Sample records for epithelial cl secretion

  1. Secretory NaCl and volume flow in renal tubules.

    PubMed

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  2. Regulation of Cl(-) secretion by AMPK in vivo.

    PubMed

    Kongsuphol, Patthara; Hieke, Bernhard; Ousingsawat, Jiraporn; Almaca, Joana; Viollet, Benoit; Schreiber, Rainer; Kunzelmann, Karl

    2009-03-01

    Previous in vitro studies suggested that Cl(-) currents produced by the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7) are inhibited by the alpha1 isoform of the adenosine monophosphate (AMP)-stimulated kinase (AMPK). AMPK is a serine/threonine kinase that is activated during metabolic stress. It has been proposed as a potential mediator for transport-metabolism coupling in epithelial tissues. All previous studies have been performed in vitro and thus little is known about the regulation of Cl(-) secretion by AMPK in vivo. Using AMPKalpha1(-/-) mice and wild-type littermates, we demonstrate that phenformin, an activator of AMPK, strongly inhibits cAMP-activated Cl(-) secretion in mouse airways and colon, when examined in ex vivo in Ussing chamber recordings. However, phenformin was equally effective in AMPKalpha1(-/-) and wild-type animals, suggesting additional AMPK-independent action of phenformin. Phenformin inhibited CFTR Cl(-) conductance in basolaterally permeabilized colonic epithelium from AMPKalpha1(+/+) but not AMPKalpha1(-/-) mice. The inhibitor of AMPK compound C enhanced CFTR-mediated Cl(-) secretion in epithelial tissues of AMPKalpha1(-/-) mice, but not in wild-type littermates. There was no effect on Ca(2+)-mediated Cl(-) secretion, activated by adenosine triphosphate or carbachol. Moreover CFTR-dependent Cl(-) secretion was enhanced in the colon of AMPKalpha1(-/-) mice, as indicated in Ussing chamber ex vivo and rectal PD measurements in vivo. Taken together, these data suggest that epithelial Cl(-) secretion mediated by CFTR is controlled by AMPK in vivo.

  3. GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

    1992-11-01

    Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

  4. Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome

    PubMed Central

    Keely, Simon; Kelly, Caleb J.; Weissmueller, Thomas; Burgess, Adrianne; Wagner, Brandie D.; Robertson, Charles E.; Harris, J. Kirk; Colgan, Sean P.

    2012-01-01

    Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl- secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p < 0.001) and decreased S. typhimurium internalization and translocation by as much as 71 ± 6% (p < 0.01). Such decreases in bacterial translocation were abolished by inhibition of electrogenic Cl- secretion and water transport using the Na-K-Cl- antagonist bumetanide (p < 0.01). Extensions of these findings to microbiome analysis in vivo revealed that lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl- secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism. PMID:22614705

  5. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells

    PubMed Central

    Stanton, Bruce A.; Coutermarsh, Bonita; Barnaby, Roxanna; Hogan, Deborah

    2015-01-01

    Background P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770. Methods and Results F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del) were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid) significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR. Conclusion The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials. PMID:26018799

  6. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells.

    PubMed

    Stanton, Bruce A; Coutermarsh, Bonita; Barnaby, Roxanna; Hogan, Deborah

    2015-01-01

    P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770. F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del) were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid) significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR. The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.

  7. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells.

    PubMed

    Pongkorpsakol, Pawin; Yimnual, Chantapol; Chatsudthipong, Varanuj; Rukachaisirikul, Vatcharin; Muanprasat, Chatchai

    2017-06-01

    Intestinal Cl - secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA) suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl - secretion in human intestinal epithelial (T84) cells. FFA inhibited cAMP-dependent Cl - secretion in T84 cell monolayers with IC 50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl - channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K + channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca 2+ -dependent Cl - secretion with IC 50 of ∼10 μM. FFA inhibited activities of Ca 2+ -activated Cl - channels and K Ca 3.1, a Ca 2+ -activated basolateral K + channels, but had no effect on activities of Na + -K + -Cl - cotransporters and Na + -K + ATPases. These results indicate that FFA inhibits both cAMP and Ca 2+ -dependent Cl - secretion by suppressing activities of both apical Cl - channels and basolateral K + channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  8. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    PubMed

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  9. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research.

