and crown calcification in the mouse. In situ hybridization analysis showed that after Fgf4 downregulation in the SEK, Slit1 expression persisted in the deep compartment of the knot. After the histological disappearance of the SEK, Slit1 expression was evident in a novel epithelial cell cluster, which we call the tertiary enamel knot (TEK) next to the enamel-free area (EFA)-epithelium at the cusp tips. In embryonic tooth, Slit1 was also observed in the stratum intermedium (SI) and stellate reticulum cells between the parallel SEKs correlating to the area where the inner enamel epithelium cells do not proliferate. After birth, the expression of Slit1 persisted in the SI cells of the transverse connecting lophs of the parallel cusps above the EFA-cells. These results demonstrate the presence of a novel putative signaling center, the TEK, in the calcifying tooth. Moreover, our results suggest that Slit1 signaling may be involved in the regulation of molar tooth shape by regulating epithelial cell proliferation and formation of EFA of the crown.

  16. Homeobox genes Msx-1 and Msx-2 are associated with induction and growth of skin appendages.

    PubMed

    Noveen, A; Jiang, T X; Ting-Berreth, S A; Chuong, C M

    1995-05-01

    The mechanism involved in the morphogenesis of skin appendages is a fundamental issue underlying the development and healing of skin. To identify molecules involved in the induction and growth of skin appendages, we studied the expression of two homeobox genes, Msx-1 and Msx-2, during embryonic chicken skin development. We found that i) both Msx-1 and Msx-2 are early markers of epithelial placodes for skin appendages; ii) both Msx-1 and Msx-2 are expressed in the growing feather bud epithelia but not in the interbud epithelia; iii) although mostly overlapping, there are differences between the expression of the two Msx genes, Msx-1 being expressed more toward the anterior whereas Msx-2 is expressed more toward the distal feather bud; iv) there is no body-position-specific expression pattern as was observed for members of the Hox A-D clusters; v) in the feather follicle, Msx-1 and 2 are expressed in the collar and barb ridge epithelia, both regions of continuous cell proliferation; vi) when feather-bud growth was inhibited by forskolin, an activator of adenylyl cyclase, the expression of both genes was reduced. These results showed that Msx genes are specifically expressed in epithelial domains destined to become skin appendages. Its function in skin-appendage morphogenesis may be twofold, first in making epithelial cells competent to become skin appendages and, second, in making epithelial cells maintain their potential for continuous growth.

  17. Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization.

    PubMed

    Foraida, Zahraa I; Kamaldinov, Tim; Nelson, Deirdre A; Larsen, Melinda; Castracane, James

    2017-10-15

    Development of electrospun nanofibers that mimic the structural, mechanical and biochemical properties of natural extracellular matrices (ECMs) is a promising approach for tissue regeneration. Electrospun fibers of synthetic polymers partially mimic the topography of the ECM, however, their high stiffness, poor hydrophilicity and lack of in vivo-like biochemical cues is not optimal for epithelial cell self-organization and function. In search of a biomimetic scaffold for salivary gland tissue regeneration, we investigated the potential of elastin, an ECM protein, to generate elastin hybrid nanofibers that have favorable physical and biochemical properties for regeneration of the salivary glands. Elastin was introduced to our previously developed poly-lactic-co-glycolic acid (PLGA) nanofiber scaffolds by two methods, blend electrospinning (EP-blend) and covalent conjugation (EP-covalent). Both methods for elastin incorporation into the nanofibers improved the wettability of the scaffolds while only blend electrospinning of elastin-PLGA nanofibers and not surface conjugation of elastin to PLGA fibers, conferred increased elasticity to the nanofibers measured by Young's modulus. After two days, only the blend electrospun nanofiber scaffolds facilitated epithelial cell self-organization into cell clusters, assessed with nuclear area and nearest neighbor distance measurements, leading to the apicobasal polarization of salivary gland epithelial cells after six days, which is vital for cell function. This study suggests that elastin electrospun nanofiber scaffolds have potential application in regenerative therapies for salivary glands and other epithelial organs. Regenerating the salivary glands by mimicking the extracellular matrix (ECM) is a promising approach for long term treatment of salivary gland damage. Despite their topographic similarity to the ECM, electrospun fibers of synthetic polymers lack the biochemical complexity, elasticity and hydrophilicity of the ECM. Elastin is an ECM protein abundant in the salivary glands and responsible for tissue elasticity. Although it's widely used for tissue regeneration of other organs, little is known about its utility in regenerating the salivary tissue. This study describes the use of elastin to improve the elasticity, hydrophilicity and biochemical complexity of synthetic nanofibers and its potential in directing in vivo-like organization of epithelial salivary cells which helps the design of efficient salivary gland regeneration scaffolds. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Gross, histological and ultrastructural morphology of the aglomerular kidney in the lined seahorse Hippocampus erectus.

    PubMed

    Fogelson, S B; Yanong, R P E; Kane, A; Teal, C N; Berzins, I K; Smith, S A; Brown, C; Camus, A

    2015-09-01

    Histologic evaluation of the renal system in the lined seahorse Hippocampus erectus reveals a cranial kidney with low to moderate cellularity, composed of a central dorsal aorta, endothelial lined capillary sinusoids, haematopoietic tissue, fine fibrovascular stroma, ganglia and no nephrons. In comparison, the caudal kidney is moderately to highly cellular with numerous highly convoluted epithelial lined tubules separated by interlacing haematopoietic tissue, no glomeruli, fine fibrovascular stroma, numerous capillary sinusoids, corpuscles of Stannius and clusters of endocrine cells adjacent to large calibre vessels. Ultrastructural evaluation of the renal tubules reveals minimal variability of the tubule epithelium throughout the length of the nephron and the majority of tubules are characterized by epithelial cells with few apical microvilli, elaborate basal membrane infolding, rare electron dense granules and abundant supporting collagenous matrix. © 2015 The Fisheries Society of the British Isles.

  19. Demonstration of intermediate cells during human prostate epithelial differentiation in situ and in vitro using triple-staining confocal scanning microscopy.

    PubMed

    van Leenders, G; Dijkman, H; Hulsbergen-van de Kaa, C; Ruiter, D; Schalken, J

    2000-08-01

    In human prostate epithelium, morphologically basal and luminal cells can be discriminated. The basal cell layer that putatively contains progenitor cells of the secretory epithelium is characterized by the expression of keratins (K) 5 and 14. Luminal cells represent the secretory compartment of the epithelium and express K8 and 18. We developed a technique for the simultaneous analysis of K5, 14, and 18 to identify intermediate cell stages in the prostate epithelium and to study the dynamic aspects of its differentiation in vitro. Nonmalignant prostate tissue and primary epithelial cultures were immunohistochemically characterized using triple staining with antibodies for K5, K14, and K18. Antibodies for K18 and K5 were conjugated directly with fluorochromes Alexa 488 and 546. K14 was visualized indirectly with streptavidin-Cy5. Keratin expression was analyzed by confocal scanning microscopy. The occurrence of exocrine and neuroendocrine differentiation in culture was determined via antibodies to prostate-specific antigen (PSA), chromogranin A, and serotonin. We found that basal cells expressed either K5(++)/14(++)/18+ or K5(++)/18+. The majority of luminal cells expressed K18(++), but colocalization of K5+/18(++) were recognized. Epithelial monolayer cultures predominantly revealed the basal cell phenotype K5(++)/14(++)/18+, whereas intermediate subpopulations expressing K5+/14+/18(++) and K5+/18(++) were also identified. On confluence, differentiation was induced as multicellular gland-like buds, and extensions became evident on top of the monolayer. These structures were composed of K18(++)- and K5+/18(+)-positive cell clusters surrounded by phenotypically basal cells. Few multicellular structures and cells in the monolayer showed exocrine differentiation (PSA+), but expression of chromogranin A and serotonin was absent. We conclude that simultaneous evaluation of keratin expression is useful for analyzing epithelial differentiation in the prostate. During this process, putative stem cells phenotypically resembling K5(++)/14(++)/18+ differentiate toward luminal cells (K18(++)) via intermediate cell stages, as identified by up-regulation of K18 and down-regulation of K5 and 14.

  20. Genetic analysis of fibroblast growth factor signaling in the Drosophila eye.

    PubMed

    Mukherjee, T; Choi, I; Banerjee, Utpal

    2012-01-01

    The development of eyes in Drosophila involves intricate epithelial reorganization events for accurate positioning of cells and proper formation and organization of ommatidial clusters. We demonstrate that Branchless (Bnl), the fibroblast growth factor ligand, regulates restructuring events in the eye disc primordium from as early as the emergence of clusters from a morphogenetic front to the cellular movements during pupal eye development. Breathless (Btl) functions as the fibroblast growth factor receptor to mediate Bnl signal, and together they regulate expression of DE-cadherin, Crumbs, and Actin. In addition, in the eye Bnl regulates the temporal onset and extent of retinal basal glial cell migration by activating Btl in the glia. We hypothesized that the Bnl functions in the eye are Hedgehog dependent and represent novel aspects of Bnl signaling not explored previously.

  1. Cultures of human liver cells in simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Yoffe, B.; Darlington, G. J.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N. R.; Khaoustov, V. I.

    1999-01-01

    We used microgravity-simulated bioreactors that create the unique environment of low shear force and high-mass transfer to establish long-term cultures of primary human liver cells (HLC). To assess the feasibility of establishing HLC cultures, human liver cells obtained either from cells dissociated by collagenase perfusion or minced tissues were cultured in rotating vessels. Formation of multidimensional tissue-like spheroids (up to 1.0 cm) comprised of hepatocytes and biliary epithelial cells that arranged as bile duct-like structures along newly formed vascular sprouts were observed. Electron microscopy revealed clusters of round hepatocytes and bile canaliculi with multiple microvilli and tight junctions. Scanning EM revealed rounded hepatocytes that were organized in tight clusters surrounded by a complex mesh of extracellular matrix. Also, we observed that co-culture of hepatocytes with endothelial cells stimulate albumin mRNA expression. In summary, a simulated microgravity environment is conducive for the establishment of long-term HLC cultures and allows the dissection of the mechanism of liver regeneration and cell-to-cell interactions that resembles in vivo conditions.

  2. Implementation of plaid model biclustering method on microarray of carcinoma and adenoma tumor gene expression data

    NASA Astrophysics Data System (ADS)

    Ardaneswari, Gianinna; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    A Tumor is an abnormal growth of cells that serves no purpose. Carcinoma is a tumor that grows from the top of the cell membrane and the organ adenoma is a benign tumor of the gland-like cells or epithelial tissue. In the field of molecular biology, the development of microarray technology is used in the data store of disease genetic expression. For each of microarray gene, an amount of information is stored for each trait or condition. In gene expression data clustering can be done with a bicluster algorithm, thats clustering method which not only the objects to be clustered, but also the properties or condition of the object. This research proposed Plaid Model Biclustering as one of biclustering method. In this study, we discuss the implementation of Plaid Model Biclustering Method on microarray of Carcinoma and Adenoma tumor gene expression data. From the experimental results, we found three biclusters are formed by Carcinoma gene expression data and four biclusters are formed by Adenoma gene expression data.

  3. Mutation in the peb1A Locus of Campylobacter jejuni Reduces Interactions with Epithelial Cells and Intestinal Colonization of Mice

    PubMed Central

    Pei, Zhiheng; Burucoa, Christophe; Grignon, Bernadette; Baqar, Shahida; Huang, Xiao-Zhe; Kopecko, Dennis J.; Bourgeois, A. L.; Fauchere, Jean-Louis; Blaser, Martin J.

    1998-01-01

    Campylobacter jejuni is one of the leading causes of bacterial diarrhea throughout the world. We previously found that PEB1 is a homolog of cluster 3 binding proteins of bacterial ABC transporters and that a C. jejuni adhesin, cell-binding factor 1 (CBF1), if not identical to, contains PEB1. A single protein migrating at approximately 27 to 28 kDa was recognized by anti-CBF1 and anti-PEB1. To determine the role that the operon encoding PEB1 plays in C. jejuni adherence, peb1A, the gene encoding PEB1, was disrupted in strain 81-176 by insertion of a kanamycin resistance gene through homologous recombination. Inactivation of this operon completely abolished expression of CBF1, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. In comparison to the wild-type strain, the mutant strain showed 50- to 100-fold less adherence to and 15-fold less invasion of epithelial cells in culture. Mouse challenge studies showed that the rate and duration of intestinal colonization by the mutant were significantly lower and shorter than with the wild-type strain. In summary, PEB1 is identical to a previously identified cell-binding factor, CBF1, in C. jejuni, and the peb1A locus plays an important role in epithelial cell interactions and in intestinal colonization in a mouse model. PMID:9488379

  4. TGF-β1-Induced Epithelial–Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells

    PubMed Central

    Johansson, Joel; Tabor, Vedrana; Wikell, Anna; Jalkanen, Sirpa; Fuxe, Jonas

    2015-01-01

    Breast cancer progression toward metastatic disease is linked to re-activation of epithelial–mesenchymal transition (EMT), a latent developmental process. Breast cancer cells undergoing EMT lose epithelial characteristics and gain the capacity to invade the surrounding tissue and migrate away from the primary tumor. However, less is known about the possible role of EMT in providing cancer cells with properties that allow them to traffic to distant sites. Given the fact that pro-metastatic cancer cells share a unique capacity with immune cells to traffic in-and-out of blood and lymphatic vessels we hypothesized that tumor cells undergoing EMT may acquire properties of immune cells. To study this, we performed gene-profiling analysis of mouse mammary EpRas tumor cells that had been allowed to adopt an EMT program after long-term treatment with TGF-β1 for 2 weeks. As expected, EMT cells acquired traits of mesenchymal cell differentiation and migration. However, in addition, we found another cluster of induced genes, which was specifically enriched in monocyte-derived macrophages, mast cells, and myeloid dendritic cells, but less in other types of immune cells. Further studies revealed that this monocyte/macrophage gene cluster was enriched in human breast cancer cell lines displaying an EMT or a Basal B profile, and in human breast tumors with EMT and undifferentiated (ER−/PR−) characteristics. The results identify an EMT-induced monocyte/macrophage gene cluster, which may play a role in breast cancer cell dissemination and metastasis. PMID:25674539

  5. Overexpression of miR-183/-96/-182 triggers neuronal cell fate in Human Retinal Pigment Epithelial (hRPE) cells in culture.

    PubMed

    Davari, Maliheh; Soheili, Zahra-Soheila; Samiei, Shahram; Sharifi, Zohreh; Pirmardan, Ehsan Ranaei

    2017-01-29

    miR-183 cluster, composed of miR-183/-96/-182 genes, is highly expressed in the adult retina, particularly in photoreceptors. It involves in development, maturation and normal function of neuroretina. Ectopic overexpression of miR-183/-96/-182 genes was performed to assess reprogramming of hRPE cells. They were amplified from genomic DNA and cloned independently or in tandem configuration into pAAV.MCS vector. hRPE cells were then transfected with the recombinant constructs. Real-Time PCR was performed to measure the expression levels of miR-183/-96/-182 and that of several retina-specific neuronal genes such as OTX2, NRL, PDC and DCT. The transfected cells also were immunocytochemically examined for retina-specific neuronal markers, including Rhodopsin, red opsin, CRX, Thy1, CD73, recoverin and PKCα, to determine the cellular fate of the transfected hRPE cells. Data showed that upon miR-183/-96/-182 overexpression in hRPE cultures, the expression of neuronal genes including OTX2, NRL, PDC and DCT was also upregulated. Moreover, miR-183 cluster-treated hRPE cells were immunoreactive for neuronal markers such as Rhodopsin, red opsin, CRX and Thy1. Both transcriptional and translational upregulation of neuronal genes in miR-183 cluster-treated hRPE cells suggests that in vitro overexpression of miR-183 cluster could trigger reprogramming of hRPE cells to retinal neuron fate. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC−/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275

  7. Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models.

    PubMed

    Booth, J Leland; Duggan, Elizabeth S; Patel, Vineet I; Langer, Marybeth; Wu, Wenxin; Braun, Armin; Coggeshall, K Mark; Metcalf, Jordan P

    2016-10-01

    The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores escape from the alveolus to regional lymph nodes, germinate and enter the circulatory system to cause disease. The roles of carrier cells and the effects of B. anthracis toxins in this process are unclear. We used a human lung organ culture model to measure spore uptake by antigen presenting cells (APC) and alveolar epithelial cells (AEC), spore partitioning between these cells, and the effects of B. anthracis lethal toxin and protective antigen. We repeated the study in a human A549 alveolar epithelial cell model. Most spores remained unassociated with cells, but the majority of cell-associated spores were in AEC, not in APC. Spore movement was not dependent on internalization, although the location of internalized spores changed in both cell types. Spores also internalized in a non-uniform pattern. Toxins affected neither transit of the spores nor the partitioning of spores into AEC and APC. Our results support a model of spore escape from the alveolus that involves spore clustering with transient passage through intact AEC. However, subsequent transport of spores by APC from the lung to the lymph nodes may occur. Published by Elsevier Masson SAS.

  8. Release of HIV-1 sequestered in the vesicles of oral and genital mucosal epithelial cells by epithelial-lymphocyte interaction

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina

    2017-01-01

    Oropharyngeal mucosal epithelia of fetuses/neonates/infants and the genital epithelia of adults play a critical role in HIV-1 mother-to-child transmission and sexual transmission of virus, respectively. To study the mechanisms of HIV-1 transmission through mucosal epithelium, we established polarized tonsil, cervical and foreskin epithelial cells. Analysis of HIV-1 transmission through epithelial cells showed that approximately 0.05% of initially inoculated virions transmigrated via epithelium. More than 90% of internalized virions were sequestered in the endosomes of epithelial cells, including multivesicular bodies (MVBs) and vacuoles. Intraepithelial HIV-1 remained infectious for 9 days without viral release. Release of sequestered intraepithelial HIV-1 was induced by the calcium ionophore ionomycin and by cytochalasin D, which increase intracellular calcium and disrupt the cortical actin of epithelial cells, respectively. Cocultivation of epithelial cells containing HIV-1 with activated peripheral blood mononuclear cells and CD4+ T lymphocytes led to the disruption of epithelial cortical actin and spread of virus from epithelial cells to lymphocytes. Treatment of epithelial cells with proinflammatory cytokines tumor necrosis factor-alpha and interferon gamma also induced reorganization of cortical actin and release of virus. Inhibition of MVB formation by small interfering RNA (siRNA)-mediated silencing of its critical protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) expression reduced viral sequestration in epithelial cells and its transmission from epithelial cells to lymphocytes by ~60–70%. Furthermore, inhibition of vacuole formation of epithelial cells by siRNA-inactivated rabankyrin-5 expression also significantly reduced HIV-1 sequestration in epithelial cells and spread of virus from epithelial cells to lymphocytes. Interaction of the intercellular adhesion molecule-1 of epithelial cells with the function-associated antigen-1 of lymphocytes was important for inducing the release of sequestered HIV-1 from epithelial cells and facilitating cell-to-cell spread of virus from epithelial cells to lymphocytes. This mechanism may serve as a pathway of HIV-1 mucosal transmission. PMID:28241053

  9. A point mutation in the [2Fe–2S] cluster binding region of the NAF-1 protein (H114C) dramatically hinders the cluster donor properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamir, Sagi; Eisenberg-Domovich, Yael; Conlan, Andrea R.

    2014-06-01

    NAF-1 has been shown to be related with human health and disease, is upregulated in epithelial breast cancer and suppression of its expression significantly suppresses tumor growth. It is shown that replacement of the single His ligand with Cys resulted in dramatic changes to the properties of its 2Fe-2S clusters without any global crystal structural changes. NAF-1 is an important [2Fe–2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression bymore » knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe–2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Å resolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe–2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Å resolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe–2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe–2S] cluster of NAF-1 in vivo.« less

  10. Dielectric spectroscopy platform to measure MCF10A epithelial cell aggregation as a model for spheroidal cell cluster analysis.

    PubMed

    Heileman, K L; Tabrizian, M

    2017-05-02

    3-Dimensional cell cultures are more representative of the native environment than traditional cell cultures on flat substrates. As a result, 3-dimensional cell cultures have emerged as a very valuable model environment to study tumorigenesis, organogenesis and tissue regeneration. Many of these models encompass the formation of cell aggregates, which mimic the architecture of tumor and organ tissue. Dielectric impedance spectroscopy is a non-invasive, label free and real time technique, overcoming the drawbacks of established techniques to monitor cell aggregates. Here we introduce a platform to monitor cell aggregation in a 3-dimensional extracellular matrix using dielectric spectroscopy. The MCF10A breast epithelial cell line serves as a model for cell aggregation. The platform maintains sterile conditions during the multi-day assay while allowing continuous dielectric spectroscopy measurements. The platform geometry optimizes dielectric measurements by concentrating cells within the electrode sensing region. The cells show a characteristic dielectric response to aggregation which corroborates with finite element analysis computer simulations. By fitting the experimental dielectric spectra to the Cole-Cole equation, we demonstrated that the dispersion intensity Δε and the characteristic frequency f c are related to cell aggregate growth. In addition, microscopy can be performed directly on the platform providing information about cell position, density and morphology. This platform could yield many applications for studying the electrophysiological activity of cell aggregates.

  11. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells

    PubMed Central

    Mandlik, Anjali; Swierczynski, Arlene; Das, Asis; Ton-That, Hung

    2010-01-01

    Summary Adherence to host tissues mediated by pili is pivotal in the establishment of infection by many bacterial pathogens. Corynebacterium diphtheriae assembles on its surface three distinct pilus structures. The function and the mechanism of how various pili mediate adherence, however, have remained poorly understood. Here we show that the SpaA-type pilus is sufficient for the specific adherence of corynebacteria to human pharyngeal epithelial cells. The deletion of the spaA gene, which encodes the major pilin forming the pilus shaft, abolishes pilus assembly but not adherence to pharyngeal cells. In contrast, adherence is greatly diminished when either minor pilin SpaB or SpaC is absent. Antibodies directed against either SpaB or SpaC block bacterial adherence. Consistent with a direct role of the minor pilins, latex beads coated with SpaB or SpaC protein bind specifically to pharyngeal cells. Therefore, tissue tropism of corynebacteria for pharyngeal cells is governed by specific minor pilins. Importantly, immunoelectron microscopy and immunofluorescence studies reveal clusters of minor pilins that are anchored to cell surface in the absence of a pilus shaft. Thus, the minor pilins may also be cell wall anchored in addition to their incorporation into pilus structures that could facilitate tight binding to host cells during bacterial infection. PMID:17376076

  12. Designing a multicolor long range nanoscopic ruler for the imaging of heterogeneous tumor cells

    NASA Astrophysics Data System (ADS)

    Chavva, Suhash Reddy; Viraka Nellore, Bhanu Priya; Pramanik, Avijit; Sinha, Sudarson Sekhar; Jones, Stacy; Ray, Paresh Chandra

    2016-07-01

    Tumor heterogeneity is one of the biggest challenges in cancer treatment and diagnosis. A multicolor optical ruler is essential to address the heterogeneous tumor cell complexity. Driven by this need, the current article reports the design of a multicolor long range nanoscopic ruler for screening tumor heterogeneity by accurately identifying epithelial cells and cancer stem cells (CSCs) simultaneously. A nanoscopic surface energy transfer (NSET) ruler has been developed using blue fluorescence polymer dots (PDs) and red fluorescence gold cluster dots (GCDs) as multicolor fluorescence donor and plasmonic gold nanoparticle (GNP) acts as an excellent acceptor. Reported experimental results demonstrated that the multicolor nanoscopic ruler's working window is above 35 nm distances, which is more than three times farther than that of Förster resonance energy transfer (FRET) distance limit. Theoretical modeling using Förster dipole-dipole coupling and dipole to nanoparticle surface energy transfer have been used to discuss the possible mechanism for multicolor nanoscopic ruler's long-range capability. Using RNA aptamers that are specific for the target cancer cells, experimental data demonstrate that the nanoscopic ruler can be used for screening epithelial and CSCs simultaneously from a whole blood sample with a detection capability of 10 cells per mL. Experimental data show that the nanoscopic ruler can distinguish targeted cells from non-targeted cells.

  13. Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells

    PubMed Central

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W.; Wiseman, Paul W.

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. PMID:26153705

  14. Genetic Analysis of Fibroblast Growth Factor Signaling in the Drosophila Eye

    PubMed Central

    Mukherjee, T.; Choi, I.; Banerjee, Utpal

    2012-01-01

    The development of eyes in Drosophila involves intricate epithelial reorganization events for accurate positioning of cells and proper formation and organization of ommatidial clusters. We demonstrate that Branchless (Bnl), the fibroblast growth factor ligand, regulates restructuring events in the eye disc primordium from as early as the emergence of clusters from a morphogenetic front to the cellular movements during pupal eye development. Breathless (Btl) functions as the fibroblast growth factor receptor to mediate Bnl signal, and together they regulate expression of DE-cadherin, Crumbs, and Actin. In addition, in the eye Bnl regulates the temporal onset and extent of retinal basal glial cell migration by activating Btl in the glia. We hypothesized that the Bnl functions in the eye are Hedgehog dependent and represent novel aspects of Bnl signaling not explored previously. PMID:22384378

  15. SU-E-J-107: Supervised Learning Model of Aligned Collagen for Human Breast Carcinoma Prognosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredfeldt, J; Liu, Y; Conklin, M

    Purpose: Our goal is to develop and apply a set of optical and computational tools to enable large-scale investigations of the interaction between collagen and tumor cells. Methods: We have built a novel imaging system for automating the capture of whole-slide second harmonic generation (SHG) images of collagen in registry with bright field (BF) images of hematoxylin and eosin stained tissue. To analyze our images, we have integrated a suite of supervised learning tools that semi-automatically model and score collagen interactions with tumor cells via a variety of metrics, a method we call Electronic Tumor Associated Collagen Signatures (eTACS). Thismore » group of tools first segments regions of epithelial cells and collagen fibers from BF and SHG images respectively. We then associate fibers with groups of epithelial cells and finally compute features based on the angle of interaction and density of the collagen surrounding the epithelial cell clusters. These features are then processed with a support vector machine to separate cancer patients into high and low risk groups. Results: We validated our model by showing that eTACS produces classifications that have statistically significant correlation with manual classifications. In addition, our system generated classification scores that accurately predicted breast cancer patient survival in a cohort of 196 patients. Feature rank analysis revealed that TACS positive fibers are more well aligned with each other, generally lower density, and terminate within or near groups of epithelial cells. Conclusion: We are working to apply our model to predict survival in larger cohorts of breast cancer patients with a diversity of breast cancer types, predict response to treatments such as COX2 inhibitors, and to study collagen architecture changes in other cancer types. In the future, our system may be used to provide metastatic potential information to cancer patients to augment existing clinical assays.« less

  16. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells.

    PubMed

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.

  17. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells

    PubMed Central

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M.; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells. PMID:28123598

  18. Induction of differentiation of human embryonic stem cells into functional hair-cell-like cells in the absence of stromal cells.

    PubMed

    Ding, Jie; Tang, Zihua; Chen, Jiarong; Shi, Haosong; Chen, Jianling; Wang, Cuicui; Zhang, Cui; Li, Liang; Chen, Ping; Wang, Jinfu

    2016-12-01

    Sensorineural hearing loss and vestibular dysfunction have become the most common forms of sensory defects. Stem cell-based therapeutic strategies for curing hearing loss are being developed. Several attempts to develop hair cells by using chicken utricle stromal cells as feeder cells have resulted in phenotypic conversion of stem cells into inner ear hair-cell-like cells. Here, we induced the differentiation of human embryonic stem cells (hESCs) into otic epithelial progenitors (OEPs), and further induced the differentiation of OEPs into hair-cell-like cells using different substrates. Our results showed that OEPs cultured on the chicken utricle stromal cells with the induction medium could differentiate into hair-cell-like cells with stereociliary bundles. Co-culture with stromal cells, however, may be problematic for subsequent examination of the induced hair-cell-like cells. In order to avoid the interference from stromal cells, we cultured OEPs on laminin with different induction media and examined the effects of the induction medium on the differentiation potentials of OEPs into hair-cell-like cells. The results revealed that the culture of OEPs on laminin with the conditioned medium from chicken utricle stromal cells supplemented with EGF and all-trans retinoic acid (RA) could promote the organization of cells into epithelial clusters displaying hair-cell-like cells with stereociliary bundles. These cells also displayed the expected electrophysiological properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Epithelial-myoepithelial carcinoma with myoepithelial anaplasia: report of a case with cytologic findings of a rare variant.

    PubMed

    Suzuki, Takashi; Murata, Shin-ichi; Yamaguchi, Hiroshi; Shimizu, Yoshihiko; Shimizu, Michio

    2010-01-01

    Epithelial-myoepithelial carcinoma (EMC) is usually a low grade malignancy with rare mortality. Rare aggressive variants of EMC, dedifferentiated EMC and EMC with myoepithelial anaplasia have been reported. An 81-year-old man presented with EMC of the parotid gland showing the classical type at the time of initial presentation and a high grade type with myoepithelial anaplasia at recurrence after 10 years. We compared the histologic and cytologic findings of the initial and recurrent tumors. Aspiration cytology of the initial tumor was typical of classical EMC, represented by a biphasic pattern composed of sheetlike and tubular clusters. In contrast, cytologic specimens of the recurrent tumor, which had a focally biphasic pattern similar to that of the initial tumor, also had many isolated or discohesive piled-up clusters of spindle and polygonal cells with nuclear atypia. The cytologic findings of the recurrent tumor were consistent with a rare variant of EMC with myoepithelial anaplasia. To the best of our knowledge, this is the first report of the cytologic finding of an EMC with myoepithelial anaplasia.

  20. Bone marrow-derived cells participate in stromal remodeling of the lung following acute bacterial pneumonia in mice.

    PubMed

    Serikov, Vladimir B; Mikhaylov, Viatcheslav M; Krasnodembskay, Anna D; Matthay, Michael A

    2008-01-01

    Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.

  1. Phylogeographic origin of Helicobacter pylori determines host-adaptive responses upon coculture with gastric epithelial cells.

    PubMed

    Sheh, Alexander; Chaturvedi, Rupesh; Merrell, D Scott; Correa, Pelayo; Wilson, Keith T; Fox, James G

    2013-07-01

    While Helicobacter pylori infects over 50% of the world's population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors in H. pylori pathogenesis, global gene expression of six H. pylori isolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factors cagA, vacA, and babB and were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin of H. pylori strains may promote increased gastric disease.

  2. Characterization of rabbit limbal epithelial side population cells using RNA sequencing and single-cell qRT-PCR.

    PubMed

    Kameishi, Sumako; Umemoto, Terumasa; Matsuzaki, Yu; Fujita, Masako; Okano, Teruo; Kato, Takashi; Yamato, Masayuki

    2016-05-06

    Corneal epithelial stem cells reside in the limbus, a transitional zone between the cornea and conjunctiva, and are essential for maintaining homeostasis in the corneal epithelium. Although our previous studies demonstrated that rabbit limbal epithelial side population (SP) cells exhibit stem cell-like phenotypes with Hoechst 33342 staining, the different characteristics and/or populations of these cells remain unclear. Therefore, in this study, we determined the gene expression profiles of limbal epithelial SP cells by RNA sequencing using not only present public databases but also contigs that were created by de novo transcriptome assembly as references for mapping. Our transcriptome data indicated that limbal epithelial SP cells exhibited a stem cell-like phenotype compared with non-SP cells. Importantly, gene ontology analysis following RNA sequencing demonstrated that limbal epithelial SP cells exhibited significantly enhanced expression of mesenchymal/endothelial cell markers rather than epithelial cell markers. Furthermore, single-cell quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that the limbal epithelial SP population consisted of at least two immature cell populations with endothelial- or mesenchymal-like phenotypes. Therefore, our present results may propose the presence of a novel population of corneal epithelial stem cells distinct from conventional epithelial stem cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Patterns of cell death in the embryonic antenna of the grasshopper Schistocerca gregaria.

    PubMed

    Boyan, George; Graf, Philip; Ehrhardt, Erica

    2018-03-01

    We have investigated the pattern of apoptosis in the antennal epithelium during embryonic development of the grasshopper Schistocerca gregaria. The molecular labels lachesin and annulin reveal that the antennal epithelium becomes subdivided into segment-like meristal annuli within which sensory cell clusters later differentiate. To determine whether apoptosis is involved in the development of such sensory cell clusters, we examined the expression pattern of the cell death labels acridine orange and TUNEL in the epithelium. We found stereotypic, age-dependent, wave-like patterns of cell death in the antenna. Early in embryogenesis, apoptosis is restricted to the most basal meristal annuli but subsequently spreads to encompass almost the entire antenna. Cell death then declines in more basal annuli and is only found in the tip region later in embryogenesis. Apoptosis is restricted throughout to the midregion of a given annulus and away from its border with neighboring annuli, arguing against a causal role in annular formation. Double-labeling for cell death and sensory cell differentiation reveals apoptosis occurring within bands of differentiating sensory cell clusters, matching the meristal organization of the apical antenna. Examination of the individual epithelial lineages which generate sensory cells reveals that apoptosis begins peripherally within a lineage and with age expands to encompass the differentiated sensory cell at the base. We conclude that complete lineages can undergo apoptosis and that the youngest cells in these lineages appear to die first, with the sensory neuron dying last. Lineage-based death in combination with cell death patterns in different regions of the antenna may contribute to odor-mediated behaviors in the grasshopper.

  4. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    PubMed

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  5. There are four dynamically and functionally distinct populations of E-cadherin in cell junctions

    PubMed Central

    Erami, Zahra; Timpson, Paul; Yao, Wu; Zaidel-Bar, Ronen; Anderson, Kurt I.

    2015-01-01

    ABSTRACT E-cadherin is a trans-membrane tumor suppressor responsible for epithelial cell adhesion. E-cadherin forms adhesive clusters through combined extra-cellular cis- and trans-interactions and intracellular interaction with the actin cytoskeleton. Here we identify four populations of E-cadherin within cell junctions based on the molecular interactions which determine their mobility and adhesive properties. Adhesive and non-adhesive populations of E-cadherin each consist of mobile and immobile fractions. Up to half of the E-cadherin immobilized in cell junctions is non-adhesive. Incorporation of E-cadherin into functional adhesions require all three adhesive interactions, with deletion of any one resulting in loss of effective cell-cell adhesion. Interestingly, the only interaction which could independently slow the diffusion of E-cadherin was the tail-mediated intra-cellular interaction. The adhesive and non-adhesive mobile fractions of E-cadherin can be distinguished by their sensitivity to chemical cross-linking with adhesive clusters. Our data define the size, mobility, and adhesive properties of four distinct populations of E-cadherin within cell junctions, and support association with the actin cytoskeleton as the first step in adhesion formation. PMID:26471767

  6. Development of ovary structures in the last larval and adult stages of psyllids (Insecta, Hemiptera, Sternorrhyncha: Psylloidea).

    PubMed

    Kot, Marta; Büning, Jürgen; Jankowska, Władysława; Drohojowska, Jowita; Szklarzewicz, Teresa

    2016-07-01

    The development and organization of the ovaries of ten species from four Psylloidea families (Psyllidae, Triozidae, Aphalaridae and Liviidae) have been investigated. The ovaries of the last larval stage (i.e. fifth instar) of all examined species are filled with numerous clusters of cystocytes which undergo synchronous incomplete mitotic division. Cystocytes of the given cluster are arranged into a rosette with polyfusome in the centre. These clusters are associated with single somatic cells. At the end of the fifth instar, the clusters begin to separate from each other, forming spherical ovarioles which are surrounded by a single layer of somatic cells. In the ovarioles of very young females all cystocytes enter the prophase of meiosis and differentiate shortly thereafter into oocytes and trophocytes (nurse cells). Meanwhile, somatic cells differentiate into cells of the inner epithelial sheath surrounding the trophocytes and into the prefollicular cells that encompass the oocytes. During this final differentiation, the trophocytes lose their cell membranes and become syncytial. Oocytes remain cellular and most of them (termed arrested oocytes) do not grow. In the ovarioles of older females, one oocyte encompassed by its follicle cells starts growing, still connected to the syncytial tropharium by a nutritive cord. After the short phase of previtellogenesis alone, the oocyte enters its vitellogenic the growth phase in the vitellarium. At that time, the second oocyte may enter the vitellarium and start its previtellogenic growth. In the light of the obtained results, the phylogeny of psyllids, as well as phylogenetic relationships between taxa of Hemiptera: Sternorrhyncha are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma*

    PubMed Central

    Burkhalter, Rebecca J.; Westfall, Suzanne D.; Liu, Yueying; Stack, M. Sharon

    2015-01-01

    During tumor progression, epithelial ovarian cancer (EOC) cells undergo epithelial-to-mesenchymal transition (EMT), which influences metastatic success. Mutation-dependent activation of Wnt/β-catenin signaling has been implicated in gain of mesenchymal phenotype and loss of differentiation in several solid tumors; however, similar mutations are rare in most EOC histotypes. Nevertheless, evidence for activated Wnt/β-catenin signaling in EOC has been reported, and immunohistochemical analysis of human EOC tumors demonstrates nuclear staining in all histotypes. This study addresses the hypothesis that the bioactive lipid lysophosphatidic acid (LPA), prevalent in the EOC microenvironment, functions to regulate EMT in EOC. Our results demonstrate that LPA induces loss of junctional β-catenin, stimulates clustering of β1 integrins, and enhances the conformationally active population of surface β1 integrins. Furthermore, LPA treatment initiates nuclear translocation of β-catenin and transcriptional activation of Wnt/β-catenin target genes resulting in gain of mesenchymal marker expression. Together these data suggest that LPA initiates EMT in ovarian tumors through β1-integrin-dependent activation of Wnt/β-catenin signaling, providing a novel mechanism for mutation-independent activation of this pathway in EOC progression. PMID:26175151

  8. Basolateral Sorting of Furin in MDCK Cells Requires a Phenylalanine-Isoleucine Motif Together with an Acidic Amino Acid Cluster

    PubMed Central

    Simmen, Thomas; Nobile, Massimo; Bonifacino, Juan S.; Hunziker, Walter

    1999-01-01

    Furin is a subtilisin-related endoprotease which processes a wide range of bioactive proteins. Furin is concentrated in the trans-Golgi network (TGN), where proteolytic activation of many precursor proteins takes place. A significant fraction of furin, however, cycles among the TGN, the plasma membrane, and endosomes, indicating that the accumulation in the TGN reflects a dynamic localization process. The cytosolic domain of furin is necessary and sufficient for TGN localization, and two signals are responsible for retrieval of furin to the TGN. A tyrosine-based (YKGL) motif mediates internalization of furin from the cell surface into endosomes. An acidic cluster that is part of two casein kinase II phosphorylation sites (SDSEEDE) is then responsible for retrieval of furin from endosomes to the TGN. In addition, the acidic EEDE sequence also mediates endocytic activity. Here, we analyzed the sorting of furin in polarized epithelial cells. We show that furin is delivered to the basolateral surface of MDCK cells, from where a significant fraction of the protein can return to the TGN. A phenylalanine-isoleucine motif together with the acidic EEDE cluster is required for basolateral sorting and constitutes a novel signal regulating intracellular traffic of furin. PMID:10082580

  9. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    PubMed

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  11. Epithelial-mesenchymal transition abolishes the susceptibility of polarized epithelial cell lines to measles virus.

    PubMed

    Shirogane, Yuta; Takeda, Makoto; Tahara, Maino; Ikegame, Satoshi; Nakamura, Takanori; Yanagi, Yusuke

    2010-07-02

    Measles virus (MV), an enveloped negative-strand RNA virus, remains a major cause of morbidity and mortality in developing countries. MV predominantly infects immune cells by using signaling lymphocyte activation molecule (SLAM; also called CD150) as a receptor, but it also infects polarized epithelial cells, forming tight junctions in a SLAM-independent manner. Although the ability of MV to infect polarized epithelial cells is thought to be important for its transmission, the epithelial cell receptor for MV has not been identified. A transcriptional repressor, Snail, induces epithelial-mesenchymal transition (EMT), in which epithelial cells lose epithelial cell phenotypes, such as adherens and tight junctions. In this study, EMT was induced by expressing Snail in a lung adenocarcinoma cell line, II-18, which is highly susceptible to wild-type MV. Snail-expressing II-18 cells lost adherens and tight junctions. Microarray analysis confirmed the induction of EMT in II-18 cells and suggested a novel function of Snail in protein degradation and distribution. Importantly, wild-type MV no longer entered EMT-induced II-18 cells, suggesting that the epithelial cell receptor is down-regulated by the induction of EMT. Other polarized cell lines, NCI-H358 and HT-29, also lost susceptibility to wild-type MV when EMT was induced. However, the complete formation of tight junctions rather reduced MV entry into HT-29 cells. Taken together, these data suggest that the unidentified epithelial cell receptor for MV is involved in the formation of epithelial intercellular junctions.

