Sample records for epithelial cells interestingly

  1. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    PubMed

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. The Effect of Ozone on Colonic Epithelial Cells.

    PubMed

    Himuro, Hidetomo

    2018-05-21

    Due to its strong oxidation activity, ozone has been well known to kill bacteria and exert toxic effects on human tissues. At the same time, ozone is being used for the treatment of diseases such as inflammatory bowel disease in some European countries. However, the use of ozone for therapeutic purposes, despite its strong toxic effects, remains largely unexplored. Interestingly, we found that intrarectal administration of ozone gas induced transient colonic epithelial cell damage characterized by the impairment of cell survival pathways involved in DNA replication, cell cycle, and mismatch repair. However, the damaged cells were rapidly extruded from the epithelial layer, and appeared to immediately stimulate turnover of the epithelial layer in the colon. Therefore, it is possible that ozone gas is able to trigger damage-induced rapid regeneration of intestinal epithelial cells, and that this explains why ozone does not cause harmful or persistent damage in the colon.

  3. Constitutive Proteasomal Degradation of TWIST-1 in Epithelial Ovarian Cancer Stem Cells Impacts Differentiation and Metastatic Potential

    PubMed Central

    Yin, Gang; Alvero, Ayesha B.; Craveiro, Vinicius; Holmberg, Jennie C.; Fu, Han-Hsuan; Montagna, Michele K.; Yang, Yang; Chefetz-Menaker, Ilana; Nuti, Sudhakar; Rossi, Michael; Silasi, Dan-Arin; Rutherford, Thomas; Mor, Gil

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is a critical process for embryogenesis but is abnormally activated during cancer metastasis and recurrence. This process enables epithelial cancer cells to acquire mobility and traits associated with stemness. It is unknown whether epithelial stem cells or epithelial cancer stem cells are able to undergo EMT, and what molecular mechanism regulates this process in these specific cell types. We found that Epithelial Ovarian Cancer Stem cells (EOC stem cells) are the source of metastatic progenitor cells through a differentiation process involving EMT and Mesenchymal-Epithelial Transition (MET). We demonstrate both in vivo and in vitro the differentiation of EOC stem cells into mesenchymal spheroid-forming cells (MSFCs) and their capacity to initiate an active carcinomatosis. Furthermore, we demonstrate that human EOC stem cells injected i.p in mice are able to form ovarian tumors, suggesting that the EOC stem cells have the ability to “home” to the ovaries and establish tumors. Most interestingly, we found that TWIST1 is constitutively degraded in EOC stem cells, and that the acquisition of TWIST1 requires additional signals that will trigger the differentiation process. These findings are relevant for understanding the differentiation and metastasis process in EOC stem cells. PMID:22349827

  4. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo

    PubMed Central

    Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721

  5. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.

    PubMed

    Selman, Moisés; Pardo, Annie

    2006-06-01

    Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.

  6. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair

    PubMed Central

    Girault, Alban

    2013-01-01

    Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K+ channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K+ channels in the regulation of these key repair processes. We also describe the mechanisms whereby K+ channels may control epithelial repair processes. In particular, changes in membrane potential, K+ concentration, cell volume, intracellular Ca2+, and signaling pathways following modulation of K+ channel activity, as well as physical interaction of K+ channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K+ channels for therapeutic applications to improve epithelial repair in vivo. PMID:24196531

  7. Airway epithelial repair in health and disease: Orchestrator or simply a player?

    PubMed

    Iosifidis, Thomas; Garratt, Luke W; Coombe, Deirdre R; Knight, Darryl A; Stick, Stephen M; Kicic, Anthony

    2016-04-01

    Epithelial cells represent the most important surface of contact in the body and form the first line of defence of the body to external environment. Consequently, epithelia have numerous roles in order to maintain a homeostatic defence barrier. Although the epithelium has been extensively studied over several decades, it remains the focus of new research, indicating a lack of understanding that continues to exist around these cells in specific disease settings. Importantly, evidence is emerging that airway epithelial cells in particular have varied complex functions rather than simple passive roles. One area of current interest is its role following injury. In particular, the epithelial-specific cellular mechanisms regulating their migration during wound repair remain poorly understood and remain an area that requires much needed investigation. A better understanding of the physiological, cellular and molecular wound repair mechanisms could assist in elucidating pathological processes that contribute to airway epithelial pathology. This review attempts to highlight migration-specific and cell-extracellular matrix (ECM) aspects of repair used by epithelial cells under normal and disease settings, in the context of human airways. © 2016 Asian Pacific Society of Respirology.

  8. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye.

    PubMed

    Kadmiel, Mahita; Janoshazi, Agnes; Xu, Xiaojiang; Cidlowski, John A

    2016-11-01

    Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function. Published by Elsevier Ltd.

  9. The infection of primary avian tracheal epithelial cells with infectious bronchitis virus

    PubMed Central

    Shen, Ching-I; Wang, Ching-Ho; Liao, Jiunn-Wang; Hsu, Tien-Wang; Kuo, Shu-Ming; Su, Hong-Lin

    2009-01-01

    Here we introduce a culture system for the isolation, passaging and amplification of avian tracheal epithelial (ATE) cells. The ATE medium, which contains chicken embryo extract and fetal bovine serum, supports the growth of ciliated cells, goblet cells and basal cells from chicken tracheas on fibronectin- or matrigel-coated dishes. Non-epithelial cells make up less than 10% of the total population. We further show that ATE cells support the replication and spread of infectious bronchitis virus (IBV). Interestingly, immunocytostaining revealed that basal cells are resistant to IBV infection. We also demonstrate that glycosaminoglycan had no effect on infection of the cells by IBV. Taken together, these findings suggest that primary ATE cells provide a novel cell culture system for the amplification of IBV and the in vitro characterization of viral cytopathogenesis. PMID:19793537

  10. Histone deacetylase mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity

    PubMed Central

    Ranganathan, Punithavathi; Hamad, Rania; Mohamed, Riyaz; Jayakumar, Calpurnia; Muthusamy, Thangaraju; Ramesh, Ganesan

    2015-01-01

    Cisplatin-induced acute kidney injury is a serious problem in cancer patients during treatment of solid tumors. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Since histone deacetylase (HDAC) inhibition augments cisplatin anti-tumor activity, we tested whether HDAC inhibitors can prevent cisplatin-induced nephrotoxicity and determined the underlying mechanism. Cisplatin up-regulated the expression of several HDACs in the kidney. Inhibition of HDAC with clinically used trichostatin A suppressed cisplatin-induced kidney injury, inflammation and epithelial cell apoptosis. Moreover, trichostatin A upregulated the novel anti-inflammatory protein, activated microglia/macrophage WAP domain protein (AMWAP), in epithelial cells which was enhanced with cisplatin treatment. Interestingly, HDAC1 and -2 specific inhibitors are sufficient to potently up-regulate AMWAP in epithelial cells. Administration of recombinant AMWAP or its epithelial cell-specific overexpression reduced cisplatin-induced kidney dysfunction. Moreover, AMWAP treatment suppressed epithelial cell apoptosis, and siRNA-based knockdown of AMWAP expression abolished trichostatin A-mediated suppression of epithelial cell apoptosis in vitro. Thus, HDAC-mediated silencing of AMWAP may contribute to cisplatin nephrotoxicity. Hence, HDAC1 and -2 specific inhibitors or AMWAP could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:26509586

  11. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells.

    PubMed

    Wong, Amy P; Chin, Stephanie; Xia, Sunny; Garner, Jodi; Bear, Christine E; Rossant, Janet

    2015-03-01

    Airway epithelial cells are of great interest for research on lung development, regeneration and disease modeling. This protocol describes how to generate cystic fibrosis (CF) transmembrane conductance regulator protein (CFTR)-expressing airway epithelial cells from human pluripotent stem cells (PSCs). The stepwise approach from PSC culture to differentiation into progenitors and then mature epithelia with apical CFTR activity is outlined. Human PSCs that were inefficient at endoderm differentiation using our previous lung differentiation protocol were able to generate substantial lung progenitor cell populations. Augmented CFTR activity can be observed in all cultures as early as at 35 d of differentiation, and full maturation of the cells in air-liquid interface cultures occurs in <5 weeks. This protocol can be used for drug discovery, tissue regeneration or disease modeling.

  12. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa

    PubMed Central

    Muenzner, Petra; Kengmo Tchoupa, Arnaud; Klauser, Benedikt; Brunner, Thomas; Putze, Johannes; Dobrindt, Ulrich; Hauck, Christof R.

    2016-01-01

    Attachment to the host mucosa is a key step in bacterial pathogenesis. On the apical surface of epithelial cells, members of the human carcinoembryonic antigen (CEA) family are abundant glycoproteins involved in cell-cell adhesion and modulation of cell signaling. Interestingly, several gram-negative bacterial pathogens target these receptors by specialized adhesins. The prototype of a CEACAM-binding pathogen, Neisseria gonorrhoeae, utilizes colony opacity associated (Opa) proteins to engage CEA, as well as the CEA-related cell adhesion molecules CEACAM1 and CEACAM6 on human epithelial cells. By heterologous expression of neisserial Opa proteins in non-pathogenic E. coli we find that the Opa protein-CEA interaction is sufficient to alter gene expression, to increase integrin activity and to promote matrix adhesion of infected cervical carcinoma cells and immortalized vaginal epithelial cells in vitro. These CEA-triggered events translate in suppression of exfoliation and improved colonization of the urogenital tract by Opa protein-expressing E. coli in CEA-transgenic compared to wildtype mice. Interestingly, uropathogenic E. coli expressing an unrelated CEACAM-binding protein of the Afa/Dr adhesin family recapitulate the in vitro and in vivo phenotype. In contrast, an isogenic strain lacking the CEACAM-binding adhesin shows reduced colonization and does not suppress epithelial exfoliation. These results demonstrate that engagement of human CEACAMs by distinct bacterial adhesins is sufficient to blunt exfoliation and to promote host infection. Our findings provide novel insight into mucosal colonization by a common UPEC pathotype and help to explain why human CEACAMs are a preferred epithelial target structure for diverse gram-negative bacteria to establish a foothold on the human mucosa. PMID:27171273

  13. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    PubMed Central

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  14. 3D Bioprinted Artificial Trachea with Epithelial Cells and Chondrogenic-Differentiated Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Bae, Sang-Woo; Lee, Kang-Woog; Park, Jae-Hyun; Lee, JunHee; Jung, Cho-Rok; Yu, JunJie; Kim, Hwi-Yool; Kim, Dae-Hyun

    2018-05-31

    Tracheal resection has limited applicability. Although various tracheal replacement strategies were performed using artificial prosthesis, synthetic stents and tissue transplantation, the best method in tracheal reconstruction remains to be identified. Recent advances in tissue engineering enabled 3D bioprinting using various biocompatible materials including living cells, thereby making the product clinically applicable. Moreover, clinical interest in mesenchymal stem cell has dramatically increased. Here, rabbit bone marrow-derived mesenchymal stem cells (bMSC) and rabbit respiratory epithelial cells were cultured. The chondrogenic differentiation level of bMSC cultured in regular media (MSC) and that in chondrogenic media (d-MSC) were compared. Dual cell-containing artificial trachea were manufactured using a 3D bioprinting method with epithelial cells and undifferentiated bMSC (MSC group, n = 6) or with epithelial cells and chondrogenic-differentiated bMSC (d-MSC group, n = 6). d-MSC showed a relatively higher level of glycosaminoglycan (GAG) accumulation and chondrogenic marker gene expression than MSC in vitro. Neo-epithelialization and neo-vascularization were observed in all groups in vivo but neo-cartilage formation was only noted in d-MSC. The epithelial cells in the 3D bioprinted artificial trachea were effective in respiratory epithelium regeneration. Chondrogenic-differentiated bMSC had more neo-cartilage formation potential in a short period. Nevertheless, the cartilage formation was observed only in a localized area.

  15. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    PubMed

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  16. Eosinophilic Esophagitis: Relevance of Mast Cell Infiltration.

    PubMed

    Strasser, Daniel S; Seger, Shanon; Bussmann, Christian; Pierlot, Gabin M; Groenen, Peter M A; Stalder, Anna K; Straumann, Alex

    2018-05-17

    Eosinophilic esophagitis (EoE) is a chronic-inflammatory disease characterized clinically by symptoms of esophageal dysfunction and histopathologically by a prominent eosinophilic inflammation. Despite eosinophils having histologically a pre-dominant position, their role in the immunopathogenesis of the disease is still questionable. Several other inflammatory cells are involved and may play a critical role as well. The purpose of this study was to characterize the mast cell infiltration, and to correlate it with clinical state of EoE. Using immunohistochemistry and quantitative morphometry, we extensively investigated eosinophils and mast cells in esophageal biopsies from patients with active EoE and from patients with EoE in remission, and compared the findings with healthy individuals. In EoE, epithelium and lamina propria were similarly infiltrated with eosinophils. In contrast, mast cells infiltration was limited to the epithelium, displaying a localized immune response. Interestingly, whereas epithelial mast cells and eosinophils were high in active EoE, some patients in remission e.g. normalized epithelial eosinophils, showed remaining high numbers of mast cells. Patient clustering supported 2 groups of patients in clinical remission, differentiating based on presence or absence of epithelial mast cells. Active EoE is characterized - in addition to the well-known tissue eosinophilia by a marked epithelium-restricted mast cell infiltration. Of interest, in a subgroup of patients, mast cell infiltration persisted despite clinical remission. To elucidate the clinical consequence of persistent epithelial mast cells infiltration further studies are required following patients in clinical remission longitudinally. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. Inmore » the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.« less

  18. Epithelial-mesenchymal transition in colonies of rhesus monkey embryonic stem cells: a model for processes involved in gastrulation.

    PubMed

    Behr, Rüdiger; Heneweer, Carola; Viebahn, Christoph; Denker, Hans-Werner; Thie, Michael

    2005-01-01

    Rhesus monkey embryonic stem (rhES) cells were grown on mouse embryonic fibroblast (MEF) feeder layers for up to 10 days to form multilayered colonies. Within this period, stem cell colonies differentiated transiently into complex structures with a disc-like morphology. These complex colonies were characterized by morphology, immunohistochemistry, and marker mRNA expression to identify processes of epithelialization as well as epithelial-mesenchymal transition (EMT) and pattern formation. Typically, differentiated colonies were comprised of an upper and a lower ES cell layer, the former growing on top of the layer of MEF cells whereas the lower ES cell layer spread out underneath the MEF cells. Interestingly, in the central part of the colonies, a roundish pit developed. Here the feeder layer disappeared, and upper layer cells seemed to ingress and migrate through the pit downward to form the lower layer while undergoing a transition from the epithelial to the mesenchymal phenotype, which was indicated by the loss of the marker proteins E-cadherin and ZO-1 in the lower layer. In support of this, we found a concomitant 10-fold upregulation of the gene Snail2, which is a key regulator of the EMT process. Conversion of epiblast to mesoderm was also indicated by the regulated expression of the mesoderm marker Brachyury. An EMT is a characteristic process of vertebrate gastrulation. Thus, these rhES cell colonies may be an interesting model for studies on some basic processes involved in early primate embryogenesis and may open new ways to study the regulation of EMT in vitro.

  19. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  20. S-carboxymethylcysteine inhibits adherence of Streptococcus pneumoniae to human alveolar epithelial cells.

    PubMed

    Sumitomo, Tomoko; Nakata, Masanobu; Yamaguchi, Masaya; Terao, Yutaka; Kawabata, Shigetada

    2012-01-01

    Streptococcus pneumoniae is a major pathogen of respiratory infections that utilizes platelet-activating factor receptor (PAFR) for firm adherence to host cells. The mucolytic agent S-carboxymethylcysteine (S-CMC) has been shown to exert inhibitory effects against infection by several respiratory pathogens including S. pneumoniae in vitro and in vivo. Moreover, clinical studies have implicated the benefits of S-CMC in preventing exacerbation of chronic obstructive pulmonary disease, which is considered to be related to respiratory infections. In this study, to assess whether the potency of S-CMC is attributable to inhibition of pneumococcal adherence to host cells, an alveolar epithelial cell line stimulated with interleukin-1α was used as a model of inflamed epithelial cells. Despite upregulation of PAFR by inflammatory activation, treatment with S-CMC efficiently inhibited pneumococcal adherence to host epithelial cells. In order to gain insight into the inhibitory mechanism, the effects of S-CMC on PAFR expression were also investigated. Following treatment with S-CMC, PAFR expression was reduced at both mRNA and post-transcriptional levels. Interestingly, S-CMC was also effective in inhibiting pneumococcal adherence to cells transfected with PAFR small interfering RNAs. These results indicate S-CMC as a probable inhibitor targeting numerous epithelial receptors that interact with S. pneumoniae.

  1. KSA Antigen Ep-CAM Mediates Cell–Cell Adhesion of Pancreatic Epithelial Cells: Morphoregulatory Roles in Pancreatic Islet Development

    PubMed Central

    Cirulli, V.; Crisa, L.; Beattie, G.M.; Mally, M.I.; Lopez, A.D.; Fannon, A.; Ptasznik, A.; Inverardi, L.; Ricordi, C.; Deerinck, T.; Ellisman, M.; Reisfeld, R.A.; Hayek, A.

    1998-01-01

    Cell adhesion molecules (CAMs) are important mediators of cell–cell interactions and regulate cell fate determination by influencing growth, differentiation, and organization within tissues. The human pancarcinoma antigen KSA is a glycoprotein of 40 kD originally identified as a marker of rapidly proliferating tumors of epithelial origin. Interestingly, most normal epithelia also express this antigen, although at lower levels, suggesting that a dynamic regulation of KSA may occur during cell growth and differentiation. Recently, evidence has been provided that this glycoprotein may function as an epithelial cell adhesion molecule (Ep-CAM). Here, we report that Ep-CAM exhibits the features of a morphoregulatory molecule involved in the development of human pancreatic islets. We demonstrate that Ep-CAM expression is targeted to the lateral domain of epithelial cells of the human fetal pancreas, and that it mediates calcium-independent cell–cell adhesion. Quantitative confocal immunofluorescence in fetal pancreata identified the highest levels of Ep-CAM expression in developing islet-like cell clusters budding from the ductal epithelium, a cell compartment thought to comprise endocrine progenitors. A surprisingly reversed pattern was observed in the human adult pancreas, displaying low levels of Ep-CAM in islet cells and high levels in ducts. We further demonstrate that culture conditions promoting epithelial cell growth induce upregulation of Ep-CAM, whereas endocrine differentiation of fetal pancreatic epithelial cells, transplanted in nude mice, is associated with a downregulation of Ep-CAM expression. In addition, a blockade of Ep-CAM function by KS1/4 mAb induced insulin and glucagon gene transcription and translation in fetal pancreatic cell clusters. These results indicate that developmentally regulated expression and function of Ep-CAM play a morphoregulatory role in pancreatic islet ontogeny. PMID:9508783

  2. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    PubMed Central

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  3. Sheep, Wolf, or Werewolf: Cancer Stem Cells and the Epithelial-to-Mesenchymal Transition

    PubMed Central

    2013-01-01

    Multiple cancers contain subpopulations that exhibit characteristics of cancer stem cells (CSCs), the ability to self-renew and seed heterogeneous tumors. Recent evidence suggests two potentially overlapping models for these phenotypes: one where stem cells arise from multipotent progenitor cells, and another where they are created via an epithelial to mesenchymal transition. Unraveling this issue is critical, as it underlies phenomena such as metastasis and therapeutic resistance. Therefore, there is intense interest in understanding these two types of CSSs, how they differ from differentiated cancer cells, the mechanisms that drive their phenotypes, and how that knowledge can be incorporated into therapeutics. PMID:23499890

  4. The multi-faceted role of allergen exposure to the local airway mucosa.

    PubMed

    Golebski, K; Röschmann, K I L; Toppila-Salmi, S; Hammad, H; Lambrecht, B N; Renkonen, R; Fokkens, W J; van Drunen, C M

    2013-02-01

    Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by intrinsic proteolytic activity of allergens may facilitate allergen penetration into local tissues and additionally affect chronic and ongoing inflammatory processes in respiratory tissues. Furthermore, the ability of rhinoviruses to disrupt and interfere with epithelial tight junctions may alter the barrier integrity and enable a passive passage of inhaled allergens through the airway epithelium. On the other hand, epithelial cells are no longer considered to act only as a physical barrier toward inhaled allergens, but also to actively contribute to airway inflammation by detecting and responding to environmental factors. Epithelial cells can produce mediators, which may affect the recruitment and activation of more specialized immune cells to the local tissue and also create a microenvironment in which these activated immune cells may function and propagate the inflammatory processes. This review presents the dual role of epithelium acting as a passive and active barrier when encountering an inhaled allergen and how this double role contributes to the start of local immune responses. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  5. ΔNp63α promotes breast cancer cell motility through the selective activation of components of the epithelial-to-mesenchymal transition program

    PubMed Central

    Dang, Tuyen T.; Esparza, Matthew A.; Maine, Erin A.; Westcott, Jill M.; Pearson, Gray W.

    2015-01-01

    Cell identity signals influence the invasive capability of tumor cells, as demonstrated by the selection for programs of epithelial-to-mesenchymal transition (EMT) during malignant progression. Breast cancer cells retain canonical epithelial traits and invade collectively as cohesive groups of cells, but the signaling pathways critical to their invasive capabilities are still incompletely understood. Here we report that the transcription factor ΔNp63α drives the migration of basal-like breast cancer (BLBC) cells by inducing a hybrid mesenchymal/epithelial state. Through a combination of expression analysis and functional testing across multiple BLBC cell populations, we determined that ΔNp63α induces migration by elevating the expression of the EMT program components Slug and Axl. Interestingly, ΔNp63α also increased the expression of miR205, which can silence ZEB1/2 to prevent the loss of epithelial character caused by EMT induction. In clinical specimens, co-expression of various elements of the ΔNp63α pathway confirmed its implication in motility signaling in BLBC. We observed that activation of the ΔNp63α pathway occurred during the transition from noninvasive ductal carcinoma in situ to invasive breast cancer. Notably, in an orthotopic tumor model, Slug expression was sufficient to induce collective invasion of E-cadherin expressing BLBC cells. Together, our results illustrate how ΔNp63α can drive breast cancer cell invasion by selectively engaging pro-migratory components of the EMT program while, in parallel, still promoting the retention of epithelial character. PMID:26292362

  6. Conditional immortalization of human thyroid epithelial cells: a tool for analysis of oncogene action.

    PubMed Central

    Wynford-Thomas, D; Bond, J A; Wyllie, F S; Burns, J S; Williams, E D; Jones, T; Sheer, D; Lemoine, N R

    1990-01-01

    To overcome the difficulty of assessing oncogene action in human epithelial cell types, such as thyroid, which have limited proliferative potential in culture, we have explored the use of temperature-sensitive (ts) mutants of simian virus 40 (SV40) early region to create conditionally immortalized epithelial cell lines. Normal primary cultures of human thyroid follicular cells were transfected with a plasmid containing the SV40 early region from mutant tsA58. Expanding epithelial colonies were observed after 2 to 3 months, all of which grew to greater than 200 population doublings without crisis. All showed tight temperature dependence for growth. After switch-up to the restrictive temperature (40.5 degrees C), no further increase in cell number was seen after 1 to 2 days. However, DNA synthesis declined much more slowly; the dissociation from cell division led to marked polyploidy. Viability was maintained for up to 2 weeks. Introduction of an inducible mutant ras gene into ts thyroid cells led, as expected, to morphological transformation at the permissive temperature when ras was induced. Interestingly, this was associated with a marked reduction in net growth rate. At the restrictive temperature, induction of mutant ras caused rapid cell death. These results demonstrate the utility of a ts SV40 mutant to permit the study of oncogene action in an otherwise nonproliferative target cell and reveal important differences in the interaction between ras and SV40 T in these epithelial cells compared with previously studied cell types. Images PMID:1697930

  7. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    EPA Science Inventory

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  8. In vivo imaging of epithelial wound healing in the cnidarian Clytia hemisphaerica demonstrates early evolution of purse string and cell crawling closure mechanisms.

    PubMed

    Kamran, Zach; Zellner, Katie; Kyriazes, Harry; Kraus, Christine M; Reynier, Jean-Baptiste; Malamy, Jocelyn E

    2017-12-19

    All animals have mechanisms for healing damage to the epithelial sheets that cover the body and line internal cavities. Epithelial wounds heal either by cells crawling over the wound gap, by contraction of a super-cellular actin cable ("purse string") that surrounds the wound, or some combination of the two mechanisms. Both cell crawling and purse string closure of epithelial wounds are widely observed across vertebrates and invertebrates, suggesting early evolution of these mechanisms. Cnidarians evolved ~600 million years ago and are considered a sister group to the Bilateria. They have been much studied for their tremendous regenerative potential, but epithelial wound healing has not been characterized in detail. Conserved elements of wound healing in bilaterians and cnidarians would suggest an evolutionary origin in a common ancestor. Here we test this idea by characterizing epithelial wound healing in live medusae of Clytia hemisphaerica. We identified cell crawling and purse string-mediated mechanisms of healing in Clytia epithelium that appear highly analogous of those seen in higher animals, suggesting that these mechanisms may have emerged in a common ancestor. Interestingly, we found that epithelial wound healing in Clytia is 75 to >600 times faster than in cultured cells or embryos of other animals previously studied, suggesting that Clytia may provide valuable clues about optimized healing efficiency. Finally, in Clytia, we show that damage to the basement membrane in a wound gap causes a rapid shift between the cell crawling and purse string mechanisms for wound closure. This is consistent with work in other systems showing that cells marginal to a wound choose between a super-cellular actin cable or lamellipodia formation to close wounds, and suggests a mechanism underlying this decision. 1. Cell crawling and purse string mechanisms of epithelial wound healing likely evolved before the divergence of Cnidaria from the bilaterian lineage ~ 600mya 2. In Clytia, the choice between cell crawling and purse string mechanisms of wound healing depends on interactions between the epithelial cells and the basement membrane.

  9. Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation.

    PubMed

    Kuony, Alison; Michon, Frederic

    2017-01-01

    As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14 + population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion.

  10. Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation

    PubMed Central

    Kuony, Alison; Michon, Frederic

    2017-01-01

    As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14+ population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion. PMID:29033846

  11. The impact of aging on epithelial barriers.

    PubMed

    Parrish, Alan R

    2017-10-02

    The epithelium has many critical roles in homeostasis, including an essential responsibility in establishing tissue barriers. In addition to the fundamental role in separating internal from external environment, epithelial barriers maintain nutrient, fluid, electrolyte and metabolic waste balance in multiple organs. While, by definition, barrier function is conserved, the structure of the epithelium varies across organs. For example, the skin barrier is a squamous layer of cells with distinct structural features, while the lung barrier is composed of a very thin single cell to minimize diffusion space. With the increased focus on age-dependent alterations in organ structure and function, there is an emerging interest in the impact of age on epithelial barriers. This review will focus on the impact of aging on the epithelial barrier of several organs, including the skin, lung, gastrointestinal tract and the kidney, at a structural and functional level.

  12. Nicotine transport in lung and non-lung epithelial cells.

    PubMed

    Takano, Mikihisa; Kamei, Hidetaka; Nagahiro, Machi; Kawami, Masashi; Yumoto, Ryoko

    2017-11-01

    Nicotine is rapidly absorbed from the lung alveoli into systemic circulation during cigarette smoking. However, mechanism underlying nicotine transport in alveolar epithelial cells is not well understood to date. In the present study, we characterized nicotine uptake in lung epithelial cell lines A549 and NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Characteristics of [ 3 H]nicotine uptake was studied using these cell lines. Nicotine uptake in A549 cells occurred in a time- and temperature-dependent manner and showed saturation kinetics, with a Km value of 0.31mM. Treatment with some organic cations such as diphenhydramine and pyrilamine inhibited nicotine uptake, whereas treatment with organic cations such as carnitine and tetraethylammonium did not affect nicotine uptake. Extracellular pH markedly affected nicotine uptake, with high nicotine uptake being observed at high pH up to 11.0. Modulation of intracellular pH with ammonium chloride also affected nicotine uptake. Treatment with valinomycin, a potassium ionophore, did not significantly affect nicotine uptake, indicating that nicotine uptake is an electroneutral process. For comparison, we assessed the characteristics of nicotine uptake in another lung epithelial cell line NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Interestingly, these cell lines showed similar characteristics of nicotine uptake with respect to pH dependency and inhibition by various organic cations. The present findings suggest that a similar or the same pH-dependent transport system is involved in nicotine uptake in these cell lines. A novel molecular mechanism of nicotine transport is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells

    PubMed Central

    Ulm, Ashley; Mayhew, Christopher N.; Debley, Jason; Khurana Hershey, Gurjit K.; Ji, Hong

    2016-01-01

    Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research. PMID:27022951

  14. Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells.

    PubMed

    Ulm, Ashley; Mayhew, Christopher N; Debley, Jason; Khurana Hershey, Gurjit K; Ji, Hong

    2016-03-10

    Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research.

  15. Keratin 8 and 18 Loss in Epithelial Cancer Cells Increases Collective Cell Migration and Cisplatin Sensitivity through Claudin1 Up-regulation*

    PubMed Central

    Fortier, Anne-Marie; Asselin, Eric; Cadrin, Monique

    2013-01-01

    Keratins 8 and 18 (K8/18) are simple epithelial cell-specific intermediate filament proteins. Keratins are essential for tissue integrity and are involved in intracellular signaling pathways that regulate cell response to injuries, cell growth, and death. K8/18 expression is maintained during tumorigenesis; hence, they are used as a diagnostic marker in tumor pathology. In recent years, studies have provided evidence that keratins should be considered not only as markers but also as regulators of cancer cell signaling. The loss of K8/18 expression during epithelial-mesenchymal transition (EMT) is associated with metastasis and chemoresistance. In the present study, we investigated whether K8/18 expression plays an active role in EMT. We show that K8/18 stable knockdown using shRNA increased collective migration and invasiveness of epithelial cancer cells without modulating EMT markers. K8/18-depleted cells showed PI3K/Akt/NF-κB hyperactivation and increased MMP2 and MMP9 expression. K8/18 deletion also increased cisplatin-induced apoptosis. Increased Fas receptor membrane targeting suggests that apoptosis is enhanced via the extrinsic pathway. Interestingly, we identified the tight junction protein claudin1 as a regulator of these processes. This is the first indication that modulation of K8/18 expression can influence the phenotype of epithelial cancer cells at a transcriptional level and supports the hypothesis that keratins play an active role in cancer progression. PMID:23449973

  16. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    PubMed

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-04-03

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties. The progression from a monolayer of epithelial cells to a fully differentiated 3-D aggregate varies based on cell type(1, 7-13). Periodic sampling from the bioreactor allows for monitoring of epithelial aggregate formation, cellular differentiation markers and viability (Figure 1D). Once cellular differentiation and aggregate formation is established, the cells are harvested from the bioreactor, and similar assays performed on 2-D cells can be applied to the 3-D aggregates with a few considerations (Figure 1E-G). In this work, we describe detailed steps of how to culture 3-D epithelial cell aggregates in the RWV bioreactor system and a variety of potential assays and analyses that can be executed with the 3-D aggregates. These analyses include, but are not limited to, structural/morphological analysis (confocal, scanning and transmission electron microscopy), cytokine/chemokine secretion and cell signaling (cytometric bead array and Western blot analysis), gene expression analysis (real-time PCR), toxicological/drug analysis and host-pathogen interactions. The utilization of these assays set the foundation for more in-depth and expansive studies such as metabolomics, transcriptomics, proteomics and other array-based applications. Our goal is to present a non-conventional means of culturing human epithelial cells to produce organotypic 3-D models that recapitulate the human in vivo tissue, in a facile and robust system to be used by researchers with diverse scientific interests.

  17. Sheep, wolf, or werewolf: cancer stem cells and the epithelial-to-mesenchymal transition.

    PubMed

    Chang, Jeffrey T; Mani, Sendurai A

    2013-11-28

    Multiple cancers contain subpopulations that exhibit characteristics of cancer stem cells (CSCs), the ability to self-renew and seed heterogeneous tumors. Recent evidence suggests two potentially overlapping models for these phenotypes: one where stem cells arise from multipotent progenitor cells, and another where they are created via an epithelial to mesenchymal transition. Unraveling this issue is critical, as it underlies phenomena such as metastasis and therapeutic resistance. Therefore, there is intense interest in understanding these two types of CSSs, how they differ from differentiated cancer cells, the mechanisms that drive their phenotypes, and how that knowledge can be incorporated into therapeutics. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    PubMed

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  19. Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis.

    PubMed

    Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.

  20. Suppression of BMP-7 by histone deacetylase 2 promoted apoptosis of renal tubular epithelial cells in acute kidney injury

    PubMed Central

    Ma, Taotao; Huang, Cheng; Xu, Qingqing; Yang, Yang; Liu, Yaru; Meng, Xiaoming; Li, Jun; Ye, Min; Liang, Hong

    2017-01-01

    Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by histone deacetylase (HDAC) inhibitors via epigenetic modification to enhance bone morphogenetic protein 7 (BMP-7) expression. Cisplatin upregulated the activity of HDAC2 in the kidney. Inhibition of HDAC with clinically used trichostatin A (TSA) or valproic acid (VPA) suppressed cisplatin-induced kidney injury and epithelial cell apoptosis. Overexpression of HDAC2 promotes CP-treated tubular epithelium cells apoptosis. Chromatin immunoprecipitation assay clearly detected HDAC2 assosiation with BMP-7 promoter. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by TSA or VPA in vivo and in vitro. Interestingly, administration of recombinant BMP-7 (rhBMP-7) reduced cisplatin-induced kidney dysfunction. Moreover, BMP-7 treatment suppressed epithelial cell apoptosis and small interfering RNA-based knockdown of BMP-7 expression abolished HDAC inhibitors suppression of epithelial cell apoptosis in vitro. Results of current study indicated that TSA or VPA inhibited apoptosis of renal tubular epithelial cells via promoting the level of BMP-7 epigenetically through targeting HDAC2. Hence, HDAC inhibitors could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:29072686

  1. Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

    PubMed

    Pietz, Grzegorz; De, Rituparna; Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten; Hammarström, Marie-Louise

    2017-01-01

    Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease.

  2. Immunopathology of childhood celiac disease—Key role of intestinal epithelial cells

    PubMed Central

    Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten

    2017-01-01

    Background & Aims Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Methods Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. Results More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. Conclusion A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease. PMID:28934294

  3. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor 2-positive breast cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Single-cell RNA sequencing reveals an altered gene expression pattern as a result of CRISPR/cas9-mediated deletion of Gene 33/Mig6 and chronic exposure to hexavalent chromium in human lung epithelial cells.

    PubMed

    Park, Soyoung; Zhang, Xiaowen; Li, Cen; Yin, Changhong; Li, Jiangwei; Fallon, John T; Huang, Weihua; Xu, Dazhong

    2017-09-01

    Gene 33 (Mig6, ERRFI1) is an adaptor protein with multiple cellular functions. We recently reported that depletion of this protein promotes lung epithelial cell transformation induced by hexavalent chromium [Cr(VI)]. However, the early molecular events that mediate this process are not clear. In the present study, we used single-cell RNA sequencing to compare gene expression profiles between BEAS-2B lung epithelial cells chronically exposed to a sublethal dose of Cr(VI) with or without CRISPR/cas9-mediated deletion of Gene 33. Our data reveal 83 differentially expressed genes. The most notable changes are genes associated with cell adhesion, oxidative stresses, protein ubiquitination, epithelial-mesenchymal transition/metastasis, and WNT signaling. Up-regulation of some neuro-specific genes is also evident, particularly ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), a deubiquitinase and potential biomarker for lung cancer. Gene 33 deletion and/or Cr(VI) exposure did not cause discernable changes in cell morphology. However, Gene 33 deletion led to a modest but significant reduction of cells in the G2/M phase of the cell cycle regardless of Cr(VI) exposure. Gene 33 deletion also significantly reduced cell proliferation. Interestingly, Cr(VI) exposure eliminated the difference in cell proliferation between the two genotypes. Gene 33 deletion also significantly elevated cell migration. Our data indicate that combined Gene 33 deletion and chronic Cr(VI) exposure produces a gene expression pattern and a phenotype resemble those of the transformed lung epithelial cells. Given the known association of UCHL1 with lung cancer, we propose that UCHL1 is an important player in the early stage of lung epithelial cell transformation and tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.

    PubMed Central

    Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael

    2002-01-01

    The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID:11772392

  6. FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells.

    PubMed

    Nguyen, Minh Binh; Cohen, Idan; Kumar, Vinod; Xu, Zijian; Bar, Carmit; Dauber-Decker, Katherine L; Tsai, Pai-Chi; Marangoni, Pauline; Klein, Ophir D; Hsu, Ya-Chieh; Chen, Ting; Mikkola, Marja L; Ezhkova, Elena

    2018-06-13

    Merkel cells are innervated mechanosensory cells responsible for light-touch sensations. In murine dorsal skin, Merkel cells are located in touch domes and found in the epidermis around primary hairs. While it has been shown that Merkel cells are skin epithelial cells, the progenitor cell population that gives rise to these cells is unknown. Here, we show that during embryogenesis, SOX9-positive (+) cells inside hair follicles, which were previously known to give rise to hair follicle stem cells (HFSCs) and cells of the hair follicle lineage, can also give rise to Merkel Cells. Interestingly, while SOX9 is critical for HFSC specification, it is dispensable for Merkel cell formation. Conversely, FGFR2 is required for Merkel cell formation but is dispensable for HFSCs. Together, our studies uncover SOX9(+) cells as precursors of Merkel cells and show the requirement for FGFR2-mediated epithelial signalling in Merkel cell specification.

  7. Complement-Related Regulates Autophagy in Neighboring Cells.

    PubMed

    Lin, Lin; Rodrigues, Frederico S L M; Kary, Christina; Contet, Alicia; Logan, Mary; Baxter, Richard H G; Wood, Will; Baehrecke, Eric H

    2017-06-29

    Autophagy degrades cytoplasmic components and is important for development and human health. Although autophagy is known to be influenced by systemic intercellular signals, the proteins that control autophagy are largely thought to function within individual cells. Here, we report that Drosophila macroglobulin complement-related (Mcr), a complement ortholog, plays an essential role during developmental cell death and inflammation by influencing autophagy in neighboring cells. This function of Mcr involves the immune receptor Draper, suggesting a relationship between autophagy and the control of inflammation. Interestingly, Mcr function in epithelial cells is required for macrophage autophagy and migration to epithelial wounds, a Draper-dependent process. This study reveals, unexpectedly, that complement-related from one cell regulates autophagy in neighboring cells via an ancient immune signaling program. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. SiRNA-HMGA2 weakened AGEs-induced epithelial-to-mesenchymal transition in tubular epithelial cells.

    PubMed

    Bai, Yi-Hua; Wang, Jia-Ping; Yang, Min; Zeng, Yi; Jiang, Hong-Ying

    2015-02-20

    Diabetic nephropathy as the most common cause of end-stage renal disease accounts for a significant increase in morbidity and mortality in patients. Epithelial to mesenchymal transition (EMT) of tubular cells is associated with diabetic nephropathy. Advanced glycation end products (AGEs) are thought to be involved in the pathogenesis of diabetic nephropathy via multifactorial mechanisms. However, whether AGEs could induce EMT in Tubular epithelial cells is still unknown. In this study, we found that AGEs induced EMT and accompanied by reduced expression of the epithelial markers E-cadherin and enhanced expression of the mesenchymal markers vimentin and alpha-smooth muscle actin. Furthermore, the expression of HMGA2 was upregulated by AGEs. Far more interesting, its knockdown by short interfering RNA (siRNA) effectively reversed AGEs-induced EMT. Meanwhile, we also found that knockdown of HMGA2 inhibited high AGEs-induced generation of reactive oxygen species (ROS) and the activation of p38 MAPK. Collectively, these studies suggest that HMGA2 plays a important role in EMT during Diabetic nephropathy and more study toward HMGA2 should be played in renal pathogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    PubMed

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus.

    PubMed

    Rolny, I S; Tiscornia, I; Racedo, S M; Pérez, P F; Bollati-Fogolín, M

    2016-11-30

    It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.

  11. Tight junctions and IBS--the link between epithelial permeability, low-grade inflammation, and symptom generation?

    PubMed

    Piche, T

    2014-03-01

    In this issue of Neurogastroenterology and Motility, Dr Ewa Wilcz-Villega and colleagues report low expression of E-cadherin, a tight junction protein involved in the regulation of paracellular permeability, in the colonic mucosa of patients with the irritable bowel syndrome (IBS) with predominance of diarrhea (IBS-D) or alternating symptoms (IBS-A). These findings constitute an improvement in our knowledge of epithelial barrier disruption associated with IBS. There is mounting evidence to indicate that a compromised epithelial barrier is associated with low-grade immune activation and intestinal dysfunction in at least a proportion of IBS patients. During the last 10 years of research, much interest has focused on the increase in the number of different types of immune cells in the gut mucosa of IBS patients including: mast cells, T lymphocytes, and other local cells such as enteroendocrine cells. The inflammatory mediators released by these cells or other luminal factors could be at the origin of altered epithelial barrier functions and enteric nervous system signaling, which lead to gut hypersensitivity. A current conceptual framework states that clinical symptoms of IBS could be associated with structural and functional abnormalities of the mucosal barrier, highlighting the crucial importance of elucidating the contributory role of epithelial barrier defects in the pathogenesis of IBS. More importantly, disruption of the epithelial barrier could also participate in the generation of persistent abdominal pain and discomfort mimicking IBS in patients with inflammatory bowel diseases considered in remission. This mini review gives a brief summary of clinical and experimental evidence concerning the mechanisms underlying epithelial barrier defects in IBS. © 2014 John Wiley & Sons Ltd.

  12. Intracrine prostaglandin E2 pro-tumoral actions in prostate epithelial cells originate from non-canonical pathways.

    PubMed

    Madrigal-Martínez, Antonio; Fernández-Martínez, Ana B; Lucio Cazaña, Francisco J

    2018-04-01

    Prostaglandin E 2 (PGE 2 ) increases cell proliferation and stimulates migratory and angiogenic abilities in prostate cancer cells. However, the effects of PGE 2 on non-transformed prostate epithelial cells are unknown, despite the fact that PGE 2 overproduction has been found in benign hyperplastic prostates. In the present work we studied the effects of PGE 2 in immortalized, non-malignant prostate epithelial RWPE-1 cells and found that PGE 2 increased cell proliferation, cell migration, and production of vascular endothelial growth factor-A, and activated in vitro angiogenesis. These actions involved a non-canonic intracrine mechanism in which the actual effector was intracellular PGE 2 (iPGE 2 ) instead of extracellular PGE 2 : inhibition of the prostaglandin uptake transporter (PGT) or antagonism of EP receptors prevented the effects of PGE 2 , which indicated that PGE 2 activity depended on its carrier-mediated translocation from the outside to the inside of cells and that EP receptors located intracellularly (iEP) mediated the effects of PGE 2 . iPGE 2 acted through transactivation of epidermal growth factor-receptor (EGFR) by iEP, leading to increased expression and activity of hypoxia-inducible factor-1α (HIF-1α). Interestingly, iPGE 2 also mediates the effects of PGE 2 on prostate cancer PC3 cells through the axis iPGE 2 -iEP receptors-EGFR-HIF-1α. Thus, this axis might be responsible for the growth-stimulating effects of PGE 2 on prostate epithelial cells, thereby contributing to prostate proliferative diseases associated with chronic inflammation. Since this PGT-dependent non-canonic intracrine mechanism of PGE 2 action operates in both benign and malignant prostate epithelial cells, PGT inhibitors should be tested as a novel therapeutic modality to treat prostate proliferative disease. © 2017 Wiley Periodicals, Inc.

  13. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function.

    PubMed

    Graves, Christina L; Harden, Scott W; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J; Wallet, Shannon M

    2014-12-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. Published by Elsevier B.V.

  14. Role of alveolar epithelial early growth response-1 (Egr-1) in CD8+ T cell-mediated lung injury.

    PubMed

    Ramana, Chilakamarti V; Cheng, Guang-Shing; Kumar, Aseem; Kwon, Hyung-Joo; Enelow, Richard I

    2009-12-01

    Influenza infection of the distal airways results in severe lung injury, a considerable portion of which is immunopathologic and attributable to the host responses. We have used a mouse model to specifically investigate the role of antiviral CD8(+) T cells in this injury, and have found that the critical effector molecule is TNF-alpha expressed by the T cells upon antigen recognition. Interestingly, the immunopathology which ensues is characterized by significant accumulation of host inflammatory cells, recruited by chemokines expressed by the target alveolar epithelial cells. In this study we analyzed the mechanisms involved in the induction of epithelial chemokine expression triggered by antigen-specific CD8(+) T cell recognition, and demonstrate that the early growth response-1 (Egr-1) transcription factor is rapidly induced in epithelial cells, both in vitro and ex vivo, and that this is a critical regulator of a host of inflammatory chemokines. Genetic deficiency of Egr-1 significantly abrogates both the chemokine expression and the immunopathologic injury associated with T cell recognition, and it directly regulates transcriptional activity of a model CXC chemokine, MIP-2. We further demonstrate that Egr-1 induction is triggered by TNF-alpha-dependent ERK activation, and inhibition of this pathway ablates Egr-1 expression. These findings suggest that Egr-1 may represent an important target in mitigating the immunopathology of severe influenza infection.

  15. Role of alveolar epithelial Early growth response-1 (Egr-1) in CD8+ T Cell mediated Lung Injury

    PubMed Central

    Ramana, Chilakamarti V.; Cheng, Guang-Shing; Kumar, Aseem; Kwon, Hyung- Joo; Enelow, Richard I.

    2009-01-01

    Influenza infection of the distal airways results in severe lung injury, a considerable portion of which is immunopathologic and attributable to the host responses. We have used a mouse model to specifically investigate the role of antiviral CD8+ T cells in this injury, and have found that the critical effector molecule is TNF-α expressed by the T cells upon antigen recognition. Interestingly, the immunopathology which ensues is characterized by significant accumulation of host inflammatory cells, recruited by chemokines expressed by the target alveolar epithelial cells. In this study we analyzed the mechanisms involved in the induction of epithelial chemokine expression triggered by antigen-specific CD8+ T cell recognition, and demonstrate that the Early growth response-1 (Egr-1) transcription factor is rapidly induced in epithelial cells, both in vitro and ex vivo, and that this is a critical regulator of a host of inflammatory chemokines. Genetic deficiency of Egr-1 significantly abrogates both the chemokine expression and the immunopathologic injury associated with T cell recognition, and it directly regulates transcriptional activity of a model CXC chemokine, MIP-2. We further demonstrate that Egr-1 induction is triggered by TNF-α– dependent ERK activation, and inhibition of this pathway ablates Egr-1 expression. These findings suggest that Egr-1 may represent an important target in mitigating the immunopathology of severe influenza infection. PMID:19786304

  16. The status of intercellular junctions in established lens epithelial cell lines

    PubMed Central

    Dave, Alpana; Craig, Jamie E.

    2012-01-01

    Purpose Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. Methods The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT–PCR), and localization was determined by immunofluorescence labeling. Results Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. Conclusions The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium. PMID:23288986

  17. The status of intercellular junctions in established lens epithelial cell lines.

    PubMed

    Dave, Alpana; Craig, Jamie E; Sharma, Shiwani

    2012-01-01

    Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium.

  18. G protein-coupled receptor kinase 2 positively regulates epithelial cell migration

    PubMed Central

    Penela, Petronila; Ribas, Catalina; Aymerich, Ivette; Eijkelkamp, Niels; Barreiro, Olga; Heijnen, Cobi J; Kavelaars, Annemieke; Sánchez-Madrid, Francisco; Mayor, Federico

    2008-01-01

    Cell migration requires integration of signals arising from both the extracellular matrix and messengers acting through G protein-coupled receptors (GPCRs). We find that increased levels of G protein-coupled receptor kinase 2 (GRK2), a key player in GPCR regulation, potentiate migration of epithelial cells towards fibronectin, whereas such process is decreased in embryonic fibroblasts from hemizygous GRK2 mice or upon knockdown of GRK2 expression. Interestingly, the GRK2 effect on fibronectin-mediated cell migration involves the paracrine/autocrine activation of a sphingosine-1-phosphate (S1P) Gi-coupled GPCR. GRK2 positively modulates the activity of the Rac/PAK/MEK/ERK pathway in response to adhesion and S1P by a mechanism involving the phosphorylation-dependent, dynamic interaction of GRK2 with GIT1, a key scaffolding protein in cell migration processes. Furthermore, decreased GRK2 levels in hemizygous mice result in delayed wound healing rate in vivo, consistent with a physiological role of GRK2 as a regulator of coordinated integrin and GPCR-directed epithelial cell migration. PMID:18369319

  19. Role of Epithelial Mesenchymal Transition in Prostate Tumorigenesis

    PubMed Central

    Khan, Mohammad Imran; Hamid, Abid; Adhami, Vaqar Mustafa; Lall, Rahul K; Mukhtar, Hasan

    2015-01-01

    Globally, the cancer associated deaths are generally attributed to the spread of cancerous cells or their features to the nearby or distant secondary organs by a process known as metastasis. Among other factors, the metastatic dissemination of cancer cells is attributed to the reactivation of an evolutionary conserved developmental program known as epithelial to mesenchymal transition (EMT). During EMT, fully differentiated epithelial cells undergo a series of dramatic changes in their morphology, along with loss of cell to cell contact and matrix remodeling into less differentiated and invasive mesenchymal cells. Many studies provide evidence for the existence of EMT like states in prostate cancer (PCa) and suggest its possible involvement in PCa progression and metastasis. At the same time, the lack of conclusive evidence regarding the presence of full EMT in human PCa samples has somewhat dampened the interest in the field. However, ongoing EMT research provides new perspectives and unveils the enormous potential of this field in tailoring new therapeutic regimens for PCa management. This review summarizes the role of many transcription factors and other molecules that drive EMT during prostate tumorigenesis. PMID:25506896

  20. Computer simulations of the mechanical response of brushes on the surface of cancerous epithelial cells

    NASA Astrophysics Data System (ADS)

    Goicochea, A. Gama; Guardado, S. J. Alas

    2015-08-01

    We report a model for atomic force microscopy by means of computer simulations of molecular brushes on surfaces of biological interest such as normal and cancerous cervical epithelial cells. Our model predicts that the force needed to produce a given indentation on brushes that can move on the surface of the cell (called “liquid” brushes) is the same as that required for brushes whose ends are fixed on the cell’s surface (called “solid” brushes), as long as the tip of the microscope covers the entire area of the brush. Additionally, we find that cancerous cells are softer than normal ones, in agreement with various experiments. Moreover, soft brushes are found to display larger resistance to compression than stiff ones. This phenomenon is the consequence of the larger equilibrium length of the soft brushes and the cooperative association of solvent molecules trapped within the brushes, which leads to an increase in the osmotic pressure. Our results show that a careful characterization of the brushes on epithelial cells is indispensable when determining the mechanical response of cancerous cells.

  1. Persistent Effectivity of Gas Plasma-Treated, Long Time-Stored Liquid on Epithelial Cell Adhesion Capacity and Membrane Morphology

    PubMed Central

    Hoentsch, Maxi; Bussiahn, René; Rebl, Henrike; Bergemann, Claudia; Eggert, Martin; Frank, Marcus; von Woedtke, Thomas; Nebe, Barbara

    2014-01-01

    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first time-dependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics. PMID:25170906

  2. Trans-suppression of defense DEFB1 gene in intestinal epithelial cells following Cryptosporidium parvum infection is associated with host delivery of parasite Cdg7_FLc_1000 RNA.

    PubMed

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Dolata, Courtney E; Chen, Xian-Ming

    2018-03-01

    To counteract host immunity, Cryptosporidium parvum has evolved multiple strategies to suppress host antimicrobial defense. One such strategy is to reduce the production of the antimicrobial peptide beta-defensin 1 (DEFB1) by host epithelial cells but the underlying mechanisms remain unclear. Recent studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of intestinal cryptosporidiosis, in this study, we analyzed the expression profile of host beta-defensin genes in host cells following infection. We found that C. parvum infection caused a significant downregulation of the DEFB1 gene. Interestingly, downregulation of DEFB1 gene was associated with host delivery of Cdg7_FLc_1000 RNA transcript, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected host cells. Knockdown of Cdg7_FLc_1000 in host cells could attenuate the trans-suppression of host DEFB1 gene and decreased the parasite burden. Therefore, our data suggest that trans-suppression of DEFB1 gene in intestinal epithelial cells following C. parvum infection involves host delivery of parasite Cdg7_FLc_1000 RNA, a process that may be relevant to the epithelial defense evasion by C. parvum at the early stage of infection.

  3. Ectopic expression of aquaporin-5 in noncancerous epithelial MDCK cells changes cellular morphology and actin fiber formation without inducing epithelial-to-mesenchymal transition.

    PubMed

    Jensen, Helene H; Holst, Mikkel R; Login, Frédéric H; Morgen, Jeanette J; Nejsum, Lene N

    2018-06-01

    Aquaporin-5 (AQP5) is a plasma membrane water channel mainly expressed in secretory glands. Increased expression of AQP5 is observed in multiple cancers, including breast cancer, where high expression correlates with the degree of metastasis and poor prognosis. Moreover, studies in cancer cells have suggested that AQP5 activates Ras signaling, drives morphological changes, and in particular increased invasiveness. To design intervention strategies, it is of utmost importance to characterize and dissect the cell biological changes induced by altered AQP5 expression. To isolate the effect of AQP5 overexpression from the cancer background, AQP5 was overexpressed in normal epithelial MDCK cells which have no endogenous AQP5 expression. AQP5 overexpression promoted actin stress fiber formation and lamellipodia dynamics. Moreover, AQP5 decreased cell circularity. Phosphorylation of AQP5 on serine 156 in the second intracellular loop has been shown to activate the Ras pathway. When serine 156 was mutated to alanine to mimic the nonphosphorylated state, the decrease in cell circularity was reversed, indicating that the AQP5-Ras axis is involved in the effect on cell shape. Interestingly, the cellular changes mediated by AQP5 were not associated with induction of epithelial-to-mesenchymal transition. Thus, AQP5 may contribute to cancer by altering cellular morphology and actin organization, which increase the metastatic potential.

  4. Development, validation and implementation of an in vitro model for the study of metabolic and immune function in normal and inflamed human colonic epithelium.

    PubMed

    Pedersen, Gitte

    2015-01-01

    Ulcerative colitis (UC) and Crohn's disease (CD), collectively referred to as inflammatory bowel disease (IBD), are chronic immune disorders affecting the gastrointestinal tract. The aetiology of IBD remains an enigma, but increasing evidence suggests that the development of IBD may be triggered by a disturbance in the balance between gut commensal bacteria and host response in the intestinal mucosa. It is now known that epithelial cells have the capacity to secrete and respond to a range of immunological mediators and this suggests that these cells play a prominent role in the pathogenesis of IBD. Current knowledge about the intestinal epithelium has mainly been obtained using models based on animal cells, transformed human intestinal cell lines and isolated cells from resected colonic bowel segments. Species difference, malignant origin and confounders related to surgery, obviously make these cell models however less applicable for patophysiological studies. Consequently, there was a clear need for models of representative intestinal epithelial cells that would allow functional and dynamic studies of the differentiated human colonic epithelium in vitro. The primary purpose of this thesis was to explore and validate the optimal conditions for establishing a model based on short-term cultures of human colonic epithelial cells obtained from endoscopical biopsies. The cell cultures were accordingly used to describe the interplay between proinflammatory cytokines and colonic epithelium, with focus on alterations in viability, butyrate metabolism and secretion of a chemokine and metalloproteinases (MMP). Finally, the model was used to characterize expression and activation of receptors like toll like receptor (TLR)9 and peroxisome activated proliferators (PPAR)- known to be important players in regulation of innate and adaptive immune responses in human colonic epithelium. The results showed that it is possible to establish short-term cultures of representative, viable human colonic epithelial cells from endoscopic mucosal biopsies of patients with IBD. Short-time isolation by EGTA/EDTA from colonic biopsies allowed establishment of small scale cultures of epithelial cells which were viable and metabolic active for up to 48 hours in vitro. The cell model preserved important cellular metabolic and immunological functions of the human colonic epithelium, including the ability to oxidate butyrate, detoxificate phenolic compounds and secrete the chemokine interleukin (IL)-8 in vitro. Tumour necrosis factor (TNF)-α and interferon (IFN)-γ are pro-inflammatory cytokines, which are present in increased amounts in inflamed colonic mucosa. The precise mechanisms of cytokine-mediated mucosal injury are unknown, but one might be that TNF-α and IFN-γ directly impair epithelial cell function similar to effects seen on distinct target cells in other autoimmune diseases. Using the model, both cytokines were found directly to impair the viability of colonic epithelial cells and to induce secretion of IL-8 in vitro. Interestingly, the cells from inflamed IBD mucosa were less sensitive to cytokine-induced damage, which suggests that an intrinsic defense mechanism is triggered in these cells, perhaps as a result of exposure to toxic luminal factors or high local cytokine levels in vivo. TNF-α and IFN-γ may also be involved in regulation of intestinal inflammation through stimulation of MMP expression and proteolytic activity. We found that colonic epithelial cells express a range of MMPs and moreover that expression of distinct MMPs is increased in cells from inflamed IBD mucosa. Using a functional peptide cleavage assay it was shown that epithelial cells secreted proteolytic active enzymes and that the functional MMP activity was increased in inflamed IBD mucosa. This suggests that colonic epithelial cells, like myofibroblasts and immune cells, may contribute to local intestinal mucosal damage, through secretion of active MMPs. Disturbance of recognition and discrimination of potentially harmful pathogens from commensals in the intestinal mucosa have increasingly been implicated in the pathogenesis of IBD. Our results revealed that colonic epithelial cells express TLR9, a key pattern recognition receptor. Interestingly, the differentiated epithelial cells, which have been exposed to the luminal bacterial flora in vivo, were unresponsive to TLR9 ligand stimulation, contrasting findings in the epithelial cell line HT-29 that is cultured continuously in bacteria free environment. These findings suggest, theoretically, that colonic epithelium may regulate immune responses to microbial antigens including commensal bacterial DNA through modulation of the TLR9 pathway. Currently, the results are in line with the emerging view, that the epithelium represents an important frontline cellular component of the innate immune system in the gut. PPARγ is a nuclear receptor involved in the regulation of lipid and carbonhydrate metabolism. Recent studies in rodent colitis models suggest that PPARγ also is involved in modulation of inflammatory processes in the colon. Using the model, we characterise expression and activity of PPARs in human colonic epithelium and, additionally, evaluated the functional significance of a possible imbalanced PPARγ regulation in relation to inflammation. Our experiments showed that colonic epithelial cells express PPARγ and furthermore that PPARγ signalling was impaired in inflamed UC epithelium. It was possible to restore PPARγ signalling in the cell cultures by stimulation with rosiglitazone (a synthetic PPARγ ligand) in vitro. Hence, these experiments prompted us to design a small controlled, clinical study exploring the possible stimulatory effects of rosiglitazone (a PPAR ligand) in vivo. Interestingly, it was found that topical application of rosiglitazone in patients with active distal UC reduced clinical activity and mucosal inflammation similar to the effects measured in patients treated with mesalazine enemas. Moreover, rectal application of rosiglitazone induced PPARγ signalling in the epithelium in vivo, supporting the view that activation of PPARγ may be a new potential therapeutic target in the treatment of UC. Overall, the in vitro model of representative human colonic epithelial cells has shown to be a useful technique for detailed studies of metabolic and immunological functions that are important for homeostasis of the colonic epithelium. Currently, the findings support the view that intestinal epithelial cells actively participate in immunological processes in the colonic mucosa. Additionally, the model seems to be applicable for generating and evaluating new therapeutic approaches from laboratory bench to bed line as illustrated by the PPARγ study. It is therefore probable, that studies in models of representative colonic epithelial cells, as the one described here, could contribute with important knowledge about the pathogenesis of human inflammatory colonic diseases also in the future.