    PubMed

    Hahn, Anne; Salomon, Johanna J; Leitz, Dominik; Feigenbutz, Dennis; Korsch, Lisa; Lisewski, Ina; Schrimpf, Katrin; Millar-Büchner, Pamela; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2018-06-02

    Physiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca 2+ -dependent Cl - secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl - secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca 2+ -gated Cl - channels are known to contribute to calcium-dependent Cl - secretion in tracheal and bronchial epithelia. In the present study, two mouse models of CF were examined to assess a potential protective function of Ca 2+ -dependent Cl - secretion, a CFTR deletion model (cftr -/- ), and a CF pathology model that overexpresses the epithelial Na + channel β-subunit (βENaC), which is encoded by the Scnn1b gene, specifically in airway epithelia (Scnn1b-Tg). The expression levels of ANO1 were examined by mRNA and protein content, and the channel protein distribution between ciliated and non-ciliated epithelial cells was analyzed. Moreover, Ussing chamber experiments were conducted to compare Ca 2+ -dependent Cl - secretion between wild-type animals and the two mouse models. Our results demonstrate that CFTR and ANO1 channels were co-expressed with ENaC in non-ciliated cells of mouse tracheal and bronchial epithelia. Ciliated cells did not express these proteins. Despite co-localization of CFTR and ANO1 in the same cell type, cells in cftr -/- mice displayed no altered expression of ANO1. Similarly, ANO1 expression was unaffected by βENaC overexpression in the Scnn1b-Tg line. These results suggest that the CF-related environment in the two mouse models did not induce ANO1 overexpression as a compensatory system.

  10. Separate Cl^- Conductances Activated by cAMP and Ca2+ in Cl^--Secreting Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Cliff, William H.; Frizzell, Raymond A.

    1990-07-01

    We studied the cAMP- and Ca2+-activated secretory Cl^- conductances in the Cl^--secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl^- and K^+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl^- current 2-15 times with no change in K^+ current. The current-voltage relation for cAMP-activated Cl^- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl^- and K^+ currents 2-30 times. The Ca2+-activated Cl^- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl^- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl^- conductances with different properties, implying that these second messengers activate different Cl^- channels or that they induce different conductive and kinetic states in the same Cl^- channel.

  11. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  12. Molecular Mechanism of Pancreatic and Salivary Glands Fluid and HCO3− Secretion

    PubMed Central

    Lee, Min Goo; Ohana, Ehud; Park, Hyun Woo; Yang, Dongki; Muallem, Shmuel

    2013-01-01

    Fluid and HCO3− secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO3− secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren’s syndrome and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO3− secretion, in particular by secretory glands. Fluid and HCO3− secretion by secretory glands is a two step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl− and secrete HCO3−. The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete small amount of NaCl-rich fluid, while the duct absorbs the Cl− and secretes HCO3− and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO3− secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that contains high concentrations of Na+ and Cl− and fluid secretion is mediated by active Cl− secretion. The salivary glands duct absorbs both the Na+ and Cl− and secretes K+ and HCO3−. In this review, we focus on the molecular mechanism of fluid and HCO3− secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and point the differences to meet glands specific secretions. PMID:22298651

  13. A Tannic Acid-based Medical Food, Cesinex®, Exhibits Broad-spectrum Antidiarrheal Properties: a Mechanistic and Clinical Study

    PubMed Central

    Ren, Aixia; Zhang, Weiqiang; Thomas, Hugh Greg; Barish, Amy; Berry, Stephen; Kiel, Jeffrey S.