  12. Attempt to develop taste bud models in three-dimensional culture.

    PubMed

    Nishiyama, Miyako; Yuki, Saori; Fukano, Chiharu; Sako, Hideyuki; Miyamoto, Takenori; Tomooka, Yasuhiro

    2011-09-01

    Taste buds are the end organs of taste located in the gustatory papillae, which occur on the surface of the oral cavity. The goal of the present study was to establish a culture model mimicking the lingual taste bud of the mouse. To this end, three cell lines were employed: taste bud-derived cell lines (TBD cell lines), a lingual epithelial cell-derived cell line (20A cell line), and a mesenchymal cell-derived cell line (TMD cell line). TBD cells embedded in collagen gel formed three-dimensional clusters, which had an internal cavity equipped with a tight junction-like structure, a microvilluslike structure, and a laminin-positive layer surrounding the cluster. The cells with this epitheliumlike morphology expressed marker proteins of taste cells: gustducin and NCAM. TBD cells formed a monolayer on collagen gel when they were co-cultured with TMD cells. TBD, 20A, and TMD cell lines were maintained in a triple cell co-culture, in which TBD cells were pre-seeded as aggregates or in suspension on the collagen gel containing TMD cells, and 20A cells were laid over the TBD cells. TBD cells in the triple cell co-culture expressed NCAM. This result suggests that co-cultured TBD cells exhibited a characteristic of Type III taste cells. The culture model would be useful to study morphogenesis and functions of the gustatory organ.

  13. Re-establishment of gap junctional intercellular communication (GJIC) between human endometrial carcinomas by prostaglandin E(2).

    PubMed

    Schlemmer, Scott R; Kaufman, David G

    2012-12-01

    Reduced intercellular communication via gap junctions is correlated with carcinogenesis. Gap junctional intercellular communication (GJIC), between normal human endometrial epithelial cells is enhanced when endometrial stromal cells were present in culture. This enhancement of GJIC between normal epithelial cells also occurs when they are cultured in medium conditioned by stromal cells. This observation indicated that a soluble compound (or compounds) produced and secreted by stromal cells mediates GJIC in epithelial cells. Previous studies have shown that endometrial stromal cells release prostaglandin E(2) (PGE(2)) and prostaglandin F(2α) (PGF(2α)) under physiological conditions. When we evaluated the response of normal endometrial epithelial cells to various concentrations of PGE(2,) we found enhanced GJIC with 1nM PGE(2). This is a smaller increase in GJIC than that induced by medium conditioned by stromal cells. When the extracellular concentration of PGE(2) was measured after incubation with stromal cells, it was found to be similar to the concentrations showing maximal GJIC between the normal epithelial cells. When indomethacin was used to inhibit prostaglandin synthesis by stromal cells, GJIC was reduced but not eliminated between normal endometrial epithelial cells. These observations suggest that although PGE(2) secreted by stromal cells is an important mediator of GJIC between the epithelial cells, it is not the sole mediator. Transformed endometrial epithelial cells did not demonstrate GJIC even in the presence of stromal cells. However, we were able to re-establish GJIC in transformed epithelial cells when we added PGE(2) to the cells. Our findings show that PGE(2) may serve as an intercellular mediator between stromal and epithelial cells that regulates GJIC in normal and malignant epithelial cells. This suggests that maintenance of GJIC by preserving or replacing PGE(2) secretion by endometrial stromal cells may have the potential to suppress carcinogenesis in endometrial epithelial cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Solitomab, an epithelial cell adhesion molecule/CD3 bispecific antibody (BiTE), is highly active against primary chemotherapy-resistant ovarian cancer cell lines in vitro and fresh tumor cells ex vivo.

    PubMed

    English, Diana P; Bellone, Stefania; Schwab, Carlton L; Roque, Dana M; Lopez, Salvatore; Bortolomai, Ileana; Cocco, Emiliano; Bonazzoli, Elena; Chatterjee, Sudeshna; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2015-02-01

    Solitomab is a novel, bispecific, single-chain antibody that targets epithelial cell adhesion molecule (EpCAM) on tumor cells and also contains a cluster of differentiation 3 (CD3) (T-cell coreceptor) binding region. The authors evaluated the in vitro activity of solitomab against primary chemotherapy-resistant epithelial ovarian carcinoma cell lines as well as malignant cells in ascites. EpCAM expression was evaluated by flow cytometry in 5 primary ovarian cancer cell lines and in 42 fresh ovarian tumor cell cultures in ascites from patients with mainly advanced or recurrent, chemotherapy-resistant disease. The potential activity of solitomab against EpCAM-positive tumor cells was evaluated by flow cytometry, proliferation, and 4-hour chromium-release, cell-mediated cytotoxicity assays. EpCAM expression was detected by flow cytometry in approximately 80% of the fresh ovarian tumors and primary ovarian tumor cell lines tested. EpCAM-positive, chemotherapy-resistant cell lines were identified as resistant to natural killer cell-mediated or T-cell-mediated killing after exposure to peripheral blood lymphocytes in 4-hour chromium-release assays (mean±standard error of the mean, 3.6%±0.7% of cells killed after incubation of EpCAM-positive cell lines with control bispecific antibody). In contrast, after incubation with solitomab, EpCAM-positive, chemotherapy-resistant cells became highly sensitive to T-cell cytotoxicity (mean±standard error of the mean, 28.2%±2.05% of cells killed; P<.0001) after exposure to peripheral blood lymphocytes. Ex vivo incubation of autologous tumor-associated lymphocytes with EpCAM-expressing malignant cells in ascites with solitomab resulted in a significant increase in T-cell activation markers and a reduction in the number of viable ovarian tumor cells in ascites (P<.001). Solitomab may represent a novel, potentially effective agent for the treatment of chemotherapy-resistant ovarian cancers that overexpress EpCAM. © 2014 American Cancer Society.

  15. Epithelial Cell–Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia

    PubMed Central

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A.; Zabinski, Mary C.; Yuen, Constance K.; Lung, Wing Yi; Gower, Adam C.; Belkina, Anna C.; Ramirez, Maria I.; Deng, Jane C.; Quinton, Lee J.; Jones, Matthew R.

    2016-01-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia. PMID:27064756

  16. Comprehensive Metaproteomic Analyses of Urine in the Presence and Absence of Neutrophil-Associated Inflammation in the Urinary Tract

    PubMed Central

    Yu, Yanbao; Sikorski, Patricia; Smith, Madeline; Bowman-Gholston, Cynthia; Cacciabeve, Nicolas; Nelson, Karen E.; Pieper, Rembert

    2017-01-01

    Inflammation in the urinary tract results in a urinary proteome characterized by a high dynamic range of protein concentrations and high variability in protein content. This proteome encompasses plasma proteins not resorbed by renal tubular uptake, renal secretion products, proteins of immune cells and erythrocytes derived from trans-urothelial migration and vascular leakage, respectively, and exfoliating urothelial and squamous epithelial cells. We examined how such proteins partition into soluble urine (SU) and urinary pellet (UP) fractions by analyzing 33 urine specimens 12 of which were associated with a urinary tract infection (UTI). Using mass spectrometry-based metaproteomic approaches, we identified 5,327 non-redundant human proteins, 2,638 and 4,379 of which were associated with SU and UP fractions, respectively, and 1,206 non-redundant protein orthology groups derived from pathogenic and commensal organisms of the urogenital tract. Differences between the SU and UP proteomes were influenced by local inflammation, supported by respective comparisons with 12 healthy control urine proteomes. Clustering analyses showed that SU and UP fractions had proteomic signatures discerning UTIs, vascular injury, and epithelial cell exfoliation from the control group to varying degrees. Cases of UTI revealed clusters of proteins produced by activated neutrophils. Network analysis supported the central role of neutrophil effector proteins in the defense against invading pathogens associated with subsequent coagulation and wound repair processes. Our study expands the existing knowledge of the urinary proteome under perturbed conditions, and should be useful as reference dataset in the search of biomarkers. PMID:28042331

  17. Hertwig's Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars.

    PubMed

    Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2015-06-29

    To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis.

  18. Hertwig’s Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars

    PubMed Central

    Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2015-01-01

    To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis. PMID:26160988

  19. Multiple Cellular Responses to Serotonin Contribute to Epithelial Homeostasis

    PubMed Central

    Pai, Vaibhav P.; Horseman, Nelson D.

    2011-01-01

    Epithelial homeostasis incorporates the paradoxical concept of internal change (epithelial turnover) enabling the maintenance of anatomical status quo. Epithelial cell differentiation and cell loss (cell shedding and apoptosis) form important components of epithelial turnover. Although the mechanisms of cell loss are being uncovered the crucial triggers that modulate epithelial turnover through regulation of cell loss remain undetermined. Serotonin is emerging as a common autocrine-paracine regulator in epithelia of multiple organs, including the breast. Here we address whether serotonin affects epithelial turnover. Specifically, serotonin's roles in regulating cell shedding, apoptosis and barrier function of the epithelium. Using in vivo studies in mouse and a robust model of differentiated human mammary duct epithelium (MCF10A), we show that serotonin induces mammary epithelial cell shedding and disrupts tight junctions in a reversible manner. However, upon sustained exposure, serotonin induces apoptosis in the replenishing cell population, causing irreversible changes to the epithelial membrane. The staggered nature of these events induced by serotonin slowly shifts the balance in the epithelium from reversible to irreversible. These finding have very important implications towards our ability to control epithelial regeneration and thus address pathologies of aberrant epithelial turnover, which range from degenerative disorders (e.g.; pancreatitis and thyrioditis) to proliferative disorders (e.g.; mastitis, ductal ectasia, cholangiopathies and epithelial cancers). PMID:21390323

  20. Epithelial Cells in Urine: MedlinePlus Lab Test Information

    MedlinePlus

    ... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...

  1. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. © 2016 International Federation for Cell Biology.

  2. The Ets Transcription Factor EHF as a Regulator of Cornea Epithelial Cell Identity*

    PubMed Central

    Stephens, Denise N.; Klein, Rachel Herndon; Salmans, Michael L.; Gordon, William; Ho, Hsiang; Andersen, Bogi

    2013-01-01

    The cornea is the clear, outermost portion of the eye composed of three layers: an epithelium that provides a protective barrier while allowing transmission of light into the eye, a collagen-rich stroma, and an endothelium monolayer. How cornea development and aging is controlled is poorly understood. Here we characterize the mouse cornea transcriptome from early embryogenesis through aging and compare it with transcriptomes of other epithelial tissues, identifying cornea-enriched genes, pathways, and transcriptional regulators. Additionally, we profiled cornea epithelium and stroma, defining genes enriched in these layers. Over 10,000 genes are differentially regulated in the mouse cornea across the time course, showing dynamic expression during development and modest expression changes in fewer genes during aging. A striking transition time point for gene expression between postnatal days 14 and 28 corresponds with completion of cornea development at the transcriptional level. Clustering classifies co-expressed, and potentially co-regulated, genes into biologically informative categories, including groups that exhibit epithelial or stromal enriched expression. Based on these findings, and through loss of function studies and ChIP-seq, we show that the Ets transcription factor EHF promotes cornea epithelial fate through complementary gene activating and repressing activities. Furthermore, we identify potential interactions between EHF, KLF4, and KLF5 in promoting cornea epithelial differentiation. These data provide insights into the mechanisms underlying epithelial development and aging, identifying EHF as a regulator of cornea epithelial identity and pointing to interactions between Ets and KLF factors in promoting epithelial fate. Furthermore, this comprehensive gene expression data set for the cornea is a powerful tool for discovery of novel cornea regulators and pathways. PMID:24142692

  3. Canine corneal epithelial cells possess a sustained proliferative capacity and generate a spontaneously derived cell line.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Abe, Momoko; Hayashimoto, Koji; Nakagawa, Takayuki; Nishimura, Ryohei; Tsuzuki, Keiko

    2018-06-01

    We have previously reported characteristics of canine corneal epithelial cells in vitro and found that canine corneal epithelial cells could maintain their proliferative capacity even after continuous culture without the use of feeder cells and growth promoting additives. The objective of this study was to elucidate proliferative characteristics of canine corneal epithelial cells independent of feeder cells and growth promoting additives, with the aim of developing a spontaneously derived corneal epithelial cell line. Canine and rabbit corneal epithelial cells were harvested from the limbus and cultured with, or without, feeder cells and growth promoting additives, and both were passaged continuously until growth arrest. Canine corneal epithelial cells could proliferate independently, and could be passaged more times than rabbit cells. A canine corneal epithelial cell line, cCEpi, which could be passaged more than 100 times without using feeder cells and growth promoting additives, was established. cCEpi cells maintained a cell morphology close to the primary culture and expressed p63, cytokeratin 15 (K15), and K3. Although changes in colony morphology, shortening of the population doubling time and a heteroploid karyotype were observed, cCEpi was not tumorigenic. Stratified cell sheets cultured from cCEpi were morphologically and immunohistologically similar to sheets cultivated from early passage cells. In conclusion, canine corneal epithelial cells can proliferate independent of feeder cells and growth promoting additives. cCEpi maintains properties similar to normal corneal epithelial cells and could be a useful source for studies in cellular biology and for developing novel therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. DE-Cadherin Is Required for Intercellular Motility during Drosophila Oogenesis

    PubMed Central

    Niewiadomska, Paulina; Godt, Dorothea; Tepass, Ulrich

    1999-01-01

    Cadherins are involved in a variety of morphogenetic movements during animal development. However, it has been difficult to pinpoint the precise function of cadherins in morphogenetic processes due to the multifunctional nature of cadherin requirement. The data presented here indicate that homophilic adhesion promoted by Drosophila E-cadherin (DE-cadherin) mediates two cell migration events during Drosophila oogenesis. In Drosophila follicles, two groups of follicle cells, the border cells and the centripetal cells migrate on the surface of germline cells. We show that the border cells migrate as an epithelial patch in which two centrally located cells retain epithelial polarity and peripheral cells are partially depolarized. Both follicle cells and germline cells express DE-cadherin, and border cells and centripetal cells strongly upregulate the expression of DE-cadherin shortly before and during their migration. Removing DE-cadherin from either the follicle cells or the germline cells blocks migration of border cells and centripetal cells on the surface of germline cells. The function of DE-cadherin in border cells appears to be specific for migration as the formation of the border cell cluster and the adhesion between border cells are not disrupted in the absence of DE-cadherin. The speed of migration depends on the level of DE-cadherin expression, as border cells migrate more slowly when DE-cadherin activity is reduced. Finally, we show that the upregulation of DE-cadherin expression in border cells depends on the activity of the Drosophila C/EBP transcription factor that is essential for border cell migration. PMID:9971747

  5. Tooth replacement and putative odontogenic stem cell niches in pharyngeal dentition of medaka (Oryzias latipes).

    PubMed

    Abduweli, Dawud; Baba, Otto; Tabata, Makoto J; Higuchi, Kazunori; Mitani, Hiroshi; Takano, Yoshiro

    2014-04-01

    The small-sized teleost fish medaka, Oryzias latipes, has as many as 1000 pharyngeal teeth undergoing continuous replacement. In this study, we sought to identify the tooth-forming units and determine its replacement cycles, and further localize odontogenic stem cell niches in the pharyngeal dentition of medaka to gain insights into the mechanisms whereby continuous tooth replacement is maintained. Three-dimensional reconstruction of pharyngeal epithelium and sequential fluorochrome labeling of pharyngeal bones and teeth indicated that the individual functional teeth and their successional teeth were organized in families, each comprising up to five generations of teeth and successional tooth germs, and that the replacement cycle of functional teeth was approximately 4 weeks. BrdU label/chase experiments confirmed the existence of clusters of label-retaining epithelial cells at the posterior end of each tooth family where the expression of pluripotency marker Sox2 was confirmed by in situ hybridization. Label-retaining cells were also identified in the mesoderm immediately adjacent to the posterior end of each tooth family. These data suggest the importance of existence of slow-cycling dental epithelial cells and Sox2 expressions at the posterior end of each tooth family to maintain continuous tooth formation and replacement in the pharyngeal dentition of medaka.

  6. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    PubMed Central

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  7. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    PubMed

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations of reduced NPSH in renal epithelial cells than in hepatocytes.

  8. Potential Role for a Carbohydrate Moiety in Anti-Candida Activity of Human Oral Epithelial Cells

    PubMed Central

    Steele, Chad; Leigh, Janet; Swoboda, Rolf; Ozenci, Hatice; Fidel, Paul L.

    2001-01-01

    Candida albicans is both a commensal and a pathogen at the oral mucosa. Although an intricate network of host defense mechanisms are expected for protection against oropharyngeal candidiasis, anti-Candida host defense mechanisms at the oral mucosa are poorly understood. Our laboratory recently showed that primary epithelial cells from human oral mucosa, as well as an oral epithelial cell line, inhibit the growth of blastoconidia and/or hyphal phases of several Candida species in vitro with a requirement for cell contact and with no demonstrable role for soluble factors. In the present study, we show that oral epithelial cell-mediated anti-Candida activity is resistant to gamma-irradiation and is not mediated by phagocytosis, nitric oxide, hydrogen peroxide, and superoxide oxidative inhibitory pathways or by nonoxidative components such as soluble defensin and calprotectin peptides. In contrast, epithelial cell-mediated anti-Candida activity was sensitive to heat, paraformaldehyde fixation, and detergents, but these treatments were accompanied by a significant loss in epithelial cell viability. Treatments that removed existing membrane protein or lipid moieties in the presence or absence of protein synthesis inhibitors had no effect on epithelial cell inhibitory activity. In contrast, the epithelial cell-mediated anti-Candida activity was abrogated after treatment of the epithelial cells with periodic acid, suggesting a role for carbohydrates. Adherence of C. albicans to oral epithelial cells was unaffected, indicating that the carbohydrate moiety is exclusively associated with the growth inhibition activity. Subsequent studies that evaluated specific membrane carbohydrate moieties, however, showed no role for sulfated polysaccharides, sialic acid residues, or glucose- and mannose-containing carbohydrates. These results suggest that oral epithelial cell-mediated anti-Candida activity occurs exclusively with viable epithelial cells through contact with C. albicans by an as-yet-undefined carbohydrate moiety. PMID:11598085

  9. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Histogenesis of the epithelial component of rat thymus: an ultrastructural and immunohistological analysis.

    PubMed

    Vicente, A; Varas, A; Sacedón, R; Zapata, A G

    1996-04-01

    Despite the assumed importance of thymic cell microenvironments for governing T-cell maturation, little is known about the ontogeny of their cell components. A few studies have analyzed previously the ontogenetical development of rat thymic epithelium (Bogojevic et al. 1990. Period. Biol., 92:126; Kampinga and Aspinall 1990 Harwood Acad. Pub., London, pp. 149-186; Micic et al., 1991 Dev. Comp. Immunol., 15:443-450) and recently we have reported the development of both interdigitating/dendritic cells and macrophages (Vicente et al., 1994 Immunology, 82:75-81, 1995 Immunology, 85:99-105). In the present work we analyze in situ ultrastructural, immunohistochemical, and histoenzymatically the appearance and development of the thymic epithelial cell component in both embryonic and neonatal Wistar rats with special emphasis on the origin of the different epithelial cell types, the occurrence or absence of a common precursor for these, and the expression of MHC molecules. The thymic primordium of 13-day-old embryos is formed by a homogeneous population of primitive epithelial cells differentiating gradually into various epithelial cell subtypes of both the cortex and the medulla. In the cortex, subcapsular and stroma-supporting epithelial cells appear at days 14-15 as two structurally different cell entities. At the same time, stroma-supporting, keratinized, and vacuolated epithelial cells occur in the thymic medulla. These last two cell types differentiate subsequently into Hassall's bodies and hypertrophied cells. Lympho-epithelial cell complexes are identified in the deep cortex around birth, when the cortical parenchyma houses a transitional erythropoiesis. mAbs (His-39, RMC-20) which recognize medullary epithelial cells in the adult thymus stain positively cells of the thymic primordium as early as day 16 of embryonic life. Cortical epithelial cell markers (His-37, RMC-17) appear, however, slightly later and the subcapsulary region is not established until postnatal life. MHC class I and class II molecules can be identified on epithelial cells in the thymus of 15-day-old embryonic rats although they reach the highest expression around birth. Our results confirm the heterogeneity of the thymic epithelial component, the persistence of primitive, non-differentiated epithelial cells morphologically similar to those occurring in the early thymic primordium in adult thymus, and the mutual relevance of epithelial cells and thymocytes for an adequate development of rat thymus gland.

  11. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  12. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  13. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development.

    PubMed

    Endale, Mehari; Ahlfeld, Shawn; Bao, Erik; Chen, Xiaoting; Green, Jenna; Bess, Zach; Weirauch, Matthew T; Xu, Yan; Perl, Anne Karina

    2017-05-15

    Many studies have investigated the source and role of epithelial progenitors during lung development; such information is limited for fibroblast populations and their complex role in the developing lung. In this study, we characterized the spatial location, mRNA expression and Immunophenotyping of PDGFRα + fibroblasts during sacculation and alveolarization. Confocal microscopy identified spatial association of PDGFRα expressing fibroblasts with proximal epithelial cells of the branching bronchioles and the dilating acinar tubules at E16.5; with distal terminal saccules at E18.5; and with alveolar epithelial cells at PN7 and PN28. Immunohistochemistry for alpha smooth muscle actin revealed that PDGFRα + fibroblasts contribute to proximal peribronchiolar smooth muscle at E16.5 and to transient distal alveolar myofibroblasts at PN7. Time series RNA-Seq analyses of PDGFRα + fibroblasts identified differentially expressed genes that, based on gene expression similarity were clustered into 7 major gene expression profile patterns. The presence of myofibroblast and smooth muscle precursors at E16.5 and PN7 was reflected by a two-peak gene expression profile on these days and gene ontology enrichment in muscle contraction. Additional molecular and functional differences between peribronchiolar smooth muscle cells at E16.5 and transient intraseptal myofibroblasts at PN7 were suggested by a single peak in gene expression at PN7 with functional enrichment in cell projection and muscle cell differentiation. Immunophenotyping of subsets of PDGFRα + fibroblasts by flow cytometry confirmed the predicted increase in proliferation at E16.5 and PN7, and identified subsets of CD29 + myofibroblasts and CD34 + lipofibroblasts. These data can be further mined to develop novel hypotheses and valuable understanding of the molecular and cellular basis of alveolarization. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development☆

    PubMed Central

    Endale, Mehari; Ahlfeld, Shawn; Bao, Erik; Chen, Xiaoting; Green, Jenna; Bess, Zach; Weirauch, Matthew T.; Xu, Yan; Perl, Anne Karina

    2017-01-01

    Many studies have investigated the source and role of epithelial progenitors during lung development; such information is limited for fibroblast populations and their complex role in the developing lung. In this study, we characterized the spatial location, mRNA expression and Immunophenotyping of PDGFRα+ fibroblasts during sacculation and alveolarization. Confocal microscopy identified spatial association of PDGFRα expressing fibroblasts with proximal epithelial cells of the branching bronchioles and the dilating acinar tubules at E16.5; with distal terminal saccules at E18.5; and with alveolar epithelial cells at PN7 and PN28. Immunohistochemistry for alpha smooth muscle actin revealed that PDGFRα+ fibroblasts contribute to proximal peribronchiolar smooth muscle at E16.5 and to transient distal alveolar myofibroblasts at PN7. Time series RNA-Seq analyses of PDGFRα+ fibroblasts identified differentially expressed genes that, based on gene expression similarity were clustered into 7 major gene expression profile patterns. The presence of myofibroblast and smooth muscle precursors at E16.5 and PN7 was reflected by a two-peak gene expression profile on these days and gene ontology enrichment in muscle contraction. Additional molecular and functional differences between peribronchiolar smooth muscle cells at E16.5 and transient intraseptal myofibroblasts at PN7 were suggested by a single peak in gene expression at PN7 with functional enrichment in cell projection and muscle cell differentiation. Immunophenotyping of subsets of PDGFRα+ fibroblasts by flow cytometry confirmed the predicted increase in proliferation at E16.5 and PN7, and identified subsets of CD29+ myofibroblasts and CD34+ lipofibroblasts. These data can be further mined to develop novel hypotheses and valuable understanding of the molecular and cellular basis of alveolarization. PMID:28408205

  16. The world of epithelial sheets.

    PubMed

    Honda, Hisao

    2017-06-01

    An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  17. Epstein-Barr Virus Infection of Polarized Epithelial Cells via the Basolateral Surface by Memory B Cell-Mediated Transfer Infection

    PubMed Central

    Shannon-Lowe, Claire; Rowe, Martin

    2011-01-01

    Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo. PMID:21573183

  18. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    ClinicalTrials.gov

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  19. Efficient Immortalization of Primary Nasopharyngeal Epithelial Cells for EBV Infection Study

    PubMed Central

    Yip, Yim Ling; Pang, Pei Shin; Deng, Wen; Tsang, Chi Man; Zeng, Musheng; Hau, Pok Man; Man, Cornelia; Jin, Yuesheng; Yuen, Anthony Po Wing; Tsao, Sai Wah

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic of EBV-infected nasopharyngeal carcinoma. The establishment of an efficient method to immortalize primary nasopharyngeal epithelial cells will facilitate the investigation into the role of EBV infection in pathogenesis of nasopharyngeal carcinoma. PMID:24167620

  20. Macrophages induce "budding" in aggressive human colon cancer subtypes by protease-mediated disruption of tight junctions.

    PubMed

    Trumpi, Kari; Frenkel, Nicola; Peters, Timo; Korthagen, Nicoline M; Jongen, Jennifer M J; Raats, Daniëlle; van Grevenstein, Helma; Backes, Yara; Moons, Leon M; Lacle, Miangela M; Koster, Jan; Zwijnenburg, Danny; Borel Rinkes, Inne H M; Kranenburg, Onno

    2018-04-13

    Primary human colorectal tumors with a high stromal content have an increased capacity to metastasize. Cancer-associated fibroblasts (CAFs) promote metastasis, but the contribution of other stromal cell types is unclear. Here we searched for additional stromal cell types that contribute to aggressive tumor cell behavior. By making use of the 'immunome compendium'-a collection of gene signatures reflecting the presence of specific immune cell-types-we show that macrophage signatures are most strongly associated with a high CAF content and with poor prognosis in multiple large cohorts of primary tumors and liver metastases. Co-culturing macrophages with patient-derived colonospheres promoted 'budding' of small clusters of tumor cells from the bulk. Immunohistochemistry showed that budding tumor clusters in stroma-rich areas of T1 colorectal carcinomas were surrounded by macrophages. In vitro budding was accompanied by reduced levels of the tight junction protein occludin, but OCLN mRNA levels did not change, nor did markers of epithelial mesenchymal transition. Budding was accompanied by nuclear accumulation of β-catenin, which was also observed in budding tumor cell clusters in situ . The NFκB inhibitor Sanguinarine resulted in a decrease in MMP7 protein expression and both NFκB inhibitor Sanguinarine and MMP inhibitor Batimastat prevented occludin degradation and budding. We conclude that macrophages contribute to the aggressive nature of stroma-rich colon tumors by promoting an MMP-dependent pathway that operates in parallel to classical EMT and leads to tight junction disruption.

  1. Differential Gene Expression Profiling of Functionally and Developmentally Distinct Human Prostate Epithelial Populations

    PubMed Central

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-01-01

    BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44−CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44−CD49fHi FC, adult Epcam+CD44−CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44−CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. CONCLUSIONS Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. Prostate 75: 764–776, 2015. © The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25663004

  2. Differential gene expression profiling of functionally and developmentally distinct human prostate epithelial populations.

    PubMed

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-05-01

    Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam⁺ CD44⁻ CD49f(Hi) basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam⁺ CD44⁻ with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam⁺ CD44⁻ CD49f(Hi) FC, adult Epcam⁺ CD44⁻ CD49f(Hi) TIC, Epcam⁺ CD44⁺ CD49f(Hi) basal cells (BC), and Epcam⁺ CD44⁻ CD49f(Lo) luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. Grafts retrieved from Epcam⁺ CD44⁻ fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.

  3. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means ofmore » labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.« less

  4. Expression and cytokine regulation of immune recognition elements by normal human biliary epithelial and established liver cell lines in vitro.

    PubMed

    Cruickshank, S M; Southgate, J; Selby, P J; Trejdosiewicz, L K

    1998-10-01

    Biliary epithelial cells are targets of immune-mediated attack in conditions such as primary biliary cirrhosis and allograft rejection. This has been attributed to the ability of biliary epithelial cells to express ligands for T cell receptors. We aimed to investigate the expression of immune recognition elements and the effects of pro-inflammatory and anti-inflammatory cytokines on cell surface phenotypes of normal human biliary epithelial cells and established human liver-derived (PLC/PRF/5, HepG2, Hep3B and CC-SW) lines. Cells were cultured in the presence or absence of cytokines for 72 h, and expression of cell surface molecules was assessed by flow cytometry and immunofluorescence. All cell lines expressed MHC class I, ICAM-1 (CD54), LFA-3 (CD58) and EGF receptor, and all but Hep3B expressed Fas/Apo-1 (CD95). Unlike hepatocyte-derived cell lines, biliary epithelial cells and CC-SW expressed CD40 and CD44. As expected, IFNgamma and TNFalpha upregulated expression of ICAM-1, MHC class I and MHC class II, particularly in biliary epithelial cells. TGFbeta downregulated these molecules and downregulated CD95 on biliary epithelial cells, but upregulated LFA-3. The Th2 cytokines had little effect, although IL-4 upregulated CD95 expression on biliary epithelial cells. IFNgamma upregulated CD40 expression on biliary epithelial cells, CC-SW and HepG2. These findings imply that biliary epithelial cells may be capable of interacting with activated T lymphocytes via CD40 and LFA-3, which are thought to be important T cell accessory ligands for T cell activation in a B7-independent manner. Sensitivity to pro-inflammatory cytokines and expression of CD95 may explain why biliary epithelial cells are primary targets for autoimmune attack.

  5. Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies

    PubMed Central

    McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.

    2008-01-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID:18483420

  6. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.

    PubMed

    McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M

    2008-11-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation.

  7. Retrobulbar adenocarcinoma in an Amazon parrot (Amazona autumnalis).

    PubMed

    Watson, Victoria E; Murdock, Jessica H; Cazzini, Paola; Schnellbacher, Rodney; Divers, Stephen J; Sakamoto, Kaori

    2013-03-01

    Retrobulbar neoplasms are not common in mammals and are even more infrequently seen in nonmammalian species. The current report describes a retrobulbar mass creating exophthalmia and neurologic signs in a red-lored Amazon parrot (Amazona autumnalis). A 27-year-old female parrot presented for a 3-day history of anorexia and a 2-week history of periocular soft tissue swelling and exophthalmia of the right eye. Physical examination revealed 9% dehydration and right eye exophthalmia with inability to retropulse the globe. A fine-needle aspirate was performed, and cytologic evaluation revealed necrotic debris with scattered clusters of epithelial cells, moderate numbers of macrophages, and few heterophils. Given the possibility of neoplasia and paucity of treatment options, the owners elected euthanasia and submitted the body for necropsy. A large, fluctuant, friable, red, retrobulbar mass with multiple areas of hemorrhage, on cut surface, was noted at necropsy. Histologically, the mass was composed of neoplastic, cuboidal to columnar epithelial cells, forming rosette-like glandular structures, admixed with abundant necrotic debris. The neoplastic cells were strongly positive for cytokeratin (AE1/AE3) by immunohistochemistry. Based on histopathology and immunohistochemistry, the mass was diagnosed as an adenocarcinoma.

  8. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.

    PubMed

    Sciacovelli, Marco; Gonçalves, Emanuel; Johnson, Timothy Isaac; Zecchini, Vincent Roberto; da Costa, Ana Sofia Henriques; Gaude, Edoardo; Drubbel, Alizee Vercauteren; Theobald, Sebastian Julian; Abbo, Sandra Riekje; Tran, Maxine Gia Binh; Rajeeve, Vinothini; Cardaci, Simone; Foster, Sarah; Yun, Haiyang; Cutillas, Pedro; Warren, Anne; Gnanapragasam, Vincent; Gottlieb, Eyal; Franze, Kristian; Huntly, Brian; Maher, Eamonn Richard; Maxwell, Patrick Henry; Saez-Rodriguez, Julio; Frezza, Christian

    2016-08-31

    Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.

  9. MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation

    PubMed Central

    Lu, Yuntao; Xiao, Limin; Liu, Yawei; Wang, Hai; Li, Hong; Zhou, Qiang; Pan, Jun; Lei, Bingxi; Huang, Annie; Qi, Songtao

    2015-01-01

    The epithelial-to-mesenchymal (-like) transition (EMT), a crucial embryonic development program, has been linked to the regulation of glioblastoma (GBM) progression and invasion. Here, we investigated the role of MIR517C/miR-517c, which belongs to the C19MC microRNA cluster identified in our preliminary studies, in the pathogenesis of GBM. We found that MIR517C was associated with improved prognosis in patients with GBM. Furthermore, following treatment with the autophagy inducer temozolomide (TMZ) and low glucose (LG), MIR517C degraded KPNA2 (karyopherin alpha 2 [RAG cohort 1, importin alpha 1]) and subsequently disturbed the nuclear translocation of TP53 in the GBM cell line U87 in vitro. Interestingly, this microRNA could inhibit autophagy and reduce cell migration and infiltration in U87 cells harboring wild-type (WT) TP53, but not in U251 cells harboring mutant (MU) TP53. Moreover, the expression of epithelial markers (i.e., CDH13/T-cadherin and CLDN1 [claudin 1]) increased, while the expression of mesenchymal markers (i.e., CDH2/N-cadherin, SNAI1/Snail, and VIM [vimentin]) decreased, indicating that the EMT status was blocked by MIR517C in U87 cells. Compared with MIR517C overexpression, MIR517C knockdown promoted infiltration of U87 cells to the surrounding structures in nude mice in vivo. The above phenotypic changes were also observed in TP53+/+ and TP53-/- HCT116 colon cancer cells. In summary, our study provided support for a link between autophagy and EMT status in WT TP53 GBM cells and provided evidence for the signaling pathway (MIR517C-KPNA2-cytoplasmic TP53) involved in attenuating autophagy and eliminating the increased migration and invasion during the EMT. PMID:26553592

  10. Oxidoreductases that Act as Conditional Virulence Suppressors in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Anwar, Naeem; Sem, Xiao Hui; Rhen, Mikael

    2013-01-01

    In Salmonella enterica serovar Typhimurium, oxidoreductases of the thioredoxin superfamily contribute to bacterial invasiveness, intracellular replication and to the virulence in BALB/c mice as well as in the soil nematode Caenorhabditis elegans. The scsABCD gene cluster, present in many but not all enteric bacteria, codes for four putative oxidoreductases of the thioredoxin superfamily. Here we have analyzed the potential role of the scs genes in oxidative stress tolerance and virulence in S. Typhimurium. An scsABCD deletion mutant showed moderate sensitization to the redox-active transition metal ion copper and increased protein carbonylation upon exposure to hydrogen peroxide. Still, the scsABCD mutant was not significantly affected for invasiveness or intracellular replication in respectively cultured epithelial or macrophage-like cells. However, we noted a significant copper chloride sensitivity of SPI1 T3SS mediated invasiveness that strongly depended on the presence of the scs genes. The scsABCD deletion mutant was not attenuated in animal infection models. In contrast, the mutant showed a moderate increase in its competitive index upon intraperitoneal challenge and enhanced invasiveness in small intestinal ileal loops of BALB/c mice. Moreover, deletion of the scsABCD genes restored the invasiveness of a trxA mutant in epithelial cells and its virulence in C. elegans. Our findings thus demonstrate that the scs gene cluster conditionally affects virulence and underscore the complex interactions between oxidoreductases of the thioredoxin superfamily in maintaining host adaptation of S. Typhimurium. PMID:23750221

  11. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia.

    PubMed

    Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna

    2017-08-15

    Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.

  12. Mechanical stretch triggers rapid epithelial cell division through Piezo1.

    PubMed

    Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J

    2017-03-02

    Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.

  13. Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells

    PubMed Central

    Fu, Xing; Du, Min

    2018-01-01

    Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPKα1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α1 in intestinal health. PMID:29643147

  14. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells

    PubMed Central

    Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.

    2015-01-01

    The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387

  15. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    PubMed

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition. Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.

  16. The epithelial-mesenchymal transition generates cells with properties of stem cells.

    PubMed

    Mani, Sendurai A; Guo, Wenjun; Liao, Mai-Jing; Eaton, Elinor Ng; Ayyanan, Ayyakkannu; Zhou, Alicia Y; Brooks, Mary; Reinhard, Ferenc; Zhang, Cheng Cheng; Shipitsin, Michail; Campbell, Lauren L; Polyak, Kornelia; Brisken, Cathrin; Yang, Jing; Weinberg, Robert A

    2008-05-16

    The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.

  17. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    PubMed

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics. © 2015 The Society for Applied Microbiology.

  18. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    PubMed

    Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su

    2015-01-01

    Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  19. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  20. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    PubMed Central

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  1. Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95).

    PubMed

    Chen, Qiwei; Pandi, Sudha Priya Soundara; Kerrigan, Lauren; McElvaney, Noel G; Greene, Catherine M; Elborn, J Stuart; Taggart, Clifford C; Weldon, Sinéad

    2018-02-24

    Previous work suggests that apoptosis is dysfunctional in cystic fibrosis (CF) airways with conflicting results. We evaluated the relationship between dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and apoptosis in CF airway epithelial cells. Apoptosis and associated caspase activity were analysed in non-CF and CF tracheal and bronchial epithelial cell lines. Basal levels of apoptosis and activity of caspase-3 and caspase-8 were significantly increased in CF epithelial cells compared to controls, suggesting involvement of extrinsic apoptosis signalling, which is mediated by the activation of death receptors, such as Fas (CD95). Increased levels of Fas were observed in CF epithelial cells and bronchial brushings from CF patients compared to non-CF controls. Neutralisation of Fas significantly inhibited caspase-3 activity in CF epithelial cells compared to untreated cells. In addition, activation of Fas significantly increased caspase-3 activity and apoptosis in CF epithelial cells compared to control cells. Overall, these results suggest that CF airway epithelial cells are more sensitive to apoptosis via increased levels of Fas and subsequent activation of the Fas death receptor pathway, which may be associated with dysfunctional CFTR. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  2. Proliferation of epithelial cell rests, formation of apical cysts, and regression of apical cysts after periapical wound healing.

    PubMed

    Lin, Louis M; Huang, George T-J; Rosenberg, Paul A

    2007-08-01

    There is continuing controversy regarding the potential for inflammatory apical cysts to heal after nonsurgical endodontic therapy. Molecular cell biology may provide answers to a series of related questions. How are the epithelial cell rests of Malassez stimulated to proliferate? How are the apical cysts formed? How does the lining epithelium of apical cysts regress after endodontic therapy? Epithelial cell rests are induced to divide and proliferate by inflammatory mediators, proinflammatory cytokines, and growth factors released from host cells during periradicular inflammation. Quiescent epithelial cell rests can behave like restricted-potential stem cells if stimulated to proliferate. Formation of apical cysts is most likely caused by the merging of proliferating epithelial strands from all directions to form a three-dimensional ball mass. After endodontic therapy, epithelial cells in epithelial strands of periapical granulomas and the lining epithelium of apical cysts may stop proliferating because of a reduction in inflammatory mediators, proinflammatory cytokines, and growth factors. Epithelial cells will also regress because of activation of apoptosis or programmed cell death through deprivation of survival factors or by receiving death signals during periapical wound healing.

  3. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  4. Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.

    PubMed

    Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith

    2002-10-01

    To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.

  5. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial cells participate in angiotensin II-mediated control of the glomerular filtration barrier.

  6. Pre-existing Epithelial Diversity in Normal Human Livers: A Tissue-tethered Cytometric Analysis in Portal/Periportal Epithelial Cells

    PubMed Central

    Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.

    2012-01-01

    Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208

  7. Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration

    PubMed Central

    Tseng, Yun-Yu; Rabadán, M. Angeles; Krishna, Shefali; Hall, Alan

    2017-01-01

    Efficient collective migration depends on a balance between contractility and cytoskeletal rearrangements, adhesion, and mechanical cell–cell communication, all controlled by GTPases of the RHO family. By comprehensive screening of guanine nucleotide exchange factors (GEFs) in human bronchial epithelial cell monolayers, we identified GEFs that are required for collective migration at large, such as SOS1 and β-PIX, and RHOA GEFs that are implicated in intercellular communication. Down-regulation of the latter GEFs differentially enhanced front-to-back propagation of guidance cues through the monolayer and was mirrored by down-regulation of RHOA expression and myosin II activity. Phenotype-based clustering of knockdown behaviors identified RHOA-ARHGEF18 and ARHGEF3-ARHGEF28-ARHGEF11 clusters, indicating that the latter may signal through other RHO-family GTPases. Indeed, knockdown of RHOC produced an intermediate between the two phenotypes. We conclude that for effective collective migration, the RHOA-GEFs → RHOA/C → actomyosin pathways must be optimally tuned to compromise between generation of motility forces and restriction of intercellular communication. PMID:28512143

  8. Langerhans cells from human oral epithelium are more effective at stimulating allogeneic T cells in vitro than Langerhans cells from skin.

    PubMed

    Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

    2004-06-01

    This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.

  9. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in bothmore » normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells.« less

  10. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds.