  5. Deletion of H-Ras decreases renal fibrosis and myofibroblast activation following ureteral obstruction in mice.

    PubMed

    Grande, M Teresa; Fuentes-Calvo, Isabel; Arévalo, Miguel; Heredia, Fabiana; Santos, Eugenio; Martínez-Salgado, Carlos; Rodríguez-Puyol, Diego; Nieto, M Angela; López-Novoa, José M

    2010-03-01

    Tubulointerstitial fibrosis is characterized by the presence of myofibroblasts that contribute to extracellular matrix accumulation. These cells may originate from resident fibroblasts, bone-marrow-derived cells, or renal epithelial cells converting to a mesenchymal phenotype. Ras GTPases are activated during renal fibrosis and play crucial roles in regulating both cell proliferation and TGF-beta-induced epithelial-mesenchymal transition. Here we set out to assess the contribution of Ras to experimental renal fibrosis using the well-established model of unilateral ureteral obstruction. Fifteen days after obstruction, both fibroblast proliferation and inducers of epithelial-mesenchymal transition were lower in obstructed kidneys of H-ras knockout mice and in fibroblast cell lines derived from these mice. Interestingly, fibronectin, collagen I accumulation, overall interstitial fibrosis, and the myofibroblast population were also lower in the knockout than in the wild-type mice. As expected, we found lower levels of activated Akt in the kidneys and cultured fibroblasts of the knockout. Whether Ras inhibition will turn out to prevent progression of renal fibrosis will require more direct studies.

  6. TNFα-induced IKKβ complex activation influences epithelial, but not stromal cell survival in endometriosis.

    PubMed

    Kocbek, Vida; Grandi, Giovanni; Blank, Fabian; Wotzkow, Carlos; Bersinger, Nick A; Mueller, Michael D; Kyo, Satoru; McKinnon, Brett D

    2016-11-01

    Can the activity of the IκB kinase (IKKβ) complex in endometriotic cells contribute to endometriotic lesion survival? There is a constitutive activity of the IKKβ catalytic complex in peritoneal and deeply infiltrating lesions that can influence epithelial, but not stromal cell viability. Endometriotic lesions exist in an inflammatory microenvironment with higher local concentrations of cytokines, such as tumour necrosis factor α (TNFα). TNFα stimulates the activation of the IKKβ complex, an important nodal point in multiple signalling pathways that influence gene transcription, proliferation and apoptosis. However, few data on the regulation of IKKβ in endometriotic tissue are currently available. A retrospective analysis of endometriotic tissue from peritoneal, ovarian and deeply infiltrating lesions from 37 women. Basal and activated (phosphorylated) IKKβ concentrations were analysed by western blotting and immunohistochemistry. The relationship between the expression and activation of these proteins and peritoneal fluid (TNFα) concentrations, measured via ELISA, was examined. A subsequent in vitro analysis of TNFα treatment on the activation of IKKβ and the effect on epithelial and stromal cell viability by its inhibition with PS1145 was also performed. Levels of the phosphorylated IKKβ complex in endometriotic lesions had a significant positive correlation with peritoneal fluid TNFα concentrations. Phosphorylated IKKβ complex was more prevalent in peritoneal and deeply infiltrating endometriosis lesions compared with ovarian lesions. IKKβ was present in both epithelial and stromal cells in all lesions but active IKKβ was limited to epithelial cells. TNFα stimulated an increased expression of phosphorylated IKKβ and the inhibition of this kinase with PS1145 significantly influenced ectopic epithelial cells viability but not eutopic epithelial cells, or endometrial stromal cells. In vitro analysis on epithelial cells was performed with immortalized cell lines and not primary cell cultures and only low sample numbers were available for the study. The regulation of aberrant signalling pathways represents a promising yet relatively unexplored area of endometriosis progression. The IKKβ complex is activated by inflammation and is critical nodal point of numerous downstream kinase-signalling pathways, including NFκB (nuclear factor κB), mTOR (mammalian target of rapamycin) and BAD (Bcl2-antagonist of cell death). This study shows a significant relationship between peritoneal fluid TNFα and IKKβ activation in epithelial cells that will have significant consequences for the continued survival of these cells at ectopic locations through the regulation of downstream pathways. None. The study was funded by the Swiss National Science Foundation (Grant Number 320030_140774). The authors have no conflict of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.

    PubMed

    Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.

  8. Rifaximin-Mediated Changes to the Epithelial Cell Proteome: 2-D Gel Analysis

    PubMed Central

    Schrodt, Caroline; McHugh, Erin E.; Gawinowicz, Mary Ann; DuPont, Herbert L.; Brown, Eric L.

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656

  9. A Phenotypic Cell-Binding Screen Identifies a Novel Compound Targeting Triple-Negative Breast Cancer.

    PubMed

    Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong

    2018-06-11

    We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.

  10. Interleukin-8, CXCL1, and MicroRNA miR-146a Responses to Probiotic Escherichia coli Nissle 1917 and Enteropathogenic E. coli in Human Intestinal Epithelial T84 and Monocytic THP-1 Cells after Apical or Basolateral Infection.

    PubMed

    Sabharwal, Harshana; Cichon, Christoph; Ölschläger, Tobias A; Sonnenborn, Ulrich; Schmidt, M Alexander

    2016-09-01

    Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Dioxin Receptor Expression Inhibits Basal and Transforming Growth Factor β-induced Epithelial-to-mesenchymal Transition*

    PubMed Central

    Rico-Leo, Eva M.; Alvarez-Barrientos, Alberto; Fernandez-Salguero, Pedro M.

    2013-01-01

    Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR+/+ and AhR−/− keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR−/− keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR+/+ and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells. PMID:23382382

  12. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells

    PubMed Central

    Yin, Yan; Lin, Congxing; Veith, G. Michael; Chen, Hong; Dhandha, Maulik; Ma, Liang

    2012-01-01

    SUMMARY Developmental exposure to diethylstilbestrol (DES) causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ)-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities. PMID:22679223

  13. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs.

    PubMed

    Trebbien, Ramona; Larsen, Lars E; Viuff, Birgitte M

    2011-09-08

    Pigs are considered susceptible to influenza A virus infections from different host origins because earlier studies have shown that they have receptors for both avian (sialic acid-alpha-2,3-terminal saccharides (SA-alpha-2,3)) and swine/human (SA-alpha-2,6) influenza viruses in the upper respiratory tract. Furthermore, experimental and natural infections in pigs have been reported with influenza A virus from avian and human sources. This study investigated the receptor distribution in the entire respiratory tract of pigs using specific lectins Maackia Amurensis (MAA) I, and II, and Sambucus Nigra (SNA). Furthermore, the predilection sites of swine influenza virus (SIV) subtypes H1N1 and H1N2 as well as avian influenza virus (AIV) subtype H4N6 were investigated in the respiratory tract of experimentally infected pigs using immunohistochemical methods. SIV antigen was widely distributed in bronchi, but was also present in epithelial cells of the nose, trachea, bronchioles, and alveolar type I and II epithelial cells in severely affected animals. AIV was found in the lower respiratory tract, especially in alveolar type II epithelial cells and occasionally in bronchiolar epithelial cells. SA-alpha-2,6 was the predominant receptor in all areas of the respiratory tract with an average of 80-100% lining at the epithelial cells. On the contrary, the SA-alpha-2,3 was not present (0%) at epithelial cells of nose, trachea, and most bronchi, but was found in small amounts in bronchioles, and in alveoli reaching an average of 20-40% at the epithelial cells. Interestingly, the receptor expression of both SA-alpha-2,3 and 2,6 was markedly diminished in influenza infected areas compared to non-infected areas. A difference in predilection sites between SIV and AIV virus was found, and this difference was in accordance with the distribution of the SA-alpha-2,6 and SA-alpha-2,3 receptor, respectively. The results indicated that the distribution of influenza A virus receptors in pigs are similar to that of humans and therefore challenge the theory that the pig acts as a mixing vessel between human and avian influenza viruses. Furthermore, it was shown that AIV prefers to infect alveolar type II epithelial cells in pigs. This corresponds with findings in humans emphasising the resemblance between the two species.

  14. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells.

    PubMed

    Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V

    2009-10-01

    Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.

  15. Reactive Oxygen Species/Hypoxia-Inducible Factor-1α/Platelet-Derived Growth Factor-BB Autocrine Loop Contributes to Cocaine-Mediated Alveolar Epithelial Barrier Damage

    PubMed Central

    Yang, Lu; Chen, Xufeng; Simet, Samantha M.; Hu, Guoku; Cai, Yu; Niu, Fang; Kook, Yeonhee

    2016-01-01

    Abuse of psychostimulants, such as cocaine, has been shown to be closely associated with complications of the lung, such as pulmonary hypertension, edema, increased inflammation, and infection. However, the mechanism by which cocaine mediates impairment of alveolar epithelial barrier integrity that underlies various pulmonary complications has not been well determined. Herein, we investigate the role of cocaine in disrupting the alveolar epithelial barrier function and the associated signaling cascade. Using the combinatorial electric cell–substrate impedance sensing and FITC-dextran permeability assays, we demonstrated cocaine-mediated disruption of the alveolar epithelial barrier, as evidenced by increased epithelial monolayer permeability with a concomitant loss of the tight junction protein zonula occludens-1 (Zo-1) in both mouse primary alveolar epithelial cells and the alveolar epithelial cell line, L2 cells. To dissect the signaling pathways involved in this process, we demonstrated that cocaine-mediated induction of permeability factors, platelet-derived growth factor (PDGF-BB) and vascular endothelial growth factor, involved reactive oxygen species (ROS)-dependent induction of hypoxia-inducible factor (HIF)-1α. Interestingly, we demonstrated that ROS-dependent induction of another transcription factor, nuclear factor erythroid-2–related factor-2, that did not play a role in cocaine-mediated barrier dysfunction. Importantly, this study identifies, for the first time, that ROS/HIF-1α/PDGF-BB autocrine loop contributes to cocaine-mediated barrier disruption via amplification of oxidative stress and downstream signaling. Corroboration of these cell culture findings in vivo demonstrated increased permeability of the alveolar epithelial barrier, loss of expression of Zo-1, and a concomitantly increased expression of both HIF-1α and PDGF-BB. Pharmacological blocking of HIF-1α significantly abrogated cocaine-mediated loss of Zo-1. Understanding the mechanism(s) by which cocaine mediates barrier dysfunction could provide insights into the development of potential therapeutic targets for cocaine-mediated pulmonary hypertension. PMID:27391108

  16. Mechanical strain induces involution-associated events in mammary epithelial cells

    PubMed Central

    Quaglino, Ana; Salierno, Marcelo; Pellegrotti, Jesica; Rubinstein, Natalia; Kordon, Edith C

    2009-01-01

    Background Shortly after weaning, a complex multi-step process that leads to massive epithelial apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have demonstrated the relevance of mechanical stress to induce adaptive responses in different cell types. Interestingly, these signaling pathways also participate in mammary gland involution. Then, it has been suggested that cell stretching caused by milk accumulation after weaning might be the first stimulus that initiates the complete remodeling of the mammary gland. However, no previous report has demonstrated the impact of mechanical stress on mammary cell physiology. To address this issue, we have designed a new practical device that allowed us to evaluate the effects of radial stretching on mammary epithelial cells in culture. Results We have designed and built a new device to analyze the biological consequences of applying mechanical stress to cells cultured on flexible silicone membranes. Subsequently, a geometrical model that predicted the percentage of radial strain applied to the elastic substrate was developed. By microscopic image analysis, the adjustment of these calculations to the actual strain exerted on the attached cells was verified. The studies described herein were all performed in the HC11 non-tumorigenic mammary epithelial cell line, which was originated from a pregnant BALB/c mouse. In these cells, as previously observed in other tissue types, mechanical stress induced ERK1/2 phosphorylation and c-Fos mRNA and protein expression. In addition, we found that mammary cell stretching triggered involution associated cellular events as Leukemia Inhibitory Factor (LIF) expression induction, STAT3 activation and AKT phosphorylation inhibition. Conclusion Here, we show for the first time, that mechanical strain is able to induce weaning-associated events in cultured mammary epithelial cells. These results were obtained using a new practical and affordable device specifically designed for such a purpose. We believe that our results indicate the relevance of mechanical stress among the early post-lactation events that lead to mammary gland involution. PMID:19615079

  17. Integrin-Mediated Transforming Growth Factor-β Activation Regulates Homeostasis of the Pulmonary Epithelial-Mesenchymal Trophic Unit

    PubMed Central

    Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L.

    2006-01-01

    Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-β is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, αvβ6 and αvβ8, are responsible for almost all of the TGF-β activation in the EMTU. Both αvβ8 and αvβ6 contribute to fetal tracheal epithelial activation of TGF-β, whereas only αvβ8 contributes to fetal tracheal fibroblast activation of TGF-β. Interestingly, fetal tracheal epithelial αvβ8-mediated TGF-β activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in αvβ8-mediated activation of TGF-β. Autocrine αvβ8-mediated TGF-β activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-β within the EMTU. PMID:16877343

  18. Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit.

    PubMed

    Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L

    2006-08-01

    Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.

  19. Differential DNA hypermethylation of critical genes mediates the stage-specific tobacco smoke-induced neoplastic progression of lung cancer.

    PubMed

    Russo, Andrea L; Thiagalingam, Arunthathi; Pan, Hongjie; Califano, Joseph; Cheng, Kuang-hung; Ponte, Jose F; Chinnappan, Dharmaraj; Nemani, Pratima; Sidransky, David; Thiagalingam, Sam

    2005-04-01

    Promoter DNA methylation status of six genes in samples derived from 27 bronchial epithelial cells and matching blood samples from 22 former/current smokers and five nonsmokers as well as 49 primary non-small cell lung cancer samples with corresponding blood controls was determined using methylation-specific PCR (MSP). Lung tumor tissues showed a significantly higher frequency of promoter DNA methylation in p16, MGMT, and DAPK (P < 0.05; Fisher's exact test). p16 promoter DNA methylation in tumors was observed at consistently higher levels when compared with all the other samples analyzed (P = 0.001; Fisher's exact test). ECAD and DAPK exhibited statistically insignificant differences in their levels of DNA methylation among the tumors and bronchial epithelial cells from the smokers. Interestingly, similar levels of methylation were observed in bronchial epithelial cells and corresponding blood from smokers for all four genes (ECAD, p16, MGMT, and DAPK) that showed smoking/lung cancer-associated methylation changes. In summary, our data suggest that targeted DNA methylation silencing of ECAD and DAPK occurs in the early stages and that of p16 and MGMT in the later stages of lung cancer progression. We also provide preliminary evidence that peripheral lymphocytes could potentially be used as a surrogate for bronchial epithelial cells to detect altered DNA methylation in smokers.

  20. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmiummore » promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.« less

  1. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    NASA Astrophysics Data System (ADS)

    Hoentsch, Maxi; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Nebe, J. Barbara

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells.

  2. Mesothelioma: Identification of the Key Molecular Events Triggered by BAP1

    DTIC Science & Technology

    2016-04-01

    with 5ml of phosphate-buffered saline. The peritoneal cells obtained were pelleted and supernatant was removed for later cytokine analysis. Cells were...Interestingly, BAP1 has been recently shown to regulate the myeloid stem cell compartment via complex alterations of the transcriptional profile, possibly via...regulation of IL-6 activation by asbestos in lung epithelial cells : role of reactive oxygen species. J Immunol 1997; 159: 3921–3928. 43 Occupational

  3. Ephrin-B2 is differentially expressed in the intestinal epithelium in Crohn’s disease and contributes to accelerated epithelial wound healing in vitro

    PubMed Central

    Hafner, Christian; Meyer, Stefanie; Langmann, Thomas; Schmitz, Gerd; Bataille, Frauke; Hagen, Ilja; Becker, Bernd; Roesch, Alexander; Rogler, Gerhard; Landthaler, Michael; Vogt, Thomas

    2005-01-01

    AIM: Eph receptor tyrosine kinases and their membrane bound receptor-like ligands, the ephrins, represent a bi-directional cell-cell contact signaling system that directs epithelial movements in development. The meaning of this system in the adult human gut is unknown. We investigated the Eph/ephrin mRNA expression in the intestinal epithelium of healthy controls and patients with inflammatory bowel disease (IBD). METHODS: mRNA expression profiles of all Eph/ephrin family members in normal small intestine and colon were established by real-time RT-PCR. In addition, differential expression in IBD was investigated by cDNA array technology, and validated by both real-time RT-PCR and immunohistochemistry. Potential effects of enhanced EphB/ephrin-B signaling were analyzed in an in vitro IEC-6 cell scratch wound model. RESULTS: Human adult intestinal mucosa exhibits a complex pattern of Eph receptors and ephrins. Beside the known prominent co-expression of EphA2 and ephrinA1, we found abundantly co-expressed EphB2 and ephrin-B1/2. Interestingly, cDNA array data, validated by real-time PCR and immunohistochemistry, showed upregulation of ephrin-B2 in both perilesional and lesional intestinal epithelial cells of IBD patients, suggesting a role in epithelial homeostasis. Stimulation of ephrin-B signaling in ephrin-B1/2 expressing rat IEC-6-cells with recombinant EphB1-Fc resulted in a significant dose-dependent acceleration of wound closure. Furthermore, fluorescence microscopy showed that EphB1-Fc induced coordinated migration of wound edge cells is associated with enhanced formation of lamellipodial protrusions into the wound, increased actin stress fiber assembly and production of laminin at the wound edge. CONCLUSION: EphB/ephrin-B signaling might represent a novel protective mechanism that promotes intestinal epithelial wound healing, with potential impact on epithelial restitution in IBD. PMID:15996027

  4. Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

    PubMed

    Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori

    2015-02-01

    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Notch-Induced Expression of FZD7 Requires Noncanonical NOTCH3 Signaling in Human Breast Epithelial Cells.

    PubMed

    Bhat, Vasudeva; Sun, Yu Jia; Weger, Steve; Raouf, Afshin

    2016-04-01

    The evolutionarily conserved Notch and Wnt signaling pathways have demonstrated roles in normal mammary gland development and in breast carcinogenesis. We previously reported that in human mammary gland, signaling through NOTCH3 alone regulates the commitment of the undifferentiated bipotential progenitors to the luminal cell fate, indicating that NOTCH3 may regulate the expression of unique genes apart from the other Notch receptors. In this study, we used gain of function and loss of function experiments and found that a Wnt signaling receptor, Frizzled7 (FZD7), is a unique and nonredundant target of NOTCH3 in human breast epithelial cells. Interestingly, neither the constitutively active forms of NOTCH1-2, 4 nor loss of expression of these receptors were able to alter expression of FZD7 in human breast epithelial cells. We further show that FZD7-expressing cells are found more frequently in the luminal progenitor-enriched subpopulation of cells obtained from breast reduction samples compared with the undifferentiated bipotent progenitors. Also, we show that NOTCH3-induced expression of FZD7 occurs in the absence of CSL (CBF1-Suppressor of Hairless-Lag-1). Our data suggest that noncanonical Notch signaling through NOTCH3 could modulate Wnt signaling via FZD7 and in this way, might be involved in luminal cell differentiation.

  6. Epithelial-myoepithelial tumour of the lung: a case report referring to its molecular histogenesis

    PubMed Central

    2011-01-01

    Tracheobronchial submucous glands can be considered the pulmonary equivalent of minor salivary glands and therefore they can develop most of the tumours originated in these. Nevertheless, in spite of the wide distribution of this kind of glands along the tracheobronchial tree, pulmonary salivary gland-like neoplasms are not very frequent. Among them, the most frequent are mucoepidermoid and adenoid cystic carcinomas. On the contrary, pulmonary neoplasms showing a mixture of epithelial and myoepithelial elements are extraordinary infrequent, with only 11 cases collected from literature. We present the case of a 76 year-old woman with no interesting pathological history, to whom a pulmonary nodule is detected during a study of unknown origin neutropenia. An upper right lobectomy is performed. After macro and microscopic study, the diagnosis of pulmonary epithelial-myoepithelial tumour is made. It is a low malignant potential tumour with capacity to locally recur and less frequently to metastasize. Our case has the peculiarity of not being connected neither to visceral pleura nor to bronchial tree; we have not found this characteristic in any literature reviewed case. These tumours have been named in a lot of different ways, including adenomyoepithelioma, epithelial-myoepithelial tumour, epithelial-myoepithelial carcinoma or epithelial-myoepithelial tumour of uncertain malignant potential. The p27/kip-1 protein plays a fundamental role in the development of these neoplasms. As we have verified in our case, its aberrant cytoplasmic location, besides its proved oncogenic function, would favour the proliferation of stem cells, which would explain both dual phenotype with presence of myoepithelial cells without connection with the bronchial tree, and TTF-1 immunostaining in epithelial cells. PMID:21798017

  7. Epithelial-myoepithelial tumour of the lung: a case report referring to its molecular histogenesis.

    PubMed

    Muñoz, Guillermo; Felipo, Francesc; Marquina, Isabel; Del Agua, Celia

    2011-07-28

    Tracheobronchial submucous glands can be considered the pulmonary equivalent of minor salivary glands and therefore they can develop most of the tumours originated in these. Nevertheless, in spite of the wide distribution of this kind of glands along the tracheobronchial tree, pulmonary salivary gland-like neoplasms are not very frequent. Among them, the most frequent are mucoepidermoid and adenoid cystic carcinomas. On the contrary, pulmonary neoplasms showing a mixture of epithelial and myoepithelial elements are extraordinary infrequent, with only 11 cases collected from literature.We present the case of a 76 year-old woman with no interesting pathological history, to whom a pulmonary nodule is detected during a study of unknown origin neutropenia. An upper right lobectomy is performed.After macro and microscopic study, the diagnosis of pulmonary epithelial-myoepithelial tumour is made. It is a low malignant potential tumour with capacity to locally recur and less frequently to metastasize. Our case has the peculiarity of not being connected neither to visceral pleura nor to bronchial tree; we have not found this characteristic in any literature reviewed case.These tumours have been named in a lot of different ways, including adenomyoepithelioma, epithelial-myoepithelial tumour, epithelial-myoepithelial carcinoma or epithelial-myoepithelial tumour of uncertain malignant potential.The p27/kip-1 protein plays a fundamental role in the development of these neoplasms. As we have verified in our case, its aberrant cytoplasmic location, besides its proved oncogenic function, would favour the proliferation of stem cells, which would explain both dual phenotype with presence of myoepithelial cells without connection with the bronchial tree, and TTF-1 immunostaining in epithelial cells.

  8. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC−/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275

  9. Host-microbiota interactions in the intestine.

    PubMed

    Elson, Charles O; Alexander, Katie L

    2015-01-01

    The comprehensive collection of bacterial species, termed microbiota, within human and other mammalian hosts has profound effects on both innate and adaptive immunity. Multiple host innate mechanisms contribute to intestinal homeostasis, including epithelial production of protective mucin layers maintaining spatial segregation in the intestine as well as epithelial cell secretion of a broad range of antimicrobial peptides. Additionally, epithelial cells employ autophagy to contain and eliminate invading bacteria; interestingly, genetic variants in specific autophagy genes are linked to susceptibility to Crohn's disease. Innate lymphoid cells, which rapidly respond to cytokine and microbial signals, have emerged as important regulators of the intestinal immune response to the microbiota. With regard to adaptive immunity, specific microbial species stimulate induction of regulatory T cells while others induce effector T cells within the gut. Such stimulation is subject to dysregulation during inflammation and disease, contributing to 'dysbiosis' or an abnormal microbiota composition that has been associated with a variety of immune-mediated inflammatory disorders, including celiac disease. The microbiota communicates with the immune system and vice versa; thus, an abnormal microbiota composition likely translates into an altered host immune response, though the exact mechanisms of such are not yet clear. Immunoglobulin A plays a critical role in limiting bacterial access to the host and in maintaining mutualism with the microbiota. Perturbation of the mucosal barrier via infection or other means can induce effector T cells reactive to the intestinal microbiota, and these cells can persist as memory cells for extended periods of time and potentially serve as pathogenic effector cells upon re-encounter with antigen. Health is associated with a diverse microbiota that functions to maintain the balance between T effector and T regulatory cells in the intestine. Whether dysbiosis can be reversed in immune-mediated disease, thus restoring health, is a question of intense interest for this active area of research. © 2015 S. Karger AG, Basel.

  10. Release of HIV-1 sequestered in the vesicles of oral and genital mucosal epithelial cells by epithelial-lymphocyte interaction

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina

    2017-01-01

    Oropharyngeal mucosal epithelia of fetuses/neonates/infants and the genital epithelia of adults play a critical role in HIV-1 mother-to-child transmission and sexual transmission of virus, respectively. To study the mechanisms of HIV-1 transmission through mucosal epithelium, we established polarized tonsil, cervical and foreskin epithelial cells. Analysis of HIV-1 transmission through epithelial cells showed that approximately 0.05% of initially inoculated virions transmigrated via epithelium. More than 90% of internalized virions were sequestered in the endosomes of epithelial cells, including multivesicular bodies (MVBs) and vacuoles. Intraepithelial HIV-1 remained infectious for 9 days without viral release. Release of sequestered intraepithelial HIV-1 was induced by the calcium ionophore ionomycin and by cytochalasin D, which increase intracellular calcium and disrupt the cortical actin of epithelial cells, respectively. Cocultivation of epithelial cells containing HIV-1 with activated peripheral blood mononuclear cells and CD4+ T lymphocytes led to the disruption of epithelial cortical actin and spread of virus from epithelial cells to lymphocytes. Treatment of epithelial cells with proinflammatory cytokines tumor necrosis factor-alpha and interferon gamma also induced reorganization of cortical actin and release of virus. Inhibition of MVB formation by small interfering RNA (siRNA)-mediated silencing of its critical protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) expression reduced viral sequestration in epithelial cells and its transmission from epithelial cells to lymphocytes by ~60–70%. Furthermore, inhibition of vacuole formation of epithelial cells by siRNA-inactivated rabankyrin-5 expression also significantly reduced HIV-1 sequestration in epithelial cells and spread of virus from epithelial cells to lymphocytes. Interaction of the intercellular adhesion molecule-1 of epithelial cells with the function-associated antigen-1 of lymphocytes was important for inducing the release of sequestered HIV-1 from epithelial cells and facilitating cell-to-cell spread of virus from epithelial cells to lymphocytes. This mechanism may serve as a pathway of HIV-1 mucosal transmission. PMID:28241053

  11. Tension Monitoring during Epithelial-to-Mesenchymal Transition Links the Switch of Phenotype to Expression of Moesin and Cadherins in NMuMG Cells

    PubMed Central

    Schneider, David; Baronsky, Thilo; Pietuch, Anna; Rother, Jan; Oelkers, Marieelen; Fichtner, Dagmar; Wedlich, Doris; Janshoff, Andreas

    2013-01-01

    Structural alterations during epithelial-to-mesenchymal transition (EMT) pose a substantial challenge to the mechanical response of cells and are supposed to be key parameters for an increased malignancy during metastasis. Herein, we report that during EMT, apical tension of the epithelial cell line NMuMG is controlled by cell-cell contacts and the architecture of the underlying actin structures reflecting the mechanistic interplay between cellular structure and mechanics. Using force spectroscopy we find that tension in NMuMG cells slightly increases 24 h after EMT induction, whereas upon reaching the final mesenchymal-like state characterized by a complete loss of intercellular junctions and a concerted down-regulation of the adherens junction protein E-cadherin, the overall tension becomes similar to that of solitary adherent cells and fibroblasts. Interestingly, the contribution of the actin cytoskeleton on apical tension increases significantly upon EMT induction, most likely due to the formation of stable and highly contractile stress fibers which dominate the elastic properties of the cells after the transition. The structural alterations lead to the formation of single, highly motile cells rendering apical tension a good indicator for the cellular state during phenotype switching. In summary, our study paves the way towards a more profound understanding of cellular mechanics governing fundamental morphological programs such as the EMT. PMID:24339870

  12. CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways.

    PubMed

    Shahabuddin, Syed; Ji, Rong; Wang, Ping; Brailoiu, Eugene; Dun, Na; Yang, Yi; Aksoy, Mark O; Kelsen, Steven G

    2006-07-01

    Human airway epithelial cells (HAEC) constitutively express the CXC chemokine receptor CXCR3, which regulates epithelial cell movement. In diseases such as chronic obstructive pulmonary disease and asthma, characterized by denudation of the epithelial lining, epithelial cell migration may contribute to airway repair and reconstitution. This study compared the potency and efficacy of three CXCR3 ligands, I-TAC/CXCL11, IP-10/CXCL10, and Mig/CXCL9, as inducers of chemotaxis in HAEC and examined the underlying signaling pathways involved. Studies were performed in cultured HAEC from normal subjects and the 16-HBE cell line. In normal HAEC, the efficacy of I-TAC-induced chemotaxis was 349 +/- 88% (mean +/- SE) of the medium control and approximately one-half the response to epidermal growth factor, a highly potent chemoattractant. In normal HAEC, Mig, IP-10, and I-TAC induced chemotaxis with similar potency and a rank order of efficacy of I-TAC = IP-10 > Mig. Preincubation with pertussis toxin completely blocked CXCR3-induced migration. Of interest, intracellular [Ca(2+)] did not rise in response to I-TAC, IP-10, or Mig. I-TAC induced a rapid phosphorylation (5-10 min) of two of the three MAPKs, i.e., p38 and ERK1/2. Pretreatment of HAEC with the p38 inhibitor SB 20358 or the PI3K inhibitor wortmannin dose-dependently inhibited the chemotactic response to I-TAC. In contrast, the ERK1/2 inhibitor U0126 had no effect on chemotaxis. These data indicate that in HAEC, CXCR3-mediated chemotaxis involves a G protein, which activates both the p38 MAPK and PI3K pathways in a calcium-independent fashion.

  13. Pax8 modulates the expression of Wnt4 that is necessary for the maintenance of the epithelial phenotype of thyroid cells

    PubMed Central

    2014-01-01

    Background The transcription factor Pax8 is expressed during thyroid development and is involved in the morphogenesis of the thyroid gland and maintenance of the differentiated phenotype. In particular, Pax8 has been shown to regulate genes that are considered markers of thyroid differentiation. Recently, the analysis of the gene expression profile of FRTL-5 differentiated thyroid cells after the silencing of Pax8 identified Wnt4 as a novel target. Like the other members of the Wnt family, Wnt4 has been implicated in several developmental processes including regulation of cell fate and patterning during embryogenesis. To date, the only evidence on Wnt4 in thyroid concerns its down-regulation necessary for the progression of thyroid epithelial tumors. Results Here we demonstrate that Pax8 is involved in the transcriptional modulation of Wnt4 gene expression directly binding to its 5’-flanking region, and that Wnt4 expression in FRTL-5 cells is TSH-dependent. Interestingly, we also show that in thyroid cells a reduced expression of Wnt4 correlates with the alteration of the epithelial phenotype and that the overexpression of Wnt4 in thyroid cancer cells is able to inhibit cellular migration. Conclusions We have identified and characterized a functional Pax8 binding site in the 5’-flanking region of the Wnt4 gene and we show that Pax8 modulates the expression of Wnt4 in thyroid cells. Taken together, our results suggest that in thyroid cells Wnt4 expression correlates with the integrity of the epithelial phenotype and is reduced when this integrity is perturbed. In the end, we would like to suggest that the overexpression of Wnt4 in thyroid cancer cells is able to revert the mesenchymal phenotype. PMID:25270402

  14. Isotropic actomyosin dynamics promote organization of the apical cell cortex in epithelial cells.

    PubMed

    Klingner, Christoph; Cherian, Anoop V; Fels, Johannes; Diesinger, Philipp M; Aufschnaiter, Roland; Maghelli, Nicola; Keil, Thomas; Beck, Gisela; Tolić-Nørrelykke, Iva M; Bathe, Mark; Wedlich-Soldner, Roland

    2014-10-13

    Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin-Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization. © 2014 Klingner et al.

  15. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    PubMed Central

    Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia

    2013-01-01

    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714

  16. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    NASA Astrophysics Data System (ADS)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement. Aggregate formation in these microwells motivated us to develop a templating technique to create hollow cyst-like epithelial structures within PEG hydrogels. Photodegradable microspheres were used to form spherical epithelial layers, which were then encapsulated in a PEG hydrogel followed by template erosion with cytocompatible light. With these model alveoli, we investigated the interplay between the epithelium and mesenchyme by co-encapsulating healthy and diseased pulmonary fibroblasts with healthy and diseased epithelial cysts and measuring important cellular behaviors (i.e. proliferation, migration, and protein expression). This model of alveolar tissue represents a significant advance in culture platforms available to researchers interested in identifying the mechanisms involved in disease progression and for testing potential therapeutics in a controlled, tissue-appropriate setting.

  17. A chemically defined culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of stratified squamous epithelial cell grafts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aslanova, Afag; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666; Takagi, Ryo

    With the development of a culture method for stratified squamous epithelial cells, tissue-engineered epithelial cell sheets have been successfully applied as clinical cell grafts. However, the implementation of these cell sheets without the use of any animal-derived materials is highly desirable. In this study, Rho-associated protein kinase inhibitor Y-27632 was used to develop a chemically defined culture medium for the fabrication of stratified epithelial cell grafts consisting of human epidermal and oral keratinocytes, and the proliferation activity, cell morphology, and gene expressions of the keratinocytes were analyzed. The results of a colorimetric assay indicated that Y-27632 significantly promoted the proliferationmore » of the keratinocytes in culture media both with and without fetal bovine serum (FBS), although there were no indications of Y-27632 efficacy on cell morphology and stratification of the keratinocytes in culture medium without any animal-derived materials. The results of quantitative RT-PCR revealed that gene expressions correlated with cell adhesion, cell–cell junction, proliferation markers, and stem/progenitor markers in cultured keratinocytes were not strongly affected by the addition of Y-27632 to the culture medium. Moreover, gene expressions of differentiation markers in stratified keratinocytes cultured in medium without FBS were nearly identical to those of keratinocytes co-cultured with 3T3 feeder cells. Interestingly, the expressions of differentiation markers in cultured stratified keratinocytes were suppressed by FBS, whereas they were reconstructed by either co-culture of a 3T3 feeder layer or addition of Y-27632 into the culture medium containing FBS. These findings indicate that Y-27632 is a useful supplement for the development of a chemically defined culture medium for fabrication of stratified epithelial cell grafts for clinical applications for the purpose of developing the culture medium with a lower risk of pathogen transmission that might arise from animal-derived materials. - Highlights: • Y-27632 promotes the proliferation of human keratinocytes. • Human keratinocytes with Y-27632 can stratify similarly to traditional method. • Y-27632 is useful for culture medium of human keratinocyte in clinical setting.« less

  18. AKT-ions with a TWIST between EMT and MET.

    PubMed

    Tang, Huifang; Massi, Daniela; Hemmings, Brian A; Mandalà, Mario; Hu, Zhengqiang; Wicki, Andreas; Xue, Gongda

    2016-09-20

    The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings.

  19. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias.

    PubMed

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-05-01

    PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ER(T) under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors.

  20. An inducible knockout mouse to model the cell-autonomous role of PTEN in initiating endometrial, prostate and thyroid neoplasias

    PubMed Central

    Mirantes, Cristina; Eritja, Núria; Dosil, Maria Alba; Santacana, Maria; Pallares, Judit; Gatius, Sónia; Bergadà, Laura; Maiques, Oscar; Matias-Guiu, Xavier; Dolcet, Xavier

    2013-01-01

    SUMMARY PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. The role of PTEN in carcinogenesis has been validated by knockout mouse models. PTEN heterozygous mice develop neoplasms in multiple organs. Unfortunately, the embryonic lethality of biallelic excision of PTEN has inhibited the study of complete PTEN deletion in the development and progression of cancer. By crossing PTEN conditional knockout mice with transgenic mice expressing a tamoxifen-inducible Cre-ERT under the control of a chicken actin promoter, we have generated a tamoxifen-inducible mouse model that allows temporal control of PTEN deletion. Interestingly, administration of a single dose of tamoxifen resulted in PTEN deletion mainly in epithelial cells, but not in stromal, mesenchymal or hematopoietic cells. Using the mT/mG double-fluorescent Cre reporter mice, we demonstrate that epithelial-specific PTEN excision was caused by differential Cre activity among tissues and cells types. Tamoxifen-induced deletion of PTEN resulted in extremely rapid and consistent formation of endometrial in situ adenocarcinoma, prostate intraepithelial neoplasia and thyroid hyperplasia. We also analyzed the role of PTEN ablation in other epithelial cells, such as the tubular cells of the kidney, hepatocytes, colonic epithelial cells or bronchiolar epithelium, but those tissues did not exhibit neoplastic growth. Finally, to validate this model as a tool to assay the efficacy of anti-tumor drugs in PTEN deficiency, we administered the mTOR inhibitor everolimus to mice with induced PTEN deletion. Everolimus dramatically reduced the progression of endometrial proliferations and significantly reduced thyroid hyperplasia. This model could be a valuable tool to study the cell-autonomous mechanisms involved in PTEN-loss-induced carcinogenesis and provides a good platform to study the effect of anti-neoplastic drugs on PTEN-negative tumors. PMID:23471917

  1. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications

    PubMed Central

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James

    2016-01-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts. PMID:27758134

  2. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.

    PubMed

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander

    2016-11-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.

  3. Squamous epithelium formation in the respiratory intestine of the bronze Corydoras Corydoras aeneus (Callichthyidae Teleostei).

    PubMed

    Satora, Leszek; Kozioł, Katarzyna; Zebrowski, Jacek

    2017-06-01

    Accessory respiratory organs in fish exhibit great diversity but share the presence of numerous capillaries covered by a simple squamous epithelium. The adoption of the intestine for respiratory function needs certain special modifications. In this study, we explored immunohistochemical and metabolic fingerprint features that could underlay this adaptation in bronze corydoras Corydoras aeneus. Immunohistochemical localization of the cytoplasmic domain of epidermal growth factor receptor (EGFR) in the respiratory part of intestine demonstrated a strong positive immunoreaction in epithelial cells and connective tissue. Fourier Transfer Infrared (FTIR) spectroscopy coupled with chemometrics discriminated between anterior and posterior region of intestine in terms of secondary structure of proteins and the abundance of p-cresol and other phenolics. The latter were reduced in the posterior part of intestine, indicating the cessation of digestive function in this region. It has been suggested that aquatic hypoxia via endocrine cells (hypoxia-sensitive) activate EGFR, which induce proliferation of squamous epithelial cells, thereby enabling gas diffusion in the posterior part of intestine. It seems that hypoxia and normoxia are opposed conditions adjusting the production of squamous epithelial cells in this intestine. The physiological role of EGFR in the respiratory intestine of bronze corydoras is of interest not only from an evolutionary aspect but also in terms of a potential model for observations process proliferation squamous epithelial cells. Future investigations on the molecular responses to different water oxygen levels in air-breathing bronze corydoras fish are required to clarify the mechanism responsible for squamous cell proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta

    PubMed Central

    Gerlach, Gary F.; Wingert, Rebecca A.

    2014-01-01

    The zebrafish pronephros provides an excellent in vivo system to study the mechanisms of vertebrate nephron development. When and how renal progenitors in the zebrafish embryo undergo tubulogenesis to form nephrons is poorly understood, but is known to involve a mesenchymal to epithelial transition (MET) and the acquisition of polarity. Here, we determined the precise timing of these events in pronephros tubulogenesis. As the ternary polarity complex is an essential regulator of epithelial cell polarity across tissues, we performed gene knockdown studies to assess the roles of the related factors atypical protein kinase C iota and zeta (prkcι, prkcζ). We found that prkcι and prkcζ serve partially redundant functions to establish pronephros tubule epithelium polarity. Further, the loss of prkcι or the combined knockdown of prkcι/ζ disrupted proximal tubule morphogenesis and podocyte migration due to cardiac defects that prevented normal fluid flow to the kidney. Surprisingly, tubule cells in prkcι/ζ morphants displayed ectopic expression of the transcription factor pax2a and the podocyte-associated genes wt1a, wt1b, and podxl, suggesting that prkcι/ζ are needed to maintain renal epithelial identity. Knockdown of genes essential for cardiac contractility and vascular flow to the kidney, such as tnnt2a, or elimination of pronephros fluid output through knockdown of the intraflagellar transport gene ift88, was not associated with ectopic pronephros gene expression, thus suggesting a unique role for prkcι/ζ in maintaining tubule epithelial identity separate from the consequence of disruptions to renal fluid flow. Interestingly, knockdown of pax2a, but not wt1a, was sufficient to rescue ectopic tubule gene expression in prkcι/ζ morphants. These data suggest a model in which the redundant activities of prkcι and prkcζ are essential to establish tubule epithelial polarity and also serve to maintain proper epithelial cell type identity in the tubule by inhibiting pax2a expression. These studies provide a valuable foundation for further analysis of MET during nephrogenesis, and have implications for understanding the pathways that affect nephron epithelial cells during kidney disease and regeneration. PMID:25446529

  5. Novel Functions of NF-kappaB2/p52 in Androgen Receptor Signaling in CRPC

    DTIC Science & Technology

    2015-09-01

    cells . Endocr Relat Cancer 17:241–253 59. Taguchi Y, Yamamoto M, Yamate T et al (1998) Interleukin- 6-type cytokines stimulate mesenchymal progenitor... stem cells ”. Thus, it is conceivable that the benign prostate gland exhibits high expression of Lin28 in the basal cell layer. It is interesting to...Epithelial- Mesenchymal Transition in Lung Cancer Cell Lines. Cancer Research, 2010. 70(18): p. 7137-7147. 10. Kumar, M.S., et al., Impaired microRNA

  6. RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes

    PubMed Central

    Recouvreux, María Sol; Grasso, Esteban Nicolás; Echeverria, Pablo Christian; Rocha-Viegas, Luciana; Castilla, Lucio Hernán; Schere-Levy, Carolina; Tocci, Johanna Melisa; Kordon, Edith Claudia; Rubinstein, Natalia

    2016-01-01

    Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability. PMID:26735887

  7. RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes.

    PubMed

    Recouvreux, María Sol; Grasso, Esteban Nicolás; Echeverria, Pablo Christian; Rocha-Viegas, Luciana; Castilla, Lucio Hernán; Schere-Levy, Carolina; Tocci, Johanna Melisa; Kordon, Edith Claudia; Rubinstein, Natalia

    2016-02-09

    Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability.

  8. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients.

    PubMed

    Tu, Chengjian; Mojica, Wilfrido; Straubinger, Robert M; Li, Jun; Shen, Shichen; Qu, Miao; Nie, Lei; Roberts, Rick; An, Bo; Qu, Jun

    2017-05-01

    The heterogeneous structure in tumor tissues from colorectal cancer (CRC) patients excludes an informative comparison between tumors and adjacent normal tissues. Here, we develop and apply a strategy to compare paired cancerous (CEC) versus normal (NEC) epithelial cells enriched from patients and discover potential biomarkers and therapeutic targets for CRC. CEC and NEC cells are respectively isolated from five different tumor and normal locations in the resected colon tissue from each patient (N = 12 patients) using an optimized epithelial cell adhesion molecule (EpCAM)-based enrichment approach. An ion current-based quantitative method is employed to perform comparative proteomic analysis for each patient. A total of 458 altered proteins that are common among >75% of patients are observed and selected for further investigation. Besides known findings such as deregulation of mitochondrial function, tricarboxylic acid cycle, and RNA post-transcriptional modification, functional analysis further revealed RAN signaling pathway, small nucleolar ribonucleoproteins (snoRNPs), and infection by RNA viruses are altered in CEC cells. A selection of the altered proteins of interest is validated by immunohistochemistry analyses. The informative comparison between matched CEC and NEC enhances our understanding of molecular mechanisms of CRC development and provides biomarker candidates and new pathways for therapeutic intervention. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    PubMed

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells. ©2011 AACR.

  10. Characterization of rabbit limbal epithelial side population cells using RNA sequencing and single-cell qRT-PCR.

    PubMed

    Kameishi, Sumako; Umemoto, Terumasa; Matsuzaki, Yu; Fujita, Masako; Okano, Teruo; Kato, Takashi; Yamato, Masayuki

    2016-05-06

    Corneal epithelial stem cells reside in the limbus, a transitional zone between the cornea and conjunctiva, and are essential for maintaining homeostasis in the corneal epithelium. Although our previous studies demonstrated that rabbit limbal epithelial side population (SP) cells exhibit stem cell-like phenotypes with Hoechst 33342 staining, the different characteristics and/or populations of these cells remain unclear. Therefore, in this study, we determined the gene expression profiles of limbal epithelial SP cells by RNA sequencing using not only present public databases but also contigs that were created by de novo transcriptome assembly as references for mapping. Our transcriptome data indicated that limbal epithelial SP cells exhibited a stem cell-like phenotype compared with non-SP cells. Importantly, gene ontology analysis following RNA sequencing demonstrated that limbal epithelial SP cells exhibited significantly enhanced expression of mesenchymal/endothelial cell markers rather than epithelial cell markers. Furthermore, single-cell quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that the limbal epithelial SP population consisted of at least two immature cell populations with endothelial- or mesenchymal-like phenotypes. Therefore, our present results may propose the presence of a novel population of corneal epithelial stem cells distinct from conventional epithelial stem cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Activation of interferon regulatory factor-3 via toll-like receptor 3 and immunomodulatory functions detected in A549 lung epithelial cells exposed to misplaced U1-snRNA.

    PubMed

    Sadik, Christian D; Bachmann, Malte; Pfeilschifter, Josef; Mühl, Heiko

    2009-08-01

    U1-snRNA is an integral part of the U1 ribonucleoprotein pivotal for pre-mRNA splicing. Toll-like receptor (TLR) signaling has recently been associated with immunoregulatory capacities of U1-snRNA. Using lung A549 epithelial/carcinoma cells, we report for the first time on interferon regulatory factor (IRF)-3 activation initiated by endosomally delivered U1-snRNA. This was associated with expression of the IRF3-inducible genes interferon-beta (IFN-beta), CXCL10/IP-10 and indoleamine 2,3-dioxygenase. Mutational analysis of the U1-snRNA-activated IFN-beta promoter confirmed the crucial role of the PRDIII element, previously proven pivotal for promoter activation by IRF3. Notably, expression of these parameters was suppressed by bafilomycin A(1), an inhibitor of endosomal acidification, implicating endosomal TLR activation. Since resiquimod, an agonist of TLR7/8, failed to stimulate A549 cells, data suggest TLR3 to be of prime relevance for cellular activation. To assess the overall regulatory potential of U1-snRNA-activated epithelial cells on cytokine production, co-cultivation with peripheral blood mononuclear cells (PBMC) was performed. Interestingly, A549 cells activated by U1-snRNA reinforced phytohemagglutinin-induced interleukin-10 release by PBMC but suppressed that of tumor necrosis factor-alpha, indicating an anti-inflammatory potential of U1-snRNA. Since U1-snRNA is enriched in apoptotic bodies and epithelial cells are capable of performing efferocytosis, the present data in particular connect to immunobiological aspects of apoptosis at host/environment interfaces.

  12. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    PubMed

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  13. Metabolic reprogramming and dependencies associated with epithelial cancer stem cells independent of the epithelial-mesenchymal transition program

    PubMed Central

    Aguilar, Esther; de Mas, Igor Marin; Zodda, Erika; Marin, Silvia; Morrish, Fionnuala; Selivanov, Vitaly; Meca-Cortés, Óscar; Delowar, Hossain; Pons, Mònica; Izquierdo, Inés; Celià-Terrassa, Toni; de Atauri, Pedro; Centelles, Josep J; Hockenbery, David; Thomson, Timothy M; Cascante, Marta

    2016-01-01

    In solid tumors, cancer stem cells (CSCs) can arise independently of epithelial-mesenchymal transition (EMT). In spite of recent efforts, the metabolic reprogramming associated with CSC phenotypes uncoupled from EMT is poorly understood. Here, by using metabolomic and fluxomic approaches, we identify major metabolic profiles that differentiate metastatic prostate epithelial CSCs (e-CSCs) from non-CSCs expressing a stable EMT. We have found that the e-CSC program in our cellular model is characterized by a high plasticity in energy substrate metabolism, including an enhanced Warburg effect, a greater carbon and energy source flexibility driven by fatty acids and amino acid metabolism and an essential reliance on the proton buffering capacity conferred by glutamine metabolism. An analysis of transcriptomic data yielded a metabolic gene signature for our e-CSCs consistent with the metabolomics and fluxomics analysis that correlated with tumor progression and metastasis in prostate cancer and in 11 additional cancer types. Interestingly, an integrated metabolomics, fluxomics and transcriptomics analysis allowed us to identify key metabolic players regulated at the post-transcriptional level, suggesting potential biomarkers and therapeutic targets to effectively forestall metastasis. PMID:27146024

  14. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition

    PubMed Central

    McCoy, Erica L.; Iwanaga, Ritsuko; Jedlicka, Paul; Abbey, Nee-Shamo; Chodosh, Lewis A.; Heichman, Karen A.; Welm, Alana L.; Ford, Heide L.

    2009-01-01

    Six1 is a developmentally regulated homeoprotein with limited expression in most normal adult tissues and frequent misexpression in a variety of malignancies. Here we demonstrate, using a bitransgenic mouse model, that misexpression of human Six1 in adult mouse mammary gland epithelium induces tumors of multiple histological subtypes in a dose-dependent manner. The neoplastic lesions induced by Six1 had an in situ origin, showed diverse differentiation, and exhibited progression to aggressive malignant neoplasms, as is often observed in human carcinoma of the breast. Strikingly, the vast majority of Six1-induced tumors underwent an epithelial-mesenchymal transition (EMT) and expressed multiple targets of activated Wnt signaling, including cyclin D1. Interestingly, Six1 and cyclin D1 coexpression was found to frequently occur in human breast cancers and was strongly predictive of poor prognosis. We further show that Six1 promoted a stem/progenitor cell phenotype in the mouse mammary gland and in Six1-driven mammary tumors. Our data thus provide genetic evidence for a potent oncogenic role for Six1 in mammary epithelial neoplasia, including promotion of EMT and stem cell–like features. PMID:19726883

  15. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development.

    PubMed

    Tan, J; Buache, E; Alpy, F; Daguenet, E; Tomasetto, C-L; Ren, G-S; Rio, M-C

    2014-07-31

    MMP-11 is a bad prognosis paracrine factor in invasive breast cancers. However, its mammary physiological function remains largely unknown. In the present study we have investigated MMP-11 function during postnatal mammary gland development and function using MMP-11-deficient (MMP-11-/-) mice. Histological and immunohistochemical analyses as well as whole-mount mammary gland staining show alteration of the mammary gland in the absence of MMP-11, where ductal tree, alveolar structures and milk production are reduced. Moreover, a series of transplantation experiments allowed us to demonstrate that MMP-11 exerts an essential local paracrine function that favors mammary gland branching and epithelial cell outgrowth and invasion through adjacent connective tissues. Indeed, MMP-11-/- cleared fat pads are not permissive for wild-type epithelium development, whereas MMP-11-/- epithelium transplants grow normally when implanted in wild-type cleared fat pads. In addition, using primary mammary epithelial organoids, we show in vitro that this MMP-11 pro-branching effect is not direct, suggesting that MMP-11 acts via production/release of stroma-associated soluble factor(s). Finally, the lack of MMP-11 leads to decreased periductal collagen content, suggesting that MMP-11 has a role in collagen homeostasis. Thus, local stromal MMP-11 might also regulate mammary epithelial cell behavior mechanically by promoting extracellular matrix stiffness. Collectively, the present data indicate that MMP-11 is a paracrine factor involved during postnatal mammary gland morphogenesis, and support the concept that the stroma strongly impact epithelial cell behavior. Interestingly, stromal MMP-11 has previously been reported to favor malignant epithelial cell survival and promote cancer aggressiveness. Thus, MMP-11 has a paracrine function during mammary gland development that might be harnessed to promote tumor progression, exposing a new link between development and malignancy.

  16. Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function

    PubMed Central

    Resnick, Andrew

    2011-01-01

    Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression. PMID:22046444

  17. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium. PMID:21572528

  18. Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele

    PubMed Central

    Wu, Jinghai; Liu, Xin; Nayak, Sunayana G.; Pitarresi, Jason R.; Cuitiño, Maria C.; Yu, Lianbo; Hildreth, Blake E.; Thies, Katie A.; Schilling, Daniel J.; Fernandez, Soledad A.; Leone, Gustavo

    2017-01-01

    The contribution of the tumor microenvironment to the development of pancreatic adenocarcinoma (PDAC) is unclear. The LSL-KrasG12D/+;LSL-p53R172H/+;Pdx-1-Cre (KPC) tumor model, which is widely utilized to faithfully recapitulate human pancreatic cancer, depends on Cre-mediated recombination in the epithelial lineage to drive tumorigenesis. Therefore, specific Cre-loxP recombination in stromal cells cannot be applied in this model, limiting the in vivo investigation of stromal genetics in tumor initiation and progression. To address this issue, we generated a new Pdx1FlpO knock-in mouse line, which represents the first mouse model to physiologically express FlpO recombinase in pancreatic epithelial cells. This mouse specifically recombines Frt loci in pancreatic epithelial cells, including acinar, ductal, and islet cells. When combined with the Frt-STOP-Frt KrasG12D and p53Frt mouse lines, simultaneous Pdx1FlpO activation of mutant Kras and deletion of p53 results in the spectrum of pathologic changes seen in PDAC, including PanIN lesions and ductal carcinoma. Combination of this KPF mouse model with any stroma-specific Cre can be used to conditionally modify target genes of interest. This will provide an excellent in vivo tool to study the roles of genes in different cell types and multiple cell compartments within the pancreatic tumor microenvironment. PMID:28934293

  19. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  20. Epithelial-mesenchymal transition abolishes the susceptibility of polarized epithelial cell lines to measles virus.

    PubMed

    Shirogane, Yuta; Takeda, Makoto; Tahara, Maino; Ikegame, Satoshi; Nakamura, Takanori; Yanagi, Yusuke

    2010-07-02

    Measles virus (MV), an enveloped negative-strand RNA virus, remains a major cause of morbidity and mortality in developing countries. MV predominantly infects immune cells by using signaling lymphocyte activation molecule (SLAM; also called CD150) as a receptor, but it also infects polarized epithelial cells, forming tight junctions in a SLAM-independent manner. Although the ability of MV to infect polarized epithelial cells is thought to be important for its transmission, the epithelial cell receptor for MV has not been identified. A transcriptional repressor, Snail, induces epithelial-mesenchymal transition (EMT), in which epithelial cells lose epithelial cell phenotypes, such as adherens and tight junctions. In this study, EMT was induced by expressing Snail in a lung adenocarcinoma cell line, II-18, which is highly susceptible to wild-type MV. Snail-expressing II-18 cells lost adherens and tight junctions. Microarray analysis confirmed the induction of EMT in II-18 cells and suggested a novel function of Snail in protein degradation and distribution. Importantly, wild-type MV no longer entered EMT-induced II-18 cells, suggesting that the epithelial cell receptor is down-regulated by the induction of EMT. Other polarized cell lines, NCI-H358 and HT-29, also lost susceptibility to wild-type MV when EMT was induced. However, the complete formation of tight junctions rather reduced MV entry into HT-29 cells. Taken together, these data suggest that the unidentified epithelial cell receptor for MV is involved in the formation of epithelial intercellular junctions.