    2011-01-01

    Background To evaluate the efficacy and tolerability of a tannic acid-based medical food, Cesinex®, in the treatment of diarrhea, and to investigate the mechanisms underlying its antidiarrheal effect. Methods Cesinex® was prescribed to six children and four adults with diarrhea. Patient records were retrospectively reviewed for the primary outcome. Cesinex® and its major component, tannic acid, were tested for their effects on cholera toxin-induced intestinal fluid secretion in mouse. Polarized human gut epithelial cells (HT29-CL19A cells) were used to investigate the effects of tannic acid on epithelial barrier properties, transepithelial chloride secretion, and cell viability. Results Successful resolution of diarrheal symptoms was reported in nine of ten patients receiving Cesinex®. Treatment of HT29-CL19A cells with clinically relevant concentrations of tannic acid (0.01–1 mg/ml) significantly increased transepithelial resistance and inhibited the CFTR-dependent or the calcium-activated Cl− secretion. Tannic acid could also improve the impaired epithelial barrier function induced by TNFα and inhibited the disrupting effect of TNFα on the epithelial barrier function in these cells. CTX-induced mouse intestinal fluid secretion was significantly reduced by administration of Cesinex® or tannic acid. Cesinex® has high antioxidant capacity. Conclusions Cesinex® demonstrates an effective and safety profile in treatment of diarrhea. The broad-spectrum antidiarrheal effect of Cesinex® can be attributed to a combination of factors: its ability to improve the epithelial barrier properties, to inhibit intestinal fluid secretion, and the high antioxidant property. PMID:21748285

  14. Enteropathogenic E. coli attenuates secretagogue-induced net intestinal ion transport but not Cl- secretion.

    PubMed

    Hecht, G; Koutsouris, A

    1999-03-01

    Enteric bacterial pathogens often increase intestinal Cl- secretion. Enteropathogenic Escherichia coli (EPEC) does not stimulate active ion secretion. In fact, EPEC infection decreases net ion transport in response to classic secretagogues. This has been presumed to reflect diminished Cl- secretion. The aim of this study was to investigate the influence of EPEC infection on specific intestinal epithelial ion transport processes. T84 cell monolayers infected with EPEC were used for these studies. EPEC infection significantly decreased short-circuit current (Isc) in response to carbachol and forskolin, yet 125I efflux studies revealed no difference in Cl- channel activity. There was also no alteration in basolateral K+ channel or Na+-K+-2Cl- cotransport activity. Furthermore, net 36Cl- flux was not decreased by EPEC. No alterations in either K+ or Na+ transport could be demonstrated. Instead, removal of basolateral bicarbonate from uninfected monolayers yielded an Isc response approximating that observed with EPEC infection, whereas bicarbonate removal from EPEC-infected monolayers further diminished Isc. These studies suggest that the reduction in stimulated Isc is not secondary to diminished Cl- secretion. Alternatively, bicarbonate-dependent transport processes appear to be perturbed.

  15. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

    PubMed

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2017-06-01

    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport

    PubMed Central

    Köttgen, Michael; Löffler, Thomas; Jacobi, Christoph; Nitschke, Roland; Pavenstädt, Hermann; Schreiber, Rainer; Frische, Sebastian; Nielsen, Søren; Leipziger, Jens

    2003-01-01

    Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl– secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K+ channels. We therefore speculated that a basolateral P2Y6 receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y6 receptor using crypt [Ca2+]i measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y6elevates cAMP, we coexpressed the P2Y1 or P2Y6 receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl– currents. In oocytes expressing the P2Y1 receptor, ATP transiently activated the endogenous Ca2+-activated Cl– current, but not CFTR. In contrast, in oocytes expressing the P2Y6receptor, UDP transiently activated the Ca2+-activated Cl– current and subsequently CFTR. CFTR Cl– currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y6 receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca2+]i and cAMP. In support of these data P2Y6 receptor stimulation differentially activates CFTR in Xenopus oocytes. PMID:12569163

  17. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice.