    PubMed

    Sokol, Ethan S; Miller, Daniel H; Breggia, Anne; Spencer, Kevin C; Arendt, Lisa M; Gupta, Piyush B

    2016-03-01

    Three-dimensional (3D) cultures have proven invaluable for expanding human tissues for basic research and clinical applications. In both contexts, 3D cultures are most useful when they (1) support the outgrowth of tissues from primary human cells that have not been immortalized through extensive culture or viral infection and (2) include defined, physiologically relevant components. Here we describe a 3D culture system with both of these properties that stimulates the outgrowth of morphologically complex and hormone-responsive mammary tissues from primary human breast epithelial cells. Primary human breast epithelial cells isolated from patient reduction mammoplasty tissues were seeded into 3D hydrogels. The hydrogel scaffolds were composed of extracellular proteins and carbohydrates present in human breast tissue and were cultured in serum-free medium containing only defined components. The physical properties of these hydrogels were determined using atomic force microscopy. Tissue growth was monitored over time using bright-field and fluorescence microscopy, and maturation was assessed using morphological metrics and by immunostaining for markers of stem cells and differentiated cell types. The hydrogel tissues were also studied by fabricating physical models from confocal images using a 3D printer. When seeded into these 3D hydrogels, primary human breast epithelial cells rapidly self-organized in the absence of stromal cells and within 2 weeks expanded to form mature mammary tissues. The mature tissues contained luminal, basal, and stem cells in the correct topological orientation and also exhibited the complex ductal and lobular morphologies observed in the human breast. The expanded tissues became hollow when treated with estrogen and progesterone, and with the further addition of prolactin produced lipid droplets, indicating that they were responding to hormones. Ductal branching was initiated by clusters of cells expressing putative mammary stem cell markers, which subsequently localized to the leading edges of the tissue outgrowths. Ductal elongation was preceded by leader cells that protruded from the tips of ducts and engaged with the extracellular matrix. These 3D hydrogel scaffolds support the growth of complex mammary tissues from primary patient-derived cells. We anticipate that this culture system will empower future studies of human mammary gland development and biology.

  11. Characterization of newly established bovine intestinal epithelial cell line.

    PubMed

    Miyazawa, Kohtaro; Hondo, Tetsuya; Kanaya, Takashi; Tanaka, Sachi; Takakura, Ikuro; Itani, Wataru; Rose, Michael T; Kitazawa, Haruki; Yamaguchi, Takahiro; Aso, Hisashi

    2010-01-01

    Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer's patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.

  12. Epithelial-to-mesenchymal transition in penile squamous cell carcinoma.

    PubMed

    Masferrer, Emili; Ferrándiz-Pulido, Carla; Masferrer-Niubò, Magalí; Rodríguez-Rodríguez, Alfredo; Gil, Inmaculada; Pont, Antoni; Servitje, Octavi; García de Herreros, Antonio; Lloveras, Belen; García-Patos, Vicenç; Pujol, Ramon M; Toll, Agustí; Hernández-Muñoz, Inmaculada

    2015-02-01

    Epithelial-to-mesenchymal transition is a phenomenon in epithelial tumors that involves loss of intercellular adhesion, mesenchymal phenotype acquisition and enhanced migratory potential. While the epithelial-to-mesenchymal transition process has been extensively linked to metastatic progression of squamous cell carcinoma, studies of the role of epithelial-to-mesenchymal transition in squamous cell carcinoma containing high risk human papillomaviruses are scarce. Moreover, to our knowledge epithelial-to-mesenchymal transition involvement in human penile squamous cell carcinoma, which can arise through transforming HPV infections or independently of HPV, has not been investigated. We evaluated the presence of epithelial-to-mesenchymal transition markers and their relationship to HPV in penile squamous cell carcinoma. We assessed the expression of E-cadherin, vimentin and the epithelial-to-mesenchymal transition related transcription factors Twist, Zeb1 and Snail by immunohistochemical staining in 64 penile squamous cell carcinoma cases. HPV was detected by polymerase chain reaction amplification. Simultaneous loss of membranous E-cadherin expression and vimentin over expression were noted in 43.5% of penile squamous cell carcinoma cases. HPV was significantly associated with loss of membranous E-cadherin but not with epithelial-to-mesenchymal transition. Recurrence and mortality rates were significantly higher in cases showing epithelial-to-mesenchymal transition. Our findings indicate that in penile squamous cell carcinoma epithelial-to-mesenchymal transition is associated with poor prognosis but not with the presence of HPV. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    PubMed

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. β2 adrenergic agonist suppresses eosinophil-induced epithelial-to-mesenchymal transition of bronchial epithelial cells.

    PubMed

    Kainuma, Keigo; Kobayashi, Tetsu; D'Alessandro-Gabazza, Corina N; Toda, Masaaki; Yasuma, Taro; Nishihama, Kota; Fujimoto, Hajime; Kuwabara, Yu; Hosoki, Koa; Nagao, Mizuho; Fujisawa, Takao; Gabazza, Esteban C

    2017-05-02

    Epithelial-mesenchymal transition is currently recognized as an important mechanism for the increased number of myofibroblasts in cancer and fibrotic diseases. We have already reported that epithelial-mesenchymal transition is involved in airway remodeling induced by eosinophils. Procaterol is a selective and full β 2 adrenergic agonist that is used as a rescue of asthmatic attack inhaler form and orally as a controller. In this study, we evaluated whether procaterol can suppress epithelial-mesenchymal transition of airway epithelial cells induced by eosinophils. Epithelial-mesenchymal transition was assessed using a co-culture system of human bronchial epithelial cells and primary human eosinophils or an eosinophilic leukemia cell line. Procaterol significantly inhibited co-culture associated morphological changes of bronchial epithelial cells, decreased the expression of vimentin, and increased the expression of E-cadherin compared to control. Butoxamine, a specific β 2 -adrenergic antagonist, significantly blocked changes induced by procaterol. In addition, procaterol inhibited the expression of adhesion molecules induced during the interaction between eosinophils and bronchial epithelial cells, suggesting the involvement of adhesion molecules in the process of epithelial-mesenchymal transition. Forskolin, a cyclic adenosine monophosphate-promoting agent, exhibits similar inhibitory activity of procaterol. Overall, these observations support the beneficial effect of procaterol on airway remodeling frequently associated with chronic obstructive pulmonary diseases.

  15. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    PubMed Central

    Ando, Seijitsu; Otani, Hitomi; Yagi, Yasuhiro; Kawai, Kenzo; Araki, Hiromasa; Fukuhara, Shirou; Inagaki, Chiyoko

    2007-01-01

    Background Proteinase-activated receptors (PARs; PAR1–4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells). Results Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation. PMID:17433115

  16. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    PubMed

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMVmore » by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.« less

  18. Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion

    PubMed Central

    Roeder, Sebastian S.; Barnes, Taylor J.; Lee, Jonathan S.; Kato, India; Eng, Diana G.; Kaverina, Natalya V.; Sunseri, Maria W.; Daniel, Christoph; Amann, Kerstin; Pippin, Jeffrey W.; Shankland, Stuart J.

    2017-01-01

    The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wildtype mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain) and collagen IV staining were lower in CD44 knockout compared with wild type mice with FSGS. Parietal epithelial cells had lower migration from Bowman’s capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cells migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44 overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cells phenotype. PMID:27998643

  19. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells.

    PubMed

    Pan, J-L; Yuan, D-Z; Zhao, Y-B; Nie, L; Lei, Y; Liu, M; Long, Y; Zhang, J-H; Blok, L J; Burger, C W; Yue, L-M

    2017-03-01

    This study aimed to understand the role of miR-133a in progesterone actions, explore the regulative mechanism of the progesterone receptor, and investigate the effects of miR-133a on the progesterone-inhibited proliferation of mouse endometrial epithelial cells. The expression of miR-133a induced by progesterone was detected by quantitative real-time PCR both in vivo and in vitro. Ishikawa subcell lines stably transfected with progesterone receptor subtypes were used to determine the receptor mechanism of progesterone inducing miR-133a. Specific miR-133a mimics or inhibitors were transfected into mouse uteri and primary cultured endometrial epithelial cells to overexpress or downregulate the miR-133a. The roles of miR-133a in the cell cycle and proliferation of endometrial epithelial cells were analysed by flow cytometry and Edu incorporation analysis. The protein levels of cyclinD2 in uterine tissue sections and primary cultured endometrial epithelial cells were determined by immunohistochemistry and Western blot analysis. Progesterone could induce miR-133a expression in a PRB-dependent manner in endometrial epithelial cells. miR-133a inhibited endometrial epithelial cell proliferation by arresting cell cycle at the G 1 -S transition. Moreover, miR-133a acted as an inhibitor in downregulating cyclinD2 in endometrial epithelial cells. We showed for the first time that progesterone-induced miR-133a inhibited the proliferation of endometrial epithelial cells by downregulating cyclinD2. Our research indicated an important mechanism for progesterone inhibiting the proliferation of endometrial epithelial cells by inducing special miRNAs to inhibit positive regulatory proteins in the cell cycle. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  20. Epithelial cells as alternative human biomatrices for comet assay.

    PubMed

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  1. Epithelial cells as alternative human biomatrices for comet assay

    PubMed Central

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  2. M2 polarization of macrophages facilitates arsenic-induced cell transformation of lung epithelial cells

    PubMed Central

    Li, Hui; Dai, Lu; Frank, Jacqueline A.; Peng, Shaojun; Wang, Siying; Chen, Gang

    2017-01-01

    The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages. PMID:28423485

  3. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    PubMed

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.

    PubMed

    Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.

  5. Soluble Proteins Produced by Probiotic Bacteria Regulate Intestinal Epithelial Cell Survival and Growth

    PubMed Central

    YAN, FANG; CAO, HANWEI; COVER, TIMOTHY L.; WHITEHEAD, ROBERT; WASHINGTON, M. KAY; POLK, D. BRENT

    2011-01-01

    Background & Aims Increased inflammatory cytokine levels and intestinal epithelial cell apoptosis leading to disruption of epithelial integrity are major pathologic factors in inflammatory bowel diseases. The probiotic bacterium Lactobacillus rhamnosus GG (LGG) and factors recovered from LGG broth culture supernatant (LGG-s) prevent cytokine-induced apoptosis in human and mouse intestinal epithelial cells by regulating signaling pathways. Here, we purify and characterize 2 secreted LGG proteins that regulate intestinal epithelial cell antiapoptotic and proliferation responses. Methods LGG proteins were purified from LGG-s, analyzed, and used to generate polyclonal antibodies for immunodepletion of respective proteins from LGG-conditioned cell culture media (CM). Mouse colon epithelial cells and cultured colon explants were treated with purified proteins in the absence or presence of tumor necrosis factor (TNF). Akt activation, proliferation, tissue injury, apoptosis, and caspase-3 activation were determined. Results We purified 2 novel proteins, p75 (75 kilodaltons) and p40 (40 kilodaltons), from LGG-s. Each of these purified protein preparations activated Akt, inhibited cytokine-induced epithelial cell apoptosis, and promoted cell growth in human and mouse colon epithelial cells and cultured mouse colon explants. TNF-induced colon epithelial damage was significantly reduced by p75 and p40. Immunodepletion of p75 and p40 from LGG-CM reversed LGG-CM activation of Akt and its inhibitory effects on cytokine-induced apoptosis and loss of intestinal epithelial cells. Conclusions p75 and p40 are the first probiotic bacterial proteins demonstrated to promote intestinal epithelial homeostasis through specific signaling pathways. These findings suggest that probiotic bacterial components may be useful for preventing cytokine-mediated gastrointestinal diseases. PMID:17258729

  6. Impaired airway epithelial cell responses from children with asthma to rhinoviral infection.

    PubMed

    Kicic, A; Stevens, P T; Sutanto, E N; Kicic-Starcevich, E; Ling, K-M; Looi, K; Martinovich, K M; Garratt, L W; Iosifidis, T; Shaw, N C; Buckley, A G; Rigby, P J; Lannigan, F J; Knight, D A; Stick, S M

    2016-11-01

    The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood. To explore the relationship between apoptotic, innate immune and inflammatory responses to HRV infection in airway epithelial cells (AECs) obtained from children with asthma and non-asthmatic controls. In addition, to test the hypothesis that aberrant repair of epithelium from asthmatics is further dysregulated by HRV infection. Airway epithelial brushings were obtained from 39 asthmatic and 36 non-asthmatic children. Primary cultures were established and exposed to HRV1b and HRV14. Virus receptor number, virus replication and progeny release were determined. Epithelial cell apoptosis, IFN-β production, inflammatory cytokine release and epithelial wound repair and proliferation were also measured. Virus proliferation and release was greater in airway epithelial cells from asthmatics but this was not related to the number of virus receptors. In epithelial cells from asthmatic children, virus infection dampened apoptosis, reduced IFN-β production and increased inflammatory cytokine production. HRV1b infection also inhibited wound repair capacity of epithelial cells isolated from non-asthmatic children and exaggerated the defective repair response seen in epithelial cells from asthmatics. Addition of IFN-β restored apoptosis, suppressed virus replication and improved repair of airway epithelial cells from asthmatics but did not reduce inflammatory cytokine production. Collectively, HRV infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children. The delayed repair is further exaggerated in cells from asthmatic children and is only partially reversed by exogenous IFN-β. © 2016 John Wiley & Sons Ltd.

  7. Precocious development of lectin (Ulex europaeus agglutinin I) receptors in dome epithelium of gut-associated lymphoid tissues.

    PubMed

    Roy, M J

    1987-06-01

    Dome epithelium (DE), the tissue covering lymphoid domes of gut-associated lymphoid tissues, was examined in both adult and neonatal rabbit appendix or sacculus rotundus to determine if dome epithelial cells matured earlier than epithelial cells covering adjacent villi. The localization of well-differentiated epithelial cells in rabbit gut-associated lymphoid tissues (GALT) was accomplished histochemically by use of molecular probes: fluorescein isothiocyanate or horseradish peroxidase conjugates of Ulex europaeus agglutinin I (UEA), a lectin specific for terminal L-fucose molecules on certain glycoconjugates. The villus epithelial cells of newborn and 2-, 5-, or 10-day-old rabbits did not bind UEA, but between the twelfth and fifteenth days of postnatal life, UEA receptors were expressed by well-differentiated villus epithelial cells. In contrast to villus epithelium, DE in appendix and sacculus rotundus of neonatal rabbits expressed UEA receptors two days after birth, a feature that distinguished the DE of neonatal GALT for the next two weeks. In adult rabbits, UEA receptors were associated with dome epithelial cells extending from the mouths of glandular crypts to the upper domes; in contrast to the domes, UEA receptors were only present on well-differentiated epithelial cells at the villus tips. Results suggested that in neonatal rabbits most dome epithelial cells developed UEA receptors shortly after birth, reflecting precocious development of DE as compared to villus epithelium. In adult rabbit dome epithelium UEA receptors appeared on dome epithelial cells as they left the glandular crypts, representing accelerated epithelial maturation.

  8. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    PubMed Central

    2013-01-01

    Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta control the migratory potential and mesenchymal morphology of mammary tumor cells and suggest that APC loss during later stages of tumor progression might impact tumor cell dissemination or colonization. PMID:23302090

  9. Sustainability of CD24 expression, cell proliferation and migration, cisplatin-resistance, and caspase-3 expression during mesenchymal-epithelial transition induced by the removal of TGF-β1 in A549 lung cancer cells.

    PubMed

    Kim, Seong-Kwan; Park, Jin-A; Zhang, Dan; Cho, Sang-Hyun; Yi, Hee; Cho, Soo-Min; Chang, Byung-Joon; Kim, Jin-Suk; Shim, Jae-Han; Abd El-Aty, A M; Shin, Ho-Chul

    2017-08-01

    Epithelial-mesenchymal transition (EMT) is a notable mechanism underlying cancer cell metastasis. Transforming growth factor β1 (TGF-β1) has been used to induce EMT; however, there is a lack of information regarding the role of TGF-β1 in mesenchymal-epithelial transition (MET). In the present study, EMT was induced in A549 lung cancer cells using TGF-β1 (TGF-β1-treated group) and MET was induced sequentially from the TGF-β1-treated group by removing the TGF-β1 (MET/return group). Untreated A549 lung cancer cells were used as a control. Characteristic features, including cancer stem cell markers [cluster of differentiation (CD)24, CD44 and CD133], cell proliferation and migration and diverse intracellular mechanisms, were observed in all groups. Using western blot analysis, the TGF-β1-treated group demonstrated increased vimentin and reduced E-cadherin expression, whereas the MET/return group demonstrated the opposite trend. Among cancer stem cell markers, the population of CD24 low cells was reduced in the TGF-β1-treated group. Furthermore, the G2/M phase cell cycle population, cisplatin-sensitivity, and cell proliferation and migration ability were increased in the TGF-β1-treated group. These features were unaltered in the MET/return group when compared to the TGF-β1-treated group. Immunoblotting revealed an increase in the levels of SMAD3, phosphorylated SMAD3, phosphorylated extracellular signal-regulated kinase and caspase-3, and a decrease in active caspase-3 levels in the TGF-β1-treated group. Increased caspase-3 and reduced active caspase-3 levels were observed in the MET/return group, similar to those in the TGF-β1-treated group; however, levels of other signalling proteins were unchanged compared with the control group. EMT induced by TGF-β1 was not preserved; however, stemness-associated properties (CD24 expression, caspase-3 expression, cell proliferation and cisplatin-resistance) were sustained following removal of TGF-β1.

  10. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition

    PubMed Central

    Sciacovelli, Marco; Gonçalves, Emanuel; Isaac Johnson, Timothy; Roberto Zecchini, Vincent; da Costa, Ana Sofia Henriques; Gaude, Edoardo; Vercauteren Drubbel, Alizee; Julian Theobald, Sebastian; Abbo, Sandra; Tran, Maxine; Rajeeve, Vinothini; Cardaci, Simone; Foster, Sarah; Yun, Haiyang; Cutillas, Pedro; Warren, Anne; Gnanapragasam, Vincent; Gottlieb, Eyal; Franze, Kristian; Huntly, Brian; Richard Maher, Eamonn; Henry Maxwell, Patrick; Saez-Rodriguez, Julio; Frezza, Christian

    2016-01-01

    Mutations of the tricarboxylic acid cycle (TCA cycle) enzyme fumarate hydratase (FH) cause Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC)1. FH-deficient renal cancers are highly aggressive and metastasise even when small, leading to an abysmal clinical outcome2. Fumarate, a small molecule metabolite that accumulates in FH-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite3. Fumarate was shown to inhibit α-ketoglutarate (aKG)-dependent dioxygenases involved in DNA and histone demethylation4,5. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of FH and the subsequent accumulation of fumarate elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis6. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster6 miR-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of FH-proficient cells with cell-permeable fumarate. Loss of FH is associated with suppression of miR-200 and EMT signature in renal cancer patients, and is associated with poor clinical outcome. These results imply that loss of FH and fumarate accumulation contribute to the aggressive features of FH-deficient tumours. PMID:27580029

  11. Characterization of kidney epithelial cells from the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Sweat JMDunigan, D D; Wright, S D

    2001-06-01

    The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.

  12. Identification of an Enhancer That Increases miR-200b~200a~429 Gene Expression in Breast Cancer Cells

    PubMed Central

    Attema, Joanne L.; Bert, Andrew G.; Lim, Yat-Yuen; Kolesnikoff, Natasha; Lawrence, David M.; Pillman, Katherine A.; Smith, Eric; Drew, Paul A.; Khew-Goodall, Yeesim; Shannon, Frances; Goodall, Gregory J.

    2013-01-01

    The miR-200b~200a~429 gene cluster is a key regulator of EMT and cancer metastasis, however the transcription-based mechanisms controlling its expression during this process are not well understood. We have analyzed the miR-200b~200a~429 locus for epigenetic modifications in breast epithelial and mesenchymal cell lines using chromatin immunoprecipitation assays and DNA methylation analysis. We discovered a novel enhancer located approximately 5.1kb upstream of the miR-200b~200a~429 transcriptional start site. This region was associated with the active enhancer chromatin signature comprising H3K4me1, H3K27ac, RNA polymerase II and CpG dinucleotide hypomethylation. Luciferase reporter assays revealed the upstream enhancer stimulated the transcription of the miR-200b~200a~429 minimal promoter region approximately 27-fold in breast epithelial cells. Furthermore, we found that a region of the enhancer was transcribed, producing a short, GC-rich, mainly nuclear, non-polyadenylated RNA transcript designated miR-200b eRNA. Over-expression of miR-200b eRNA had little effect on miR-200b~200a~429 promoter activity and its production did not correlate with miR-200b~200a~429 gene expression. While additional investigations of miR-200b eRNA function will be necessary, it is possible that miR-200b eRNA may be involved in the regulation of miR-200b~200a~429 gene expression and silencing. Taken together, these findings reveal the presence of a novel enhancer, which contributes to miR-200b~200a~429 transcriptional regulation in epithelial cells. PMID:24086551

  13. [BIOCOMPATIBILITY OF POLY-LACTIDE-CO-GLYCOLIDE/COLLAGEN TYPE I SCAFFOLD WITH RAT VAGINAL EPITHELIAL CELLS].

    PubMed

    Li, Yachai; Huang, Xianghua; Zhang, Mingle; Li, Yanan; Chen, Yexing; Jia, Jingfei

    2015-09-01

    To explore the biocompatibility of the poly-lactide-co-glycolide (PLGA)/collagen type I scaffold with rat vaginal epithelial cells, and the feasibility of using PLGA/collagen type I as scaffold to reconstruct vagina by the tissue engineering. PLGA/collagen type I scaffold was prepared with PLGA covered polylysine and collagen type I. The vaginal epithelial cells of Sprague Dawley rat of 10-12 weeks old were cultured by enzyme digestion method. The vaginal epithelial cells of passage 2 were cultured in the leaching liquor of scaffold for 48 hours to detect its cytotoxicity by MTT. The vaginal epithelial cells were inoculated on the PLGA/collagen type I scaffold (experimental group) and PLGA scaffold (control group) to calculate the cell adhesion rate. Epithelial cells-scaffold complexes were implanted subcutaneously on the rat back. At 2, 4, and 8 weeks after implantation, the epithelial cells-scaffold complexes were harvested to observe the cell growth by HE staining and immunohistochemical analysis. The epithelial cells-scaffold complexes were transplanted to reconstruct vagina in 6 rats with vaginal defect. After 3 and 6 months, the vaginal length was measured and the appearance was observed. The neovagina tissues were harvested for histological evaluation after 6 months. The epithelial cells grew and proliferated well in the leaching liquor of PLGA/collagen type I scaffold, and the cytotoxicity was at grade 1. The cell adhesion rate on the PLGA/collagen type I scaffold was 71.8%±9.2%, which significantly higher than that on the PLGA scaffold (63.4%±5.7%) (t=2.195, P=0.005). The epithelial cells could grow and adhere to the PLGA/collagen type I scaffolds. At 2 weeks after implanted subcutaneously, the epithelial cells grew and proliferated in the pores of scaffolds, and the fibroblasts were observed. At 4 weeks, 1-3 layers epithelium formed on the surface of scaffold. At 8 weeks, the epithelial cells increased and arranged regularly, which formed the membrane-like layer on the scaffold. The keratin expression of the epithelium was positive. At 3 months after transplantation in situ, the vaginal mucosa showed pink and lustrous epithelialization, and the majority of scaffold degraded. After 6 months, the neovagina length was 1.2 cm, without obvious stenosis; the vaginal mucosa had similar appearance and epithelial layer to normal vagina, but it had less duplicature; there were nail-like processes in the basal layer, but the number was less than that of normal vagina. The immunohistochemistry staining for keratin was positive. The PLGA/collagen type I scaffolds have good cytocompatibility with the epithelial cells, and can be used as the biodegradable polymer scaffold of the vaginal tissue engineering.

  14. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  15. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    PubMed

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  16. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    USDA-ARS?s Scientific Manuscript database

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  17. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    PubMed Central

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  18. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiangjun; Yao, Qisheng, E-mail: yymcyqs@126.com; Sun, Xinbo

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treatedmore » with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates fibrosis after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates inflammation and fibrosis after hypoxia-and LPS-induced renal epithelial cells injury via TLR4/NF-κB.« less

  19. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.

    PubMed

    Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K

    2014-01-01

    The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.

  20. Constitutive Proteasomal Degradation of TWIST-1 in Epithelial Ovarian Cancer Stem Cells Impacts Differentiation and Metastatic Potential

    PubMed Central

    Yin, Gang; Alvero, Ayesha B.; Craveiro, Vinicius; Holmberg, Jennie C.; Fu, Han-Hsuan; Montagna, Michele K.; Yang, Yang; Chefetz-Menaker, Ilana; Nuti, Sudhakar; Rossi, Michael; Silasi, Dan-Arin; Rutherford, Thomas; Mor, Gil

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is a critical process for embryogenesis but is abnormally activated during cancer metastasis and recurrence. This process enables epithelial cancer cells to acquire mobility and traits associated with stemness. It is unknown whether epithelial stem cells or epithelial cancer stem cells are able to undergo EMT, and what molecular mechanism regulates this process in these specific cell types. We found that Epithelial Ovarian Cancer Stem cells (EOC stem cells) are the source of metastatic progenitor cells through a differentiation process involving EMT and Mesenchymal-Epithelial Transition (MET). We demonstrate both in vivo and in vitro the differentiation of EOC stem cells into mesenchymal spheroid-forming cells (MSFCs) and their capacity to initiate an active carcinomatosis. Furthermore, we demonstrate that human EOC stem cells injected i.p in mice are able to form ovarian tumors, suggesting that the EOC stem cells have the ability to “home” to the ovaries and establish tumors. Most interestingly, we found that TWIST1 is constitutively degraded in EOC stem cells, and that the acquisition of TWIST1 requires additional signals that will trigger the differentiation process. These findings are relevant for understanding the differentiation and metastasis process in EOC stem cells. PMID:22349827

  1. Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Takahashi, Ayaka; Nam, Eun Ryel; Yui, Sho; Chung, Cheng Shu; Kawahara, Naoya; Lin, Hsing Yi; Tsuzuki, Keiko; Nakagawa, Takayuki; Nishimura, Ryohei

    2015-01-01

    To examine the expressions of ABCG2 and p63 in canine corneal epithelia and to evaluate their significance in corneal regeneration. Canine corneal and limbal epithelial cells were obtained from five healthy beagle dogs. We analyzed the morphological properties of cultivated limbal and corneal epithelial cells. We compared the expressions of ABCG2 and p63 in the limbus and central cornea by immunohistochemistry and real-time quantitative PCR. We analyzed the expression of these markers in cultivated cells by immunocytochemistry and real-time quantitative PCR. The limbal epithelial cells were smaller and proliferated more rapidly than the corneal epithelial cells in primary cultures. The corneal cells failed to be subcultured, whereas the limbal cells could be subcultured with increasing cell size. ABCG2 was localized in the basal layer of the limbal epithelium, and p63 was widely detected in the entire corneal epithelia. ABCG2 expression was significantly higher, and p63 was slightly higher in the limbus compared with the central cornea. ABCG2 was detected only in limbal cells in primary culture, not in corneal cells or passaged limbal cells. p63 was detected in both limbal and corneal cells and decreased gradually in the limbal cells with the cell passages. ABCG2 was localized in canine limbal epithelial cells, and p63 was widely expressed in canine corneal epithelia. ABCG2 and p63 could prove to be useful markers in dogs for putative corneal epithelial stem cells and for corneal epithelial cell proliferation, respectively. © 2014 American College of Veterinary Ophthalmologists.

  2. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qin, Yejun; Zheng, Feng; Sun, Menghong; Shi, Daren

    2006-07-01

    A single-cell diagnostic technique for epithelial cancers is developed by utilizing laser trapping and Raman spectroscopy to differentiate cancerous and normal epithelial cells. Single-cell suspensions were prepared from surgically removed human colorectal tissues following standard primary culture protocols and examined in a near-infrared laser-trapping Raman spectroscopy system, where living epithelial cells were investigated one by one. A diagnostic model was built on the spectral data obtained from 8 patients and validated by the data from 2 new patients. Our technique has potential applications from epithelial cancer diagnosis to the study of cell dynamics of carcinogenesis.

  3. Protein Expression Profile of Rat Type Two Alveolar Epithelial Cells During Hyperoxic Stress and Recovery

    NASA Astrophysics Data System (ADS)

    Bhargava, Maneesh

    Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.

  4. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    PubMed

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  5. Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells.

    PubMed

    Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu

    2017-08-01

    Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR inhibitors in epithelial-like cells. Furthermore, mesenchymal T-Epi cells showed resistance to EGFR inhibitors by circumventing the dephosphorylation of EGFR signaling. Cetuximab consistently showed antitumor effects, and increased involucrin expression in TE-11R (epithelial-like)-derived xenograft tumors but not TE-8 (mesenchymal-like)-derived xenograft tumors. The factor determining the therapeutic effects of EGFR inhibitors in ESCC cells is the phenotype representing the epithelial-like or mesenchymal-like cells. Mesenchymal-like ESCC cells are resistant to EGFR inhibitors because EGFR signaling is not blocked. EGFR inhibitors show antitumor effects on epithelial-like ESCC cells accompanied by promotion of squamous cell differentiation.

  6. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo

    PubMed Central

    Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721

  7. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells

    PubMed Central

    Loureiro, Renata Ruoco; Cristovam, Priscila Cardoso; Martins, Caio Marques; Covre, Joyce Luciana; Sobrinho, Juliana Aparecida; Ricardo, José Reinaldo da Silva; Hazarbassanov, Rossen Myhailov; Höfling-Lima, Ana Luisa; Belfort, Rubens; Nishi, Mauro

    2013-01-01

    Purpose To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. Methods Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5′-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT–PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. Results Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. Conclusions Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM. PMID:23378720

  8. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    PubMed

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Gene-expression profiles of epithelial cells treated with EMD in vitro: analysis using complementary DNA arrays.

    PubMed

    Kapferer, I; Schmidt, S; Gstir, R; Durstberger, G; Huber, L A; Vietor, I

    2011-02-01

    During surgical periodontal treatment, EMD is topically applied in order to facilitate regeneration of the periodontal ligament, acellular cementum and alveolar bone. Suppresion of epithelial down-growth is essential for successful periodontal regeneration; however, the underlying mechanisms of how EMD influences epithelial wound healing are poorly understood. In the present study, the effects of EMD on gene-expression profiling in an epithelial cell line (HSC-2) model were investigated. Gene-expression modifications, determined using a comparative genome-wide expression-profiling strategy, were independently validated by quantitative real-time RT-PCR. Additionally, cell cycle, cell growth and in vitro wound-healing assays were conducted. A set of 43 EMD-regulated genes was defined, which may be responsible for the reduced epithelial down-growth upon EMD application. Gene ontology analysis revealed genes that could be attributed to pathways of locomotion, developmental processes and associated processes such as regulation of cell size and cell growth. Additionally, eight regulated genes have previously been reported to take part in the process of epithelial-to-mesenchymal transition. Several independent experimental assays revealed significant inhibition of cell migration, growth and cell cycle by EMD. The set of EMD-regulated genes identified in this study offers the opportunity to clarify mechanisms underlying the effects of EMD on epithelial cells. Reduced epithelial repopulation of the dental root upon periodontal surgery may be the consequence of reduced migration and cell growth, as well as epithelial-to-mesenchymal transition. © 2010 John Wiley & Sons A/S.

  10. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model

    PubMed Central

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-01-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. PMID:24770950

  11. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin

    2015-01-01

    Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. © 2014 International Federation for Cell Biology.

  12. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    PubMed

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p < 0.001). OCT and BET showed less influence on cell metabolism in fibroblasts than other MRs. OCT also demonstrated comparable but not significant results in epithelial cells (p > 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p < 0.005). OCT and BET showed the best results for viability in fibroblasts (p > 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  13. Fluorescent in situ hybridization (FISH) on corneal impression cytology specimens (CICS): study of epithelial cell survival after keratoplasty.

    PubMed

    Catanese, Muriel; Popovici, Cornel; Proust, Hélène; Hoffart, Louis; Matonti, Frédéric; Cochereau, Isabelle; Conrath, John; Gabison, Eric E

    2011-02-22

    To assess corneal epithelial cell survival after keratoplasty. Corneal impression cytology (CIC) was performed on sex-mismatched corneal transplants. Fluorescent in situ hybridization (FISH) with sex chromosome-specific probes was performed to identify epithelial cell mosaicism and therefore allocate the donor or recipient origin of the cells. Twenty-four samples of corneal epithelial cells derived from 21 transplanted patients were analyzed. All patients received post-operative treatment using dexamethasone eye drops, with progressive tapering over 18 months, and nine patients also received 2% cyclosporine eye drops. Out of the 24 samples reaching quality criteria, sex mosaicism was found in 13, demonstrating the presence of donor-derived cells at the center of the graft for at least 211 days post keratoplasty. Kaplan-Meier analysis established a median survival of donor corneal epithelial cells of 385 days. Although not statistically significant, the disappearance of donor cells seemed to be delayed and the average number of persistent cells appeared to be greater when 2% cyclosporine was used topically as an additional immunosuppressive therapy. The combination of corneal impressions and FISH analysis is a valuable tool with negligible side effects to investigate the presence of epithelial cell mosaicism in sex-mismatched donor transplants. Epithelial cells survived at the center of the graft with a median survival of more than one year, suggesting slower epithelial turnover than previously described.

  14. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    PubMed Central

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  15. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  16. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4[S

    PubMed Central

    Lukic, Ana; Ji, Jie; Idborg, Helena; Samuelsson, Bengt; Palmberg, Lena

    2016-01-01

    Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4. In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4. Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung. PMID:27436590

  17. Coreceptors and Their Ligands in Epithelial γδ T Cell Biology

    PubMed Central

    Witherden, Deborah A.; Johnson, Margarete D.; Havran, Wendy L.

    2018-01-01

    Epithelial tissues line the body providing a protective barrier from the external environment. Maintenance of these epithelial barrier tissues critically relies on the presence of a functional resident T cell population. In some tissues, the resident T cell population is exclusively comprised of γδ T cells, while in others γδ T cells are found together with αβ T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not only in the maintenance of the epithelium, but are also central to the repair process following damage from environmental and pathogenic insults. Key to their function is the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies on multiple receptor–ligand interactions through both the T cell receptor and accessory molecules leading to temporal and spatial regulation of cytokine, chemokine, growth factor, and extracellular matrix protein production. As antigens that activate epithelial γδ T cells are largely unknown and many classical costimulatory molecules and coreceptors are not used by these cells, efforts have focused on identification of novel coreceptors and ligands that mediate pivotal interactions between γδ T cells and their neighbors. In this review, we discuss recent advances in the understanding of functions for these coreceptors and their ligands in epithelial maintenance and repair processes. PMID:29686687

  18. Transcriptomic profiling of a chicken lung epithelial cell line (CLEC213) reveals a mitochondrial respiratory chain activity boost during influenza virus infection.

    PubMed

    Meyer, Léa; Leymarie, Olivier; Chevalier, Christophe; Esnault, Evelyne; Moroldo, Marco; Da Costa, Bruno; Georgeault, Sonia; Roingeard, Philippe; Delmas, Bernard; Quéré, Pascale; Le Goffic, Ronan

    2017-01-01

    Avian Influenza virus (AIV) is a major concern for the global poultry industry. Since 2012, several countries have reported AIV outbreaks among domestic poultry. These outbreaks had tremendous impact on poultry production and socio-economic repercussion on farmers. In addition, the constant emergence of highly pathogenic AIV also poses a significant risk to human health. In this study, we used a chicken lung epithelial cell line (CLEC213) to gain a better understanding of the molecular consequences of low pathogenic AIV infection in their natural host. Using a transcriptome profiling approach based on microarrays, we identified a cluster of mitochondrial genes highly induced during the infection. Interestingly, most of the regulated genes are encoded by the mitochondrial genome and are involved in the oxidative phosphorylation metabolic pathway. The biological consequences of this transcriptomic induction result in a 2.5- to 4-fold increase of the ATP concentration within the infected cells. PB1-F2, a viral protein that targets the mitochondria was not found associated to the boost of activity of the respiratory chain. We next explored the possibility that ATP may act as a host-derived danger signal (through production of extracellular ATP) or as a boost to increase AIV replication. We observed that, despite the activation of the P2X7 purinergic receptor pathway, a 1mM ATP addition in the cell culture medium had no effect on the virus replication in our epithelial cell model. Finally, we found that oligomycin, a drug that inhibits the oxidative phosphorylation process, drastically reduced the AIV replication in CLEC213 cells, without apparent cellular toxicity. Collectively, our results suggest that AIV is able to boost the metabolic capacities of its avian host in order to provide the important energy needs required to produce progeny virus.

  19. Cytokine Expression and Production by Purified Helicobacter pylori Urease in Human Gastric Epithelial Cells

    PubMed Central

    Tanahashi, Toshihito; Kita, Masakazu; Kodama, Tadashi; Yamaoka, Yoshio; Sawai, Naoki; Ohno, Tomoyuki; Mitsufuji, Shoji; Wei, Ya-Ping; Kashima, Kei; Imanishi, Jiro

    2000-01-01

    Cytokines have been proposed to play an important role in Helicobacter pylori-associated gastroduodenal diseases, but the exact mechanism of the cytokine induction remains unclear. H. pylori urease, a major component of the soluble proteins extracted from bacterial cells, is considered to be one of the virulence factors for the inflammation in the gastric mucosa that is produced in H. pylori infection. However, the response of human gastric epithelial cells to the stimulation of urease has not been investigated. In the present study, we used human gastric epithelial cells in a primary culture system and examined whether H. pylori urease stimulates the gastric epithelial cells to induce proinflammatory cytokines by reverse transcription-PCR and enzyme-linked immunosorbent assay. First, by using peripheral blood mononuclear cells (PBMC) and a gastric cancer cell line (MKN-45 cells), we confirmed the ability of purified H. pylori urease to induce the production of proinflammatory cytokines. Furthermore, we demonstrated that the human gastric epithelial cells produced interleukin-6 (IL-6) and tumor necrosis factor alpha, but not IL-8, following stimulation with purified urease. The patterns of cytokine induction differed among human PBMC, MKN-45 cells, and human gastric epithelial cells. These results suggest that the human gastric epithelial cells contribute to the induction of proinflammatory cytokines by the stimulation of H. pylori urease, indicating that the epithelial cells were involved in the mucosal inflammation that accompanied H. pylori infection. PMID:10639431

  20. Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks.

    PubMed

    Grimes, Mark; Hall, Benjamin; Foltz, Lauren; Levy, Tyler; Rikova, Klarisa; Gaiser, Jeremiah; Cook, William; Smirnova, Ekaterina; Wheeler, Travis; Clark, Neil R; Lachmann, Alexander; Zhang, Bin; Hornbeck, Peter; Ma'ayan, Avi; Comb, Michael

    2018-05-22

    Protein posttranslational modifications (PTMs) have typically been studied independently, yet many proteins are modified by more than one PTM type, and cell signaling pathways somehow integrate this information. We coupled immunoprecipitation using PTM-specific antibodies with tandem mass tag (TMT) mass spectrometry to simultaneously examine phosphorylation, methylation, and acetylation in 45 lung cancer cell lines compared to normal lung tissue and to cell lines treated with anticancer drugs. This simultaneous, large-scale, integrative analysis of these PTMs using a cluster-filtered network (CFN) approach revealed that cell signaling pathways were outlined by clustering patterns in PTMs. We used the t-distributed stochastic neighbor embedding (t-SNE) method to identify PTM clusters and then integrated each with known protein-protein interactions (PPIs) to elucidate functional cell signaling pathways. The CFN identified known and previously unknown cell signaling pathways in lung cancer cells that were not present in normal lung epithelial tissue. In various proteins modified by more than one type of PTM, the incidence of those PTMs exhibited inverse relationships, suggesting that molecular exclusive "OR" gates determine a large number of signal transduction events. We also showed that the acetyltransferase EP300 appears to be a hub in the network of pathways involving different PTMs. In addition, the data shed light on the mechanism of action of geldanamycin, an HSP90 inhibitor. Together, the findings reveal that cell signaling pathways mediated by acetylation, methylation, and phosphorylation regulate the cytoskeleton, membrane traffic, and RNA binding protein-mediated control of gene expression. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

    PubMed Central

    Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.

    2016-01-01

    The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539

  2. Histone Deacetylase Inhibitor Induces the Expression of Select Epithelial Genes in Mouse Utricle Sensory Epithelia-Derived Progenitor Cells

    PubMed Central

    Wang, Jue

    2014-01-01

    Abstract Mouse utricle sensory epithelial cell–derived progenitor cells (MUCs), which have hair cell progenitor and mesenchymal features via epithelial-to-mesenchymal transition (EMT) as previously described, provide a potential approach for hair cell regeneration via cell transplantation. In this study, we treated MUCs with trichostatin A (TSA) to determine whether histone deacetylase inhibitor is able to stimulate the expression of epithelial genes in MUCs, an essential step for guiding mesenchymal-like MUCs to become sensory epithelial cells. After 72 h of TSA treatment, MUCs acquired epithelial-like features, which were indicated by increased expression of epithelial markers such as Cdh1, Krt18, and Dsp. Additionally, TSA decreased the expression of mesenchymal markers, including Zeb1, Zeb2, Snai1, and Snai2, and prosensory genes Lfng, Six1, and Dlx5. Moreover, the expression of the hair cell genes Atoh1 and Myo6 was increased in TSA-treated MUCs. We also observed significantly decreased expression of Hdac2 and Hdac3 in TSA-treated MUCs. However, no remarkable change was detected in protein expression using immunofluorescence, indicating that TSA-induced HDAC inhibition may contribute to the initial stage of the mesenchymal-to-epithelial phenotypic change. In the future, more work is needed to induce hair cell regeneration using inner ear tissue–derived progenitors to achieve an entire mesenchymal-to-epithelial transition. PMID:24945595

  3. The Contribution of the Airway Epithelial Cell to Host Defense.

    PubMed

    Stanke, Frauke

    2015-01-01

    In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.