  1. Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras.

    PubMed

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz

    2016-08-09

    Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients.

  2. Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras

    PubMed Central

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Meehan, Brian; Montermini, Laura; Garnier, Delphine; D'Asti, Esterina; Hou, Wenyang; Magnus, Nathalie; Gayden, Tenzin; Jabado, Nada; Eppert, Kolja; Majewska, Loydie; Rak, Janusz

    2016-01-01

    Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients. PMID:27437771

  3. Tobacco smoke induces epithelial barrier dysfunction via receptor EphA2 signaling.

    PubMed

    Nasreen, Najmunnisa; Khodayari, Nazli; Sriram, Peruvemba S; Patel, Jawaharlal; Mohammed, Kamal A

    2014-06-15

    Erythropoietin-producing human hepatocellular carcinoma (Eph) receptors are the largest family of receptor tyrosine kinases (RTKs) that mediate various cellular and developmental processes. The degrees of expression of these key molecules control the cell-cell interactions. Although the role of Eph receptors and their ligand Ephrins is well studied in developmental processes, their function in tobacco smoke (TS)-induced epithelial barrier dysfunction is unknown. We hypothesized that TS may induce permeability in bronchial airway epithelial cell (BAEpC) monolayer by modulating receptor EphA2 expression, actin cytoskeleton, adherens junction, and focal adhesion proteins. Here we report that in BAEpCs, acute TS exposure significantly upregulated EphA2 and EphrinA1 expression, disrupted the actin filaments, decreased E-cadherin expression, and increased protein permeability, whereas the focal adhesion protein paxillin was unaffected. Silencing the receptor EphA2 expression with silencing interference RNA (siRNA) significantly attenuated TS-induced hyperpermeability in BAEpCs. In addition, when BAEpC monolayer was transfected with EphA2-expressing plasmid and treated with recombinant EphrinA1, the transepithelial electrical resistance decreased significantly. Furthermore, TS downregulated E-cadherin expression and induced hyperpermeability across BAEpC monolayer in a Erk1/Erk2, p38, and JNK MAPK-dependent manner. TS induced hyperpermeability in BAEpC monolayer by targeting cell-cell adhesions, and interestingly cell-matrix adhesions were unaffected. The present data suggest that TS causes significant damage to the BAEpCs via induction of EphA2 and downregulation of E-cadherin. Induction of EphA2 in the BAEpCs exposed to TS may be an important signaling event in the pathogenesis of TS-induced epithelial injury.

  4. Re-establishment of gap junctional intercellular communication (GJIC) between human endometrial carcinomas by prostaglandin E(2).

    PubMed

    Schlemmer, Scott R; Kaufman, David G

    2012-12-01

    Reduced intercellular communication via gap junctions is correlated with carcinogenesis. Gap junctional intercellular communication (GJIC), between normal human endometrial epithelial cells is enhanced when endometrial stromal cells were present in culture. This enhancement of GJIC between normal epithelial cells also occurs when they are cultured in medium conditioned by stromal cells. This observation indicated that a soluble compound (or compounds) produced and secreted by stromal cells mediates GJIC in epithelial cells. Previous studies have shown that endometrial stromal cells release prostaglandin E(2) (PGE(2)) and prostaglandin F(2α) (PGF(2α)) under physiological conditions. When we evaluated the response of normal endometrial epithelial cells to various concentrations of PGE(2,) we found enhanced GJIC with 1nM PGE(2). This is a smaller increase in GJIC than that induced by medium conditioned by stromal cells. When the extracellular concentration of PGE(2) was measured after incubation with stromal cells, it was found to be similar to the concentrations showing maximal GJIC between the normal epithelial cells. When indomethacin was used to inhibit prostaglandin synthesis by stromal cells, GJIC was reduced but not eliminated between normal endometrial epithelial cells. These observations suggest that although PGE(2) secreted by stromal cells is an important mediator of GJIC between the epithelial cells, it is not the sole mediator. Transformed endometrial epithelial cells did not demonstrate GJIC even in the presence of stromal cells. However, we were able to re-establish GJIC in transformed epithelial cells when we added PGE(2) to the cells. Our findings show that PGE(2) may serve as an intercellular mediator between stromal and epithelial cells that regulates GJIC in normal and malignant epithelial cells. This suggests that maintenance of GJIC by preserving or replacing PGE(2) secretion by endometrial stromal cells may have the potential to suppress carcinogenesis in endometrial epithelial cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The cell biology of polycystic kidney disease

    PubMed Central

    Chapin, Hannah C.

    2010-01-01

    Polycystic kidney disease is a common genetic disorder in which fluid-filled cysts displace normal renal tubules. Here we focus on autosomal dominant polycystic kidney disease, which is attributable to mutations in the PKD1 and PKD2 genes and which is characterized by perturbations of renal epithelial cell growth control, fluid transport, and morphogenesis. The mechanisms that connect the underlying genetic defects to disease pathogenesis are poorly understood, but their exploration is shedding new light on interesting cell biological processes and suggesting novel therapeutic targets. PMID:21079243

  6. Active properties of living tissues lead to size-dependent dewetting

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, Carlos; Alert, Ricard; Blanch-Mercader, Carles; Gomez-Gonzalez, Manuel; Casademunt, Jaume; Trepat, Xavier

    Key biological processes such as cancer and development are characterized by drastic transitions from 2D to a 3D geometry. These rearrangements have been classically studied as a wetting problem. According to this theory, wettability of a substrate by an epithelium is determined by the competition between cell-cell and cell-substrate adhesion energies. In contrast, we found that, far from a passive process, tissue dewetting is an active process driven by tissue internal forces. Experimentally, we reproduced epithelial dewetting by promoting a progressive formation of intercellular junctions in a monolayer of epithelial cells. Interestingly, the formation of intercellular junctions produces an increase in cell contractility, with the subsequent increase in traction and intercellular stress. At a certain time, tissue tension overcomes cell-substrate maximum adhesion and the monolayer spontaneously dewets the substrate. We developed an active polar fluid model, finding both theoretically and experimentally that critical contractility to promote wetting-dewetting transition depends on cell-substrate adhesion and, unexpectedly, on tissue size. As a whole, this work generalizes wetting theory to living tissues, unveiling unprecedented properties due to their unique active nature.

  7. Quantitative proteomic analysis of human breast epithelial cells with differential telomere length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Li-Rong; Chan, King C.; Tahara, Hidetoshi

    Telomeres play important functional roles in cell proliferation, cell cycle regulation, and genetic stability, in which telomere length is critical. In this study, quantitative proteome comparisons for the human breast epithelial cells with short and long telomeres (184-hTERT{sub L} vs. 184-hTERT{sub S} and 90P-hTERT{sub L} vs. 90P-hTERT{sub S}), resulting from transfection of the human telomerase reverse transcriptase (hTERT) gene, were performed using cleavable isotope-coded affinity tags. More than 2000 proteins were quantified in each comparative experiment, with approximately 77% of the proteins identified in both analyses. In the cells with long telomeres, significant and consistent alterations were observed in metabolismmore » (amino acid, nucleotide, and lipid metabolism), genetic information transmission (transcription and translation regulation, spliceosome and ribosome complexes), and cell signaling. Interestingly, the DNA excision repair pathway is enhanced, while integrin and its ligands are downregulated in the cells with long telomeres. These results may provide valuable information related to telomere functions.« less

  8. Saccharomyces boulardii Preserves the Barrier Function and Modulates the Signal Transduction Pathway Induced in Enteropathogenic Escherichia coli-Infected T84 Cells

    PubMed Central

    Czerucka, Dorota; Dahan, Stephanie; Mograbi, Baharia; Rossi, Bernard; Rampal, Patrick

    2000-01-01

    Use of the nonpathogenic yeast Saccharomyces boulardii in the treatment of infectious diarrhea has attracted growing interest. The present study designed to investigate the effect of this yeast on enteropathogenic Escherichia coli (EPEC)-associated disease demonstrates that S. boulardii abrogated the alterations induced by an EPEC strain on transepithelial resistance, [3H]inulin flux, and ZO-1 distribution in T84 cells. Moreover, EPEC-mediated apoptosis of epithelial cells was delayed in the presence of S. boulardii. The yeast did not modify the number of adherent bacteria but lowered by 50% the number of intracellular bacteria. Infection by EPEC induced tyrosine phosphorylation of several proteins in T84 cells, including p46 and p52 SHC isoforms, that was attenuated in the presence of S. boulardii. Similarly, EPEC-induced activation of the ERK1/2 mitogen-activated protein (MAP) kinase pathway was diminished in the presence of the yeast. Interestingly, inhibition of the ERK1/2 pathway with the specific inhibitor PD 98059 decreased EPEC internalization, suggesting that modulation of the ERK1/2 MAP pathway might account for the lowering of the number of intracellular bacteria observed in the presence of S. boulardii. Altogether, this study demonstrated that S. boulardii exerts a protective effect on epithelial cells after EPEC adhesion by modulating the signaling pathway induced by bacterial infection. PMID:10992512

  9. Expression of pluripotency factors in larval epithelia of the frog Xenopus: Evidence for the presence of cornea epithelial stem cells

    PubMed Central

    Perry, Kimberly J.; Thomas, Alvin G.; Henry, Jonathan J.

    2013-01-01

    Understanding the biology of somatic stem cells in self renewing tissues represents an exciting field of study, especially given the potential to harness these cells for tissue regeneration and repair in treating injury and disease. The mammalian cornea contains a population of basal epithelial stem cells involved in cornea homeostasis and repair. Research has been restricted to mammalian systems and little is known about the presence or function of these stem cells in other vertebrates. Therefore, we carried out studies to characterize frog cornea epithelium. Careful examination shows that the Xenopus larval cornea epithelium consists of three distinct layers that include an outer epithelial layer and underlying basal epithelium, in addition to a deeper fibrous layer that contains the main sensory nerve trunks that give rise to numerous branches that extend into these epithelia. These nerves convey sensory and presumably also autonomic innervation to those tissues. The sensory nerves are all derived as branches of the trigeminal nerve/ganglion similar to the situation encountered in mammals, though there appear to be some potentially interesting differences, which are detailed in this paper. We show further that numerous pluripotency genes are expressed by cells in the cornea epithelium, including: sox2, p63, various oct4 homologs, c-myc, klf4 and many others. Antibody localization revealed that p63, a well known mammalian epithelial stem cell marker, was localized strictly to all cells in the basal cornea epithelium. c-myc, was visualized in a smaller subset of basal epithelial cells and adjacent stromal tissue predominately at the periphery of the cornea (limbal zone). Finally, sox2 protein was found to be present throughout all cells of both the outer and basal epithelia, but was much more intensely expressed in a distinct subset of cells that appeared to be either multinucleate or possessed multi-lobed nuclei that are normally located at the periphery of the cornea. Using a thymidine analog (EdU), we were able to label mitotically active cells, which revealed that cell proliferation takes place throughout the cornea epithelium, predominantly in the basal epithelial layer. Species of Xenopus and one other amphibian are unique in their ability to replace a missing lens from cells derived from the basal cornea epithelium. Using EdU we show, as others have previously, that proliferating cells within the cornea epithelium do contribute to the formation of these regenerated lenses. Furthermore, using qPCR we determined that representatives of various pluripotency genes (i.e., sox2, p63 and oct60) are upregulated early during the process of lens regeneration. Antibody labeling showed that the number of sox2 expressing cells increased dramatically within 4 hours following lens removal and these cells were scattered throughout the basal layer of the cornea epithelium. Historically, the process of lens regeneration in Xenopus had been described as one involving transdifferentiation of cornea epithelial cells (i.e., one involving cellular dedifferentiation followed by redifferentiation). Our combined observations provide evidence that a population of stem cells exists within the Xenopus cornea. We hypothesize that the basal epithelium contains oligopotent epithelial stem cells that also represent the source of regenerated lenses in the frog. Future studies will be required to clearly identify the source of these lenses. PMID:23274420

  10. Epithelial Cell–Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia

    PubMed Central

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A.; Zabinski, Mary C.; Yuen, Constance K.; Lung, Wing Yi; Gower, Adam C.; Belkina, Anna C.; Ramirez, Maria I.; Deng, Jane C.; Quinton, Lee J.; Jones, Matthew R.

    2016-01-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia. PMID:27064756

  11. Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics.

    PubMed

    Kulkarni, Bina B; Tighe, Patrick J; Mohammed, Imran; Yeung, Aaron M; Powe, Desmond G; Hopkinson, Andrew; Shanmuganathan, Vijay A; Dua, Harminder S

    2010-09-29

    The Limbal epithelial crypt (LEC) is a solid cord of cells, approximately 120 microns long. It arises from the undersurface of interpalisade rete ridges of the limbal palisades of Vogt and extends deeper into the limbal stroma parallel or perpendicular to the palisade. There are up to 6 or 7 such LEC, variably distributed along the limbus in each human eye. Morphological and immunohistochemical studies on the limbal epithelial crypt (LEC) have demonstrated the presence of limbal stem cells in this region. The purpose of this microarray study was to characterise the transcriptional profile of the LEC and compare with other ocular surface epithelial regions to support our hypothesis that LEC preferentially harbours stem cells (SC). LEC was found to be enriched for SC related Gene Ontology (GO) terms including those identified in quiescent adult SC, however similar to cornea, limbus had significant GO terms related to proliferating SC, transient amplifying cells (TAC) and differentiated cells (DC). LEC and limbus were metabolically dormant with low protein synthesis and downregulated cell cycling. Cornea had upregulated genes for cell cycling and self renewal such as FZD7, BTG1, CCNG, and STAT3 which were identified from other SC populations. Upregulated gene expression for growth factors, cytokines, WNT, Notch, TGF-Beta pathways involved in cell proliferation and differentiation were noted in cornea. LEC had highest number of expressed sequence tags (ESTs), downregulated and unknown genes, compared to other regions. Genes expressed in LEC such as CDH1, SERPINF1, LEF1, FRZB1, KRT19, SOD2, EGR1 are known to be involved in SC maintenance. Genes of interest, in LEC belonging to the category of cell adhesion molecules, WNT and Notch signalling pathway were validated with real-time PCR and immunofluorescence. Our transcriptional profiling study identifies the LEC as a preferential site for limbal SC with some characteristics suggesting that it could function as a 'SC niche' supporting quiescent SC. It also strengthens the evidence for the presence of "transient cells" in the corneal epithelium. These cells are immediate progeny of SC with self-renewal capacity and could be responsible for maintaining epithelial turn over in normal healthy conditions of the ocular surface (OS). The limbus has mixed population of differentiated and undifferentiated cells.

  12. Hertwig's Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars.

    PubMed

    Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2015-06-29

    To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis.

  13. Hertwig’s Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars

    PubMed Central

    Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2015-01-01

    To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis. PMID:26160988

  14. Multiple Cellular Responses to Serotonin Contribute to Epithelial Homeostasis

    PubMed Central

    Pai, Vaibhav P.; Horseman, Nelson D.

    2011-01-01

    Epithelial homeostasis incorporates the paradoxical concept of internal change (epithelial turnover) enabling the maintenance of anatomical status quo. Epithelial cell differentiation and cell loss (cell shedding and apoptosis) form important components of epithelial turnover. Although the mechanisms of cell loss are being uncovered the crucial triggers that modulate epithelial turnover through regulation of cell loss remain undetermined. Serotonin is emerging as a common autocrine-paracine regulator in epithelia of multiple organs, including the breast. Here we address whether serotonin affects epithelial turnover. Specifically, serotonin's roles in regulating cell shedding, apoptosis and barrier function of the epithelium. Using in vivo studies in mouse and a robust model of differentiated human mammary duct epithelium (MCF10A), we show that serotonin induces mammary epithelial cell shedding and disrupts tight junctions in a reversible manner. However, upon sustained exposure, serotonin induces apoptosis in the replenishing cell population, causing irreversible changes to the epithelial membrane. The staggered nature of these events induced by serotonin slowly shifts the balance in the epithelium from reversible to irreversible. These finding have very important implications towards our ability to control epithelial regeneration and thus address pathologies of aberrant epithelial turnover, which range from degenerative disorders (e.g.; pancreatitis and thyrioditis) to proliferative disorders (e.g.; mastitis, ductal ectasia, cholangiopathies and epithelial cancers). PMID:21390323

  15. Stromal Fibroblasts from the Interface Zone of Triple Negative Breast Carcinomas Induced Epithelial-Mesenchymal Transition and its Inhibition by Emodin

    PubMed Central

    Wang, Hao-Yu; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Way, Tzong-Der

    2017-01-01

    “Triple negative breast cancer” (TNBC) is associated with a higher rate and earlier time of recurrence and worse prognosis after recurrence. In this study, we aimed to examine the crosstalk between fibroblasts and TNBC cells. The fibroblasts were isolated from TNBC patients’ tissue in tumor burden zones, distal normal zones and interface zones. The fibroblasts were indicated as cancer-associated fibroblasts (CAFs), normal zone fibroblasts (NFs) and interface zone fibroblasts (INFs). Our study found that INFs grew significantly faster than NFs and CAFs in vitro. The epithelial BT20 cells cultured with the conditioned medium of INFs (INFs-CM) and CAFs (CAFs-CM) showed more spindle-like shape and cell scattering than cultured with the conditioned medium of NFs (NFs-CM). These results indicated that factors secreted by INFs-CM or CAFs-CM could induce the epithelial-mesenchymal transition (EMT) phenotype in BT20 cells. Using an in vitro co-culture model, INFs or CAFs induced EMT and promoted cancer cell migration in BT20 cells. Interestingly, we found that emodin inhibited INFs-CM or CAFs-CM-induced EMT programming and phenotype in BT20 cells. Previous studies reported that CAFs and INFs-secreted TGF-β promoted human breast cancer cell proliferation, here; our results indicated that TGF-β initiated EMT in BT20 cells. Pretreatment with emodin significantly suppressed the TGF-β-induced EMT and cell migration in BT20 cells. These results suggest that emodin may be used as a novel agent for the treatment of TNBC. PMID:28060811

  16. Epithelial Cells in Urine: MedlinePlus Lab Test Information

    MedlinePlus

    ... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...

  17. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. © 2016 International Federation for Cell Biology.

  18. Canine corneal epithelial cells possess a sustained proliferative capacity and generate a spontaneously derived cell line.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Abe, Momoko; Hayashimoto, Koji; Nakagawa, Takayuki; Nishimura, Ryohei; Tsuzuki, Keiko

    2018-06-01

    We have previously reported characteristics of canine corneal epithelial cells in vitro and found that canine corneal epithelial cells could maintain their proliferative capacity even after continuous culture without the use of feeder cells and growth promoting additives. The objective of this study was to elucidate proliferative characteristics of canine corneal epithelial cells independent of feeder cells and growth promoting additives, with the aim of developing a spontaneously derived corneal epithelial cell line. Canine and rabbit corneal epithelial cells were harvested from the limbus and cultured with, or without, feeder cells and growth promoting additives, and both were passaged continuously until growth arrest. Canine corneal epithelial cells could proliferate independently, and could be passaged more times than rabbit cells. A canine corneal epithelial cell line, cCEpi, which could be passaged more than 100 times without using feeder cells and growth promoting additives, was established. cCEpi cells maintained a cell morphology close to the primary culture and expressed p63, cytokeratin 15 (K15), and K3. Although changes in colony morphology, shortening of the population doubling time and a heteroploid karyotype were observed, cCEpi was not tumorigenic. Stratified cell sheets cultured from cCEpi were morphologically and immunohistologically similar to sheets cultivated from early passage cells. In conclusion, canine corneal epithelial cells can proliferate independent of feeder cells and growth promoting additives. cCEpi maintains properties similar to normal corneal epithelial cells and could be a useful source for studies in cellular biology and for developing novel therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Second-degree burns with six etiologies treated with autologous noncultured cell-spray grafting.

    PubMed

    Esteban-Vives, Roger; Choi, Myung S; Young, Matthew T; Over, Patrick; Ziembicki, Jenny; Corcos, Alain; Gerlach, Jörg C

    2016-11-01

    Partial and deep partial-thickness burn wounds present a difficult diagnosis and prognosis that makes the planning for a conservative treatment versus mesh grafting problematic. A non-invasive treatment strategy avoiding mesh grafting is often chosen by practitioners based on their clinical and empirical evidence. However, a delayed re-epithelialization after conservative treatment may extend the patient's hospitalization period, increase the risk of infection, and lead to poor functional and aesthetic outcome. Early spray grafting, using non-cultured autologous cells, is under discussion for partial and deep partial-thickness wounds to accelerate the re-epithelialization process, reducing the healing time in the hospital, and minimizing complications. To address planning for future clinical studies on this technology, suitable indications will be interesting. We present case information on severe second-degree injuries after gas, chemical, electrical, gasoline, hot water, and tar scalding burns showing one patient per indication. The treatment results with autologous non-cultured cells, support rapid, uncomplicated re-epithelialization with aesthetically and functionally satisfying outcomes. Hospital stays averaged 7.6±1.6 days. Early autologous cell-spray grafting does not preclude or prevent simultaneous or subsequent traditional mesh autografting when indicated on defined areas of full-thickness injury. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  20. Medroxyprogesterone acetate-treated human, primary endometrial epithelial cells reveal unique gene expression signature linked to innate immunity and HIV-1 susceptibility.

    PubMed

    Woods, Matthew W; Zahoor, Muhammad Atif; Dizzell, Sara; Verschoor, Chris P; Kaushic, Charu

    2018-01-01

    Medroxyprogesterone acetate (MPA), a progestin-based hormonal contraceptive designed to mimic progesterone, has been linked to increased human immunodeficiency virus (HIV-1) susceptibility. Genital epithelial cells (GECs) form the mucosal lining of the female genital tract (FGT) and provide the first line of protection against HIV-1. The impact of endogenous sex hormones or MPA on the gene expression profile of GECs has not been comprehensively documented. Using microarray analysis, we characterized the transcriptional profile of primary endometrial epithelial cells grown in physiological levels of E2, P4, and MPA. Each hormone treatment altered the gene expression profile of GECs in a unique manner. Interestingly, although MPA is a progestogen, the gene expression profile induced by it was distinct from P4. MPA increased gene expression of genes related to inflammation and cholesterol synthesis linked to innate immunity and HIV-1 susceptibility. The analysis of gene expression profiles provides insights into the effects of sex hormones and MPA on GECs and allows us to posit possible mechanisms of the MPA-mediated increase in HIV-1 acquisition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche?

    PubMed

    Tempest, N; Baker, A M; Wright, N A; Hapangama, D K

    2018-06-01

    Is human endometrial leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) gene expression limited to the postulated epithelial stem cell niche, stratum basalis glands, and is it hormonally regulated? LGR5 expressing cells are not limited to the postulated stem cell niche but LGR5 expression is hormonally regulated. The human endometrium is a highly regenerative tissue; however, endometrial epithelial stem cell markers are yet to be confirmed. LGR5 is a marker of stem cells in various epithelia. The study was conducted at a University Research Institute. Endometrial samples from 50 healthy women undergoing benign gynaecological surgery with no endometrial pathology at the Liverpool Women's hospital were included and analysed in the following six sub-categories; proliferative, secretory phases of menstrual cycle, postmenopausal, those using oral and local progestagens and samples for in vitro explant culture. In this study, we used the gold standard method, in situ hybridisation (ISH) along with qPCR and a systems biology approach to study the location of LGR5 gene expression in full thickness human endometrium and Fallopian tubes. The progesterone regulation of endometrial LGR5 was examined in vivo and in short-term cultured endometrial tissue explants in vitro. LGR5 expression was correlated with epithelial proliferation (Ki67), and expression of previously reported epithelia progenitor markers (SOX9 and SSEA-1) immunohistochemistry (IHC). LGR5 gene expression was significantly higher in the endometrial luminal epithelium than in all other epithelial compartments in the healthy human endometrium, including the endometrial stratum basalis (P < 0.05). The strongest SSEA-1 and SOX9 staining was observed in the stratum basalis glands, but the general trend of SOX9 and SSEA-1 expression followed the same cyclical pattern of expression as LGR5. Stratum functionalis epithelial Ki67-LI and LGR5 expression levels correlated significantly (r = 0.74, P = 0.01), however, they did not correlate in luminal and stratum basalis epithelium (r = 0.5 and 0.13, respectively). Endometrial LGR5 demonstrates a dynamic spatiotemporal expression pattern, suggesting hormonal regulation. Oral and local progestogens significantly reduced endometrial LGR5 mRNA levels compared with women not on hormonal treatment (P < 0.01). Our data were in agreement with in silico analysis of published endometrial microarrays. We did not generate our own large scale data but interrogated publically available large scale data sets. In the absence of reliable antibodies for human LGR5 protein and validated lineage markers for the various epithelial populations that potentially exist within the endometrium, our study does not formally characterise or examine the functional ability of the resident LGR5+ cells as multipotent. These data will facilitate future lineage tracing studies in the human endometrial epithelium; to identify the location of stem cells and further complement the in vitro functional studies, to confirm if the LGR5 expressing epithelial cells indeed represent the epithelial stem cell population. This work was supported by funding from the Wellbeing of Women project grant (RTF510) and Cancer Research UK (A14895). None of the authors have any conflicts of interest to disclose.

  2. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    PubMed Central

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  3. Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns.

    PubMed

    Barrila, Jennifer; Yang, Jiseon; Crabbé, Aurélie; Sarker, Shameema F; Liu, Yulong; Ott, C Mark; Nelman-Gonzalez, Mayra A; Clemett, Simon J; Nydam, Seth D; Forsyth, Rebecca J; Davis, Richard R; Crucian, Brian E; Quiriarte, Heather; Roland, Kenneth L; Brenneman, Karen; Sams, Clarence; Loscher, Christine; Nickerson, Cheryl A

    2017-01-01

    Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella , we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.

  4. Trans-suppression of host CDH3 and LOXL4 genes during Cryptosporidium parvum infection involves nuclear delivery of parasite Cdg7_FLc_1000 RNA.

    PubMed

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Li, Yao; Pang, Jing; Dong, Stephanie; Strauss-Soukup, Juliane K; Chen, Xian-Ming

    2018-05-01

    Intestinal infection by Cryptosporidium parvum causes significant alterations in the gene expression profile in host epithelial cells. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of human intestinal cryptosporidiosis, we report here that trans-suppression of the cadherin 3 (CDH3) and lysyl oxidase like 4 (LOXL4) genes in human intestinal epithelial cells following C. parvum infection involves host delivery of the Cdg7_FLc_1000 RNA, a C. parvum RNA that has been previously demonstrated to be delivered into the nuclei of infected host cells. Downregulation of CDH3 and LOXL4 genes was detected in host epithelial cells following C. parvum infection or in cells expressing the parasite Cdg7_FLc_1000 RNA. Knockdown of Cdg7_FLc_1000 attenuated the trans-suppression of CDH3 and LOXL4 genes in host cells induced by infection. Interestingly, Cdg7_FLc_1000 was detected to be recruited to the promoter regions of both CDH3 and LOXL4 gene loci in host cells following C. parvum infection. Host delivery of Cdg7_FLc_1000 promoted the PH domain zinc finger protein 1 (PRDM1)-mediated H3K9 methylation associated with trans-suppression in the CDH3 gene locus, but not the LOXL4 gene. Therefore, our data suggest that host delivery of Cdg7_FLc_1000 causes CDH3 trans-suppression in human intestinal epithelial cells following C. parvum infection through PRDM1-mediated H3K9 methylation in the CDH3 gene locus, whereas Cdg7_FLc_1000 induces trans-suppression of the host LOXL4 gene through H3K9/H3K27 methylation-independent mechanisms. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  5. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    PubMed

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations of reduced NPSH in renal epithelial cells than in hepatocytes.

  6. Potential Role for a Carbohydrate Moiety in Anti-Candida Activity of Human Oral Epithelial Cells

    PubMed Central

    Steele, Chad; Leigh, Janet; Swoboda, Rolf; Ozenci, Hatice; Fidel, Paul L.

    2001-01-01

    Candida albicans is both a commensal and a pathogen at the oral mucosa. Although an intricate network of host defense mechanisms are expected for protection against oropharyngeal candidiasis, anti-Candida host defense mechanisms at the oral mucosa are poorly understood. Our laboratory recently showed that primary epithelial cells from human oral mucosa, as well as an oral epithelial cell line, inhibit the growth of blastoconidia and/or hyphal phases of several Candida species in vitro with a requirement for cell contact and with no demonstrable role for soluble factors. In the present study, we show that oral epithelial cell-mediated anti-Candida activity is resistant to gamma-irradiation and is not mediated by phagocytosis, nitric oxide, hydrogen peroxide, and superoxide oxidative inhibitory pathways or by nonoxidative components such as soluble defensin and calprotectin peptides. In contrast, epithelial cell-mediated anti-Candida activity was sensitive to heat, paraformaldehyde fixation, and detergents, but these treatments were accompanied by a significant loss in epithelial cell viability. Treatments that removed existing membrane protein or lipid moieties in the presence or absence of protein synthesis inhibitors had no effect on epithelial cell inhibitory activity. In contrast, the epithelial cell-mediated anti-Candida activity was abrogated after treatment of the epithelial cells with periodic acid, suggesting a role for carbohydrates. Adherence of C. albicans to oral epithelial cells was unaffected, indicating that the carbohydrate moiety is exclusively associated with the growth inhibition activity. Subsequent studies that evaluated specific membrane carbohydrate moieties, however, showed no role for sulfated polysaccharides, sialic acid residues, or glucose- and mannose-containing carbohydrates. These results suggest that oral epithelial cell-mediated anti-Candida activity occurs exclusively with viable epithelial cells through contact with C. albicans by an as-yet-undefined carbohydrate moiety. PMID:11598085

  7. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Helicobacter pylori-induced premature senescence of extragastric cells may contribute to chronic skin diseases.

    PubMed

    Lewinska, Anna; Wnuk, Maciej

    2017-04-01

    Helicobacter pylori, one of the most frequently observed bacterium in the human intestinal flora, has been widely studied since Marshall and Warren documented a link between the presence of H. pylori in the gastrointestinal tract and gastritis and gastric ulcers. Interestingly, H. pylori has also been found in several other epithelial tissues, including the eyes, ears, nose and skin that may have direct or indirect effects on host physiology and may contribute to extragastric diseases, e.g. chronic skin diseases. More recently, it has been shown that H. pylori cytotoxin CagA expression induces cellular senescence of human gastric nonpolarized epithelial cells that may lead to gastrointestinal disorders and systemic inflammation. Here, we hypothesize that also chronic skin diseases may be promoted by stress-induced premature senescence (SIPS) of skin cells, namely fibroblasts and keratinocytes, stimulated with H. pylori cytotoxins. Future studies involving cell culture models and clinical specimens are needed to verify the involvement of H. pylori in SIPS-based chronic skin diseases.

  9. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    PubMed

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the inhibition of the signalling via NF-κB that in turn led to the attenuation of the inflammatory response.

  10. Administration of RANKL boosts thymic regeneration upon bone marrow transplantation.

    PubMed

    Lopes, Noella; Vachon, Hortense; Marie, Julien; Irla, Magali

    2017-06-01

    Cytoablative treatments lead to severe damages on thymic epithelial cells (TECs), which result in delayed de novo thymopoiesis and a prolonged period of T-cell immunodeficiency. Understanding the mechanisms that govern thymic regeneration is of paramount interest for the recovery of a functional immune system notably after bone marrow transplantation (BMT). Here, we show that RANK ligand (RANKL) is upregulated in CD4 + thymocytes and lymphoid tissue inducer (LTi) cells during the early phase of thymic regeneration. Importantly, whereas RANKL neutralization alters TEC recovery after irradiation, ex vivo RANKL administration during BMT boosts the regeneration of TEC subsets including thymic epithelial progenitor-enriched cells, thymus homing of lymphoid progenitors, and de novo thymopoiesis. RANKL increases specifically in LTi cells, lymphotoxin α, which is critical for thymic regeneration. RANKL treatment, dependent on lymphotoxin α, is beneficial upon BMT in young and aged individuals. This study thus indicates that RANKL may be clinically useful to improve T-cell function recovery after BMT by controlling multiple facets of thymic regeneration. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Vestibular regeneration--experimental models and clinical implications.

    PubMed

    Albu, Silviu; Muresanu, Dafin F

    2012-09-01

    Therapies aimed at the protection and/or regeneration of inner ear hair cells are of great interest, given the significant monetary and quality of life impact of balance disorders. Different viral vectors have been shown to transfect various cell types in the inner ear. The past decade has provided tremendous advances in the use of adenoviral vectors to achieve targeted treatment delivery. Several routes of delivery have been identified to introduce vectors into the inner ear while minimizing injury to surrounding structures. Recently, the transcription factor Atoh1 was determined to play a critical role in hair cell differentiation. Adenoviral-mediated overexpression of Atoh1 in culture and in vivo has demonstrated the ability to regenerate vestibular hair cells by causing transdifferentiation of neighbouring epithelial-supporting cells. Functional recovery of the vestibular system has also been documented following adenoviral-induced Atoh1 overexpression. Experiments demonstrating gene transfer in human vestibular epithelial cells reveal that the human inner ear is a suitable target for gene therapy. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  12. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta.

    PubMed

    Gerlach, Gary F; Wingert, Rebecca A

    2014-12-15

    The zebrafish pronephros provides an excellent in vivo system to study the mechanisms of vertebrate nephron development. When and how renal progenitors in the zebrafish embryo undergo tubulogenesis to form nephrons is poorly understood, but is known to involve a mesenchymal to epithelial transition (MET) and the acquisition of polarity. Here, we determined the precise timing of these events in pronephros tubulogenesis. As the ternary polarity complex is an essential regulator of epithelial cell polarity across tissues, we performed gene knockdown studies to assess the roles of the related factors atypical protein kinase C iota and zeta (prkcι, prkcζ). We found that prkcι and prkcζ serve partially redundant functions to establish pronephros tubule epithelium polarity. Further, the loss of prkcι or the combined knockdown of prkcι/ζ disrupted proximal tubule morphogenesis and podocyte migration due to cardiac defects that prevented normal fluid flow to the kidney. Surprisingly, tubule cells in prkcι/ζ morphants displayed ectopic expression of the transcription factor pax2a and the podocyte-associated genes wt1a, wt1b, and podxl, suggesting that prkcι/ζ are needed to maintain renal epithelial identity. Knockdown of genes essential for cardiac contractility and vascular flow to the kidney, such as tnnt2a, or elimination of pronephros fluid output through knockdown of the intraflagellar transport gene ift88, was not associated with ectopic pronephros gene expression, thus suggesting a unique role for prkcι/ζ in maintaining tubule epithelial identity separate from the consequence of disruptions to renal fluid flow. Interestingly, knockdown of pax2a, but not wt1a, was sufficient to rescue ectopic tubule gene expression in prkcι/ζ morphants. These data suggest a model in which the redundant activities of prkcι and prkcζ are essential to establish tubule epithelial polarity and also serve to maintain proper epithelial cell type identity in the tubule by inhibiting pax2a expression. These studies provide a valuable foundation for further analysis of MET during nephrogenesis, and have implications for understanding the pathways that affect nephron epithelial cells during kidney disease and regeneration. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Histogenesis of the epithelial component of rat thymus: an ultrastructural and immunohistological analysis.

    PubMed

    Vicente, A; Varas, A; Sacedón, R; Zapata, A G

    1996-04-01

    Despite the assumed importance of thymic cell microenvironments for governing T-cell maturation, little is known about the ontogeny of their cell components. A few studies have analyzed previously the ontogenetical development of rat thymic epithelium (Bogojevic et al. 1990. Period. Biol., 92:126; Kampinga and Aspinall 1990 Harwood Acad. Pub., London, pp. 149-186; Micic et al., 1991 Dev. Comp. Immunol., 15:443-450) and recently we have reported the development of both interdigitating/dendritic cells and macrophages (Vicente et al., 1994 Immunology, 82:75-81, 1995 Immunology, 85:99-105). In the present work we analyze in situ ultrastructural, immunohistochemical, and histoenzymatically the appearance and development of the thymic epithelial cell component in both embryonic and neonatal Wistar rats with special emphasis on the origin of the different epithelial cell types, the occurrence or absence of a common precursor for these, and the expression of MHC molecules. The thymic primordium of 13-day-old embryos is formed by a homogeneous population of primitive epithelial cells differentiating gradually into various epithelial cell subtypes of both the cortex and the medulla. In the cortex, subcapsular and stroma-supporting epithelial cells appear at days 14-15 as two structurally different cell entities. At the same time, stroma-supporting, keratinized, and vacuolated epithelial cells occur in the thymic medulla. These last two cell types differentiate subsequently into Hassall's bodies and hypertrophied cells. Lympho-epithelial cell complexes are identified in the deep cortex around birth, when the cortical parenchyma houses a transitional erythropoiesis. mAbs (His-39, RMC-20) which recognize medullary epithelial cells in the adult thymus stain positively cells of the thymic primordium as early as day 16 of embryonic life. Cortical epithelial cell markers (His-37, RMC-17) appear, however, slightly later and the subcapsulary region is not established until postnatal life. MHC class I and class II molecules can be identified on epithelial cells in the thymus of 15-day-old embryonic rats although they reach the highest expression around birth. Our results confirm the heterogeneity of the thymic epithelial component, the persistence of primitive, non-differentiated epithelial cells morphologically similar to those occurring in the early thymic primordium in adult thymus, and the mutual relevance of epithelial cells and thymocytes for an adequate development of rat thymus gland.

  14. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction

    PubMed Central

    Zhou, Jian; Alvarez-Elizondo, Martha B.; Botvinick, Elliot

    2012-01-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca2+ wave in the epithelium, and multiple Ca2+ waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca2+ or decreasing intracellular Ca2+ both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca2+-dependent smooth muscle shortening. PMID:22114176

  15. Local small airway epithelial injury induces global smooth muscle contraction and airway constriction.

    PubMed

    Zhou, Jian; Alvarez-Elizondo, Martha B; Botvinick, Elliot; George, Steven C

    2012-02-01

    Small airway epithelial cells form a continuous sheet lining the conducting airways, which serves many functions including a physical barrier to protect the underlying tissue. In asthma, injury to epithelial cells can occur during bronchoconstriction, which may exacerbate airway hyperreactivity. To investigate the role of epithelial cell rupture in airway constriction, laser ablation was used to precisely rupture individual airway epithelial cells of small airways (<300-μm diameter) in rat lung slices (∼250-μm thick). Laser ablation of single epithelial cells using a femtosecond laser reproducibly induced airway contraction to ∼70% of the original cross-sectional area within several seconds, and the contraction lasted for up to 40 s. The airway constriction could be mimicked by mechanical rupture of a single epithelial cell using a sharp glass micropipette but not with a blunt glass pipette. These results suggest that soluble mediators released from the wounded epithelial cell induce global airway contraction. To confirm this hypothesis, the lysate of primary human small airway epithelial cells stimulated a similar airway contraction. Laser ablation of single epithelial cells triggered a single instantaneous Ca(2+) wave in the epithelium, and multiple Ca(2+) waves in smooth muscle cells, which were delayed by several seconds. Removal of extracellular Ca(2+) or decreasing intracellular Ca(2+) both blocked laser-induced airway contraction. We conclude that local epithelial cell rupture induces rapid and global airway constriction through release of soluble mediators and subsequent Ca(2+)-dependent smooth muscle shortening.

  16. An adapted in vitro assay to assess Campylobacter jejuni interaction with intestinal epithelial cells: Taking into stimulation with TNFα.

    PubMed

    Rodrigues, Ramila Cristiane; Pocheron, Anne-Lise; Cappelier, Jean-Michel; Tresse, Odile; Haddad, Nabila

    2018-06-01

    Campylobacter jejuni is the most prevalent foodborne bacterial infection agent. This pathogen seems also involved in inflammatory bowel diseases in which pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), play a major role. C. jejuni pathogenicity has been extensively studied using in vitro cell culture methods, and more precisely "healthy" cells. In fact, no information is available regarding the behavior of C. jejuni in contact with TNFα-stimulated cells. Therefore, this research was designed to investigate the effect of TNFα on C. jejuni interaction with human intestinal epithelial cells (HT29 and HT29-MTX). To ensure IL-8 production induced by TNFα, human rtTNFα was added to HT29 and HT29-MTX before adhesion and invasion assays. About 10 8 CFU bacteria of C. jejuni strains cells were added to measure their adherence and invasion abilities using TNFα-stimulated cells versus non stimulated cells. Exposure to TNFα results in IL-8 overproduction by intestinal epithelial cells. In addition, the effect of TNFα pre-treatment on C. jejuni adhesion and internalization into eukaryotic cells is strain-dependent. Indeed, the adhesion/invasion process is affected in <50% of the strains tested when TNFα is added to the intestinal cells. Interestingly, TNFα affects more strains in their ability to adhere to and invade the mucus-secreting HT29-MTX cells. Among the 10 strains tested, the aero-tolerant C. jejuni Bf strain is one of the most virulent. These results suggest that the TNFα signalling pathway could participate in the internalization of C. jejuni in human intestinal cells and can help in understanding the pathogenicity of this microorganism in contact with TNFα-stimulated cells. Copyright © 2018. Published by Elsevier B.V.

  17. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  18. The world of epithelial sheets.

    PubMed

    Honda, Hisao

    2017-06-01

    An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  19. Epstein-Barr Virus Infection of Polarized Epithelial Cells via the Basolateral Surface by Memory B Cell-Mediated Transfer Infection

    PubMed Central

    Shannon-Lowe, Claire; Rowe, Martin

    2011-01-01

    Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo. PMID:21573183

  20. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    ClinicalTrials.gov

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  1. Efficient Immortalization of Primary Nasopharyngeal Epithelial Cells for EBV Infection Study

    PubMed Central

    Yip, Yim Ling; Pang, Pei Shin; Deng, Wen; Tsang, Chi Man; Zeng, Musheng; Hau, Pok Man; Man, Cornelia; Jin, Yuesheng; Yuen, Anthony Po Wing; Tsao, Sai Wah

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic of EBV-infected nasopharyngeal carcinoma. The establishment of an efficient method to immortalize primary nasopharyngeal epithelial cells will facilitate the investigation into the role of EBV infection in pathogenesis of nasopharyngeal carcinoma. PMID:24167620

  2. Ozone-derived Oxysterols Affect Liver X Receptor (LXR) Signaling

    PubMed Central

    Kim, Hye-Young H.; Bauer, Rebecca N.; Fessler, Michael B.; Duncan, Kelly E.; Liu, Wei; Porter, Ned A.

    2016-01-01

    When inhaled, ozone (O3) interacts with cholesterols of airway epithelial cell membranes or the lung-lining fluid, generating chemically reactive oxysterols. The mechanism by which O3-derived oxysterols affect molecular function is unknown. Our data show that in vitro exposure of human bronchial epithelial cells to O3 results in the formation of oxysterols, epoxycholesterol-α and -β and secosterol A and B (Seco A and Seco B), in cell lysates and apical washes. Similarly, bronchoalveolar lavage fluid obtained from human volunteers exposed to O3 contained elevated levels of these oxysterol species. As expected, O3-derived oxysterols have a pro-inflammatory effect and increase NF-κB activity. Interestingly, expression of the cholesterol efflux pump ATP-binding cassette transporter 1 (ABCA1), which is regulated by activation of the liver X receptor (LXR), was suppressed in epithelial cells exposed to O3. Additionally, exposure of LXR knock-out mice to O3 enhanced pro-inflammatory cytokine production in the lung, suggesting LXR inhibits O3-induced inflammation. Using alkynyl surrogates of O3-derived oxysterols, our data demonstrate adduction of LXR with Seco A. Similarly, supplementation of epithelial cells with alkynyl-tagged cholesterol followed by O3 exposure causes observable lipid-LXR adduct formation. Experiments using Seco A and the LXR agonist T0901317 (T09) showed reduced expression of ABCA1 as compared with stimulation with T0901317 alone, indicating that Seco A-LXR protein adduct formation inhibits LXR activation by traditional agonists. Overall, these data demonstrate that O3-derived oxysterols have pro-inflammatory functions and form lipid-protein adducts with LXR, thus leading to suppressed cholesterol regulatory gene expression and providing a biochemical mechanism mediating O3-derived formation of oxidized lipids in the airways and subsequent adverse health effects. PMID:27703007

  3. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing.

    PubMed

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.

  4. Wnt and Notch Pathways Have Interrelated Opposing Roles on Prostate Progenitor Cell Proliferation and Differentiation

    PubMed Central

    Shahi, Payam; Seethammagari, Mamatha R.; Valdez, Joseph M.; Xin, Li; Spencer, David M.

    2011-01-01

    Tissue stem cells are capable of both self-renewal and differentiation to maintain a constant stem cell population and give rise to the plurality of cells within a tissue. Wnt signaling has been previously identified as a key mediator for the maintenance of tissue stem cells; however, possible cross-regulation with other developmentally critical signaling pathways involved in adult tissue homeostasis, such as Notch, is not well understood. By using an in vitro prostate stem cell colony (“prostasphere”) formation assay and in vivo prostate reconstitution experiments, we demonstrate that Wnt pathway induction on Sca-1+ CD49f+ basal/stem cells (B/SCs) promotes expansion of the basal epithelial compartment with noticeable increases in “triple positive” (cytokeratin [CK] 5+, CK8+, p63+) prostate progenitor cells, concomitant with upregulation of known Wnt target genes involved in cell-cycle induction. Moreover, Wnt induction affects expression of epithelial-to-mesenchymal transition signature genes, suggesting a possible mechanism for priming B/SC to act as potential tumor-initiating cells. Interestingly, induction of Wnt signaling in B/SCs results in downregulation of Notch1 transcripts, consistent with its postulated antiproliferative role in prostate cells. In contrast, induction of Notch signaling in prostate progenitors inhibits their proliferation and disrupts prostasphere formation. In vivo prostate reconstitution assays further demonstrate that induction of Notch in B/SCs disrupts proper acini formation in cells expressing the activated Notch1 allele, Notch-1 intracellular domain. These data emphasize the importance of Wnt/Notch cross-regulation in adult stem cell biology and suggest that Wnt signaling controls the proliferation and/or maintenance of epithelial progenitors via modulation of Notch signaling. PMID:21308863

  5. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means ofmore » labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.« less

  6. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.

    PubMed

    Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E

    2015-12-01

    Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. ©2015 American Association for Cancer Research.

  7. Mechanical Characterization of Microengineered Epithelial Cysts by Using Atomic Force Microscopy.

    PubMed

    Shen, Yusheng; Guan, Dongshi; Serien, Daniela; Takeuchi, Shoji; Tong, Penger; Yobas, Levent; Huang, Pingbo

    2017-01-24

    Most organs contain interconnected tubular tissues that are one-cell-thick, polarized epithelial monolayers enclosing a fluid-filled lumen. Such tissue organization plays crucial roles in developmental and normal physiology, and the proper functioning of these tissues depends on their regulation by complex biochemical perturbations and equally important, but poorly understood, mechanical perturbations. In this study, by combining micropatterning techniques and atomic force microscopy, we developed a simple in vitro experimental platform for characterizing the mechanical properties of the MDCK II cyst, the simplest model of lumen-enclosing epithelial monolayers. By using this platform, we estimated the elasticity of the cyst monolayer and showed that the presence of a luminal space influences cyst mechanics substantially, which could be attributed to polarization and tissue-level coordination. More interestingly, the results from force-relaxation experiments showed that the cysts also displayed tissue-level poroelastic characteristics that differed slightly from those of single cells. Our study provides the first quantitative findings, to our knowledge, on the tissue-level mechanics of well-polarized epithelial cysts and offers new insights into the interplay between cyst mechanics and cyst physiology. Moreover, our simple platform is a potentially useful tool for enhancing the current understanding of cyst mechanics in health and disease. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Intestinal Epithelial Toll-Like Receptor 4 Signaling Affects Epithelial Function and Colonic Microbiota and Promotes a Risk for Transmissible Colitis

    PubMed Central

    Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M.; Lang, Jessica K.; Phillips, Matthew C.; Pastorini, Cristhine; Vazquez-Pertejo, Maria T.

    2016-01-01

    Evidence obtained from gene knockout studies supports the role of Toll-like receptor 4 (TLR4) in intestinal inflammation and microbiota recognition. Increased epithelial TLR4 expression is observed in patients with inflammatory bowel disease. However, little is known of the effect of increased TLR4 signaling on intestinal homeostasis. Here, we examined the effect of increased TLR4 signaling on epithelial function and microbiota by using transgenic villin-TLR4 mice that overexpress TLR4 in the intestinal epithelium. Our results revealed that villin-TLR4 mice are characterized by increases in the density of mucosa-associated bacteria and bacterial translocation. Furthermore, increased epithelial TLR4 signaling was associated with an impaired epithelial barrier, altered expression of antimicrobial peptide genes, and altered epithelial cell differentiation. The composition of the colonic luminal and mucosa-associated microbiota differed between villin-TLR4 and wild-type (WT) littermates. Interestingly, WT mice cohoused with villin-TLR4 mice displayed greater susceptibility to acute colitis than singly housed WT mice did. The results of this study suggest that epithelial TLR4 expression shapes the microbiota and affects the functional properties of the epithelium. The changes in the microbiota induced by increased epithelial TLR4 signaling are transmissible and exacerbate dextran sodium sulfate-induced colitis. Together, our findings imply that host innate immune signaling can modulate intestinal bacteria and ultimately the host's susceptibility to colitis. PMID:26755160

  9. Expression and cytokine regulation of immune recognition elements by normal human biliary epithelial and established liver cell lines in vitro.

    PubMed

    Cruickshank, S M; Southgate, J; Selby, P J; Trejdosiewicz, L K

    1998-10-01

    Biliary epithelial cells are targets of immune-mediated attack in conditions such as primary biliary cirrhosis and allograft rejection. This has been attributed to the ability of biliary epithelial cells to express ligands for T cell receptors. We aimed to investigate the expression of immune recognition elements and the effects of pro-inflammatory and anti-inflammatory cytokines on cell surface phenotypes of normal human biliary epithelial cells and established human liver-derived (PLC/PRF/5, HepG2, Hep3B and CC-SW) lines. Cells were cultured in the presence or absence of cytokines for 72 h, and expression of cell surface molecules was assessed by flow cytometry and immunofluorescence. All cell lines expressed MHC class I, ICAM-1 (CD54), LFA-3 (CD58) and EGF receptor, and all but Hep3B expressed Fas/Apo-1 (CD95). Unlike hepatocyte-derived cell lines, biliary epithelial cells and CC-SW expressed CD40 and CD44. As expected, IFNgamma and TNFalpha upregulated expression of ICAM-1, MHC class I and MHC class II, particularly in biliary epithelial cells. TGFbeta downregulated these molecules and downregulated CD95 on biliary epithelial cells, but upregulated LFA-3. The Th2 cytokines had little effect, although IL-4 upregulated CD95 expression on biliary epithelial cells. IFNgamma upregulated CD40 expression on biliary epithelial cells, CC-SW and HepG2. These findings imply that biliary epithelial cells may be capable of interacting with activated T lymphocytes via CD40 and LFA-3, which are thought to be important T cell accessory ligands for T cell activation in a B7-independent manner. Sensitivity to pro-inflammatory cytokines and expression of CD95 may explain why biliary epithelial cells are primary targets for autoimmune attack.

  10. Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies

    PubMed Central

    McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.

    2008-01-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID:18483420

  11. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.

    PubMed

    McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M

    2008-11-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation.

  12. Mesenchymal change and drug resistance in neuroblastoma.

    PubMed

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P < 0.1 were analyzed. Immunofluorescence (IF) and Western blot analysis confirmed microarray results of interest. Matrigel invasion assay and migration wounding assays were performed. Volcano plots and heat maps visually demonstrated a similar pattern of DEGs in the SK-N-SH and SK-N-BE(2)C DoxR cell lines relative to their parental WT lines. Venn diagramming revealed 1594 DEGs common to both DoxR cell lines relative to their parental cell lines. Network analysis pointed to several significantly upregulated epithelial-to-mesenchymal transition pathways, through TGF-beta pathways via RhoA, PI3K, and ILK and via SMADs, as well as via notch signaling pathways. DoxR cell lines displayed a more invasive phenotype than respective WT cell lines. Human SK-N-SH and SK-N-BE(2)C NB cells display characteristics of mesenchymal change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia.

    PubMed

    Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna

    2017-08-15

    Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.

  14. Mechanical stretch triggers rapid epithelial cell division through Piezo1.

    PubMed

    Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J

    2017-03-02

    Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.

  15. LASER CAPTURE MICRODISSECTION AND GENE ARRAY ANALYSIS OF PALATAL EPITHELIAL AND MESENCHYMAL CELLS EXPOSED TO TCDD

    EPA Science Inventory

    Palatal shelves from embryos exposed on gestation day (GD) 12 to either retinoic acid (RA) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) contact but fail to fuse. It is of interest to know if diverse agents that induce clefting via the same etiology also activate the same biochem...

  16. THE EFFECTS OF ANTI-INFLAMMATORY IFNγ AND PRO-INFLAMMATORY TNFα, IL-1β ON CHEMOKINE RELEASE IN MOUSE EPITHELIAL CELLS

    EPA Science Inventory

    RATIONALE: Asthma is a chronic inflammatory disorder of the airways that affects nearly 20 million individuals in the US. Airway inflammation is a hallmark characteristic of asthma and is the result of numerous pro-inflammatory cytokines such as IL-1β and TNFα . Interestingly...

  17. Candidate Microbicides Block HIV-1 Infection of Human Immature Langerhans Cells within Epithelial Tissue Explants

    PubMed Central

    Kawamura, Tatsuyoshi; Cohen, Sandra S.; Borris, Debra L.; Aquilino, Elisabeth A.; Glushakova, Svetlana; Margolis, Leonid B.; Orenstein, Jan M.; Offord, Robin E.; Neurath, A. Robert; Blauvelt, Andrew

    2000-01-01

    Initial biologic events that underlie sexual transmission of HIV-1 are poorly understood. To model these events, we exposed human immature Langerhans cells (LCs) within epithelial tissue explants to two primary and two laboratory-adapted HIV-1 isolates. We detected HIV-1Ba-L infection in single LCs that spontaneously emigrated from explants by flow cytometry (median of infected LCs = 0.52%, range = 0.08–4.77%). HIV-1–infected LCs downregulated surface CD4 and CD83, whereas MHC class II, CD80, and CD86 were unchanged. For all HIV-1 strains tested, emigrated LCs were critical in establishing high levels of infection (0.1–1 μg HIV-1 p24 per milliliter) in cocultured autologous or allogeneic T cells. HIV-1Ba-L (an R5 HIV-1 strain) more efficiently infected LC–T cell cocultures when compared with HIV-1IIIB (an X4 HIV-1 strain). Interestingly, pretreatment of explants with either aminooxypentane-RANTES (regulated upon activation, normal T cell expressed and secreted) or cellulose acetate phthalate (potential microbicides) blocked HIV-1 infection of LCs and subsequent T cell infection in a dose-dependent manner. In summary, we document HIV-1 infection in single LCs after exposure to virus within epithelial tissue, demonstrate that relatively low numbers of these cells are capable of inducing high levels of infection in cocultured T cells, and provide a useful explant model for testing of agents designed to block sexual transmission of HIV-1. PMID:11085750

  18. Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells

    PubMed Central

    Fu, Xing; Du, Min

    2018-01-01

    Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPKα1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α1 in intestinal health. PMID:29643147

  19. Neutrophils and the Inflammatory Tissue Microenvironment in the Mucosa

    PubMed Central

    Campbell, Eric L.; Kao, Daniel J.; Colgan, Sean P.

    2016-01-01

    The interaction of neutrophils (PMNs) and epithelial cells are requisite lines of communication during mucosal inflammatory responses. Consequences of such interactions often determine endpoint organ function, and for this reason, much interest has developed around defining the constituents of the tissue microenvironment of inflammatory lesions. Physiologic in vitro and in vivo models have aided in discovery of components that define the basic inflammatory machinery that mold the inflammatory tissue microenvironment. Here, we will review the recent literature related to the contribution of PMNs to molding of the tissue microenvironment, with an emphasis on the gastrointestinal (GI) tract. We focus on endogenous pathways for promoting tissue homeostasis and the molecular determinants of neutrophil-epithelial cell interactions during ongoing inflammation. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation. PMID:27558331

  20. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells

    PubMed Central

    Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.

    2015-01-01

    The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387

  1. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    PubMed

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition. Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.

  2. Impact of Lactic Acid Bacteria on Dendritic Cells from Allergic Patients in an Experimental Model of Intestinal Epithelium

    PubMed Central

    Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël

    2007-01-01

    Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4+ T cells to produce more interferon-γ than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction. PMID:17497025

  3. Impact of lactic Acid bacteria on dendritic cells from allergic patients in an experimental model of intestinal epithelium.