  4. Role of medullary progenitor cells in epithelial cell migration and proliferation

    PubMed Central

    Chen, Dong; Chen, Zhiyong; Zhang, Yuning; Park, Chanyoung; Al-Omari, Ahmed

    2014-01-01

    This study is aimed at characterizing medullary interstitial progenitor cells and to examine their capacity to induce tubular epithelial cell migration and proliferation. We have isolated a progenitor cell side population from a primary medullary interstitial cell line. We show that the medullary progenitor cells (MPCs) express CD24, CD44, CXCR7, CXCR4, nestin, and PAX7. MPCs are CD34 negative, which indicates that they are not bone marrow-derived stem cells. MPCs survive >50 passages, and when grown in epithelial differentiation medium develop phenotypic characteristics of epithelial cells. Inner medulla collecting duct (IMCD3) cells treated with conditioned medium from MPCs show significantly accelerated cell proliferation and migration. Conditioned medium from PGE2-treated MPCs induce tubule formation in IMCD3 cells grown in 3D Matrigel. Moreover, most of the MPCs express the pericyte marker PDGFR-b. Our study shows that the medullary interstitium harbors a side population of progenitor cells that can differentiate to epithelial cells and can stimulate tubular epithelial cell migration and proliferation. The findings of this study suggest that medullary pericyte/progenitor cells may play a critical role in collecting duct cell injury repair. PMID:24808539

  5. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    PubMed

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  6. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.

    PubMed

    Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina

    2015-06-04

    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis.

  7. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions.

  8. Generation of Epithelial Cell Populations from Human Pluripotent Stem Cells Using a Small-Molecule Inhibitor of Src Family Kinases.

    PubMed

    Selekman, Joshua A; Lian, Xiaojun; Palecek, Sean P

    2016-01-01

    Human pluripotent stem cells (hPSCs), under the right conditions, can be engineered to generate populations of any somatic cell type. Knowledge of what mechanisms govern differentiation towards a particular lineage is often quite useful for efficiently producing somatic cell populations from hPSCs. Here, we have outlined a strategy for deriving populations of simple epithelial cells, as well as more mature epidermal keratinocyte progenitors, from hPSCs by exploiting a mechanism previously shown to direct epithelial differentiation of hPSCs. Specifically, we describe how to direct epithelial differentiation of hPSCs using an Src family kinase inhibitor, SU6656, which has been shown to modulate β-catenin translocation to the cell membrane and thus promote epithelial differentiation. The differentiation platform outlined here produces cells with the ability to terminally differentiate to epidermal keratinocytes in culture through a stable simple epithelial cell intermediate that can be expanded in culture for numerous (>10) passages.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Hauwaert, Cynthia; Savary, Grégoire; Buob, David

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2more » immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.« less

  10. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues.

    PubMed

    Xiong, Jimin; Gronthos, Stan; Bartold, P Mark

    2013-10-01

    Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal/stem cells, both functionally and phenotypically. Therefore, the epithelial cell rests of Malassez, rather than being 'cell rests', as indicated by their name, are an important source of stem cells that might play a pivotal role in periodontal regeneration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Epithelial stem cells are formed by small-particles released from particle-producing cells

    PubMed Central

    Kong, Wuyi; Zhu, Xiao Ping; Han, Xiu Juan; Nuo, Mu; Wang, Hong

    2017-01-01

    Recent spatiotemporal report demonstrated that epidermal stem cells have equal potential to divide or differentiate, with no asymmetric cell division observed. Therefore, how epithelial stem cells maintain lifelong stem-cell support still needs to be elucidated. In mouse blood and bone marrow, we found a group of large cells stained strongly for eosin and containing coiled-tubing-like structures. Many were tightly attached to each other to form large cellular clumps. After sectioning, these large cell-clumps were composed of not cells but numerous small particles, however with few small “naked” nuclei. The small particles were about 2 to 3 μm in diameter and stained dense red for eosin, so they may be rich in proteins. Besides the clumps composed of small particles, we identified clumps formed by fusion of the small particles and clumps of newly formed nucleated cells. These observations suggest that these small particles further fused and underwent cellularization. E-cadherin was expressed in particle-fusion areas, some “naked” nuclei and the newly formed nucleated cells, which suggests that these particles can form epithelial cells via fusion and nuclear remodeling. In addition, we observed similar-particle fusion before epithelial cellularization in mouse kidney ducts after kidney ischemia, which suggests that these particles can be released in the blood and carried to the target tissues for epithelial-cell regeneration. Oct4 and E-cadherin expressed in the cytoplasmic areas in cells that were rich in protein and mainly located in the center of the cellular clumps, suggesting that these newly formed cells have become tissue-specific epithelial stem cells. Our data provide evidence that these large particle-producing cells are the origin of epithelial stem cells. The epithelial stem cells are newly formed by particle fusion. PMID:28253358

  12. [Pathological and immunohistochemical analysis of giant cells of pancreas].

    PubMed

    Miyake, T; Suda, K; Yamamura, A; Tada, Y

    1997-10-01

    Multinucleated giant cells in the pancreas (five giant cell carcinomas, a mucinous cystadenocarcinoma attended with many osteoclast-like giant cells, 42 invasive ductal carcinomas and 29 chronic pancreatitises) were examined. Three types of multinucleated giant cell were identified: epithelial type, coexpressive type, mesenchymal type. Epithelial type expressed epithelial markers, such as keratin and EMA in 23 ductal carcinomas. Coexpressive type expressed both epithelial markers and mesenchymal marker vimentin was in four ductal carcinomas. Mesenchymal type expressed mesenchymal markers, vimentin and CD68 in four osteoclastoid type giant cell carcinomas, the mucinous cystadenocarcinoma, six ductal carcinomas and ten chronic pancreatitises. Epithelial and coexpressive type were considered to be epithelial neoplastic origin, those had bizarre appearance and transitional area from definite adenocarcinoma area. Vimentin expression is associated with sarcomatous proliferation. Mesenchymal type was considered to be nonneoplastic and a certain type of macrophage polykaryons.

  13. Metformin and Chemotherapy in Treating Patients With Stage III-IV Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2018-04-17

    Brenner Tumor; Malignant Ascites; Malignant Pleural Effusion; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Primary Peritoneal Cavity Cancer

  14. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    PubMed Central

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  15. The Fe-S cluster-containing NEET proteins mitoNEET and NAF-1 as chemotherapeutic targets in breast cancer.

    PubMed

    Bai, Fang; Morcos, Faruck; Sohn, Yang-Sung; Darash-Yahana, Merav; Rezende, Celso O; Lipper, Colin H; Paddock, Mark L; Song, Luhua; Luo, Yuting; Holt, Sarah H; Tamir, Sagi; Theodorakis, Emmanuel A; Jennings, Patricia A; Onuchic, José N; Mittler, Ron; Nechushtai, Rachel

    2015-03-24

    Identification of novel drug targets and chemotherapeutic agents is a high priority in the fight against cancer. Here, we report that MAD-28, a designed cluvenone (CLV) derivative, binds to and destabilizes two members of a unique class of mitochondrial and endoplasmic reticulum (ER) 2Fe-2S proteins, mitoNEET (mNT) and nutrient-deprivation autophagy factor-1 (NAF-1), recently implicated in cancer cell proliferation. Docking analysis of MAD-28 to mNT/NAF-1 revealed that in contrast to CLV, which formed a hydrogen bond network that stabilized the 2Fe-2S clusters of these proteins, MAD-28 broke the coordinative bond between the His ligand and the cluster's Fe of mNT/NAF-1. Analysis of MAD-28 performed with control (Michigan Cancer Foundation; MCF-10A) and malignant (M.D. Anderson-metastatic breast; MDA-MB-231 or MCF-7) human epithelial breast cells revealed that MAD-28 had a high specificity in the selective killing of cancer cells, without any apparent effects on normal breast cells. MAD-28 was found to target the mitochondria of cancer cells and displayed a surprising similarity in its effects to the effects of mNT/NAF-1 shRNA suppression in cancer cells, causing a decrease in respiration and mitochondrial membrane potential, as well as an increase in mitochondrial iron content and glycolysis. As expected, if the NEET proteins are targets of MAD-28, cancer cells with suppressed levels of NAF-1 or mNT were less susceptible to the drug. Taken together, our results suggest that NEET proteins are a novel class of drug targets in the chemotherapeutic treatment of breast cancer, and that MAD-28 can now be used as a template for rational drug design for NEET Fe-S cluster-destabilizing anticancer drugs.

  16. Epithelial junctions, cytoskeleton, and polarity.

    PubMed

    Pásti, Gabriella; Labouesse, Michel

    2014-11-04

    A distinctive feature of polarized epithelial cells is their specialized junctions, which contribute to cell integrity and provide platforms to orchestrate cell shape changes. This chapter discusses the composition, assembly and remodeling of C. elegans cell-cell (CeAJ) and hemidesmosome-like cell-extracellular matrix junctions (CeHD), proteins that anchor the cytoskeleton, and mechanisms involved in establishing epithelial polarity. Major recent progress in this area has come from the analysis of mechanisms that maintain cell polarity, which involve lipids and trafficking, and on the impact of mechanical forces on junction remodeling. This chapter focuses on cellular, rather than developmental, aspects of epithelial cells.

  17. Activation of neurokinin-1 receptors during ozone inhalation contributes to epithelial injury and repair.

    PubMed

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2008-09-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2'-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress-positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  18. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  19. Establishment of two basal-like breast cancer cell lines with extremely low tumorigenicity from Taiwanese premenopausal women.

    PubMed

    Kuo, Wen-Ling; Ueng, Shir-Hwa; Wu, Chun-Hsing; Lee, Li-Yu; Lee, Yun-Shien; Yu, Ming-Chin; Chen, Shin-Cheh; Yu, Chi-Chang; Tsai, Chi-Neu

    2018-04-01

    The research of carcinogenetic mechanisms of breast cancer in different ethnic backgrounds is an interesting field, as clinical features of breast cancers vary among races. High premenopausal incidence is distinctive in East-Asian breast cancer. However, human cell lines derived from Asian primary breast tumor are rare. To provide alternative cell line models with a relevant genetic background, we aimed to establish breast cancer cell lines from Taiwanese patients of Han-Chinese ethnicity. Fresh tissue from mammary tumors were digested into organoids, plated and grown in basal serum-free medium of human mammary epithelial cells (HuMEC) with supplements. Cells were further enriched by positive selection with CD326 (epithelial cell adhesion molecule; EpCAM)-coated micro-magnetic beads. Two breast cancer cell lines derived from premenopausal women were successfully established by this method, and named Chang-Gung Breast Cancer 01 (CGBC 01) and 02 (CGBC 02). These two cell lines had a similar phenotype with weak expression of estrogen receptor (ER), progesterone receptor (PR), and without amplification of receptor tyrosine protein kinase erbB-2 (HER2/neu). Genome-wide Single Nucleotide Polymorphism (SNP) array showed multiple copy number alterations in both cell lines. Based on gene expression profiles, CGBC 01 and 02 were clustered into basal-like subtype with reference to the breast cancer cell line gene expression database. The tumorigenicity of both cell lines was extremely low in both anchorage-independence assay and transplantation into the mammary fat pads of nude mice. CGBC 01 and CGBC 02 are low tumorigenic breast cancer cell lines, established from Han-Chinese premenopausal breast cancer patients, which serve as in vitro models in studying the biological features of Asian breast cancer.

  20. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.

    PubMed

    Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E

    2003-09-01

    Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the expression of caspase-1, caspase-3 and caspase-10, was inhibited. Inhibition of replication of intracellular bacteria resulted in an increase in apoptosis in both cell types. Our results showed that the differential induction of apoptosis between macrophages and alveolar epithelial cells represents specific strategies of M. tuberculosis for survival in the host.

  1. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    USDA-ARS?s Scientific Manuscript database

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...

  2. A MicroRNA Cluster miR-23-24-27 Is Upregulated by Aldosterone in the Distal Kidney Nephron Where it Alters Sodium Transport.

    PubMed

    Liu, Xiaoning; Edinger, Robert S; Klemens, Christine A; Phua, Yu L; Bodnar, Andrew J; LaFramboise, William A; Ho, Jacqueline; Butterworth, Michael B

    2017-06-01

    The epithelial sodium channel (ENaC) is expressed in the epithelial cells of the distal convoluted tubules, connecting tubules, and cortical collecting duct (CCD) in the kidney nephron. Under the regulation of the steroid hormone aldosterone, ENaC is a major determinant of sodium (Na + ) and water balance. The ability of aldosterone to regulate microRNAs (miRs) in the kidney has recently been realized, but the role of miRs in Na + regulation has not been well established. Here we demonstrate that expression of a miR cluster mmu-miR-23-24-27, is upregulated in the CCD by aldosterone stimulation both in vitro and in vivo. Increasing the expression of these miRs increased Na + transport in the absence of aldosterone stimulation. Potential miR targets were evaluated and miR-27a/b was verified to bind to the 3'-untranslated region of intersectin-2, a multi-domain protein expressed in the distal kidney nephron and involved in the regulation of membrane trafficking. Expression of Itsn2 mRNA and protein was decreased after aldosterone stimulation. Depletion of Itsn2 expression, mimicking aldosterone regulation, increased ENaC-mediated Na + transport, while Itsn2 overexpression reduced ENaC's function. These findings reinforce a role for miRs in aldosterone regulation of Na + transport, and implicate miR-27 in aldosterone's action via a novel target. J. Cell. Physiol. 232: 1306-1317, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Cytomorphologic features of papillary lesions of the male breast: a study of 11 cases.

    PubMed

    Reid-Nicholson, Michelle D; Tong, Guoxia; Cangiarella, Joan F; Moreira, Andre L

    2006-08-25

    Breast masses occur in men far less commonly than women and are infrequently subjected to fine-needle aspiration (FNA) biopsy. Papillary lesions of the male breast are rare and are comprised of a spectrum of lesions ranging from papillary hyperplasia in gynecomastia to invasive papillary carcinoma. The following study describes the cytomorphology of papillary breast lesions in 11 men. The patients ranged in age from 23 to 78 years old and each presented with an unilateral subareolar or periareolar breast mass that varied in size from 0.5 to 3 cm. Two patients presented with bloody nipple discharge. Archival material (8-year period) from FNA biopsies of papillary lesions of the male breast was reviewed. The reviewed cases were correlated with appropriate clinicopathologic follow-up. The smears had variable cellularity but all showed papillary clusters of mammary epithelial cells with and without fibrovascular cores. Single epithelial cells with a high nuclear-to-cytoplasmic ratio and eccentric nuclei were seen in all smears; however, these were more numerous in cases of adenocarcinoma. Hemosiderin-laden macrophages were present in all cases. Nipple discharge was seen only in the 2 benign lesions. All adenocarcinomas occurred in older men. The only cytologic criteria that differentiated benign from malignant papillary lesions were marked cellularity and the presence of abundant 3-dimensional clusters. To the best of the authors' knowledge, the current series is the largest in the English literature to date that examines the cytomorphologic features of papillary breast lesions in men. Copyright 2006 American Cancer Society.

  4. In vivo confocal microscopic analysis of normal human anterior limbal stroma

    PubMed Central

    Mathews, Saumi; Chidambaram, Jaya Devi; Lanjewar, Shruti; Mascarenhas, Jeena; Prajna, Namperumalsamy Venkatesh; Muthukkaruppan, Veerappan; Chidambaranathan, Gowri Priya

    2015-01-01

    Purpose To characterize the microarchitecture of the anterior limbal stroma in healthy individuals using in vivo confocal microscopy (IVCM) and to correlate it with mesenchymal stem cells (MSCs), a component of the limbal-niche. Methods The corneal side of the superior limbus was scanned in 30 eyes of 17 normal subjects beyond the basal epithelium, deep into the stroma using a HRT III laser scanning microscope. The IVCM findings were correlated with the immunohistochemical features of MSCs in the anterior limbal stroma. Results Clusters of hyperreflective structures were observed in the anterior limbal stroma, subjacent to the basal epithelium (depth: 50.2±8.7 - 98±12.8 μm), but not in the corneal stroma. The structures showed unique morphology compared to epithelial cells, keratocytes, neurons and dendritic cells. In parallel, confocal analysis of immunostained sections showed clusters of cells, double positive for MSC specific markers (CD90 and CD105) in the anterior limbal stroma at a depth of 55.3±12.7 μm to 72±37.6 μm. The organization and distribution of the MSC clusters locates them within the hyperreflective region in the anterior limbal stroma. Conclusions The hyperreflective structures, demonstrated for the first time in the human anterior limbal stroma, probably represent an important component of the limbal-niche. Our approach of in vivo imaging may pave the way for assessing the limbal stromal health. PMID:25742388

  5. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line.

    PubMed

    Tong, Hui-Li; Li, Qing-Zhang; Gao, Xue-Jun; Yin, De-Yun

    2012-03-01

    To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.

  6. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells

    PubMed Central

    Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G.; Kuemmerle, John F.; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I.

    2014-01-01

    Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA–depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. PMID:25143399

  7. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM)-1) expression and neutrophil adhesion.

    PubMed Central

    Huang, G T; Eckmann, L; Savidge, T C; Kagnoff, M F

    1996-01-01

    The acute host response to gastrointestinal infection with invasive bacteria is characterized by an accumulation of neutrophils in the lamina propria, and neutrophil transmigration to the luminal side of the crypts. Intestinal epithelial cells play an important role in the recruitment of inflammatory cells to the site of infection through the secretion of chemokines. However, little is known regarding the expression, by epithelial cells, of molecules that are involved in interactions between the epithelium and neutrophils following bacterial invasion. We report herein that expression of ICAM-1 on human colon epithelial cell lines, and on human enterocytes in an in vivo model system, is upregulated following infection with invasive bacteria. Increased ICAM-1 expression in the early period (4-9 h) after infection appeared to result mainly from a direct interaction between invaded bacteria and host epithelial cells since it co-localized to cells invaded by bacteria, and the release of soluble factors by epithelial cells played only a minor role in mediating increased ICAM-1 expression. Furthermore, ICAM-1 was expressed on the apical side of polarized intestinal epithelial cells, and increased expression was accompanied by increased neutrophil adhesion to these cells. ICAM-1 expression by intestinal epithelial cells following infection with invasive bacteria may function to maintain neutrophils that have transmigrated through the epithelium in close contact with the intestinal epithelium, thereby reducing further invasion of the mucosa by invading pathogens. PMID:8755670

  8. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus.

    PubMed

    Gingerich, Aaron; Pang, Lan; Hanson, Jarod; Dlugolenski, Daniel; Streich, Rebecca; Lafontaine, Eric R; Nagy, Tamás; Tripp, Ralph A; Rada, Balázs

    2016-01-01

    Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.

  9. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung

    PubMed Central

    Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.

    2015-01-01

    The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985

  10. Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix.

    PubMed Central

    Sanderson, I R; Ezzell, R M; Kedinger, M; Erlanger, M; Xu, Z X; Pringault, E; Leon-Robine, S; Louvard, D; Walker, W A

    1996-01-01

    The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8755542

  11. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function

    PubMed Central

    Chichlowski, Maciej; De Lartigue, Guillaume; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2012-01-01

    Objectives Human milk oligosaccharides (HMO) are the third most abundant component of breast milk. Our laboratory has previously revealed gene clusters specifically linked to HMO metabolism in select bifidobacteria isolated from fecal samples of infants. Our objective was to test the hypothesis that growth of select bifidobacteria on HMO stimulates the intestinal epithelium. Methods Caco-2 and HT-29 cells were incubated with lactose (LAC) or HMO-grown Bifidobacterium longum subsp. infantis (B. infantis) or B. bifidum. Bacterial adhesion and translocation was measured by real-time quantitative PCR. Expression of pro- and anti-inflammatory cytokines and tight junction proteins was analyzed by real time reverse transcriptase. Distribution of tight junction proteins was measured using immunofluorescent microscopy. Results We showed that HMO-grown B. infantis had significantly higher rate of adhesion to HT-29 cells compared to B. bifidum. B. infantis also induced expression of a cell membrane glycoprotein, P-selectin glycoprotein ligand -1. Both B. infantis and B. bifidum grown on HMO caused less occludin relocalization and higher expression of anti-inflammatory cytokine, interleukin (IL)-10 compared to LAC-grown bacteria in Caco-2 cells. B. bifidum grown on HMO showed higher expression of junctional adhesion molecule and occludin in Caco-2 cell and HT-29 cells. There were no significant differences between LAC or HMO treatments in bacterial translocation. Conclusions This study provides evidence for the specific relationship between HMO-grown bifidobacteria and intestinal epithelial cells. To our knowledge, this is the first study describing HMO-induced changes in the bifidobacteria-intestinal cells interaction. PMID:22383026

  12. Remodeling of the abdominal epithelial monolayer during the larva-pupa-adult transformation of Manduca.

    PubMed

    Nardi, James B; Bee, Charles Mark; Wallace, Catherine Lee

    2018-06-01

    During metamorphosis of insect epithelial monolayers, cells die, divide, and rearrange. In Drosophila undifferentiated diploid cells destined to form the adult cuticle of each abdominal segment segregate early in development from the surrounding polyploid larval epithelial cells of that segment as eight groups of diploid histoblast cells. The larval polyploid cells are programmed to die and be replaced by divisions and rearrangements of histoblast cells. By contrast, abdominal epithelial cells of Manduca larvae form a monolayer of cells representing different ploidy levels with no definitive segregation of diploid cells destined to form adult structures. These epithelial cells of mixed ploidy levels produce a thick smooth larval cuticle with sparsely distributed sensory bristles. Adult descendants of this larval monolayer produce a thinner cuticle with densely packed scale cells. The transition between these differentiated states of Manduca involves divisions of cells, changes in ploidy levels, and sorting of certain polyploid cells into circular rosette patches to minimize contacts of these polyploid cells with surrounding cells of equal or smaller size. Cells within the rosettes and some surrounding cells are destined to die and be replaced by remaining epithelial cells of uniform size and ploidy at pupa-adult apolysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Obesity Suppresses Cell-Competition-Mediated Apical Elimination of RasV12-Transformed Cells from Epithelial Tissues.

    PubMed

    Sasaki, Ayana; Nagatake, Takahiro; Egami, Riku; Gu, Guoqiang; Takigawa, Ichigaku; Ikeda, Wataru; Nakatani, Tomoya; Kunisawa, Jun; Fujita, Yasuyuki

    2018-04-24

    Recent studies have revealed that newly emerging transformed cells are often eliminated from epithelial tissues via cell competition with the surrounding normal epithelial cells. This cancer preventive phenomenon is termed epithelial defense against cancer (EDAC). However, it remains largely unknown whether and how EDAC is diminished during carcinogenesis. In this study, using a cell competition mouse model, we show that high-fat diet (HFD) feeding substantially attenuates the frequency of apical elimination of RasV12-transformed cells from intestinal and pancreatic epithelia. This process involves both lipid metabolism and chronic inflammation. Furthermore, aspirin treatment significantly facilitates eradication of transformed cells from the epithelial tissues in HFD-fed mice. Thus, our work demonstrates that obesity can profoundly influence competitive interaction between normal and transformed cells, providing insights into cell competition and cancer preventive medicine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    PubMed Central

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  15. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    NASA Astrophysics Data System (ADS)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  16. 5-Oxo-ETE from Nasal Epithelial Cells Upregulates Eosinophil Cation Protein by Eosinophils in Nasal Polyps in vitro.

    PubMed

    Lin, Lin; Chen, Zheng; Tang, Xinyue; Dai, Fei; Wei, Jinjin; Sun, Guangbin

    2018-06-13

    5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent eosinophil chemoattractant and activator that is synthesized not only in inflammatory cells but also in bronchial epithelial cells. The purpose of this study is to clarify whether 5-oxo-ETE can promote the production of eosinophil cation protein (ECP) by eosinophils in nasal polyps (NP) in vitro, and whether normal nasal epithelial cells can produce this lipid mediator in response to oxidative stress. Nasal biopsy samples were obtained from normal subjects or subjects with chronic rhinosinusitis with NP. The infiltration of eosinophil in NP was detected and cultured. After that, concentrations of ECP in eosinophil and NP cultures were evaluated after the treatment of 5-oxo-ETE or 5-oxo-ETE + its receptor (OXER) antagonist, pertussis toxin (PT). Then we studied the synthesis of 5-oxo-ETE after H2O2 stimulation by normal nasal epithelial cells and by epithelial cells of NP alone in the cultures, and also determined the OXER expression in NP. The number of infiltrative eosinophils in NP was increased. The ECP levels in eosinophil and NP cultures were enhanced after the administration of 5-oxo-ETE, and decreased by the PT treatment. 5-Oxo-ETE was upregulated in the cultures of nasal epithelial cells in the presence of H2O2 and of NP epithelial cells alone. The OXER was expressed in inflammatory cells, and not in epithelial cells. 5-Oxo-ETE produced by nasal epithelial cells may play a role in the formation and development of NP. © 2018 S. Karger AG, Basel.

  17. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  18. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration.

    PubMed

    Lin, Ko-Jo; Loi, Mei-Xue; Lien, Gi-Shih; Cheng, Chieh-Feng; Pao, Hsiang-Yin; Chang, Yun-Chuang; Ji, Andrea Tung-Qian; Ho, Jennifer Hui-Chun

    2013-06-14

    Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 10(5)) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The therapeutic effect of the topical administration of OFSCs was superior to that of the IL injection. OFSCs from the IL injection clustered in the limbal area and central corneal epithelium, which was associated with a persistent corneal haze. Topical OFSC administration is a simple, non-surgical route for stem cell delivery to promote corneal tissue regeneration through ameliorating acute inflammation and corneal epithelial differentiation. The limbal area serves as a niche for OFSCs differentiating into corneal epithelial cells in the first week, while the stroma is a potential site for anti-inflammation of OFSCs. Inhibition of corneal inflammation is related to corneal transparency.

  19. Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration

    PubMed Central

    2013-01-01

    Introduction Topical administration of eye drops is the major route for drug delivery to the cornea. Orbital fat-derived stem cells (OFSCs) possess an in vitro corneal epithelial differentiation capacity. Both the safety and immunomodulatory ability of systemic OFSC transplantation were demonstrated in our previous work. In this study, we investigated the safety, therapeutic effect, and mechanism(s) of topical OFSC administration in an extensive alkali-induced corneal wound. Methods Corneal injury was created by contact of a piece of 0.5 N NaOH-containing filter paper on the corneal surface of a male Balb/c mouse for 30 s. The area of the filter paper covered the central 70% or 100% of the corneal surface. OFSCs (2 × 105) in 5 μl phosphate-buffered saline (PBS) were given by topical administration (T) twice a day or by two intralimbal (IL) injections in the right cornea, while 5 μl of PBS in the left cornea served as the control. Results Topical OFSCs promoted corneal re-epithelialization of both the limbal-sparing and limbal-involved corneal wounds. In the first three days, topical OFSCs significantly reduced alkali-induced corneal edema and stromal infiltration according to a histopathological examination. Immunohistochemistry and immunofluorescence staining revealed that transplanted cells were easily detectable in the corneal epithelium, limbal epithelium and stroma, but only some of transplanted cells at the limbal epithelium had differentiated into cytokeratin 3-expressing cells. OFSCs did not alter neutrophil (Ly6G) levels in the cornea, but significantly reduced macrophage (CD68) infiltration and inducible nitrous oxide synthetase (iNOS) production during acute corneal injury as quantified by a Western blot analysis. Continuous topical administration of OFSCs for seven days improved corneal transparency, and this was accompanied by diffuse stromal engraftment of transplanted cells and differentiation into p63-expressing cells at the limbal area. The therapeutic effect of the topical administration of OFSCs was superior to that of the IL injection. OFSCs from the IL injection clustered in the limbal area and central corneal epithelium, which was associated with a persistent corneal haze. Conclusions Topical OFSC administration is a simple, non-surgical route for stem cell delivery to promote corneal tissue regeneration through ameliorating acute inflammation and corneal epithelial differentiation. The limbal area serves as a niche for OFSCs differentiating into corneal epithelial cells in the first week, while the stroma is a potential site for anti-inflammation of OFSCs. Inhibition of corneal inflammation is related to corneal transparency. PMID:23769140

  20. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4.

    PubMed

    Todaro, M; Lombardo, Y; Francipane, M G; Alea, M Perez; Cammareri, P; Iovino, F; Di Stefano, A B; Di Bernardo, C; Agrusa, A; Condorelli, G; Walczak, H; Stassi, G

    2008-04-01

    We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antiapoptotic factors PED, cFLIP, Bcl-xL and Bcl-2. Furthermore, we provide evidence that exogenous IL-4 was able to upregulate the expression levels of these antiapoptotic proteins and potently stabilized the growth of normal epithelial cells rendering them apoptosis resistant. In conclusion, IL-4 acts as an autocrine survival factor in epithelial cells. Our results indicate that inhibition of IL-4/IL-4R signaling may serve as a novel treatment for epithelial cancers.

  1. Bioactive interleukin-1alpha is cytolytically released from Candida albicans-infected oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H; Villar, C Cunha

    2004-12-01

    Oral epithelial cells are primary targets of Candida albicans in the oropharynx and may regulate the inflammatory host response to this pathogen. This investigation studied the mechanisms underlying interleukin-1alpha (IL-1alpha) release by oral epithelial cells and the role of IL-1alpha in regulating the mucosal inflammatory response to C. albicans. Infected oral epithelial cells released processed IL-1alpha protein in culture supernatants. The IL-1alpha generated was stored intracellularly and was released upon cell lysis. This was further supported by the fact that different C. albicans strains induced variable IL-1alpha release, depending on their cytolytic activity. IL-1alpha from C. albicans-infected oral epithelial cells upregulated proinflammatory cytokine secretion (IL-8 and GM-CSF) in uninfected oral epithelial or stromal cells. Our studies suggest that production of IL-1alpha, IL-8 and GM-CSF may take place in the oral mucosa in response to lytic infection of epithelial cells with C. albicans. This process can act as an early innate immune surveillance system and may contribute to the clinicopathologic signs of infection in the oral mucosa.

  2. Phenotypic characterization of collagen gel embedded primary human breast epithelial cells in athymic nude mice.

    PubMed

    Yang, J; Guzman, R C; Popnikolov, N; Bandyopadhyay, G K; Christov, K; Collins, G; Nandi, S

    1994-06-30

    We have developed a method to characterize the phenotypes and tumorigenicity of dissociated human breast epithelial cells. The dissociated cells were first embedded in collagen gels and subsequently transplanted subcutaneously in vivo in athymic nude mice. The transplantation of dissociated epithelial cells from reduction mammoplasties, presumed to be normal, always resulted in normal histomorphology. Epithelial cells were arranged as short tubular structures consisting of lumina surrounded by epithelial cells with an occasional more complex branching structure. These outgrowths were surrounded by intact basement membrane and were embedded in collagen gel that, at termination, contained collagenous stroma with fibroblasts and blood vessels. In contrast, transplantation of dissociated breast epithelial cells from breast cancer specimens resulted in outgrowths with an invasive pattern infiltrating the collagen gel as well as frank invasion into vascular space, nerves and muscles. These observations were made long before the subsequent palpable stage which resulted if left in the mouse for a long enough time. The dissociated human breast epithelial cells thus retained their intrinsic property to undergo morphogenesis to reflect their original phenotype when placed in a suitable environment, the collagen gel.

  3. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  4. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration

    PubMed Central

    Ray, Arja; Lee, Oscar; Win, Zaw; Edwards, Rachel M.; Alford, Patrick W.; Kim, Deok-Ho; Provenzano, Paolo P.

    2017-01-01

    Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell orientation and directional migration. Consistent with this understanding, relaxing spatial constraints to adhesion maturation either through reduction in substrate alignment density or reduction in adhesion size diminishes the contact guidance response. While such interactions allow single mesenchymal-like cells to spontaneously ‘sense' and follow topographic alignment, intercellular interactions within epithelial clusters temper anisotropic cell–substratum forces, resulting in substantially lower directional response. Overall, these results point to the control of contact guidance by a balance of cell–substratum and cell–cell interactions, modulated by cell phenotype-specific cytoskeletal arrangements. Thus, our findings elucidate how phenotypically diverse cells perceive ECM alignment at the molecular level. PMID:28401884

  5. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury

    NASA Astrophysics Data System (ADS)

    Coburn, Luke; Lopez, Hender; Schouwenaar, Irin-Maya; Yap, Alpha S.; Lobaskin, Vladimir; Gomez, Guillermo A.

    2018-03-01

    Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.

  6. Gap Junction Protein Connexin 43 Serves as a Negative Marker for a Stem Cell-Containing Population of Human Limbal Epithelial Cells

    PubMed Central

    Chen, Zhuo; Evans, W. Howard; Pflugfelder, Stephen C.; Li, De-Quan

    2010-01-01

    This study evaluated whether the gap junction protein connexin (Cx) 43 could serve as a negative cell surface marker for human corneal epithelial stem cells. Cx43 expression was evaluated in corneo-limbal tissue and primary limbal epithelial cultures. Immunofluorescent staining and laser scanning confocal microscopy showed that Cx43 was strongly expressed in the corneal and limbal suprabasal epithelial cells, but the basal cells of the limbal epithelium were negative. Cx43 antibody stained mainly large cells but not small cells in primary limbal epithelial cultures. As determined by semiquantitative reverse transcription polymerase chain reaction (PCR) and real-time PCR, Cx43 mRNA was more abundant in the corneal than limbal epithelia, and it was expressed in higher levels in mature limbal epithelial cultures. Using GAP11, a rabbit polyclonal antibody against the Cx32 extracellular loop 2 (151–187), a sequence that is highly homologous in Cx43, the Cx43dim and Cx43bright cells were selected from primary limbal epithelial cultures by fluorescence-activated cell sorting and were evaluated for stem cell properties. These Cx43dim and Cx43bright cells were confirmed by their expression levels of Cx43 protein and mRNA. The Cx43dim cells were found to contain higher percentages of slow-cycling bromodeoxyuridine (BrdU)-label retaining cells and the cells that were positive for stem cell-associated markers p63, ABCG2, and integrin β1 and negative for differentiation markers K3 and involucrin. The Cx43dim cells possessed a greater proliferative potential than Cx43bright cells and nonfractionated cells as evaluated by BrdU incorporation, colony-forming efficiency, and growth capacity. Our findings suggest that human limbal basal cells do not express connexin 43, which could serve as a negative cell surface marker for the stem cell-containing population of human limbal epithelial cells. PMID:16424398

  7. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    PubMed

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  8. Continual exposure to cigarette smoke extracts induces tumor-like transformation of human nontumor bronchial epithelial cells in a microfluidic chip.

    PubMed

    Li, Encheng; Xu, Zhiyun; Liu, Fen; Wang, Huiling; Wen, Jiabin; Shao, Shujuan; Zhang, Lichuan; Wang, Lei; Liu, Chong; Lu, Jianxin; Wang, Wenxin; Gao, Zhancheng; Wang, Qi

    2014-08-01

    Heavy cigarette smoking-related chronic obstructive pulmonary disease is an independent risk factor for lung squamous carcinoma. However, the mechanisms underlying the malignant transformation of bronchial epithelial cells are unclear. In our study, human tumor-adjacent bronchial epithelial cells were obtained from 10 cases with smoking-related chronic obstructive pulmonary disease and lung squamous carcinoma and cultured in an established microfluidic chip for continual exposure to cigarette smoke extracts (CSE) to investigate the potential tumor-like transformation and mechanisms. The integrated microfluidic chip included upstream concentration gradient generator and downstream cell culture chambers supplied by flowing medium containing different concentrations of CSE. Our results showed that continual exposure to low doses of CSE promoted cell proliferation whereas to high doses of CSE triggered cell apoptosis. Continual exposure to CSE promoted reactive oxygen species production in human epithelial cells in a dose-dependent manner. More importantly, continual exposure to low dose of CSE promoted the epithelial-to-mesenchymal transition process and anchorage-independent growth, and increased chromosome instability in bronchial epithelial cells, accompanied by activating the GRP78, NF-κB, and PI3K pathways. The established microfluidic chip is suitable for primary culture of human tumor-adjacent bronchial epithelial cells to investigate the malignant transformation. Continual exposure to low doses of CSE promoted tumor-like transformation of human nontumor bronchial epithelial cells by inducing reactive oxygen species production and activating the relevant signaling.

  9. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction.

    PubMed

    Cohen, Daniel J; Gloerich, Martijn; Nelson, W James

    2016-12-20

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.

  10. Establishment of a Human Conjunctival Epithelial Cell Line Lacking the Functional Tacstd2 Gene (An American Ophthalmological Society Thesis)

    PubMed Central

    Kinoshita, Shigeru; Kawasaki, Satoshi; Kitazawa, Koji; Shinomiya, Katsuhiko

    2012-01-01

    Purpose: To report the establishment of a human conjunctival epithelial cell line lacking the functional tumor-associated calcium signal transducer 2 (TACSTD2) gene to be used as an in vitro model of gelatinous drop-like corneal dystrophy (GDLD), a rare disease in which the corneal epithelial barrier function is significantly compromized by the loss of function mutation of the TACSTD2 gene. Methods: A small piece of conjunctival tissue was obtained from a GDLD patient. The conjunctival epithelial cells were enzymatically separated and dissociated from the tissue and immortalized by the lentiviral introduction of the SV40 large T antigen and human telomerase reverse transcriptase (hTERT) genes. Population doubling, protein expression, and transepithelial resistance (TER) analyses were performed to assess the appropriateness of the established cell line as an in vitro model for GDLD. Results: The life span of the established cell line was found to be significantly elongated compared to nontransfected conjunctival epithelial cells. The SV40 large T antigen and hTERT genes were stably expressed in the established cell line. The protein expression level of the tight junction–related proteins was significantly low compared to the immortalized normal conjunctival epithelial cell line. TER of the established cell line was found to be significantly low compared to the immortalized normal conjunctival epithelial cell line. Conclusions: Our conjunctival epithelial cell line was successfully immortalized and well mimicked several features of GDLD corneas. This cell line may be useful for the elucidation of the pathogenesis of GDLD and for the development of novel treatments for GDLD. PMID:23818740

  11. Eosinophils Promote Epithelial to Mesenchymal Transition of Bronchial Epithelial Cells

    PubMed Central

    Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N.; Suga, Shigeru; Kobayashi, Tetsu; Fujisawa, Takao; Taguchi, Osamu; Gabazza, Esteban C.

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling. PMID:23700468

  12. Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    PubMed Central

    Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina

    2015-01-01

    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  13. Activation of Neurokinin-1 Receptors during Ozone Inhalation Contributes to Epithelial Injury and Repair

    PubMed Central

    Oslund, Karen L.; Hyde, Dallas M.; Putney, Leialoha F.; Alfaro, Mario F.; Walby, William F.; Tyler, Nancy K.; Schelegle, Edward S.

    2008-01-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2′-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2′-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress–positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways. PMID:18390473

  14. Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.

    PubMed

    Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M

    1990-06-01

    It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and intestinal-type metaplastic changes of epithelial cells lining the main and interlobular ducts of the pancreas.

  15. Pathological changes of thymic epithelial cells and autoimmune disease in NZB, NZW and (NZB × NZW)F1 mice

    PubMed Central

    Vries, M. J. De; Hijmans, W.

    1967-01-01

    An extensive histological study was carried out of NZB, NZW and (NZB × NZW)F1, (BWF1), mice of all ages between birth and 18 months. The thymuses of these mice were compared to those of three normal mouse strains. The study of the NZW mice showed that these mice, although they only occasionally have weakly positive Coombs' tests, may develop a renal disease probably of an autoimmune nature, similar to that of the NZB and the BWF1 mice. Mice of all the three NZ strains developed lesions of the skin, liver, intestines, lymphatic tissues and kidneys much resembling those occurring in human systemic lupus erythematosus (SLE), neonatally thymectomized mice and, with the exception of the renal changes, the lesions of graft versus host disease. The comparative study of the thymus in autoimmune and normal strains, revealed that important changes of the large medullary epithelial cells, involved in the formation of Hassall's corpuscles, occur very early in the three autoimmune strains. In the NZB mice the large epithelial cells are severely decreased in number in the first weeks following birth. The depletion of epithelial cells could be ascribed to a secondary degeneration of these cells soon after birth. In contrast with the NZB mice, an extensive hyperplasia of the large epithelial cells and Hassall's corpuscles was observed in the NZW and BWF1 mice, and was already apparent in the newborn animal. Many of the epithelial aggregates seemed to have been invaded by lymphoid cells. Both epithelial cells and the lymphoid cells engaged in this process showed a variety of degenerative changes. As in the NZB, a depletion of epithelial cells occurred in a later phase, at the age of 8 months in the BWF1 and at 1 year in the NZW. In the majority of young mice of the normal strains invasion of islands of epithelial cells by lymphoid cells may also be observed, although this process is far less extensive than in the autoimmune strains and does not result in either epithelial hyperplasia or depletion of epithelial cells. The described phenomenon of invasion of epithelial structures in the thymus by subsequently disintegrating lymphoid cells seems to support Burnet's concept, that so-called `forbidden clones' of lymphoid cells are eliminated in the thymus. ImagesFIG. 18FIG. 19FIG. 20FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9FIG. 10FIG. 11FIG. 12FIG. 13FIG. 14FIG. 15FIG. 16FIG. 17 PMID:6020121

  16. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-05-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results.

  17. Coupling between apical tension and basal adhesion allow epithelia to collectively sense and respond to substrate topography over long distances.

    PubMed

    Broaders, Kyle E; Cerchiari, Alec E; Gartner, Zev J

    2015-12-01

    Epithelial sheets fold into complex topographies that contribute to their function in vivo. Cells can sense and respond to substrate topography in their immediate vicinity by modulating their interfacial mechanics, but the extent to which these mechanical properties contribute to their ability to sense substrate topography across length scales larger than a single cell has not been explored in detail. To study the relationship between the interfacial mechanics of single cells and their collective behavior as tissues, we grew cell-sheets on substrates engraved with surface features spanning macroscopic length-scales. We found that many epithelial cell-types sense and respond to substrate topography, even when it is locally nearly planar. Cells clear or detach from regions of local negative curvature, but not from regions with positive or no curvature. We investigated this phenomenon using a finite element model where substrate topography is coupled to epithelial response through a balance of tissue contractility and adhesive forces. The model correctly predicts the focal sites of cell-clearing and epithelial detachment. Furthermore, the model predicts that local tissue response to substrate curvature is a function of the surrounding topography of the substrate across long distances. Analysis of cell-cell and cell-substrate contact angles suggests a relationship between these single-cell interfacial properties, epithelial interfacial properties, and collective epithelial response to substrate topography. Finally, we show that contact angles change upon activation of oncogenes or inhibition of cell-contractility, and that these changes correlate with collective epithelial response. Our results demonstrate that in mechanically integrated epithelial sheets, cell contractility can be transmitted through multiple cells and focused by substrate topography to affect a behavioral response at distant sites.

  18. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    PubMed

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate corneal epithelial cell-specific differentiation. PMID:27583466

  20. Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells.

    PubMed

    Saitoh, Sayaka; Maruyama, Takeshi; Yako, Yuta; Kajita, Mihoko; Fujioka, Yoichiro; Ohba, Yusuke; Kasai, Nobuhiro; Sugama, Natsu; Kon, Shunsuke; Ishikawa, Susumu; Hayashi, Takashi; Yamazaki, Tomohiro; Tada, Masazumi; Fujita, Yasuyuki

    2017-03-21

    Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.

  1. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung.

    PubMed

    Lange, Alexander W; Sridharan, Anusha; Xu, Yan; Stripp, Barry R; Perl, Anne-Karina; Whitsett, Jeffrey A

    2015-02-01

    The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  2. Characterization of cultivated murine lacrimal gland epithelial cells

    PubMed Central

    Kobayashi, Shinya; Kawashima, Motoko; Okada, Naoko; Mishima, Kenji; Saito, Ichiro; Ito, Masataka; Shimmura, Shigeto; Tsubota, Kazuo

    2012-01-01

    Purpose To date, mouse lacrimal gland epithelial cells have been cultured successfully but only in cases involving newborn mouse lacrimal glands. In this work, we attempted to cultivate and characterize adult mouse lacrimal gland epithelial cells. Methods Lacrimal glands were removed from newborn mice (C57B/6) and isolated lacrimal gland epithelial cells were seeded onto tissue culture treated or low adherent culture dishes in Cnt-07 culture medium with or without cholera toxin. Cultivated cells were characterized by immunostaining with pan-cytokeratin, α-smooth muscle actin, and lactoferrin antibodies. Lacrimal gland cells from 7-week-old green fluorescent protein (GFP) and non-GFP (C57B/6) mice were mixed and seeded onto uncoated dishes to assess sphere-forming efficiency. Cells were also seeded onto 3T3 cell feeder layers to assess colony forming efficiency. Results Lacrimal gland epithelial cells were selectively cultured with cholera toxin, and cell type was verified by pan-cytokeratin and α-smooth muscle actin immunostaining. Sphere formation from single cells of adult mice was observed using specific medium and low adherent culture dishes. These cells could also undergo colony formation on 3T3 feeder cells. Conclusions Adult mouse lacrimal gland epithelial cells were successfully cultivated in cholera toxin-containing medium, and were observed to form spheres from single cells. PMID:22665974

  3. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG-6-Dependent Stem Cell Activation and Macrophage Switch.

    PubMed

    Di, Guohu; Du, Xianli; Qi, Xia; Zhao, Xiaowen; Duan, Haoyun; Li, Suxia; Xie, Lixin; Zhou, Qingjun

    2017-08-01

    To explore the role and mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in corneal epithelial wound healing in type 1 diabetic mice. Diabetic mice were treated with subconjunctival injections of BM-MSCs or recombinant tumor necrosis factor-α-stimulated gene/protein-6 (TSG-6). The corneal epithelial wound healing rate was examined by fluorescein staining. The mRNA and protein expression levels of TSG-6 were measured by quantitative RT-PCR and Western blot. The infiltrations of leukocytes and macrophages were analyzed by flow cytometry and immunofluoresence staining. The effect of TSG-6 was further evaluated in cultured limbal epithelial stem/progenitor cells, macrophages, and diabetic mice by short hairpin RNA (shRNA) knockdown. Local MSC transplantation significantly promoted diabetic corneal epithelial wound healing, accompanied by elevated corneal TSG-6 expression, increased corneal epithelial cell proliferation, and attenuated inflammatory response. Moreover, in cultured human limbal epithelial stem/progenitor cells, TSG-6 enhanced the colony-forming efficiency, stimulated mitogenic proliferation, and upregulated the expression level of ΔNp63. Furthermore, in diabetic mouse cornea and in vitro macrophage culture, TSG-6 alleviated leukocyte infiltration and promoted the polarization of recruited macrophages to anti-inflammatory M2 phenotypes with increased phagocytotic capacity. In addition, the promotion of epithelial stem/progenitor cell activation and macrophage polarization by MSC transplantation was largely abrogated by shRNA knockdown of TSG-6. This study provided the first evidence of TSG-6 secreted by MSCs promoting corneal epithelial wound healing in diabetic mice through activating corneal epithelial stem/progenitor cells and accelerating M2 macrophage polarization.

  4. Enterolactone modulates the ERK/NF-κB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-β-induced epithelial-mesenchymal transition.

    PubMed

    Mali, Aniket V; Joshi, Asavari A; Hegde, Mahabaleshwar V; Kadam, Shivajirao S

    2018-05-01

    Triple-negative breast cancer (TNBC) is highly metastatic, and there is an urgent unmet need to develop novel therapeutic strategies leading to the new drug discoveries against metastasis. The transforming growth factor-β (TGF-β) is known to promote the invasive and migratory potential of breast cancer cells through induction of epithelial-mesenchymal transition (EMT) via the ERK/NF-κB/Snail signaling pathway, leading to breast cancer metastasis. Targeting this pathway to revert the EMT would be an attractive, novel therapeutic strategy to halt breast cancer metastasis. Effects of enterolactone (EL) on the cell cycle and apoptosis were investigated using flow cytometry and a cleaved caspase-3 enzyme-linked immunosorbent assay (ELISA), respectively. Effects of TGF-β induction and EL treatment on the functional malignancy of MDA-MB-231 breast cancer cells were investigated using migration and chemo-invasion assays. The effects of EL on EMT markers and the ERK/NF-κB/Snail signaling pathway after TGF-β induction were studied using confocal microscopy, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and flow cytometry. Herein, we report that EL exhibits a significant antimetastatic effect on MDA-MB-231 cells by almost reverting the TGF-β-induced EMT in vitro . EL downregulates the mesenchymal markers N-cadherin and vimentin, and upregulates the epithelial markers E-cadherin and occludin. It represses actin stress fiber formation via inhibition of mitogen-activated protein kinase p-38 (MAPK-p38) and cluster of differentiation 44 (CD44). EL also suppresses ERK-1/2, NF-κB, and Snail at the mRNA and protein levels. Briefly, EL was found to inhibit TGF-β-induced EMT by blocking the ERK/NF-κB/Snail signaling pathway, which is a promising target for breast cancer metastasis therapy.

  5. Nitric Oxide Promotes Airway Epithelial Wound Repair through Enhanced Activation of MMP-9

    PubMed Central

    Bove, Peter F.; Wesley, Umadevi V.; Greul, Anne-Katrin; Hristova, Milena; Dostmann, Wolfgang R.; van der Vliet, Albert

    2007-01-01

    The airway epithelium provides a protective barrier against inhaled environmental toxins and microorganisms, and epithelial injury initiates a number of processes to restore its barrier integrity, including activation of matrix metalloproteinases such as MMP-9 (92-kD gelatinase B). Airway epithelial cells continuously produce nitric oxide (NO), which has been linked to cell migration and MMP-9 regulation in several cell types, but the importance of epithelial NO in mediating airway epithelial repair or MMP-9 activation is unknown. Using primary or immortalized human bronchial epithelial cells, we demonstrate that low concentrations of NO promote epithelial cell migration and wound repair in an in vitro wound assay, which was associated with increased localized expression and activation of MMP-9. In addition, in HBE1 cells that were stably transfected with inducible NOS (NOS2), to mimic constitutive epithelial NOS2 expression in vivo, NOS inhibition decreased epithelial wound repair and MMP-9 expression. The stimulatory effects of NO on epithelial wound repair and MMP-9 expression were dependent on cGMP-mediated pathways and were inhibited by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase. Inhibition of cGMP-dependent protein kinase (PKG) attenuated NO-mediated epithelial wound closure, but did not affect MMP-9 expression. However, pharmacologic MMP inhibition and siRNA knockdown of MMP-9 expression demonstrated the contribution of MMP-9 to NO-mediated wound closure. Overall, our results demonstrate that NOS2-derived NO contributes to airway epithelial repair by both PKG-dependent and -independent mechanisms, and involves NO-dependent expression and activation of MMP-9. PMID:16980554

  6. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis

    PubMed Central

    Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K.; Minc, Nicolas; Bellaïche, Yohanns

    2017-01-01

    The orientation of cell division along the interphase cell long-axis, the century old Hertwig’s rule, has profound roles in tissue proliferation, morphogenesis, architecture and mechanics1,2. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways3–12. At mitosis, epithelial cells usually round up to ensure faithful chromosome segregation and to promote morphogenesis1. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. We found that in Drosophila epithelia, tricellular junctions (TCJ) localize microtubule force generators, orienting cell division via the Dynein associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJ emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues. PMID:26886796

  7. Isolation of Mouse Primary Gastric Epithelial Cells to Investigate the Mechanisms of Helicobacter pylori Associated Disease.

    PubMed

    Tran, Le Son; Ferrero, Richard L

    2018-01-01

    The gastrointestinal epithelium provides the first line of defense against invading pathogens, among which Helicobacter pylori is linked to numerous gastric pathologies, including chronic gastritis and cancer. Primary gastric epithelial cells represent a useful model for the investigation of the underlying molecular and cellular mechanisms involved in these H. pylori associated diseases. In this chapter, we describe a method for the isolation of primary gastric epithelial cells from mice and detection of epithelial cell adhesion molecule (EpCAM) expression in the isolated cells.

  8. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells.more » Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.« less

  9. Characterizing mutagenesis in the hprt gene of rat alveolar epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, K.E.; Deyo, L.C.; Howard, B.W.

    1995-12-31

    A clonal selection assay was developed for mutation in the hypoxanthine-guanine phosphoribosyl transferase (hprt) gene of rat alveolar epithelial cells. Studies were conducted to establish methods for isolation and long-term culture of rat alveolar epithelial cells. When isolated by pronase digestion purified on a Nycodenz gradient and cultured in media containing 7.5% fetal bovine serum (FBS), pituitary extract, EGF, insulin, and IGF-1, rat alveolar epithelial cells could be maintained in culture for several weeks with cell doubling times of 2-4 days. The rat alveolar epithelial cell cultures were exposed in vitro to the mutagens ethylnitrosourea (ENU) and H{sub 2}O{sub 2},more » and mutation in the hprt gene was selected for by culture in the presence of the toxic purine analog, 6-thioguanine (6TG). In vitro exposure to ENU or H{sub 2}O produced a dose-dependent increase in hprt mutation frequency in the alveolar epithelial cells. To determine if the assay system could be used to evaluate mutagenesis in alveolar type II cells after in vivo mutagen or carcinogen exposure, cells were isolated from rats treated previously with ENU or {alpha}-quartz. A significant increase in hprt mutation frequency was detected in alveolar epithelial cells obtained from rats exposed to ENU or {alpha}-quartz; the latter observation is the first demonstration that crystalline silica exposure is mutagenic in vivo. In summary, these studies show that rat alveolar epithelial cells isolated by pronase digestion and Nycodenz separation techniques and cultured in a defined media can be used in a clonal selection assay for mutation in the hprt gene. This assay demonstrates that ENU and H{sub 2}O{sub 2} in vitro and ENU and {alpha}-quartz in vivo are mutagenic for rat alveolar epithelial cells. This model should be useful for investigating the genotoxic effects of chemical and physical agents on an important lung cell target for neoplastic transformation. 41 refs., 4 figs., 3 tabs.« less

  10. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets

    PubMed Central

    Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  11. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain.more » Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.« less

  12. A structure-based approach for colon gland segmentation in digital pathology

    NASA Astrophysics Data System (ADS)

    Ben Cheikh, Bassem; Bertheau, Philippe; Racoceanu, Daniel

    2016-03-01

    The morphology of intestinal glands is an important and significant indicator of the level of the severity of an inflammatory bowel disease, and has also been used routinely by pathologists to evaluate the malignancy and the prognosis of colorectal cancers such as adenocarcinomas. The extraction of meaningful information describing the morphology of glands relies on an accurate segmentation method. In this work, we propose a novel technique based on mathematical morphology that characterizes the spatial positioning of nuclei for intestinal gland segmentation in histopathological images. According to their appearance, glands can be divided into two types: hallow glands and solid glands. Hallow glands are composed of lumen and/or goblet cells cytoplasm, or filled with abscess in some advanced stages of the disease, while solid glands are composed of bunches of cells clustered together and can also be filled with necrotic debris. Given this scheme, an efficient characterization of the spatial distribution of cells is sufficient to carry out the segmentation. In this approach, hallow glands are first identified as regions empty of nuclei and surrounded by thick layers of epithelial cells, then solid glands are identified by detecting regions crowded of nuclei. First, cell nuclei are identified by color classification. Then, morphological maps are generated by the mean of advanced morphological operators applied to nuclei objects in order to interpret their spatial distribution and properties to identify candidates for glands central-regions and epithelial layers that are combined to extract the glandular structures.

  13. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.

  14. Fine-needle aspiration cytology of intraductal papillary-mucinous tumors: a retrospective analysis.

    PubMed

    Layfield, Lester J; Cramer, Harvey

    2005-01-01

    Intraductal papillary-mucinous tumor (IPMT) of the pancreas has become the accepted terminology for a group of mucin-producing epithelial proliferations lying within ectatic segments of the main pancreatic duct or its large branches. These neoplasms generally are associated with an indolent course, characteristic endoscopic ultrasonographic (EUS) findings, and a variable histo- and cytomorphology ranging from hyperplasia to carcinoma. Cytological specimens obtained by endoscopic ultrasound-guided or percutaneous fine-needle aspiration (FNA) are characterized by a background containing abundant mucin in which are entrapped single or loosely cohesive clusters of neoplastic cells characteristically showing a goblet-cell morphology. The degree of nuclear atypia, cell crowding, and cell shape varies between smears within a single case and between cases. Cytomorphological examination, when coupled with EUS features, is accurate for the diagnosis of these lesions but often it underdiagnoses the grade of the neoplasm. (c) 2005 Wiley-Liss, Inc.

  15. Cell death at the intestinal epithelial front line.

    PubMed

    Delgado, Maria Eugenia; Grabinger, Thomas; Brunner, Thomas

    2016-07-01

    The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family. © 2015 FEBS.

  16. Expression of alveolar type II cell markers in acinar adenocarcinomas and adenoid cystic carcinomas arising from segmental bronchi. A study in a heterotopic bronchogenic carcinoma model in dogs.

    PubMed Central

    TenHave-Opbroek, A. A.; Hammond, W. G.; Benfield, J. R.; Teplitz, R. L.; Dijkman, J. H.

    1993-01-01

    The type II alveolar epithelial cell is one of two pluripotential stem cell phenotypes in normal mammalian lung morphogenesis; cells manifesting this phenotype have been found to constitute bronchioloalveolar regions of canine adenocarcinomas. We now studied type II cell expression in canine acinar adenocarcinomas and adenoid cystic (bronchial gland) carcinomas, using the same bronchogenic carcinoma model (subcutaneous bronchial autografts treated with 3-methylcholanthrene). Distinctive features of type II cells are the approximately cuboid cell shape, large and roundish nucleus, immunofluorescent staining of the cytoplasm for the surfactant protein SP-A, and presence of multilamellar bodies or their precursory forms. Cells with these type II cell characteristics were found in the basal epithelial layer of all tumor lesions and in upper layers as far as the lumen, singly or in clusters; they were also found in early invasive carcinomatous lesions but not in bronchial glands or bronchial epithelium before carcinogen exposure. Immunoblots of tumor homogenates showed reactive proteins within size classes of SP-A (28 to 36 kd) or its dimeric form (56 to 72 kd). These findings and those previously reported are consistent with the concept that chemical carcinogenesis in the adult bronchial epithelium may lead to type II cell carcinomas of varying glandular (acinar, adenoidcystic or bronchioloalveolar) growth patterns. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 PMID:8386445

  17. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  18. Polarized protein transport and lumen formation during epithelial tissue morphogenesis.

    PubMed

    Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.

  19. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines

    PubMed Central

    2010-01-01

    Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822

  20. Genetics and epithelial cell dysfunction in cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  1. Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application

    PubMed Central

    Zheng, Liang; Zhi, Xuan; Cheng, Boran; Chen, Yuanyuan; Zhang, Chunxiao; Shi, Dongdong; Song, Haibin; Cai, Congli; Zhou, Pengfei; Xiong, Bin

    2017-01-01

    Introduction Circulating tumor cells (CTCs) play a crucial role in cancer metastasis. In this study, we introduced a novel isolation method by size of epithelial tumor cells (ISET) device with automatic isolation and staining procedure, named one-stop ISET (osISET) and validated its feasibility to capture CTCs from cancer patients. Moreover, we aim to investigate the correlation between clinicopathologic features and CTCs in colorectal cancer (CRC) in order to explore its clinical application. Results The capture efficiency ranged from 80.3% to 88% with tumor cells spiked into medium while 67% to 78.3% with tumor cells spiked into healthy donors’ blood. In detection blood samples of 72 CRC patients, CTCs and clusters of circulating tumor cells (CTC-clusters) were detected with a positive rate of 52.8% (38/72) and 18.1% (13/72) respectively. Moreover, CTC positive rate was associated with factors of lymphatic or venous invasion, tumor depth, lymph node metastasis and TNM stage in CRC patients (p < 0.01). Lymphocyte count and neutrophil to lymphocyte ratio (NLR) were significantly different between CTC positive and negative groups (p < 0.01). Materials and Methods The capture efficiency of the device was tested by spiking cancer cells (MCF-7, A549, SW480, Hela) into medium or blood samples of healthy donors. Blood samples of 72 CRC patients were detected by osISET device. The clinicopathologic characteristics of 72 CRC patients were collected and the association with CTC positive rate or CTC count were analyzed. Conclusions Our osISET device was feasible to capture and identify CTCs and CTC-clusters from cancer patients. In addition, our device holds a potential for application in cancer management. PMID:27935872

  2. Adherence of Lactobacillus crispatus to vaginal epithelial cells from women with or without a history of recurrent urinary tract infection.

    PubMed

    Kwok, Louisa; Stapleton, Ann E; Stamm, Walter E; Hillier, Sharon L; Wobbe, Cheryl L; Gupta, Kalpana

    2006-11-01

    Lactobacillus crispatus strain CTV-05 is a vaginal probiotic proposed for use in women with recurrent urinary tract infection to reduce vaginal colonization with Escherichia coli and the risk of urinary tract infection. However, the ability of this probiotic strain to adhere to the target mucosa, vaginal epithelial cells, has not been assessed in women with recurrent urinary tract infection. We measured the adherence of L. crispatus strain CTV-05 to vaginal epithelial cells collected from more than 100 premenopausal women with (cases) and without (controls) a history of recurrent urinary tract infection. We also examined the effects of relevant host factors on bacterial adherence. Bacterial adherence assays were performed by combining L. crispatus CTV-05 with exfoliated vaginal epithelial cells collected from 51 case women and 51 controls. L. crispatus CTV-05 adhered in high numbers to vaginal epithelial cells from women with recurrent urinary tract infection (mean adherence of 50.5 lactobacilli per vaginal epithelial cell) and controls (mean adherence of 39.4 lactobacilli per vaginal epithelial cell). Adherence was significantly higher using vaginal epithelial cells from women with a maternal history of urinary tract infection (p = 0.036) and a nonsecretor phenotype (p < 0.001), but was not significantly affected by recent spermicide use, oral contraceptive use, menstrual cycle phase or sexual activity. L. crispatus strain CTV-05 is highly adherent to vaginal epithelial cells collected from a large sample of premenopausal women with or without a history of recent recurrent urinary tract infection. These data strongly support further evaluation of this probiotic in clinical trials of women with recurrent urinary tract infection.

  3. TRPA1 channels: expression in non-neuronal murine lung tissues and dispensability for hyperoxia-induced alveolar epithelial hyperplasia.

    PubMed

    Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander

    2018-05-12

    Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.

  4. Psychosexual Intervention in Patients With Stage I-III Gynecologic or Breast Cancer

    ClinicalTrials.gov

    2018-05-25

    Ovarian Sarcoma; Ovarian Stromal Cancer; Stage I Uterine Sarcoma; Stage I Vaginal Cancer; Stage I Vulvar Cancer; Stage IA Cervical Cancer; Stage IA Endometrial Carcinoma; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Epithelial Cancer; Stage IA Ovarian Germ Cell Tumor; Stage IA Primary Peritoneal Cavity Cancer; Stage IB Cervical Cancer; Stage IB Endometrial Carcinoma; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Epithelial Cancer; Stage IB Ovarian Germ Cell Tumor; Stage IB Primary Peritoneal Cavity Cancer; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Epithelial Cancer; Stage IC Ovarian Germ Cell Tumor; Stage IC Primary Peritoneal Cavity Cancer; Stage II Endometrial Carcinoma; Stage II Gestational Trophoblastic Tumor; Stage II Uterine Sarcoma; Stage II Vaginal Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Epithelial Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIA Primary Peritoneal Cavity Cancer; Stage IIB Cervical Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Epithelial Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIB Primary Peritoneal Cavity Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Epithelial Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage IIC Primary Peritoneal Cavity Cancer; Stage III Gestational Trophoblastic Tumor; Stage III Uterine Sarcoma; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Cervical Cancer; Stage IIIA Endometrial Carcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Cervical Cancer; Stage IIIB Endometrial Carcinoma; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Endometrial Carcinoma; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Breast Cancer

  5. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    PubMed

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  6. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    PubMed Central

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  7. Candida albicans triggers interleukin-8 secretion by oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-04-01

    Oropharyngeal candidiasis is a frequent opportunistic infection associated with immunocompromised hosts. Candida albicans is the principal species responsible for this infection. Production of interleukin-8 (IL-8), by oral epithelial cells can be expected to play a major role in the recruitment and activation of professional phagocytes at the infected site. The purpose of this study was to determine whether C. albicans triggers secretion of IL-8 by oral epithelial cells in vitro and investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines (SCC4, SCC15, and OKF6/TERT-2) as well as primary gingival epithelial cells were used. Epithelial cells were cocultured with C. albicans, strains SC5314, ATCC28366 or ATCC32077, for 24-48 hr, and supernatants were analyzed for IL-8 content by ELISA. A germination-deficient mutant (efg1/efg1 cph1/cph1), otherwise isogenic to strain SC5314, was used to assess the requirement for germination in triggering IL-8 responses. In order to ascertain whether direct contact of yeast with host cells is required to trigger cytokine production, epithelial cells were separated from yeast using cell culture inserts. To test whether IL-8 secretion is dependent on IL-1alpha activity, epithelial cells were challenged with viable C. albicans in the presence or absence of neutralizing anti-IL-1alpha antibody or IL-1ra, and IL-8 secretion was measured in the supernatants. All cell lines and primary cultures responded to C. albicans with an increase in IL-8 secretion. IL-8 responses were contact-dependent, strain-specific, required yeast viability and germination into hyphae, and were in part autoregulated by IL-1alpha. Copyright 2003 Elsevier Science Ltd.

  8. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    PubMed

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Claudin-7-positive synchronous spontaneous intrahepatic cholangiocarcinoma, adenocarcinoma and adenomas of the gallbladder in a Bearded dragon (Pogona vitticeps).

    PubMed

    Jakab, Csaba; Rusvai, Miklós; Szabó, Zoltán; Gálfi, Péter; Marosán, Miklós; Kulka, Janina; Gál, János

    2011-03-01

    In this study, synchronous spontaneous, independent liver and gallbladder tumours were detected in a Bearded dragon (Pogona vitticeps). The multiple tumours consisted of intrahepatic cholangiocarcinoma as well as in situ adenocarcinoma and two adenomas of the gallbladder. The biliary epithelial cells and the cholangiocarcinoma showed membranous cross-immunoreactivity for claudin-7. The gallbladder epithelial cells, its adenoma and adenocarcinoma showed basolateral cross-reactivity for claudin-7. We think that the humanised anti-claudin-7 antibody is a good marker for the detection of different primary cholangiocellular and gallbladder tumours in Bearded dragons. The cholangiocytes, the cholangiocarcinoma, the endothelial cells of the liver and the epithelial cells and gallbladder tumours all showed claudin-5 cross-reactivity. The humanised anti-cytokeratin AE1-AE3 antibody showed cross-reactivity in the biliary epithelial cells, cholangiocarcinoma cells, epithelial cells and tumour cells of the gallbladder. It seems that this humanised antibody is a useful epithelial marker for the different neoplastic lesions of epithelial cells in reptiles. The humanised anti-α-smooth muscle actin (α-SMA) antibody showed intense cross-reactivity in the smooth muscle cells of the hepatic vessels and in the muscle layer of the gallbladder. The portal myofibroblasts, the endothelial cells of the sinusoids and the stromal cells of the cholangiocarcinoma and gallbladder tumours were positive for α-SMA. The antibovine anti-vimentin and humanised anti-Ki-67 antibodies did not show crossreactivity in the different samples from the Bearded dragon.

  10. A LGG-derived protein promotes IgA production through up-regulation of APRIL expression in intestinal epithelial cells

    PubMed Central

    Wang, Yang; Liu, Liping; Moore, Daniel J; Shen, Xi; Peek, Richard M.; Acra, Sari A; Li, Hui; Ren, Xiubao; Polk, D Brent; Yan, Fang

    2016-01-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells, leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation, this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting IgA production. p40 up-regulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells, which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfrfl/fl , but not Egfrfl/fl-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells, exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B cell class switching to IgA+ cells and IgA production, which was suppressed by APRIL receptor neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells, fecal IgA levels, IgA+B220+, IgA+CD19+, and IgA+ plasma cells in lamina propria of Egfrfl/fl, but not Egfrfl/fl-Vil-Cre mice. Thus, p40 up-regulates EGFR-dependent APRIL production in intestinal epithelial cells, which may contribute to promoting IgA production. PMID:27353252

  11. Assessment of cytologic evaluation of preputial epithelial cells as a diagnostic test for detection of adrenocortical disease in castrated ferrets.

    PubMed

    Protain, Holly J; Kutzler, Michelle A; Valentine, Beth A

    2009-05-01

    To determine whether results of cytologic evaluation of preputial epithelial cells correspond to results of a serum endocrine hormone assay and clinical signs associated with adrenocortical disease in castrated ferrets. 13 clinically normal ferrets and 8 ferrets with signs of adrenocortical disease. Blood and preputial lavage samples were collected from each ferret. Serum samples were submitted to the University of Tennessee Veterinary Diagnostic Laboratory for performance of an endocrine hormone assay. Differential epithelial cell counts were performed on preputial lavage samples to determine the percentage of cornified cells. Results of cytologic evaluation were compared with results of the endocrine hormone assay and clinical status of ferrets. The percentage of cornified preputial epithelial cells was not significantly correlated with serum 17B-estradiol or androstenedione concentration but was significantly correlated with serum 17-hydroxyprogesterone concentration (r = 0.60). The percentage of cornified preputial epithelial cells was higher in ferrets with clinical signs of adrenocortical disease (mean +/- SD, 71.3 +/- 16.9%) than in clinically normal ferrets (55.5 +/- 19.0%). Cornification of preputial epithelial cells was correlated with an increase in serum 17-hydroxyprogesterone concentration as well as clinical signs of adrenocortical disease in castrated ferrets. Additional investigation is needed to elucidate the mechanism of preputial epithelial cell cornification in castrated ferrets.

  12. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos

    PubMed Central

    Katow, Hideki

    2015-01-01

    Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069

  13. A Computational Study of the Development of Epithelial Acini: II. Necessary Conditions for Structure and Lumen Stability

    PubMed Central

    Rejniak, Katarzyna A.; Anderson, Alexander R.A.

    2013-01-01

    Simple epithelial tissues are organized as single layers of tightly packed cells that surround hollow lumens and form selective barriers separating different internal compartments of the body. The maintenance of epithelial structure and its function requires tight coordination and control of all the life processes of epithelial cells via cell-to-cell communication and signaling. These well-balanced cellular systems are, however, quite often disturbed by genetic or environmental cues that may lead to the formation of epithelial tumors (carcinomas). In fact, more than a half of all diagnosed tumors are initiated from epithelial cells. It is, therefore, important to gain a greater understanding of the factors that form and maintain the epithelial structure, as well as the features of the acinar structure that are modified during cancer development as observable in experimental and clinical research. We address these questions using the bio-mechanical model of the developing hollow epithelial acini introduced in Rejniak and Anderson (Bull. Math. Biol. 70:677–712, 2008). Here, we propose several scenarios involving various bio-mechanical interactions between neighboring cells that result in abnormal acinar development. Whenever possible, we compare our computational results with known experimental cases of mutant acini. PMID:18401665

  14. The Role of Epithelial-Mesenchymal Transition in the Formation of Normal and Neoplastic Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2011-09-01

    separating stem cell and non- stem cell populations of normal and breast cancer cells and identified EMT transcription factors most likely involved in... stem cell biology. Preliminary results directly demonstrate that transient induction of EMT increases the number of mammary epithelial stem cells...EMT and entrance into a stem - cell state. The outcome of these experiments holds important implications for the mechanisms controlling the formation of

  15. Delay of corneal epithelial wound healing and induction of keratocyte apoptosis by platelet-activating factor.

    PubMed

    Chandrasekher, Gudiseva; Ma, Xiang; Lallier, Thomas E; Bazan, Haydee E P

    2002-05-01

    To examine the role of the lipid mediator platelet-activating factor (PAF) in epithelial wound healing. A 7-mm central de-epithelializing wound was produced in rabbit corneas, and the tissue was incubated with 125 nM carbamyl PAF (cPAF), an analogue of PAF. Rabbit corneal epithelial and stromal cells were also cultured in the presence of cPAF. Cell adhesion, proliferation, and migration assays were conducted. Apoptosis was assayed by TUNEL staining on preparations of corneal tissue sections and in cells in culture. Twenty-four hours after injury, 50% of the wounded area was covered by new epithelium, whereas only 30% was covered in the presence of cPAF. At 48 hours, the epithelium completely closed the wound, but only 45% of the original wound was covered in corneas treated with cPAF. Similar inhibition of epithelial wound closure was found with human corneas incubated with PAF in organ culture. Moreover, addition of several growth factors involved in corneal wound healing, such as epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, could not overcome the inhibitory action of PAF in wound closure. Three PAF antagonists, BN50727, BN50730, and BN50739, abolished the effect of PAF. A significant increase in TUNEL-positive staining occurred in corneal stromal cells (keratocytes), which was inhibited by preincubating the corneas with PAF antagonists. However, no TUNEL-positive staining was found in epithelial cells. TUNEL-staining results in cultured stromal cells (keratocytes) and epithelial cells in first-passage cell culture were similar to those in organ-cultured corneas. In addition, PAF caused 35% to 56% inhibition of adhesion of epithelial cells to proteins of the extracellular matrix: collagen I and IV, fibronectin, and laminin. There were no significant changes in proliferation or migration of epithelial cells induced by the lipid mediator. The results suggest PAF plays an important role in preventing corneal wound healing by affecting adhesion of epithelial cells and increasing apoptosis in stromal cells. PAF antagonists could be of therapeutic importance during prolonged ocular inflammation, helping to avoid loss of corneal transparency and visual acuity.

  16. The Absence of N-Acetyl-D-glucosamine Causes Attenuation of Virulence of Candida albicans upon Interaction with Vaginal Epithelial Cells In Vitro

    PubMed Central

    Manczinger, Máté; Bocsik, Alexandra; Kocsis, Gabriella F.; Vörös, Andrea; Hegedűs, Zoltán; Marton, Annamária; Vízler, Csaba; Tubak, Vilmos; Deli, Mária; Kemény, Lajos; Nagy, István; Lakatos, Lóránt

    2015-01-01

    To better understand the molecular events underlying vulvovaginal candidiasis, we established an in vitro system. Immortalized vaginal epithelial cells were infected with live, yeast form C. albicans and C. albicans cultured in the same medium without vaginal epithelial cells were used as control. In both cases a yeast to hyphae transition was robustly induced. Whole transcriptome sequencing was used to identify specific gene expression changes in C. albicans. Numerous genes leading to a yeast to hyphae transition and hyphae specific genes were upregulated in the control hyphae and the hyphae in response to vaginal epithelial cells. Strikingly, the GlcNAc pathway was exclusively triggered by vaginal epithelial cells. Functional analysis in our in vitro system revealed that the GlcNAc biosynthesis is involved in the adherence to, and the ability to kill, vaginal epithelial cells in vitro, thus indicating the key role for this pathway in the virulence of C. albicans upon vulvovaginal candidiasis. PMID:26366412

  17. A hybrid computational model to explore the topological characteristics of epithelial tissues.

    PubMed

    González-Valverde, Ismael; García-Aznar, José Manuel

    2017-11-01

    Epithelial tissues show a particular topology where cells resemble a polygon-like shape, but some biological processes can alter this tissue topology. During cell proliferation, mitotic cell dilation deforms the tissue and modifies the tissue topology. Additionally, cells are reorganized in the epithelial layer and these rearrangements also alter the polygon distribution. We present here a computer-based hybrid framework focused on the simulation of epithelial layer dynamics that combines discrete and continuum numerical models. In this framework, we consider topological and mechanical aspects of the epithelial tissue. Individual cells in the tissue are simulated by an off-lattice agent-based model, which keeps the information of each cell. In addition, we model the cell-cell interaction forces and the cell cycle. Otherwise, we simulate the passive mechanical behaviour of the cell monolayer using a material that approximates the mechanical properties of the cell. This continuum approach is solved by the finite element method, which uses a dynamic mesh generated by the triangulation of cell polygons. Forces generated by cell-cell interaction in the agent-based model are also applied on the finite element mesh. Cell movement in the agent-based model is driven by the displacements obtained from the deformed finite element mesh of the continuum mechanical approach. We successfully compare the results of our simulations with some experiments about the topology of proliferating epithelial tissues in Drosophila. Our framework is able to model the emergent behaviour of the cell monolayer that is due to local cell-cell interactions, which have a direct influence on the dynamics of the epithelial tissue. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    PubMed Central

    Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome. PMID:23055997

  19. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration.

    PubMed

    Shariff, Sami; Shelfoon, Christopher; Holden, Neil S; Traves, Suzanne L; Wiehler, Shahina; Kooi, Cora; Proud, David; Leigh, Richard

    2017-06-01

    Airway remodeling, a characteristic feature of asthma, begins in early life. Recurrent human rhinovirus (HRV) infections are a potential inciting stimulus for remodeling. One component of airway remodeling is an increase in airway smooth muscle cell (ASMC) mass with a greater proximity of the ASMCs to the airway epithelium. We asked whether human bronchial epithelial cells infected with HRV produced mediators that are chemotactic for ASMCs. ASMC migration was investigated using the modified Boyden Chamber and the xCELLigence Real-Time Cell Analyzer (ACEA Biosciences Inc., San Diego, CA). Multiplex bead analysis was used to measure HRV-induced epithelial chemokine release. The chemotactic effects of CCL5, CXCL8, and CXCL10 were also examined. Supernatants from HRV-infected epithelial cells caused ASMC chemotaxis. Pretreatment of ASMCs with pertussis toxin abrogated chemotaxis, as did treatment with formoterol, forskolin, or 8-bromo-cAMP. CCL5, CXCL8, and CXCL10 were the most up-regulated chemokines produced by HRV-infected airway epithelial cells. When recombinant CCL5, CXCL8, and CXCL10 were used at levels found in epithelial supernatants, they induced ASMC chemotaxis similar to that seen with epithelial cell supernatants. When examined individually, CCL5 was the most effective chemokine in causing ASMC migration, and treatment of supernatant from HRV-infected epithelial cells with anti-CCL5 antibodies significantly attenuated ASMC migration. These findings suggest that HRV-induced CCL5 can induce ASMC chemotaxis and thus may contribute to the pathogenesis of airway remodeling in patients with asthma.

  20. Neuroglian stabilizes epithelial structure during Drosophila oogenesis.

    PubMed

    Wei, Jun; Hortsch, Michael; Goode, Scott

    2004-08-01

    The vertebrate L1 family of cell adhesion molecules (CAMs) and their fly homolog, Neuroglian, are members of the immunoglobulin (Ig) superfamily of CAMs. In general, Ig CAMs have been found to play critical roles in mediating axon guidance. One Ig CAM, NCAM, has also been implicated in maintaining epithelial integrity and suppressing metastatic dissemination of tumor cells. Other Ig CAMs, such as Nrg, are also expressed in epithelia. We thus tested the hypothesis that, like NCAM, Nrg might also be required for maintaining epithelial integrity and for inhibiting tumor invasion. We used the Drosophila follicular epithelium to determine the function of Nrg in vivo in maintaining epithelial structure, and in regulating the motility of migrating border cells and invasive tumorous follicle cells. Nrg(167) is expressed on the lateral membrane of follicle cells. Loss of Nrg(167) causes border cells to delay delamination and causes other follicle cells to delaminate inappropriately. The delaminated cells have aberrant epithelial polarity manifested as severe mislocalization of apical and basal membrane proteins, and uniform localization of lateral membrane proteins. Furthermore, loss of Nrg(167) dramatically enhances the invasive phenotype associated with loss of Discs Large, a neoplastic tumor suppressor. These results indicate that Nrg(167) stabilizes epithelial polarity by regulating junctional adhesion and function in normal and tumorous epithelia. Our data also suggest that Ig superfamily members have significant functional redundancy in maintaining epithelial polarity, with individual members playing subtle, unique roles during epithelial morphogenesis. Copyright 2004 Wiley-Liss, Inc.

  1. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis

    PubMed Central

    Rodríguez-Fraticelli, Alejo E.; Auzan, Muriel; Alonso, Miguel A.; Bornens, Michel

    2012-01-01

    Epithelial organ morphogenesis involves sequential acquisition of apicobasal polarity by epithelial cells and development of a functional lumen. In vivo, cells perceive signals from components of the extracellular matrix (ECM), such as laminin and collagens, as well as sense physical conditions, such as matrix stiffness and cell confinement. Alteration of the mechanical properties of the ECM has been shown to promote cell migration and invasion in cancer cells, but the effects on epithelial morphogenesis have not been characterized. We analyzed the effects of cell confinement on lumen morphogenesis using a novel, micropatterned, three-dimensional (3D) Madin-Darby canine kidney cell culture method. We show that cell confinement, by controlling cell spreading, limits peripheral actin contractility and promotes centrosome positioning and lumen initiation after the first cell division. In addition, peripheral actin contractility is mediated by master kinase Par-4/LKB1 via the RhoA–Rho kinase–myosin II pathway, and inhibition of this pathway restores lumen initiation in minimally confined cells. We conclude that cell confinement controls nuclear–centrosomal orientation and lumen initiation during 3D epithelial morphogenesis. PMID:22965908

  2. Murine epithelial cells: isolation and culture.

    PubMed

    Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R

    2004-08-01

    We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.

  3. Neurogenic effects of β-amyloid in the choroid plexus epithelial cells in Alzheimer's disease.

    PubMed

    Bolos, Marta; Spuch, Carlos; Ordoñez-Gutierrez, Lara; Wandosell, Francisco; Ferrer, Isidro; Carro, Eva

    2013-08-01

    β-amyloid (Aβ) can promote neurogenesis, both in vitro and in vivo, by inducing neural progenitor cells to differentiate into neurons. The choroid plexus in Alzheimer's disease (AD) is burdened with amyloid deposits and hosts neuronal progenitor cells. However, neurogenesis in this brain tissue is not firmly established. To investigate this issue further, we examined the effect of Aβ on the neuronal differentiation of choroid plexus epithelial cells in several experimental models of AD. Here we show that Aβ regulates neurogenesis in vitro in cultured choroid plexus epithelial cells as well as in vivo in the choroid plexus of APP/Ps1 mice. Treatment with oligomeric Aβ increased proliferation and differentiation of neuronal progenitor cells in cultured choroid plexus epithelial cells, but decreased survival of newly born neurons. These Aβ-induced neurogenic effects were also observed in choroid plexus of APP/PS1 mice, and detected also in autopsy tissue from AD patients. Analysis of signaling pathways revealed that pre-treating the choroid plexus epithelial cells with specific inhibitors of TyrK or MAPK diminished Aβ-induced neuronal proliferation. Taken together, our results support a role of Aβ in proliferation and differentiation in the choroid plexus epithelial cells in Alzheimer's disease.

  4. GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

    1992-11-01

    Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

  5. Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on αv integrins.

    PubMed

    Carduner, L; Leroy-Dudal, J; Picot, C R; Gallet, O; Carreiras, F; Kellouche, S

    2014-08-01

    At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features.