    PubMed

    Ratajczak, Céline; Duez, Catherine; Grangette, Corinne; Pochard, Pierre; Tonnel, André-Bernard; Pestel, Joël

    2007-01-01

    Lactic acid bacteria (LAB) are Gram positive nonpathogenic commensal organisms present in human gastrointestinal tract. In vivo, LAB are separated from antigen-presenting cells such as dendritic cells (DC) by the intestinal epithelial barrier. In this study, the impact of one LAB strain (Lactobacillus casei ATCC393) on human monocyte-derived DC from allergic and healthy donors was assessed by using a polarized epithelium model. Confocal and flow cytometer analyses showed that immature DC efficiently captured FITC-labelled L. casei through the epithelial layer. After interaction with L. casei, DC acquired a partial maturation status (i.e., CD86 and CD54 increase) and increased their interleukin (IL)-10 and IL-12 production. Interestingly, after activation by L. casei in the presence of experimental epithelium, DC from allergic patients instructed autologous naïve CD4(+) T cells to produce more interferon-gamma than without the epithelium. Thus by modulating human DC reactivity, LAB and intestinal epithelium might modify T cell immune response and regulate the development of allergic reaction.

  4. The epithelial-mesenchymal transition generates cells with properties of stem cells.

    PubMed

    Mani, Sendurai A; Guo, Wenjun; Liao, Mai-Jing; Eaton, Elinor Ng; Ayyanan, Ayyakkannu; Zhou, Alicia Y; Brooks, Mary; Reinhard, Ferenc; Zhang, Cheng Cheng; Shipitsin, Michail; Campbell, Lauren L; Polyak, Kornelia; Brisken, Cathrin; Yang, Jing; Weinberg, Robert A

    2008-05-16

    The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.

  5. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    PubMed

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics. © 2015 The Society for Applied Microbiology.

  6. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    PubMed

    Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su

    2015-01-01

    Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  7. p63 expression defines a lethal subset of muscle-invasive bladder cancers.

    PubMed

    Choi, Woonyoung; Shah, Jay B; Tran, Mai; Svatek, Robert; Marquis, Lauren; Lee, I-Ling; Yu, Dasom; Adam, Liana; Wen, Sijin; Shen, Yu; Dinney, Colin; McConkey, David J; Siefker-Radtke, Arlene

    2012-01-01

    p63 is a member of the p53 family that has been implicated in maintenance of epithelial stem cell compartments. Previous studies demonstrated that p63 is downregulated in muscle-invasive bladder cancers, but the relationship between p63 expression and survival is not clear. We used real-time PCR to characterize p63 expression and several genes implicated in epithelial-to-mesenchymal transition (EMT) in human bladder cancer cell lines (n = 15) and primary tumors (n = 101). We correlated tumor marker expression with stage, disease-specific (DSS), and overall survival (OS). Expression of E-cadherin and p63 correlated directly with one another and inversely with expression of the mesenchymal markers Zeb-1, Zeb-2, and vimentin. Non-muscle-invasive (Ta and T1) bladder cancers uniformly expressed high levels of E-cadherin and p63 and low levels of the mesenchymal markers. Interestingly, a subset of muscle-invasive (T2-T4) tumors maintained high levels of E-cadherin and p63 expression. As expected, there was a strongly significant correlation between EMT marker expression and muscle invasion (p<0.0001). However, OS was shorter in patients with muscle-invasive tumors that retained p63 (p = 0.007). Our data confirm that molecular markers of EMT are elevated in muscle-invasive bladder cancers, but interestingly, retention of the "epithelial" marker p63 in muscle-invasive tumors is associated with a worse outcome.

  8. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  9. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    PubMed Central

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  10. Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95).

    PubMed

    Chen, Qiwei; Pandi, Sudha Priya Soundara; Kerrigan, Lauren; McElvaney, Noel G; Greene, Catherine M; Elborn, J Stuart; Taggart, Clifford C; Weldon, Sinéad

    2018-02-24

    Previous work suggests that apoptosis is dysfunctional in cystic fibrosis (CF) airways with conflicting results. We evaluated the relationship between dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and apoptosis in CF airway epithelial cells. Apoptosis and associated caspase activity were analysed in non-CF and CF tracheal and bronchial epithelial cell lines. Basal levels of apoptosis and activity of caspase-3 and caspase-8 were significantly increased in CF epithelial cells compared to controls, suggesting involvement of extrinsic apoptosis signalling, which is mediated by the activation of death receptors, such as Fas (CD95). Increased levels of Fas were observed in CF epithelial cells and bronchial brushings from CF patients compared to non-CF controls. Neutralisation of Fas significantly inhibited caspase-3 activity in CF epithelial cells compared to untreated cells. In addition, activation of Fas significantly increased caspase-3 activity and apoptosis in CF epithelial cells compared to control cells. Overall, these results suggest that CF airway epithelial cells are more sensitive to apoptosis via increased levels of Fas and subsequent activation of the Fas death receptor pathway, which may be associated with dysfunctional CFTR. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  11. Proliferation of epithelial cell rests, formation of apical cysts, and regression of apical cysts after periapical wound healing.

    PubMed

    Lin, Louis M; Huang, George T-J; Rosenberg, Paul A

    2007-08-01

    There is continuing controversy regarding the potential for inflammatory apical cysts to heal after nonsurgical endodontic therapy. Molecular cell biology may provide answers to a series of related questions. How are the epithelial cell rests of Malassez stimulated to proliferate? How are the apical cysts formed? How does the lining epithelium of apical cysts regress after endodontic therapy? Epithelial cell rests are induced to divide and proliferate by inflammatory mediators, proinflammatory cytokines, and growth factors released from host cells during periradicular inflammation. Quiescent epithelial cell rests can behave like restricted-potential stem cells if stimulated to proliferate. Formation of apical cysts is most likely caused by the merging of proliferating epithelial strands from all directions to form a three-dimensional ball mass. After endodontic therapy, epithelial cells in epithelial strands of periapical granulomas and the lining epithelium of apical cysts may stop proliferating because of a reduction in inflammatory mediators, proinflammatory cytokines, and growth factors. Epithelial cells will also regress because of activation of apoptosis or programmed cell death through deprivation of survival factors or by receiving death signals during periapical wound healing.

  12. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  13. Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.

    PubMed

    Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith

    2002-10-01

    To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.

  14. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development.

    PubMed

    Zhang, Jinglin; Upadhya, Dinesh; Lu, Lin; Reneker, Lixing W

    2015-01-01

    Fibroblast growth factors (FGFs) play important roles in many aspects of embryonic development. During eye development, the lens and corneal epithelium are derived from the same surface ectodermal tissue. FGF receptor (FGFR)-signaling is essential for lens cell differentiation and survival, but its role in corneal development has not been fully investigated. In this study, we examined the corneal defects in Fgfr2 conditional knockout mice in which Cre expression is activated at lens induction stage by Pax6 P0 promoter. The cornea in LeCre, Fgfr2(loxP/loxP) mice (referred as Fgfr2(CKO)) was analyzed to assess changes in cell proliferation, differentiation and survival. We found that Fgfr2(CKO) cornea was much thinner in epithelial and stromal layer when compared to WT cornea. At embryonic day 12.5-13.5 (E12.5-13.5) shortly after the lens vesicle detaches from the overlying surface ectoderm, cell proliferation (judged by labeling indices of Ki-67, BrdU and phospho-histone H3) was significantly reduced in corneal epithelium in Fgfr2(CKO) mice. At later stage, cell differentiation markers for corneal epithelium and underlying stromal mesenchyme, keratin-12 and keratocan respectively, were not expressed in Fgfr2(CKO) cornea. Furthermore, Pax6, a transcription factor essential for eye development, was not present in the Fgfr2(CKO) mutant corneal epithelial at E16.5 but was expressed normally at E12.5, suggesting that FGFR2-signaling is required for maintaining Pax6 expression in this tissue. Interestingly, the role of FGFR2 in corneal epithelial development is independent of ERK1/2-signaling. In contrast to the lens, FGFR2 is not required for cell survival in cornea. This study demonstrates for the first time that FGFR2 plays an essential role in controlling cell proliferation and differentiation, and maintaining Pax6 levels in corneal epithelium via ERK-independent pathways during embryonic development.

  15. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial cells participate in angiotensin II-mediated control of the glomerular filtration barrier.

  16. Pre-existing Epithelial Diversity in Normal Human Livers: A Tissue-tethered Cytometric Analysis in Portal/Periportal Epithelial Cells

    PubMed Central

    Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.

    2012-01-01

    Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208

  17. Langerhans cells from human oral epithelium are more effective at stimulating allogeneic T cells in vitro than Langerhans cells from skin.

    PubMed

    Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

    2004-06-01

    This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.

  18. Characterization of newly established bovine intestinal epithelial cell line.

    PubMed

    Miyazawa, Kohtaro; Hondo, Tetsuya; Kanaya, Takashi; Tanaka, Sachi; Takakura, Ikuro; Itani, Wataru; Rose, Michael T; Kitazawa, Haruki; Yamaguchi, Takahiro; Aso, Hisashi

    2010-01-01

    Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer's patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.

  19. Inflammatory caspases are critical for enhanced cell death in the target tissue of Sjögren’s syndrome prior to disease onset

    PubMed Central

    Bulosan, Marievic; Pauley, Kaleb; Yo, Kyumee; Chan, Edward K.; Katz, Joseph; Peck, Ammon B.; Cha, Seunghee

    2015-01-01

    To date, little is known why exocrine glands are subject to immune cell infiltrations in Sjögren’s syndrome (SjS). Studies with SjS-prone-C57BL/6.NOD-Aec1Aec2 mice showed altered glandular homeostasis in the submandibular glands (SMX) at 8 weeks prior to disease onset and suggested potential involvement of inflammatory caspases (caspases-11 and -1). To determine if inflammatory caspases are critical for the increased epithelial cell death prior to SjS-like disease, we investigated molecular events involving caspase-11/caspase-1 axis. Our results revealed concurrent up-regulation of caspase-11 in macrophages, STAT-1 activity, caspase-1 activity, and apoptotic epithelial cells in the SMX of C57BL/6.NOD-Aec1Aec2 at 8 weeks. Caspase-1, a critical factor for IL-1β and IL-18 secretion, resulted in elevated level of IL-18 in saliva. Interestingly, TUNEL-positive cells in the SMX of C57BL/6.NOD-Aec1Aec2 were not co-localized with caspase-11, indicating that caspase-11 functions in a non-cell autonomous manner. Increased apoptosis of a human salivary gland (HSG) cell line occurred only in the presence of LPS-and IFN-γ-stimulated human monocytic THP-1 cells, which was reversed when caspase-1 in THP-1 cells was targeted by siRNA. Taken together, our study discovered that inflammatory caspases are essential in promoting pro-inflammatory microenvironment and influencing increased epithelial cell death in the target tissues of SjS before disease onset. PMID:18936772

  20. Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis.

    PubMed

    Giampietri, Claudia; Petrungaro, Simonetta; Padula, Fabrizio; D'Alessio, Alessio; Marini, Elettra Sara; Facchiano, Antonio; Filippini, Antonio; Ziparo, Elio

    2012-11-01

    TNF-alpha levels in prostate cancer correlate with the extent of disease and are significantly elevated in the metastatic stage. TNF receptor superfamily controls two distinct signalling cascades, leading to opposite effects, i.e. apoptosis and survival; in prostate cancer TNF-alpha-mediated signalling induces cell survival and resistance to therapy. The apoptosis of prostate epithelial cancer cells LNCaP and PC3 was investigated upon treatment with the autophagy inhibitor 3-methyladenine and the autophagy inducer rapamycin, in combination with TNF-alpha. Cells were exposed to these molecules for 18, 24 and 48 h. Autophagy was assessed via LC3 Western blot analysis; propidium iodide and TUNEL stainings followed by flow cytometry or caspase-8 and caspase-3 activation assays were performed to evaluate apoptosis. TNF-alpha-induced apoptosis was potentiated by 3-methyladenine in the androgen-responsive LNCaP cells, whereas no effect was observed in the androgen-insensitive PC3 cells. Interestingly such pro-apoptosis effect in LNCaP cells was associated with reduced c-Flip levels through proteasomal degradation via increased reactive oxygen species production and p38 activation; such c-Flip reduction was reversed in the presence of either the proteasome inhibitor MG132 or the reactive oxygen species scavenger N-acetyl-cysteine. Conversely in PC3 but not in LNCaP cells, rapamycin stimulated TNF-alpha-dependent apoptosis; such effect was associated with reduced c-Flip promoter activity and FoxO3a activation. We conclude that TNF-alpha-induced apoptosis may be potentiated, in prostate cancer epithelial cells, through autophagy modulators. Increased sensitivity to TNF-alpha-dependent apoptosis correlates with reduced c-Flip levels which are consequent to a post-transcriptional and a transcriptional mechanism in LNCaP and PC3 cells respectively.

  1. Epithelial-to-mesenchymal transition in penile squamous cell carcinoma.

    PubMed

    Masferrer, Emili; Ferrándiz-Pulido, Carla; Masferrer-Niubò, Magalí; Rodríguez-Rodríguez, Alfredo; Gil, Inmaculada; Pont, Antoni; Servitje, Octavi; García de Herreros, Antonio; Lloveras, Belen; García-Patos, Vicenç; Pujol, Ramon M; Toll, Agustí; Hernández-Muñoz, Inmaculada

    2015-02-01

    Epithelial-to-mesenchymal transition is a phenomenon in epithelial tumors that involves loss of intercellular adhesion, mesenchymal phenotype acquisition and enhanced migratory potential. While the epithelial-to-mesenchymal transition process has been extensively linked to metastatic progression of squamous cell carcinoma, studies of the role of epithelial-to-mesenchymal transition in squamous cell carcinoma containing high risk human papillomaviruses are scarce. Moreover, to our knowledge epithelial-to-mesenchymal transition involvement in human penile squamous cell carcinoma, which can arise through transforming HPV infections or independently of HPV, has not been investigated. We evaluated the presence of epithelial-to-mesenchymal transition markers and their relationship to HPV in penile squamous cell carcinoma. We assessed the expression of E-cadherin, vimentin and the epithelial-to-mesenchymal transition related transcription factors Twist, Zeb1 and Snail by immunohistochemical staining in 64 penile squamous cell carcinoma cases. HPV was detected by polymerase chain reaction amplification. Simultaneous loss of membranous E-cadherin expression and vimentin over expression were noted in 43.5% of penile squamous cell carcinoma cases. HPV was significantly associated with loss of membranous E-cadherin but not with epithelial-to-mesenchymal transition. Recurrence and mortality rates were significantly higher in cases showing epithelial-to-mesenchymal transition. Our findings indicate that in penile squamous cell carcinoma epithelial-to-mesenchymal transition is associated with poor prognosis but not with the presence of HPV. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    PubMed

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Whole cigarette smoke increased the expression of TLRs, HBDs, and proinflammory cytokines by human gingival epithelial cells through different signaling pathways.

    PubMed

    Semlali, Abdelhabib; Witoled, Chmielewski; Alanazi, Mohammed; Rouabhia, Mahmoud

    2012-01-01

    The gingival epithelium is becoming known as a regulator of the oral innate immune responses to a variety of insults such as bacteria and chemicals, including those chemicals found in cigarette smoke. We investigated the effects of whole cigarette smoke on cell-surface-expressed Toll-like receptors (TLR)-2, -4 and -6, human β-defensin (HBD) and proinflammatory cytokine expression and production in primary human gingival epithelial cells. Whole cigarette smoke was shown to increase TLR2, TLR4 and TLR6 expression. Cigarette smoke led to ERK1/2, p38 and JNK phosphorylation in conjunction with nuclear factor-κB (NFκB) translocation into the nucleus. TLR expression following cigarette smoke exposure was down regulated by the use of ERK1/2, p38, JNK MAP kinases, and NFκB inhibitors, suggesting the involvement of these signaling pathways in the cellular response against cigarette smoke. Cigarette smoke also promoted HBD2, HBD3, IL-1β, and IL-6 expression through the ERK1/2 and NFκB pathways. Interestingly, the modulation of TLR, HBD, and cytokine expression was maintained long after the gingival epithelial cells were exposed to smoke. By promoting TLR, HBDs, and proinflammatory cytokine expression and production, cigarette smoke may contribute to innate immunity dysregulation, which may have a negative effect on human health.

  4. Whole Cigarette Smoke Increased the Expression of TLRs, HBDs, and Proinflammory Cytokines by Human Gingival Epithelial Cells through Different Signaling Pathways

    PubMed Central

    Semlali, Abdelhabib; Witoled, Chmielewski; Alanazi, Mohammed; Rouabhia, Mahmoud

    2012-01-01

    The gingival epithelium is becoming known as a regulator of the oral innate immune responses to a variety of insults such as bacteria and chemicals, including those chemicals found in cigarette smoke. We investigated the effects of whole cigarette smoke on cell-surface-expressed Toll-like receptors (TLR)-2, −4 and −6, human β-defensin (HBD) and proinflammatory cytokine expression and production in primary human gingival epithelial cells. Whole cigarette smoke was shown to increase TLR2, TLR4 and TLR6 expression. Cigarette smoke led to ERK1/2, p38 and JNK phosphorylation in conjunction with nuclear factor-κB (NFκB) translocation into the nucleus. TLR expression following cigarette smoke exposure was down regulated by the use of ERK1/2, p38, JNK MAP kinases, and NFκB inhibitors, suggesting the involvement of these signaling pathways in the cellular response against cigarette smoke. Cigarette smoke also promoted HBD2, HBD3, IL-1β, and IL-6 expression through the ERK1/2 and NFκB pathways. Interestingly, the modulation of TLR, HBD, and cytokine expression was maintained long after the gingival epithelial cells were exposed to smoke. By promoting TLR, HBDs, and proinflammatory cytokine expression and production, cigarette smoke may contribute to innate immunity dysregulation, which may have a negative effect on human health. PMID:23300722

  5. Differential effect of TGFβ on the proteome of cancer associated fibroblasts and cancer epithelial cells in a co-culture approach - a short report.

    PubMed

    Koczorowska, Maria Magdalena; Friedemann, Charlotte; Geiger, Klaus; Follo, Marie; Biniossek, Martin Lothar; Schilling, Oliver

    2017-12-01

    Solid tumors contain various components that together form the tumor microenvironment. Cancer associated fibroblasts (CAFs) are capable of secreting and responding to signaling molecules and growth factors. Due to their role in tumor development, CAFs are considered as potential therapeutic targets. A prominent tumor-associated signaling molecule is transforming growth factor β (TGFβ), an inducer of epithelial-to-mesenchymal transition (EMT). The differential action of TGFβ on CAFs and ETCs (epithelial tumor cells) has recently gained interest. Here, we aimed to investigate the effects of TGFβ on CAFs and ETCs at the proteomic level. We established a 2D co-culture system of differentially fluorescently labeled CAFs and ETCs and stimulated this co-culture system with TGFβ. The respective cell types were separated using FACS and subjected to quantitative analyses of individual proteomes using mass spectrometry. We found that TGFβ treatment had a strong impact on the proteome composition of CAFs, whereas ETCs responded only marginally to TGFβ. Quantitative proteomic analyses of the different cell types revealed up-regulation of extracellular matrix (ECM) proteins in TGFβ treated CAFs. In addition, we found that the TGFβ treated CAFs exhibited increased N-cadherin levels. From our data we conclude that CAFs respond to TGFβ treatment by changing their proteome composition, while ETCs appear to be rather resilient.

  6. Highly concentrated collagen solutions leading to transparent scaffolds of controlled three-dimensional organizations for corneal epithelial cell colonization.

    PubMed

    Tidu, Aurélien; Ghoubay-Benallaoua, Djida; Teulon, Claire; Asnacios, Sophie; Grieve, Kate; Portier, François; Schanne-Klein, Marie-Claire; Borderie, Vincent; Mosser, Gervaise

    2018-05-29

    This study aimed at controlling both the organization and the transparency of dense collagen scaffolds making use of the lyotropic mesogen properties of collagen. Cholesteric or plywood-like liquid crystal phases were achieved using mixtures of acetic and hydrochloric acids as solvents. The critical pH at which the switch between the two phases occurred was around pH = 3. The use of the two acids led to fibrillated collagen I scaffolds, whose visual aspect ranged from opaque to transparent. Rheological investigations showed that viscoelastic properties of the plywood-like solutions were optimized for molding due to faster recovery. They also confirmed the correlation between the elastic modulus and the diameter of collagen fibrils obtained after fibrillogenesis under ammonia vapor. Human corneal epithelial cells, grown from donor limbal explants, were cultured both on transparent plywood-like matrices and on human amniotic membranes for 14 days. The development of corneal epithelium and the preservation of epithelial stem cells were checked by optical microscopy, colony formation assay, immuno-fluorescence and quantitative polymerase chain reaction. A higher level of amplification of limbal stem cells was obtained with collagen matrices compared with amniotic membranes, showing the high biocompatibility of our scaffolds. We therefore suggest that collagen solutions presenting both plywood-like organization and transparency might be of interest for biomedical applications in ophthalmology.

  7. Influenza A Virus-Induced Expression of a GalNAc Transferase, GALNT3, via MicroRNAs Is Required for Enhanced Viral Replication.

    PubMed

    Nakamura, Shoko; Horie, Masayuki; Daidoji, Tomo; Honda, Tomoyuki; Yasugi, Mayo; Kuno, Atsushi; Komori, Toshihisa; Okuzaki, Daisuke; Narimatsu, Hisashi; Nakaya, Takaaki; Tomonaga, Keizo

    2016-02-15

    Influenza A virus (IAV) affects the upper and lower respiratory tracts and rapidly induces the expression of mucins, which are common O-glycosylated proteins, on the epithelial surfaces of the respiratory tract. Although mucin production is associated with the inhibition of virus transmission as well as characteristic clinical symptoms, little is known regarding how mucins are produced on the surfaces of respiratory epithelial cells and how they affect IAV replication. In this study, we found that two microRNAs (miRNAs), miR-17-3p and miR-221, which target GalNAc transferase 3 (GALNT3) mRNA, are rapidly downregulated in human alveolar basal epithelial cells during the early stage of IAV infection. We demonstrated that the expression of GALNT3 mRNA is upregulated in an IAV replication-dependent fashion and leads to mucin production in bronchial epithelial cells. A lectin microarray analysis revealed that the stable expression of GALNT3 by human alveolar basal epithelial cells induces mucin-type O-glycosylation modifications similar to those present in IAV-infected cells, suggesting that GALNT3 promotes mucin-type O-linked glycosylation in IAV-infected cells. Notably, analyses using short interfering RNAs and miRNA mimics showed that GALNT3 knockdown significantly reduces IAV replication. Furthermore, IAV replication was markedly decreased in embryonic fibroblast cells obtained from galnt3-knockout mice. Interestingly, IAV-infected galnt3-knockout mice exhibited high mortality and severe pathological alterations in the lungs compared to those of wild-type mice. Our results demonstrate not only the molecular mechanism underlying rapid mucin production during IAV infection but also the contribution of O-linked glycosylation to the replication and propagation of IAV in lung cells. Viral infections that affect the upper or lower respiratory tracts, such as IAV, rapidly induce mucin production on the epithelial surfaces of respiratory cells. However, the details of how mucin-type O-linked glycosylation is initiated by IAV infection and how mucin production affects viral replication have not yet been elucidated. In this study, we show that levels of two miRNAs that target the UDP-GalNAc transferase GALNT3 are markedly decreased during the early stage of IAV infection, resulting in the upregulation of GALNT3 mRNA. We also demonstrate that the expression of GALNT3 initiates mucin production and affects IAV replication in infected cells. This is the first report demonstrating the mechanism underlying the miRNA-mediated initiation of mucin-type O-glycosylation in IAV-infected cells and its role in viral replication. Our results have broad implications for understanding IAV replication and suggest a strategy for the development of novel anti-influenza approaches. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Influenza A Virus-Induced Expression of a GalNAc Transferase, GALNT3, via MicroRNAs Is Required for Enhanced Viral Replication

    PubMed Central

    Nakamura, Shoko; Horie, Masayuki; Daidoji, Tomo; Honda, Tomoyuki; Yasugi, Mayo; Kuno, Atsushi; Komori, Toshihisa; Okuzaki, Daisuke; Narimatsu, Hisashi; Nakaya, Takaaki

    2015-01-01

    ABSTRACT Influenza A virus (IAV) affects the upper and lower respiratory tracts and rapidly induces the expression of mucins, which are common O-glycosylated proteins, on the epithelial surfaces of the respiratory tract. Although mucin production is associated with the inhibition of virus transmission as well as characteristic clinical symptoms, little is known regarding how mucins are produced on the surfaces of respiratory epithelial cells and how they affect IAV replication. In this study, we found that two microRNAs (miRNAs), miR-17-3p and miR-221, which target GalNAc transferase 3 (GALNT3) mRNA, are rapidly downregulated in human alveolar basal epithelial cells during the early stage of IAV infection. We demonstrated that the expression of GALNT3 mRNA is upregulated in an IAV replication-dependent fashion and leads to mucin production in bronchial epithelial cells. A lectin microarray analysis revealed that the stable expression of GALNT3 by human alveolar basal epithelial cells induces mucin-type O-glycosylation modifications similar to those present in IAV-infected cells, suggesting that GALNT3 promotes mucin-type O-linked glycosylation in IAV-infected cells. Notably, analyses using short interfering RNAs and miRNA mimics showed that GALNT3 knockdown significantly reduces IAV replication. Furthermore, IAV replication was markedly decreased in embryonic fibroblast cells obtained from galnt3-knockout mice. Interestingly, IAV-infected galnt3-knockout mice exhibited high mortality and severe pathological alterations in the lungs compared to those of wild-type mice. Our results demonstrate not only the molecular mechanism underlying rapid mucin production during IAV infection but also the contribution of O-linked glycosylation to the replication and propagation of IAV in lung cells. IMPORTANCE Viral infections that affect the upper or lower respiratory tracts, such as IAV, rapidly induce mucin production on the epithelial surfaces of respiratory cells. However, the details of how mucin-type O-linked glycosylation is initiated by IAV infection and how mucin production affects viral replication have not yet been elucidated. In this study, we show that levels of two miRNAs that target the UDP-GalNAc transferase GALNT3 are markedly decreased during the early stage of IAV infection, resulting in the upregulation of GALNT3 mRNA. We also demonstrate that the expression of GALNT3 initiates mucin production and affects IAV replication in infected cells. This is the first report demonstrating the mechanism underlying the miRNA-mediated initiation of mucin-type O-glycosylation in IAV-infected cells and its role in viral replication. Our results have broad implications for understanding IAV replication and suggest a strategy for the development of novel anti-influenza approaches. PMID:26637460

  9. β2 adrenergic agonist suppresses eosinophil-induced epithelial-to-mesenchymal transition of bronchial epithelial cells.

    PubMed

    Kainuma, Keigo; Kobayashi, Tetsu; D'Alessandro-Gabazza, Corina N; Toda, Masaaki; Yasuma, Taro; Nishihama, Kota; Fujimoto, Hajime; Kuwabara, Yu; Hosoki, Koa; Nagao, Mizuho; Fujisawa, Takao; Gabazza, Esteban C

    2017-05-02

    Epithelial-mesenchymal transition is currently recognized as an important mechanism for the increased number of myofibroblasts in cancer and fibrotic diseases. We have already reported that epithelial-mesenchymal transition is involved in airway remodeling induced by eosinophils. Procaterol is a selective and full β 2 adrenergic agonist that is used as a rescue of asthmatic attack inhaler form and orally as a controller. In this study, we evaluated whether procaterol can suppress epithelial-mesenchymal transition of airway epithelial cells induced by eosinophils. Epithelial-mesenchymal transition was assessed using a co-culture system of human bronchial epithelial cells and primary human eosinophils or an eosinophilic leukemia cell line. Procaterol significantly inhibited co-culture associated morphological changes of bronchial epithelial cells, decreased the expression of vimentin, and increased the expression of E-cadherin compared to control. Butoxamine, a specific β 2 -adrenergic antagonist, significantly blocked changes induced by procaterol. In addition, procaterol inhibited the expression of adhesion molecules induced during the interaction between eosinophils and bronchial epithelial cells, suggesting the involvement of adhesion molecules in the process of epithelial-mesenchymal transition. Forskolin, a cyclic adenosine monophosphate-promoting agent, exhibits similar inhibitory activity of procaterol. Overall, these observations support the beneficial effect of procaterol on airway remodeling frequently associated with chronic obstructive pulmonary diseases.

  10. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    PubMed Central

    Ando, Seijitsu; Otani, Hitomi; Yagi, Yasuhiro; Kawai, Kenzo; Araki, Hiromasa; Fukuhara, Shirou; Inagaki, Chiyoko

    2007-01-01

    Background Proteinase-activated receptors (PARs; PAR1–4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells). Results Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation. PMID:17433115

  11. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    PubMed

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMVmore » by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.« less

  13. Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion

    PubMed Central

    Roeder, Sebastian S.; Barnes, Taylor J.; Lee, Jonathan S.; Kato, India; Eng, Diana G.; Kaverina, Natalya V.; Sunseri, Maria W.; Daniel, Christoph; Amann, Kerstin; Pippin, Jeffrey W.; Shankland, Stuart J.

    2017-01-01

    The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wildtype mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain) and collagen IV staining were lower in CD44 knockout compared with wild type mice with FSGS. Parietal epithelial cells had lower migration from Bowman’s capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cells migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44 overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cells phenotype. PMID:27998643

  14. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells.

    PubMed

    Pan, J-L; Yuan, D-Z; Zhao, Y-B; Nie, L; Lei, Y; Liu, M; Long, Y; Zhang, J-H; Blok, L J; Burger, C W; Yue, L-M

    2017-03-01

    This study aimed to understand the role of miR-133a in progesterone actions, explore the regulative mechanism of the progesterone receptor, and investigate the effects of miR-133a on the progesterone-inhibited proliferation of mouse endometrial epithelial cells. The expression of miR-133a induced by progesterone was detected by quantitative real-time PCR both in vivo and in vitro. Ishikawa subcell lines stably transfected with progesterone receptor subtypes were used to determine the receptor mechanism of progesterone inducing miR-133a. Specific miR-133a mimics or inhibitors were transfected into mouse uteri and primary cultured endometrial epithelial cells to overexpress or downregulate the miR-133a. The roles of miR-133a in the cell cycle and proliferation of endometrial epithelial cells were analysed by flow cytometry and Edu incorporation analysis. The protein levels of cyclinD2 in uterine tissue sections and primary cultured endometrial epithelial cells were determined by immunohistochemistry and Western blot analysis. Progesterone could induce miR-133a expression in a PRB-dependent manner in endometrial epithelial cells. miR-133a inhibited endometrial epithelial cell proliferation by arresting cell cycle at the G 1 -S transition. Moreover, miR-133a acted as an inhibitor in downregulating cyclinD2 in endometrial epithelial cells. We showed for the first time that progesterone-induced miR-133a inhibited the proliferation of endometrial epithelial cells by downregulating cyclinD2. Our research indicated an important mechanism for progesterone inhibiting the proliferation of endometrial epithelial cells by inducing special miRNAs to inhibit positive regulatory proteins in the cell cycle. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Epithelial cells as alternative human biomatrices for comet assay.

    PubMed

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  16. Epithelial cells as alternative human biomatrices for comet assay

    PubMed Central

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  17. M2 polarization of macrophages facilitates arsenic-induced cell transformation of lung epithelial cells

    PubMed Central

    Li, Hui; Dai, Lu; Frank, Jacqueline A.; Peng, Shaojun; Wang, Siying; Chen, Gang

    2017-01-01

    The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages. PMID:28423485

  18. MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells.

    PubMed

    Sánchez-Cid, Lourdes; Pons, Mònica; Lozano, Juan José; Rubio, Nuria; Guerra-Rebollo, Marta; Soriano, Aroa; Paris-Coderch, Laia; Segura, Miquel F; Fueyo, Raquel; Arguimbau, Judit; Zodda, Erika; Bermudo, Raquel; Alonso, Immaculada; Caparrós, Xavier; Cascante, Marta; Rafii, Arash; Kang, Yibin; Martínez-Balbás, Marian; Weiss, Stephen J; Blanco, Jerónimo; Muñoz, Montserrat; Fernández, Pedro L; Thomson, Timothy M

    2017-10-13

    MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo . MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

  19. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    PubMed

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Objective automated quantification of fluorescence signal in histological sections of rat lens.

    PubMed

    Talebizadeh, Nooshin; Hagström, Nanna Zhou; Yu, Zhaohua; Kronschläger, Martin; Söderberg, Per; Wählby, Carolina

    2017-08-01

    Visual quantification and classification of fluorescent signals is the gold standard in microscopy. The purpose of this study was to develop an automated method to delineate cells and to quantify expression of fluorescent signal of biomarkers in each nucleus and cytoplasm of lens epithelial cells in a histological section. A region of interest representing the lens epithelium was manually demarcated in each input image. Thereafter, individual cell nuclei within the region of interest were automatically delineated based on watershed segmentation and thresholding with an algorithm developed in Matlab™. Fluorescence signal was quantified within nuclei, cytoplasms and juxtaposed backgrounds. The classification of cells as labelled or not labelled was based on comparison of the fluorescence signal within cells with local background. The classification rule was thereafter optimized as compared with visual classification of a limited dataset. The performance of the automated classification was evaluated by asking 11 independent blinded observers to classify all cells (n = 395) in one lens image. Time consumed by the automatic algorithm and visual classification of cells was recorded. On an average, 77% of the cells were correctly classified as compared with the majority vote of the visual observers. The average agreement among visual observers was 83%. However, variation among visual observers was high, and agreement between two visual observers was as low as 71% in the worst case. Automated classification was on average 10 times faster than visual scoring. The presented method enables objective and fast detection of lens epithelial cells and quantification of expression of fluorescent signal with an accuracy comparable with the variability among visual observers. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  1. Variability of interferon-λ induction and antiviral activity in Nipah virus infected differentiated human bronchial epithelial cells of two human donors.

    PubMed

    Sauerhering, Lucie; Müller, Helena; Behner, Laura; Elvert, Mareike; Fehling, Sarah Katharina; Strecker, Thomas; Maisner, Andrea

    2017-10-01

    Highly pathogenic Nipah virus (NiV) generally causes severe encephalitis in humans. Respiratory symptoms are infrequently observed, likely reflecting variations in infection kinetics in human airways. Supporting this idea, we recently identified individual differences in NiV replication kinetics in cultured airway epithelia from different human donors. As type III interferons (IFN-λ) represent major players in the defence mechanism against viral infection of the respiratory mucosa, we studied IFN-λ induction and antiviral activity in NiV-infected primary differentiated human bronchial epithelial cells (HBEpCs) cultured under air-liquid interface conditions. Our studies revealed that IFN-λ was upregulated in airway epithelia upon NiV infection. We also show that IFN-λ pretreatment efficiently inhibited NiV replication. Interestingly, the antiviral activity of IFN-λ varied in HBEpCs from two different donors. Increased sensitivity to IFN-λ was associated with higher expression levels of IFN-λ receptors, enhanced phosphorylation of STAT1, as well as enhanced induction of interferon-stimulated gene expression. These findings suggest that individual variations in IFN-λ receptor expression affecting IFN responsiveness can play a functional role for NiV replication kinetics in human respiratory epithelial cells of different donors.

  2. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.

    PubMed

    Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.

  3. The microtubule end-binding protein EB2 is a central regulator of microtubule reorganisation in apico-basal epithelial differentiation.

    PubMed

    Goldspink, Deborah A; Gadsby, Jonathan R; Bellett, Gemma; Keynton, Jennifer; Tyrrell, Benjamin J; Lund, Elizabeth K; Powell, Penny P; Thomas, Paul; Mogensen, Mette M

    2013-09-01

    Microtubule end-binding (EB) proteins influence microtubule dynamic instability, a process that is essential for microtubule reorganisation during apico-basal epithelial differentiation. Here, we establish for the first time that expression of EB2, but not that of EB1, is crucial for initial microtubule reorganisation during apico-basal epithelial differentiation, and that EB2 downregulation promotes bundle formation. EB2 siRNA knockdown during early stages of apico-basal differentiation prevented microtubule reorganisation, whereas its downregulation at later stages promoted microtubule stability and bundle formation. Interestingly, although EB1 is not essential for microtubule reorganisation, its knockdown prevented apico-basal bundle formation and epithelial elongation. siRNA depletion of EB2 in undifferentiated epithelial cells induced the formation of straight, less dynamic microtubules with EB1 and ACF7 lattice association and co-alignment with actin filaments, a phenotype that could be rescued by inhibition with formin. Importantly, in situ inner ear and intestinal crypt epithelial tissue revealed direct correlations between a low level of EB2 expression and the presence of apico-basal microtubule bundles, which were absent where EB2 was elevated. EB2 is evidently important for initial microtubule reorganisation during epithelial polarisation, whereas its downregulation facilitates EB1 and ACF7 microtubule lattice association, microtubule-actin filament co-alignment and bundle formation. The spatiotemporal expression of EB2 thus dramatically influences microtubule organisation, EB1 and ACF7 deployment and epithelial differentiation.

  4. Soluble Proteins Produced by Probiotic Bacteria Regulate Intestinal Epithelial Cell Survival and Growth

    PubMed Central

    YAN, FANG; CAO, HANWEI; COVER, TIMOTHY L.; WHITEHEAD, ROBERT; WASHINGTON, M. KAY; POLK, D. BRENT

    2011-01-01

    Background & Aims Increased inflammatory cytokine levels and intestinal epithelial cell apoptosis leading to disruption of epithelial integrity are major pathologic factors in inflammatory bowel diseases. The probiotic bacterium Lactobacillus rhamnosus GG (LGG) and factors recovered from LGG broth culture supernatant (LGG-s) prevent cytokine-induced apoptosis in human and mouse intestinal epithelial cells by regulating signaling pathways. Here, we purify and characterize 2 secreted LGG proteins that regulate intestinal epithelial cell antiapoptotic and proliferation responses. Methods LGG proteins were purified from LGG-s, analyzed, and used to generate polyclonal antibodies for immunodepletion of respective proteins from LGG-conditioned cell culture media (CM). Mouse colon epithelial cells and cultured colon explants were treated with purified proteins in the absence or presence of tumor necrosis factor (TNF). Akt activation, proliferation, tissue injury, apoptosis, and caspase-3 activation were determined. Results We purified 2 novel proteins, p75 (75 kilodaltons) and p40 (40 kilodaltons), from LGG-s. Each of these purified protein preparations activated Akt, inhibited cytokine-induced epithelial cell apoptosis, and promoted cell growth in human and mouse colon epithelial cells and cultured mouse colon explants. TNF-induced colon epithelial damage was significantly reduced by p75 and p40. Immunodepletion of p75 and p40 from LGG-CM reversed LGG-CM activation of Akt and its inhibitory effects on cytokine-induced apoptosis and loss of intestinal epithelial cells. Conclusions p75 and p40 are the first probiotic bacterial proteins demonstrated to promote intestinal epithelial homeostasis through specific signaling pathways. These findings suggest that probiotic bacterial components may be useful for preventing cytokine-mediated gastrointestinal diseases. PMID:17258729

  5. Impaired airway epithelial cell responses from children with asthma to rhinoviral infection.

    PubMed

    Kicic, A; Stevens, P T; Sutanto, E N; Kicic-Starcevich, E; Ling, K-M; Looi, K; Martinovich, K M; Garratt, L W; Iosifidis, T; Shaw, N C; Buckley, A G; Rigby, P J; Lannigan, F J; Knight, D A; Stick, S M

    2016-11-01

    The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood. To explore the relationship between apoptotic, innate immune and inflammatory responses to HRV infection in airway epithelial cells (AECs) obtained from children with asthma and non-asthmatic controls. In addition, to test the hypothesis that aberrant repair of epithelium from asthmatics is further dysregulated by HRV infection. Airway epithelial brushings were obtained from 39 asthmatic and 36 non-asthmatic children. Primary cultures were established and exposed to HRV1b and HRV14. Virus receptor number, virus replication and progeny release were determined. Epithelial cell apoptosis, IFN-β production, inflammatory cytokine release and epithelial wound repair and proliferation were also measured. Virus proliferation and release was greater in airway epithelial cells from asthmatics but this was not related to the number of virus receptors. In epithelial cells from asthmatic children, virus infection dampened apoptosis, reduced IFN-β production and increased inflammatory cytokine production. HRV1b infection also inhibited wound repair capacity of epithelial cells isolated from non-asthmatic children and exaggerated the defective repair response seen in epithelial cells from asthmatics. Addition of IFN-β restored apoptosis, suppressed virus replication and improved repair of airway epithelial cells from asthmatics but did not reduce inflammatory cytokine production. Collectively, HRV infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children. The delayed repair is further exaggerated in cells from asthmatic children and is only partially reversed by exogenous IFN-β. © 2016 John Wiley & Sons Ltd.

  6. Precocious development of lectin (Ulex europaeus agglutinin I) receptors in dome epithelium of gut-associated lymphoid tissues.

    PubMed

    Roy, M J

    1987-06-01

    Dome epithelium (DE), the tissue covering lymphoid domes of gut-associated lymphoid tissues, was examined in both adult and neonatal rabbit appendix or sacculus rotundus to determine if dome epithelial cells matured earlier than epithelial cells covering adjacent villi. The localization of well-differentiated epithelial cells in rabbit gut-associated lymphoid tissues (GALT) was accomplished histochemically by use of molecular probes: fluorescein isothiocyanate or horseradish peroxidase conjugates of Ulex europaeus agglutinin I (UEA), a lectin specific for terminal L-fucose molecules on certain glycoconjugates. The villus epithelial cells of newborn and 2-, 5-, or 10-day-old rabbits did not bind UEA, but between the twelfth and fifteenth days of postnatal life, UEA receptors were expressed by well-differentiated villus epithelial cells. In contrast to villus epithelium, DE in appendix and sacculus rotundus of neonatal rabbits expressed UEA receptors two days after birth, a feature that distinguished the DE of neonatal GALT for the next two weeks. In adult rabbits, UEA receptors were associated with dome epithelial cells extending from the mouths of glandular crypts to the upper domes; in contrast to the domes, UEA receptors were only present on well-differentiated epithelial cells at the villus tips. Results suggested that in neonatal rabbits most dome epithelial cells developed UEA receptors shortly after birth, reflecting precocious development of DE as compared to villus epithelium. In adult rabbit dome epithelium UEA receptors appeared on dome epithelial cells as they left the glandular crypts, representing accelerated epithelial maturation.

  7. Characterization of kidney epithelial cells from the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Sweat JMDunigan, D D; Wright, S D

    2001-06-01

    The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.

  8. Concurrent Fowlpox and Candidiasis Diseases in Backyard Chickens with Unusual Pox Lesions in the Bursa of Fabricius.

    PubMed

    Ogasawara, Fusae; Yamamoto, Yu; Sato, Yasuo; Fukunari, Kazuhiro; Murata, Ken-Ichi; Yaegashi, Gakuji; Goto, Makiko; Murakami, Ryukoh

    2016-09-01

    Concurrent fowlpox and candidiasis diseases occurred in a backyard chicken flock. Four deceased chickens (one Nagoya breed and three white silkie chickens) were examined for diagnosis. At necropsy, white curd-like plaques were observed in the crop. Fungal elements that stained positive for Candida albicans with immunohistochemistry were distributed throughout the tongue, choanal mucosa, esophagus, and crop. Typical fowlpox lesions, composed of proliferating epithelial cells with ballooning degeneration and viral intracytoplasmic inclusions, were observed in the conjunctiva, nasal mucosa, and skin around the cloaca. Interestingly, hyperplastic interfollicular epithelium with rare virus inclusions was observed in the bursa of Fabricius (BF). Some bursal follicles were replaced by proliferating epithelial cells. These proliferating cells immunohistochemically stained positive for cytokeratin. PCR and subsequent genetic sequencing detected the C. albicans gene in the crop, and fowlpox virus genes in the BF. These results indicate that this outbreak was a rare presentation of fowlpox in spontaneously infected chickens, with unusual pox lesions in the BF.

  9. Neuropilins: expression and roles in the epithelium

    PubMed Central

    Wild, Jonathan R L; Staton, Carolyn A; Chapple, Keith; Corfe, Bernard M

    2012-01-01

    Summary Initially found expressed in neuronal and then later in endothelial cells, it is well established that the transmembrane glycoproteins neuropilin-1 (NRP1) and neuropilin-2 (NRP2) play essential roles in axonal growth and guidance and in physiological and pathological angiogenesis. Neuropilin expression and function in epithelial cells has received little attention when compared with neuronal and endothelial cells. Overexpression of NRPs is shown to enhance growth, correlate with invasion and is associated with poor prognosis in various tumour types, especially those of epithelial origin. The contribution of NRP and its ligands to tumour growth and metastasis has spurred a strong interest in NRPs as novel chemotherapy drug targets. Given NRP’s role as a multifunctional co-receptor with an ability to bind with disparate ligand families, this has sparked new areas of research implicating NRPs in diverse biological functions. Here, we review the growing body of research demonstrating NRP expression and role in the normal and neoplastic epithelium. PMID:22414290

  10. The Spectrin cytoskeleton regulates the Hippo signalling pathway.

    PubMed

    Fletcher, Georgina C; Elbediwy, Ahmed; Khanal, Ichha; Ribeiro, Paulo S; Tapon, Nic; Thompson, Barry J

    2015-04-01

    The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Epstein-Barr Virus (EBV)-associated Gastric Carcinoma

    PubMed Central

    Iizasa, Hisashi; Nanbo, Asuka; Nishikawa, Jun; Jinushi, Masahisa; Yoshiyama, Hironori

    2012-01-01

    The ubiquitous Epstein-Barr virus (EBV) is associated with several human tumors, which include lymphoid and epithelial malignancies. It is known that EBV persistently infects the memory B cell pool of healthy individuals by activating growth and survival signaling pathways that can contribute to B cell lymphomagenesis. Although the monoclonal proliferation of EBV-infected cells can be observed in epithelial tumors, such as nasopharyngeal carcinoma and EBV-associated gastric carcinoma, the precise role of EBV in the carcinogenic progress is not fully understood. This review features characteristics and current understanding of EBV-associated gastric carcinoma. EBV-associated gastric carcinoma comprises almost 10% of all gastric carcinoma cases and expresses restricted EBV latent genes (Latency I). Firstly, definition, epidemiology, and clinical features are discussed. Then, the route of infection and carcinogenic role of viral genes are presented. Of particular interest, the association with frequent genomic CpG methylation and role of miRNA for carcinogenesis are topically discussed. Finally, the possibility of therapies targeting EBV-associated gastric carcinoma is proposed. PMID:23342366

  12. Cellular and molecular mechanisms of tooth root development

    PubMed Central

    Li, Jingyuan; Parada, Carolina

    2017-01-01

    ABSTRACT The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans. PMID:28143844

  13. Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability.

    PubMed

    Looi, Kevin; Troy, Niamh M; Garratt, Luke W; Iosifidis, Thomas; Bosco, Anthony; Buckley, Alysia G; Ling, Kak-Ming; Martinovich, Kelly M; Kicic-Starcevich, Elizabeth; Shaw, Nicole C; Sutanto, Erika N; Zosky, Graeme R; Rigby, Paul J; Larcombe, Alexander N; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M

    2016-10-11

    No studies have assessed the effects of human rhinovirus (HRV) infection on epithelial tight junctions (TJs) and resultant barrier function. To correlate viral infection with TJ disassembly, epithelial barrier integrity, and function. Human airway epithelial cells were infected with HRV minor serotype 1B (HRV-1B) at various 50% tissue culture infectivity doses (TCID 50 ) over 72 hours. HRV replication was assessed by quantitative-polymerase chain reaction (qPCR) while cell viability and apoptosis were assessed by proliferation and apoptotic assays, respectively. Protein expression of claudin-1, occludin, and zonula occludens protein-1 (ZO-1) was assessed using In-Cell™ Western assays. Transepithelial permeability assays were performed to assess effects on barrier functionality. RT 2 Profiler focused qPCR arrays and pathway analysis evaluating associations between human TJ and antiviral response were performed to identify potential interactions and pathways between genes of interests. HRV-1B infection affected viability that was both time and TCID 50 dependent. Significant increases in apoptosis and viral replication post-infection correlated with viral titer. Viral infection significantly decreased claudin-1 protein expression at the lower TCID 50 , while a significant decrease in all three TJ protein expressions occurred at higher TCID 50 . Decrease in protein expression was concomitant with significant increases in epithelial permeability of fluorescein isothiocynate labeled-dextran 4 and 20 kDa. Analysis of focused qPCR arrays demonstrated a significant decrease in ZO-1 gene expression. Furthermore, network analysis between human TJ and antiviral response genes revealed possible interactions and regulation of TJ genes via interleukin (IL)-15 in response to HRV-1B infection. HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via an antiviral response of IL-15.

  14. [Current topics on cancer biology and research strategies for anti-cancer traditional Chinese medicine].

    PubMed

    Chen, Xiu-ping; Tang, Zheng-hai; Shi, Zhe; Lu, Jin-jian; Su, Huan-xing; Chen, Xin; Wang, Yi-tao

    2015-09-01

    Cancer, an abnormal cell proliferation resulted from multi-factors,has the highest morbidity and mortality among all the serious diseases. Considerable progress has been made in cancer biology in recent years. Tumor immunology, cancer stem cells (CSCs), autophagy, and epithelial-mesenchymal transition (EMT) have become hot topics of interests in this area. Detailed dissection of these biological processes will provide novel directions, targets, and strategies for the pharmacological evaluation, mechanism elucidation, and new drug development of traditional Chinese medicine.

  15. Cellular interactions of a lipid-based nanocarrier model with human keratinocytes: Unravelling transport mechanisms.

    PubMed

    Silva, Elisabete; Barreiros, Luísa; Segundo, Marcela A; Costa Lima, Sofia A; Reis, Salette

    2017-04-15

    Knowledge of delivery system transport through epidermal cell monolayer is vital to improve skin permeation and bioavailability. Recently, nanostructured lipid carriers (NLCs) have gained great attention for transdermal delivery due to their biocompatibility, high drug payload, occlusive properties and skin hydration effect. However, the nanocarriers transport related mechanisms in epidermal epithelial cells are not yet understood. In this research, the internalization and transport pathways of the NLCs across the epidermal epithelial cell monolayer (HaCaT cells) were investigated. The 250nm sized witepsol/miglyol NLCs, prepared by hot homogenization had reduced cytotoxicity and no effect on the integrity of cell membrane in human HaCaT keratinocytes. The internalization was time-, concentration- and energy-dependent, and the uptake of NLCs was a vesicle-mediated process by macropinocytosis and clathrin-mediated pathways. 3% of NLCs were found at the apical membrane side of the HaCaT monolayer through exocytosis mechanism. Additionally, the endoplasmic reticulum, Golgi apparatus and microtubules played crucial roles in the transport of NLCs out of HaCaT cells. NLCs were transported intact across the human keratinocytes monolayer, without disturbing the tight junction's structure. From the transcytosis data only approximately 12% of the internalized NLCs were passed from the apical to the basolateral side. The transcytosis of NLCs throughout the HaCaT cell monolayer towards the basolateral membrane side requires the involvement of the endoplasmic reticulum, Golgi apparatus and microtubules. Our findings may contribute to a systematic understanding of NLCs transport across epidermal epithelial cell monolayers and their optimization for clinical transdermal application. Transdermal drug delivery is a challenging and growing area of clinical application. Lipid nanoparticles such as nanostructured lipid carriers (NLCs) have gained wide interest for transdermal drug delivery. However these nanocarriers' interactions with epidermal epithelial barrier are yet unknown. Unveiling the mechanisms involved in NLCs transport across the epidermal epithelial monolayers will contribute with valuable information to achieve enhanced skin permeability, superior bioavailability and consequently improved therapeutic effect. With our present work we could certainly provide researchers and clinicians guidance for the design of optimized transdermal delivery systems, based on the nanomaterials and biological interactions. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. [BIOCOMPATIBILITY OF POLY-LACTIDE-CO-GLYCOLIDE/COLLAGEN TYPE I SCAFFOLD WITH RAT VAGINAL EPITHELIAL CELLS].

    PubMed

    Li, Yachai; Huang, Xianghua; Zhang, Mingle; Li, Yanan; Chen, Yexing; Jia, Jingfei

    2015-09-01

    To explore the biocompatibility of the poly-lactide-co-glycolide (PLGA)/collagen type I scaffold with rat vaginal epithelial cells, and the feasibility of using PLGA/collagen type I as scaffold to reconstruct vagina by the tissue engineering. PLGA/collagen type I scaffold was prepared with PLGA covered polylysine and collagen type I. The vaginal epithelial cells of Sprague Dawley rat of 10-12 weeks old were cultured by enzyme digestion method. The vaginal epithelial cells of passage 2 were cultured in the leaching liquor of scaffold for 48 hours to detect its cytotoxicity by MTT. The vaginal epithelial cells were inoculated on the PLGA/collagen type I scaffold (experimental group) and PLGA scaffold (control group) to calculate the cell adhesion rate. Epithelial cells-scaffold complexes were implanted subcutaneously on the rat back. At 2, 4, and 8 weeks after implantation, the epithelial cells-scaffold complexes were harvested to observe the cell growth by HE staining and immunohistochemical analysis. The epithelial cells-scaffold complexes were transplanted to reconstruct vagina in 6 rats with vaginal defect. After 3 and 6 months, the vaginal length was measured and the appearance was observed. The neovagina tissues were harvested for histological evaluation after 6 months. The epithelial cells grew and proliferated well in the leaching liquor of PLGA/collagen type I scaffold, and the cytotoxicity was at grade 1. The cell adhesion rate on the PLGA/collagen type I scaffold was 71.8%±9.2%, which significantly higher than that on the PLGA scaffold (63.4%±5.7%) (t=2.195, P=0.005). The epithelial cells could grow and adhere to the PLGA/collagen type I scaffolds. At 2 weeks after implanted subcutaneously, the epithelial cells grew and proliferated in the pores of scaffolds, and the fibroblasts were observed. At 4 weeks, 1-3 layers epithelium formed on the surface of scaffold. At 8 weeks, the epithelial cells increased and arranged regularly, which formed the membrane-like layer on the scaffold. The keratin expression of the epithelium was positive. At 3 months after transplantation in situ, the vaginal mucosa showed pink and lustrous epithelialization, and the majority of scaffold degraded. After 6 months, the neovagina length was 1.2 cm, without obvious stenosis; the vaginal mucosa had similar appearance and epithelial layer to normal vagina, but it had less duplicature; there were nail-like processes in the basal layer, but the number was less than that of normal vagina. The immunohistochemistry staining for keratin was positive. The PLGA/collagen type I scaffolds have good cytocompatibility with the epithelial cells, and can be used as the biodegradable polymer scaffold of the vaginal tissue engineering.

  17. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  18. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    PubMed

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  19. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    USDA-ARS?s Scientific Manuscript database

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  20. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    PubMed Central

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  1. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiangjun; Yao, Qisheng, E-mail: yymcyqs@126.com; Sun, Xinbo

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treatedmore » with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates fibrosis after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates inflammation and fibrosis after hypoxia-and LPS-induced renal epithelial cells injury via TLR4/NF-κB.« less

  2. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.

    PubMed

    Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K

    2014-01-01

    The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.

  3. Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Takahashi, Ayaka; Nam, Eun Ryel; Yui, Sho; Chung, Cheng Shu; Kawahara, Naoya; Lin, Hsing Yi; Tsuzuki, Keiko; Nakagawa, Takayuki; Nishimura, Ryohei

    2015-01-01

    To examine the expressions of ABCG2 and p63 in canine corneal epithelia and to evaluate their significance in corneal regeneration. Canine corneal and limbal epithelial cells were obtained from five healthy beagle dogs. We analyzed the morphological properties of cultivated limbal and corneal epithelial cells. We compared the expressions of ABCG2 and p63 in the limbus and central cornea by immunohistochemistry and real-time quantitative PCR. We analyzed the expression of these markers in cultivated cells by immunocytochemistry and real-time quantitative PCR. The limbal epithelial cells were smaller and proliferated more rapidly than the corneal epithelial cells in primary cultures. The corneal cells failed to be subcultured, whereas the limbal cells could be subcultured with increasing cell size. ABCG2 was localized in the basal layer of the limbal epithelium, and p63 was widely detected in the entire corneal epithelia. ABCG2 expression was significantly higher, and p63 was slightly higher in the limbus compared with the central cornea. ABCG2 was detected only in limbal cells in primary culture, not in corneal cells or passaged limbal cells. p63 was detected in both limbal and corneal cells and decreased gradually in the limbal cells with the cell passages. ABCG2 was localized in canine limbal epithelial cells, and p63 was widely expressed in canine corneal epithelia. ABCG2 and p63 could prove to be useful markers in dogs for putative corneal epithelial stem cells and for corneal epithelial cell proliferation, respectively. © 2014 American College of Veterinary Ophthalmologists.

  4. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qin, Yejun; Zheng, Feng; Sun, Menghong; Shi, Daren

    2006-07-01

    A single-cell diagnostic technique for epithelial cancers is developed by utilizing laser trapping and Raman spectroscopy to differentiate cancerous and normal epithelial cells. Single-cell suspensions were prepared from surgically removed human colorectal tissues following standard primary culture protocols and examined in a near-infrared laser-trapping Raman spectroscopy system, where living epithelial cells were investigated one by one. A diagnostic model was built on the spectral data obtained from 8 patients and validated by the data from 2 new patients. Our technique has potential applications from epithelial cancer diagnosis to the study of cell dynamics of carcinogenesis.