  6. Cranberry Products Inhibit Adherence of P-Fimbriated Escherichia Coli to Primary Cultured Bladder and Vaginal Epithelial Cells

    PubMed Central

    Gupta, K.; Chou, M. Y.; Howell, A.; Wobbe, C.; Grady, R.; Stapleton, A. E.

    2011-01-01

    Purpose Cranberry proanthocyanidins have been identified as possible inhibitors of Escherichia coli adherence to uroepithelial cells. However, little is known about the dose range of this effect. Furthermore, it has not been studied directly in the urogenital system. To address these issues we tested the effect of a cranberry powder and proanthocyanidin extract on adherence of a P-fimbriated uropathogenic E. coli isolate to 2 new urogenital model systems, namely primary cultured bladder epithelial cells and vaginal epithelial cells. Materials and Methods E. coli IA2 was pre-incubated with a commercially available cranberry powder (9 mg proanthocyanidin per gm) or with increasing concentrations of proanthocyanidin extract. Adherence of E. coli IA2 to primary cultured bladder epithelial cells or vaginal epithelial cells was measured before and after exposure to these products. Results Cranberry powder decreased mean adherence of E. coli IA2 to vaginal epithelial cells from 18.6 to 1.8 bacteria per cell (p <0.001). Mean adherence of E. coli to primary cultured bladder epithelial cells was decreased by exposure to 50 μg/ml proanthocyanidin extract from 6.9 to 1.6 bacteria per cell (p <0.001). Inhibition of adherence of E. coli by proanthocyanidin extract occurred in linear, dose dependent fashion over a proanthocyanidin concentration range of 75 to 5 μg/ml. Conclusions Cranberry products can inhibit E. coli adherence to biologically relevant model systems of primary cultured bladder and vaginal epithelial cells. This effect occurs in a dose dependent relationship. These findings provide further mechanistic evidence and biological plausibility for the role of cranberry products for preventing urinary tract infection. PMID:17509358

  7. [Establishment of goat limbal stem cell strain expressing Venus fluorescent protein and construction of limbal epithelial sheets].

    PubMed

    Yin, Jiqing; Liu, Wenqiang; Liu, Chao; Zhao, Guimin; Zhang, Yihua; Liu, Weishuai; Hua, Jinlian; Dou, Zhongying; Lei, Anmin

    2010-12-01

    The integrity and transparency of cornea plays a key role in vision. Limbal Stem Cells (LSCs) are precursors of cornea, which are responsible for self-renewal and replenishing corneal epithelium. Though it is successful to cell replacement therapy for impairing ocular surface by Limbal Stem Cell Transplantation (LSCT), the mechanism of renew is unclear after LSCT. To real time follow-up the migration and differentiation of corneal transplanted epithelial cells after transplanting, we transfected venus (a fluorescent protein gene) into goat LSCs, selected with G418 and established a stable transfected cell line, named GLSC-V. These cells showed green fluorescence, and which could maintain for at least 3 months. GLSC-V also were positive for anti-P63 and anti-Integrinbeta1 antibody by immunofluorescent staining. We founded neither GLSC-V nor GLSCs expressed keratin3 (k3) and keratinl2 (k12). However, GLSC-V had higher levels in expression of p63, pcna and venus compared with GLSCs. Further, we cultivated the cells on denude amniotic membrane to construct tissue engineered fluorescent corneal epithelial sheets. Histology and HE staining showed that the constructed fluorescent corneal epithelial sheets consisted of 5-6 layers of epithelium. Only the lowest basal cells of fluorescent corneal epithelial sheets expressed P63 analyzed by immunofluorescence, but not superficial epithelial cells. These results showed that our constructed fluorescent corneal epithelial sheets were similar to the normal corneal epithelium in structure and morphology. This demonstrated that they could be transplanted for patents with corneal impair, also may provide a foundation for the study on the mechanisms of corneal epithelial cell regeneration after LSCT.

  8. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    PubMed

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Lung epithelial stem cells and their niches: Fgf10 takes center stage.

    PubMed

    Volckaert, Thomas; De Langhe, Stijn

    2014-01-01

    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).

  10. Effect of steroid treatment of endometrial cells on blastocyst development during co-culture.

    PubMed

    Goff, A K; Smith, L C

    1998-04-01

    The objective of this study was to determine if treatment of endometrial cells with progesterone or progesterone plus estradiol would improve the development of bovine embryos to the blastocyst stage during co-culture. After IVF, bovine embryos were cultured with oviduct epithelial cells for 3 d. In Experiment 1 the embryos were cultured with a) oviduct epithelial cells; b) endometrial epithelial cells (EEC); c) EEC with 10 ng/ml progesterone (EEC + P); or d) EEC with 10 ng/ml progesterone and 10 pg/ml estradiol (EEC + PE) for 6 d. In Experiment 2 the embryos were cultured with a) oviduct epithelial cells; b) endometrial stromal cells (ESC); c) ESC with 10 ng/ml progesterone (ESC + P); or d) ESC with 10 ng/ml progesterone and 10 pg/ml estradiol (ESC + PE) for 6 d. Results from Experiment 1 showed that endometrial epithelial cells supported development to the blastocyst stage as effectively as the oviduct cells; however, the size of the blastocysts was smaller for the endometrial cells. There was no effect of steroid hormone treatment on development to the blastocyst stage or on the size of the blastocysts. Results from Experiment 2 showed that stromal cells supported development to the blastocyst stage as effectively as oviduct cells. The hatching rate was lower when the embryos were co-cultured with stromal cells than oviduct epithelial cells; but there was no effect of steroid treatment. These data show that untreated endometrial epithelial cells are as effective as oviduct cells in maintaining embryo development to the blastocyst stage. However, embryo development was not improved by steroid treatment of the cells.

  11. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    PubMed

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  12. Characterization of primary cultures of adult human epididymis epithelial cells.

    PubMed

    Leir, Shih-Hsing; Browne, James A; Eggener, Scott E; Harris, Ann

    2015-03-01

    To establish cultures of epithelial cells from all regions of the human epididymis to provide reagents for molecular approaches to functional studies of this epithelium. Experimental laboratory study. University research institute. Epididymis from seven patients undergoing orchiectomy for suspected testicular cancer without epididymal involvement. Human epididymis epithelial cells harvested from adult epididymis tissue. Establishment of a robust culture protocol for adult human epididymal epithelial cells. Cultures of caput, corpus, and cauda epithelial cells were established from epididymis tissue of seven donors. Cells were passaged up to eight times and maintained differentiation markers. They were also cryopreserved and recovered successfully. Androgen receptor, clusterin, and cysteine-rich secretory protein 1 were expressed in cultured cells, as shown by means of immunofluorescence, Western blot, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The distribution of other epididymis markers was also shown by means of qRT-PCR. Cultures developed transepithelial resistance (TER), which was androgen responsive in the caput but androgen insensitive in the corpus and cauda, where unstimulated TER values were much higher. The results demonstrate a robust in vitro culture system for differentiated epithelial cell types in the caput, corpus, and cauda of the human epididymis. These cells will be a valuable resource for molecular analysis of epididymis epithelial function, which has a pivotal role in male fertility. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye.

    PubMed

    Kadmiel, Mahita; Janoshazi, Agnes; Xu, Xiaojiang; Cidlowski, John A

    2016-11-01

    Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function. Published by Elsevier Ltd.

  14. Identification and Characterization of Mesenchymal-Epithelial Progenitor-Like Cells in Normal and Injured Rat Liver

    PubMed Central

    Liu, Daqing; Yovchev, Mladen I.; Zhang, Jinghang; Alfieri, Alan A.; Tchaikovskaya, Tatyana; Laconi, Ezio; Dabeva, Mariana D.

    2016-01-01

    In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood. By using RT-PCR analysis and immunofluorescence microscopy, we describe the presence of rare Thy1+ cells in the liver lobule of normal animals, occasionally forming small collections of up to 20 cells. These cells constitute a small portion (1.7% to 1.8%) of nonparenchymal cells and reveal a mixed mesenchymal-epithelial phenotype, expressing E-cadherin, cytokeratin 18, and desmin. The most potent mitogens for mesenchymal-epithelial Thy1+ cells in vitro are the inflammatory cytokines interferon γ, IL-1, and platelet-derived growth factor-BB, which are not produced by Thy1+ cells. Thy1+ cells express all typical mesenchymal stem cell and hepatic progenitor cell markers and produce growth factor and cytokine mRNA (Hgf, Il6, Tgfa, and Tweak) for proteins that maintain oval cell growth and differentiation. Under appropriate conditions, mesenchymal-epithelial cells differentiate in vitro into hepatocyte-like cells. In this study, we show that the adult rat liver harbors a small pool of endogenous mesenchymal-epithelial cells not recognized previously. In the quiescent state, these cells express both mesenchymal and epithelial cell markers. They behave like hepatic stem cells/progenitors with dual phenotype, exhibiting high plasticity and long-lasting proliferative activity. PMID:25447047

  15. Patients with inflammatory bowel disease (IBD) reveal increased induction capacity of intracellular interferon-gamma (IFN-γ) in peripheral CD8+ lymphocytes co-cultured with intestinal epithelial cells

    PubMed Central

    Bisping, G; Lügering, N; Lütke-Brintrup, S; Pauels, H -G; Schürmann, G; Domschke, W; Kucharzik, T

    2001-01-01

    Intestinal epithelial cells seem to play a key role during IBD. The network of cellular interactions between epithelial cells and lamina propria mononuclear cells is still incompletely understood. In the following co-culture model we investigated the influence of intestinal epithelial cells on cytokine expression of T cytotoxic and T helper cells from patients with IBD and healthy controls. Peripheral blood mononuclear cells (PBMC) were purified by a Ficoll–Hypaque gradient followed by co-incubation with epithelial cells in multiwell cell culture insert plates in direct contact as well as separated by transwell filters. We used Caco-2 cells as well as freshly isolated colonic epithelia obtained from surgical specimens. Three-colour immunofluorescence flow cytometry was performed after collection, stimulation and staining of PBMC with anti-CD4, anti-CD8, anti-IFN-γ and anti-IL-4. Patients with IBD (Crohn's disease (CD), n = 12; ulcerative colitis (UC), n = 16) and healthy controls (n = 10) were included in the study. After 24 h of co-incubation with Caco-2 cells we found a significant increase of IFN-γ-producing CD8+ lymphocytes in patients with IBD. In contrast, healthy controls did not respond to the epithelial stimulus. No significant differences could be found between CD and UC or active and inactive disease. A significant increase of IFN-γ+/CD8+ lymphocytes in patients with UC was also seen after direct co-incubation with primary cultures of colonic crypt cells. The observed epithelial–lymphocyte interaction seems to be MHC I-restricted. No significant epithelial cell-mediated effects on cytokine expression were detected in the PBMC CD4+ subsets. Patients with IBD—even in an inactive state of disease—exert an increased capacity for IFN-γ induction in CD8+ lymphocytes mediated by intestinal epithelial cells. This mechanism may be important during chronic intestinal inflammation, as in the case of altered mucosal barrier function epithelial cells may become targets for IFN-γ-producing CD8+ lymphocytes. PMID:11167992

  16. Gene expression profiling of single cells on large-scale oligonucleotide arrays

    PubMed Central

    Hartmann, Claudia H.; Klein, Christoph A.

    2006-01-01

    Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717

  17. Gluten affects epithelial differentiation-associated genes in small intestinal mucosa of coeliac patients

    PubMed Central

    Juuti-Uusitalo, K; Mäki, M; Kainulainen, H; Isola, J; Kaukinen, K

    2007-01-01

    In coeliac disease gluten induces an immunological reaction in genetically susceptible patients, and influences on epithelial cell proliferation and differentiation in the small-bowel mucosa. Our aim was to find novel genes which operate similarly in epithelial proliferation and differentiation in an epithelial cell differentiation model and in coeliac disease patient small-bowel mucosal biopsy samples. The combination of cDNA microarray data originating from a three-dimensional T84 epithelial cell differentiation model and small-bowel mucosal biopsy samples from untreated and treated coeliac disease patients and healthy controls resulted in 30 genes whose mRNA expression was similarly affected. Nine of 30 were located directly or indirectly in the receptor tyrosine kinase pathway starting from the epithelial growth factor receptor. Removal of gluten from the diet resulted in a reversion in the expression of 29 of the 30 genes in the small-bowel mucosal biopsy samples. Further characterization by blotting and labelling revealed increased epidermal growth factor receptor and beta-catenin protein expression in the small-bowel mucosal epithelium in untreated coeliac disease patients compared to healthy controls and treated coeliac patients. We found 30 genes whose mRNA expression was affected similarly in the epithelial cell differentiation model and in the coeliac disease patient small-bowel mucosal biopsy samples. In particular, those genes involved in the epithelial growth factor-mediated signalling pathways may be involved in epithelial cell differentiation and coeliac disease pathogenesis. The epithelial cell differentiation model is a useful tool for studying gene expression changes in the crypt–villus axis. PMID:17888028

  18. Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils.

    PubMed

    Baldwin, Andrew K; Cain, Stuart A; Lennon, Rachel; Godwin, Alan; Merry, Catherine L R; Kielty, Cay M

    2014-01-01

    Here, we show that epithelial-mesenchymal status influences how cells deposit extracellular matrix. Retinal pigmented epithelial (RPE) cells that expressed high levels of E-cadherin and had cell-cell junctions rich in zona occludens (ZO)-1, β-catenin and heparan sulfate, required syndecan-4 but not fibronectin or protein kinase C α (PKCα) to assemble extracellular matrix (fibrillin microfibrils and perlecan). In contrast, RPE cells that strongly expressed mesenchymal smooth muscle α-actin but little ZO-1 or E-cadherin, required fibronectin (like fibroblasts) and PKCα, but not syndecan-4. Integrins α5β1 and/or α8β1 and actomyosin tension were common requirements for microfibril deposition, as was heparan sulfate biosynthesis. TGFβ, which stimulates epithelial-mesenchymal transition, altered gene expression and overcame the dependency on syndecan-4 for microfibril deposition in epithelial RPE cells, whereas blocking cadherin interactions disrupted microfibril deposition. Renal podocytes had a transitional phenotype with pericellular β-catenin but little ZO-1; they required syndecan-4 and fibronectin for efficient microfibril deposition. Thus, epithelial-mesenchymal status modulates microfibril deposition.

  19. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina; Lien, Kathy; Tugizov, Sharof M.

    2018-01-01

    Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30–40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission. PMID:29277006

  20. Simultaneous detection of colonic epithelial cells in portal venous and peripheral blood during colorectal cancer surgery.

    PubMed

    Tien, Yu-Wen; Lee, Po-Huang; Wang, Shih-Ming; Hsu, Su-Ming; Chang, King-Jen

    2002-01-01

    This study was designed to show, in certain patients, that colonic epithelial cells can be present in peripheral blood while absent in portal venous blood. The circulating colorectal epithelial cells were detected by a reverse transcriptase-polymerase chain reaction assay, which involved amplifying guanylyl cyclase C transcripts. Portal venous and peripheral blood samples were obtained at intervals from 58 patients undergoing colorectal cancer surgery. Circulating colonic epithelial cells were more frequently detected in portal venous blood than in peripheral blood only before mobilization of the tumor-bearing colon segment in patients with tumors of Stage B. In five other patients, before mobilization of their tumor-bearing colon segments, and in another three patients, during the mobilization, colorectal epithelial cells were detected in peripheral blood but not in portal venous blood. These eight patients had Stage C or D tumors. In 8 of 58 patients, colorectal epithelial cells were detected in peripheral but not in portal venous blood. Metastatic deposits in lymphatic vessels or liver might be the source of these cells.

  1. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche.

    PubMed

    Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.

  2. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction

    PubMed Central

    Cohen, Daniel J.; Gloerich, Martijn; Nelson, W. James

    2016-01-01

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell–cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin–mediated cell–cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell–cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue–material interfaces. PMID:27930308

  3. Effect of doxycycline on epithelial-mesenchymal transition via the p38/Smad pathway in respiratory epithelial cells.

    PubMed

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2017-03-01

    Doxycycline has antibacterial and anti-inflammatory effects, and it also suppresses collagen biosynthesis. This study aimed to confirm the effects and mechanism of doxycycline on transforming growth factor (TGF) beta 1 induced epithelial-mesenchymal transition and cell migration in A549 and primary nasal epithelial cells. A 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay and phalloidin-fluorescein isothiocyanate staining were used to evaluate cytotoxicity and cellular morphologic changes. Western blot and immunofluorescence staining were used to determine the expression levels of E-cadherin, vimentin, alpha-smooth muscle actin, fibronectin, phosphorylated Smad2/3, and mitogen-activated protein kinases. Scratch and transwell migration assays were used to assess cellular migration ability. Doxycycline (0-10 μg/mL) had no significant cytotoxic effects in A549 and primary nasal epithelial cells. Increased expression of mesenchymal markers, including vimentin, alpha-smooth muscle actin, and fibronectin in TGF beta 1 induced A549 cells were downregulated by doxycycline treatment. In contrast, E-cadherin expression was upregulated in TGF beta 1 induced A549 cells. An in vitro cell migration assay showed that doxycycline also inhibited the ability of TGF beta 1 induced migration. Doxycycline treatment suppressed the activation of Smad2/3 and p38, whereas its inhibitory effects were similar to each element-specific inhibitor in A549 and primary nasal epithelial cells. Doxycycline inhibited TGF beta 1 induced epithelial-to-mesenchymal transition and migration by targeting Smad2/3 and p38 signal pathways in respiratory epithelial cells.

  4. Papillary Tubal Hyperplasia. The Putative Precursor of Ovarian Atypical Proliferative (Borderline) Serous Tumors, Noninvasive Implants and Endosalpingiosis

    PubMed Central

    Kurman, Robert J.; Vang, Russell; Junge, Jette; Hannibal, Charlotte Gerd; Kjaer, Susanne K.; Shih, Ie-Ming

    2011-01-01

    In contrast to the controversy regarding the terminology and behavior of ovarian noninvasive low-grade serous tumors (atypical proliferative serous tumor [APST] and serous borderline tumor [SBT]), little attention has been directed to their origin. Similarly, until recently, proliferative lesions in the fallopian tube have not been extensively studied. The recent proposal that ovarian high-grade serous carcinomas are derived from intraepithelial carcinoma in the fallopian tube prompted us to evaluate the possible role of the fallopian tube in the genesis of low-grade serous tumors. We have identified a lesion, designated “papillary tubal hyperplasia (PTH)”, characterized by small rounded clusters of tubal epithelial cells and small papillae, with or without associated psammoma bodies, that are present within the tubal lumen and which are frequently associated with APSTs. Twenty-two cases in this study were selected from a population-based study in Denmark of approximately 1000 patients with low-grade ovarian serous tumors in whom implants were identified on the fallopian tube. Seven additional cases were seen recently in consultation at The Johns Hopkins Hospital (JHH). These 7 cases were not associated with an ovarian tumor. Papillary tubal hyperplasia was found in 20 (91%) of the 22 cases in the Danish study. Based on this association of PTH with APSTs with implants and the close morphologic resemblance of PTH, not only to the primary ovarian APSTs but also to the noninvasive epithelial implants and endosalpingiosis, we speculate that the small papillae and clusters of cells from the fallopian tubes implant on ovarian and peritoneal surfaces to produce these lesions. The 7 JHH cases of PTH that were not associated with an ovarian tumor support the view that PTH is the likely precursor lesion. We propose a model for the development of ovarian and extraovarian low-grade serous proliferations (APST, noninvasive epithelial implants and endosalpingiosis) that postulates that all of these lesions are derived from PTH, which appears to be induced by chronic inflammation. If this hypothesis is confirmed, then it can be concluded that low- and high-grade ovarian tumors develop from tubal epithelium and involve the ovary secondarily. PMID:21997682

  5. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells.

    PubMed

    Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi

    2017-06-01

    The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem cell.

  6. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells.

    PubMed

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M; Wells, Alan

    2016-07-07

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due to malignant metastases in breast cancer.

  7. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  8. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  9. Studying cytokinesis in Drosophila epithelial tissues.

    PubMed

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Detection and characterization of invasive circulating tumor cells derived from men with metastatic castration-resistant prostate cancer.

    PubMed

    Friedlander, Terence W; Ngo, Vy T; Dong, Huan; Premasekharan, Gayatri; Weinberg, Vivian; Doty, Shaun; Zhao, Qiang; Gilbert, Elizabeth G; Ryan, Charles J; Chen, Wen-Tien; Paris, Pamela L

    2014-05-15

    The Vitatex cell-adhesion matrix (CAM) platform allows for isolation of invasive circulating tumor cells (iCTCs). Here we sought to determine the utility of prostate-specific membrane antigen (PSMA) as a metastatic castration-resistant prostate cancer (mCRPC) iCTC biomarker, to identify solitary cells and clusters of iCTCs expressing either epithelial, mesenchymal, or stem cell markers, and to explore the feasibility of iCTC epigenomic analysis. CTCs were isolated and enumerated simultaneously using the Vitatex and CellSearch platforms in 23 men with mCRPC. CAM-avid iCTCs were identified as nucleated cells capable of CAM uptake, but without detectable expression of hematopoietic lineage (HL) markers including CD45. iCTCs were enumerated immunocytochemically (ICC) and by flow cytometry. Whole-genome methylation status was determined for iCTCs using the Illumina HumanMethylation27 BeadChip. Thirty-four samples were collected for iCTC analysis. A median of 27 (range 0-800) and 23 (range 2-390) iCTCs/mL were detected by ICC and flow, respectively. In a subset of 20 samples, a median of seven CTCs/mL (range 0-85) were detected by the CellSearch platform compared to 26 by the CAM platform. iCTC clusters were observed in 17% of samples. iCTCs expressing PSMA as well as markers of EMT and stemness were detectable. The iCTC methylation profile highly resembled mCRPC. More CTCs were recovered using the CAM platform than the CellSearch platform, and the CAM platform allowed for the detection of iCTC clusters, iCTCs expressing EMT and stem-cell markers, and characterization of the iCTC methylome. Correlation with clinical data in future studies may yield further insight into the functional significance of these findings. © 2013 UICC.

  11. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    PubMed

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface impedance sensing. Our findings suggest that some of the e-cig liquids/aerosols containing flavoring chemicals can cause significant loss of epithelial barrier function and proinflammatory response in lung cells.

  12. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  13. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  14. Leptin expression in human mammary epithelial cells and breast milk.

    PubMed

    Smith-Kirwin, S M; O'Connor, D M; De Johnston, J; Lancey, E D; Hassink, S G; Funanage, V L

    1998-05-01

    Leptin has recently been shown to be produced by the human placenta and potentially plays a role in fetal and neonatal growth. Many functions of the placenta are replaced by the mammary gland in terms of providing critical growth factors for the newborn. In this study, we show that leptin is produced by human mammary epithelial cells as revealed by RT/PCR analysis of total RNA from mammary gland and immunohistochemical staining of breast tissue, cultured mammary epithelial cells, and secretory epithelial cells present in human milk. We also verify that immunoreactive leptin is present in whole milk at 30- to 150-fold higher concentrations than skim milk. We propose that leptin is secreted by mammary epithelial cells in milk fat globules, which partition into the lipid portion of breast milk.

  15. Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation

    PubMed Central

    Azimova, Dinara R.

    2016-01-01

    Despite extensive knowledge about the transcriptional regulation of stem cell differentiation, less is known about the role of dynamic cytosolic cues. We report that an increase in intracellular pH (pHi) is necessary for the efficient differentiation of Drosophila adult follicle stem cells (FSCs) and mouse embryonic stem cells (mESCs). We show that pHi increases with differentiation from FSCs to prefollicle cells (pFCs) and follicle cells. Loss of the Drosophila Na+–H+ exchanger DNhe2 lowers pHi in differentiating cells, impairs pFC differentiation, disrupts germarium morphology, and decreases fecundity. In contrast, increasing pHi promotes excess pFC cell differentiation toward a polar/stalk cell fate through suppressing Hedgehog pathway activity. Increased pHi also occurs with mESC differentiation and, when prevented, attenuates spontaneous differentiation of naive cells, as determined by expression of microRNA clusters and stage-specific markers. Our findings reveal a previously unrecognized role of pHi dynamics for the differentiation of two distinct types of stem cell lineages, which opens new directions for understanding conserved regulatory mechanisms. PMID:27821494

  16. Aberrant Notch1-dependent effects on glomerular parietal epithelial cells promotes collapsing focal segmental glomerulosclerosis with progressive podocyte loss.

    PubMed

    Ueno, Toshiharu; Kobayashi, Namiko; Nakayama, Makiko; Takashima, Yasutoshi; Ohse, Takamoto; Pastan, Ira; Pippin, Jeffrey W; Shankland, Stuart J; Uesugi, Noriko; Matsusaka, Taiji; Nagata, Michio

    2013-06-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is a progressive kidney disease characterized by glomerular collapse with epithelial hyperplasia. Here we used a transgenic mouse model of cFSGS with immunotoxin-induced podocyte-specific injury to determine the role for Notch signaling in its pathogenesis. The mice exhibited progressive loss of podocytes and severe proteinuria concomitant with histological features of cFSGS. Hyperplastic epithelium was negative for genetic podocyte tags, but positive for the parietal epithelial cell marker claudin-1, and expressed Notch1, Jagged1, and Hes1 mRNA and protein. Enhanced Notch mRNA expression induced by transforming growth factor-β1 in cultured parietal epithelial cells was associated with mesenchymal markers (α-smooth muscle actin, vimentin, and Snail1). Notch inhibition in vitro suppressed these phenotypic transcripts and Notch-dependent cell migration. Moreover, Notch inhibition in vivo significantly decreased parietal epithelial cell lesions but worsened proteinuria and histopathology in our cFSGS model. Thus, aberrant Notch1-mediated parietal epithelial cell migration with phenotypic changes appears to underlie the pathogenesis of cFSGS. Parietal epithelial cell hyperplasia may also represent an adaptive response to compensate for a disrupted filtration barrier with progressive podocyte loss.

  17. The molecular chaperone alphaA-crystallin enhances lens epithelial cell growth and resistance to UVA stress.

    PubMed

    Andley, U P; Song, Z; Wawrousek, E F; Bassnett, S

    1998-11-20

    alphaA-Crystallin (alphaA) is a member of the small heat shock protein (sHSP) family and has the ability to prevent denatured proteins from aggregating in vitro. Lens epithelial cells express relatively low levels of alphaA, but in differentiated fiber cells, alphaA is the most abundant soluble protein. The lenses of alphaA-knock-out mice develop opacities at an early age, implying a critical role for alphaA in the maintenance of fiber cell transparency. However, the function of alpha-crystallin in the lens epithelium is unknown. To investigate the physiological function of alphaA in lens epithelial cells, we used the following two systems: alphaA knock-out (alphaA(-/-)) mouse lens epithelial cells and human lens epithelial cells that overexpress alphaA. The growth rate of alphaA(-/-) mouse lens epithelial cells was reduced by 50% compared with wild type cells. Cell cycle kinetics, measured by fluorescence-activated cell sorter analysis of propidium iodide-stained cells, indicated a relative deficiency of alphaA(-/-) cells in the G2/M phases. Exposure of mouse lens epithelial cells to physiological levels of UVA resulted in an increase in the number of apoptotic cells in the cultures. Four hours after irradiation the fraction of apoptotic cells in the alphaA(-/-) cultures was increased 40-fold over wild type. In cells lacking alphaA, UVA exposure modified F-actin, but actin was protected in cells expressing alphaA. Stably transfected cell lines overexpressing human alphaA were generated by transfecting extended life span human lens epithelial cells with the mammalian expression vector construct pCI-neoalphaA. Cells overexpressing alphaA were resistant to UVA stress, as determined by clonogenic survival. alphaA remained cytoplasmic after exposure to either UVA or thermal stress indicating that, unlike other sHSPs, the protective effect of alphaA was not associated with its relocalization to the nucleus. These results indicate that alphaA has important cellular functions in the lens over and above its well characterized role in refraction.

  18. Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon.

    PubMed

    Inan, M S; Tolmacheva, V; Wang, Q S; Rosenberg, D W; Giardina, C

    2000-12-01

    The transcription factor nuclear factor (NF)-kappaB regulates the expression of genes that can influence cell proliferation and death. Here we analyze the contribution of NF-kappaB to the regulation of epithelial cell turnover in the colon. Immunohistochemical, immunoblot, and DNA binding analyses indicate that NF-kappaB complexes change as colonocytes mature: p65-p50 complexes predominate in proliferating epithelial cells of the colon, whereas the p50-p50 dimer is prevalent in mature epithelial cells. NF-kappaB1 (p50) knockout mice were used to study the role of NF-kappaB in regulating epithelial cell turnover. Knockout animals lacked detectable NF-kappaB DNA binding activity in isolated epithelial cells and had significantly longer crypts with a more extensive proliferative zone than their wild-type counterparts (as determined by proliferating cell nuclear antigen staining and in vivo bromodeoxyuridine labeling). Gene expression profiling reveals that the NF-kappaB1 knockout mice express the potentially growth-enhancing tumor necrosis factor (TNF)-alpha and nerve growth factor-alpha genes at elevated levels, with in situ hybridization localizing some of the TNF-alpha expression to epithelial cells. TNF-alpha is NF-kappaB regulated, and its upregulation in NF-kappaB1 knockouts may result from an alleviation of p50-p50 repression. NF-kappaB complexes may therefore influence cell proliferation in the colon through their ability to selectively activate and/or repress gene expression.

  19. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    PubMed Central

    Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.

    2017-01-01

    Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172

  20. Cellular Migration and Invasion Uncoupled: Increased Migration Is Not an Inexorable Consequence of Epithelial-to-Mesenchymal Transition

    PubMed Central

    Schaeffer, Daneen; Somarelli, Jason A.; Hanna, Gabi; Palmer, Gregory M.

    2014-01-01

    Metastatic dissemination requires carcinoma cells to detach from the primary tumor and invade through the basement membrane. To acquire these characteristics, epithelial tumor cells undergo epithelial-to-mesenchymal transitions (EMT), whereby cells lose polarity and E-cadherin-mediated cell-cell adhesion. Post-EMT cells have also been shown, or assumed, to be more migratory; however, there have been contradictory reports on an immortalized human mammary epithelial cell line (HMLE) that underwent EMT. In the context of carcinoma-associated EMT, it is not yet clear whether the change in migration and invasion must be positively correlated during EMT or whether enhanced migration is a necessary consequence of having undergone EMT. Here, we report that pre-EMT rat prostate cancer (PC) and HMLE cells are more migratory than their post-EMT counterparts. To determine a mechanism for increased epithelial cell migration, gene expression analysis was performed and revealed an increase in epidermal growth factor receptor (EGFR) expression in pre-EMT cells. Indeed, inhibition of EGFR in PC epithelial cells slowed migration. Importantly, while post-EMT PC and HMLE cell lines are less migratory, both remain invasive in vitro and, for PC cells, in vivo. Our study demonstrates that enhanced migration is not a phenotypic requirement of EMT, and migration and invasion can be uncoupled during carcinoma-associated EMT. PMID:25002532

  1. Intestinal tuft cells regulate the ATM mediated DNA Damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury.

    PubMed

    Chandrakesan, Parthasarathy; May, Randal; Weygant, Nathaniel; Qu, Dongfeng; Berry, William L; Sureban, Sripathi M; Ali, Naushad; Rao, Chinthalapally; Huycke, Mark; Bronze, Michael S; Houchen, Courtney W

    2016-11-23

    Crypt epithelial survival and regeneration after injury require highly coordinated complex interplay between resident stem cells and diverse cell types. The function of Dclk1 expressing tuft cells regulating intestinal epithelial DNA damage response for cell survival/self-renewal after radiation-induced injury is unclear. Intestinal epithelial cells (IECs) were isolated and purified and utilized for experimental analysis. We found that small intestinal crypts of Villin Cre ;Dclk1 f/f mice were hypoplastic and more apoptotic 24 h post-total body irradiation, a time when stem cell survival is p53-independent. Injury-induced ATM mediated DNA damage response, pro-survival genes, stem cell markers, and self-renewal ability for survival and restitution were reduced in the isolated intestinal epithelial cells. An even greater reduction in these signaling pathways was observed 3.5 days post-TBI, when peak crypt regeneration occurs. We found that interaction with Dclk1 is critical for ATM and COX2 activation in response to injury. We determined that Dclk1 expressing tuft cells regulate the whole intestinal epithelial cells following injury through paracrine mechanism. These findings suggest that intestinal tuft cells play an important role in regulating the ATM mediated DNA damage response, for epithelial cell survival/self-renewal via a Dclk1 dependent mechanism, and these processes are indispensable for restitution and function after severe radiation-induced injury.

  2. Ultrastructural study on the differentiation and the fate of M cells in follicle-associated epithelium of rat Peyer's patch.

    PubMed

    Onishi, Sachiko; Yokoyama, Toshifumi; Chin, Keigi; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Hoshi, Nobuhiko; Kitagawa, Hiroshi

    2007-05-01

    The differentiation process of immature microvillous epithelial cells to M cells and the fate of M cells in the follicle-associated epithelium (FAE) of the mucosa-associated lymphoid tissues are still unclear. In this study, the differentiation process and the fate of M cells were clarified in rat Peyer's patches under a transmission electron microscope. Almost all immature epithelial cells were found to possess long, slender microvilli, which gradually shortened, thickened and dispersed as the immature epithelial cells migrated away from the crypt orifices. These morphological changes started in the centers and moved to the peripheries of the apical surfaces of epithelial cells, accompanied by the protrusion of apical cytoplasm out of the terminal web. During these changes, the bundles of microfilaments of microvilli never shortened, and both small vesicles in the apical cytoplasm and tiny invaginations of the apical membranes were found. The intraepithelial migrating cells gradually accumulated to form typical intraepithelial pockets. In all FAE, there was no morphological sign of cell death in M cells. The rearrangement of microfilament bundles, the reconstruction of microvilli and the disappearance of pockets resulted in the transformation of M cells into microvillous epithelial cells. These serial ultrastructural changes suggest that M cells are a temporal and transitional cell type caused by the active engulfment of luminal substances and that when the engulfment ceases, the M cells transform into mature microvillous epithelial cells.

  3. Alk5-Mediated Transforming Growth Factor β Signaling Acts Upstream of Fibroblast Growth Factor 10 To Regulate the Proliferation and Maintenance of Dental Epithelial Stem Cells▿

    PubMed Central

    Zhao, Hu; Li, Sha; Han, Dong; Kaartinen, Vesa; Chai, Yang

    2011-01-01

    Mouse incisors grow continuously throughout life. This growth is supported by the division of dental epithelial stem cells that reside in the cervical loop region. Little is known about the maintenance and regulatory mechanisms of dental epithelial stem cells. In the present study, we investigated how transforming growth factor β (TGF-β) signaling-mediated mesenchymal-epithelial cell interactions control dental epithelial stem cells. We designed two approaches using incisor organ culture and bromodeoxyuridine (BrdU) pulse-chase experiments to identify and evaluate stem cell functions. We show that the loss of the TGF-β type I receptor (Alk5) in the cranial neural crest-derived dental mesenchyme severely affects the proliferation of TA (transit-amplifying) cells and the maintenance of dental epithelial stem cells. Incisors of Wnt1-Cre; Alk5fl/fl mice lost their ability to continue to grow in vitro. The number of BrdU label-retaining cells (LRCs) was dramatically reduced in Alk5 mutant mice. Fgf10, Fgf3, and Fgf9 signals in the dental mesenchyme were downregulated in Wnt1-Cre; Alk5fl/fl incisors. Strikingly, the addition of exogenous fibroblast growth factor 10 (FGF10) into cultured incisors rescued dental epithelial stem cells in Wnt1-Cre; Alk5fl/fl mice. Therefore, we propose that Alk5 functions upstream of Fgf10 to regulate TA cell proliferation and stem cell maintenance and that this signaling mechanism is crucial for stem cell-mediated tooth regeneration. PMID:21402782

  4. Feasibility of obtaining breast epithelial cells from healthy women for studies of cellular proliferation.

    PubMed

    Miller, N A; Thomas, M; Martin, L J; Hedley, D W; Michal, S; Boyd, N F

    1997-05-01

    Increased dietary fat intake and rate of breast epithelial cell proliferation have each been associated with the development of breast cancer. The goal of this study was to measure the effect of a low fat, high carbohydrate diet on the rate of breast epithelial cell proliferation in women at high risk for breast cancer. Women were recruited from the intervention and control groups of a randomized low fat dietary intervention trial, breast epithelial cells were obtained by fine needle aspiration, and cell proliferation was assessed in these samples using immunofluorescent detection of Ki-67 and PCNA. The effects of needle size and study group on cell yield and cytologic features of the cells were also examined. Fifty three women (20 in the intervention group and 33 in the control group) underwent the biopsy procedure. Slides from 38 subjects were stained for Ki-67 and from 14 subjects for PCNA. No cell proliferation (fluorescence) was detected for either Ki-67 or PCNA in any of the slides. Epithelial cell yield and number of stromal fragments were greater with a larger needle size. Numbers of stromal fragments and bipolar naked nuclei were greater in the low fat as compared to the control group but no differences in epithelial cell yield were observed between the two groups. This study confirms that fine needle aspiration biopsy is a feasible method of obtaining epithelial cells from women without discrete breast masses, but suggests that cell proliferation cannot be assessed using Ki-67 and PCNA in such samples.

  5. Exosomes in Development and Therapy of Malignant Mesothelioma

    DTIC Science & Technology

    2015-09-01

    released from epithelial cells or macrophages in response to asbestos exposure can carry the information to mesothelial cells enabling the development...tumors. Our work so far demonstrated that exosomes released from asbestos -exposed epithelial cells carry a different proteomic signature than...exosomes from unexposed epithelial cells. Fluorescent-labelled exosomes injected into the tail vein of mice showed the presence of exosomes from asbestos

  6. Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target.

    PubMed

    Apps, John R; Carreno, Gabriela; Gonzalez-Meljem, Jose Mario; Haston, Scott; Guiho, Romain; Cooper, Julie E; Manshaei, Saba; Jani, Nital; Hölsken, Annett; Pettorini, Benedetta; Beynon, Robert J; Simpson, Deborah M; Fraser, Helen C; Hong, Ying; Hallang, Shirleen; Stone, Thomas J; Virasami, Alex; Donson, Andrew M; Jones, David; Aquilina, Kristian; Spoudeas, Helen; Joshi, Abhijit R; Grundy, Richard; Storer, Lisa C D; Korbonits, Márta; Hilton, David A; Tossell, Kyoko; Thavaraj, Selvam; Ungless, Mark A; Gil, Jesus; Buslei, Rolf; Hankinson, Todd; Hargrave, Darren; Goding, Colin; Andoniadou, Cynthia L; Brogan, Paul; Jacques, Thomas S; Williams, Hywel J; Martinez-Barbera, Juan Pedro

    2018-05-01

    Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. β-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP.

  7. The EMT universe: space between cancer cell dissemination and metastasis initiation.

    PubMed

    Ombrato, Luigi; Malanchi, Ilaria

    2014-01-01

    Tumor metastasis, the cause of more than 90% of cancer cell mortality, is a multistep process by which tumor cells disseminate from their primary site via local invasion and intravasation into blood or lymphatic vessels and reach secondary distant sites, where they survive and reinitiate tumor growth. Activation of a developmental program called the epithelial-to-mesenchymal transition (EMT) has been shown to be a very efficient strategy adopted by epithelial cancer cells to promote local invasion and dissemination at distant organs. Remarkably, the activation of EMT programs in epithelial cells correlates with the appearance of stemness. This finding suggests that the EMT process also drives the initial cancer cell colonization at distant sites. However, recent studies support the concept that its reverse program, a mesenchymal-to-epithelial transition, is required for efficient metastatic colonization and that EMT is not necessarily associated with stemness. This review analyzes the conflicting experimental evidence linking epithelial plasticity to stemness in the light of an "EMT gradient model," according to which the outcome of EMT program activation in epithelial cells would be bimodal: coupled to stemness during initial activation, but when forced to reach an advanced mesenchymal status, it would become incompatible with stem cell abilities.

  8. Cytotoxicity and Induction of Inflammation by Pepsin in Acid in Bronchial Epithelial Cells

    PubMed Central

    Bathoorn, Erik; Daly, Paul; Gaiser, Birgit; Sternad, Karl; Poland, Craig; MacNee, William; Drost, Ellen M.

    2011-01-01

    Introduction. Gastroesophageal reflux has been associated with chronic inflammatory diseases and may be a cause of airway remodelling. Aspiration of gastric fluids may cause damage to airway epithelial cells, not only because acidity is toxic to bronchial epithelial cells, but also since it contains digestive enzymes, such as pepsin. Aim. To study whether pepsin enhances cytotoxicity and inflammation in airway epithelial cells, and whether this is pH-dependent. Methods. Human bronchial epithelial cells were exposed to increasing pepsin concentrations in varying acidic milieus, and cell proliferation and cytokine release were assessed. Results. Cell survival was decreased by pepsin exposure depending on its concentration (F = 17.4) and pH level of the medium (F = 6.5) (both P < 0.01). Pepsin-induced interleukin-8 release was greater at lower pH (F = 5.1; P < 0.01). Interleukin-6 induction by pepsin was greater at pH 1.5 compared to pH 2.5 (mean difference 434%; P = 0.03). Conclusion. Pepsin is cytotoxic to bronchial epithelial cells and induces inflammation in addition to acid alone, dependent on the level of acidity. Future studies should assess whether chronic aspiration causes airway remodelling in chronic inflammatory lung diseases. PMID:21785693

  9. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    NASA Astrophysics Data System (ADS)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  10. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    PubMed

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  11. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells.

    PubMed

    Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G; Kuemmerle, John F; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I

    2014-10-15

    Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. © 2014 Lechuga, Baranwal, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castrationresistant prostate cancer: a report from the PETRUS prospective study

    PubMed Central

    Massard, Christophe; Oulhen, Marianne; Le Moulec, Sylvestre; Auger, Nathalie; Foulon, Stéphanie; Abou-Lovergne, Aurélie; Billiot, Fanny; Valent, Alexander; Marty, Virginie; Loriot, Yohann; Fizazi, Karim; Vielh, Philippe; Farace, Francoise

    2016-01-01

    Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs. Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients. PMID:27391263

  13. Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castration-resistant prostate cancer: A report from the PETRUS prospective study.

    PubMed

    Massard, Christophe; Oulhen, Marianne; Le Moulec, Sylvestre; Auger, Nathalie; Foulon, Stéphanie; Abou-Lovergne, Aurélie; Billiot, Fanny; Valent, Alexander; Marty, Virginie; Loriot, Yohann; Fizazi, Karim; Vielh, Philippe; Farace, Francoise

    2016-08-23

    Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs.Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients.

  14. Rho GTPases and Regulation of Cell Migration and Polarization in Human Corneal Epithelial Cells

    PubMed Central

    Hou, Aihua; Toh, Li Xian; Gan, Kah Hui; Lee, Khee Jin Ryan; Manser, Edward; Tong, Louis

    2013-01-01

    Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells. PMID:24130842

  15. CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition

    PubMed Central

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C.

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed. PMID:23437366

  16. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    PubMed

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  17. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations

    PubMed Central

    Henry, Ian; Tomancak, Pavel

    2017-01-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs. PMID:29176774

  18. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  19. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo

    PubMed Central

    Law, Ah-Lai; Vehlow, Anne; Kotini, Maria; Dodgson, Lauren; Soong, Daniel; Theveneau, Eric; Bodo, Cristian; Taylor, Eleanor; Navarro, Christel; Perera, Upamali; Michael, Magdalene; Dunn, Graham A.; Bennett, Daimark; Mayor, Roberto

    2013-01-01

    Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd’s Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo. PMID:24247431

  20. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells

    PubMed Central

    Takamura, Shiki

    2018-01-01

    Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in the lymphoid and non-lymphoid organs without recirculation through the blood. These important cells occupy and utilize unique anatomical and physiological niches that are distinct from those for other memory T cell populations, such as central memory T cells in the secondary lymphoid organs and effector memory T cells that circulate through the tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where they are optimally positioned to act as sentinels to trigger antigen-specific protection against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such as below the basement membrane, and cluster in lymphoid structures designed to optimize interactions with antigen-presenting cells upon reinfection. A key feature of TRM populations is their ability to be maintained in barrier tissues for prolonged periods of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the long-term maintenance of TRM cells in different microenvironments is dependent on multiple tissue-specific survival cues, although the specific details are poorly understood. However, not all TRM persist over the long term. Recently, we identified a new spatial niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM cells in this particular tissue. Clearly, a better understanding of the niche-dependent maintenance of TRM cells will be important for the development of vaccines designed to promote barrier immunity. In this review, we discuss recent advances in our understanding of the properties and nature of tissue-specific niches that maintain TRM cells in different tissues. PMID:29904388

  1. Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease.

    PubMed

    Randell, Scott H

    2006-11-01

    Characteristic pathologic changes in chronic obstructive pulmonary disease (COPD) include an increased fractional volume of bronchiolar epithelial cells, fibrous thickening of the airway wall, and luminal inflammatory mucus exudates, which are positively correlated with airflow limitation and disease severity. The mechanisms driving general epithelial expansion, mucous secretory cell hyperplasia, and mucus accumulation must relate to the effects of initial toxic exposures on patterns of epithelial stem and progenitor cell proliferation and differentiation, eventually resulting in a self-perpetuating, and difficult to reverse, cycle of injury and repair. In this review, current concepts in stem cell biology and progenitor-progeny relationships related to COPD are discussed, focusing on the factors, pathways, and mechanisms leading to mucous secretory cell hyperplasia and mucus accumulation in the airways. A better understanding of alterations in airway epithelial phenotype in COPD will provide a logical basis for novel therapeutic approaches.

  2. Brca1 regulates in vitro differentiation of mammary epithelial cells.

    PubMed

    Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus

    2002-07-18

    Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.

  3. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    PubMed

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  4. The Effect of Ozone on Colonic Epithelial Cells.

    PubMed

    Himuro, Hidetomo

    2018-05-21

    Due to its strong oxidation activity, ozone has been well known to kill bacteria and exert toxic effects on human tissues. At the same time, ozone is being used for the treatment of diseases such as inflammatory bowel disease in some European countries. However, the use of ozone for therapeutic purposes, despite its strong toxic effects, remains largely unexplored. Interestingly, we found that intrarectal administration of ozone gas induced transient colonic epithelial cell damage characterized by the impairment of cell survival pathways involved in DNA replication, cell cycle, and mismatch repair. However, the damaged cells were rapidly extruded from the epithelial layer, and appeared to immediately stimulate turnover of the epithelial layer in the colon. Therefore, it is possible that ozone gas is able to trigger damage-induced rapid regeneration of intestinal epithelial cells, and that this explains why ozone does not cause harmful or persistent damage in the colon.

  5. Screening of carcinoma metastasis by flow cytometry: A study of 238 cases.

    PubMed

    Acosta, Maria; Pereira, José; Arroz, Maria

    2016-05-01

    Malignant epithelial cells may be detected in different specimens, by immunophenotyping using flow cytometry (FCM). CD326 (epithelial-specific antigen, clone Ber-Ep4) was used to identify epithelial cells, CD45 to discriminate between leucocytes (positive for this antigen) and non-hematological cells (negative for this antigen), and CD33 to identify monocytes/macrophages. This combination is particularly useful in effusions to characterize large cells and distinguish between monocyte/macrophages (CD45+ CD33+ CD326-), mesothelial cells (CD45 ± (dim) CD33 - CD326-) and epithelial cells (CD45 - CD33 - CD326 +). We evaluated the efficiency of flow cytometry to detect malignant epithelial cells in 238 fresh samples, including effusions, lymph node biopsies, fine needle aspirates, bone marrow aspirates, cerebrospinal fluid, among others. These are specimens expected to lack epithelial cells. FCM results were then compared to the results of smear and cell block morphology, as well as immunocytochemistry on paraffin wax embedded cell blocks, when available. Final diagnosis was the gold standard and a very good sensitivity (96.7%) and specificity (99.3%) were obtained. We concluded that the detection of CD326 positive cells using FCM is strongly indicative of the presence of carcinoma cells. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.

  6. Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway

    PubMed Central

    Chang, Weilong; Bai, Jie; Tian, Shaobo; Ma, Muyuan; Li, Wei; Yin, Yuping; Deng, Rui; Cui, Jinyuan; Li, Jinjin; Wang, Guobin; Tao, Kaixiong

    2017-01-01

    Alcohol abuse is an important cause of gastric mucosal epithelial cell injury and gastric ulcers. A number of studies have demonstrated that autophagy, an evolutionarily conserved cellular mechanism, has a protective effect on cell survival. However, it is not known whether autophagy can protect gastric mucosal epithelial cells against the toxic effects of ethanol. In the present study, gastric mucosal epithelial cells (GES-1 cells) and Wistar rats were treated with ethanol to detect the adaptive response of autophagy. Our results demonstrated that ethanol exposure induced gastric mucosal epithelial cell damage, which was accompanied by the downregulation of mTOR signaling pathway and activation of autophagy. Suppression of autophagy with pharmacological agents resulted in a significant increase of GES-1 cell apoptosis and gastric mucosa injury, suggesting that autophagy could protect cells from ethanol toxicity. Furthermore, we evaluated the cellular oxidative stress response following ethanol treatment and found that autophagy induced by ethanol inhibited generation of reactive oxygen species and degradation of antioxidant and lipid peroxidation. In conclusion, these findings provide evidence that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate oxidative damage induced by ethanol in gastric mucosal epithelial cells. Therefore, modifying autophagy may provide a therapeutic strategy against alcoholic gastric mucosa injury. Impact statement The effect and mechanism of autophagy on ethanol-induced cell damage remain controversial. In this manuscript, we report the results of our study demonstrating that autophagy can protect gastric mucosal epithelial cells against ethanol toxicity in vitro and in vivo. We have shown that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate ethanol-induced oxidative damage in gastric mucosal epithelial cells. This study brings new and important insights into the mechanism of alcoholic gastric mucosal injury and may provide an avenue for future therapeutic strategies. PMID:28056554

  7. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells.

    PubMed

    Duan, Yajian; Ma, Gaoen; Huang, Xionggao; D'Amore, Patricia A; Zhang, Feng; Lei, Hetian

    2016-07-29

    The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Epithelial-stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues.

    PubMed

    Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi

    2014-12-01

    Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE. © 2014 The Authors.

  9. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. Inmore » the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.« less

  10. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  11. Effects of peptides on proliferative activity of retinal and pigmented epithelial cells.

    PubMed

    Khavinson, V Kh; Zemchikhina, V N; Trofimova, S V; Malinin, V V

    2003-06-01

    We studied the effects of Retinalamin (polypeptide preparation isolated from the retina) and a synthetic peptide Epithalon (Ala-Glu-Asp-Gly) on proliferative activity of retinal and pigmented epithelial cells. Experiments showed that Retinalamin and Epithalon (in certain concentrations) tissue-specifically stimulated proliferation of retinal and pigmented epithelial cell in culture.

  12. Epithelial self-defense against cancer.

    PubMed

    Yamauchi, Hajime; Fujita, Yasuyuki

    2012-11-01

    It is not clearly understood what happens at the interface between normal and transformed epithelial cells at the first step of carcinogenesis. A recent study reveals that the organized epithelial structure suppresses clonal expansion of transformed cells. Translocation from the epithelium or perturbation of intercellular adhesions may be required for transformed cells to evade the suppressive environments.

  13. EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans

    PubMed Central

    Swidergall, Marc; Solis, Norma V.; Lionakis, Michail S.; Filler, Scott G.

    2017-01-01

    Oral epithelial cells discriminate between pathogenic and non-pathogenic stimuli, and only induce an inflammatory response when they are exposed to high levels of a potentially harmful microorganism. The pattern recognition receptors (PRRs) in epithelial cells that mediate this differential response are poorly understood. Here, we demonstrate that the ephrin type-A receptor 2 (EphA2) is an oral epithelial cell PRR that binds to exposed β-glucans on the surface of the fungal pathogen Candida albicans. Binding of C. albicans to EphA2 on oral epithelial cells activates signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase signaling in an inoculum-dependent manner, and is required for induction of a pro-inflammatory and antifungal response. EphA2−/− mice have impaired inflammatory responses and reduced IL-17 signaling during oropharyngeal candidiasis, resulting in more severe disease. Our study reveals that EphA2 functions as PRR for β-glucans that senses epithelial cell fungal burden and is required for the maximal mucosal inflammatory response to C. albicans. PMID:29133884

  14. Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogata-Suetsugu, Saiko; Yanagihara, Toyoshi; Hamada, Naoki

    Background and objective: As a member of the epidermal growth factor family, amphiregulin contributes to the regulation of cell proliferation. Amphiregulin was reported to be upregulated in damaged lung tissues in patients with chronic obstructive pulmonary disease and asthma and in lung epithelial cells in a ventilator-associated lung injury model. In this study, we investigated the effect of amphiregulin on lipopolysaccharide (LPS)-induced acute lung injury in mice. Methods: Acute lung injury was induced by intranasal instillation of LPS in female C57BL/6 mice, and the mice were given intraperitoneal injections of recombinant amphiregulin or phosphate-buffered saline 6 and 0.5 h before andmore » 3 h after LPS instillation. The effect of amphiregulin on apoptosis and apoptotic pathways in a murine lung alveolar type II epithelial cell line (LA-4 cells) were examined using flow cytometry and western blotting, respectively. Results: Recombinant amphiregulin suppressed epithelial cell apoptosis in LPS-induced lung injury in mice. Western blotting revealed that amphiregulin suppressed epithelial cell apoptosis by inhibiting caspase-8 activity. Conclusion: Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury treatment through its prevention of epithelial cell apoptosis. - Highlights: • Amphiregulin suppresses epithelial cell apoptosis in LPS-induced lung injury in mice. • The mechanism relies on inhibiting caspase-8 activity. • Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury.« less

  15. Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination.

    PubMed

    MacPherson, Chad W; Shastri, Padmaja; Mathieu, Olivier; Tompkins, Thomas A; Burguière, Pierre

    2017-01-01

    Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria, Lactobacillus helveticus R0052 (Lh-R0052), Bifidobacterium longum subsp. infantis R0033 (Bl-R0033) and Bifidobacterium bifidum R0071 (Bb-R0071) individually and in combination, and of a surface-layer protein (SLP) purified from Lh-R0052, on HT-29 cells' transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of Lh-R0052 and Bb-R0071 diverged from those of Bl-R0033 and Lh-R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and Lh-R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and Lh-R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and Lh-R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic.

  16. Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke

    PubMed Central

    2010-01-01

    Background Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-γ-dependent antiviral mechanisms in epithelial cells in the airway. Methods Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-γ. Epithelial cell cytotoxicity and IFN-γ-induced signaling, gene expression, and antiviral effects against respiratory syncytial virus (RSV) were tested without and with CSE exposure. Results CSE inhibited IFN-γ-dependent gene expression in airway epithelial cells, and these effects were not due to cell loss or cytotoxicity. CSE markedly inhibited IFN-γ-induced Stat1 phosphorylation, indicating that CSE altered type II interferon signal transduction and providing a mechanism for CSE effects. A period of CSE exposure combined with an interval of epithelial cell exposure to both CSE and IFN-γ was required to inhibit IFN-γ-induced cell signaling. CSE also decreased the inhibitory effect of IFN-γ on RSV mRNA and protein expression, confirming effects on viral infection. CSE effects on IFN-γ-induced Stat1 activation, antiviral protein expression, and inhibition of RSV infection were decreased by glutathione augmentation of epithelial cells using N-acetylcysteine or glutathione monoethyl ester, providing one strategy to alter cigarette smoke effects. Conclusions The results indicate that CSE inhibits the antiviral effects of IFN-γ, thereby presenting one explanation for increased susceptibility to respiratory viral infection in individuals exposed to cigarette smoke. PMID:20504369

  17. Development of a conjunctival tissue substitute on the basis of plastic compressed collagen.

    PubMed

    Drechsler, C C; Kunze, A; Kureshi, A; Grobe, G; Reichl, S; Geerling, G; Daniels, J T; Schrader, S

    2017-03-01

    Ocular surface disorders, such as pterygium, cicatricial pemphigoid and external disruptions, can cause severe inflammation, scarring, fornix shortening as well as ankyloblepharon. Current treatments do not resolve these conditions sufficiently. The aim of this study was to evaluate clinical applicability and suitability of plastic compressed collagen to serve as a substrate for the expansion of human conjunctival epithelial cells in order to develop an epithelialized conjunctival substitute for fornix reconstruction. Human conjunctival epithelial cells were expanded on plastic compressed collagen gels. Epithelial cell characteristics were evaluated by haematoxylin and eosin staining, electron microscopy and cytokeratin expression. The expression of putative epithelial progenitor cell markers p63α, ABCG2 and CK15 was assessed by immunostaining. The proliferative capacity and clonal growth of the cells was evaluated before (P0) and after expansion (P1) on the plastic compressed collagen gels by colony forming efficiency assay. The potential clinical applicability of this gel substitutes was evaluated by assessment of their biomechanical properties as well as their surgical handling. Human conjunctival epithelial cells cultured on plastic and plastic compressed collagen gels formed a confluent cell layer and expressed CK19. The cells showed expression of the putative epithelial progenitor cell markers p63α, ABCG2 and CK15 and sustained colony forming ability. The compressed collagen gels showed a high ultimate tensile strength and elasticity and the surgical handling of gels was comparable to amniotic membrane. An epithelialized conjunctival tissue construct on the basis of compressed collagen might therefore be a promising alternative bioartificial tissue substitute for conjunctival reconstruction. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Cigarette smoke suppresses Bik to cause epithelial cell hyperplasia and mucous cell metaplasia.

    PubMed

    Mebratu, Yohannes A; Schwalm, Kurt; Smith, Kevin R; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-06-01

    Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. We screened for dysregulated expression of the Bcl-2 family members. We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis.

  19. Cigarette Smoke Suppresses Bik To Cause Epithelial Cell Hyperplasia and Mucous Cell Metaplasia

    PubMed Central

    Mebratu, Yohannes A.; Schwalm, Kurt; Smith, Kevin R.; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-01-01

    Rationale: Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. Objectives: To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. Methods: We screened for dysregulated expression of the Bcl-2 family members. Measurements and Main Results: We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. Conclusions: These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis. PMID:21317312

  20. Robust G2 pausing of adult stem cells in Hydra.

    PubMed

    Buzgariu, Wanda; Crescenzi, Marco; Galliot, Brigitte

    2014-01-01

    Hydra is a freshwater hydrozoan polyp that constantly renews its two tissue layers thanks to three distinct stem cell populations that cannot replace each other, epithelial ectodermal, epithelial endodermal, and multipotent interstitial. These adult stem cells, located in the central body column, exhibit different cycling paces, slow for the epithelial, fast for the interstitial. To monitor the changes in cell cycling in Hydra, we established a fast and efficient flow cytometry procedure, which we validated by confirming previous findings, as the Nocodazole-induced reversible arrest of cell cycling in G2/M, and the mitogenic signal provided by feeding. Then to dissect the cycling and differentiation behaviors of the interstitial stem cells, we used the AEP_cnnos1 and AEP_Icy1 transgenic lines that constitutively express GFP in this lineage. For the epithelial lineages we used the sf-1 strain that rapidly eliminates the fast cycling cells upon heat-shock and progressively becomes epithelial. This study evidences similar cycling patterns for the interstitial and epithelial stem cells, which all alternate between the G2 and S-phases traversing a minimal G1-phase. We also found interstitial progenitors with a shorter G2 that pause in G1/G0. At the animal extremities, most cells no longer cycle, the epithelial cells terminally differentiate in G2 and the interstitial progenitors in G1/G0. At the apical pole ~80% cells are post-mitotic differentiated cells, reflecting the higher density of neurons and nematocytes in this region. We discuss how the robust G2 pausing of stem cells, maintained over weeks of starvation, may contribute to regeneration. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  1. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR

    PubMed Central

    Edwards, Vonetta L.; Wang, Liang-Chun; Dawson, Valerie; Stein, Daniel C.; Song, Wenxia

    2017-01-01

    Summary Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell–cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the ‘fence’ function of the apical junction but not its ‘gate’ function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium. PMID:23279089

  2. Establishment of immortal swine kidney epithelial cells.

    PubMed

    Kwak, Sungwook; Jung, Ji-Eun; Jin, Xun; Kim, Sun-Myung; Kim, Tae-Kyung; Lee, Joong-Seob; Lee, Soo-Yeon; Pian, Xumin; You, Seungkwon; Kim, Hyunggee; Choi, Yun-Jaie

    2006-01-01

    Using normal swine kidney epithelial (SKE) cells that were shown to be senescent at passages 12 to 14, we have established one lifespan-extended cell line and two lifespan-extended cell lines by exogenous introduction of the human catalytic subunit of telomerase (hTERT) and simian virus 40 large T-antigen (SV40LT), all of which maintain epithelial morphology and express cytokeratin, a marker of epithelial cells. SV40LT- and hTERT-transduced immortal cell lines appeared to be smaller and exhibited more uniform morphology relative to primary and spontaneously immortalized SKE cells. We determined the in vitro lifespan of primary SKE cells using a standard 3T6 protocol. There were two steps of the proliferation barrier at 12 and 20, in which a majority of primary SKE cells appeared enlarged, flattened, vacuolated, and ss-galactosidase-positive, all phenotypical characteristics of senescent cells. Lifespan-extended SKE cells were eventually established from most of the cellular foci, which is indicative of spontaneous cellular conversion at passage 23. Beyond passage 25, the rate of population doubling of the established cells gradually increased. At passage 30, immortal cell lines grew faster than primary counterpart cells in 10% FBS-DMEM culture conditions, and only SV40LT-transduced immortal cells grew faster than primary and other SKE immortal cells in 0.5% FBS-DMEM. These lifespan-extended SKE cell lines failed to grow in an anchorage-independent manner in soft-agar dishes. Hence, three immortalized swine kidney epithelial cells that are not transformed would be valuable biological tools for virus propagation and basic kidney epithelial cell research.

  3. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered β1 integrin.

    PubMed

    Kim, JiHyun; Fukuto, Hana S; Brown, Deborah A; Bliska, James B; London, Erwin

    2018-01-26

    Yersinia pseudotuberculosis is a foodborne pathogenic bacterium that causes acute gastrointestinal illness, but its mechanisms of infection are incompletely described. We examined how host cell sterol composition affected Y. pseudotuberculosis uptake. To do this, we depleted or substituted cholesterol in human MDA-MB-231 epithelial cells with various alternative sterols. Decreasing host cell cholesterol significantly reduced pathogen internalization. When host cell cholesterol was substituted with various sterols, only desmosterol and 7-dehydrocholesterol supported internalization. This specificity was not due to sterol dependence of bacterial attachment to host cells, which was similar with all sterols studied. Because a key step in Y. pseudotuberculosis internalization is interaction of the bacterial adhesins invasin and YadA with host cell β1 integrin, we compared the sterol dependence of wildtype Y. pseudotuberculosis internalization with that of Δ inv , Δ yadA , and Δ inv Δ yadA mutant strains. YadA deletion decreased bacterial adherence to host cells, whereas invasin deletion had no effect. Nevertheless, host cell sterol substitution had a similar effect on internalization of these bacterial deletion strains as on the wildtype bacteria. The Δ inv Δ yadA double mutant adhered least to cells and so was not significantly internalized. The sterol structure dependence of Y. pseudotuberculosis internalization differed from that of endocytosis, as monitored using antibody-clustered β1 integrin and previous studies on other proteins, which had a more permissive sterol dependence. This study suggests that agents could be designed to interfere with internalization of Yersinia without disturbing endocytosis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Dynamic Scaling of Lipofuscin Deposition in Aging Cells

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    2011-07-01

    Lipofuscin is a membrane-bound cellular waste that can be neither degraded nor ejected from the cell but can only be diluted through cell division and subsequent growth. The fate of postmitotic (non-dividing) cells such as neurons, cardiac myocytes, skeletal muscle fibers, and retinal pigment epithelial cells (RPE) is to accumulate lipofuscin, which as an "aging pigment" has been considered a reliable biomarker for the age of cells. Environmental stress can accelerate the accumulation of lipofuscin. For example, accumulation in brain cells appears to be an important issue connected with heavy consumption of alcohol. Lipofuscin is made of free-radical-damaged protein and fat, whose abnormal accumulation is related to a range of disorders including Type IV mucolipidosis (ML4), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease, Parkinson disease, and age-related macular degeneration (AMD) which is the leading cause of blindness beyond the age of 50 years. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin. As an example of lipofuscin deposit in a given kind of postmitotic cell, we study the kinetics of lipofuscin growth in a RPE cell. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the cell the larger ones become fixed and grow by aggregation.

  5. Effect of cholesterol depletion on exocytosis of alveolar type II cells.

    PubMed

    Chintagari, Narendranath Reddy; Jin, Nili; Wang, Pengcheng; Narasaraju, Telugu Akula; Chen, Jiwang; Liu, Lin

    2006-06-01

    Alveolar epithelial type II cells secrete lung surfactant via exocytosis. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) are implicated in this process. Lipid rafts, the cholesterol- and sphingolipid-rich microdomains, may offer a platform for protein organization on the cell membrane. We tested the hypothesis that lipid rafts organize exocytotic proteins in type II cells and are essential for the fusion of lamellar bodies, the secretory granules of type II cells, with the plasma membrane. The lipid rafts, isolated from type II cells using 1% Triton X-100 and a sucrose gradient centrifugation, contained the lipid raft markers, flotillin-1 and -2, whereas they excluded the nonraft marker, Na+-K+ ATPase. SNAP-23, syntaxin 2, and VAMP-2 were enriched in lipid rafts. When type II cells were depleted of cholesterol, the association of SNAREs with the lipid rafts was disrupted and the formation of fusion pore was inhibited. Furthermore, the cholesterol-depleted plasma membrane had less ability to fuse with lamellar bodies, a process mediated by annexin A2. The secretagogue-stimulated secretion of lung surfactant from type II cells was also reduced by methyl-beta-cyclodextrin. When the raft-associated cell surface protein, CD44, was cross-linked using anti-CD44 antibodies, the CD44 clusters were observed. Syntaxin 2, SNAP-23, and annexin A2 co-localized with the CD44 clusters, which were cholesterol dependent. Our results suggested that lipid rafts may form a functional platform for surfactant secretion in alveolar type II cells, and raft integrity was essential for the fusion between lamellar bodies with the plasma membrane.

  6. Proximity Within Interphase Chromosome Contributes to the Breakpoint Distribution in Radiation-Induced Intrachromosomal Exchanges

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Uhlemeyer, Jimmy; Hada, Megumi; Asaithamby, A.; Chen, David J.; Wu, Honglu

    2015-01-01

    Previously, we reported that breaks involved in chromosome aberrations were clustered in several regions of chromosome3 in human mammary epithelial cells after exposures to either low-or high-LET radiation. In particular, breaks in certain regions of the chromosome tended to rejoin with each other to form an intrachromosome exchange event. This study tests the hypothesis that proximity within a single chromosome in interphase cell nuclei contributes to the distribution of radiation-induced chromosome breaks. Chromosome 3 in G1 human mammary epithelial cells was hybridized with the multicolor banding in situ hybridization (mBAND) probes that distinguish the chromosome in six differently colored regions, and the location of these regions was measured with a laser confocal microscope. Results of the study indicated that, on a multi-mega base pair scale of the DNA, the arrangement of chromatin was non-random. Both telomere regions tended to be located towards the exterior of the chromosome domain, whereas the centromere region towards the interior. In addition, the interior of the chromosome domain was preferentially occupied by the p-arm of the chromatin, which is consistent with our previous finding of intrachromosome exchanges involving breaks on the p-arm and in the centromere region of chromosome3. Other factors, such as the fragile sites in the 3p21 band and gene regulation, may also contribute to the breakpoint distribution in radiation-induced chromosome aberrations. Further investigations suggest that the 3D chromosome folding is cell type and culture condition dependent.

  7. Proximity within interphase chromosome contributes to the breakpoint distribution in radiation-induced intrachromosomal exchanges

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Uhlemeyer, Jimmy; Hada, Megumi; Asaithamby, A.; Chen, David J.; Wu, Honglu

    2014-07-01

    Previously, we reported that breaks involved in chromosome aberrations were clustered in several regions of chromosome 3 in human mammary epithelial cells after exposures to either low- or high-LET radiation. In particular, breaks in certain regions of the chromosome tended to rejoin with each other to form an intrachromosome exchange event. This study tests the hypothesis that proximity within a single chromosome in interphase cell nuclei contributes to the distribution of radiation-induced chromosome breaks. Chromosome 3 in G1 human mammary epithelial cells was hybridized with the multicolor banding in situ hybridization (mBAND) probes that distinguish the chromosome in six differently colored regions, and the location of these regions was measured with a laser confocal microscope. Results of the study indicated that, on a multi-mega base pair scale of the DNA, the arrangement of chromatin was non-random. Both telomere regions tended to be located towards the exterior of the chromosome domain, whereas the centromere region towards the interior. In addition, the interior of the chromosome domain was preferentially occupied by the p-arm of the chromatin, which is consistent with our previous finding of intrachromosome exchanges involving breaks on the p-arm and in the centromere region of chromosome 3. Other factors, such as the fragile sites in the 3p21 band and gene regulation, may also contribute to the breakpoint distribution in radiation-induced chromosome aberrations.

  8. Asbestos exposure induces alveolar epithelial cell plasticity through MAPK/Erk signaling.

    PubMed

    Tamminen, Jenni A; Myllärniemi, Marjukka; Hyytiäinen, Marko; Keski-Oja, Jorma; Koli, Katri

    2012-07-01

    The inhalation of asbestos fibers is considered to be highly harmful, and lead to fibrotic and/or malignant disease. Epithelial-to-mesenchymal transition (EMT) is a common pathogenic mechanism in asbestos associated fibrotic (asbestosis) and malignant lung diseases. The characterization of molecular pathways contributing to EMT may provide new possibilities for prognostic and therapeutic applications. The role of asbestos as an inducer of EMT has not been previously characterized. We exposed cultured human lung epithelial cells to crocidolite asbestos and analyzed alterations in the expression of epithelial and mesenchymal marker proteins and cell morphology. Asbestos was found to induce downregulation of E-cadherin protein levels in A549 lung carcinoma cells in 2-dimensional (2D) and 3D cultures. Similar findings were made in primary small airway epithelial cells cultured in 3D conditions where the cells retained alveolar type II cell phenotype. A549 cells also exhibited loss of cell-cell contacts, actin reorganization and expression of α-smooth muscle actin (α-SMA) in 2D cultures. These phenotypic changes were not associated with increased transforming growth factor (TGF)-β signaling activity. MAPK/Erk signaling pathway was found to mediate asbestos-induced downregulation of E-cadherin and alterations in cell morphology. Our results suggest that asbestos can induce epithelial plasticity, which can be interfered by blocking the MAPK/Erk kinase activity. Copyright © 2012 Wiley Periodicals, Inc.

  9. A simple, cost-effective method for generating murine colonic 3D enteroids and 2D monolayers for studies of primary epithelial cell function.

    PubMed

    Fernando, Elizabeth H; Dicay, Michael; Stahl, Martin; Gordon, Marilyn H; Vegso, Andrew; Baggio, Cristiane; Alston, Laurie; Lopes, Fernando; Baker, Kristi; Hirota, Simon; McKay, Derek M; Vallance, Bruce; MacNaughton, Wallace K

    2017-11-01

    Cancer cell lines have been the mainstay of intestinal epithelial experimentation for decades, due primarily to their immortality and ease of culture. However, because of the inherent biological abnormalities of cancer cell lines, many cellular biologists are currently transitioning away from these models and toward more representative primary cells. This has been particularly challenging, but recent advances in the generation of intestinal organoids have brought the routine use of primary cells within reach of most epithelial biologists. Nevertheless, even with the proliferation of publications that use primary intestinal epithelial cells, there is still a considerable amount of trial and error required for laboratories to establish a consistent and reliable method to culture three-dimensional (3D) intestinal organoids and primary epithelial monolayers. We aim to minimize the time other laboratories spend troubleshooting the technique and present a standard method for culturing primary epithelial cells. Therefore, we have described our optimized, high-yield, cost-effective protocol to grow 3D murine colonoids for more than 20 passages and our detailed methods to culture these cells as confluent monolayers for at least 14 days, enabling a wide variety of potential future experiments. By supporting and expanding on the current literature of primary epithelial culture optimization and detailed use in experiments, we hope to help enable the widespread adoption of these innovative methods and allow consistency of results obtained across laboratories and institutions. NEW & NOTEWORTHY Primary intestinal epithelial monolayers are notoriously difficult to maintain culture, even with the recent advances in the field. We describe, in detail, the protocols required to maintain three-dimensional cultures of murine colonoids and passage these primary epithelial cells to confluent monolayers in a standardized, high-yield and cost-effective manner. Copyright © 2017 the American Physiological Society.

  10. Generation of SV40-transformed rabbit tracheal-epithelial-cell-derived blastocyst by somatic cell nuclear transfer

    PubMed Central

    de Semir, D.; Maurisse, R.; Du, F.; Xu, J.; Yang, X.; Illek, B.; Gruenert, D. C.

    2013-01-01

    The prospect of developing large animal models for the study of inherited diseases, such as cystic fibrosis (CF), through somatic cell nuclear transfer (SCNT) has opened up new opportunities for enhancing our understanding of disease pathology and for identifying new therapies. Thus, the development of species-specific in vitro cell systems that will provide broader insight into organ- and cell-type-specific functions relevant to the pathology of the disease is crucial. Studies have been undertaken to establish transformed rabbit airway epithelial cell lines that display differentiated features characteristic of the primary airway epithelium. This study describes the successful establishment and characterization of two SV40-transformed rabbit tracheal epithelial cell lines. These cell lines, 5RTEo- and 9RTEo-, express the CF transmembrane conductance regulator (CFTR) gene, retain epithelial-specific differentiated morphology and show CFTR-based cAMP-dependent Cl− ion transport across the apical membrane of a confluent monolayer. Immunocytochemical analysis indicates the presence of airway cytokeratins and tight-junction proteins in the 9RTEo- cell line after multiple generations. However, the tight junctions appear to diminish in their efficacy in both cell lines after at least 100 generations. Initial SCNT studies with the 9RTEo- cells have revealed that SV40-transformed rabbit airway epithelial donor cells can be used to generate blastocysts. These cell systems provide valuable models for studying the developmental and metabolic modulation of CFTR gene expression and rabbit airway epithelial cell biology. PMID:22234514

  11. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.

    PubMed

    Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas

    2017-08-01

    Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.

  12. Transcriptional Responses of Candida albicans to Epithelial and Endothelial Cells▿ †

    PubMed Central

    Park, Hyunsook; Liu, Yaoping; Solis, Norma; Spotkov, Joshua; Hamaker, Jessica; Blankenship, Jill R.; Yeaman, Michael R.; Mitchell, Aaron P.; Liu, Haoping; Filler, Scott G.

    2009-01-01

    Candida albicans interacts with oral epithelial cells during oropharyngeal candidiasis and with vascular endothelial cells when it disseminates hematogenously. We set out to identify C. albicans genes that govern interactions with these host cells in vitro. The transcriptional response of C. albicans to the FaDu oral epithelial cell line and primary endothelial cells was determined by microarray analysis. Contact with epithelial cells caused a decrease in transcript levels of genes related to protein synthesis and adhesion, whereas contact with endothelial cells did not significantly influence any specific functional category of genes. Many genes whose transcripts were increased in response to either host cell had not been previously characterized. We constructed mutants with homozygous insertions in 22 of these uncharacterized genes to investigate their function during host-pathogen interaction. By this approach, we found that YCK2, VPS51, and UEC1 are required for C. albicans to cause normal damage to epithelial cells and resist antimicrobial peptides. YCK2 is also necessary for maintenance of cell polarity. VPS51 is necessary for normal vacuole formation, resistance to multiple stressors, and induction of maximal endothelial cell damage. UEC1 encodes a unique protein that is required for resistance to cell membrane stress. Therefore, some C. albicans genes whose transcripts are increased upon contact with epithelial or endothelial cells are required for the organism to damage these cells and withstand the stresses that it likely encounters during growth in the oropharynx and bloodstream. PMID:19700637

  13. Targeting Androgen Receptor to Suppress Macrophage-induced EMT and Benign Prostatic Hyperplasia (BPH) Development

    PubMed Central

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi

    2012-01-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68+ macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways. PMID:22915828

  14. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development.

    PubMed

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi; Jin, Jie; Chang, Chawnshang

    2012-10-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68(+) macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways.

  15. Mitochondria are targets for the antituberculosis drug rifampicin in cultured epithelial cells.

    PubMed

    Erokhina, M V; Kurynina, A V; Onishchenko, G E

    2013-10-01

    Rifampicin is a widely used drug for antituberculosis therapy. Its target is the bacterial RNA polymerase. After entry into the human or mammalian organism, rifampicin is accumulated in cells of epithelial origin (kidneys, liver, lungs) where it induces apoptosis, necrosis, and fibrosis. The purpose of this study was to determine the intracellular mechanisms leading to rifampicin-induced pathological changes and cell death. We analyzed the survival and state of the chondriome of cultured epithelial cells of the SPEV line under the influence of rifampicin. Our data show that the drug induces pronounced pathological changes in the network and ultrastructure of mitochondria, and their dysfunction results in excessive production of reactive oxygen species and release of cytochrome c. These data suggest the initiation of the mitochondrial pathway of apoptosis. Simultaneously, we observed inhibition of cell proliferation and changes in morphology of the epithelial cells toward fibroblast-like appearance, which could indicate induction of epithelial-mesenchymal transition. Thus, mitochondria are the main potential target for rifampicin in cells of epithelial origin. We suggest that similar mechanisms of pathological changes can be induced in vivo in organs and tissues accumulating rifampicin during chemotherapy of bacterial infectious diseases.

  16. [Validation of Differential Extraction Kit in forensic sexual assault cases].

    PubMed

    Wu, Dan; Cao, Yu; Xu, Yan; He, Bai-Fang; Bi, Gang; Zhou, Huai-Gu

    2009-12-01

    To evaluate the validity of Differential Extraction Kit in isolating spermatozoa and epithelial cell DNA from mixture samples. Selective lysis of spermatid and epithelial cells combined with paramagnetic particle method were applied to extract the DNA from the mock samples under controlled conditions and forensic case samples, and template DNA were analyzed by STR genotype method. This Differential Extraction Kit is efficient to obtain high quality spermatid and epithelial cell DNA from the mixture samples with different proportion of sperm to epithelial cell. The Differential Extraction Kit can be applied in DNA extraction for mixed stain from forensic sexual assault samples.

  17. Continuous tooth replacement: the possible involvement of epithelial stem cells.

    PubMed

    Huysseune, Ann; Thesleff, Irma

    2004-06-01

    Epithelial stem cells have been identified in integumental structures such as hairs and continuously growing teeth of various rodents, and in the gut. Here we propose the involvement of epithelial stem cells in the continuous tooth replacement that characterizes non-mammalian vertebrates, as exemplified by the zebrafish. Arguments are based on morphological observations of tooth renewal in the zebrafish and on the similarities between molecular control of hair and tooth formation. Dissection of the molecular cascades underlying the regulation of the epithelial stem cell niche might open perspectives for new regenerative treatment strategies in clinical dentistry. Copyright 2004 Wiley Periodicals, Inc.

  18. Emergence of an apical epithelial cell surface in vivo

    PubMed Central

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B.

    2016-01-01

    Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological and laser-dissection experiments with theoretical modelling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis. PMID:26766441

  19. [Primary culture of human normal epithelial cells].

    PubMed

    Tang, Yu; Xu, Wenji; Guo, Wanbei; Xie, Ming; Fang, Huilong; Chen, Chen; Zhou, Jun

    2017-11-28

    The traditional primary culture methods of human normal epithelial cells have disadvantages of low activity of cultured cells, the low cultivated rate and complicated operation. To solve these problems, researchers made many studies on culture process of human normal primary epithelial cell. In this paper, we mainly introduce some methods used in separation and purification of human normal epithelial cells, such as tissue separation method, enzyme digestion separation method, mechanical brushing method, red blood cell lysis method, percoll layered medium density gradient separation method. We also review some methods used in the culture and subculture, including serum-free medium combined with low mass fraction serum culture method, mouse tail collagen coating method, and glass culture bottle combined with plastic culture dish culture method. The biological characteristics of human normal epithelial cells, the methods of immunocytochemical staining, trypan blue exclusion are described. Moreover, the factors affecting the aseptic operation, the conditions of the extracellular environment, the conditions of the extracellular environment during culture, the number of differential adhesion, and the selection and dosage of additives are summarized.

  20. Activation of calcitonin gene-related peptide receptor during ozone inhalation contributes to airway epithelial injury and repair.

    PubMed

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2009-10-01

    The authors investigated the importance of the neuropeptide, calcitonin gene-related peptide (CGRP), in epithelial injury, repair, and neutrophil emigration after ozone exposure. Wistar rats were administered either a CGRP-receptor antagonist (CGRP(8-37)) or saline and exposed to 8 hours of 1-ppm ozone or filtered air with an 8-hour postexposure period. Immediately after exposure, ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, airway dissected lung lobes were stained for 5'-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Positive epithelial cells were quantified in specific airway generations. Rats treated with CGRP(8-37) had significantly reduced epithelial injury in terminal bronchioles and reduced epithelial proliferation in proximal airways and terminal bronchioles. Bronchoalveolar lavage and sections of terminal bronchioles showed no significant difference in the number of neutrophils emigrating into airways in CGRP(8-37)-treated rats. The airway epithelial cell line, HBE-1, showed no difference in the number of oxidant stress positive cells during exposure to hydrogen peroxide and a range of CGRP(8-37) doses, demonstrating no antioxidant effect of CGRP(8-37). We conclude that activation of CGRP receptors during ozone inhalation contributes to airway epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  1. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside of the crypt base stem cell niche

    PubMed Central

    Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterised by the development of mixed morphology colorectal tumours and is caused by a 40 kb duplication that results in aberrant epithelial expression of the mesenchymal Bone Morphogenetic Protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell-fate, that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem-cell properties in Lgr5 negative (non-expressing) progenitor cells that have exited the stem-cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem-cell is not the sole cell-of-origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic pre-malignant lesions with a hitherto unknown pathogenesis and these lesions can be considered the sporadic equivalents of HMPS polyps. PMID:25419707

  2. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis.