  5. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    PubMed

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  6. Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells.

    PubMed

    Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu

    2017-08-01

    Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR inhibitors in epithelial-like cells. Furthermore, mesenchymal T-Epi cells showed resistance to EGFR inhibitors by circumventing the dephosphorylation of EGFR signaling. Cetuximab consistently showed antitumor effects, and increased involucrin expression in TE-11R (epithelial-like)-derived xenograft tumors but not TE-8 (mesenchymal-like)-derived xenograft tumors. The factor determining the therapeutic effects of EGFR inhibitors in ESCC cells is the phenotype representing the epithelial-like or mesenchymal-like cells. Mesenchymal-like ESCC cells are resistant to EGFR inhibitors because EGFR signaling is not blocked. EGFR inhibitors show antitumor effects on epithelial-like ESCC cells accompanied by promotion of squamous cell differentiation.

  7. High Degree of Overlap between Responses to a Virus and to the House Dust Mite Allergen in Airway Epithelial Cells

    PubMed Central

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Background Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. Methods We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). Results We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Conclusions Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other. PMID:24498371

  8. High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells.

    PubMed

    Golebski, Korneliusz; Luiten, Silvia; van Egmond, Danielle; de Groot, Esther; Röschmann, Kristina Irene Lisolette; Fokkens, Wytske Johanna; van Drunen, Cornelis Maria

    2014-01-01

    Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C) or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA). We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C)) and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1). We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C) and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α), sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF). Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF) where up-regulated specifically by poly(I:C) and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C). Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other.

  9. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells

    PubMed Central

    Loureiro, Renata Ruoco; Cristovam, Priscila Cardoso; Martins, Caio Marques; Covre, Joyce Luciana; Sobrinho, Juliana Aparecida; Ricardo, José Reinaldo da Silva; Hazarbassanov, Rossen Myhailov; Höfling-Lima, Ana Luisa; Belfort, Rubens; Nishi, Mauro

    2013-01-01

    Purpose To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. Methods Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5′-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT–PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. Results Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. Conclusions Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM. PMID:23378720

  10. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    PubMed

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Gene-expression profiles of epithelial cells treated with EMD in vitro: analysis using complementary DNA arrays.

    PubMed

    Kapferer, I; Schmidt, S; Gstir, R; Durstberger, G; Huber, L A; Vietor, I

    2011-02-01

    During surgical periodontal treatment, EMD is topically applied in order to facilitate regeneration of the periodontal ligament, acellular cementum and alveolar bone. Suppresion of epithelial down-growth is essential for successful periodontal regeneration; however, the underlying mechanisms of how EMD influences epithelial wound healing are poorly understood. In the present study, the effects of EMD on gene-expression profiling in an epithelial cell line (HSC-2) model were investigated. Gene-expression modifications, determined using a comparative genome-wide expression-profiling strategy, were independently validated by quantitative real-time RT-PCR. Additionally, cell cycle, cell growth and in vitro wound-healing assays were conducted. A set of 43 EMD-regulated genes was defined, which may be responsible for the reduced epithelial down-growth upon EMD application. Gene ontology analysis revealed genes that could be attributed to pathways of locomotion, developmental processes and associated processes such as regulation of cell size and cell growth. Additionally, eight regulated genes have previously been reported to take part in the process of epithelial-to-mesenchymal transition. Several independent experimental assays revealed significant inhibition of cell migration, growth and cell cycle by EMD. The set of EMD-regulated genes identified in this study offers the opportunity to clarify mechanisms underlying the effects of EMD on epithelial cells. Reduced epithelial repopulation of the dental root upon periodontal surgery may be the consequence of reduced migration and cell growth, as well as epithelial-to-mesenchymal transition. © 2010 John Wiley & Sons A/S.

  12. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model

    PubMed Central

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-01-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. PMID:24770950

  13. EphA2 and Src regulate equatorial cell morphogenesis during lens development

    PubMed Central

    Cheng, Catherine; Ansari, Moham M.; Cooper, Jonathan A.; Gong, Xiaohua

    2013-01-01

    High refractive index and transparency of the eye lens require uniformly shaped and precisely aligned lens fiber cells. During lens development, equatorial epithelial cells undergo cell-to-cell alignment to form meridional rows of hexagonal cells. The mechanism that controls this morphogenesis from randomly packed cuboidal epithelial cells to highly organized hexagonal fiber cells remains unknown. In Epha2-/- mouse lenses, equatorial epithelial cells fail to form precisely aligned meridional rows; moreover, the lens fulcrum, where the apical tips of elongating epithelial cells constrict to form an anchor point before fiber cell differentiation and elongation at the equator, is disrupted. Phosphorylated Src-Y424 and cortactin-Y466, actin and EphA2 cluster at the vertices of wild-type hexagonal epithelial cells in organized meridional rows. However, phosphorylated Src and phosphorylated cortactin are not detected in disorganized Epha2-/- cells with altered F-actin distribution. E-cadherin junctions, which are normally located at the basal-lateral ends of equatorial epithelial cells and are diminished in newly differentiating fiber cells, become widely distributed in the apical, lateral and basal sides of epithelial cells and persist in differentiating fiber cells in Epha2-/- lenses. Src-/- equatorial epithelial cells also fail to form precisely aligned meridional rows and lens fulcrum. These results indicate that EphA2/Src signaling is essential for the formation of the lens fulcrum. EphA2 also regulates Src/cortactin/F-actin complexes at the vertices of hexagonal equatorial cells for cell-to-cell alignment. This mechanistic information explains how EphA2 mutations lead to disorganized lens cells that subsequently contribute to altered refractive index and cataracts in humans and mice. PMID:24026120

  14. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin

    2015-01-01

    Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. © 2014 International Federation for Cell Biology.

  15. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    PubMed

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p < 0.001). OCT and BET showed less influence on cell metabolism in fibroblasts than other MRs. OCT also demonstrated comparable but not significant results in epithelial cells (p > 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p < 0.005). OCT and BET showed the best results for viability in fibroblasts (p > 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  16. Fluorescent in situ hybridization (FISH) on corneal impression cytology specimens (CICS): study of epithelial cell survival after keratoplasty.

    PubMed

    Catanese, Muriel; Popovici, Cornel; Proust, Hélène; Hoffart, Louis; Matonti, Frédéric; Cochereau, Isabelle; Conrath, John; Gabison, Eric E

    2011-02-22

    To assess corneal epithelial cell survival after keratoplasty. Corneal impression cytology (CIC) was performed on sex-mismatched corneal transplants. Fluorescent in situ hybridization (FISH) with sex chromosome-specific probes was performed to identify epithelial cell mosaicism and therefore allocate the donor or recipient origin of the cells. Twenty-four samples of corneal epithelial cells derived from 21 transplanted patients were analyzed. All patients received post-operative treatment using dexamethasone eye drops, with progressive tapering over 18 months, and nine patients also received 2% cyclosporine eye drops. Out of the 24 samples reaching quality criteria, sex mosaicism was found in 13, demonstrating the presence of donor-derived cells at the center of the graft for at least 211 days post keratoplasty. Kaplan-Meier analysis established a median survival of donor corneal epithelial cells of 385 days. Although not statistically significant, the disappearance of donor cells seemed to be delayed and the average number of persistent cells appeared to be greater when 2% cyclosporine was used topically as an additional immunosuppressive therapy. The combination of corneal impressions and FISH analysis is a valuable tool with negligible side effects to investigate the presence of epithelial cell mosaicism in sex-mismatched donor transplants. Epithelial cells survived at the center of the graft with a median survival of more than one year, suggesting slower epithelial turnover than previously described.

  17. GM-CSF produced by non-hematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa1,2

    PubMed Central

    Egea, Laia; McAllister, Christopher S.; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Kagnoff, Martin F.

    2012-01-01

    GM-CSF is a growth factor that promotes the survival and activation of macrophages and granulocytes, and dendritic cell (DC) differentiation and survival in vitro. The mechanism by which exogenous GM-CSF ameliorates the severity of Crohn’s disease in humans and colitis in murine models has been considered mainly to reflect its activity on myeloid cells. We used GM-CSF deficient (GM-CSF−/−) mice to probe the functional role of endogenous host-produced GM-CSF in a colitis model induced after injury to the colon epithelium. Dextran sodium sulfate (DSS) at doses that resulted in little epithelial damage and mucosal ulceration in wild type (WT) mice resulted in marked colon ulceration and delayed ulcer healing in GM-CSF−/− mice. Colon crypt epithelial cell proliferation in vivo was significantly decreased in GM-CSF−/− mice at early times after DSS injury. This was paralleled by decreased expression of crypt epithelial cell genes involved in cell cycle, proliferation, and wound healing. Decreased crypt cell proliferation and delayed ulcer healing in GM-CSF−/− mice were rescued by exogenous GM-CSF, indicating the lack of a developmental abnormality in the epithelial cell proliferative response in those mice. Non-hematopoietic cells and not myeloid cells produced the GM-CSF important for colon epithelial proliferation after DSS-induced injury as revealed by bone marrow chimera and DC depletion experiments, with colon epithelial cells being the cellular source of GM-CSF. Endogenous epithelial cell produced GM-CSF has a novel non-redundant role in facilitating epithelial cell proliferation and ulcer healing in response to injury of the colon crypt epithelium. PMID:23325885

  18. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  19. Function and regulation of MTA1 and MTA3 in malignancies of the female reproductive system.

    PubMed

    Brüning, Ansgar; Blankenstein, Thomas; Jückstock, Julia; Mylonas, Ioannis

    2014-12-01

    The family of metastasis-associated (MTA) genes is a small group of transcriptional co-regulators which are involved in various physiological functions, ranging from lymphopoietic cell differentiation to the development and maintenance of epithelial cell adhesions. By recruiting histone-modifying enzymes to specific promoter sequences, MTA proteins can function both as transcriptional repressors and activators of a number of cancer-relevant proteins, including Snail, E-cadherin, signal transducer and activator of transcriptions (STATs), and the estrogen receptor. Their involvement in the epithelial-mesenchymal transition process and regulatory interactions with estrogen receptor activity has made MTA proteins highly interesting research candidates, especially in the field of hormone-sensitive breast cancer and malignancies of the female reproductive tract. This review focuses on the current knowledge about the function and regulation of MTA1 and MTA3 proteins in gynecological cancer, including ovarian, endometrial, and cervical tumors.

  20. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4[S

    PubMed Central

    Lukic, Ana; Ji, Jie; Idborg, Helena; Samuelsson, Bengt; Palmberg, Lena

    2016-01-01

    Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4. In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4. Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung. PMID:27436590

  1. Coreceptors and Their Ligands in Epithelial γδ T Cell Biology

    PubMed Central

    Witherden, Deborah A.; Johnson, Margarete D.; Havran, Wendy L.

    2018-01-01

    Epithelial tissues line the body providing a protective barrier from the external environment. Maintenance of these epithelial barrier tissues critically relies on the presence of a functional resident T cell population. In some tissues, the resident T cell population is exclusively comprised of γδ T cells, while in others γδ T cells are found together with αβ T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not only in the maintenance of the epithelium, but are also central to the repair process following damage from environmental and pathogenic insults. Key to their function is the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies on multiple receptor–ligand interactions through both the T cell receptor and accessory molecules leading to temporal and spatial regulation of cytokine, chemokine, growth factor, and extracellular matrix protein production. As antigens that activate epithelial γδ T cells are largely unknown and many classical costimulatory molecules and coreceptors are not used by these cells, efforts have focused on identification of novel coreceptors and ligands that mediate pivotal interactions between γδ T cells and their neighbors. In this review, we discuss recent advances in the understanding of functions for these coreceptors and their ligands in epithelial maintenance and repair processes. PMID:29686687

  2. Distinct Effects of Adipose-Derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy.

    PubMed

    Anjanappa, Manjushree; Burnett, Riesa; Zieger, Michael A; Merfeld-Clauss, Stephanie; Wooden, William; March, Keith; Tholpady, Sunil; Nakshatri, Harikrishna

    2016-07-01

    Adipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49f(high)/EpCAM(low) basal/stem-like and CD49f(medium)/EpCAM(medium) luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression. Mol Cancer Res; 14(7); 660-71. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Cytokine Expression and Production by Purified Helicobacter pylori Urease in Human Gastric Epithelial Cells

    PubMed Central

    Tanahashi, Toshihito; Kita, Masakazu; Kodama, Tadashi; Yamaoka, Yoshio; Sawai, Naoki; Ohno, Tomoyuki; Mitsufuji, Shoji; Wei, Ya-Ping; Kashima, Kei; Imanishi, Jiro

    2000-01-01

    Cytokines have been proposed to play an important role in Helicobacter pylori-associated gastroduodenal diseases, but the exact mechanism of the cytokine induction remains unclear. H. pylori urease, a major component of the soluble proteins extracted from bacterial cells, is considered to be one of the virulence factors for the inflammation in the gastric mucosa that is produced in H. pylori infection. However, the response of human gastric epithelial cells to the stimulation of urease has not been investigated. In the present study, we used human gastric epithelial cells in a primary culture system and examined whether H. pylori urease stimulates the gastric epithelial cells to induce proinflammatory cytokines by reverse transcription-PCR and enzyme-linked immunosorbent assay. First, by using peripheral blood mononuclear cells (PBMC) and a gastric cancer cell line (MKN-45 cells), we confirmed the ability of purified H. pylori urease to induce the production of proinflammatory cytokines. Furthermore, we demonstrated that the human gastric epithelial cells produced interleukin-6 (IL-6) and tumor necrosis factor alpha, but not IL-8, following stimulation with purified urease. The patterns of cytokine induction differed among human PBMC, MKN-45 cells, and human gastric epithelial cells. These results suggest that the human gastric epithelial cells contribute to the induction of proinflammatory cytokines by the stimulation of H. pylori urease, indicating that the epithelial cells were involved in the mucosal inflammation that accompanied H. pylori infection. PMID:10639431

  4. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

    PubMed Central

    Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.

    2016-01-01

    The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539

  5. Expression of keratinocyte growth factor and its receptor in noncholesteatomatous and cholesteatomatous chronic otitis media.

    PubMed

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Terakado, Mariko; Hishikawa, Yoshitaka; Koji, Takehiko

    2010-07-01

    The purpose of the study was to test a hypothesis that the keratinocyte growth factor (KGF) is a key factor in the pathologic difference between cholesteatomatous (C-COM) and noncholesteatomatous chronic otitis media (NC-COM). We compared the expression levels of KGF and its receptor (KGFR) and the proliferation activity of epithelial cells between NC-COM and C-COM. The epithelial lesion was surgically excised with subepithelial tissue from 18 patients with NC-COM and 70 patients with C-COM, and was processed for immunohistochemistry for KGF and KGFR. We also examined the proportion of proliferating epithelial cells using Ki-67 and the extent of infiltrating B and T cells. Keratinocyte growth factor was positive in 5 of 18 (28%) NC-COM specimens and in 61 of 69 (88%) C-COM specimens (p < 0.0001). Furthermore, 37 (60%) C-COM specimens were positive for KGFR, but none of NC-COM were positive (0%; p < 0.01). The Ki-67 labeling index (LI) was significantly smaller in NC-COM than in C-COM (p < 0.001). B-Cell LI was almost similar in the 2 groups. T-Cell LI was significantly higher in C-COM than in NC-COM (p < 0.0001). Interestingly, T-cell LI in NC-COM was higher in KGF-positive tissues than in KGF-negative tissues (p < 0.05). The results indicated that coexpression of KGF and KGFR seems to explain the pathologic difference between C-COM and NC-COM, and that KGF may play an important role in the development of cholesteatoma.

  6. Ablation of lens epithelial cells with a laser photolysis system: Histopathology, ultrastructure, and immunochemistry

    PubMed Central

    Mamalis, Nick; Grossniklaus, Hans E.; Waring, George O.; Werner, Liliana; Brubaker, Jacob; Davis, Don; Espandar, Ladan; Walker, Rudolf; Thyzel, Reinhardt

    2010-01-01

    PURPOSE To evaluate efficacy of a neodymium:YAG (Nd:YAG) laser photolysis system in removing lens epithelial cells (LECs) and characterize the effect of the laser on laminin and fibronectin involved in LEC adhesion and migration. METHODS Cadaver eyes were evaluated using the Miyake technique. The lenses were removed with phacoemulsification. The modified Nd:YAG laser was used to clean the LECs from the capsule. Only the fornix was cleaned in some eyes and the anterior subcapsular area in other eyes. Some areas were not treated and acted as controls. Standard irrigation/aspiration (I/A) removal of LECs was performed in additional eyes. The eyes were analyzed using light microscopy and immunohistochemical staining. RESULTS Histopathologic evaluation showed that the laser removed the LECs from the anterior lens capsule and from the fornix. Immunohistochemical staining showed fibronectin and laminin staining in the untreated areas that was absent in the treated areas. Standard I/A removal of the LECs showed absence of cells but persistent laminin and fibronectin. Electron microscopy showed epithelial cells in untreated areas with an absence of the LECs and debris in treated areas. CONCLUSIONS The laser photolysis system removed LECs from the anterior lens capsule and capsule fornix. Along with the cells, laminin, fibronectin, and cell debris remained in the untreated areas but were removed by the treatment. This treatment may be useful in preventing posterior capsule opacification. Financial Disclosure No author has a financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. PMID:20494774

  7. Histone Deacetylase Inhibitor Induces the Expression of Select Epithelial Genes in Mouse Utricle Sensory Epithelia-Derived Progenitor Cells

    PubMed Central

    Wang, Jue

    2014-01-01

    Abstract Mouse utricle sensory epithelial cell–derived progenitor cells (MUCs), which have hair cell progenitor and mesenchymal features via epithelial-to-mesenchymal transition (EMT) as previously described, provide a potential approach for hair cell regeneration via cell transplantation. In this study, we treated MUCs with trichostatin A (TSA) to determine whether histone deacetylase inhibitor is able to stimulate the expression of epithelial genes in MUCs, an essential step for guiding mesenchymal-like MUCs to become sensory epithelial cells. After 72 h of TSA treatment, MUCs acquired epithelial-like features, which were indicated by increased expression of epithelial markers such as Cdh1, Krt18, and Dsp. Additionally, TSA decreased the expression of mesenchymal markers, including Zeb1, Zeb2, Snai1, and Snai2, and prosensory genes Lfng, Six1, and Dlx5. Moreover, the expression of the hair cell genes Atoh1 and Myo6 was increased in TSA-treated MUCs. We also observed significantly decreased expression of Hdac2 and Hdac3 in TSA-treated MUCs. However, no remarkable change was detected in protein expression using immunofluorescence, indicating that TSA-induced HDAC inhibition may contribute to the initial stage of the mesenchymal-to-epithelial phenotypic change. In the future, more work is needed to induce hair cell regeneration using inner ear tissue–derived progenitors to achieve an entire mesenchymal-to-epithelial transition. PMID:24945595

  8. The Contribution of the Airway Epithelial Cell to Host Defense.

    PubMed

    Stanke, Frauke

    2015-01-01

    In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.

  9. Role of medullary progenitor cells in epithelial cell migration and proliferation

    PubMed Central

    Chen, Dong; Chen, Zhiyong; Zhang, Yuning; Park, Chanyoung; Al-Omari, Ahmed

    2014-01-01

    This study is aimed at characterizing medullary interstitial progenitor cells and to examine their capacity to induce tubular epithelial cell migration and proliferation. We have isolated a progenitor cell side population from a primary medullary interstitial cell line. We show that the medullary progenitor cells (MPCs) express CD24, CD44, CXCR7, CXCR4, nestin, and PAX7. MPCs are CD34 negative, which indicates that they are not bone marrow-derived stem cells. MPCs survive >50 passages, and when grown in epithelial differentiation medium develop phenotypic characteristics of epithelial cells. Inner medulla collecting duct (IMCD3) cells treated with conditioned medium from MPCs show significantly accelerated cell proliferation and migration. Conditioned medium from PGE2-treated MPCs induce tubule formation in IMCD3 cells grown in 3D Matrigel. Moreover, most of the MPCs express the pericyte marker PDGFR-b. Our study shows that the medullary interstitium harbors a side population of progenitor cells that can differentiate to epithelial cells and can stimulate tubular epithelial cell migration and proliferation. The findings of this study suggest that medullary pericyte/progenitor cells may play a critical role in collecting duct cell injury repair. PMID:24808539

  10. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell

    PubMed Central

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Yoon, Sang Wook; Lee, Ilho; Kim, Hee Jeong; Kim, Sung-Hoon

    2016-01-01

    Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas. PMID:28090191

  11. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    PubMed

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  12. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.

    PubMed

    Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina

    2015-06-04

    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis.

  13. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions.

  14. Generation of Epithelial Cell Populations from Human Pluripotent Stem Cells Using a Small-Molecule Inhibitor of Src Family Kinases.

    PubMed

    Selekman, Joshua A; Lian, Xiaojun; Palecek, Sean P

    2016-01-01

    Human pluripotent stem cells (hPSCs), under the right conditions, can be engineered to generate populations of any somatic cell type. Knowledge of what mechanisms govern differentiation towards a particular lineage is often quite useful for efficiently producing somatic cell populations from hPSCs. Here, we have outlined a strategy for deriving populations of simple epithelial cells, as well as more mature epidermal keratinocyte progenitors, from hPSCs by exploiting a mechanism previously shown to direct epithelial differentiation of hPSCs. Specifically, we describe how to direct epithelial differentiation of hPSCs using an Src family kinase inhibitor, SU6656, which has been shown to modulate β-catenin translocation to the cell membrane and thus promote epithelial differentiation. The differentiation platform outlined here produces cells with the ability to terminally differentiate to epidermal keratinocytes in culture through a stable simple epithelial cell intermediate that can be expanded in culture for numerous (>10) passages.

  15. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues.

    PubMed

    Xiong, Jimin; Gronthos, Stan; Bartold, P Mark

    2013-10-01

    Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal/stem cells, both functionally and phenotypically. Therefore, the epithelial cell rests of Malassez, rather than being 'cell rests', as indicated by their name, are an important source of stem cells that might play a pivotal role in periodontal regeneration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Epithelial stem cells are formed by small-particles released from particle-producing cells

    PubMed Central

    Kong, Wuyi; Zhu, Xiao Ping; Han, Xiu Juan; Nuo, Mu; Wang, Hong

    2017-01-01

    Recent spatiotemporal report demonstrated that epidermal stem cells have equal potential to divide or differentiate, with no asymmetric cell division observed. Therefore, how epithelial stem cells maintain lifelong stem-cell support still needs to be elucidated. In mouse blood and bone marrow, we found a group of large cells stained strongly for eosin and containing coiled-tubing-like structures. Many were tightly attached to each other to form large cellular clumps. After sectioning, these large cell-clumps were composed of not cells but numerous small particles, however with few small “naked” nuclei. The small particles were about 2 to 3 μm in diameter and stained dense red for eosin, so they may be rich in proteins. Besides the clumps composed of small particles, we identified clumps formed by fusion of the small particles and clumps of newly formed nucleated cells. These observations suggest that these small particles further fused and underwent cellularization. E-cadherin was expressed in particle-fusion areas, some “naked” nuclei and the newly formed nucleated cells, which suggests that these particles can form epithelial cells via fusion and nuclear remodeling. In addition, we observed similar-particle fusion before epithelial cellularization in mouse kidney ducts after kidney ischemia, which suggests that these particles can be released in the blood and carried to the target tissues for epithelial-cell regeneration. Oct4 and E-cadherin expressed in the cytoplasmic areas in cells that were rich in protein and mainly located in the center of the cellular clumps, suggesting that these newly formed cells have become tissue-specific epithelial stem cells. Our data provide evidence that these large particle-producing cells are the origin of epithelial stem cells. The epithelial stem cells are newly formed by particle fusion. PMID:28253358

  17. [Pathological and immunohistochemical analysis of giant cells of pancreas].

    PubMed

    Miyake, T; Suda, K; Yamamura, A; Tada, Y

    1997-10-01

    Multinucleated giant cells in the pancreas (five giant cell carcinomas, a mucinous cystadenocarcinoma attended with many osteoclast-like giant cells, 42 invasive ductal carcinomas and 29 chronic pancreatitises) were examined. Three types of multinucleated giant cell were identified: epithelial type, coexpressive type, mesenchymal type. Epithelial type expressed epithelial markers, such as keratin and EMA in 23 ductal carcinomas. Coexpressive type expressed both epithelial markers and mesenchymal marker vimentin was in four ductal carcinomas. Mesenchymal type expressed mesenchymal markers, vimentin and CD68 in four osteoclastoid type giant cell carcinomas, the mucinous cystadenocarcinoma, six ductal carcinomas and ten chronic pancreatitises. Epithelial and coexpressive type were considered to be epithelial neoplastic origin, those had bizarre appearance and transitional area from definite adenocarcinoma area. Vimentin expression is associated with sarcomatous proliferation. Mesenchymal type was considered to be nonneoplastic and a certain type of macrophage polykaryons.

  18. Metformin and Chemotherapy in Treating Patients With Stage III-IV Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2018-04-17

    Brenner Tumor; Malignant Ascites; Malignant Pleural Effusion; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Primary Peritoneal Cavity Cancer

  19. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    PubMed Central

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  20. Epithelial junctions, cytoskeleton, and polarity.

    PubMed

    Pásti, Gabriella; Labouesse, Michel

    2014-11-04

    A distinctive feature of polarized epithelial cells is their specialized junctions, which contribute to cell integrity and provide platforms to orchestrate cell shape changes. This chapter discusses the composition, assembly and remodeling of C. elegans cell-cell (CeAJ) and hemidesmosome-like cell-extracellular matrix junctions (CeHD), proteins that anchor the cytoskeleton, and mechanisms involved in establishing epithelial polarity. Major recent progress in this area has come from the analysis of mechanisms that maintain cell polarity, which involve lipids and trafficking, and on the impact of mechanical forces on junction remodeling. This chapter focuses on cellular, rather than developmental, aspects of epithelial cells.

  1. Activation of neurokinin-1 receptors during ozone inhalation contributes to epithelial injury and repair.

    PubMed

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2008-09-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2'-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress-positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  2. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  3. Bioorthogonal chemical imaging of metabolic changes during epithelial-mesenchymal transition of cancer cells by stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Luyuan; Min, Wei

    2017-10-01

    Study of metabolic changes during epithelial-mesenchymal transition (EMT) of cancer cells is important for basic understanding and therapeutic management of cancer progression. We here used metabolic labeling and stimulated Raman scattering (SRS) microscopy, a strategy of bioorthogonal chemical imaging, to directly visualize changes in anabolic metabolism during cancer EMT at a single-cell level. MCF-7 breast cancer cell is employed as a model system. Four types of metabolites (amino acids, glucose, fatty acids, and choline) are labeled with either deuterium or alkyne (C≡C) tag. Their intracellular incorporations into MCF-7 cells before or after EMT are visualized by SRS imaging targeted at the signature vibration frequency of C-D or C≡C bonds. Overall, after EMT, anabolism of amino acids, glucose, and choline is less active, reflecting slower protein and membrane synthesis in mesenchymal cells. Interestingly, we also observed less incorporation of glucose and palmitate acids into membrane lipids, but more of them into lipid droplets in mesenchymal cells. This result indicates that, although mesenchymal cells synthesize fewer membrane lipids, they are actively storing energy into lipid droplets, either through de novo lipogenesis from glucose or direct scavenging of exogenous free fatty acids. Hence, metabolic labeling coupled with SRS can be a straightforward method in imaging cancer metabolism.

  4. Inhibition of CHOP accentuates the apoptotic effect of α-mangostin from the mangosteen fruit (Garcinia mangostana) in 22Rv1 prostate cancer cells.

    PubMed

    Li, Gongbo; Petiwala, Sakina M; Nonn, Larisa; Johnson, Jeremy J

    2014-10-10

    The mangosteen (Garcinia mangostana) fruit has been a popular food in Southeast Asia for centuries and is increasing in popularity in Western countries. We identified α-Mangostin as a primary phytochemical modulating ER stress proteins in prostate cancer cells and propose that α-Mangostin is responsible for exerting a biological effect in prostate cancer cells. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two patients undergoing radical prostatectomy were treated with α-Mangostin and evaluated by RT-PCR, Western blot, fluorescent microscopy and siRNA transfection to evaluate ER stress. Next, we evaluated α-Mangostin for microsomal stability, pharmacokinetic parameters, and anti-cancer activity in nude mice. α-Mangostin significantly upregulated ER stress markers in prostate cancer cells. Interestingly, α-Mangostin did not promote ER stress in prostate epithelial cells (PrECs) from prostate cancer patients. CHOP knockdown enhanced α-Mangostin-induced apoptosis in prostate cancer cells. α-Mangostin significantly suppressed tumor growth in a xenograft tumor model without obvious toxicity. Our study suggests that α-Mangostin is not the only active constituent from the mangosteen fruit requiring further work to understand the complex chemical composition of the mangosteen. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Response of cultured normal canine mammary epithelial cells to deracoxib-doxorubicin combination.

    PubMed

    Bakirel, Tulay; Ustun Alkan, Fulya; Ustuner, Oya; Çinar, Suzan; Anlas, Ceren; Bilge Sari, Ataman

    2017-09-01

    Currently, there is a growing interest in combining anticancer drugs with the aim to improve outcome in patients suffering from tumours and reduce the long-term toxicity associated with the current standard of treatment. In this study, we evaluated the possible role of deracoxib against the toxicity of doxorubicin on normal canine mammary epithelial cells. The effect of deracoxib and doxorubicin combination on cell viability was determined by MTT assay. Apoptosis was characterised by flow cytometry. Cell nitrite concentrations were measured with the Griess reaction. Deracoxib (50 and 100 μM) treatment decreased the cytotoxic action of doxorubicin at 0.9 μM in the cells, from 33.63% to 13.4% and 25.82%, respectively. Our results also showed that the reverse effect of deracoxib on doxorubicin-induced cytotoxic activity in the cells was associated with a marked (3.04- to 3.57-fold) decrease in apoptosis. In additional studies identifying the mechanism of the observed effect, deracoxib exhibited an activity to prevent doxorubicin-mediated overproduction of nitric oxide in the cells. Our in vitro study results indicate that deracoxib (50 and 100 μM) can be beneficial in protecting normal cells from the toxic effect of doxorubicin in conjunction with apoptosis by the modulation of nitric oxide production.

  6. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.

    PubMed

    Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E

    2003-09-01

    Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the expression of caspase-1, caspase-3 and caspase-10, was inhibited. Inhibition of replication of intracellular bacteria resulted in an increase in apoptosis in both cell types. Our results showed that the differential induction of apoptosis between macrophages and alveolar epithelial cells represents specific strategies of M. tuberculosis for survival in the host.

  7. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    USDA-ARS?s Scientific Manuscript database

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...

  8. Epithelial Cell Rests of Malassez Contain Unique Stem Cell Populations Capable of Undergoing Epithelial–Mesenchymal Transition

    PubMed Central

    Xiong, Jimin; Mrozik, Krzysztof; Gronthos, Stan

    2012-01-01

    The epithelial cell rests of Malassez (ERM) are odontogenic epithelial cells located within the periodontal ligament matrix. While their function is unknown, they may support tissue homeostasis and maintain periodontal ligament space or even contribute to periodontal regeneration. We investigated the notion that ERM contain a subpopulation of stem cells that could undergo epithelial–mesenchymal transition and differentiate into mesenchymal stem-like cells with multilineage potential. For this purpose, ERM collected from ovine incisors were subjected to different inductive conditions in vitro, previously developed for the characterization of bone marrow mesenchymal stromal/stem cells (BMSC). We found that ex vivo-expanded ERM expressed both epithelial (cytokeratin-8, E-cadherin, and epithelial membrane protein-1) and BMSC markers (CD44, CD29, and heat shock protein-90β). Integrin α6/CD49f could be used for the enrichment of clonogenic cell clusters [colony-forming units-epithelial cells (CFU-Epi)]. Integrin α6/CD49f-positive-selected epithelial cells demonstrated over 50- and 7-fold greater CFU-Epi than integrin α6/CD49f-negative cells and unfractionated cells, respectively. Importantly, ERM demonstrated stem cell-like properties in their differentiation capacity to form bone, fat, cartilage, and neural cells in vitro. When transplanted into immunocompromised mice, ERM generated bone, cementum-like and Sharpey's fiber-like structures. Additionally, gene expression studies showed that osteogenic induction of ERM triggered an epithelial–mesenchymal transition. In conclusion, ERM are unusual cells that display the morphological and phenotypic characteristics of ectoderm-derived epithelial cells; however, they also have the capacity to differentiate into a mesenchymal phenotype and thus represent a unique stem cell population within the periodontal ligament. PMID:22122577

  9. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line.

    PubMed

    Tong, Hui-Li; Li, Qing-Zhang; Gao, Xue-Jun; Yin, De-Yun

    2012-03-01

    To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.

  10. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells

    PubMed Central

    Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G.; Kuemmerle, John F.; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I.

    2014-01-01

    Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA–depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. PMID:25143399

  11. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM)-1) expression and neutrophil adhesion.

    PubMed Central

    Huang, G T; Eckmann, L; Savidge, T C; Kagnoff, M F

    1996-01-01

    The acute host response to gastrointestinal infection with invasive bacteria is characterized by an accumulation of neutrophils in the lamina propria, and neutrophil transmigration to the luminal side of the crypts. Intestinal epithelial cells play an important role in the recruitment of inflammatory cells to the site of infection through the secretion of chemokines. However, little is known regarding the expression, by epithelial cells, of molecules that are involved in interactions between the epithelium and neutrophils following bacterial invasion. We report herein that expression of ICAM-1 on human colon epithelial cell lines, and on human enterocytes in an in vivo model system, is upregulated following infection with invasive bacteria. Increased ICAM-1 expression in the early period (4-9 h) after infection appeared to result mainly from a direct interaction between invaded bacteria and host epithelial cells since it co-localized to cells invaded by bacteria, and the release of soluble factors by epithelial cells played only a minor role in mediating increased ICAM-1 expression. Furthermore, ICAM-1 was expressed on the apical side of polarized intestinal epithelial cells, and increased expression was accompanied by increased neutrophil adhesion to these cells. ICAM-1 expression by intestinal epithelial cells following infection with invasive bacteria may function to maintain neutrophils that have transmigrated through the epithelium in close contact with the intestinal epithelium, thereby reducing further invasion of the mucosa by invading pathogens. PMID:8755670

  12. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus.

    PubMed

    Gingerich, Aaron; Pang, Lan; Hanson, Jarod; Dlugolenski, Daniel; Streich, Rebecca; Lafontaine, Eric R; Nagy, Tamás; Tripp, Ralph A; Rada, Balázs

    2016-01-01

    Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.

  13. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung

    PubMed Central

    Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.

    2015-01-01

    The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985

  14. Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix.

    PubMed Central

    Sanderson, I R; Ezzell, R M; Kedinger, M; Erlanger, M; Xu, Z X; Pringault, E; Leon-Robine, S; Louvard, D; Walker, W A

    1996-01-01

    The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8755542

  15. Remodeling of the abdominal epithelial monolayer during the larva-pupa-adult transformation of Manduca.

    PubMed

    Nardi, James B; Bee, Charles Mark; Wallace, Catherine Lee

    2018-06-01

    During metamorphosis of insect epithelial monolayers, cells die, divide, and rearrange. In Drosophila undifferentiated diploid cells destined to form the adult cuticle of each abdominal segment segregate early in development from the surrounding polyploid larval epithelial cells of that segment as eight groups of diploid histoblast cells. The larval polyploid cells are programmed to die and be replaced by divisions and rearrangements of histoblast cells. By contrast, abdominal epithelial cells of Manduca larvae form a monolayer of cells representing different ploidy levels with no definitive segregation of diploid cells destined to form adult structures. These epithelial cells of mixed ploidy levels produce a thick smooth larval cuticle with sparsely distributed sensory bristles. Adult descendants of this larval monolayer produce a thinner cuticle with densely packed scale cells. The transition between these differentiated states of Manduca involves divisions of cells, changes in ploidy levels, and sorting of certain polyploid cells into circular rosette patches to minimize contacts of these polyploid cells with surrounding cells of equal or smaller size. Cells within the rosettes and some surrounding cells are destined to die and be replaced by remaining epithelial cells of uniform size and ploidy at pupa-adult apolysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Obesity Suppresses Cell-Competition-Mediated Apical Elimination of RasV12-Transformed Cells from Epithelial Tissues.

    PubMed

    Sasaki, Ayana; Nagatake, Takahiro; Egami, Riku; Gu, Guoqiang; Takigawa, Ichigaku; Ikeda, Wataru; Nakatani, Tomoya; Kunisawa, Jun; Fujita, Yasuyuki

    2018-04-24

    Recent studies have revealed that newly emerging transformed cells are often eliminated from epithelial tissues via cell competition with the surrounding normal epithelial cells. This cancer preventive phenomenon is termed epithelial defense against cancer (EDAC). However, it remains largely unknown whether and how EDAC is diminished during carcinogenesis. In this study, using a cell competition mouse model, we show that high-fat diet (HFD) feeding substantially attenuates the frequency of apical elimination of RasV12-transformed cells from intestinal and pancreatic epithelia. This process involves both lipid metabolism and chronic inflammation. Furthermore, aspirin treatment significantly facilitates eradication of transformed cells from the epithelial tissues in HFD-fed mice. Thus, our work demonstrates that obesity can profoundly influence competitive interaction between normal and transformed cells, providing insights into cell competition and cancer preventive medicine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    PubMed Central

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  18. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    NASA Astrophysics Data System (ADS)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  19. The IL-6 response to Chlamydia from primary reproductive epithelial cells is highly variable and may be involved in differential susceptibility to the immunopathological consequences of chlamydial infection

    PubMed Central

    2013-01-01

    Background Chlamydia trachomatis infection results in reproductive damage in some women. The process and factors involved in this immunopathology are not well understood. This study aimed to investigate the role of primary human cellular responses to chlamydial stress response proteases and chlamydial infection to further identify the immune processes involved in serious disease sequelae. Results Laboratory cell cultures and primary human reproductive epithelial cultures produced IL-6 in response to chlamydial stress response proteases (CtHtrA and CtTsp), UV inactivated Chlamydia, and live Chlamydia. The magnitude of the IL-6 response varied considerably (up to 1000 pg ml-1) across different primary human reproductive cultures. Thus different levels of IL-6 production by reproductive epithelia may be a determinant in disease outcome. Interestingly, co-culture models with either THP-1 cells or autologous primary human PBMC generally resulted in increased levels of IL-6, except in the case of live Chlamydia where the level of IL-6 was decreased compared to the epithelial cell culture only, suggesting this pathway may be able to be modulated by live Chlamydia. PBMC responses to the stress response proteases (CtTsp and CtHtrA) did not significantly vary for the different participant cohorts. Therefore, these proteases may possess conserved innate PAMPs. MAP kinases appeared to be involved in this IL-6 induction from human cells. Finally, we also demonstrated that IL-6 was induced by these proteins and Chlamydia from mouse primary reproductive cell cultures (BALB/C mice) and mouse laboratory cell models. Conclusions We have demonstrated that IL-6 may be a key factor for the chlamydial disease outcome in humans, given that primary human reproductive epithelial cell culture showed considerable variation in IL-6 response to Chlamydia or chlamydial proteins, and that the presence of live Chlamydia (but not UV killed) during co-culture resulted in a reduced IL-6 response suggesting this response may be moderated by the presence of the organism. PMID:24238294

  20. 5-Oxo-ETE from Nasal Epithelial Cells Upregulates Eosinophil Cation Protein by Eosinophils in Nasal Polyps in vitro.

    PubMed

    Lin, Lin; Chen, Zheng; Tang, Xinyue; Dai, Fei; Wei, Jinjin; Sun, Guangbin

    2018-06-13

    5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent eosinophil chemoattractant and activator that is synthesized not only in inflammatory cells but also in bronchial epithelial cells. The purpose of this study is to clarify whether 5-oxo-ETE can promote the production of eosinophil cation protein (ECP) by eosinophils in nasal polyps (NP) in vitro, and whether normal nasal epithelial cells can produce this lipid mediator in response to oxidative stress. Nasal biopsy samples were obtained from normal subjects or subjects with chronic rhinosinusitis with NP. The infiltration of eosinophil in NP was detected and cultured. After that, concentrations of ECP in eosinophil and NP cultures were evaluated after the treatment of 5-oxo-ETE or 5-oxo-ETE + its receptor (OXER) antagonist, pertussis toxin (PT). Then we studied the synthesis of 5-oxo-ETE after H2O2 stimulation by normal nasal epithelial cells and by epithelial cells of NP alone in the cultures, and also determined the OXER expression in NP. The number of infiltrative eosinophils in NP was increased. The ECP levels in eosinophil and NP cultures were enhanced after the administration of 5-oxo-ETE, and decreased by the PT treatment. 5-Oxo-ETE was upregulated in the cultures of nasal epithelial cells in the presence of H2O2 and of NP epithelial cells alone. The OXER was expressed in inflammatory cells, and not in epithelial cells. 5-Oxo-ETE produced by nasal epithelial cells may play a role in the formation and development of NP. © 2018 S. Karger AG, Basel.

  1. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  2. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  3. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Ajaz A.; Ahmad, Rizwan; Uppada, SrijayaPrakash B.

    Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells culturedmore » in the presence of TNF-α (10 ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.« less

  4. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells.

    PubMed Central

    Halbert, C L; Demers, G W; Galloway, D A

    1992-01-01

    Previous studies have shown that the E7 gene of human papillomavirus (HPV) type 16 or 18 alone was sufficient for immortalization of human foreskin epithelial cells (HFE) and that the efficiency was increased in cooperation with the respective E6 gene, whereas the HPV6 E6 or E7 gene was not active in HFE. To detect weak immortalizing activities of the HPV6 genes, cells were infected with recombinant retroviruses containing HPV genes, alone and in homologous and heterologous combinations. The HPV6 genes, alone or together (HPV6 E6 plus HPV6 E7), were not able to immortalize cells. However the HPV6 E6 gene, in concert with HPV16 E7, increased the frequency of immortalization threefold over that obtained with HPV16 E7 alone. Interestingly, 6 of 20 clones containing the HPV16 E6 gene and the HPV6 E7 gene were immortalized, whereas neither gene alone was sufficient. Thus, the HPV6 E6 and E7 genes have weak immortalizing activities which can be detected in cooperation with the more active transforming genes of HPV16. Acute expression of the HPV6 and HPV16 E6 and E7 genes revealed that only HPV16 E7 was able to stimulate the proliferation of cells in organotypic culture, resulting in increased expression of the proliferative cell nuclear antigen and the formation of a disorganized epithelial layer. Additionally, combinations of genes that immortalized HFE cells (HPV16 E6 plus HPV16 E7, HPV16 E6 plus HPV6 E7, and HPV6 E6 plus HPV16 E7) also stimulated proliferation. Images PMID:1312623

  5. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  6. Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue.

    PubMed

    Ishikawa, Shinkichi; Ito, Shigeaki

    2017-02-01

    In vitro models of human bronchial epithelium are useful for toxicological testing because of their resemblance to in vivo tissue. We constructed a model of human bronchial tissue which has a fibroblast layer embedded in a collagen matrix directly below a fully-differentiated epithelial cell layer. The model was applied to whole cigarette smoke (CS) exposure repeatedly from an air-liquid interface culture while bronchial epithelial cells were differentiating. The effects of CS exposure on differentiation were determined by histological and gene expression analyses on culture day 21. We found a decrease in ciliated cells and perturbation of goblet cell differentiation. We also analyzed the effects of CS exposure on the inflammatory response, and observed a significant increase in secretion of IL-8, GRO-α, IL-1β, and GM-CSF. Interestingly, secretion of these mediators was augmented with repetition of whole CS exposure. Our data demonstrate the usefulness of our bronchial tissue model for in vitro testing and the importance of exposure repetition in perturbing the differentiation and inflammation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4.

    PubMed

    Todaro, M; Lombardo, Y; Francipane, M G; Alea, M Perez; Cammareri, P; Iovino, F; Di Stefano, A B; Di Bernardo, C; Agrusa, A; Condorelli, G; Walczak, H; Stassi, G

    2008-04-01

    We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antiapoptotic factors PED, cFLIP, Bcl-xL and Bcl-2. Furthermore, we provide evidence that exogenous IL-4 was able to upregulate the expression levels of these antiapoptotic proteins and potently stabilized the growth of normal epithelial cells rendering them apoptosis resistant. In conclusion, IL-4 acts as an autocrine survival factor in epithelial cells. Our results indicate that inhibition of IL-4/IL-4R signaling may serve as a novel treatment for epithelial cancers.

  8. Bioactive interleukin-1alpha is cytolytically released from Candida albicans-infected oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H; Villar, C Cunha

    2004-12-01

    Oral epithelial cells are primary targets of Candida albicans in the oropharynx and may regulate the inflammatory host response to this pathogen. This investigation studied the mechanisms underlying interleukin-1alpha (IL-1alpha) release by oral epithelial cells and the role of IL-1alpha in regulating the mucosal inflammatory response to C. albicans. Infected oral epithelial cells released processed IL-1alpha protein in culture supernatants. The IL-1alpha generated was stored intracellularly and was released upon cell lysis. This was further supported by the fact that different C. albicans strains induced variable IL-1alpha release, depending on their cytolytic activity. IL-1alpha from C. albicans-infected oral epithelial cells upregulated proinflammatory cytokine secretion (IL-8 and GM-CSF) in uninfected oral epithelial or stromal cells. Our studies suggest that production of IL-1alpha, IL-8 and GM-CSF may take place in the oral mucosa in response to lytic infection of epithelial cells with C. albicans. This process can act as an early innate immune surveillance system and may contribute to the clinicopathologic signs of infection in the oral mucosa.

  9. Phenotypic characterization of collagen gel embedded primary human breast epithelial cells in athymic nude mice.

    PubMed

    Yang, J; Guzman, R C; Popnikolov, N; Bandyopadhyay, G K; Christov, K; Collins, G; Nandi, S

    1994-06-30

    We have developed a method to characterize the phenotypes and tumorigenicity of dissociated human breast epithelial cells. The dissociated cells were first embedded in collagen gels and subsequently transplanted subcutaneously in vivo in athymic nude mice. The transplantation of dissociated epithelial cells from reduction mammoplasties, presumed to be normal, always resulted in normal histomorphology. Epithelial cells were arranged as short tubular structures consisting of lumina surrounded by epithelial cells with an occasional more complex branching structure. These outgrowths were surrounded by intact basement membrane and were embedded in collagen gel that, at termination, contained collagenous stroma with fibroblasts and blood vessels. In contrast, transplantation of dissociated breast epithelial cells from breast cancer specimens resulted in outgrowths with an invasive pattern infiltrating the collagen gel as well as frank invasion into vascular space, nerves and muscles. These observations were made long before the subsequent palpable stage which resulted if left in the mouse for a long enough time. The dissociated human breast epithelial cells thus retained their intrinsic property to undergo morphogenesis to reflect their original phenotype when placed in a suitable environment, the collagen gel.

  10. Hair Follicle Generation by Injections of Adult Human Follicular Epithelial and Dermal Papilla Cells into Nude Mice

    PubMed Central

    Nilforoushzadeh, Mohammadali; Rahimi Jameh, Elham; Jaffary, Fariba; Abolhasani, Ehsan; Keshtmand, Gelavizh; Zarkob, Hajar; Mohammadi, Parvaneh; Aghdami, Nasser

    2017-01-01

    Objective Dermal papilla and hair epithelial stem cells regulate hair formation and the growth cycle. Damage to or loss of these cells can cause hair loss. Although several studies claim to reconstitute hairs using rodent cells in an animal model, additional research is needed to develop a stable human hair follicle reconstitution protocol. In this study, we have evaluated hair induction by injecting adult cultured human dermal papilla cells and a mixture of hair epithelial and dermal papilla cells in a mouse model. Materials and Methods In this experimental study, discarded human scalp skins were used to obtain dermal papilla and hair epithelial cells. After separation, cells were cultured and assessed for their characteristics. We randomly allocated 15 C57BL/6 nude mice into three groups that received injections in their dorsal skin. The first group received cultured dermal papilla cells, the second group received a mixture of cultured epithelial and dermal papilla cells, and the third group (control) received a placebo [phosphate-buffered saline (PBS-)]. Results Histopathologic examination of the injection sites showed evidence of hair growth in samples that received cells compared with the control group. However, the group that received epithelial and dermal papilla cells had visible evidence of hair growth. PKH tracing confirmed the presence of transplanted cells in the new hair. Conclusion Our data showed that injection of a combination of adult human cultured dermal papilla and epithelial cells could induce hair growth in nude mice. This study emphasized that the combination of human adult cultured dermal papilla and epithelial cells could induce new hair in nude mice. PMID:28670518

  11. The Escherichia coli O157:H7 cattle immuno-proteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine recto-anal junction squamous epithelial (RSE) cells

    PubMed Central

    Kudva, Indira T.; Krastins, Bryan; Torres, Alfredo G.; Griffin, Robert W.; Sheng, Haiqing; Sarracino, David A.; Hovde, Carolyn J.; Calderwood, Stephen B.; John, Manohar

    2015-01-01

    SUMMARY Building on previous studies, we defined the repertoire of proteins comprising the immuno-proteome of E. coli O157:H7 (O157) cultured in DMEM supplemented with norepinephrine (NE; O157 immuno-proteome), a β-adrenergic hormone that regulates E. coli O157 gene expression in the gastrointestinal tract, using a variation of a novel proteomics-based platform proteome mining tool for antigen discovery, called Proteomics-based Expression Library Screening (PELS; Kudva et al., 2006). The E. coli O157 immuno-proteome (O157-IP) comprised 91 proteins, and included those identified previously using PELS, and also proteins comprising DMEM- and bovine rumen fluid- proteomes. Outer membrane protein A (OmpA), a common component of the above proteomes, and reportedly a contributor to E. coli O157 adherence to cultured Hep-2 epithelial cells, was interestingly found to be a modulator rather than a contributor to E. coli O157 adherence to bovine recto-anal junction squamous epithelial (RSE) cells. Our results point to a role for yet to be identified members of the O157-IP in E. coli O157 adherence to RSE-cells, and additionally implicate a possible role for the OmpA regulator, TdcA, in the expression of such adhesins. Our observations have implications for development of efficacious vaccines for preventing E. coli O157 colonization of the bovine gastrointestinal tract. PMID:25643951

  12. Role of contact inhibition of locomotion and junctional mechanics in epithelial collective responses to injury

    NASA Astrophysics Data System (ADS)

    Coburn, Luke; Lopez, Hender; Schouwenaar, Irin-Maya; Yap, Alpha S.; Lobaskin, Vladimir; Gomez, Guillermo A.

    2018-03-01

    Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond to injuries by reorganizing their cell-cell junctions and migrating directionally towards the sites of damage. Notwithstanding, the mechanisms that drive collective responses in epithelial aggregates remain poorly understood. In this work, we develop a minimal mechanistic model that is able to capture the essential features of epithelial collective responses to injuries. We show that a model that integrates the mechanics of cells at the cell-cell and cell-substrate interfaces as well as contact inhibition of locomotion (CIL) correctly predicts two key properties of epithelial response to injury as: (1) local relaxation of the tissue and (2) collective reorganization involving the extension of cryptic lamellipodia that extend, on average, up to 3 cell diameters from the site of injury and morphometric changes in the basal regions. Our model also suggests that active responses (like the actomyosin purse string and softening of cell-cell junctions) are needed to drive morphometric changes in the apical region. Therefore, our results highlight the importance of the crosstalk between junctional biomechanics, cell substrate adhesion, and CIL, as well as active responses, in guiding the collective rearrangements that are required to preserve the epithelial barrier in response to injury.

  13. Gap Junction Protein Connexin 43 Serves as a Negative Marker for a Stem Cell-Containing Population of Human Limbal Epithelial Cells

    PubMed Central

    Chen, Zhuo; Evans, W. Howard; Pflugfelder, Stephen C.; Li, De-Quan

    2010-01-01

    This study evaluated whether the gap junction protein connexin (Cx) 43 could serve as a negative cell surface marker for human corneal epithelial stem cells. Cx43 expression was evaluated in corneo-limbal tissue and primary limbal epithelial cultures. Immunofluorescent staining and laser scanning confocal microscopy showed that Cx43 was strongly expressed in the corneal and limbal suprabasal epithelial cells, but the basal cells of the limbal epithelium were negative. Cx43 antibody stained mainly large cells but not small cells in primary limbal epithelial cultures. As determined by semiquantitative reverse transcription polymerase chain reaction (PCR) and real-time PCR, Cx43 mRNA was more abundant in the corneal than limbal epithelia, and it was expressed in higher levels in mature limbal epithelial cultures. Using GAP11, a rabbit polyclonal antibody against the Cx32 extracellular loop 2 (151–187), a sequence that is highly homologous in Cx43, the Cx43dim and Cx43bright cells were selected from primary limbal epithelial cultures by fluorescence-activated cell sorting and were evaluated for stem cell properties. These Cx43dim and Cx43bright cells were confirmed by their expression levels of Cx43 protein and mRNA. The Cx43dim cells were found to contain higher percentages of slow-cycling bromodeoxyuridine (BrdU)-label retaining cells and the cells that were positive for stem cell-associated markers p63, ABCG2, and integrin β1 and negative for differentiation markers K3 and involucrin. The Cx43dim cells possessed a greater proliferative potential than Cx43bright cells and nonfractionated cells as evaluated by BrdU incorporation, colony-forming efficiency, and growth capacity. Our findings suggest that human limbal basal cells do not express connexin 43, which could serve as a negative cell surface marker for the stem cell-containing population of human limbal epithelial cells. PMID:16424398

  14. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    PubMed

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  15. Continual exposure to cigarette smoke extracts induces tumor-like transformation of human nontumor bronchial epithelial cells in a microfluidic chip.

    PubMed

    Li, Encheng; Xu, Zhiyun; Liu, Fen; Wang, Huiling; Wen, Jiabin; Shao, Shujuan; Zhang, Lichuan; Wang, Lei; Liu, Chong; Lu, Jianxin; Wang, Wenxin; Gao, Zhancheng; Wang, Qi

    2014-08-01

    Heavy cigarette smoking-related chronic obstructive pulmonary disease is an independent risk factor for lung squamous carcinoma. However, the mechanisms underlying the malignant transformation of bronchial epithelial cells are unclear. In our study, human tumor-adjacent bronchial epithelial cells were obtained from 10 cases with smoking-related chronic obstructive pulmonary disease and lung squamous carcinoma and cultured in an established microfluidic chip for continual exposure to cigarette smoke extracts (CSE) to investigate the potential tumor-like transformation and mechanisms. The integrated microfluidic chip included upstream concentration gradient generator and downstream cell culture chambers supplied by flowing medium containing different concentrations of CSE. Our results showed that continual exposure to low doses of CSE promoted cell proliferation whereas to high doses of CSE triggered cell apoptosis. Continual exposure to CSE promoted reactive oxygen species production in human epithelial cells in a dose-dependent manner. More importantly, continual exposure to low dose of CSE promoted the epithelial-to-mesenchymal transition process and anchorage-independent growth, and increased chromosome instability in bronchial epithelial cells, accompanied by activating the GRP78, NF-κB, and PI3K pathways. The established microfluidic chip is suitable for primary culture of human tumor-adjacent bronchial epithelial cells to investigate the malignant transformation. Continual exposure to low doses of CSE promoted tumor-like transformation of human nontumor bronchial epithelial cells by inducing reactive oxygen species production and activating the relevant signaling.

  16. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction.

    PubMed

    Cohen, Daniel J; Gloerich, Martijn; Nelson, W James

    2016-12-20

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell-cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin-mediated cell-cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell-cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue-material interfaces.

  17. Establishment of a Human Conjunctival Epithelial Cell Line Lacking the Functional Tacstd2 Gene (An American Ophthalmological Society Thesis)

    PubMed Central

    Kinoshita, Shigeru; Kawasaki, Satoshi; Kitazawa, Koji; Shinomiya, Katsuhiko

    2012-01-01

    Purpose: To report the establishment of a human conjunctival epithelial cell line lacking the functional tumor-associated calcium signal transducer 2 (TACSTD2) gene to be used as an in vitro model of gelatinous drop-like corneal dystrophy (GDLD), a rare disease in which the corneal epithelial barrier function is significantly compromized by the loss of function mutation of the TACSTD2 gene. Methods: A small piece of conjunctival tissue was obtained from a GDLD patient. The conjunctival epithelial cells were enzymatically separated and dissociated from the tissue and immortalized by the lentiviral introduction of the SV40 large T antigen and human telomerase reverse transcriptase (hTERT) genes. Population doubling, protein expression, and transepithelial resistance (TER) analyses were performed to assess the appropriateness of the established cell line as an in vitro model for GDLD. Results: The life span of the established cell line was found to be significantly elongated compared to nontransfected conjunctival epithelial cells. The SV40 large T antigen and hTERT genes were stably expressed in the established cell line. The protein expression level of the tight junction–related proteins was significantly low compared to the immortalized normal conjunctival epithelial cell line. TER of the established cell line was found to be significantly low compared to the immortalized normal conjunctival epithelial cell line. Conclusions: Our conjunctival epithelial cell line was successfully immortalized and well mimicked several features of GDLD corneas. This cell line may be useful for the elucidation of the pathogenesis of GDLD and for the development of novel treatments for GDLD. PMID:23818740

  18. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing

    PubMed Central

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G.; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    Background. The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. Methods. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Results. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. Conclusions. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine. PMID:26539504

  19. Eosinophils Promote Epithelial to Mesenchymal Transition of Bronchial Epithelial Cells

    PubMed Central

    Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N.; Suga, Shigeru; Kobayashi, Tetsu; Fujisawa, Takao; Taguchi, Osamu; Gabazza, Esteban C.

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling. PMID:23700468

  20. Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    PubMed Central

    Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina

    2015-01-01

    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  1. Activation of Neurokinin-1 Receptors during Ozone Inhalation Contributes to Epithelial Injury and Repair

    PubMed Central

    Oslund, Karen L.; Hyde, Dallas M.; Putney, Leialoha F.; Alfaro, Mario F.; Walby, William F.; Tyler, Nancy K.; Schelegle, Edward S.

    2008-01-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2′-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2′-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress–positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways. PMID:18390473

  2. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells

    PubMed Central

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest. PMID:26370773

  3. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells.

    PubMed

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-09-15

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.

  4. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract.

    PubMed

    Li, Gongbo; Petiwala, Sakina M; Pierce, Dana R; Nonn, Larisa; Johnson, Jeremy J

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation.

  5. Selective Modulation of Endoplasmic Reticulum Stress Markers in Prostate Cancer Cells by a Standardized Mangosteen Fruit Extract

    PubMed Central

    Li, Gongbo; Petiwala, Sakina M.; Pierce, Dana R.; Nonn, Larisa; Johnson, Jeremy J.

    2013-01-01

    The increased proliferation of cancer cells is directly dependent on the increased activity of the endoplasmic reticulum (ER) machinery which is responsible for protein folding, assembly, and transport. In fact, it is so critical that perturbations in the endoplasmic reticulum can lead to apoptosis. This carefully regulated organelle represents a unique target of cancer cells while sparing healthy cells. In this study, a standardized mangosteen fruit extract (MFE) was evaluated for modulating ER stress proteins in prostate cancer. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells (PrECs) procured from two patients undergoing radical prostatectomy were treated with MFE. Flow cytometry, MTT, BrdU and Western blot were used to evaluate cell apoptosis, viability, proliferation and ER stress. Next, we evaluated MFE for microsomal stability and anti-cancer activity in nude mice. MFE induced apoptosis, decreased viability and proliferation in prostate cancer cells. MFE increased the expression of ER stress proteins. Interestingly, MFE selectively promotes ER stress in prostate cancer cells while sparing PrECs. MFE suppressed tumor growth in a xenograft tumor model without obvious toxicity. Mangosteen fruit extract selectively promotes endoplasmic reticulum stress in cancer cells while sparing non-tumorigenic prostate epithelial cells. Furthermore, in an in vivo setting mangosteen fruit extract significantly reduces xenograft tumor formation. PMID:24367485

  6. Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.

    PubMed

    Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M

    1990-06-01

    It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and intestinal-type metaplastic changes of epithelial cells lining the main and interlobular ducts of the pancreas.

  7. Pathological changes of thymic epithelial cells and autoimmune disease in NZB, NZW and (NZB × NZW)F1 mice

    PubMed Central

    Vries, M. J. De; Hijmans, W.

    1967-01-01

    An extensive histological study was carried out of NZB, NZW and (NZB × NZW)F1, (BWF1), mice of all ages between birth and 18 months. The thymuses of these mice were compared to those of three normal mouse strains. The study of the NZW mice showed that these mice, although they only occasionally have weakly positive Coombs' tests, may develop a renal disease probably of an autoimmune nature, similar to that of the NZB and the BWF1 mice. Mice of all the three NZ strains developed lesions of the skin, liver, intestines, lymphatic tissues and kidneys much resembling those occurring in human systemic lupus erythematosus (SLE), neonatally thymectomized mice and, with the exception of the renal changes, the lesions of graft versus host disease. The comparative study of the thymus in autoimmune and normal strains, revealed that important changes of the large medullary epithelial cells, involved in the formation of Hassall's corpuscles, occur very early in the three autoimmune strains. In the NZB mice the large epithelial cells are severely decreased in number in the first weeks following birth. The depletion of epithelial cells could be ascribed to a secondary degeneration of these cells soon after birth. In contrast with the NZB mice, an extensive hyperplasia of the large epithelial cells and Hassall's corpuscles was observed in the NZW and BWF1 mice, and was already apparent in the newborn animal. Many of the epithelial aggregates seemed to have been invaded by lymphoid cells. Both epithelial cells and the lymphoid cells engaged in this process showed a variety of degenerative changes. As in the NZB, a depletion of epithelial cells occurred in a later phase, at the age of 8 months in the BWF1 and at 1 year in the NZW. In the majority of young mice of the normal strains invasion of islands of epithelial cells by lymphoid cells may also be observed, although this process is far less extensive than in the autoimmune strains and does not result in either epithelial hyperplasia or depletion of epithelial cells. The described phenomenon of invasion of epithelial structures in the thymus by subsequently disintegrating lymphoid cells seems to support Burnet's concept, that so-called `forbidden clones' of lymphoid cells are eliminated in the thymus. ImagesFIG. 18FIG. 19FIG. 20FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9FIG. 10FIG. 11FIG. 12FIG. 13FIG. 14FIG. 15FIG. 16FIG. 17 PMID:6020121

  8. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-05-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results.

  9. Coupling between apical tension and basal adhesion allow epithelia to collectively sense and respond to substrate topography over long distances.

    PubMed

    Broaders, Kyle E; Cerchiari, Alec E; Gartner, Zev J

    2015-12-01

    Epithelial sheets fold into complex topographies that contribute to their function in vivo. Cells can sense and respond to substrate topography in their immediate vicinity by modulating their interfacial mechanics, but the extent to which these mechanical properties contribute to their ability to sense substrate topography across length scales larger than a single cell has not been explored in detail. To study the relationship between the interfacial mechanics of single cells and their collective behavior as tissues, we grew cell-sheets on substrates engraved with surface features spanning macroscopic length-scales. We found that many epithelial cell-types sense and respond to substrate topography, even when it is locally nearly planar. Cells clear or detach from regions of local negative curvature, but not from regions with positive or no curvature. We investigated this phenomenon using a finite element model where substrate topography is coupled to epithelial response through a balance of tissue contractility and adhesive forces. The model correctly predicts the focal sites of cell-clearing and epithelial detachment. Furthermore, the model predicts that local tissue response to substrate curvature is a function of the surrounding topography of the substrate across long distances. Analysis of cell-cell and cell-substrate contact angles suggests a relationship between these single-cell interfacial properties, epithelial interfacial properties, and collective epithelial response to substrate topography. Finally, we show that contact angles change upon activation of oncogenes or inhibition of cell-contractility, and that these changes correlate with collective epithelial response. Our results demonstrate that in mechanically integrated epithelial sheets, cell contractility can be transmitted through multiple cells and focused by substrate topography to affect a behavioral response at distant sites.

  10. The enriched fraction of Vernonia cinerea L. induces apoptosis and inhibits multi-drug resistance transporters in human epithelial cancer cells.

    PubMed

    Appadath Beeran, Asmy; Maliyakkal, Naseer; Rao, Chamallamudi Mallikarjuna; Udupa, Nayanabhirama

    2014-12-02

    Vernonia cinerea Less. (VC) of the family Asteraceaes is considered as the sacred plant; 'Dasapushpam' which is ethnopharmacologically significant to the people of Kerala in India. In fact, VC has been used in the traditional system of medicine (Ayurveda) for the treatment of various ailments including cancer. Cytotoxicity of the ethanolic extract of VC (VC-ET), petroleum ether fraction (VC-PET), dichloromethane fraction (VC-DCM), n-butyl alcohol fraction (VC-BT), and rest fraction (VC-R) was evaluated in cervical carcinoma (HeLa), lung adenocarcinoma (A549), breast cancer (MCF-7), and colon carcinoma (Caco-2) cells using Sulforhodamine B (SRB) assay. The apoptotic effects of VC-DCM were assessed in cancer cells using Annexin V assay. The effects of VC-DCM on multi-drug resistance (MDR) transporters in HeLa, A549, MCF-7, and Caco-2 cells were evaluated using flow cytometry based functional assays. Similarly, drug uptake in cancer cells and sensitization of cancer cells towards chemotherapeutic drugs in the presence of VC-DCM were studied using Daunorubicin (DNR) accumulation assay and SRB assay, respectively. Cytotoxicity assay revealed that the enriched fraction of VC (VC-DCM) possessed dose-dependent cytotoxic effects in human epithelial cancer cells (HeLa, A549, MCF-7, and Caco-2). Further, treatment of cancer cells (HeLa, A549, MCF-7, and Caco-2) with VC-DCM led to a significant increase in both early and late apoptosis, indicating the induction of apoptosis. Interestingly, VC-DCM significantly inhibited functional activity of MDR transporters (ABC-B1 and ABC-G2), enhanced DNR-uptake in cancer cells, and sensitized cancer cells towards chemotherapeutic drug-mediated cytotoxicity, thus indicating the ability of VC-DCM to reverse MDR in cancer and enhance the cytotoxic effects of anticancer drugs. A methodological investigation on the anti-cancer properties of Vernonia cinerea Less. (VC) revealed that an enriched fraction of VC (VC-DCM) possessed cytotoxic effects, triggered apoptosis, inhibited MDR transporters, enhanced drug uptake, and sensitized cancer cells towards anticancer drug-mediated cytotoxicity in human epithelial cancer cells. Thus, VC appears to be promising for an effective treatment of various drug-resistant human epithelial cancers. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    PubMed

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  12. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    PubMed

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate corneal epithelial cell-specific differentiation. PMID:27583466

  14. Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells.

    PubMed

    Saitoh, Sayaka; Maruyama, Takeshi; Yako, Yuta; Kajita, Mihoko; Fujioka, Yoichiro; Ohba, Yusuke; Kasai, Nobuhiro; Sugama, Natsu; Kon, Shunsuke; Ishikawa, Susumu; Hayashi, Takashi; Yamazaki, Tomohiro; Tada, Masazumi; Fujita, Yasuyuki

    2017-03-21

    Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.

  15. Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung.

    PubMed

    Lange, Alexander W; Sridharan, Anusha; Xu, Yan; Stripp, Barry R; Perl, Anne-Karina; Whitsett, Jeffrey A

    2015-02-01

    The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  16. Characterization of cultivated murine lacrimal gland epithelial cells

    PubMed Central

    Kobayashi, Shinya; Kawashima, Motoko; Okada, Naoko; Mishima, Kenji; Saito, Ichiro; Ito, Masataka; Shimmura, Shigeto; Tsubota, Kazuo

    2012-01-01

    Purpose To date, mouse lacrimal gland epithelial cells have been cultured successfully but only in cases involving newborn mouse lacrimal glands. In this work, we attempted to cultivate and characterize adult mouse lacrimal gland epithelial cells. Methods Lacrimal glands were removed from newborn mice (C57B/6) and isolated lacrimal gland epithelial cells were seeded onto tissue culture treated or low adherent culture dishes in Cnt-07 culture medium with or without cholera toxin. Cultivated cells were characterized by immunostaining with pan-cytokeratin, α-smooth muscle actin, and lactoferrin antibodies. Lacrimal gland cells from 7-week-old green fluorescent protein (GFP) and non-GFP (C57B/6) mice were mixed and seeded onto uncoated dishes to assess sphere-forming efficiency. Cells were also seeded onto 3T3 cell feeder layers to assess colony forming efficiency. Results Lacrimal gland epithelial cells were selectively cultured with cholera toxin, and cell type was verified by pan-cytokeratin and α-smooth muscle actin immunostaining. Sphere formation from single cells of adult mice was observed using specific medium and low adherent culture dishes. These cells could also undergo colony formation on 3T3 feeder cells. Conclusions Adult mouse lacrimal gland epithelial cells were successfully cultivated in cholera toxin-containing medium, and were observed to form spheres from single cells. PMID:22665974

  17. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG-6-Dependent Stem Cell Activation and Macrophage Switch.

    PubMed

    Di, Guohu; Du, Xianli; Qi, Xia; Zhao, Xiaowen; Duan, Haoyun; Li, Suxia; Xie, Lixin; Zhou, Qingjun

    2017-08-01

    To explore the role and mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in corneal epithelial wound healing in type 1 diabetic mice. Diabetic mice were treated with subconjunctival injections of BM-MSCs or recombinant tumor necrosis factor-α-stimulated gene/protein-6 (TSG-6). The corneal epithelial wound healing rate was examined by fluorescein staining. The mRNA and protein expression levels of TSG-6 were measured by quantitative RT-PCR and Western blot. The infiltrations of leukocytes and macrophages were analyzed by flow cytometry and immunofluoresence staining. The effect of TSG-6 was further evaluated in cultured limbal epithelial stem/progenitor cells, macrophages, and diabetic mice by short hairpin RNA (shRNA) knockdown. Local MSC transplantation significantly promoted diabetic corneal epithelial wound healing, accompanied by elevated corneal TSG-6 expression, increased corneal epithelial cell proliferation, and attenuated inflammatory response. Moreover, in cultured human limbal epithelial stem/progenitor cells, TSG-6 enhanced the colony-forming efficiency, stimulated mitogenic proliferation, and upregulated the expression level of ΔNp63. Furthermore, in diabetic mouse cornea and in vitro macrophage culture, TSG-6 alleviated leukocyte infiltration and promoted the polarization of recruited macrophages to anti-inflammatory M2 phenotypes with increased phagocytotic capacity. In addition, the promotion of epithelial stem/progenitor cell activation and macrophage polarization by MSC transplantation was largely abrogated by shRNA knockdown of TSG-6. This study provided the first evidence of TSG-6 secreted by MSCs promoting corneal epithelial wound healing in diabetic mice through activating corneal epithelial stem/progenitor cells and accelerating M2 macrophage polarization.

  18. CD40 Ligand Is Increased in Mast Cells in Psoriasis and Actinic Keratosis but Less So in Epithelial Skin Carcinomas.

    PubMed

    Haimakainen, Salla; Kaukinen, Antti P; Suttle, Mireille-Maria; Pelkonen, Jukka; Harvima, Ilkka T

    2017-03-16

    The expression of CD40 ligand (CD40L) in mast cells was investigated in biopsies from lesional and non-lesional skin samples of patients with psoriasis, actinic keratosis (AK), basal cell carcinoma, and squamous cell carcinoma using a sequential double-staining technique. The percentage of CD40L + mast cells was higher in the lesional than in the non-lesional skin (p < .003). Interestingly, this percentage was lower in both carcinomas than in psoriasis and actinic keratosis (p < .025). Cells immunopositive for CD40 receptor were increased in all lesion types but especially so in carcinomas. The results suggest a dysregulated anti-tumoral immune response by mast cell CD40L in skin carcinomas.

  19. Cyclin D1 negatively regulates the expression of differentiation genes in HT-29 M6 mucus-secreting colon cancer cells.

    PubMed

    Mayo, Clara; Mayol, Xavier

    2009-08-28

    HT-29 M6 colon cancer cells differentiate to a mucus-secreting phenotype in culture. We found that the pattern of cyclin D1 expression in HT-29 M6 cells did not correlate with instances of cell proliferation but was specifically induced during a dedifferentiation process following disaggregation of epithelial cell layers, even under conditions that did not allow cell cycle reentrance. Interestingly, ectopic expression of cyclin D1 in differentiated cells led to the inhibition of the transcriptional activity of differentiation gene promoters, such as the mucin MUC1. We thus propose that the overexpression of cyclin D1 found in colon cancer favours tumour dedifferentiation as one mechanism of tumour progression.

  20. Nitric Oxide Promotes Airway Epithelial Wound Repair through Enhanced Activation of MMP-9

    PubMed Central

    Bove, Peter F.; Wesley, Umadevi V.; Greul, Anne-Katrin; Hristova, Milena; Dostmann, Wolfgang R.; van der Vliet, Albert

    2007-01-01

    The airway epithelium provides a protective barrier against inhaled environmental toxins and microorganisms, and epithelial injury initiates a number of processes to restore its barrier integrity, including activation of matrix metalloproteinases such as MMP-9 (92-kD gelatinase B). Airway epithelial cells continuously produce nitric oxide (NO), which has been linked to cell migration and MMP-9 regulation in several cell types, but the importance of epithelial NO in mediating airway epithelial repair or MMP-9 activation is unknown. Using primary or immortalized human bronchial epithelial cells, we demonstrate that low concentrations of NO promote epithelial cell migration and wound repair in an in vitro wound assay, which was associated with increased localized expression and activation of MMP-9. In addition, in HBE1 cells that were stably transfected with inducible NOS (NOS2), to mimic constitutive epithelial NOS2 expression in vivo, NOS inhibition decreased epithelial wound repair and MMP-9 expression. The stimulatory effects of NO on epithelial wound repair and MMP-9 expression were dependent on cGMP-mediated pathways and were inhibited by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase. Inhibition of cGMP-dependent protein kinase (PKG) attenuated NO-mediated epithelial wound closure, but did not affect MMP-9 expression. However, pharmacologic MMP inhibition and siRNA knockdown of MMP-9 expression demonstrated the contribution of MMP-9 to NO-mediated wound closure. Overall, our results demonstrate that NOS2-derived NO contributes to airway epithelial repair by both PKG-dependent and -independent mechanisms, and involves NO-dependent expression and activation of MMP-9. PMID:16980554

  1. A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression.

    PubMed

    Onyiah, Joseph C; Schaefer, Rachel E M; Colgan, Sean P

    2018-05-23

    In mucosal inflammatory disorders, the protective influence of heme oxygenase-1 (HO-1) and its metabolic byproducts, carbon monoxide (CO) and biliverdin, is a topic of significant interest. Mechanisms under investigation include the regulation of macrophage function and mucosal cytokine expression. While there is an increasing recognition of the importance of epithelial-derived factors in the maintenance of intestinal mucosal homeostasis, the contribution of intestinal epithelial cell (IEC) HO-1 on inflammatory responses has not previously been investigated. We examined the influence of modulating HO-1 expression on the inflammatory response of human IECs. Engineered deficiency of HO-1 in Caco-2 and T84 IECs led to increased proinflammatory chemokine expression in response to pathogenic bacteria and inflammatory cytokine stimulation. Crosstalk with activated leukocytes also led to increased chemokine expression in HO-1-deficient cells in an IL-1β dependent manner. Treatment of Caco-2 cells with a pharmacological inducer of HO-1 led to the inhibition of chemokine expression. Mechanistic studies suggest that HO-1 and HO-1-related transcription factors, but not HO-1 metabolic products, are partly responsible for the influence of HO-1 on chemokine expression. In conclusion, our data identify HO-1 as a central regulator of IEC chemokine expression that may contribute to homeo-stasis in the intestinal mucosa. © 2018 S. Karger AG, Basel.

  2. Induction of interferon-λ contributes to TLR3 and RIG-I activation-mediated inhibition of herpes simplex virus type 2 replication in human cervical epithelial cells.

    PubMed

    Zhou, Li; Li, Jie-Liang; Zhou, Yu; Liu, Jin-Biao; Zhuang, Ke; Gao, Jian-Feng; Liu, Shi; Sang, Ming; Wu, Jian-Guo; Ho, Wen-Zhe

    2015-12-01

    Is it possible to immunologically activate human cervical epithelial cells to produce antiviral factors that inhibit herpes simplex virus type 2 (HSV-2) replication? Our results indicate that human cervical epithelial cells possess a functional TLR3/RIG-I signaling system, the activation of which can mount an Interferon-λ (IFN-λ)-mediated anti-HSV-2 response. There is limited information about the role of cervical epithelial cells in genital innate immunity against HSV-2 infection. We examined the expression of toll-like receptors (TLRs) and retinoic acid-inducible I (RIG-I) in End1/E6E7 cells by real-time PCR. The IFN-λ induced by TLR3 and RIG-I activation of End1/E6E7 cells was also examined by real-time PCR and ELISA. HSV-2 infection of End1/E6E7 cells was evaluated by the real-time PCR detection of HSV-2 gD expression. The antibody to IL-10Rβ was used to determine whether IFN-λ contributes to TLR3/RIG-I mediated HSV-2 inhibition. Expression of interferon regulatory factor 3 (IRF3), IRF7, IFN-stimulated gene 56 (ISG56), 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA) were determined by the real-time PCR and western blot. End1/E6E7 cells were transfected with shRNA to knockdown the IRF3, IRF7 or RIG-I expression. Student's t-test and post Newman-Keuls test were used to analyze stabilized differences in the immunological parameters above between TLR3/RIG-I-activated cells and control cells. Human cervical epithelial cells expressed functional TLR3 and RIG-I, which could be activated by poly I:C and 5'ppp double-strand RNAs (5'ppp dsRNA), resulting in the induction of endogenous interferon lambda (IFN-λ). The induced IFN-λ contributed to TLR3/RIG-I-mediated inhibition of HSV-2 replication in human cervical epithelial cells, as an antibody to IL-10Rβ, an IFN-λ receptor subunit, could compromise TLR3/RIG-I-mediated inhibition of HSV-2. Further studies showed that TLR3/RIG-I signaling in the cervical epithelial cells by dsRNA induced the expression of the IFN-stimulated genes (ISGs), ISG56, 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA), the key antiviral elements in the IFN signaling pathway. In addition, we observed that the topical treatment of genital mucosa with poly I:C could protect mice from genital HSV-2 infection. Future prospective studies with primary cells and suitable animal models are needed in order to confirm these outcomes. The findings provide direct and compelling evidence that there is intracellular expression and regulation of IFN-λ in human cervical epithelial cells, which may have a key role in the innate genital protection against viral infections. Not applicable. This work was supported by the National Natural Science Foundation of China (81301428 to L.Z. and 81271334 to W.-Z.H.), the Fundamental Research Funds for the Central Universities (2042015kf0188 to L.Z.), the China Postdoctoral Science Foundation (2013M531745 to L.Z.), the Development Program of China ('973', 2012CB518900 to W.-Z.H.) from the Ministry of Science and Technology of the People's Republic of China, grants (DA12815 and DA022177 to W.-Z.H.) from the National Institute on Drug Abuse (NIDA) and the open project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (WDCM005 to M.S.). The authors declare no competing financial interests. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis

    PubMed Central

    Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K.; Minc, Nicolas; Bellaïche, Yohanns

    2017-01-01

    The orientation of cell division along the interphase cell long-axis, the century old Hertwig’s rule, has profound roles in tissue proliferation, morphogenesis, architecture and mechanics1,2. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways3–12. At mitosis, epithelial cells usually round up to ensure faithful chromosome segregation and to promote morphogenesis1. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. We found that in Drosophila epithelia, tricellular junctions (TCJ) localize microtubule force generators, orienting cell division via the Dynein associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJ emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues. PMID:26886796

  4. Isolation of Mouse Primary Gastric Epithelial Cells to Investigate the Mechanisms of Helicobacter pylori Associated Disease.

    PubMed

    Tran, Le Son; Ferrero, Richard L

    2018-01-01

    The gastrointestinal epithelium provides the first line of defense against invading pathogens, among which Helicobacter pylori is linked to numerous gastric pathologies, including chronic gastritis and cancer. Primary gastric epithelial cells represent a useful model for the investigation of the underlying molecular and cellular mechanisms involved in these H. pylori associated diseases. In this chapter, we describe a method for the isolation of primary gastric epithelial cells from mice and detection of epithelial cell adhesion molecule (EpCAM) expression in the isolated cells.

  5. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells.more » Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.« less

  6. Cell physiology at the Mount Desert Island Biological Laboratory: a brief look back and forward

    PubMed Central

    2011-01-01

    The Mount Desert Island Biological Laboratory (MDIBL) has played important roles in the development of modern physiological concepts and tools, particularly in the fields of kidney and epithelial cell physiology. Over the last decade, MDIBL has undergone remarkable growth and evolution. This article will briefly review MDIBL's past and outline its future directions. It is hoped that this overview will renew and stimulate interest in MDIBL and, in particular, will encourage an even wider community of physiologists to participate in its ongoing growth and development. PMID:21068363

  7. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB-responsive gene associated with loss of cell anchorage. There is also a range of aneuploidy amongst the transformed clones and ongoing chromosomal analysis by array-based comparative genomic hybridization has identified single or two copy loss of the tumor suppressor gene FHIT, in 8 of 15 transformed clones. This is accompanied by a 6-fold reduction, overall, in FHIT gene expression amongst the 15 clones under examination. Interestingly, in spite of these changes at the molecular level, when implanted subcutaneously into immune-compromised mice, the transformed clones from the HBEC3 KT cell line do not form tumors. This suggests that additional hits are required for oncogenesis, at least in a subcutaneous model, and/or, 2-D tissue culture models to not adequately reflect the underlying biology. We have therefore, begun to examine transformation in a 3-D tissue culture model, bronchocysts, where HBEC cells ultimately differentiate and stop cycling. We have shown that cells in 3-D have reduced gene expression of key DNA repair genes, and are less effective at repairing complex damage. We are now irradiating at dose rates as low as 0.2 cGy/min to test the notion of an inverse dose rate effect for carcinogenesis by HZE particles. In our early experiments we have shown that as the dose rate dropped from 20 cGy/min to 0.2 cGy/min, for the same total dose (0.25 and 0.50 Gy) an increasing percentage of bronchocysts become mis-shapen, suggesting that some cells within the cyst have de-differentiated and have reentered the cell cycle. We are now testing whether those cells are, in fact, cycling and wherther they are transformed by disaggregating the cyst and placing the cells into soft agar culture.

  8. Characterizing mutagenesis in the hprt gene of rat alveolar epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, K.E.; Deyo, L.C.; Howard, B.W.

    1995-12-31

    A clonal selection assay was developed for mutation in the hypoxanthine-guanine phosphoribosyl transferase (hprt) gene of rat alveolar epithelial cells. Studies were conducted to establish methods for isolation and long-term culture of rat alveolar epithelial cells. When isolated by pronase digestion purified on a Nycodenz gradient and cultured in media containing 7.5% fetal bovine serum (FBS), pituitary extract, EGF, insulin, and IGF-1, rat alveolar epithelial cells could be maintained in culture for several weeks with cell doubling times of 2-4 days. The rat alveolar epithelial cell cultures were exposed in vitro to the mutagens ethylnitrosourea (ENU) and H{sub 2}O{sub 2},more » and mutation in the hprt gene was selected for by culture in the presence of the toxic purine analog, 6-thioguanine (6TG). In vitro exposure to ENU or H{sub 2}O produced a dose-dependent increase in hprt mutation frequency in the alveolar epithelial cells. To determine if the assay system could be used to evaluate mutagenesis in alveolar type II cells after in vivo mutagen or carcinogen exposure, cells were isolated from rats treated previously with ENU or {alpha}-quartz. A significant increase in hprt mutation frequency was detected in alveolar epithelial cells obtained from rats exposed to ENU or {alpha}-quartz; the latter observation is the first demonstration that crystalline silica exposure is mutagenic in vivo. In summary, these studies show that rat alveolar epithelial cells isolated by pronase digestion and Nycodenz separation techniques and cultured in a defined media can be used in a clonal selection assay for mutation in the hprt gene. This assay demonstrates that ENU and H{sub 2}O{sub 2} in vitro and ENU and {alpha}-quartz in vivo are mutagenic for rat alveolar epithelial cells. This model should be useful for investigating the genotoxic effects of chemical and physical agents on an important lung cell target for neoplastic transformation. 41 refs., 4 figs., 3 tabs.« less

  9. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets

    PubMed Central

    Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  10. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain.more » Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.« less

  11. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.

  12. Cell death at the intestinal epithelial front line.

    PubMed

    Delgado, Maria Eugenia; Grabinger, Thomas; Brunner, Thomas

    2016-07-01

    The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family. © 2015 FEBS.

  13. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  14. Polarized protein transport and lumen formation during epithelial tissue morphogenesis.

    PubMed

    Blasky, Alex J; Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    One of the major challenges in biology is to explain how complex tissues and organs arise from the collective action of individual polarized cells. The best-studied model of this process is the cross talk between individual epithelial cells during their polarization to form the multicellular epithelial lumen during tissue morphogenesis. Multiple mechanisms of apical lumen formation have been proposed. Some epithelial lumens form from preexisting polarized epithelial structures. However, de novo lumen formation from nonpolarized cells has recently emerged as an important driver of epithelial tissue morphogenesis, especially during the formation of small epithelial tubule networks. In this review, we discuss the latest findings regarding the mechanisms and regulation of de novo lumen formation in vitro and in vivo.

  15. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines

    PubMed Central

    2010-01-01

    Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822

  16. Genetics and epithelial cell dysfunction in cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  17. Adherence of Lactobacillus crispatus to vaginal epithelial cells from women with or without a history of recurrent urinary tract infection.

    PubMed

    Kwok, Louisa; Stapleton, Ann E; Stamm, Walter E; Hillier, Sharon L; Wobbe, Cheryl L; Gupta, Kalpana

    2006-11-01

    Lactobacillus crispatus strain CTV-05 is a vaginal probiotic proposed for use in women with recurrent urinary tract infection to reduce vaginal colonization with Escherichia coli and the risk of urinary tract infection. However, the ability of this probiotic strain to adhere to the target mucosa, vaginal epithelial cells, has not been assessed in women with recurrent urinary tract infection. We measured the adherence of L. crispatus strain CTV-05 to vaginal epithelial cells collected from more than 100 premenopausal women with (cases) and without (controls) a history of recurrent urinary tract infection. We also examined the effects of relevant host factors on bacterial adherence. Bacterial adherence assays were performed by combining L. crispatus CTV-05 with exfoliated vaginal epithelial cells collected from 51 case women and 51 controls. L. crispatus CTV-05 adhered in high numbers to vaginal epithelial cells from women with recurrent urinary tract infection (mean adherence of 50.5 lactobacilli per vaginal epithelial cell) and controls (mean adherence of 39.4 lactobacilli per vaginal epithelial cell). Adherence was significantly higher using vaginal epithelial cells from women with a maternal history of urinary tract infection (p = 0.036) and a nonsecretor phenotype (p < 0.001), but was not significantly affected by recent spermicide use, oral contraceptive use, menstrual cycle phase or sexual activity. L. crispatus strain CTV-05 is highly adherent to vaginal epithelial cells collected from a large sample of premenopausal women with or without a history of recent recurrent urinary tract infection. These data strongly support further evaluation of this probiotic in clinical trials of women with recurrent urinary tract infection.

  18. TRPA1 channels: expression in non-neuronal murine lung tissues and dispensability for hyperoxia-induced alveolar epithelial hyperplasia.

    PubMed

    Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander

    2018-05-12

    Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.

  19. Psychosexual Intervention in Patients With Stage I-III Gynecologic or Breast Cancer

    ClinicalTrials.gov

    2018-05-25

    Ovarian Sarcoma; Ovarian Stromal Cancer; Stage I Uterine Sarcoma; Stage I Vaginal Cancer; Stage I Vulvar Cancer; Stage IA Cervical Cancer; Stage IA Endometrial Carcinoma; Stage IA Fallopian Tube Cancer; Stage IA Ovarian Epithelial Cancer; Stage IA Ovarian Germ Cell Tumor; Stage IA Primary Peritoneal Cavity Cancer; Stage IB Cervical Cancer; Stage IB Endometrial Carcinoma; Stage IB Fallopian Tube Cancer; Stage IB Ovarian Epithelial Cancer; Stage IB Ovarian Germ Cell Tumor; Stage IB Primary Peritoneal Cavity Cancer; Stage IC Fallopian Tube Cancer; Stage IC Ovarian Epithelial Cancer; Stage IC Ovarian Germ Cell Tumor; Stage IC Primary Peritoneal Cavity Cancer; Stage II Endometrial Carcinoma; Stage II Gestational Trophoblastic Tumor; Stage II Uterine Sarcoma; Stage II Vaginal Cancer; Stage II Vulvar Cancer; Stage IIA Cervical Cancer; Stage IIA Fallopian Tube Cancer; Stage IIA Ovarian Epithelial Cancer; Stage IIA Ovarian Germ Cell Tumor; Stage IIA Primary Peritoneal Cavity Cancer; Stage IIB Cervical Cancer; Stage IIB Fallopian Tube Cancer; Stage IIB Ovarian Epithelial Cancer; Stage IIB Ovarian Germ Cell Tumor; Stage IIB Primary Peritoneal Cavity Cancer; Stage IIC Fallopian Tube Cancer; Stage IIC Ovarian Epithelial Cancer; Stage IIC Ovarian Germ Cell Tumor; Stage IIC Primary Peritoneal Cavity Cancer; Stage III Gestational Trophoblastic Tumor; Stage III Uterine Sarcoma; Stage III Vaginal Cancer; Stage III Vulvar Cancer; Stage IIIA Cervical Cancer; Stage IIIA Endometrial Carcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Cervical Cancer; Stage IIIB Endometrial Carcinoma; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Endometrial Carcinoma; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Breast Cancer

  20. Connective Tissue Growth Factor Promotes Pulmonary Epithelial Cell Senescence and Is Associated with COPD Severity.

    PubMed

    Jang, Jun-Ho; Chand, Hitendra S; Bruse, Shannon; Doyle-Eisele, Melanie; Royer, Christopher; McDonald, Jacob; Qualls, Clifford; Klingelhutz, Aloysius J; Lin, Yong; Mallampalli, Rama; Tesfaigzi, Yohannes; Nyunoya, Toru

    2017-04-01

    The purpose of this study was to determine whether expression of connective tissue growth factor (CTGF) protein in chronic obstructive pulmonary disease (COPD) is consistent in humans and animal models of COPD and to investigate the role of this protein in lung epithelial cells. CTGF in lung epithelial cells of ex-smokers with COPD was compared with ex-smokers without COPD by immunofluorescence. A total of twenty C57Bl/6 mice and sixteen non-human primates (NHPs) were exposed to cigarette smoke (CS) for 4 weeks. Ten mice of these CS-exposed mice and eight of the CS-exposed NHPs were infected with H3N2 influenza A virus (IAV), while the remaining ten mice and eight NHPs were mock-infected with vehicle as control. Both mRNA and protein expression of CTGF in lung epithelial cells of mice and NHPs were determined. The effects of CTGF overexpression on cell proliferation, p16 protein, and senescence-associated β-galactosidase (SA-β-gal) activity were examined in cultured human bronchial epithelial cells (HBECs). In humans, CTGF expression increased with increasing COPD severity. We found that protein expression of CTGF was upregulated in lung epithelial cells in both mice and NHPs exposed to CS and infected with IAV compared to those exposed to CS only. When overexpressed in HBECs, CTGF accelerated cellular senescence accompanied by p16 accumulation. Both CTGF and p16 protein expression in lung epithelia are positively associated with the severity of COPD in ex-smokers. These findings show that CTGF is consistently expressed in epithelial cells of COPD lungs. By accelerating lung epithelial senescence, CTGF may block regeneration relative to epithelial cell loss and lead to emphysema.

  1. Candida albicans triggers interleukin-8 secretion by oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-04-01

    Oropharyngeal candidiasis is a frequent opportunistic infection associated with immunocompromised hosts. Candida albicans is the principal species responsible for this infection. Production of interleukin-8 (IL-8), by oral epithelial cells can be expected to play a major role in the recruitment and activation of professional phagocytes at the infected site. The purpose of this study was to determine whether C. albicans triggers secretion of IL-8 by oral epithelial cells in vitro and investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines (SCC4, SCC15, and OKF6/TERT-2) as well as primary gingival epithelial cells were used. Epithelial cells were cocultured with C. albicans, strains SC5314, ATCC28366 or ATCC32077, for 24-48 hr, and supernatants were analyzed for IL-8 content by ELISA. A germination-deficient mutant (efg1/efg1 cph1/cph1), otherwise isogenic to strain SC5314, was used to assess the requirement for germination in triggering IL-8 responses. In order to ascertain whether direct contact of yeast with host cells is required to trigger cytokine production, epithelial cells were separated from yeast using cell culture inserts. To test whether IL-8 secretion is dependent on IL-1alpha activity, epithelial cells were challenged with viable C. albicans in the presence or absence of neutralizing anti-IL-1alpha antibody or IL-1ra, and IL-8 secretion was measured in the supernatants. All cell lines and primary cultures responded to C. albicans with an increase in IL-8 secretion. IL-8 responses were contact-dependent, strain-specific, required yeast viability and germination into hyphae, and were in part autoregulated by IL-1alpha. Copyright 2003 Elsevier Science Ltd.

  2. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development

    PubMed Central

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V.; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K.; Bellusci, Saverio

    2015-01-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. PMID:26511927

  3. Ectonucleotidases in the digestive system: focus on NTPDase3 localization.

    PubMed

    Lavoie, Elise G; Gulbransen, Brian D; Martín-Satué, Mireia; Aliagas, Elisabet; Sharkey, Keith A; Sévigny, Jean

    2011-04-01

    Extracellular nucleotides and adenosine are biologically active molecules that bind members of the P2 and P1 receptor families, respectively. In the digestive system, these receptors modulate various functions, including salivary, gastric, and intestinal epithelial secretion and enteric neurotransmission. The availability of P1 and P2 ligands is modulated by ectonucleotidases, enzymes that hydrolyze extracellular nucleotides into nucleosides. Nucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase are the dominant ectonucleotidases at physiological pH. While there is some information about the localization of ecto-5'-nucleotidase and NTPDase1 and -2, the distribution of NTPDase3 in the digestive system is unknown. We examined the localization of these ectonucleotidases, with a focus on NTPDase3, in the gastrointestinal tract and salivary glands. NTPDase1, -2, and -3 are responsible for ecto-ATPase activity in these tissues. Semiquantitative RT-PCR, immunohistochemistry, and in situ enzyme activity revealed the presence of NTPDase3 in some epithelial cells in serous acini of salivary glands and mucous acini and duct cells of sublingual salivary glands, in cells from the stratified esophageal and forestomach epithelia, and in some enteroendocrine cells of the gastric antrum. Interestingly, NTPDase2 and ecto-5'-nucleotidase are coexpressed with NTPDase3 in salivary gland cells and stratified epithelia. In the colon, neurons express NTPDase3 and glial cells express NTPDase2. Ca(2+) imaging experiments demonstrate that NTPDases regulate P2 receptor ligand availability in the enteric nervous system. In summary, the specific localization of NTPDase3 in the digestive system suggests functional roles of the enzyme, in association with NTPDase2 and ecto-5'-nucleotidase, in epithelial functions such as secretion and in enteric neurotransmission.

  4. Evidence for the involvement of fibroblast growth factor 10 in lipofibroblast formation during embryonic lung development.

    PubMed

    Al Alam, Denise; El Agha, Elie; Sakurai, Reiko; Kheirollahi, Vahid; Moiseenko, Alena; Danopoulos, Soula; Shrestha, Amit; Schmoldt, Carole; Quantius, Jennifer; Herold, Susanne; Chao, Cho-Ming; Tiozzo, Caterina; De Langhe, Stijn; Plikus, Maksim V; Thornton, Matthew; Grubbs, Brendan; Minoo, Parviz; Rehan, Virender K; Bellusci, Saverio

    2015-12-01

    Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we show that a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10(+) progenitor cells, in vivo knockdown of Fgfr2b ligand activity and reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development. © 2015. Published by The Company of Biologists Ltd.

  5. Embryoid body attachment to reconstituted basement membrane induces a genetic program of epithelial differentiation via jun N-terminal kinase signaling.

    PubMed

    Ho, Hoang-Yen; Moffat, Ryan C; Patel, Rupal V; Awah, Franklin N; Baloue, Kaitrin; Crowe, David L

    2010-09-01

    Embryonic stem (ES) cells are derived from early stage mammalian embryos and have broad developmental potential. These cells can be manipulated experimentally to generate cells of multiple tissue types which could be important in treating human diseases. The ability to produce relevant amounts of these differentiated cell populations creates the basis for clinical interventions in tissue regeneration and repair. Understanding how embryonic stem cells differentiate also can reveal important insights into cell biology. A previously reported mouse embryonic stem cell model demonstrated that differentiated epithelial cells migrated out of embryoid bodies attached to reconstituted basement membrane. We used genomic technology to profile ES cell populations in order to understand the molecular mechanisms leading to epithelial differentiation. Cells with characteristics of cultured epithelium migrated from embryoid bodies attached to reconstituted basement membrane. However, cells that comprised embryoid bodies also rapidly lost ES cell-specific gene expression and expressed proteins characteristic of stratified epithelia within hours of attachment to basement membrane. Gene expression profiling of sorted cell populations revealed upregulation of the BMP/TGFbeta signaling pathway, which was not sufficient for epithelial differentiation in the absence of basement membrane attachment. Activation of c-jun N-terminal kinase 1 (JNK1) and increased expression of Jun family transcription factors was observed during epithelial differentiation of ES cells. Inhibition of JNK signaling completely blocked epithelial differentiation in this model, revealing a key mechanism by which ES cells adopt epithelial characteristics via basement membrane attachment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Claudin-7-positive synchronous spontaneous intrahepatic cholangiocarcinoma, adenocarcinoma and adenomas of the gallbladder in a Bearded dragon (Pogona vitticeps).

    PubMed

    Jakab, Csaba; Rusvai, Miklós; Szabó, Zoltán; Gálfi, Péter; Marosán, Miklós; Kulka, Janina; Gál, János

    2011-03-01

    In this study, synchronous spontaneous, independent liver and gallbladder tumours were detected in a Bearded dragon (Pogona vitticeps). The multiple tumours consisted of intrahepatic cholangiocarcinoma as well as in situ adenocarcinoma and two adenomas of the gallbladder. The biliary epithelial cells and the cholangiocarcinoma showed membranous cross-immunoreactivity for claudin-7. The gallbladder epithelial cells, its adenoma and adenocarcinoma showed basolateral cross-reactivity for claudin-7. We think that the humanised anti-claudin-7 antibody is a good marker for the detection of different primary cholangiocellular and gallbladder tumours in Bearded dragons. The cholangiocytes, the cholangiocarcinoma, the endothelial cells of the liver and the epithelial cells and gallbladder tumours all showed claudin-5 cross-reactivity. The humanised anti-cytokeratin AE1-AE3 antibody showed cross-reactivity in the biliary epithelial cells, cholangiocarcinoma cells, epithelial cells and tumour cells of the gallbladder. It seems that this humanised antibody is a useful epithelial marker for the different neoplastic lesions of epithelial cells in reptiles. The humanised anti-α-smooth muscle actin (α-SMA) antibody showed intense cross-reactivity in the smooth muscle cells of the hepatic vessels and in the muscle layer of the gallbladder. The portal myofibroblasts, the endothelial cells of the sinusoids and the stromal cells of the cholangiocarcinoma and gallbladder tumours were positive for α-SMA. The antibovine anti-vimentin and humanised anti-Ki-67 antibodies did not show crossreactivity in the different samples from the Bearded dragon.

  7. A LGG-derived protein promotes IgA production through up-regulation of APRIL expression in intestinal epithelial cells

    PubMed Central

    Wang, Yang; Liu, Liping; Moore, Daniel J; Shen, Xi; Peek, Richard M.; Acra, Sari A; Li, Hui; Ren, Xiubao; Polk, D Brent; Yan, Fang

    2016-01-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells, leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation, this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting IgA production. p40 up-regulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells, which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfrfl/fl , but not Egfrfl/fl-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells, exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B cell class switching to IgA+ cells and IgA production, which was suppressed by APRIL receptor neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells, fecal IgA levels, IgA+B220+, IgA+CD19+, and IgA+ plasma cells in lamina propria of Egfrfl/fl, but not Egfrfl/fl-Vil-Cre mice. Thus, p40 up-regulates EGFR-dependent APRIL production in intestinal epithelial cells, which may contribute to promoting IgA production. PMID:27353252

  8. Assessment of cytologic evaluation of preputial epithelial cells as a diagnostic test for detection of adrenocortical disease in castrated ferrets.

    PubMed

    Protain, Holly J; Kutzler, Michelle A; Valentine, Beth A

    2009-05-01

    To determine whether results of cytologic evaluation of preputial epithelial cells correspond to results of a serum endocrine hormone assay and clinical signs associated with adrenocortical disease in castrated ferrets. 13 clinically normal ferrets and 8 ferrets with signs of adrenocortical disease. Blood and preputial lavage samples were collected from each ferret. Serum samples were submitted to the University of Tennessee Veterinary Diagnostic Laboratory for performance of an endocrine hormone assay. Differential epithelial cell counts were performed on preputial lavage samples to determine the percentage of cornified cells. Results of cytologic evaluation were compared with results of the endocrine hormone assay and clinical status of ferrets. The percentage of cornified preputial epithelial cells was not significantly correlated with serum 17B-estradiol or androstenedione concentration but was significantly correlated with serum 17-hydroxyprogesterone concentration (r = 0.60). The percentage of cornified preputial epithelial cells was higher in ferrets with clinical signs of adrenocortical disease (mean +/- SD, 71.3 +/- 16.9%) than in clinically normal ferrets (55.5 +/- 19.0%). Cornification of preputial epithelial cells was correlated with an increase in serum 17-hydroxyprogesterone concentration as well as clinical signs of adrenocortical disease in castrated ferrets. Additional investigation is needed to elucidate the mechanism of preputial epithelial cell cornification in castrated ferrets.

  9. [Regulation of immune responses by exosomes derived from antigen presenting cells].

    PubMed

    Maravillas-Montero, José Luis; Martínez-Cortés, Ismael

    2017-01-01

    Cells release several biomolecules to the extracellular environment using them as a communication alternative with neighbor cells. Besides these molecules, cells also release more complex elements, like vesicles; structures composed of a lipidic bilayer with transmembrane proteins that protect a hydrophilic content. Exosomes are a small subtype of vesicles (30-150 nm), produced by many cell types, such as tumor cells, neurons, epithelial cells and immune cells. Included in this last group, antigen presenting cells produce exosomes that contain different types of molecules depending on their activation and/or maturation state. In recent years there has been an exponential interest in exosomes due to the recent evidences that show the immunomodulatory properties of these vesicles and therefore, their great potential in diagnostic approaches and development of therapies for different inflammation-associated pathologies.

  10. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity.

    PubMed

    Nguyen, Quy H; Pervolarakis, Nicholas; Blake, Kerrigan; Ma, Dennis; Davis, Ryan Tevia; James, Nathan; Phung, Anh T; Willey, Elizabeth; Kumar, Raj; Jabart, Eric; Driver, Ian; Rock, Jason; Goga, Andrei; Khan, Seema A; Lawson, Devon A; Werb, Zena; Kessenbrock, Kai

    2018-05-23

    Breast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell populations, one basal and two luminal cell types, which we identify as secretory L1- and hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation trajectories produces one continuous lineage hierarchy that closely connects the basal lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides insights into the cellular blueprint of the human breast epithelium and will form the foundation to understand how the system goes awry during breast cancer.

  11. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos

    PubMed Central

    Katow, Hideki

    2015-01-01

    Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069

  12. A Computational Study of the Development of Epithelial Acini: II. Necessary Conditions for Structure and Lumen Stability

    PubMed Central

    Rejniak, Katarzyna A.; Anderson, Alexander R.A.

    2013-01-01

    Simple epithelial tissues are organized as single layers of tightly packed cells that surround hollow lumens and form selective barriers separating different internal compartments of the body. The maintenance of epithelial structure and its function requires tight coordination and control of all the life processes of epithelial cells via cell-to-cell communication and signaling. These well-balanced cellular systems are, however, quite often disturbed by genetic or environmental cues that may lead to the formation of epithelial tumors (carcinomas). In fact, more than a half of all diagnosed tumors are initiated from epithelial cells. It is, therefore, important to gain a greater understanding of the factors that form and maintain the epithelial structure, as well as the features of the acinar structure that are modified during cancer development as observable in experimental and clinical research. We address these questions using the bio-mechanical model of the developing hollow epithelial acini introduced in Rejniak and Anderson (Bull. Math. Biol. 70:677–712, 2008). Here, we propose several scenarios involving various bio-mechanical interactions between neighboring cells that result in abnormal acinar development. Whenever possible, we compare our computational results with known experimental cases of mutant acini. PMID:18401665

  13. The Role of Epithelial-Mesenchymal Transition in the Formation of Normal and Neoplastic Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2011-09-01

    separating stem cell and non- stem cell populations of normal and breast cancer cells and identified EMT transcription factors most likely involved in... stem cell biology. Preliminary results directly demonstrate that transient induction of EMT increases the number of mammary epithelial stem cells...EMT and entrance into a stem - cell state. The outcome of these experiments holds important implications for the mechanisms controlling the formation of

  14. Delay of corneal epithelial wound healing and induction of keratocyte apoptosis by platelet-activating factor.

    PubMed

    Chandrasekher, Gudiseva; Ma, Xiang; Lallier, Thomas E; Bazan, Haydee E P

    2002-05-01

    To examine the role of the lipid mediator platelet-activating factor (PAF) in epithelial wound healing. A 7-mm central de-epithelializing wound was produced in rabbit corneas, and the tissue was incubated with 125 nM carbamyl PAF (cPAF), an analogue of PAF. Rabbit corneal epithelial and stromal cells were also cultured in the presence of cPAF. Cell adhesion, proliferation, and migration assays were conducted. Apoptosis was assayed by TUNEL staining on preparations of corneal tissue sections and in cells in culture. Twenty-four hours after injury, 50% of the wounded area was covered by new epithelium, whereas only 30% was covered in the presence of cPAF. At 48 hours, the epithelium completely closed the wound, but only 45% of the original wound was covered in corneas treated with cPAF. Similar inhibition of epithelial wound closure was found with human corneas incubated with PAF in organ culture. Moreover, addition of several growth factors involved in corneal wound healing, such as epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, could not overcome the inhibitory action of PAF in wound closure. Three PAF antagonists, BN50727, BN50730, and BN50739, abolished the effect of PAF. A significant increase in TUNEL-positive staining occurred in corneal stromal cells (keratocytes), which was inhibited by preincubating the corneas with PAF antagonists. However, no TUNEL-positive staining was found in epithelial cells. TUNEL-staining results in cultured stromal cells (keratocytes) and epithelial cells in first-passage cell culture were similar to those in organ-cultured corneas. In addition, PAF caused 35% to 56% inhibition of adhesion of epithelial cells to proteins of the extracellular matrix: collagen I and IV, fibronectin, and laminin. There were no significant changes in proliferation or migration of epithelial cells induced by the lipid mediator. The results suggest PAF plays an important role in preventing corneal wound healing by affecting adhesion of epithelial cells and increasing apoptosis in stromal cells. PAF antagonists could be of therapeutic importance during prolonged ocular inflammation, helping to avoid loss of corneal transparency and visual acuity.

  15. The Absence of N-Acetyl-D-glucosamine Causes Attenuation of Virulence of Candida albicans upon Interaction with Vaginal Epithelial Cells In Vitro

    PubMed Central

    Manczinger, Máté; Bocsik, Alexandra; Kocsis, Gabriella F.; Vörös, Andrea; Hegedűs, Zoltán; Marton, Annamária; Vízler, Csaba; Tubak, Vilmos; Deli, Mária; Kemény, Lajos; Nagy, István; Lakatos, Lóránt

    2015-01-01

    To better understand the molecular events underlying vulvovaginal candidiasis, we established an in vitro system. Immortalized vaginal epithelial cells were infected with live, yeast form C. albicans and C. albicans cultured in the same medium without vaginal epithelial cells were used as control. In both cases a yeast to hyphae transition was robustly induced. Whole transcriptome sequencing was used to identify specific gene expression changes in C. albicans. Numerous genes leading to a yeast to hyphae transition and hyphae specific genes were upregulated in the control hyphae and the hyphae in response to vaginal epithelial cells. Strikingly, the GlcNAc pathway was exclusively triggered by vaginal epithelial cells. Functional analysis in our in vitro system revealed that the GlcNAc biosynthesis is involved in the adherence to, and the ability to kill, vaginal epithelial cells in vitro, thus indicating the key role for this pathway in the virulence of C. albicans upon vulvovaginal candidiasis. PMID:26366412

  16. Human esophageal myofibroblasts secrete proinflammatory cytokines in response to acid and Toll-like receptor 4 ligands

    PubMed Central

    Gargus, Matthew; Niu, Chao; Vallone, John G.; Binkley, Jana; Rubin, Deborah C.

    2015-01-01

    The pathophysiology of esophageal injury, repair, and inflammation in gastroesophageal reflux-disease (GERD) is complex. Whereas most studies have focused on the epithelial response to GERD injury, we are interested in the stromal response. We hypothesized that subepithelial esophageal myofibroblasts in GERD secrete proinflammatory cytokines in response to injurious agents encountered via epithelial barrier breaches or through dilated epithelial intercellular spaces. We determined the percentage of myofibroblasts [α-smooth muscle actin (α-SMA)+vimentin+CD31−] in the subepithelial GERD and normal esophageal stroma by immunomorphologic analysis. We performed α-SMA coimmunostaining with IL-6 and p65. We established and characterized primary cultures of α-SMA+vimentin+CD31−CD45− human esophageal myofibroblasts (HuEso MFs). We modeled GERD by treatment with pH 4.5-acidified media and Toll-like receptor 4 (TLR4) ligands, LPS and high-mobility group box 1 protein (HMGB1), and determined myofibroblast cytokine secretion in response to GERD injury. We demonstrate that spindle-shaped cell myofibroblasts are located near the basement membrane of stratified squamous epithelium in normal esophagus. We identify an increase in subepithelial myofibroblasts and activation of proinflammatory pathways in patients with GERD. Primary cultures of stromal cells obtained from normal esophagus retain myofibroblast morphology and express the acid receptor transient receptor potential channel vanilloid subfamily 1 (TRPV1) and TLR4. HuEso MFs stimulated with acid and TLR4 agonists LPS and HMGB1 increase IL-6 and IL-8 secretion via TRPV1 and NF-κB activation. Our work implicates a role for human subepithelial stromal cells in the pathogenesis of GERD-related esophageal injury. Findings of this study can be extended to the investigation of epithelial-stromal interactions in inflammatory esophageal mucosal disorders. PMID:25882613

  17. Biomacromolecule conjugated nanofiber scaffold for salivary gland tissue engineering

    NASA Astrophysics Data System (ADS)

    Jayarathanam, Kavitha

    Xerostomia or dry mouth, resulting from loss of salivary gland secretion can be alleviated by tissue engineering approaches to restore glandular cell function. Engineering an artificial salivary gland structure requires closely mimicking the natural environment, both physically and functionally, to promote epithelial cell proliferation, monolayer formation and apico-basal polarization. While the physical structure of the salivary gland extracellular matrix (ECM) can be reconstructed using biocompatible nanofiber scaffolds, the chemical signals from ECM macromolecules are equally involved in the gland morphogenesis. In these glands, Hyaluronic acid (HA), a biomacromolecule that is a major component of the ECM, plays a crucial role in recruiting growth factors to improve cell viability and growth in these glands. Another molecule of interest that improved salivary epithelial cell viability and apico-basal differentiation is laminin, a major protein found in the basement membrane. We hypothesize that these biomacromolecules, when conjugated nanofiber scaffolds, will provide the essential chemical signals that promote cell viability, proliferation, polarity in the salivary cell line of interest. These morphological changes will in turn promote the secretory function (salivary production). The nanofiber scaffold consisting of poly(lactic-co-glycolic)acid is conjugated with HA using a polyethylene glycol (PEG) diamine crosslinker. This conjugation was confirmed using fluorescence spectrometry, water contact angle test and immunocytochemistry analysis using confocal microscopy. The effect of HA in promoting cell survival in-vitro was established with MTT assay using SIMS (mouse submandibular immortalized ductal SIMS cells) cells. The effect of HA in improving the apico - basal polarity of SIMS cells will be assessed. Chemical modification of synthetic nanopolymeric scaffolds with ECM molecules e.g., HA, laminin are the next step towards developing "smart scaffolds", that can be used to specifically induce proper salivary gland function. These scaffolds can potentially be used to provide a viable approach for creating future artificial tissue engineered glands.

  18. A hybrid computational model to explore the topological characteristics of epithelial tissues.

    PubMed

    González-Valverde, Ismael; García-Aznar, José Manuel

    2017-11-01

    Epithelial tissues show a particular topology where cells resemble a polygon-like shape, but some biological processes can alter this tissue topology. During cell proliferation, mitotic cell dilation deforms the tissue and modifies the tissue topology. Additionally, cells are reorganized in the epithelial layer and these rearrangements also alter the polygon distribution. We present here a computer-based hybrid framework focused on the simulation of epithelial layer dynamics that combines discrete and continuum numerical models. In this framework, we consider topological and mechanical aspects of the epithelial tissue. Individual cells in the tissue are simulated by an off-lattice agent-based model, which keeps the information of each cell. In addition, we model the cell-cell interaction forces and the cell cycle. Otherwise, we simulate the passive mechanical behaviour of the cell monolayer using a material that approximates the mechanical properties of the cell. This continuum approach is solved by the finite element method, which uses a dynamic mesh generated by the triangulation of cell polygons. Forces generated by cell-cell interaction in the agent-based model are also applied on the finite element mesh. Cell movement in the agent-based model is driven by the displacements obtained from the deformed finite element mesh of the continuum mechanical approach. We successfully compare the results of our simulations with some experiments about the topology of proliferating epithelial tissues in Drosophila. Our framework is able to model the emergent behaviour of the cell monolayer that is due to local cell-cell interactions, which have a direct influence on the dynamics of the epithelial tissue. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    PubMed Central

    Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome. PMID:23055997

  20. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration.