    PubMed

    Dong, Ji; Hu, Yuqiong; Fan, Xiaoying; Wu, Xinglong; Mao, Yunuo; Hu, Boqiang; Guo, Hongshan; Wen, Lu; Tang, Fuchou

    2018-03-14

    Organogenesis is crucial for proper organ formation during mammalian embryonic development. However, the similarities and shared features between different organs and the cellular heterogeneity during this process at single-cell resolution remain elusive. We perform single-cell RNA sequencing analysis of 1916 individual cells from eight organs and tissues of E9.5 to E11.5 mouse embryos, namely, the forebrain, hindbrain, skin, heart, somite, lung, liver, and intestine. Based on the regulatory activities rather than the expression patterns, all cells analyzed can be well classified into four major groups with epithelial, mesodermal, hematopoietic, and neuronal identities. For different organs within the same group, the similarities and differences of their features and developmental paths are revealed and reconstructed. We identify mutual interactions between epithelial and mesenchymal cells and detect epithelial cells with prevalent mesenchymal features during organogenesis, which are similar to the features of intermediate epithelial/mesenchymal cells during tumorigenesis. The comprehensive transcriptome at single-cell resolution profiled in our study paves the way for future mechanistic studies of the gene-regulatory networks governing mammalian organogenesis.

  3. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  4. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and thatmore » a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.« less

  5. Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Prioleau, John C.; Stampfer, Martha R.; Rhim, Johng S.

    1992-07-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  6. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  7. Zinc transport by respiratory epithelial cells and interaction with iron homeostasis.

    PubMed

    Deng, Zhongping; Dailey, Lisa A; Soukup, Joleen; Stonehuerner, Jacqueline; Richards, Judy D; Callaghan, Kimberly D; Yang, Funmei; Ghio, Andrew J

    2009-10-01

    Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn(2+) transport interacts with iron homeostasis in these same cells. Zn(2+) uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn(2+) release occurred in the 4 h immediately following cell exposure to ZnSO(4). Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO(4). Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn(2+). Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-alpha, IFN-gamma, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.

  8. House Dust Mite Der p 1 Effects on Sinonasal Epithelial Tight Junctions

    PubMed Central

    Henriquez, Oswaldo A.; Beste, Kyle Den; Hoddeson, Elizabeth K.; Parkos, Charles A.; Nusrat, Asma; Wise, Sarah K.

    2013-01-01

    Background Epithelial permeability is highly dependent upon the integrity of tight junctions, cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Methods Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen versus control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of tight junction proteins was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Results Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1 exposed cultured sinonasal cells versus controls. Conclusion Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. PMID:23592402

  9. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions.

    PubMed

    Henriquez, Oswaldo A; Den Beste, Kyle; Hoddeson, Elizabeth K; Parkos, Charles A; Nusrat, Asma; Wise, Sarah K

    2013-08-01

    Epithelial permeability is highly dependent upon the integrity of tight junctions, which are cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen vs control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of TJPs was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1-exposed cultured sinonasal cells vs controls. Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. © 2013 ARS-AAOA, LLC.

  10. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    PubMed

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  11. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, C.; Nettesheim, P.; Barrett, J.C.

    1987-04-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injectedmore » into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of approx. = 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor.« less

  12. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonicalmore » Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.« less

  13. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis

    PubMed Central

    Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398

  14. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    PubMed

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  15. Lactobacillus acidophilus contributes to a healthy environment for vaginal epithelial cells.

    PubMed

    Pi, Woojin; Ryu, Jae-Sook; Roh, Jaesook

    2011-09-01

    Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.

  16. Single cell network profiling assay in bladder cancer.

    PubMed

    Covey, Todd M; Vira, Manish A; Westfall, Matt; Gulrajani, Michael; Cholankeril, Michelle; Okhunov, Zhamshid; Levey, Helen R; Marimpietri, Carol; Hawtin, Rachael; Fields, Scott Z; Cesano, Alessandra

    2013-04-01

    The aim of this study was to assess the feasibility of applying the single cell network profiling (SCNP) assay to the examination of signaling networks in epithelial cancer cells, using bladder washings from 29 bladder cancer (BC) and 15 nonbladder cancer (NC) subjects. This report describes the methods we developed to detect rare epithelial cells (within the cells we collected from bladder washings), distinguish cancer cells from normal epithelial cells, and reproducibly quantify signaling within these low frequency cancer cells. Specifically, antibodies against CD45, cytokeratin, EpCAM, and cleaved-PARP (cPARP) were used to differentiate nonapoptotic epithelial cells from leukocytes, while measurements of DNA content to determine aneuploidy (DAPI stain) allowed for distinction between tumor and normal epithelial cells. Signaling activity in the PI3K and MAPK pathways was assessed by measuring intracellular levels of p-AKT and p-ERK at baseline and in response to pathway modulation; 66% (N = 19) of BC samples and 27% (N = 4) of NC samples met the "evaluable" criteria, i.e., at least 400,000 total cells available upon sample receipt with >2% of cells showing an epithelial phenotype. The majority of epithelial cells detected in BC samples were nonapoptotic and all signaling data were generated from identified cPARP negative cells. In four of 19 BC samples but in none of the NC specimens, SCNP assay identified epithelial cancer cells with a quantifiable increase in epidermal growth factor-induced p-AKT and p-ERK levels. Furthermore, preincubation with the PI3K inhibitor GDC-0941 reduced or completely inhibited basal and epidermal growth factor-induced p-AKT but, as expected, had no effect on p-ERK levels. This study demonstrates the feasibility of applying SCNP assay using multiparametric flow cytometry to the functional characterization of rare, bladder cancer cells collected from bladder washing. Following assay standardization, this method could potentially serve as a tool for disease characterization and drug development in bladder cancer and other solid tumors. Copyright © 2013 International Society for Advancement of Cytometry.

  17. Characterization of Amniotic Stem Cells

    PubMed Central

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio

    2014-01-01

    Abstract The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow–derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow–derived MSCs. The sorted TRA1-60–positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60–negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells. PMID:25068631

  18. PGE2 /EP4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles.

    PubMed

    Lin, Meng-Chieh; Chen, Shih-Yin; Tsai, Ho-Min; He, Pei-Lin; Lin, Yen-Chun; Herschman, Harvey; Li, Hua-Jung

    2017-02-01

    Prostaglandin E 2 (PGE 2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE 2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE 2 /prostaglandin E receptor 4 (EP 4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP 4 ) antagonism. EP 4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP 4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP 4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP 4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP 4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE 2 /EP 4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP 4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444. © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Ionizing irradiation not only inactivates clonogenic potential in primary normal human diploid lens epithelial cells but also stimulates cell proliferation in a subset of this population.

    PubMed

    Fujimichi, Yuki; Hamada, Nobuyuki

    2014-01-01

    Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that may underlie radiation cataractogenesis, warranting further investigations.

  20. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration

    PubMed Central

    Sumagin, Ronen; Parkos, Charles A

    2014-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  1. JNK-associated scattered growth of YD-10B oral squamous carcinoma cells while maintaining the epithelial phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gayoung; Kim, Hyun-Man

    Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherinmore » was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.« less

  2. The Role of Transforming Growth Factor β in Cell-to-Cell Contact-Mediated Epstein-Barr Virus Transmission.

    PubMed

    Nanbo, Asuka; Ohashi, Makoto; Yoshiyama, Hironori; Ohba, Yusuke

    2018-01-01

    Infection of Epstein-Barr virus (EBV), a ubiquitous human gamma herpesvirus, is closely linked to various lymphoid and epithelial malignancies. Previous studies demonstrated that the efficiency of EBV infection in epithelial cells is significantly enhanced by coculturing them with latently infected B cells relative to cell-free infection, suggesting that cell-to-cell contact-mediated viral transmission is the dominant mode of infection by EBV in epithelial cells. However, a detailed mechanism underlying this process has not been fully understood. In the present study, we assessed the role of transforming growth factor β (TGF-β), which is known to induce EBV's lytic cycle by upregulation of EBV's latent-lytic switch BZLF1 gene. We have found that 5 days of cocultivation facilitated cell-to-cell contact-mediated EBV transmission. Replication of EBV was induced in cocultured B cells both with and without a direct cell contact in a time-dependent manner. Treatment of a blocking antibody for TGF-β suppressed both induction of the lytic cycle in cocultured B cells and subsequent viral transmission. Cocultivation with epithelial cells facilitated expression of TGF-β receptors in B cells and increased their susceptibility to TGF-β. Finally, we confirmed the spontaneous secretion of TGF-β from epithelial cells, which was not affected by cell-contact. In contrast, the extracellular microvesicles, exosomes derived from cocultured cells partly contributed to cell-to-cell contact-mediated viral transmission. Taken together, our findings support a role for TGF-β derived from epithelial cells in efficient viral transmission, which fosters induction of the viral lytic cycle in the donor B cells.

  3. Re-epithelialization resulted from prostate basal cells in canine prostatic urethra may represent the ideal healing method after two-micron laser resection of the prostate

    PubMed Central

    Cao, Ying; Luo, Guang-Heng; Luo, Lei; Yang, Xiu-Shu; Hu, Jian-Xin; Shi, Hua; Huang, Ping; Sun, Zhao-Lin; Xia, Shu-Jie

    2015-01-01

    The purpose of this study is to characterize the re-epithelialization of wound healing in canine prostatic urethra and to evaluate the effect of this re-epithelialization way after two-micron laser resection of the prostate (TmLRP). TmLRP and partial bladder neck mucosa were performed in 15 healthy adult male crossbred canines. Wound specimens were harvested at 3 days, and 1, 2, 3, and 4 weeks after operation, respectively. The histopathologic characteristics were observed by hematoxylin and eosin staining. The expression of cytokeratin 14 (CK14), CK5, CK18, synaptophysin (Syn), chromogranin A (CgA), uroplakin, transforming growth factor-β1(TGF-β1), and TGF-β type II receptor in prostatic urethra wound were examined by immunohistochemistry and real-time polymerase chain reaction, respectively. Van Gieson staining was performed to determine the expression of collagen fibers in prostatic urethra and bladder neck would. The results showed that the re-epithelialization of the prostatic urethra resulted from the mobilization of proliferating epithelial cells from residual prostate tissue under the wound. The proliferating cells expressed CK14, CK5, but not CK18, Syn, and CgA and re-epithelialize expressed uroplakin since 3 weeks. There were enhanced TGF-β1 and TGF-β type II receptor expression in proliferating cells and regenerated cells, which correlated with specific phases of re-epithelialization. Compared with the re-epithelialization of the bladder neck, re-epithelialization of canine prostatic urethra was faster, and the expression of collagen fibers was relatively low. In conclusion, re-epithelialization in canine prostatic urethra resulted from prostate basal cells after TmLRP and this re-epithelialization way may represent the ideal healing method from anatomic repair to functional recovery after injury. PMID:25652631

  4. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the human intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which ...

  5. Induction of interleukin-10 expression in chicken intestinal epithelial cells stimulated with Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    Interleukin (IL)-10 is an anti-inflammatory cytokine which regulates host innate immune response. Besides T cells which are the major source of IL-10, the intestinal epithelial cells (IECs) also have been shown to express IL-10 to maintain the epithelial integrity in mammals. In chickens, there is n...

  6. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    PubMed

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  7. Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function.

    PubMed

    Rosenberg, I M; Göke, M; Kanai, M; Reinecker, H C; Podolsky, D K

    1997-10-01

    Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maximal in preconfluent cells. In contrast, B61 levels were barely detectable in preconfluent cells and increased progressively after the cells reached confluence. Caco-2 cells cultured in the presence of added B61 showed a significant reduction in the levels of dipeptidyl peptidase and sucrase-isomaltase mRNA, markers of Caco-2 cell differentiation. Cytokines interleukin-1beta (IL-1beta), basic fibroblast growth factor, IL-2, epidermal growth factor, and transforming growth factor-beta modulated steady-state levels of Eck and B61 mRNA and regulated Eck activation as assessed by tyrosine phosphorylation. Functionally, stimulation of Eck by B61 resulted in increased proliferation, enhanced barrier function, and enhanced restitution of injured epithelial monolayers. These results suggest that the Eck-B61 interaction, a target of regulatory peptides, plays a role in intestinal epithelial cell development, migration, and barrier function, contributing to homeostasis and preservation of continuity of the epithelial barrier.

  8. 3D Bioprinted Artificial Trachea with Epithelial Cells and Chondrogenic-Differentiated Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Bae, Sang-Woo; Lee, Kang-Woog; Park, Jae-Hyun; Lee, JunHee; Jung, Cho-Rok; Yu, JunJie; Kim, Hwi-Yool; Kim, Dae-Hyun

    2018-05-31

    Tracheal resection has limited applicability. Although various tracheal replacement strategies were performed using artificial prosthesis, synthetic stents and tissue transplantation, the best method in tracheal reconstruction remains to be identified. Recent advances in tissue engineering enabled 3D bioprinting using various biocompatible materials including living cells, thereby making the product clinically applicable. Moreover, clinical interest in mesenchymal stem cell has dramatically increased. Here, rabbit bone marrow-derived mesenchymal stem cells (bMSC) and rabbit respiratory epithelial cells were cultured. The chondrogenic differentiation level of bMSC cultured in regular media (MSC) and that in chondrogenic media (d-MSC) were compared. Dual cell-containing artificial trachea were manufactured using a 3D bioprinting method with epithelial cells and undifferentiated bMSC (MSC group, n = 6) or with epithelial cells and chondrogenic-differentiated bMSC (d-MSC group, n = 6). d-MSC showed a relatively higher level of glycosaminoglycan (GAG) accumulation and chondrogenic marker gene expression than MSC in vitro. Neo-epithelialization and neo-vascularization were observed in all groups in vivo but neo-cartilage formation was only noted in d-MSC. The epithelial cells in the 3D bioprinted artificial trachea were effective in respiratory epithelium regeneration. Chondrogenic-differentiated bMSC had more neo-cartilage formation potential in a short period. Nevertheless, the cartilage formation was observed only in a localized area.

  9. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    PubMed

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  10. Innate immunity in HIV-1 infection: epithelial and non-specific host factors of mucosal immunity- a workshop report.

    PubMed

    Nittayananta, W; Weinberg, A; Malamud, D; Moyes, D; Webster-Cyriaque, J; Ghosh, S

    2016-04-01

    The interplay between HIV-1 and epithelial cells represents a critical aspect in mucosal HIV-1 transmission. Epithelial cells lining the oral cavity cover subepithelial tissues, which contain virus-susceptible host cells including CD4(+) T lymphocytes, monocytes/macrophages, and dendritic cells. Oral epithelia are among the sites of first exposure to both cell-free and cell-associated virus HIV-1 through breast-feeding and oral-genital contact. However, oral mucosa is considered to be naturally resistant to HIV-1 transmission. Oral epithelial cells have been shown to play a crucial role in innate host defense. Nevertheless, it is not clear to what degree these local innate immune factors contribute to HIV-1 resistance of the oral mucosa. This review paper addressed the following issues that were discussed at the 7th World Workshop on Oral Health and Disease in AIDS held in Hyderabad, India, during November 6-9, 2014: (i) What is the fate of HIV-1 after interactions with oral epithelial cells?; (ii) What are the keratinocyte and other anti-HIV effector oral factors, and how do they contribute to mucosal protection?; (iii) How can HIV-1 interactions with oral epithelium affect activation and populations of local immune cells?; (iv) How can HIV-1 interactions alter functions of oral epithelial cells? © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Comparison of Mast Cells Count in Odontogenic Cysts Using Histochemical Staining.

    PubMed

    Rajabi-Moghaddam, Mahdieh; Abbaszadeh-Bidokhty, Hamid; Bijani, Ali

    2015-01-01

    Odontogenic cysts are among the most frequent destructive lesions of jaws which their pathogenesis and growth mechanism are not cleared. With respect to different roles of mast cells, they may play a role in the pathogenesis and growth of odontogenic cysts. The aim of present study was to evaluate mast cells in the most common odontogenic cyst. Thirty paraffin-embedded tissue blocks including 10 radicular cysts, 10 dentigerous cysts and 10 odontogenic keratocysts were used and 5 micron sections stained with toluidine blue and observed by light microscope under ×400 magnification to evaluate mast cells within these cysts. For each case, 5 high-power field areas, selected from hot-spot areas, were considered and each area divided into 3 zones: intra-epithelial zone, sub-epithelial zone and deep zone. Most of the studied cyst showed presence of mast cells. There was not any significant difference in mast cell count between studied cysts ( P -values > 0.05).With respect to intra-epithelial, sub-epithelial and deep zones, there was not any significant difference between three studied cysts. There was not any significant difference between sub-epithelial zone and deep zone within each of these cysts. There was only significant difference between intra-epithelial zone and sub-epithelial zone within dentigerous cysts and odontogenic keratocysts ( P -value < 0.05). Prevalence of mast cells in fibrous wall of odontogenic cysts suggests their activity in these cysts. Mast cells may not be directly involved in the pathogenesis of odontogenic keratocysts.

  12. Interaction between Trichomonas vaginalis and the Prostate Epithelium.

    PubMed

    Kim, Jung-Hyun; Han, Ik-Hwan; Kim, Sang-Su; Park, Soon-Jung; Min, Duk-Young; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2017-04-01

    Most men infected with Trichomonas vaginalis are asymptomatic and can remain undiagnosed and untreated. This has been hypothesized to result in chronic persistent prostatic infection. Adhesion of the protozoan organisms to mucosal cells is considered a first and prerequisite step for T. vaginalis infection. Adhesion of T. vaginalis to prostate epithelial cells has not yet been observed; however, there are several reports about inflammation of prostate epithelial cells induced by T. vaginalis . The aim of this study was to investigate whether adhesion and cytotoxicity of T. vaginalis are involved in inflammation of prostate epithelial cells. When RWPE-1 cells were infected with T. vaginalis (1:0.4 or 1:4), adhesion of T. vaginalis continuously increased for 24 hr or 3 hr, respectively. The cytotoxicity of prostate epithelial cells infected with T. vaginalis (RWPE-1: T. vaginalis =1:0.4) increased at 9 hr; at an infection ratio of 1:4, cytotoxicity increased after 3 hr. When the RWPE-1 to T. vaginalis ratio was 1:0.4 or 1:4, production of IL-1β, IL-6, CCL2, and CXCL8 also increased. Epithelial-mesenchymal transition (EMT) was verified by measuring decreased E-cadherin and increased vimentin expression at 24 hr and 48 hr. Taken together, the results indicate that T. vaginalis adhered to prostate epithelial cells, causing cytotoxicity, pro-inflammatory cytokine production, and EMT. Our findings suggest for the first time that T. vaginalis may induce inflammation via adhesion to normal prostate epithelial cells.

  13. Regulation of exosome release from mammary epithelial and breast cancer cells - a new regulatory pathway.

    PubMed

    Riches, Andrew; Campbell, Elaine; Borger, Eva; Powis, Simon

    2014-03-01

    Exosomes are small 50-100nm sized extracellular vesicles released from normal and tumour cells and are a source of a new intercellular communication pathway. Tumour exosomes promote tumour growth and progression. What regulates the release and homoeostatic levels of exosomes, in cancer, in body fluids remains undefined. We utilised a human mammary epithelial cell line (HMEC B42) and a breast cancer cell line derived from it (B42 clone 16) to investigate exosome production and regulation. Exosome numbers were quantified using a Nanosight LM10 and measured in culture supernatants in the absence and presence of exosomes in the medium. Concentrated suspensions of exosomes from the normal mammary epithelial cells, the breast cancer cells and bladder cancer cells were used. The interaction of exosomes with tumour cells was also investigated using fluorescently labelled exosomes. Exosome release from normal human mammary epithelial cells and breast cancer cells is regulated by the presence of exosomes, derived from their own cells, in the extracellular environment of the cells. Exosomes from normal mammary epithelial cells also inhibit exosome secretion by breast cancer cells, which occurs in a tissue specific manner. Labelled exosomes from mammary epithelial cells are internalised into the tumour cells implicating a dynamic equilibrium and suggesting a mechanism for feedback control. These data suggest a previously unknown novel feedback regulatory mechanism for controlling exosome release, which may highlight a new therapeutic approach to controlling the deleterious effects of tumour exosomes. This regulatory mechanism is likely to be generic to other tumours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. When Is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine.

    PubMed

    Beers, Michael F; Moodley, Yuben

    2017-07-01

    Generating mature, differentiated, adult lung cells from pluripotent cells, such as induced pluripotent stem cells and embryonic stem cells, offers the hope of both generating disease-specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung-regenerative medicine, several groups have developed and reported on protocols using defined media, coculture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared with their primary counterparts, coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable, but yet-to-emerge second and higher generation techniques to create such assets, we were prompted to pose the question, what makes a lung epithelial cell a lung epithelial cell? More specifically for this Perspective, we also posed the question, what are the minimum features that constitute an alveolar type (AT) 2 epithelial cell? In addressing this, we summarize a body of work spanning nearly five decades, amassed by a series of "lung epithelial cell biology pioneers," which carefully describes well characterized molecular, functional, and morphological features critical for discriminately assessing an AT2 phenotype. Armed with this, we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiation protocol are indeed mature and functional AT2 epithelial cells.

  15. Proximal location of mouse prostate epithelial stem cells

    PubMed Central

    Tsujimura, Akira; Koikawa, Yasuhiro; Salm, Sarah; Takao, Tetsuya; Coetzee, Sandra; Moscatelli, David; Shapiro, Ellen; Lepor, Herbert; Sun, Tung-Tien; Wilson, E. Lynette

    2002-01-01

    Stem cells are believed to regulate normal prostatic homeostasis and to play a role in the etiology of prostate cancer and benign prostatic hyperplasia. We show here that the proximal region of mouse prostatic ducts is enriched in a subpopulation of epithelial cells that exhibit three important attributes of epithelial stem cells: they are slow cycling, possess a high in vitro proliferative potential, and can reconstitute highly branched glandular ductal structures in collagen gels. We propose a model of prostatic homeostasis in which mouse prostatic epithelial stem cells are concentrated in the proximal region of prostatic ducts while the transit-amplifying cells occupy the distal region of the ducts. This model can account for many biological differences between cells of the proximal and distal regions, and has implications for prostatic disease formation. PMID:12082083

  16. The Role of the Rab Coupling Protein in ErbB2-Driven Mammary Tumorigenesis and Metastasis

    DTIC Science & Technology

    2014-10-01

    Coupling Protein/Rab11FIP1/RCP, Epithelial Mesenchymal Transition , Cell junctions , Cell Proliferation, Senescence. 16. SECURITY CLASSIFICATION OF: 17...Tyrosine Kinase, Her/ErbB2 signaling, Rab Coupling Protein/Rab11FIP1/RCP, Epithelial Mesenchymal Transition , Cell junctions , Cell Proliferation...lines included RCP condition to internalization and detection of E-cadherin, a well-known adherent junction and epithelial mesenchymal transition

  17. Time-and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells

    DTIC Science & Technology

    2007-07-01

    lectin, ricin communis agglutinin, which is not directly cytotoxic but does have an affinity for red blood cells and can lead to agglutination and...Time- and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells Sharmaine Ramasamy and David Proll Human...Disease Control (CDC) Select Agent List. Using human small airway epithelial cells , this is the first study to investigate the time- and dose-dependent

  18. Bad seeds produce bad crops: a single stage-process of prostate tumor invasion

    PubMed Central

    Man, Yan-gao; Gardner, William A.

    2008-01-01

    It is a commonly held belief that prostate carcinogenesis is a multi-stage process and that tumor invasion is triggered by the overproduction of proteolytic enzymes. This belief is consistent with data from cell cultures and animal models, whereas is hard to interpret several critical facts, including the presence of cancer in “healthy” young men and cancer DNA phenotype in morphologically normal prostate tissues. These facts argue that alternative pathways may exist for prostate tumor invasion in some cases. Since degradation of the basal cell layer is the most distinct sign of invasion, our recent studies have attempted to identify pre-invasive lesions with focal basal cell layer alterations. Our studies revealed that about 30% of prostate cancer patients harbored normal appearing duct or acinar clusters with a high frequency of focal basal cell layer disruptions. These focally disrupted basal cell layers had significantly reduced cell proliferation and tumor suppressor expression, whereas significantly elevated degeneration, apoptosis, and infiltration of immunoreactive cells. In sharp contrast, associated epithelial cell had significantly elevated proliferation, expression of malignancy-signature markers, and physical continuity with invasive lesions. Based on these and other findings, we have proposed that these normal appearing duct or acinar clusters are derived from monoclonal proliferation of genetically damaged stem cells and could progress directly to invasion through two pathways: 1) clonal in situ transformation (CIST) and 2) multi-potential progenitor mediated “budding” (MPMB). These pathways may contribute to early onset of prostate cancer at young ages, and to clinically more aggressive prostate tumors. PMID:18725981

  19. Loss of basal cells precedes bronchiolitis obliterans-like pathological changes in a murine model of chlorine gas inhalation.

    PubMed

    O'Koren, Emily G; Hogan, Brigid L M; Gunn, Michael Dee

    2013-11-01

    Bronchiolitis obliterans (BO) is a major cause of chronic airway dysfunction after toxic chemical inhalation. The pathophysiology of BO is not well understood, but epithelial cell injury has been closely associated with the development of fibrotic lesions in human studies and in animal models of both toxin-induced and transplant-induced BO. However, whereas almost all cases and models of BO include epithelial injury, not all instances of epithelial injury result in BO, suggesting that epithelial damage per se is not the critical event leading to the development of BO. Here, we describe a model of chlorine-induced BO in which mice develop tracheal and large airway obliterative lesions within 10 days of exposure to high (350 parts per million [ppm]), but not low (200 ppm), concentrations of chlorine gas. Importantly, these lesions arise only under conditions and in areas in which basal cells, the resident progenitor cells for large airway epithelium, are eliminated by chlorine exposure. In areas of basal cell loss, epithelial regeneration does not occur, resulting in persistent regions of epithelial denudation. Obliterative airway lesions arise specifically from regions of epithelial denudation in a process that includes inflammatory cell infiltration by Day 2 after exposure, fibroblast infiltration and collagen deposition by Day 5, and the ingrowth of blood vessels by Day 7, ultimately leading to lethal airway obstruction by Days 9-12. We conclude that the loss of epithelial progenitor cells constitutes a critical factor leading to the development of obliterative airway lesions after chemical inhalation.

  20. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells.

    PubMed

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-04-11

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.

  1. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    PubMed Central

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells. PMID:23577829

  2. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.

    PubMed

    Kabiri, Zahra; Greicius, Gediminas; Madan, Babita; Biechele, Steffen; Zhong, Zhendong; Zaribafzadeh, Hamed; Edison; Aliyev, Jamal; Wu, Yonghui; Bunte, Ralph; Williams, Bart O; Rossant, Janet; Virshup, David M

    2014-06-01

    Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.

  3. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  4. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals.

    PubMed

    Kajita, Mihoko; Fujita, Yasuyuki

    2015-07-01

    During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  5. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition

    PubMed Central

    van Baarsel, Eric D.; Metz, Patrick J.; Fisch, Kathleen; Widjaja, Christella E.; Kim, Stephanie H.; Lopez, Justine; Chang, Aaron N.; Geurink, Paul P.; Florea, Bogdan I.; Overkleeft, Hermen S.; Ovaa, Huib; Bui, Jack D.; Yang, Jing; Chang, John T.

    2016-01-01

    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy. PMID:26930717

  6. Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy

    PubMed Central

    Wei, Ying; Gao, Jiaqi; Qin, Lingling; Xu, Yunling; Shi, Haoxia; Qu, Lingxia; Liu, Yongqiao; Xu, Tunhai; Liu, Tonghua

    2017-01-01

    Renal tubular cell apoptosis and tubular dysfunction is an important process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney damage associated with glucotoxicity. Curcumin has been demonstrated to possess potent anti-apoptotic properties. However, the roles of curcumin in renal epithelial cells are yet to be defined. The present study investigated advanced glycation or glycoxidation end-product (AGE)-induced toxicity in renal tubular epithelial cells via several complementary assays, including cell viability, cell apoptosis and cell autophagy in the NRK-52E rat kidney tubular epithelial cell line. The extent of apoptosis was significantly increased in the NRK-52E cells following treatment with AGEs. The results also indicated that curcumin reversed this effect by promoting autophagy through the phosphoinositide 3-kinase/AKT serine/threonine kinase signaling pathway. These conclusions suggested that curcumin exerts a renoprotective effect in the presence of AGEs, at least in part by activating autophagy in NRK-52E cells. Collectively, these findings indicate that curcumin not only exerts renoprotective effects, however may also act as a novel therapeutic strategy for the treatment of diabetic nephropathy. PMID:29285156

  7. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasalvia, Maria; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari; Castellani, Stefano

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalizedmore » airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in the plasmamembrane. • CFTR overexpression changes morphology and actin organization. • CFBE cells absorb more apical fluid than wild type bronchial epithelial cells. • Fluid absorption is increased by disorganization of actin cytoskeleton.« less

  8. Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF-β1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling pathways.

    PubMed

    Dong, Feng; Liu, Tingting; Jin, Hao; Wang, Wenbo

    2018-01-01

    Epithelial-to-mesenchymal transition is a cellular process associated with cancer invasion and metastasis. However, the antimetastatic effects of chimaphilin remain elusive. In this study, we attempted to investigate the potential use of chimaphilin as an inhibitor of TGF-β1-induced epithelial-to-mesenchymal transition in U2OS cells. We found that TGF-β1 induced epithelial-to-mesenchymal transition to promote U2OS cell invasion and metastasis. Western blotting demonstrated that chimaphilin inhibited U2OS cell invasion and migration, increased the expression of the epithelial phenotype marker E-cadherin, repressed the expression of the mesenchymal phenotype marker vimentin, as well as decreased the level of epithelial-to-mesenchymal-inducing transcription factors Snail1 and Slug during the initiation of TGF-β1-induced epithelial-to-mesenchymal transition. In this study, we revealed that chimaphilin up-regulated the E-cadherin expression level and inhibited the production of vimentin, Snail1, and Slug in TGF-β1-induced U2OS cells by blocking PI-3K/Akt and ERK 1/2 signaling pathway. Additionally, the TGF-β1-mediated phosphorylated levels of Smad2/3 were inhibited by chimaphilin pretreatment. Above all, we conclude that chimaphilin represents an effective inhibitor of the metastatic potential of U2OS cells through suppression of TGF-β1-induced epithelial-to-mesenchymal transition.

  9. Apical Cyst Theory: a Missing Link.

    PubMed

    Huang, George T-J

    2010-10-05

    The mechanism of the formation of apical cyst has been elusive. Several theories have long been proposed and discussed speculating how an apical cyst is developed and formed in the jaw bone resulting from endododontic infection. Two popular theories are the nutritional deficiency theory and the abscess theory. The nutritional deficiency theory assumes that the over proliferated epithelial cells will form a ball mass such that the cells in the center of the mass will be deprived of nutrition. The abscess theory postulates that when an abscess cavity is formed in connective tissue, epithelial cells proliferate and line the preexisting cavity because of their inherent tendency to cover exposed connective tissue surfaces. Based on the nature of epithelial cells and the epithelium, nutritional theory is a fairy tale, while abscess theory at best just indicates that abscess may be one of the factors that allows the stratified epithelium to form but not to explain a mechanism that makes the cyst to form. Apical cyst formation is the result of proliferation of resting epithelial cells, due to inflammation, to a sufficient number such that they are able to form a polarized and stratified epithelial lining against dead tissues or foreign materials. These stratified epithelial lining expands along the dead tissue or foreign materials and eventually wrap around them as a spherical sac, i.e. a cyst. The space in the sac is considered the external environment separating the internal (tissue) environment - the natural function of epithelium. This theory may be tested by introducing a biodegradable device able to slowly release epithelial cell mitogens in an in vivo environment implanted with epithelial cells next to a foreign object. This will allow the cells to continuously proliferate which may form a cystic sac wrapping around the foreign object.

  10. Apical Cyst Theory: a Missing Link

    PubMed Central

    Huang, George T.-J.

    2012-01-01

    Introduction The mechanism of the formation of apical cyst has been elusive. Several theories have long been proposed and discussed speculating how an apical cyst is developed and formed in the jaw bone resulting from endododontic infection. Two popular theories are the nutritional deficiency theory and the abscess theory. The nutritional deficiency theory assumes that the over proliferated epithelial cells will form a ball mass such that the cells in the center of the mass will be deprived of nutrition. The abscess theory postulates that when an abscess cavity is formed in connective tissue, epithelial cells proliferate and line the preexisting cavity because of their inherent tendency to cover exposed connective tissue surfaces. Based on the nature of epithelial cells and the epithelium, nutritional theory is a fairy tale, while abscess theory at best just indicates that abscess may be one of the factors that allows the stratified epithelium to form but not to explain a mechanism that makes the cyst to form. The hypothesis Apical cyst formation is the result of proliferation of resting epithelial cells, due to inflammation, to a sufficient number such that they are able to form a polarized and stratified epithelial lining against dead tissues or foreign materials. These stratified epithelial lining expands along the dead tissue or foreign materials and eventually wrap around them as a spherical sac, i.e. a cyst. The space in the sac is considered the external environment separating the internal (tissue) environment – the natural function of epithelium. Evaluation of the hypothesis This theory may be tested by introducing a biodegradable device able to slowly release epithelial cell mitogens in an in vivo environment implanted with epithelial cells next to a foreign object. This will allow the cells to continuously proliferate which may form a cystic sac wrapping around the foreign object. PMID:25346864

  11. A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFβ signaling in the mammary gland

    PubMed Central

    2010-01-01

    Introduction Molecular dissection of the signaling pathways that underlie complex biological responses in the mammary epithelium is limited by the difficulty of propagating large numbers of mouse mammary epithelial cells, and by the inability of ribonucleic acid interference-based knockdown approaches to fully ablate gene function. Here we describe a method for the generation of conditionally immortalized mammary epithelial cells with defined genetic defects, and we show how such cells can be used to investigate complex signal transduction processes using the transforming growth factor beta (TGFβ)/Smad pathway as an example. Methods We intercrossed the previously described H-2Kb-tsA58 transgenic mouse (Immortomouse), which expresses a temperature-sensitive mutant of the simian virus-40 large T-antigen (tsTAg), with mice of differing Smad genotypes. Conditionally immortalized mammary epithelial cell cultures were derived from the virgin mammary glands of offspring of these crosses and were used to assess the Smad dependency of different biological responses to TGFβ. Results IMECs could be propagated indefinitely at permissive temperatures and had a stable epithelial phenotype, resembling primary mammary epithelial cells with respect to several criteria, including responsiveness to TGFβ. Using this panel of cells, we demonstrated that Smad3, but not Smad2, is necessary for TGFβ-induced apoptotic, growth inhibitory and epithelial-to-mesenchymal transition responses, whereas either Smad2 or Smad3 can support TGFβ-induced invasion as long as a threshold level of total Smad is exceeded. Conclusions The present work demonstrates the practicality and utility of generating conditionally immortalized mammary epithelial cell lines from genetically modified Immortomice for detailed investigation of complex signaling pathways in the mammary epithelium. PMID:20942910

  12. Engineering epithelial-stromal interactions in vitro for toxicology assessment.

    PubMed

    Belair, David G; Abbott, Barbara D

    2017-05-01

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.

  13. Engineering epithelial-stromal interactions in vitro for toxicology assessment

    PubMed Central

    Belair, David G.; Abbott, Barbara D.

    2018-01-01

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100

  14. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography–Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts

    PubMed Central

    Gerloff, Janice; Sundar, Isaac K.; Freter, Robert; Sekera, Emily R.; Friedman, Alan E.; Robinson, Risa; Pagano, Todd

    2017-01-01

    Abstract Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography–mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface impedance sensing. Our findings suggest that some of the e-cig liquids/aerosols containing flavoring chemicals can cause significant loss of epithelial barrier function and proinflammatory response in lung cells. PMID:28337465

  15. Odontogenic epithelial stem cells: hidden sources.

    PubMed

    Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh

    2015-12-01

    The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed.

  16. Targeted Deletion and Lipidomic Analysis Identify Epithelial Cell COX-2 as a Major Driver of Chemically-induced Skin Cancer

    PubMed Central

    Jiao, Jing; Ishikawa, Tomo-o; Dumlao, Darren S.; Norris, Paul C.; Magyar, Clara E.; Mikulec, Carol; Catapang, Art; Dennis, Edward A.; Fischer, Susan M.; Herschman, Harvey R.

    2014-01-01

    Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX2) plays a critical role in DMBA/TPA-induced skin tumor induction. While many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell-type specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared to littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2 expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell-type specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biological responses. PMID:25063587

  17. Extremely stringent activation of p16INK4a prevents immortalization of uterine cervical epithelial cells without human papillomavirus oncogene expression

    PubMed Central

    Hang, Su; Tiwari, Agnes F.Y.; Ngan, Hextan Y.S.; Yip, Yim-Ling; Cheung, Annie L.M.; Tsao, Sai Wah; Deng, Wen

    2016-01-01

    Cervical epithelial cell immortalization with defined genetic factors without viral oncogenes has never been reported. Here we report that HPV-negative cervical epithelial cells failed to be immortalized by telomerase activation or the combination of p53 knockdown and telomerase activation. Under those conditions, p16INK4a expression was always elevated during the late stage of limited cell lifespan, suggesting that cervical epithelial cells possess an intrinsic property of uniquely stringent activation of p16INK4a, which may offer an explanation for the rarity of HPV-negative cervical cancer. Combining p16INK4a knockdown with telomerase activation resulted in efficient immortalization of HPV-negative cervical epithelial cells under ordinary culture conditions. Compared with the HPV16-E6E7-immortalized cell lines derived from the same primary cell sources, the novel HPV-negative immortalized cell lines had lower degrees of chromosomal instability, maintained more sensitive p53/p21 response to DNA damage, exhibited more stringent G2 checkpoint function, and were more resistant to replication-stress-induced genomic instability. The newly immortalized HPV-negative cervical epithelial cell lines were non-tumorigenic in nude mice. The cell lines can be used not only as much-needed HPV-negative non-malignant cell models but also as starting models that can be genetically manipulated in a stepwise fashion to investigate the roles of defined genetic alterations in the development of HPV-negative cervical cancer. PMID:27344169

  18. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katano, Takahito; Ootani, Akifumi; Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system withinmore » the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.« less

  19. Protective effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on adriamycin-induced toxicity of human renal tubular epithelial cell (HK-2).

    PubMed

    Tian, Ting; Li, Jin; Wang, Meng-Ying; Xie, Xian-Fei; Li, Qi-Xiong

    2012-05-15

    20-Hydroxyeicosatetraenoic acid is a cytochrome P4504A11 metabolite of arachidonic acid that plays an important role in the regulation of human renal functions. In the present study, we investigated the role of 20-hydroxyeicosatetraenoic acid on adriamycin induced toxicity in human renal tubular epithelial cells. Results showed that cell viability was decreased significantly and lactate dehydrogenase activity was increased significantly in a concentration-dependent manner when human renal tubular epithelial cells were incubated with adriamycin (10⁻⁷-10⁻³ mol/l) for 24h. In contrast, 20-hydroxyeicosatetraenoic acid (0.1, 1, 10, 50 μmol/l) increased cell survival and decreased lactate dehydrogenase activity concentration dependently in human renal tubular epithelial cells. When 20-hydroxyeicosatetraenoic acid (10, 50 μmol/l) was co-administered with adriamycin (10⁻³ mol/l), it significantly increased cell viability and decreased lactate dehydrogenase activity. On the other hand, N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET-0016) (1 μM), a selective inhibitor of 20-hydroxyeicosatetraenoic acid synthesizing enzyme exaggerated cell viability reduction and lactate dehydrogenase activity augmentation induced by adriamycin. Adriamycin suppressed the expression of cytochrome P4504A11 gene and its protein production in human renal tubular epithelial cells. Furthermore, adriamycin was more effective than N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine at lowering the expression of cytochrome P4504A11 gene and its protein. These results suggest that 20-hydroxyeicosatetraenoic acid may protect adriamycin-induced toxicity of human renal tubular epithelial cells, meanwhile, adriamycin-induced toxicity of human renal tubular epithelial cells possibly involves inhibiting cytochrome P4504A11 expression. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  20. Fibrin glue inhibits migration of ocular surface epithelial cells

    PubMed Central

    Yeung, A M; Faraj, L A; McIntosh, O D; Dhillon, V K; Dua, H S

    2016-01-01

    Purpose Fibrin glue has been used successfully in numerous ophthalmic surgical procedures. Recently, fibrin glue has been used in limbal stem cell transplantation to reduce both operative time and to negate the need for sutures. The aim of this study was to determine the effects of fibrin glue on epithelial cell migration in vitro. Methods Corneoscleral rims were split to retain the epithelial layer, Bowman's layer, and anterior stroma. Rims were cut into eight equal-sized pieces and were placed directly on culture plates or affixed with fibrin glue. Rims were maintained in culture for 25 days and epithelial cell growth was monitored. Cells were photographed to measure area or growth and immunofluorescence staining of explants for fibrin was performed. Results Explants that were glued demonstrated significantly delayed epithelial cell growth and migration as compared with explants without glue. By day 16, all fibrin glue had dissolved and coincided with onset of cell growth from glued explants. Cell growth commenced between days 3 and 4 for control explants without glue and around days 14–16 for explants with fibrin glue. Conclusions Fibrin glue delays epithelial cell migration by acting as a physical barrier and can potentially interfere with explant-derived limbal epithelial cell migration on to the corneal surface. We propose that glue should be used to attach the conjunctival frill of the limbal explant but care should be taken to ensure that the glue does not wrap around the explant if used to secure the explant as well. Strategic use of glue, to attach the recessed conjunctiva, can be advantageous in delaying conjunctival cell migration and reducing the need for sequential sector conjunctival epitheliectomy. PMID:27367746

Top