    PubMed

    Shariff, Sami; Shelfoon, Christopher; Holden, Neil S; Traves, Suzanne L; Wiehler, Shahina; Kooi, Cora; Proud, David; Leigh, Richard

    2017-06-01

    Airway remodeling, a characteristic feature of asthma, begins in early life. Recurrent human rhinovirus (HRV) infections are a potential inciting stimulus for remodeling. One component of airway remodeling is an increase in airway smooth muscle cell (ASMC) mass with a greater proximity of the ASMCs to the airway epithelium. We asked whether human bronchial epithelial cells infected with HRV produced mediators that are chemotactic for ASMCs. ASMC migration was investigated using the modified Boyden Chamber and the xCELLigence Real-Time Cell Analyzer (ACEA Biosciences Inc., San Diego, CA). Multiplex bead analysis was used to measure HRV-induced epithelial chemokine release. The chemotactic effects of CCL5, CXCL8, and CXCL10 were also examined. Supernatants from HRV-infected epithelial cells caused ASMC chemotaxis. Pretreatment of ASMCs with pertussis toxin abrogated chemotaxis, as did treatment with formoterol, forskolin, or 8-bromo-cAMP. CCL5, CXCL8, and CXCL10 were the most up-regulated chemokines produced by HRV-infected airway epithelial cells. When recombinant CCL5, CXCL8, and CXCL10 were used at levels found in epithelial supernatants, they induced ASMC chemotaxis similar to that seen with epithelial cell supernatants. When examined individually, CCL5 was the most effective chemokine in causing ASMC migration, and treatment of supernatant from HRV-infected epithelial cells with anti-CCL5 antibodies significantly attenuated ASMC migration. These findings suggest that HRV-induced CCL5 can induce ASMC chemotaxis and thus may contribute to the pathogenesis of airway remodeling in patients with asthma.

  1. Neuroglian stabilizes epithelial structure during Drosophila oogenesis.

    PubMed

    Wei, Jun; Hortsch, Michael; Goode, Scott

    2004-08-01

    The vertebrate L1 family of cell adhesion molecules (CAMs) and their fly homolog, Neuroglian, are members of the immunoglobulin (Ig) superfamily of CAMs. In general, Ig CAMs have been found to play critical roles in mediating axon guidance. One Ig CAM, NCAM, has also been implicated in maintaining epithelial integrity and suppressing metastatic dissemination of tumor cells. Other Ig CAMs, such as Nrg, are also expressed in epithelia. We thus tested the hypothesis that, like NCAM, Nrg might also be required for maintaining epithelial integrity and for inhibiting tumor invasion. We used the Drosophila follicular epithelium to determine the function of Nrg in vivo in maintaining epithelial structure, and in regulating the motility of migrating border cells and invasive tumorous follicle cells. Nrg(167) is expressed on the lateral membrane of follicle cells. Loss of Nrg(167) causes border cells to delay delamination and causes other follicle cells to delaminate inappropriately. The delaminated cells have aberrant epithelial polarity manifested as severe mislocalization of apical and basal membrane proteins, and uniform localization of lateral membrane proteins. Furthermore, loss of Nrg(167) dramatically enhances the invasive phenotype associated with loss of Discs Large, a neoplastic tumor suppressor. These results indicate that Nrg(167) stabilizes epithelial polarity by regulating junctional adhesion and function in normal and tumorous epithelia. Our data also suggest that Ig superfamily members have significant functional redundancy in maintaining epithelial polarity, with individual members playing subtle, unique roles during epithelial morphogenesis. Copyright 2004 Wiley-Liss, Inc.

  2. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis

    PubMed Central

    Rodríguez-Fraticelli, Alejo E.; Auzan, Muriel; Alonso, Miguel A.; Bornens, Michel

    2012-01-01

    Epithelial organ morphogenesis involves sequential acquisition of apicobasal polarity by epithelial cells and development of a functional lumen. In vivo, cells perceive signals from components of the extracellular matrix (ECM), such as laminin and collagens, as well as sense physical conditions, such as matrix stiffness and cell confinement. Alteration of the mechanical properties of the ECM has been shown to promote cell migration and invasion in cancer cells, but the effects on epithelial morphogenesis have not been characterized. We analyzed the effects of cell confinement on lumen morphogenesis using a novel, micropatterned, three-dimensional (3D) Madin-Darby canine kidney cell culture method. We show that cell confinement, by controlling cell spreading, limits peripheral actin contractility and promotes centrosome positioning and lumen initiation after the first cell division. In addition, peripheral actin contractility is mediated by master kinase Par-4/LKB1 via the RhoA–Rho kinase–myosin II pathway, and inhibition of this pathway restores lumen initiation in minimally confined cells. We conclude that cell confinement controls nuclear–centrosomal orientation and lumen initiation during 3D epithelial morphogenesis. PMID:22965908

  3. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells

    PubMed Central

    Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero

    2012-01-01

    Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells were exposed to the commercial eye drops Travatan, Systane Ultra, Xalatan, and the preservative BAK. Cell viability was determined using colorimetric MTT (3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by release of lactate dehydrogenase (LDH). Induction of apoptosis was measured with a using a colorimetric caspase-3 assay kit. DNA binding of the nuclear factor kappa B (NF-κB) transcription factor, and productions of the proinflammatory cytokines, interleukins IL-6 and IL-8, were determined using an enzyme-linked immunosorbent assay (ELISA) method. Results Cell viability, as measured by the MTT assay, declined by up to 50% after exposure to Travatan or Systane Ultra solutions which contain 0.001% PQ-1. BAK at 0.02% rather than at 0.001% concentration evoked total cell death signs on HCE-2 cells. In addition, cell membrane permeability, as measured by LDH release, was elevated by sixfold with Travatan and by a maximum threefold with Systane Ultra. Interestingly, Travatan and Systane Ultra activated NF-κB and elevated the secretion of inflammation markers IL-6 by 3 to eightfold and IL-8 by 1.5 to 3.5 fold, respectively, as analyzed with ELISA. Conclusions Eye drops containing PQ-1 evoke cytotoxicity and enhance the NF-κB driven inflammation reaction in cultured HCE-2 cells. Our results indicate that these harmful effects of ocular solutions preserved with PQ-1 should be further evaluated in vitro and in vivo. PMID:22605930

  4. Murine epithelial cells: isolation and culture.

    PubMed

    Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R

    2004-08-01

    We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.

  5. Neurogenic effects of β-amyloid in the choroid plexus epithelial cells in Alzheimer's disease.

    PubMed

    Bolos, Marta; Spuch, Carlos; Ordoñez-Gutierrez, Lara; Wandosell, Francisco; Ferrer, Isidro; Carro, Eva

    2013-08-01

    β-amyloid (Aβ) can promote neurogenesis, both in vitro and in vivo, by inducing neural progenitor cells to differentiate into neurons. The choroid plexus in Alzheimer's disease (AD) is burdened with amyloid deposits and hosts neuronal progenitor cells. However, neurogenesis in this brain tissue is not firmly established. To investigate this issue further, we examined the effect of Aβ on the neuronal differentiation of choroid plexus epithelial cells in several experimental models of AD. Here we show that Aβ regulates neurogenesis in vitro in cultured choroid plexus epithelial cells as well as in vivo in the choroid plexus of APP/Ps1 mice. Treatment with oligomeric Aβ increased proliferation and differentiation of neuronal progenitor cells in cultured choroid plexus epithelial cells, but decreased survival of newly born neurons. These Aβ-induced neurogenic effects were also observed in choroid plexus of APP/PS1 mice, and detected also in autopsy tissue from AD patients. Analysis of signaling pathways revealed that pre-treating the choroid plexus epithelial cells with specific inhibitors of TyrK or MAPK diminished Aβ-induced neuronal proliferation. Taken together, our results support a role of Aβ in proliferation and differentiation in the choroid plexus epithelial cells in Alzheimer's disease.

  6. GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

    1992-11-01

    Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

  7. Ascites-induced shift along epithelial-mesenchymal spectrum in ovarian cancer cells: enhancement of their invasive behavior partly dependant on αv integrins.

    PubMed

    Carduner, L; Leroy-Dudal, J; Picot, C R; Gallet, O; Carreiras, F; Kellouche, S

    2014-08-01

    At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features.

  8. Cranberry Products Inhibit Adherence of P-Fimbriated Escherichia Coli to Primary Cultured Bladder and Vaginal Epithelial Cells

    PubMed Central

    Gupta, K.; Chou, M. Y.; Howell, A.; Wobbe, C.; Grady, R.; Stapleton, A. E.

    2011-01-01

    Purpose Cranberry proanthocyanidins have been identified as possible inhibitors of Escherichia coli adherence to uroepithelial cells. However, little is known about the dose range of this effect. Furthermore, it has not been studied directly in the urogenital system. To address these issues we tested the effect of a cranberry powder and proanthocyanidin extract on adherence of a P-fimbriated uropathogenic E. coli isolate to 2 new urogenital model systems, namely primary cultured bladder epithelial cells and vaginal epithelial cells. Materials and Methods E. coli IA2 was pre-incubated with a commercially available cranberry powder (9 mg proanthocyanidin per gm) or with increasing concentrations of proanthocyanidin extract. Adherence of E. coli IA2 to primary cultured bladder epithelial cells or vaginal epithelial cells was measured before and after exposure to these products. Results Cranberry powder decreased mean adherence of E. coli IA2 to vaginal epithelial cells from 18.6 to 1.8 bacteria per cell (p <0.001). Mean adherence of E. coli to primary cultured bladder epithelial cells was decreased by exposure to 50 μg/ml proanthocyanidin extract from 6.9 to 1.6 bacteria per cell (p <0.001). Inhibition of adherence of E. coli by proanthocyanidin extract occurred in linear, dose dependent fashion over a proanthocyanidin concentration range of 75 to 5 μg/ml. Conclusions Cranberry products can inhibit E. coli adherence to biologically relevant model systems of primary cultured bladder and vaginal epithelial cells. This effect occurs in a dose dependent relationship. These findings provide further mechanistic evidence and biological plausibility for the role of cranberry products for preventing urinary tract infection. PMID:17509358

  9. [Establishment of goat limbal stem cell strain expressing Venus fluorescent protein and construction of limbal epithelial sheets].

    PubMed

    Yin, Jiqing; Liu, Wenqiang; Liu, Chao; Zhao, Guimin; Zhang, Yihua; Liu, Weishuai; Hua, Jinlian; Dou, Zhongying; Lei, Anmin

    2010-12-01

    The integrity and transparency of cornea plays a key role in vision. Limbal Stem Cells (LSCs) are precursors of cornea, which are responsible for self-renewal and replenishing corneal epithelium. Though it is successful to cell replacement therapy for impairing ocular surface by Limbal Stem Cell Transplantation (LSCT), the mechanism of renew is unclear after LSCT. To real time follow-up the migration and differentiation of corneal transplanted epithelial cells after transplanting, we transfected venus (a fluorescent protein gene) into goat LSCs, selected with G418 and established a stable transfected cell line, named GLSC-V. These cells showed green fluorescence, and which could maintain for at least 3 months. GLSC-V also were positive for anti-P63 and anti-Integrinbeta1 antibody by immunofluorescent staining. We founded neither GLSC-V nor GLSCs expressed keratin3 (k3) and keratinl2 (k12). However, GLSC-V had higher levels in expression of p63, pcna and venus compared with GLSCs. Further, we cultivated the cells on denude amniotic membrane to construct tissue engineered fluorescent corneal epithelial sheets. Histology and HE staining showed that the constructed fluorescent corneal epithelial sheets consisted of 5-6 layers of epithelium. Only the lowest basal cells of fluorescent corneal epithelial sheets expressed P63 analyzed by immunofluorescence, but not superficial epithelial cells. These results showed that our constructed fluorescent corneal epithelial sheets were similar to the normal corneal epithelium in structure and morphology. This demonstrated that they could be transplanted for patents with corneal impair, also may provide a foundation for the study on the mechanisms of corneal epithelial cell regeneration after LSCT.

  10. Lung epithelial stem cells and their niches: Fgf10 takes center stage.

    PubMed

    Volckaert, Thomas; De Langhe, Stijn

    2014-01-01

    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).

  11. Spatial Distribution of Niche and Stem Cells in Ex Vivo Human Limbal Cultures

    PubMed Central

    Kacham, Santhosh; Purushotham, Jyothi; Maddileti, Savitri; Siamwala, Jamila; Sangwan, Virender Singh

    2014-01-01

    Stem cells at the limbus mediate corneal epithelial regeneration and regulate normal tissue homeostasis. Ex vivo cultured limbal epithelial transplantations are being widely practiced in the treatment of limbal stem cell deficiency. In this report, we examined whether the limbal niche cells that nurture and regulate epithelial stem cells coexist in ex vivo limbal cultures. We also compared the inherent differences between explant and suspension culture systems in terms of spatial distribution of niche cells and their effect on epithelial stem cell proliferation, migration, and differentiation in vitro. We report that the stem cell content of both culture systems was similar, explaining the comparable clinical outcomes reported using these two methods. We also showed that the niche cells get expanded in culture and the nestin-positive cells migrate at the leading edges to direct epithelial cell migration in suspension cultures, whereas they are limited to the intact niche in explant cultures. We provide evidence that C/EBPδ-positive, p15-positive, and quiescent, label-retaining, early activated stem cells migrate at the leading edges to regulate epithelial cell proliferation in explant cultures, and this position effect is lost in early suspension cultures. However, in confluent suspension cultures, the stem cells and niche cells interact with each another, migrate in spiraling patterns, and self-organize to form three-dimensional niche-like compartments resembling the limbal crypts and thereby reestablish the position effect. These 3D-sphere clusters are enriched with nestin-, vimentin-, S100-, and p27-positive niche cells and p15-, p21-, p63α-, C/EBPδ-, ABCG2-, and Pax6-positive quiescent epithelial stem cells. PMID:25232182

  12. Effect of steroid treatment of endometrial cells on blastocyst development during co-culture.

    PubMed

    Goff, A K; Smith, L C

    1998-04-01

    The objective of this study was to determine if treatment of endometrial cells with progesterone or progesterone plus estradiol would improve the development of bovine embryos to the blastocyst stage during co-culture. After IVF, bovine embryos were cultured with oviduct epithelial cells for 3 d. In Experiment 1 the embryos were cultured with a) oviduct epithelial cells; b) endometrial epithelial cells (EEC); c) EEC with 10 ng/ml progesterone (EEC + P); or d) EEC with 10 ng/ml progesterone and 10 pg/ml estradiol (EEC + PE) for 6 d. In Experiment 2 the embryos were cultured with a) oviduct epithelial cells; b) endometrial stromal cells (ESC); c) ESC with 10 ng/ml progesterone (ESC + P); or d) ESC with 10 ng/ml progesterone and 10 pg/ml estradiol (ESC + PE) for 6 d. Results from Experiment 1 showed that endometrial epithelial cells supported development to the blastocyst stage as effectively as the oviduct cells; however, the size of the blastocysts was smaller for the endometrial cells. There was no effect of steroid hormone treatment on development to the blastocyst stage or on the size of the blastocysts. Results from Experiment 2 showed that stromal cells supported development to the blastocyst stage as effectively as oviduct cells. The hatching rate was lower when the embryos were co-cultured with stromal cells than oviduct epithelial cells; but there was no effect of steroid treatment. These data show that untreated endometrial epithelial cells are as effective as oviduct cells in maintaining embryo development to the blastocyst stage. However, embryo development was not improved by steroid treatment of the cells.

  13. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    PubMed

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  14. Characterization of primary cultures of adult human epididymis epithelial cells.

    PubMed

    Leir, Shih-Hsing; Browne, James A; Eggener, Scott E; Harris, Ann

    2015-03-01

    To establish cultures of epithelial cells from all regions of the human epididymis to provide reagents for molecular approaches to functional studies of this epithelium. Experimental laboratory study. University research institute. Epididymis from seven patients undergoing orchiectomy for suspected testicular cancer without epididymal involvement. Human epididymis epithelial cells harvested from adult epididymis tissue. Establishment of a robust culture protocol for adult human epididymal epithelial cells. Cultures of caput, corpus, and cauda epithelial cells were established from epididymis tissue of seven donors. Cells were passaged up to eight times and maintained differentiation markers. They were also cryopreserved and recovered successfully. Androgen receptor, clusterin, and cysteine-rich secretory protein 1 were expressed in cultured cells, as shown by means of immunofluorescence, Western blot, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The distribution of other epididymis markers was also shown by means of qRT-PCR. Cultures developed transepithelial resistance (TER), which was androgen responsive in the caput but androgen insensitive in the corpus and cauda, where unstimulated TER values were much higher. The results demonstrate a robust in vitro culture system for differentiated epithelial cell types in the caput, corpus, and cauda of the human epididymis. These cells will be a valuable resource for molecular analysis of epididymis epithelial function, which has a pivotal role in male fertility. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Identification and Characterization of Mesenchymal-Epithelial Progenitor-Like Cells in Normal and Injured Rat Liver

    PubMed Central

    Liu, Daqing; Yovchev, Mladen I.; Zhang, Jinghang; Alfieri, Alan A.; Tchaikovskaya, Tatyana; Laconi, Ezio; Dabeva, Mariana D.

    2016-01-01

    In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood. By using RT-PCR analysis and immunofluorescence microscopy, we describe the presence of rare Thy1+ cells in the liver lobule of normal animals, occasionally forming small collections of up to 20 cells. These cells constitute a small portion (1.7% to 1.8%) of nonparenchymal cells and reveal a mixed mesenchymal-epithelial phenotype, expressing E-cadherin, cytokeratin 18, and desmin. The most potent mitogens for mesenchymal-epithelial Thy1+ cells in vitro are the inflammatory cytokines interferon γ, IL-1, and platelet-derived growth factor-BB, which are not produced by Thy1+ cells. Thy1+ cells express all typical mesenchymal stem cell and hepatic progenitor cell markers and produce growth factor and cytokine mRNA (Hgf, Il6, Tgfa, and Tweak) for proteins that maintain oval cell growth and differentiation. Under appropriate conditions, mesenchymal-epithelial cells differentiate in vitro into hepatocyte-like cells. In this study, we show that the adult rat liver harbors a small pool of endogenous mesenchymal-epithelial cells not recognized previously. In the quiescent state, these cells express both mesenchymal and epithelial cell markers. They behave like hepatic stem cells/progenitors with dual phenotype, exhibiting high plasticity and long-lasting proliferative activity. PMID:25447047

  16. Patients with inflammatory bowel disease (IBD) reveal increased induction capacity of intracellular interferon-gamma (IFN-γ) in peripheral CD8+ lymphocytes co-cultured with intestinal epithelial cells

    PubMed Central

    Bisping, G; Lügering, N; Lütke-Brintrup, S; Pauels, H -G; Schürmann, G; Domschke, W; Kucharzik, T

    2001-01-01

    Intestinal epithelial cells seem to play a key role during IBD. The network of cellular interactions between epithelial cells and lamina propria mononuclear cells is still incompletely understood. In the following co-culture model we investigated the influence of intestinal epithelial cells on cytokine expression of T cytotoxic and T helper cells from patients with IBD and healthy controls. Peripheral blood mononuclear cells (PBMC) were purified by a Ficoll–Hypaque gradient followed by co-incubation with epithelial cells in multiwell cell culture insert plates in direct contact as well as separated by transwell filters. We used Caco-2 cells as well as freshly isolated colonic epithelia obtained from surgical specimens. Three-colour immunofluorescence flow cytometry was performed after collection, stimulation and staining of PBMC with anti-CD4, anti-CD8, anti-IFN-γ and anti-IL-4. Patients with IBD (Crohn's disease (CD), n = 12; ulcerative colitis (UC), n = 16) and healthy controls (n = 10) were included in the study. After 24 h of co-incubation with Caco-2 cells we found a significant increase of IFN-γ-producing CD8+ lymphocytes in patients with IBD. In contrast, healthy controls did not respond to the epithelial stimulus. No significant differences could be found between CD and UC or active and inactive disease. A significant increase of IFN-γ+/CD8+ lymphocytes in patients with UC was also seen after direct co-incubation with primary cultures of colonic crypt cells. The observed epithelial–lymphocyte interaction seems to be MHC I-restricted. No significant epithelial cell-mediated effects on cytokine expression were detected in the PBMC CD4+ subsets. Patients with IBD—even in an inactive state of disease—exert an increased capacity for IFN-γ induction in CD8+ lymphocytes mediated by intestinal epithelial cells. This mechanism may be important during chronic intestinal inflammation, as in the case of altered mucosal barrier function epithelial cells may become targets for IFN-γ-producing CD8+ lymphocytes. PMID:11167992

  17. Gluten affects epithelial differentiation-associated genes in small intestinal mucosa of coeliac patients

    PubMed Central

    Juuti-Uusitalo, K; Mäki, M; Kainulainen, H; Isola, J; Kaukinen, K

    2007-01-01

    In coeliac disease gluten induces an immunological reaction in genetically susceptible patients, and influences on epithelial cell proliferation and differentiation in the small-bowel mucosa. Our aim was to find novel genes which operate similarly in epithelial proliferation and differentiation in an epithelial cell differentiation model and in coeliac disease patient small-bowel mucosal biopsy samples. The combination of cDNA microarray data originating from a three-dimensional T84 epithelial cell differentiation model and small-bowel mucosal biopsy samples from untreated and treated coeliac disease patients and healthy controls resulted in 30 genes whose mRNA expression was similarly affected. Nine of 30 were located directly or indirectly in the receptor tyrosine kinase pathway starting from the epithelial growth factor receptor. Removal of gluten from the diet resulted in a reversion in the expression of 29 of the 30 genes in the small-bowel mucosal biopsy samples. Further characterization by blotting and labelling revealed increased epidermal growth factor receptor and beta-catenin protein expression in the small-bowel mucosal epithelium in untreated coeliac disease patients compared to healthy controls and treated coeliac patients. We found 30 genes whose mRNA expression was affected similarly in the epithelial cell differentiation model and in the coeliac disease patient small-bowel mucosal biopsy samples. In particular, those genes involved in the epithelial growth factor-mediated signalling pathways may be involved in epithelial cell differentiation and coeliac disease pathogenesis. The epithelial cell differentiation model is a useful tool for studying gene expression changes in the crypt–villus axis. PMID:17888028

  18. Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils.

    PubMed

    Baldwin, Andrew K; Cain, Stuart A; Lennon, Rachel; Godwin, Alan; Merry, Catherine L R; Kielty, Cay M

    2014-01-01

    Here, we show that epithelial-mesenchymal status influences how cells deposit extracellular matrix. Retinal pigmented epithelial (RPE) cells that expressed high levels of E-cadherin and had cell-cell junctions rich in zona occludens (ZO)-1, β-catenin and heparan sulfate, required syndecan-4 but not fibronectin or protein kinase C α (PKCα) to assemble extracellular matrix (fibrillin microfibrils and perlecan). In contrast, RPE cells that strongly expressed mesenchymal smooth muscle α-actin but little ZO-1 or E-cadherin, required fibronectin (like fibroblasts) and PKCα, but not syndecan-4. Integrins α5β1 and/or α8β1 and actomyosin tension were common requirements for microfibril deposition, as was heparan sulfate biosynthesis. TGFβ, which stimulates epithelial-mesenchymal transition, altered gene expression and overcame the dependency on syndecan-4 for microfibril deposition in epithelial RPE cells, whereas blocking cadherin interactions disrupted microfibril deposition. Renal podocytes had a transitional phenotype with pericellular β-catenin but little ZO-1; they required syndecan-4 and fibronectin for efficient microfibril deposition. Thus, epithelial-mesenchymal status modulates microfibril deposition.

  19. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina; Lien, Kathy; Tugizov, Sharof M.

    2018-01-01

    Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30–40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission. PMID:29277006

  20. Simultaneous detection of colonic epithelial cells in portal venous and peripheral blood during colorectal cancer surgery.

    PubMed

    Tien, Yu-Wen; Lee, Po-Huang; Wang, Shih-Ming; Hsu, Su-Ming; Chang, King-Jen

    2002-01-01

    This study was designed to show, in certain patients, that colonic epithelial cells can be present in peripheral blood while absent in portal venous blood. The circulating colorectal epithelial cells were detected by a reverse transcriptase-polymerase chain reaction assay, which involved amplifying guanylyl cyclase C transcripts. Portal venous and peripheral blood samples were obtained at intervals from 58 patients undergoing colorectal cancer surgery. Circulating colonic epithelial cells were more frequently detected in portal venous blood than in peripheral blood only before mobilization of the tumor-bearing colon segment in patients with tumors of Stage B. In five other patients, before mobilization of their tumor-bearing colon segments, and in another three patients, during the mobilization, colorectal epithelial cells were detected in peripheral blood but not in portal venous blood. These eight patients had Stage C or D tumors. In 8 of 58 patients, colorectal epithelial cells were detected in peripheral but not in portal venous blood. Metastatic deposits in lymphatic vessels or liver might be the source of these cells.

  1. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche.

    PubMed

    Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.

  2. Epithelial self-healing is recapitulated by a 3D biomimetic E-cadherin junction

    PubMed Central

    Cohen, Daniel J.; Gloerich, Martijn; Nelson, W. James

    2016-01-01

    Epithelial monolayers undergo self-healing when wounded. During healing, cells collectively migrate into the wound site, and the converging tissue fronts collide and form a stable interface. To heal, migrating tissues must form cell–cell adhesions and reorganize from the front-rear polarity characteristic of cell migration to the apical-basal polarity of an epithelium. However, identifying the "stop signal" that induces colliding tissues to cease migrating and heal remains an open question. Epithelial cells form integrin-based adhesions to the basal extracellular matrix (ECM) and E-cadherin–mediated cell–cell adhesions on the orthogonal, lateral surfaces between cells. Current biological tools have been unable to probe this multicellular 3D interface to determine the stop signal. We addressed this problem by developing a unique biointerface that mimicked the 3D organization of epithelial cell adhesions. This "minimal tissue mimic" (MTM) comprised a basal ECM substrate and a vertical surface coated with purified extracellular domain of E-cadherin, and was designed for collision with the healing edge of an epithelial monolayer. Three-dimensional imaging showed that adhesions formed between cells, and the E-cadherin-coated MTM resembled the morphology and dynamics of native epithelial cell–cell junctions and induced the same polarity transition that occurs during epithelial self-healing. These results indicate that E-cadherin presented in the proper 3D context constitutes a minimum essential stop signal to induce self-healing. That the Ecad:Fc MTM stably integrated into an epithelial tissue and reduced migration at the interface suggests that this biointerface is a complimentary approach to existing tissue–material interfaces. PMID:27930308

  3. Effect of doxycycline on epithelial-mesenchymal transition via the p38/Smad pathway in respiratory epithelial cells.

    PubMed

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2017-03-01

    Doxycycline has antibacterial and anti-inflammatory effects, and it also suppresses collagen biosynthesis. This study aimed to confirm the effects and mechanism of doxycycline on transforming growth factor (TGF) beta 1 induced epithelial-mesenchymal transition and cell migration in A549 and primary nasal epithelial cells. A 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay and phalloidin-fluorescein isothiocyanate staining were used to evaluate cytotoxicity and cellular morphologic changes. Western blot and immunofluorescence staining were used to determine the expression levels of E-cadherin, vimentin, alpha-smooth muscle actin, fibronectin, phosphorylated Smad2/3, and mitogen-activated protein kinases. Scratch and transwell migration assays were used to assess cellular migration ability. Doxycycline (0-10 μg/mL) had no significant cytotoxic effects in A549 and primary nasal epithelial cells. Increased expression of mesenchymal markers, including vimentin, alpha-smooth muscle actin, and fibronectin in TGF beta 1 induced A549 cells were downregulated by doxycycline treatment. In contrast, E-cadherin expression was upregulated in TGF beta 1 induced A549 cells. An in vitro cell migration assay showed that doxycycline also inhibited the ability of TGF beta 1 induced migration. Doxycycline treatment suppressed the activation of Smad2/3 and p38, whereas its inhibitory effects were similar to each element-specific inhibitor in A549 and primary nasal epithelial cells. Doxycycline inhibited TGF beta 1 induced epithelial-to-mesenchymal transition and migration by targeting Smad2/3 and p38 signal pathways in respiratory epithelial cells.

  4. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells.

    PubMed

    Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi

    2017-06-01

    The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem cell.

  5. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells.

    PubMed

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M; Wells, Alan

    2016-07-07

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due to malignant metastases in breast cancer.

  6. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  7. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    DOEpatents

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  8. Studying cytokinesis in Drosophila epithelial tissues.

    PubMed

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Obesity associated advanced glycation end products within the human uterine cavity adversely impact endometrial function and embryo implantation competence.

    PubMed

    Antoniotti, Gabriella S; Coughlan, Melinda; Salamonsen, Lois A; Evans, Jemma

    2018-04-01

    Do obese levels of advanced glycation end products (AGEs) within the uterine cavity detrimentally alter tissue function in embryo implantation and placental development? Obese levels of AGEs activate inflammatory signaling (p65 NFκB) within endometrial epithelial cells and alter their function, cause endoplasmic reticulum (ER) stress in endometrial stromal cells and impair decidualization, compromise implantation of blastocyst mimics and inhibit trophoblast invasion. Obese women experience a higher incidence of infertility, recurrent miscarriage and pregnancy complications compared with lean women. Oocyte donation cycles suggest a detrimental uterine environment plays a role in these outcomes. Uterine lavage and tissues from lean (BMI 19.5-24.9, n = 17) and obese (BMI > 30, n = 16) women examined. Cell culture experiments utilizing human endometrial epithelial, trophectoderm and trophoblast cell lines and primary human stromal cells used to examine the functional impact of obese levels of AGEs. Levels of AGEs examined within uterine lavage assessed by ELISA to determine differences between lean and obese women. Expression and localization of AGEs, receptor for AGEs (RAGE) and NFκB within endometrial tissues obtained from lean and obese women determined by immunohistochemistry. Endometrial epithelial cells (ECC-1), primary human stromal cells and trophoblast cells (HTR8-SVneo) treated with lean (2000 nmol/mol lysine) or obese (8000 nmol/mol lysine) uterine levels of AGEs and p65 NFκB (western immunoblot), real-time adhesion, proliferation migration and invasion (xCelligence real-time cell function analysis), decidualization (cell morphology and prolactin release), ER stress (western immunoblot for p-PERK) determined. Co-cultures of endometrial epithelial cells and blastocyst mimics (trophectoderm spheroids) similarly treated with lean or obese uterine levels of AGEs to determine their impact on embryo implantation. AGEs were significantly elevated (P = 0.004) within the obese (6503.59 μmol/mol lysine) versus lean (2165.88 μmol/mol lysine) uterine cavity (uterine lavage) with increased immunostaining for AGEs, RAGE and NFkB within obese endometrial tissues during the proliferative phase of the menstrual cycle. Obese uterine levels of AGEs inhibited adhesion and proliferation of endometrial epithelial (ECC-1) cells compared to treatment with lean uterine levels of AGEs. Obese uterine AGE levels impacted primary human endometrial stromal cell decidualization and activated ER stress within these cells. Obese uterine levels of AGEs also inhibited trophectodermal spheroid adhesion to hormonally primed endometrial epithelial cells and trophoblast cell line HTR8/SV-neo invasion. N/A. Mechanistic studies are performed in vitro and may not completely recapitulate cell function in vivo. These data corroborate clinical data suggesting the presence of an altered uterine environment in obese women and demonstrate that elevated uterine levels of AGEs within these women may detrimentally impact endometrial function, embryo implantation and placental development. Uterine AGE assessment in infertility work up may prove useful in determining underlying causes of infertility. AGEs can be targeted pharmacologically and such treatments may prove effective in improving reproductive complications experience by obese women. Supported by NHMRC Fellowship (#1002028 to L.A.S.), and the Victorian Government's Operational Infrastructure Support Program. MTC is supported by a JDRF Australia Clinical Research Network Career Development Award. The authors have declared that no conflict of interest exists.

  10. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    PubMed

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface impedance sensing. Our findings suggest that some of the e-cig liquids/aerosols containing flavoring chemicals can cause significant loss of epithelial barrier function and proinflammatory response in lung cells.

  11. ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCTED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS

    EPA Science Inventory

    ORIENTATION REQUIREMENT TO DETECT MAGNETIC FIELD-INDUCED ALTERATION OF GAP JUNCTION COMMUNICATION IN EPITHELIAL CELLS.
    OBJECTIVE: We have shown that functional gap junction communication as measured by Lucifer yellow dye transfer (DT) in Clone-9 rat liver epithelial cells, c...

  12. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  13. Leptin expression in human mammary epithelial cells and breast milk.

    PubMed

    Smith-Kirwin, S M; O'Connor, D M; De Johnston, J; Lancey, E D; Hassink, S G; Funanage, V L

    1998-05-01

    Leptin has recently been shown to be produced by the human placenta and potentially plays a role in fetal and neonatal growth. Many functions of the placenta are replaced by the mammary gland in terms of providing critical growth factors for the newborn. In this study, we show that leptin is produced by human mammary epithelial cells as revealed by RT/PCR analysis of total RNA from mammary gland and immunohistochemical staining of breast tissue, cultured mammary epithelial cells, and secretory epithelial cells present in human milk. We also verify that immunoreactive leptin is present in whole milk at 30- to 150-fold higher concentrations than skim milk. We propose that leptin is secreted by mammary epithelial cells in milk fat globules, which partition into the lipid portion of breast milk.

  14. Aberrant Notch1-dependent effects on glomerular parietal epithelial cells promotes collapsing focal segmental glomerulosclerosis with progressive podocyte loss.

    PubMed

    Ueno, Toshiharu; Kobayashi, Namiko; Nakayama, Makiko; Takashima, Yasutoshi; Ohse, Takamoto; Pastan, Ira; Pippin, Jeffrey W; Shankland, Stuart J; Uesugi, Noriko; Matsusaka, Taiji; Nagata, Michio

    2013-06-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is a progressive kidney disease characterized by glomerular collapse with epithelial hyperplasia. Here we used a transgenic mouse model of cFSGS with immunotoxin-induced podocyte-specific injury to determine the role for Notch signaling in its pathogenesis. The mice exhibited progressive loss of podocytes and severe proteinuria concomitant with histological features of cFSGS. Hyperplastic epithelium was negative for genetic podocyte tags, but positive for the parietal epithelial cell marker claudin-1, and expressed Notch1, Jagged1, and Hes1 mRNA and protein. Enhanced Notch mRNA expression induced by transforming growth factor-β1 in cultured parietal epithelial cells was associated with mesenchymal markers (α-smooth muscle actin, vimentin, and Snail1). Notch inhibition in vitro suppressed these phenotypic transcripts and Notch-dependent cell migration. Moreover, Notch inhibition in vivo significantly decreased parietal epithelial cell lesions but worsened proteinuria and histopathology in our cFSGS model. Thus, aberrant Notch1-mediated parietal epithelial cell migration with phenotypic changes appears to underlie the pathogenesis of cFSGS. Parietal epithelial cell hyperplasia may also represent an adaptive response to compensate for a disrupted filtration barrier with progressive podocyte loss.

  15. The molecular chaperone alphaA-crystallin enhances lens epithelial cell growth and resistance to UVA stress.

    PubMed

    Andley, U P; Song, Z; Wawrousek, E F; Bassnett, S

    1998-11-20

    alphaA-Crystallin (alphaA) is a member of the small heat shock protein (sHSP) family and has the ability to prevent denatured proteins from aggregating in vitro. Lens epithelial cells express relatively low levels of alphaA, but in differentiated fiber cells, alphaA is the most abundant soluble protein. The lenses of alphaA-knock-out mice develop opacities at an early age, implying a critical role for alphaA in the maintenance of fiber cell transparency. However, the function of alpha-crystallin in the lens epithelium is unknown. To investigate the physiological function of alphaA in lens epithelial cells, we used the following two systems: alphaA knock-out (alphaA(-/-)) mouse lens epithelial cells and human lens epithelial cells that overexpress alphaA. The growth rate of alphaA(-/-) mouse lens epithelial cells was reduced by 50% compared with wild type cells. Cell cycle kinetics, measured by fluorescence-activated cell sorter analysis of propidium iodide-stained cells, indicated a relative deficiency of alphaA(-/-) cells in the G2/M phases. Exposure of mouse lens epithelial cells to physiological levels of UVA resulted in an increase in the number of apoptotic cells in the cultures. Four hours after irradiation the fraction of apoptotic cells in the alphaA(-/-) cultures was increased 40-fold over wild type. In cells lacking alphaA, UVA exposure modified F-actin, but actin was protected in cells expressing alphaA. Stably transfected cell lines overexpressing human alphaA were generated by transfecting extended life span human lens epithelial cells with the mammalian expression vector construct pCI-neoalphaA. Cells overexpressing alphaA were resistant to UVA stress, as determined by clonogenic survival. alphaA remained cytoplasmic after exposure to either UVA or thermal stress indicating that, unlike other sHSPs, the protective effect of alphaA was not associated with its relocalization to the nucleus. These results indicate that alphaA has important cellular functions in the lens over and above its well characterized role in refraction.

  16. Bioorthogonal chemical imaging of metabolic changes during epithelial-mesenchymal transition of cancer cells by stimulated Raman scattering microscopy.

    PubMed

    Zhang, Luyuan; Min, Wei

    2017-10-01

    Study of metabolic changes during epithelial-mesenchymal transition (EMT) of cancer cells is important for basic understanding and therapeutic management of cancer progression. We here used metabolic labeling and stimulated Raman scattering (SRS) microscopy, a strategy of bioorthogonal chemical imaging, to directly visualize changes in anabolic metabolism during cancer EMT at a single-cell level. MCF-7 breast cancer cell is employed as a model system. Four types of metabolites (amino acids, glucose, fatty acids, and choline) are labeled with either deuterium or alkyne (C≡C) tag. Their intracellular incorporations into MCF-7 cells before or after EMT are visualized by SRS imaging targeted at the signature vibration frequency of C-D or C≡C bonds. Overall, after EMT, anabolism of amino acids, glucose, and choline is less active, reflecting slower protein and membrane synthesis in mesenchymal cells. Interestingly, we also observed less incorporation of glucose and palmitate acids into membrane lipids, but more of them into lipid droplets in mesenchymal cells. This result indicates that, although mesenchymal cells synthesize fewer membrane lipids, they are actively storing energy into lipid droplets, either through de novo lipogenesis from glucose or direct scavenging of exogenous free fatty acids. Hence, metabolic labeling coupled with SRS can be a straightforward method in imaging cancer metabolism. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma.

    PubMed

    Looi, K; Buckley, A G; Rigby, P J; Garratt, L W; Iosifidis, T; Zosky, G R; Larcombe, A N; Lannigan, F J; Ling, K-M; Martinovich, K M; Kicic-Starcevich, E; Shaw, N C; Sutanto, E N; Knight, D A; Kicic, A; Stick, S M

    2018-05-01

    Bronchial epithelial tight junctions (TJ) have been extensively assessed in healthy airway epithelium. However, no studies have yet assessed the effect of human rhinovirus (HRV) infection on the expression and resultant barrier function in epithelial tight junctions (TJ) in childhood asthma. To investigate the impact of HRV infection on airway epithelial TJ expression and barrier function in airway epithelial cells (AECs) of children with and without asthma. Furthermore, to test the hypothesis that barrier integrity and function is compromised to a greater extent by HRV in AECs from asthmatic children. Primary AECs were obtained from children with and without asthma, differentiated into air-liquid interface (ALI) cultures and infected with rhinovirus. Expression of claudin-1, occludin and zonula occluden-1 (ZO-1) was assessed via qPCR, immunocytochemistry (ICC), in-cell western (ICW) and confocal microscopy. Barrier function was assessed by transepithelial electrical resistance (TER; R T ) and permeability to fluorescent dextran. Basal TJ gene expression of claudin-1 and occludin was significantly upregulated in asthmatic children compared to non-asthmatics; however, no difference was seen with ZO-1. Interestingly, claudin-1, occludin and ZO-1 protein expression was significantly reduced in AEC of asthmatic children compared to non-asthmatic controls suggesting possible post-transcriptional inherent differences. HRV infection resulted in a transient dissociation of TJ and airway barrier integrity in non-asthmatic children. Although similar dissociation of TJ was observed in asthmatic children, a significant and sustained reduction in TJ expression concurrent with both a significant decrease in TER and an increase in permeability in asthmatic children was observed. This study demonstrates novel intrinsic differences in TJ gene and protein expression between AEC of children with and without asthma. Furthermore, it correlates directly the relationship between HRV infection and the resultant dissociation of epithelial TJ that causes a continued altered barrier function in children with asthma. © 2018 John Wiley & Sons Ltd.

  18. Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon.

    PubMed

    Inan, M S; Tolmacheva, V; Wang, Q S; Rosenberg, D W; Giardina, C

    2000-12-01

    The transcription factor nuclear factor (NF)-kappaB regulates the expression of genes that can influence cell proliferation and death. Here we analyze the contribution of NF-kappaB to the regulation of epithelial cell turnover in the colon. Immunohistochemical, immunoblot, and DNA binding analyses indicate that NF-kappaB complexes change as colonocytes mature: p65-p50 complexes predominate in proliferating epithelial cells of the colon, whereas the p50-p50 dimer is prevalent in mature epithelial cells. NF-kappaB1 (p50) knockout mice were used to study the role of NF-kappaB in regulating epithelial cell turnover. Knockout animals lacked detectable NF-kappaB DNA binding activity in isolated epithelial cells and had significantly longer crypts with a more extensive proliferative zone than their wild-type counterparts (as determined by proliferating cell nuclear antigen staining and in vivo bromodeoxyuridine labeling). Gene expression profiling reveals that the NF-kappaB1 knockout mice express the potentially growth-enhancing tumor necrosis factor (TNF)-alpha and nerve growth factor-alpha genes at elevated levels, with in situ hybridization localizing some of the TNF-alpha expression to epithelial cells. TNF-alpha is NF-kappaB regulated, and its upregulation in NF-kappaB1 knockouts may result from an alleviation of p50-p50 repression. NF-kappaB complexes may therefore influence cell proliferation in the colon through their ability to selectively activate and/or repress gene expression.

  19. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    PubMed Central

    Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.

    2017-01-01

    Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172

  20. Cellular Migration and Invasion Uncoupled: Increased Migration Is Not an Inexorable Consequence of Epithelial-to-Mesenchymal Transition

    PubMed Central

    Schaeffer, Daneen; Somarelli, Jason A.; Hanna, Gabi; Palmer, Gregory M.

    2014-01-01

    Metastatic dissemination requires carcinoma cells to detach from the primary tumor and invade through the basement membrane. To acquire these characteristics, epithelial tumor cells undergo epithelial-to-mesenchymal transitions (EMT), whereby cells lose polarity and E-cadherin-mediated cell-cell adhesion. Post-EMT cells have also been shown, or assumed, to be more migratory; however, there have been contradictory reports on an immortalized human mammary epithelial cell line (HMLE) that underwent EMT. In the context of carcinoma-associated EMT, it is not yet clear whether the change in migration and invasion must be positively correlated during EMT or whether enhanced migration is a necessary consequence of having undergone EMT. Here, we report that pre-EMT rat prostate cancer (PC) and HMLE cells are more migratory than their post-EMT counterparts. To determine a mechanism for increased epithelial cell migration, gene expression analysis was performed and revealed an increase in epidermal growth factor receptor (EGFR) expression in pre-EMT cells. Indeed, inhibition of EGFR in PC epithelial cells slowed migration. Importantly, while post-EMT PC and HMLE cell lines are less migratory, both remain invasive in vitro and, for PC cells, in vivo. Our study demonstrates that enhanced migration is not a phenotypic requirement of EMT, and migration and invasion can be uncoupled during carcinoma-associated EMT. PMID:25002532

  1. Intestinal tuft cells regulate the ATM mediated DNA Damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury.

    PubMed

    Chandrakesan, Parthasarathy; May, Randal; Weygant, Nathaniel; Qu, Dongfeng; Berry, William L; Sureban, Sripathi M; Ali, Naushad; Rao, Chinthalapally; Huycke, Mark; Bronze, Michael S; Houchen, Courtney W

    2016-11-23

    Crypt epithelial survival and regeneration after injury require highly coordinated complex interplay between resident stem cells and diverse cell types. The function of Dclk1 expressing tuft cells regulating intestinal epithelial DNA damage response for cell survival/self-renewal after radiation-induced injury is unclear. Intestinal epithelial cells (IECs) were isolated and purified and utilized for experimental analysis. We found that small intestinal crypts of Villin Cre ;Dclk1 f/f mice were hypoplastic and more apoptotic 24 h post-total body irradiation, a time when stem cell survival is p53-independent. Injury-induced ATM mediated DNA damage response, pro-survival genes, stem cell markers, and self-renewal ability for survival and restitution were reduced in the isolated intestinal epithelial cells. An even greater reduction in these signaling pathways was observed 3.5 days post-TBI, when peak crypt regeneration occurs. We found that interaction with Dclk1 is critical for ATM and COX2 activation in response to injury. We determined that Dclk1 expressing tuft cells regulate the whole intestinal epithelial cells following injury through paracrine mechanism. These findings suggest that intestinal tuft cells play an important role in regulating the ATM mediated DNA damage response, for epithelial cell survival/self-renewal via a Dclk1 dependent mechanism, and these processes are indispensable for restitution and function after severe radiation-induced injury.

  2. Ultrastructural study on the differentiation and the fate of M cells in follicle-associated epithelium of rat Peyer's patch.

    PubMed

    Onishi, Sachiko; Yokoyama, Toshifumi; Chin, Keigi; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Hoshi, Nobuhiko; Kitagawa, Hiroshi

    2007-05-01

    The differentiation process of immature microvillous epithelial cells to M cells and the fate of M cells in the follicle-associated epithelium (FAE) of the mucosa-associated lymphoid tissues are still unclear. In this study, the differentiation process and the fate of M cells were clarified in rat Peyer's patches under a transmission electron microscope. Almost all immature epithelial cells were found to possess long, slender microvilli, which gradually shortened, thickened and dispersed as the immature epithelial cells migrated away from the crypt orifices. These morphological changes started in the centers and moved to the peripheries of the apical surfaces of epithelial cells, accompanied by the protrusion of apical cytoplasm out of the terminal web. During these changes, the bundles of microfilaments of microvilli never shortened, and both small vesicles in the apical cytoplasm and tiny invaginations of the apical membranes were found. The intraepithelial migrating cells gradually accumulated to form typical intraepithelial pockets. In all FAE, there was no morphological sign of cell death in M cells. The rearrangement of microfilament bundles, the reconstruction of microvilli and the disappearance of pockets resulted in the transformation of M cells into microvillous epithelial cells. These serial ultrastructural changes suggest that M cells are a temporal and transitional cell type caused by the active engulfment of luminal substances and that when the engulfment ceases, the M cells transform into mature microvillous epithelial cells.

  3. Alk5-Mediated Transforming Growth Factor β Signaling Acts Upstream of Fibroblast Growth Factor 10 To Regulate the Proliferation and Maintenance of Dental Epithelial Stem Cells▿

    PubMed Central

    Zhao, Hu; Li, Sha; Han, Dong; Kaartinen, Vesa; Chai, Yang

    2011-01-01

    Mouse incisors grow continuously throughout life. This growth is supported by the division of dental epithelial stem cells that reside in the cervical loop region. Little is known about the maintenance and regulatory mechanisms of dental epithelial stem cells. In the present study, we investigated how transforming growth factor β (TGF-β) signaling-mediated mesenchymal-epithelial cell interactions control dental epithelial stem cells. We designed two approaches using incisor organ culture and bromodeoxyuridine (BrdU) pulse-chase experiments to identify and evaluate stem cell functions. We show that the loss of the TGF-β type I receptor (Alk5) in the cranial neural crest-derived dental mesenchyme severely affects the proliferation of TA (transit-amplifying) cells and the maintenance of dental epithelial stem cells. Incisors of Wnt1-Cre; Alk5fl/fl mice lost their ability to continue to grow in vitro. The number of BrdU label-retaining cells (LRCs) was dramatically reduced in Alk5 mutant mice. Fgf10, Fgf3, and Fgf9 signals in the dental mesenchyme were downregulated in Wnt1-Cre; Alk5fl/fl incisors. Strikingly, the addition of exogenous fibroblast growth factor 10 (FGF10) into cultured incisors rescued dental epithelial stem cells in Wnt1-Cre; Alk5fl/fl mice. Therefore, we propose that Alk5 functions upstream of Fgf10 to regulate TA cell proliferation and stem cell maintenance and that this signaling mechanism is crucial for stem cell-mediated tooth regeneration. PMID:21402782

  4. Feasibility of obtaining breast epithelial cells from healthy women for studies of cellular proliferation.

    PubMed

    Miller, N A; Thomas, M; Martin, L J; Hedley, D W; Michal, S; Boyd, N F

    1997-05-01

    Increased dietary fat intake and rate of breast epithelial cell proliferation have each been associated with the development of breast cancer. The goal of this study was to measure the effect of a low fat, high carbohydrate diet on the rate of breast epithelial cell proliferation in women at high risk for breast cancer. Women were recruited from the intervention and control groups of a randomized low fat dietary intervention trial, breast epithelial cells were obtained by fine needle aspiration, and cell proliferation was assessed in these samples using immunofluorescent detection of Ki-67 and PCNA. The effects of needle size and study group on cell yield and cytologic features of the cells were also examined. Fifty three women (20 in the intervention group and 33 in the control group) underwent the biopsy procedure. Slides from 38 subjects were stained for Ki-67 and from 14 subjects for PCNA. No cell proliferation (fluorescence) was detected for either Ki-67 or PCNA in any of the slides. Epithelial cell yield and number of stromal fragments were greater with a larger needle size. Numbers of stromal fragments and bipolar naked nuclei were greater in the low fat as compared to the control group but no differences in epithelial cell yield were observed between the two groups. This study confirms that fine needle aspiration biopsy is a feasible method of obtaining epithelial cells from women without discrete breast masses, but suggests that cell proliferation cannot be assessed using Ki-67 and PCNA in such samples.

  5. Exosomes in Development and Therapy of Malignant Mesothelioma

    DTIC Science & Technology

    2015-09-01

    released from epithelial cells or macrophages in response to asbestos exposure can carry the information to mesothelial cells enabling the development...tumors. Our work so far demonstrated that exosomes released from asbestos -exposed epithelial cells carry a different proteomic signature than...exosomes from unexposed epithelial cells. Fluorescent-labelled exosomes injected into the tail vein of mice showed the presence of exosomes from asbestos

  6. The EMT universe: space between cancer cell dissemination and metastasis initiation.

    PubMed

    Ombrato, Luigi; Malanchi, Ilaria

    2014-01-01

    Tumor metastasis, the cause of more than 90% of cancer cell mortality, is a multistep process by which tumor cells disseminate from their primary site via local invasion and intravasation into blood or lymphatic vessels and reach secondary distant sites, where they survive and reinitiate tumor growth. Activation of a developmental program called the epithelial-to-mesenchymal transition (EMT) has been shown to be a very efficient strategy adopted by epithelial cancer cells to promote local invasion and dissemination at distant organs. Remarkably, the activation of EMT programs in epithelial cells correlates with the appearance of stemness. This finding suggests that the EMT process also drives the initial cancer cell colonization at distant sites. However, recent studies support the concept that its reverse program, a mesenchymal-to-epithelial transition, is required for efficient metastatic colonization and that EMT is not necessarily associated with stemness. This review analyzes the conflicting experimental evidence linking epithelial plasticity to stemness in the light of an "EMT gradient model," according to which the outcome of EMT program activation in epithelial cells would be bimodal: coupled to stemness during initial activation, but when forced to reach an advanced mesenchymal status, it would become incompatible with stem cell abilities.

  7. Cytotoxicity and Induction of Inflammation by Pepsin in Acid in Bronchial Epithelial Cells

    PubMed Central

    Bathoorn, Erik; Daly, Paul; Gaiser, Birgit; Sternad, Karl; Poland, Craig; MacNee, William; Drost, Ellen M.

    2011-01-01

    Introduction. Gastroesophageal reflux has been associated with chronic inflammatory diseases and may be a cause of airway remodelling. Aspiration of gastric fluids may cause damage to airway epithelial cells, not only because acidity is toxic to bronchial epithelial cells, but also since it contains digestive enzymes, such as pepsin. Aim. To study whether pepsin enhances cytotoxicity and inflammation in airway epithelial cells, and whether this is pH-dependent. Methods. Human bronchial epithelial cells were exposed to increasing pepsin concentrations in varying acidic milieus, and cell proliferation and cytokine release were assessed. Results. Cell survival was decreased by pepsin exposure depending on its concentration (F = 17.4) and pH level of the medium (F = 6.5) (both P < 0.01). Pepsin-induced interleukin-8 release was greater at lower pH (F = 5.1; P < 0.01). Interleukin-6 induction by pepsin was greater at pH 1.5 compared to pH 2.5 (mean difference 434%; P = 0.03). Conclusion. Pepsin is cytotoxic to bronchial epithelial cells and induces inflammation in addition to acid alone, dependent on the level of acidity. Future studies should assess whether chronic aspiration causes airway remodelling in chronic inflammatory lung diseases. PMID:21785693

  8. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    NASA Astrophysics Data System (ADS)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  9. Developmental Decline in the MicroRNA 199a (miR-199a)/miR-214 Cluster in Human Fetal Lung Promotes Type II Cell Differentiation by Upregulating Key Transcription Factors.

    PubMed

    Mishra, Ritu; Benlhabib, Houda; Guo, Wei; Lerma Cervantes, Connie B; Mendelson, Carole R

    2018-06-01

    The major surfactant protein, SP-A (a product of the SFTPA gene), serves as a marker of type II pneumocyte differentiation and surfactant synthesis. SFTPA expression in cultured human fetal lung (HFL) epithelial cells is upregulated by hormones that increase cyclic AMP (cAMP) and activate TTF-1/NKX2.1 and NF-κB. To further define mechanisms for type II cell differentiation and induction of SP-A, we investigated roles of microRNAs (miRNAs). Using microarray to identify differentially expressed miRNAs in HFL epithelial cells during type II cell differentiation in culture, we observed that members of the miRNA 199a (miR-199a)/miR-214 cluster were significantly downregulated during differentiation. Validated and predicted targets of miR-199a-3p/miR-199a-5p and miR-214, which serve roles in type II cell differentiation (COX-2, NF-κB p50/p65, and CREB1), and the CREB1 target, C/EBPβ, were coordinately upregulated. Accordingly, overexpression of miR-199a-5p, miR-199a-3p, or miR-214 mimics in cultured HFL epithelial cells decreased COX-2, NF-κB p50/p65, CREB1, and C/EBPβ proteins, with an associated inhibition of SP-A expression. Interestingly, overexpression of the EMT factor, ZEB1, which declines during cAMP-induced type II cell differentiation, increased pri-miR-199a and reduced the expression of the targets NF-κB/p50 and COX-2. Collectively, these findings suggest that the developmental decline in miR-199a/miR-214 in HFL causes increased expression of critical targets that enhance type II cell differentiation and SP-A expression. Copyright © 2018 American Society for Microbiology.

  10. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    PubMed

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  11. Human amnion epithelial cells expressing HLA-G as novel cell-based treatment for liver disease.

    PubMed

    Strom, Stephen C; Gramignoli, Roberto

    2016-09-01

    Despite routine liver transplantation and supporting medical therapies, thousands of patients currently wait for an organ and there is an unmet need for more refined and widely available regenerative strategies to treat liver diseases. Cell transplants attempt to maximize the potential for repair and/or regeneration in liver and other organs. Over 40years of laboratory pre-clinical research and 25years of clinical procedures have shown that certain liver diseases can be treated by the infusion of isolated cells (hepatocyte transplant). However, like organ transplants, hepatocyte transplant suffers from a paucity of tissues useful for cell production. Alternative sources have been investigated, yet with limited success. The tumorigenic potential of pluripotent stem cells together with their primitive level of hepatic differentiation, have limited the use of stem cell populations. Stem cell sources from human placenta, and the amnion tissue in particular are receiving renewed interest in the field of regenerative medicine. Unlike pluripotent stem cells, human amnion epithelial (AE) cells are easily available without ethical or religious concerns; they do not express telomerase and are not immortal or tumorigenic when transplanted. In addition, AE cells have been reported to express genes normally expressed in mature liver, when transplanted into the liver. Moreover, because of the possibility of an immune-privileged status related to their expression of HLA-G, it might be possible to transplant human AE cells without immunosuppression of the recipient. Copyright © 2016. Published by Elsevier Inc.

  12. Comparison of Timothy grass pollen extract- and single major allergen-induced gene expression and mediator release in airway epithelial cells: a meta-analysis.

    PubMed

    Röschmann, K I L; van Kuijen, A-M; Luiten, S; Jonker, M J; Breit, T M; Fokkens, W J; Petersen, A; van Drunen, C M

    2012-10-01

    Seasonal allergic rhinitis (AR) is a global health problem and its prevalence has increased considerably in the last decades. As the allergic response with its clinical manifestations is triggered by only a few proteins within natural extracts, there is an increasing tendency for single-component-resolved diagnosis and immunotherapy. As natural exposure is not to single proteins, but to complex mixtures of molecules, we were interested in comparing the activation of respiratory epithelial cells induced by the purified major allergen Phl p 1 with the induction caused by a complete extract of Timothy grass pollen (GPE). NCI-H292 cells were exposed to GPE or Ph1 p 1 for 24 h, isolated RNA and cell culture supernatants were used for microarray analysis, multiplex enzyme-linked immunosorbant assay (ELISA) and subsequent analysis. We found 262 genes that showed a GPE-induced change of at least 3-fold, whereas Ph1 p 1-stimulation resulted in 71 genes with a fold induction of more than 3-fold. Besides genes that were regulated by both stimuli, we also detected genes displaying an opposite response after stimulation, suggesting that GPE might be more than purified major allergens with regard to induced immune responses. Additional components within GPE and the resulting modulation of general processes affecting gene transcription and signalling pathways might be crucial to maintain/overcome the diseased phenotype and to induce the influx of cells contributing to late-phase allergic responses. When the initial process of sensitization is the matter of interest or late-phase allergic responses, one might miss important immune modulatory molecules and their interaction with allergens by applying single components only. © 2012 Blackwell Publishing Ltd.

  13. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells.

    PubMed

    Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G; Kuemmerle, John F; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I

    2014-10-15

    Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. © 2014 Lechuga, Baranwal, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Rho GTPases and Regulation of Cell Migration and Polarization in Human Corneal Epithelial Cells

    PubMed Central

    Hou, Aihua; Toh, Li Xian; Gan, Kah Hui; Lee, Khee Jin Ryan; Manser, Edward; Tong, Louis

    2013-01-01

    Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells. PMID:24130842

  15. CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition

    PubMed Central

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C.

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed. PMID:23437366

  16. Aptamer-conjugated gold nanorod for photothermal ablation of epidermal growth factor receptor-overexpressed epithelial cancer

    NASA Astrophysics Data System (ADS)

    Choi, Jihye; Park, Yeonji; Choi, Eun Bi; Kim, Hyun-Ouk; Kim, Dong Joo; Hong, Yoochan; Ryu, Sung-Ho; Lee, Jung Hwan; Suh, Jin-Suck; Yang, Jaemoon; Huh, Yong-Min; Haam, Seungjoo

    2014-05-01

    Biomarker-specific photothermal nanoparticles that can efficiently sense markers that are overexpressed in distinguished adenocarcinomas have attracted much interest in an aspect of efficacy increase of cancer treatment. We demonstrated a promising prospect of a smart photothermal therapy agent employing anti-epidermal growth factor receptor aptamer (AptEGFR)-conjugated polyethylene glycol (PEG) layted gold nanorods (AptEGFR-PGNRs). The cetyltrimethylammonium bromide bilayer on GNRs was replaced with heterobifunctional PEG (COOH-PEG-SH) not only to serve as a biocompatible stabilizer and but also to conjugate Apt. Subsequently, to direct photothermal therapy agent toward epithelial cancer cells, the carboxylated PEGylated GNRs (PGNRs) were further functionalized with Apt using carbodiimide chemistry. Then, to assess the potential as biomarker-specific photothermal therapy agent of synthesized Apt-PGNRs, the optical properties, biocompatibility, colloidal stability, binding affinity, and epicellial cancer cell killing efficacy in vitro/in vivo under near-infrared laser irradiation were investigated. As a result, Apt-PGNRs exhibit excellent tumor targeting ability and feasibility of effective photothermal ablation cancer therapy.

  17. Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade

    PubMed Central

    Choi, Jin Young; Kim, Seong Bum; Eo, Seong Kug

    2015-01-01

    Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I–dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I–dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident–to-hematopoietic–to-resident cells that drives cytokine–to-chemokine–to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues. PMID:26618488

  18. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    PubMed

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  19. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations

    PubMed Central

    Henry, Ian; Tomancak, Pavel

    2017-01-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs. PMID:29176774

  20. Normoxic Cyclic GMP-independent Oxidative Signaling by Nitrite Enhances Airway Epithelial Cell Proliferation and Wound Healing

    PubMed Central

    Wang, Ling; Frizzell, Sheila A.; Zhao, Xuejun; Gladwin, Mark T.

    2013-01-01

    The airway epithelium provides important barrier and host defense functions. Recent studies reveal that nitrite is an endocrine reservoir of nitric oxide (NO) bioactivity that is converted to NO by enzymatic reductases along the physiological oxygen gradient. Nitrite signaling has been described as NO dependent activation mediated by reactions with deoxygenated redox active hemoproteins, such as hemoglobin, myoglobin, neuroglobin, xanthine oxidoreductase (XO) and NO synthase at low pH and oxygen tension. However, nitrite can also be readily oxidized to nitrogen dioxide (NO2•) via heme peroxidase reactions, suggesting the existence of alternative oxidative signaling pathways for nitrite under normoxic conditions. In the present study we examined normoxic signaling effects of sodium nitrite on airway epithelial cell wound healing. In an in vitro scratch injury model under normoxia, we exposed cultured monolayers of human airway epithelial cells to various concentrations of sodium nitrite and compared responses to NO donor. We found sodium nitrite potently enhanced airway epithelium wound healing at physiological concentrations (from 1uM). The effect of nitrite was blocked by the NO and NO2• scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (c-PTIO). Interestingly, nitrite treatment did not increase cyclic guanosine monophosphate (cGMP) levels under these normoxic conditions, even in the presence of a phosphodiesterase 5 inhibitor, suggesting cGMP independent signaling. Consistent with an oxidative signaling pathway requiring hydrogen peroxide (H2O2)/heme peroxidase/NO2• signaling, the effects of nitrite were potentiated by superoxide dismutase (SOD) and low concentration H2O2, whereas inhibited completely by catalase, followed by downstream extracellular-signal-regulated kinase (ERK) 1/2 activation. Our data represent the first description of normoxic nitrite signaling on lung epithelial cell proliferation and wound healing and suggest novel oxidative signaling pathways involving nitrite-H2O2 reactions, possibly via the intermediary, NO2•. PMID:22425780

  1. Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease.

    PubMed

    Randell, Scott H

    2006-11-01

    Characteristic pathologic changes in chronic obstructive pulmonary disease (COPD) include an increased fractional volume of bronchiolar epithelial cells, fibrous thickening of the airway wall, and luminal inflammatory mucus exudates, which are positively correlated with airflow limitation and disease severity. The mechanisms driving general epithelial expansion, mucous secretory cell hyperplasia, and mucus accumulation must relate to the effects of initial toxic exposures on patterns of epithelial stem and progenitor cell proliferation and differentiation, eventually resulting in a self-perpetuating, and difficult to reverse, cycle of injury and repair. In this review, current concepts in stem cell biology and progenitor-progeny relationships related to COPD are discussed, focusing on the factors, pathways, and mechanisms leading to mucous secretory cell hyperplasia and mucus accumulation in the airways. A better understanding of alterations in airway epithelial phenotype in COPD will provide a logical basis for novel therapeutic approaches.

  2. Brca1 regulates in vitro differentiation of mammary epithelial cells.

    PubMed

    Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus

    2002-07-18

    Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.

  3. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    PubMed

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  4. Screening of carcinoma metastasis by flow cytometry: A study of 238 cases.

    PubMed

    Acosta, Maria; Pereira, José; Arroz, Maria

    2016-05-01

    Malignant epithelial cells may be detected in different specimens, by immunophenotyping using flow cytometry (FCM). CD326 (epithelial-specific antigen, clone Ber-Ep4) was used to identify epithelial cells, CD45 to discriminate between leucocytes (positive for this antigen) and non-hematological cells (negative for this antigen), and CD33 to identify monocytes/macrophages. This combination is particularly useful in effusions to characterize large cells and distinguish between monocyte/macrophages (CD45+ CD33+ CD326-), mesothelial cells (CD45 ± (dim) CD33 - CD326-) and epithelial cells (CD45 - CD33 - CD326 +). We evaluated the efficiency of flow cytometry to detect malignant epithelial cells in 238 fresh samples, including effusions, lymph node biopsies, fine needle aspirates, bone marrow aspirates, cerebrospinal fluid, among others. These are specimens expected to lack epithelial cells. FCM results were then compared to the results of smear and cell block morphology, as well as immunocytochemistry on paraffin wax embedded cell blocks, when available. Final diagnosis was the gold standard and a very good sensitivity (96.7%) and specificity (99.3%) were obtained. We concluded that the detection of CD326 positive cells using FCM is strongly indicative of the presence of carcinoma cells. © 2015 International Clinical Cytometry Society. © 2015 International Clinical Cytometry Society.

  5. Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway

    PubMed Central

    Chang, Weilong; Bai, Jie; Tian, Shaobo; Ma, Muyuan; Li, Wei; Yin, Yuping; Deng, Rui; Cui, Jinyuan; Li, Jinjin; Wang, Guobin; Tao, Kaixiong

    2017-01-01

    Alcohol abuse is an important cause of gastric mucosal epithelial cell injury and gastric ulcers. A number of studies have demonstrated that autophagy, an evolutionarily conserved cellular mechanism, has a protective effect on cell survival. However, it is not known whether autophagy can protect gastric mucosal epithelial cells against the toxic effects of ethanol. In the present study, gastric mucosal epithelial cells (GES-1 cells) and Wistar rats were treated with ethanol to detect the adaptive response of autophagy. Our results demonstrated that ethanol exposure induced gastric mucosal epithelial cell damage, which was accompanied by the downregulation of mTOR signaling pathway and activation of autophagy. Suppression of autophagy with pharmacological agents resulted in a significant increase of GES-1 cell apoptosis and gastric mucosa injury, suggesting that autophagy could protect cells from ethanol toxicity. Furthermore, we evaluated the cellular oxidative stress response following ethanol treatment and found that autophagy induced by ethanol inhibited generation of reactive oxygen species and degradation of antioxidant and lipid peroxidation. In conclusion, these findings provide evidence that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate oxidative damage induced by ethanol in gastric mucosal epithelial cells. Therefore, modifying autophagy may provide a therapeutic strategy against alcoholic gastric mucosa injury. Impact statement The effect and mechanism of autophagy on ethanol-induced cell damage remain controversial. In this manuscript, we report the results of our study demonstrating that autophagy can protect gastric mucosal epithelial cells against ethanol toxicity in vitro and in vivo. We have shown that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate ethanol-induced oxidative damage in gastric mucosal epithelial cells. This study brings new and important insights into the mechanism of alcoholic gastric mucosal injury and may provide an avenue for future therapeutic strategies. PMID:28056554

  6. Human Milk Oligosaccharides Attenuate Antigen-Antibody Complex Induced Chemokine Release from Human Intestinal Epithelial Cell Lines.

    PubMed

    Zehra, Sehrish; Khambati, Ibrahim; Vierhout, Megan; Mian, M Firoz; Buck, Rachael; Forsythe, Paul

    2018-02-01

    There has been increased interest in the use of dietary ingredients, including prebiotics such as human-milk oligosaccharides (HMOs), as therapeutic strategies for food allergy. Understanding the mechanisms underlying the beneficial effects of HMOs is important to realizing their therapeutic potential. Here we demonstrate that the HMO, 6'-sialyllactose (6'SL) inhibited chemokine (IL-8 and CCL20) release from T-84 and HT-29 cells stimulated with antigen-antibody complex, TNFα or PGE 2 ; an effect that was PPARγ dependent and associated with decreased activity of the transcription factors AP-1 and NFκB. In contrast, 2'-fucosyllactose (2'FL) selectively inhibited CCL20 release in response to antigen antibody complex in a PPARγ independent manner. This study reinforces the concept that structurally different oligosaccharides have distinct biological activities and identifies, for the first time, that the HMOs, 6'SL, and 2'FL, modulate human epithelial cell responses related to allergic disease. These findings encourage further investigation of the therapeutic potential of specific HMOs in food allergy. This study provides evidence for direct effects of HMOs in addition to their prebiotic role and demonstrates, for the first time, modulation of Ag-IgE complex activation of human epithelial cells that may have important implications for food-allergy. The study also reinforces the concept that structurally different oligosaccharides have distinct biological activities. In determining the composition of infant formula, addition of oligosaccharides with specific structures may provide direct modulation of immune responses and potentially attenuate symptoms or development of food allergy. © 2018 Institute of Food Technologists®.

  7. Role of Acinetobactin-Mediated Iron Acquisition Functions in the Interaction of Acinetobacter baumannii Strain ATCC 19606T with Human Lung Epithelial Cells, Galleria mellonella Caterpillars, and Mice

    PubMed Central

    Gaddy, Jennifer A.; Arivett, Brock A.; McConnell, Michael J.; López-Rojas, Rafael; Pachón, Jerónimo

    2012-01-01

    Acinetobacter baumannii, which causes serious infections in immunocompromised patients, expresses high-affinity iron acquisition functions needed for growth under iron-limiting laboratory conditions. In this study, we determined that the initial interaction of the ATCC 19606T type strain with A549 human alveolar epithelial cells is independent of the production of BasD and BauA, proteins needed for acinetobactin biosynthesis and transport, respectively. In contrast, these proteins are required for this strain to persist within epithelial cells and cause their apoptotic death. Infection assays using Galleria mellonella larvae showed that impairment of acinetobactin biosynthesis and transport functions significantly reduces the ability of ATCC 19606T cells to persist and kill this host, a defect that was corrected by adding inorganic iron to the inocula. The results obtained with these ex vivo and in vivo approaches were validated using a mouse sepsis model, which showed that expression of the acinetobactin-mediated iron acquisition system is critical for ATCC 19606T to establish an infection and kill this vertebrate host. These observations demonstrate that the virulence of the ATCC 19606T strain depends on the expression of a fully active acinetobactin-mediated system. Interestingly, the three models also showed that impairment of BasD production results in an intermediate virulence phenotype compared to those of the parental strain and the BauA mutant. This observation suggests that acinetobactin intermediates or precursors play a virulence role, although their contribution to iron acquisition is less relevant than that of mature acinetobactin. PMID:22232188

  8. Epithelial-stromal interaction via Notch signaling is essential for the full maturation of gut-associated lymphoid tissues.

    PubMed

    Obata, Yuuki; Kimura, Shunsuke; Nakato, Gaku; Iizuka, Keito; Miyagawa, Yurika; Nakamura, Yutaka; Furusawa, Yukihiro; Sugiyama, Machiko; Suzuki, Keiichiro; Ebisawa, Masashi; Fujimura, Yumiko; Yoshida, Hisahiro; Iwanaga, Toshihiko; Hase, Koji; Ohno, Hiroshi

    2014-12-01

    Intrinsic Notch signaling in intestinal epithelial cells restricts secretory cell differentiation. In gut-associated lymphoid tissue (GALT), stromal cells located beneath the follicle-associated epithelium (FAE) abundantly express the Notch ligand delta-like 1 (Dll1). Here, we show that mice lacking Rbpj-a gene encoding a transcription factor implicated in Notch signaling-in intestinal epithelial cells have defective GALT maturation. This defect can be attributed to the expansion of goblet cells, which leads to the down-regulation of CCL20 in FAE. These data demonstrate that epithelial Notch signaling maintained by stromal cells contributes to the full maturation of GALT by restricting secretory cell differentiation in FAE. © 2014 The Authors.

  9. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  10. Effects of peptides on proliferative activity of retinal and pigmented epithelial cells.

    PubMed

    Khavinson, V Kh; Zemchikhina, V N; Trofimova, S V; Malinin, V V

    2003-06-01

    We studied the effects of Retinalamin (polypeptide preparation isolated from the retina) and a synthetic peptide Epithalon (Ala-Glu-Asp-Gly) on proliferative activity of retinal and pigmented epithelial cells. Experiments showed that Retinalamin and Epithalon (in certain concentrations) tissue-specifically stimulated proliferation of retinal and pigmented epithelial cell in culture.

  11. Epithelial self-defense against cancer.

    PubMed

    Yamauchi, Hajime; Fujita, Yasuyuki

    2012-11-01

    It is not clearly understood what happens at the interface between normal and transformed epithelial cells at the first step of carcinogenesis. A recent study reveals that the organized epithelial structure suppresses clonal expansion of transformed cells. Translocation from the epithelium or perturbation of intercellular adhesions may be required for transformed cells to evade the suppressive environments.

  12. EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans

    PubMed Central

    Swidergall, Marc; Solis, Norma V.; Lionakis, Michail S.; Filler, Scott G.

    2017-01-01

    Oral epithelial cells discriminate between pathogenic and non-pathogenic stimuli, and only induce an inflammatory response when they are exposed to high levels of a potentially harmful microorganism. The pattern recognition receptors (PRRs) in epithelial cells that mediate this differential response are poorly understood. Here, we demonstrate that the ephrin type-A receptor 2 (EphA2) is an oral epithelial cell PRR that binds to exposed β-glucans on the surface of the fungal pathogen Candida albicans. Binding of C. albicans to EphA2 on oral epithelial cells activates signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase signaling in an inoculum-dependent manner, and is required for induction of a pro-inflammatory and antifungal response. EphA2−/− mice have impaired inflammatory responses and reduced IL-17 signaling during oropharyngeal candidiasis, resulting in more severe disease. Our study reveals that EphA2 functions as PRR for β-glucans that senses epithelial cell fungal burden and is required for the maximal mucosal inflammatory response to C. albicans. PMID:29133884

  13. Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogata-Suetsugu, Saiko; Yanagihara, Toyoshi; Hamada, Naoki

    Background and objective: As a member of the epidermal growth factor family, amphiregulin contributes to the regulation of cell proliferation. Amphiregulin was reported to be upregulated in damaged lung tissues in patients with chronic obstructive pulmonary disease and asthma and in lung epithelial cells in a ventilator-associated lung injury model. In this study, we investigated the effect of amphiregulin on lipopolysaccharide (LPS)-induced acute lung injury in mice. Methods: Acute lung injury was induced by intranasal instillation of LPS in female C57BL/6 mice, and the mice were given intraperitoneal injections of recombinant amphiregulin or phosphate-buffered saline 6 and 0.5 h before andmore » 3 h after LPS instillation. The effect of amphiregulin on apoptosis and apoptotic pathways in a murine lung alveolar type II epithelial cell line (LA-4 cells) were examined using flow cytometry and western blotting, respectively. Results: Recombinant amphiregulin suppressed epithelial cell apoptosis in LPS-induced lung injury in mice. Western blotting revealed that amphiregulin suppressed epithelial cell apoptosis by inhibiting caspase-8 activity. Conclusion: Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury treatment through its prevention of epithelial cell apoptosis. - Highlights: • Amphiregulin suppresses epithelial cell apoptosis in LPS-induced lung injury in mice. • The mechanism relies on inhibiting caspase-8 activity. • Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury.« less

  14. Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR

    PubMed Central

    Xu, Xiaohua; Balsiger, Robert; Tyrrell, Jean; Boyaka, Prosper N.; Tarran, Robert; Cormet-Boyaka, Estelle

    2015-01-01

    Background CFTR plays a key role in maintenance of lung fluid homeostasis. Cigarette smoke decreases CFTR expression in the lung but neither the mechanisms leading to CFTR loss, nor potential ways to prevent its loss have been identified to date. Methods The molecular mechanisms leading to down-regulation of CFTR by cigarette smoke were determined using pharmacologic inhibitors and silencing RNAs. Results Using human bronchial epithelial cells, here we show that cigarette smoke induces degradation of CFTR that is attenuated by the lysosomal inhibitors, but not proteasome inhibitors. Cigarette smoke can activate multiple signaling pathways in airway epithelial cells, including the MEK/Erk1/2 MAPK pathway regulating cell survival. Interestingly, pharmacological inhibition of the MEK/Erk1/2 MAPK pathway prevented the loss of plasma membrane CFTR upon cigarette smoke exposure. Similarly, decreased expression of Erk1/2 using silencing RNAs prevented the suppression of CFTR protein by cigarette smoke. Conversely, specific inhibitors of the JNK or p38 MAPK pathways had no effect on CFTR decrease after cigarette smoke exposure. In addition, inhibition of the MEK/Erk1/2 MAPK pathway prevented the reduction of the airway surface liquid observed upon cigarette smoke exposure of primary human airway epithelial cells. Finally, addition of the antioxidant NAC inhibited activation of Erk1/2 by cigarette smoke and precluded the cigarette smoke-induced decrease of CFTR. Conclusions These results show that the MEK/Erk1/2 MAPK pathway regulates plasma membrane CFTR in human airway cells. General Significance The MEK/Erk1/2 MAPK pathway should be considered as a target for strategies to maintain/restore CFTR expression in the lung of smokers. PMID:25697727

  15. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    PubMed

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke

    PubMed Central

    2010-01-01

    Background Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-γ-dependent antiviral mechanisms in epithelial cells in the airway. Methods Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-γ. Epithelial cell cytotoxicity and IFN-γ-induced signaling, gene expression, and antiviral effects against respiratory syncytial virus (RSV) were tested without and with CSE exposure. Results CSE inhibited IFN-γ-dependent gene expression in airway epithelial cells, and these effects were not due to cell loss or cytotoxicity. CSE markedly inhibited IFN-γ-induced Stat1 phosphorylation, indicating that CSE altered type II interferon signal transduction and providing a mechanism for CSE effects. A period of CSE exposure combined with an interval of epithelial cell exposure to both CSE and IFN-γ was required to inhibit IFN-γ-induced cell signaling. CSE also decreased the inhibitory effect of IFN-γ on RSV mRNA and protein expression, confirming effects on viral infection. CSE effects on IFN-γ-induced Stat1 activation, antiviral protein expression, and inhibition of RSV infection were decreased by glutathione augmentation of epithelial cells using N-acetylcysteine or glutathione monoethyl ester, providing one strategy to alter cigarette smoke effects. Conclusions The results indicate that CSE inhibits the antiviral effects of IFN-γ, thereby presenting one explanation for increased susceptibility to respiratory viral infection in individuals exposed to cigarette smoke. PMID:20504369

  17. Development of a conjunctival tissue substitute on the basis of plastic compressed collagen.

    PubMed

    Drechsler, C C; Kunze, A; Kureshi, A; Grobe, G; Reichl, S; Geerling, G; Daniels, J T; Schrader, S

    2017-03-01

    Ocular surface disorders, such as pterygium, cicatricial pemphigoid and external disruptions, can cause severe inflammation, scarring, fornix shortening as well as ankyloblepharon. Current treatments do not resolve these conditions sufficiently. The aim of this study was to evaluate clinical applicability and suitability of plastic compressed collagen to serve as a substrate for the expansion of human conjunctival epithelial cells in order to develop an epithelialized conjunctival substitute for fornix reconstruction. Human conjunctival epithelial cells were expanded on plastic compressed collagen gels. Epithelial cell characteristics were evaluated by haematoxylin and eosin staining, electron microscopy and cytokeratin expression. The expression of putative epithelial progenitor cell markers p63α, ABCG2 and CK15 was assessed by immunostaining. The proliferative capacity and clonal growth of the cells was evaluated before (P0) and after expansion (P1) on the plastic compressed collagen gels by colony forming efficiency assay. The potential clinical applicability of this gel substitutes was evaluated by assessment of their biomechanical properties as well as their surgical handling. Human conjunctival epithelial cells cultured on plastic and plastic compressed collagen gels formed a confluent cell layer and expressed CK19. The cells showed expression of the putative epithelial progenitor cell markers p63α, ABCG2 and CK15 and sustained colony forming ability. The compressed collagen gels showed a high ultimate tensile strength and elasticity and the surgical handling of gels was comparable to amniotic membrane. An epithelialized conjunctival tissue construct on the basis of compressed collagen might therefore be a promising alternative bioartificial tissue substitute for conjunctival reconstruction. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Cigarette smoke suppresses Bik to cause epithelial cell hyperplasia and mucous cell metaplasia.

    PubMed

    Mebratu, Yohannes A; Schwalm, Kurt; Smith, Kevin R; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-06-01

    Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. We screened for dysregulated expression of the Bcl-2 family members. We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis.

  19. Cigarette Smoke Suppresses Bik To Cause Epithelial Cell Hyperplasia and Mucous Cell Metaplasia

    PubMed Central

    Mebratu, Yohannes A.; Schwalm, Kurt; Smith, Kevin R.; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-01-01

    Rationale: Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. Objectives: To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. Methods: We screened for dysregulated expression of the Bcl-2 family members. Measurements and Main Results: We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. Conclusions: These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis. PMID:21317312

  20. Robust G2 pausing of adult stem cells in Hydra.

    PubMed

    Buzgariu, Wanda; Crescenzi, Marco; Galliot, Brigitte

    2014-01-01

    Hydra is a freshwater hydrozoan polyp that constantly renews its two tissue layers thanks to three distinct stem cell populations that cannot replace each other, epithelial ectodermal, epithelial endodermal, and multipotent interstitial. These adult stem cells, located in the central body column, exhibit different cycling paces, slow for the epithelial, fast for the interstitial. To monitor the changes in cell cycling in Hydra, we established a fast and efficient flow cytometry procedure, which we validated by confirming previous findings, as the Nocodazole-induced reversible arrest of cell cycling in G2/M, and the mitogenic signal provided by feeding. Then to dissect the cycling and differentiation behaviors of the interstitial stem cells, we used the AEP_cnnos1 and AEP_Icy1 transgenic lines that constitutively express GFP in this lineage. For the epithelial lineages we used the sf-1 strain that rapidly eliminates the fast cycling cells upon heat-shock and progressively becomes epithelial. This study evidences similar cycling patterns for the interstitial and epithelial stem cells, which all alternate between the G2 and S-phases traversing a minimal G1-phase. We also found interstitial progenitors with a shorter G2 that pause in G1/G0. At the animal extremities, most cells no longer cycle, the epithelial cells terminally differentiate in G2 and the interstitial progenitors in G1/G0. At the apical pole ~80% cells are post-mitotic differentiated cells, reflecting the higher density of neurons and nematocytes in this region. We discuss how the robust G2 pausing of stem cells, maintained over weeks of starvation, may contribute to regeneration. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  1. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.

  2. Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR

    PubMed Central

    Edwards, Vonetta L.; Wang, Liang-Chun; Dawson, Valerie; Stein, Daniel C.; Song, Wenxia

    2017-01-01

    Summary Neisseria gonorrhoeae initiates infection at the apical surface of columnar endocervical epithelial cells in the female reproductive tract. These cells provide a physical barrier against pathogens by forming continuous apical junctional complexes between neighbouring cells. This study examines the interaction of gonococci (GC) with polarized epithelial cells. We show that viable GC preferentially localize at the apical side of the cell–cell junction in polarized endometrial and colonic epithelial cells, HEC-1-B and T84. In GC-infected cells, continuous apical junctional complexes are disrupted, and the junction-associated protein β-catenin is redistributed from the apical junction to the cytoplasm and to GC adherent sites; however, overall cellular levels remain unchanged. This redistribution of junctional proteins is associated with a decrease in the ‘fence’ function of the apical junction but not its ‘gate’ function. Disruption of the apical junction by removing calcium increases GC transmigration across the epithelial monolayer. GC inoculation induces the phosphorylation of both epidermal growth factor receptor (EGFR) and β-catenin, while inhibition of EGFR kinase activity significantly reduces both GC-induced β-catenin redistribution and GC transmigration. Therefore, the gonococcus is capable of weakening the apical junction and polarity of epithelial cells by activating EGFR, which facilitates GC transmigration across the epithelium. PMID:23279089

  3. Establishment of immortal swine kidney epithelial cells.

    PubMed

    Kwak, Sungwook; Jung, Ji-Eun; Jin, Xun; Kim, Sun-Myung; Kim, Tae-Kyung; Lee, Joong-Seob; Lee, Soo-Yeon; Pian, Xumin; You, Seungkwon; Kim, Hyunggee; Choi, Yun-Jaie

    2006-01-01

    Using normal swine kidney epithelial (SKE) cells that were shown to be senescent at passages 12 to 14, we have established one lifespan-extended cell line and two lifespan-extended cell lines by exogenous introduction of the human catalytic subunit of telomerase (hTERT) and simian virus 40 large T-antigen (SV40LT), all of which maintain epithelial morphology and express cytokeratin, a marker of epithelial cells. SV40LT- and hTERT-transduced immortal cell lines appeared to be smaller and exhibited more uniform morphology relative to primary and spontaneously immortalized SKE cells. We determined the in vitro lifespan of primary SKE cells using a standard 3T6 protocol. There were two steps of the proliferation barrier at 12 and 20, in which a majority of primary SKE cells appeared enlarged, flattened, vacuolated, and ss-galactosidase-positive, all phenotypical characteristics of senescent cells. Lifespan-extended SKE cells were eventually established from most of the cellular foci, which is indicative of spontaneous cellular conversion at passage 23. Beyond passage 25, the rate of population doubling of the established cells gradually increased. At passage 30, immortal cell lines grew faster than primary counterpart cells in 10% FBS-DMEM culture conditions, and only SV40LT-transduced immortal cells grew faster than primary and other SKE immortal cells in 0.5% FBS-DMEM. These lifespan-extended SKE cell lines failed to grow in an anchorage-independent manner in soft-agar dishes. Hence, three immortalized swine kidney epithelial cells that are not transformed would be valuable biological tools for virus propagation and basic kidney epithelial cell research.

  4. Proteolytic Processing of Laminin-332 by Hepsin and Matriptase and Its Role in Prostate Cancer Progression

    DTIC Science & Technology

    2011-09-01

    epithelial tumors, including breast, cervix , esophagus, liver, mesothelium, prostate, and colorectal cancers [36,38,61–69]. Interestingly, in the case of...Proteolytic Processing of Laminin-332 by Hepsin and Matriptase and Its Role in Prostate Cancer Progression Manisha Tripathi The Vanderbilt University...Nashville, TN 37203 Laminin-332 is lost in prostate cancer progression. Laminin-332 is known to be cleaved by various cell surface proteases

  5. Asbestos exposure induces alveolar epithelial cell plasticity through MAPK/Erk signaling.

    PubMed

    Tamminen, Jenni A; Myllärniemi, Marjukka; Hyytiäinen, Marko; Keski-Oja, Jorma; Koli, Katri

    2012-07-01

    The inhalation of asbestos fibers is considered to be highly harmful, and lead to fibrotic and/or malignant disease. Epithelial-to-mesenchymal transition (EMT) is a common pathogenic mechanism in asbestos associated fibrotic (asbestosis) and malignant lung diseases. The characterization of molecular pathways contributing to EMT may provide new possibilities for prognostic and therapeutic applications. The role of asbestos as an inducer of EMT has not been previously characterized. We exposed cultured human lung epithelial cells to crocidolite asbestos and analyzed alterations in the expression of epithelial and mesenchymal marker proteins and cell morphology. Asbestos was found to induce downregulation of E-cadherin protein levels in A549 lung carcinoma cells in 2-dimensional (2D) and 3D cultures. Similar findings were made in primary small airway epithelial cells cultured in 3D conditions where the cells retained alveolar type II cell phenotype. A549 cells also exhibited loss of cell-cell contacts, actin reorganization and expression of α-smooth muscle actin (α-SMA) in 2D cultures. These phenotypic changes were not associated with increased transforming growth factor (TGF)-β signaling activity. MAPK/Erk signaling pathway was found to mediate asbestos-induced downregulation of E-cadherin and alterations in cell morphology. Our results suggest that asbestos can induce epithelial plasticity, which can be interfered by blocking the MAPK/Erk kinase activity. Copyright © 2012 Wiley Periodicals, Inc.

  6. A simple, cost-effective method for generating murine colonic 3D enteroids and 2D monolayers for studies of primary epithelial cell function.

    PubMed

    Fernando, Elizabeth H; Dicay, Michael; Stahl, Martin; Gordon, Marilyn H; Vegso, Andrew; Baggio, Cristiane; Alston, Laurie; Lopes, Fernando; Baker, Kristi; Hirota, Simon; McKay, Derek M; Vallance, Bruce; MacNaughton, Wallace K

    2017-11-01

    Cancer cell lines have been the mainstay of intestinal epithelial experimentation for decades, due primarily to their immortality and ease of culture. However, because of the inherent biological abnormalities of cancer cell lines, many cellular biologists are currently transitioning away from these models and toward more representative primary cells. This has been particularly challenging, but recent advances in the generation of intestinal organoids have brought the routine use of primary cells within reach of most epithelial biologists. Nevertheless, even with the proliferation of publications that use primary intestinal epithelial cells, there is still a considerable amount of trial and error required for laboratories to establish a consistent and reliable method to culture three-dimensional (3D) intestinal organoids and primary epithelial monolayers. We aim to minimize the time other laboratories spend troubleshooting the technique and present a standard method for culturing primary epithelial cells. Therefore, we have described our optimized, high-yield, cost-effective protocol to grow 3D murine colonoids for more than 20 passages and our detailed methods to culture these cells as confluent monolayers for at least 14 days, enabling a wide variety of potential future experiments. By supporting and expanding on the current literature of primary epithelial culture optimization and detailed use in experiments, we hope to help enable the widespread adoption of these innovative methods and allow consistency of results obtained across laboratories and institutions. NEW & NOTEWORTHY Primary intestinal epithelial monolayers are notoriously difficult to maintain culture, even with the recent advances in the field. We describe, in detail, the protocols required to maintain three-dimensional cultures of murine colonoids and passage these primary epithelial cells to confluent monolayers in a standardized, high-yield and cost-effective manner. Copyright © 2017 the American Physiological Society.

  7. Generation of SV40-transformed rabbit tracheal-epithelial-cell-derived blastocyst by somatic cell nuclear transfer

    PubMed Central

    de Semir, D.; Maurisse, R.; Du, F.; Xu, J.; Yang, X.; Illek, B.; Gruenert, D. C.

    2013-01-01

    The prospect of developing large animal models for the study of inherited diseases, such as cystic fibrosis (CF), through somatic cell nuclear transfer (SCNT) has opened up new opportunities for enhancing our understanding of disease pathology and for identifying new therapies. Thus, the development of species-specific in vitro cell systems that will provide broader insight into organ- and cell-type-specific functions relevant to the pathology of the disease is crucial. Studies have been undertaken to establish transformed rabbit airway epithelial cell lines that display differentiated features characteristic of the primary airway epithelium. This study describes the successful establishment and characterization of two SV40-transformed rabbit tracheal epithelial cell lines. These cell lines, 5RTEo- and 9RTEo-, express the CF transmembrane conductance regulator (CFTR) gene, retain epithelial-specific differentiated morphology and show CFTR-based cAMP-dependent Cl− ion transport across the apical membrane of a confluent monolayer. Immunocytochemical analysis indicates the presence of airway cytokeratins and tight-junction proteins in the 9RTEo- cell line after multiple generations. However, the tight junctions appear to diminish in their efficacy in both cell lines after at least 100 generations. Initial SCNT studies with the 9RTEo- cells have revealed that SV40-transformed rabbit airway epithelial donor cells can be used to generate blastocysts. These cell systems provide valuable models for studying the developmental and metabolic modulation of CFTR gene expression and rabbit airway epithelial cell biology. PMID:22234514

  8. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.

    PubMed

    Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas

    2017-08-01

    Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.

  9. Transcriptional Responses of Candida albicans to Epithelial and Endothelial Cells▿ †

    PubMed Central

    Park, Hyunsook; Liu, Yaoping; Solis, Norma; Spotkov, Joshua; Hamaker, Jessica; Blankenship, Jill R.; Yeaman, Michael R.; Mitchell, Aaron P.; Liu, Haoping; Filler, Scott G.

    2009-01-01

    Candida albicans interacts with oral epithelial cells during oropharyngeal candidiasis and with vascular endothelial cells when it disseminates hematogenously. We set out to identify C. albicans genes that govern interactions with these host cells in vitro. The transcriptional response of C. albicans to the FaDu oral epithelial cell line and primary endothelial cells was determined by microarray analysis. Contact with epithelial cells caused a decrease in transcript levels of genes related to protein synthesis and adhesion, whereas contact with endothelial cells did not significantly influence any specific functional category of genes. Many genes whose transcripts were increased in response to either host cell had not been previously characterized. We constructed mutants with homozygous insertions in 22 of these uncharacterized genes to investigate their function during host-pathogen interaction. By this approach, we found that YCK2, VPS51, and UEC1 are required for C. albicans to cause normal damage to epithelial cells and resist antimicrobial peptides. YCK2 is also necessary for maintenance of cell polarity. VPS51 is necessary for normal vacuole formation, resistance to multiple stressors, and induction of maximal endothelial cell damage. UEC1 encodes a unique protein that is required for resistance to cell membrane stress. Therefore, some C. albicans genes whose transcripts are increased upon contact with epithelial or endothelial cells are required for the organism to damage these cells and withstand the stresses that it likely encounters during growth in the oropharynx and bloodstream. PMID:19700637

  10. The influence of prostatic anatomy and neurotrophins on basal prostate epithelial progenitor cells.

    PubMed

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Trumpp, Andreas; Sprick, Martin R

    2016-01-01

    Based on findings of surface marker, protein screens as well as the postulated near-urethral location of the prostate stem cell niche, we were interested whether androgen ablation, distinct anatomic regions within the prostate or neurotrophins have an influence on basal prostate epithelial progenitor cells (PESCs). Microdissection of the prostate, enzymatic digestion, and preparation of single cells was performed from murine and human prostates. Adult PESC marker expressions were compared between a group of C57BL/6 mice and a separate group of castrated C57BL/6 mice. Surface markers CD13/CD271 on human prostate epithelial progenitor cells were evaluated by FACS analyses in cells cultured under novel stem cell conditions. The effect of neurotrophins NGF, NT3, and BDNF were evaluated with respect to their influence on proliferation and activation of human basal PESCs in vitro. We demonstrate the highest percentage of CD49f+ and Trop2+ expressing cells in the urethra near prostatic regions of WT mice (Trop2+ proximal: 10% vs. distal to the urethra: 3%, P < 0.001). While a marked increase of Trop2 expressing cells can be measured both in the proximal and distal prostatic regions after castration, the most prominent increase in Trop2+ cells can be measured in the prostatic tissue distant to the urethra. Furthermore, we demonstrate that the proportion of syndecan-1 expressing cells greatly increases in the regions proximal to the urethra after castration (WT: 5% vs. castrated: 40%). We identified heterogeneous CD13 and nerve growth factor receptor (p75(NGFR), CD271) expression on CD49f(+)/TROP2(high) human basal PESCs. Addition of the neurotrophins NT3, BDNF, and NGF to the stem cell media led to a marked temporary increase in the proliferation of human basal PESCs. Our results in mice support the model, in which the proximal urethral region contains the prostate stem cell niche while a stronger androgen-dependent regulation of adult prostate stem cells can be found in the peripheral prostatic tissue. Neutrophin signaling via nerve growth factor receptor is possibly involved in human prostate stem cell homeostasis. © 2015 Wiley Periodicals, Inc.

  11. Amnion-derived stem cells: in quest of clinical applications

    PubMed Central

    2011-01-01

    In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research. PMID:21596003

  12. Targeting Androgen Receptor to Suppress Macrophage-induced EMT and Benign Prostatic Hyperplasia (BPH) Development

    PubMed Central

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi

    2012-01-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68+ macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways. PMID:22915828

  13. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development.

    PubMed

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi; Jin, Jie; Chang, Chawnshang

    2012-10-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68(+) macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways.

  14. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses.

    PubMed

    Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka; Marycz, Krzysztof

    2017-08-03

    Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)-the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs' and IECs' morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome.

  15. Different effects of 25-kDa amelogenin on the proliferation, attachment and migration of various periodontal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiting; Shu, Rong, E-mail: shurong123@hotmail.com; Liu, Dali

    Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF),more » gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 {mu}g/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.« less

  16. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses

    PubMed Central

    Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka

    2017-01-01

    Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)—the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs’ and IECs’ morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome. PMID:28771165

  17. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines.

    PubMed

    Müller, Alena; Barat, Samarpita; Chen, Xi; Bui, Khac Cuong; Bozko, Przemyslaw; Malek, Nisar P; Plentz, Ruben R

    2016-05-01

    Cholangiocarcinoma (CC) worldwide is the most common biliary malignancy with poor prognostic value and new systemic treatments are desirable. Plant extracts like bromelain and papain, which are cysteine proteases from the fruit pineapple and papaya, are known to have antitumor activities. Therefore, in this study for the first time we investigated the anticancer effect of bromelain and papain in intra- and extrahepatic human CC cell lines. The effect of bromelain and papain on human CC cell growth, migration, invasion and epithelial plasticity was analyzed using cell proliferation, wound healing, invasion and apoptosis assay, as well as western blotting. Bromelain and papain lead to a decrease in the proliferation, invasion and migration of CC cells. Both plant extracts inhibited NFκB/AMPK signalling as well as their downstream signalling proteins such as p-AKT, p-ERK, p-Stat3. Additionally, MMP9 and other epithelial-mesenchymal-transition markers were partially found to be downregulated. Apoptosis was induced after bromelain and papain treatment. Interestingly, bromelain showed an overall more effective inhibition of CC as compared to papain. siRNA mediated silencing of NFκB on CC cells indicated that bromelain and papain have cytotoxic effects on human CC cell lines and bromelain and partially papain in comparison impair tumor growth by NFκB/AMPK signalling. Especially bromelain can evolve as promising, potential therapeutic option that might open new insights for the treatment of human CC.

  18. Mitochondria are targets for the antituberculosis drug rifampicin in cultured epithelial cells.

    PubMed

    Erokhina, M V; Kurynina, A V; Onishchenko, G E

    2013-10-01

    Rifampicin is a widely used drug for antituberculosis therapy. Its target is the bacterial RNA polymerase. After entry into the human or mammalian organism, rifampicin is accumulated in cells of epithelial origin (kidneys, liver, lungs) where it induces apoptosis, necrosis, and fibrosis. The purpose of this study was to determine the intracellular mechanisms leading to rifampicin-induced pathological changes and cell death. We analyzed the survival and state of the chondriome of cultured epithelial cells of the SPEV line under the influence of rifampicin. Our data show that the drug induces pronounced pathological changes in the network and ultrastructure of mitochondria, and their dysfunction results in excessive production of reactive oxygen species and release of cytochrome c. These data suggest the initiation of the mitochondrial pathway of apoptosis. Simultaneously, we observed inhibition of cell proliferation and changes in morphology of the epithelial cells toward fibroblast-like appearance, which could indicate induction of epithelial-mesenchymal transition. Thus, mitochondria are the main potential target for rifampicin in cells of epithelial origin. We suggest that similar mechanisms of pathological changes can be induced in vivo in organs and tissues accumulating rifampicin during chemotherapy of bacterial infectious diseases.

  19. [Validation of Differential Extraction Kit in forensic sexual assault cases].

    PubMed

    Wu, Dan; Cao, Yu; Xu, Yan; He, Bai-Fang; Bi, Gang; Zhou, Huai-Gu

    2009-12-01

    To evaluate the validity of Differential Extraction Kit in isolating spermatozoa and epithelial cell DNA from mixture samples. Selective lysis of spermatid and epithelial cells combined with paramagnetic particle method were applied to extract the DNA from the mock samples under controlled conditions and forensic case samples, and template DNA were analyzed by STR genotype method. This Differential Extraction Kit is efficient to obtain high quality spermatid and epithelial cell DNA from the mixture samples with different proportion of sperm to epithelial cell. The Differential Extraction Kit can be applied in DNA extraction for mixed stain from forensic sexual assault samples.

  20. Continuous tooth replacement: the possible involvement of epithelial stem cells.

    PubMed

    Huysseune, Ann; Thesleff, Irma

    2004-06-01

    Epithelial stem cells have been identified in integumental structures such as hairs and continuously growing teeth of various rodents, and in the gut. Here we propose the involvement of epithelial stem cells in the continuous tooth replacement that characterizes non-mammalian vertebrates, as exemplified by the zebrafish. Arguments are based on morphological observations of tooth renewal in the zebrafish and on the similarities between molecular control of hair and tooth formation. Dissection of the molecular cascades underlying the regulation of the epithelial stem cell niche might open perspectives for new regenerative treatment strategies in clinical dentistry. Copyright 2004 Wiley Periodicals, Inc.

  1. Emergence of an apical epithelial cell surface in vivo

    PubMed Central

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B.

    2016-01-01

    Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological and laser-dissection experiments with theoretical modelling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis. PMID:26766441

  2. [Primary culture of human normal epithelial cells].

    PubMed

    Tang, Yu; Xu, Wenji; Guo, Wanbei; Xie, Ming; Fang, Huilong; Chen, Chen; Zhou, Jun

    2017-11-28

    The traditional primary culture methods of human normal epithelial cells have disadvantages of low activity of cultured cells, the low cultivated rate and complicated operation. To solve these problems, researchers made many studies on culture process of human normal primary epithelial cell. In this paper, we mainly introduce some methods used in separation and purification of human normal epithelial cells, such as tissue separation method, enzyme digestion separation method, mechanical brushing method, red blood cell lysis method, percoll layered medium density gradient separation method. We also review some methods used in the culture and subculture, including serum-free medium combined with low mass fraction serum culture method, mouse tail collagen coating method, and glass culture bottle combined with plastic culture dish culture method. The biological characteristics of human normal epithelial cells, the methods of immunocytochemical staining, trypan blue exclusion are described. Moreover, the factors affecting the aseptic operation, the conditions of the extracellular environment, the conditions of the extracellular environment during culture, the number of differential adhesion, and the selection and dosage of additives are summarized.

  3. Highly Efficient CRISPR/Cas9-Mediated Cloning and Functional Characterization of Gastric Cancer-Derived Epstein-Barr Virus Strains.

    PubMed

    Kanda, Teru; Furuse, Yuki; Oshitani, Hitoshi; Kiyono, Tohru

    2016-05-01

    The Epstein-Barr virus (EBV) is etiologically linked to approximately 10% of gastric cancers, in which viral genomes are maintained as multicopy episomes. EBV-positive gastric cancer cells are incompetent for progeny virus production, making viral DNA cloning extremely difficult. Here we describe a highly efficient strategy for obtaining bacterial artificial chromosome (BAC) clones of EBV episomes by utilizing a CRISPR/Cas9-mediated strand break of the viral genome and subsequent homology-directed repair. EBV strains maintained in two gastric cancer cell lines (SNU719 and YCCEL1) were cloned, and their complete viral genome sequences were determined. Infectious viruses of gastric cancer cell-derived EBVs were reconstituted, and the viruses established stable latent infections in immortalized keratinocytes. While Ras oncoprotein overexpression caused massive vacuolar degeneration and cell death in control keratinocytes, EBV-infected keratinocytes survived in the presence of Ras expression. These results implicate EBV infection in predisposing epithelial cells to malignant transformation by inducing resistance to oncogene-induced cell death. Recent progress in DNA-sequencing technology has accelerated EBV whole-genome sequencing, and the repertoire of sequenced EBV genomes is increasing progressively. Accordingly, the presence of EBV variant strains that may be relevant to EBV-associated diseases has begun to attract interest. Clearly, the determination of additional disease-associated viral genome sequences will facilitate the identification of any disease-specific EBV variants. We found that CRISPR/Cas9-mediated cleavage of EBV episomal DNA enabled the cloning of disease-associated viral strains with unprecedented efficiency. As a proof of concept, two gastric cancer cell-derived EBV strains were cloned, and the infection of epithelial cells with reconstituted viruses provided important clues about the mechanism of EBV-mediated epithelial carcinogenesis. This experimental system should contribute to establishing the relationship between viral genome variation and EBV-associated diseases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. MIR517C inhibits autophagy and the epithelial-to-mesenchymal (-like) transition phenotype in human glioblastoma through KPNA2-dependent disruption of TP53 nuclear translocation

    PubMed Central

    Lu, Yuntao; Xiao, Limin; Liu, Yawei; Wang, Hai; Li, Hong; Zhou, Qiang; Pan, Jun; Lei, Bingxi; Huang, Annie; Qi, Songtao

    2015-01-01

    The epithelial-to-mesenchymal (-like) transition (EMT), a crucial embryonic development program, has been linked to the regulation of glioblastoma (GBM) progression and invasion. Here, we investigated the role of MIR517C/miR-517c, which belongs to the C19MC microRNA cluster identified in our preliminary studies, in the pathogenesis of GBM. We found that MIR517C was associated with improved prognosis in patients with GBM. Furthermore, following treatment with the autophagy inducer temozolomide (TMZ) and low glucose (LG), MIR517C degraded KPNA2 (karyopherin alpha 2 [RAG cohort 1, importin alpha 1]) and subsequently disturbed the nuclear translocation of TP53 in the GBM cell line U87 in vitro. Interestingly, this microRNA could inhibit autophagy and reduce cell migration and infiltration in U87 cells harboring wild-type (WT) TP53, but not in U251 cells harboring mutant (MU) TP53. Moreover, the expression of epithelial markers (i.e., CDH13/T-cadherin and CLDN1 [claudin 1]) increased, while the expression of mesenchymal markers (i.e., CDH2/N-cadherin, SNAI1/Snail, and VIM [vimentin]) decreased, indicating that the EMT status was blocked by MIR517C in U87 cells. Compared with MIR517C overexpression, MIR517C knockdown promoted infiltration of U87 cells to the surrounding structures in nude mice in vivo. The above phenotypic changes were also observed in TP53+/+ and TP53-/- HCT116 colon cancer cells. In summary, our study provided support for a link between autophagy and EMT status in WT TP53 GBM cells and provided evidence for the signaling pathway (MIR517C-KPNA2-cytoplasmic TP53) involved in attenuating autophagy and eliminating the increased migration and invasion during the EMT. PMID:26553592

  5. Functional Role of the microRNA-200 Family in Breast Morphogenesis and Neoplasia

    PubMed Central

    Hilmarsdottir, Bylgja; Briem, Eirikur; Bergthorsson, Jon Thor; Magnusson, Magnus Karl; Gudjonsson, Thorarinn

    2014-01-01

    Branching epithelial morphogenesis is closely linked to epithelial-to-mesenchymal transition (EMT), a process important in normal development and cancer progression. The miR-200 family regulates epithelial morphogenesis and EMT through a negative feedback loop with the ZEB1 and ZEB2 transcription factors. miR-200 inhibits expression of ZEB1/2 mRNA, which in turn can down-regulate the miR-200 family that further results in down-regulation of E-cadherin and induction of a mesenchymal phenotype. Recent studies show that the expression of miR-200 genes is high during late pregnancy and lactation, thereby indicating that these miRs are important for breast epithelial morphogenesis and differentiation. miR-200 genes have been studied intensively in relation to breast cancer progression and metastasis, where it has been shown that miR-200 members are down-regulated in basal-like breast cancer where the EMT phenotype is prominent. There is growing evidence that the miR-200 family is up-regulated in distal breast metastasis indicating that these miRs are important for colonization of metastatic breast cancer cells through induction of mesenchymal to epithelial transition. The dual role of miR-200 in primary and metastatic breast cancer is of interest for future therapeutic interventions, making it important to understand its role and interacting partners in more detail. PMID:25216122

  6. Transgenic up-regulation of Claudin-6 decreases fine diesel particulate matter (DPM)-induced pulmonary inflammation.

    PubMed

    Lewis, Joshua B; Bodine, Jared S; Gassman, Jason R; Muñoz, Samuel Arce; Milner, Dallin C; Dunaway, Todd M; Egbert, Kaleb M; Monson, Troy D; Broberg, Dallin S; Arroyo, Juan A; Reynolds, Paul R

    2018-04-25

    Claudin-6 (Cldn6) is a tetraspanin transmembrane protein that contributes to tight junctional complexes and has been implicated in the maintenance of lung epithelial barriers. In the present study, we tested the hypothesis that genetic up-regulation of Cldn-6 influences inflammation in mice exposed to short-term environmental diesel particulate matter (DPM). Mice were subjected to ten exposures of nebulized DPM (PM2.5) over a period of 20 days via a nose-only inhalation system (Scireq, Montreal, Canada). Using real-time RT-PCR, we discovered that the Cldn6 gene was up-regulated in control mice exposed to DPM and in lung-specific transgenic mice that up-regulate Cldn-6 (Cldn-6 TG). Interestingly, DPM did not further enhance Cldn-6 expression in Cldn-6 TG mice. DPM caused increased cell diapedesis into bronchoalveolar lavage fluid (BALF) from control mice; however, Cldn-6 TG mice had less total cells and PMNs in BALF following DPM exposure. Because Cldn-6 TG mice had diminished cell diapedesis, other inflammatory intermediates were screened to characterize the impact of increased Cldn-6 on inflammatory signaling. Cytokines that mediate inflammatory responses including TNF-α and IL-1β were differentially regulated in Cldn6 TG mice and controls following DPM exposure. These results demonstrate that epithelial barriers organized by Cldn-6 mediate, at least in part, diesel-induced inflammation. Further work may show that Cldn-6 is a key target in understanding pulmonary epithelial gateways exacerbated by environmental pollution.

  7. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6,more » the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.« less

  8. Activation of calcitonin gene-related peptide receptor during ozone inhalation contributes to airway epithelial injury and repair.

    PubMed

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2009-10-01

    The authors investigated the importance of the neuropeptide, calcitonin gene-related peptide (CGRP), in epithelial injury, repair, and neutrophil emigration after ozone exposure. Wistar rats were administered either a CGRP-receptor antagonist (CGRP(8-37)) or saline and exposed to 8 hours of 1-ppm ozone or filtered air with an 8-hour postexposure period. Immediately after exposure, ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, airway dissected lung lobes were stained for 5'-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Positive epithelial cells were quantified in specific airway generations. Rats treated with CGRP(8-37) had significantly reduced epithelial injury in terminal bronchioles and reduced epithelial proliferation in proximal airways and terminal bronchioles. Bronchoalveolar lavage and sections of terminal bronchioles showed no significant difference in the number of neutrophils emigrating into airways in CGRP(8-37)-treated rats. The airway epithelial cell line, HBE-1, showed no difference in the number of oxidant stress positive cells during exposure to hydrogen peroxide and a range of CGRP(8-37) doses, demonstrating no antioxidant effect of CGRP(8-37). We conclude that activation of CGRP receptors during ozone inhalation contributes to airway epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  9. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside of the crypt base stem cell niche

    PubMed Central

    Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterised by the development of mixed morphology colorectal tumours and is caused by a 40 kb duplication that results in aberrant epithelial expression of the mesenchymal Bone Morphogenetic Protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell-fate, that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem-cell properties in Lgr5 negative (non-expressing) progenitor cells that have exited the stem-cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem-cell is not the sole cell-of-origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic pre-malignant lesions with a hitherto unknown pathogenesis and these lesions can be considered the sporadic equivalents of HMPS polyps. PMID:25419707

  10. Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis.

    PubMed

    Dong, Ji; Hu, Yuqiong; Fan, Xiaoying; Wu, Xinglong; Mao, Yunuo; Hu, Boqiang; Guo, Hongshan; Wen, Lu; Tang, Fuchou

    2018-03-14

    Organogenesis is crucial for proper organ formation during mammalian embryonic development. However, the similarities and shared features between different organs and the cellular heterogeneity during this process at single-cell resolution remain elusive. We perform single-cell RNA sequencing analysis of 1916 individual cells from eight organs and tissues of E9.5 to E11.5 mouse embryos, namely, the forebrain, hindbrain, skin, heart, somite, lung, liver, and intestine. Based on the regulatory activities rather than the expression patterns, all cells analyzed can be well classified into four major groups with epithelial, mesodermal, hematopoietic, and neuronal identities. For different organs within the same group, the similarities and differences of their features and developmental paths are revealed and reconstructed. We identify mutual interactions between epithelial and mesenchymal cells and detect epithelial cells with prevalent mesenchymal features during organogenesis, which are similar to the features of intermediate epithelial/mesenchymal cells during tumorigenesis. The comprehensive transcriptome at single-cell resolution profiled in our study paves the way for future mechanistic studies of the gene-regulatory networks governing mammalian organogenesis.

  11. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  12. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and thatmore » a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.« less

  13. Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Prioleau, John C.; Stampfer, Martha R.; Rhim, Johng S.

    1992-07-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  14. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  15. Zinc transport by respiratory epithelial cells and interaction with iron homeostasis.

    PubMed

    Deng, Zhongping; Dailey, Lisa A; Soukup, Joleen; Stonehuerner, Jacqueline; Richards, Judy D; Callaghan, Kimberly D; Yang, Funmei; Ghio, Andrew J

    2009-10-01

    Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn(2+) transport interacts with iron homeostasis in these same cells. Zn(2+) uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn(2+) release occurred in the 4 h immediately following cell exposure to ZnSO(4). Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO(4). Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn(2+). Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-alpha, IFN-gamma, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.

  16. House Dust Mite Der p 1 Effects on Sinonasal Epithelial Tight Junctions

    PubMed Central

    Henriquez, Oswaldo A.; Beste, Kyle Den; Hoddeson, Elizabeth K.; Parkos, Charles A.; Nusrat, Asma; Wise, Sarah K.

    2013-01-01

    Background Epithelial permeability is highly dependent upon the integrity of tight junctions, cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Methods Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen versus control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of tight junction proteins was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Results Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1 exposed cultured sinonasal cells versus controls. Conclusion Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. PMID:23592402

  17. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions.

    PubMed

    Henriquez, Oswaldo A; Den Beste, Kyle; Hoddeson, Elizabeth K; Parkos, Charles A; Nusrat, Asma; Wise, Sarah K

    2013-08-01

    Epithelial permeability is highly dependent upon the integrity of tight junctions, which are cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen vs control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of TJPs was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1-exposed cultured sinonasal cells vs controls. Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. © 2013 ARS-AAOA, LLC.

  18. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    PubMed

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  19. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, C.; Nettesheim, P.; Barrett, J.C.

    1987-04-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injectedmore » into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of approx. = 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor.« less

  20. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonicalmore » Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.« less

Top