    PubMed

    MacDonald, Kelvin D; McKenzie, Karen R; Henderson, Mark J; Hawkins, Charles E; Vij, Neeraj; Zeitlin, Pamela L

    2008-11-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.

  18. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation.

    PubMed

    Hong, Jeong Hee; Muhammad, Emad; Zheng, Changyu; Hershkovitz, Eli; Alkrinawi, Soliman; Loewenthal, Neta; Parvari, Ruti; Muallem, Shmuel

    2015-12-15

    Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  19. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  20. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.

  1. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice

    PubMed Central

    MacDonald, Kelvin D.; McKenzie, Karen R.; Henderson, Mark J.; Hawkins, Charles E.; Vij, Neeraj; Zeitlin, Pamela L.

    2008-01-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl− transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 μM lubiprostone was −5.8 ± 2.1 mV (CF, n = 12), −8.1 ± 2.6 mV (C57Bl/6 wild-type, n = 12), and −5.3 ± 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 μM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia. PMID:18805957

  2. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    PubMed

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  3. Hydrogen peroxide stimulates rat colonic prostaglandin production and alters electrolyte transport.

    PubMed Central

    Karayalcin, S S; Sturbaum, C W; Wachsman, J T; Cha, J H; Powell, D W

    1990-01-01

    The changes in short circuit current (electrogenic Cl- secretion) of rat colon brought about by xanthine/xanthine oxidase in the Ussing chamber were inhibited by catalase and diethyldithiocarbamate, but not by superoxide dismutase. These results, the reproduction of the response with glucose/glucose oxidase and with exogenous H2O2, and the lack of effect of preincubation with deferoxamine or thiourea implicate H2O2, and not O2- or OH., as the important reactive oxygen metabolite altering intestinal electrolyte transport. 1 mM H2O2 stimulated colonic PGE2 and PGI2 production 8- and 15-fold, respectively, inhibited neutral NaCl absorption, and stimulated biphasic electrogenic Cl secretion with little effect on enterocyte lactic dehydrogenase release, epithelial conductance, or histology. Cl- secretion was reduced by cyclooxygenase inhibition. Also, the Cl- secretion, but not the increase in prostaglandin production, was reduced by enteric nervous system blockade with tetrodotoxin, hexamethonium, or atropine. Thus, H2O2 appears to alter electrolyte transport by releasing prostaglandins that activate the enteric nervous system. The change in short circuit current in response to Iloprost, but not PGE2, was blocked by tetrodotoxin. Therefore, PGI2 may be the mediator of the H2O2 response. H2O2 produced in nontoxic concentrations in the inflamed gut could have significant physiologic effects on intestinal water and electrolyte transport. Images PMID:2164049

  4. Hypotonic Shock Modulates Na+ Current via a Cl- and Ca2+/Calmodulin Dependent Mechanism in Alveolar Epithelial Cells

    PubMed Central

    Tatur, Sabina; Brochiero, Emmanuelle; Grygorczyk, Ryszard; Berthiaume, Yves

    2013-01-01

    Alveolar epithelial cells are involved in Na+ absorption via the epithelial Na+ channel (ENaC), an important process for maintaining an appropriate volume of liquid lining the respiratory epithelium and for lung oedema clearance. Here, we investigated how a 20% hypotonic shock modulates the ionic current in these cells. Polarized alveolar epithelial cells isolated from rat lungs were cultured on permeant filters and their electrophysiological properties recorded. A 20% bilateral hypotonic shock induced an immediate, but transient 52% rise in total transepithelial current and a 67% increase in the amiloride-sensitive current mediated by ENaC. Amiloride pre-treatment decreased the current rise after hypotonic shock, showing that ENaC current is involved in this response. Since Cl- transport is modulated by hypotonic shock, its contribution to the basal and hypotonic-induced transepithelial current was also assessed. Apical NPPB, a broad Cl- channel inhibitor and basolateral DIOA a potassium chloride co-transporter (KCC) inhibitor reduced the total and ENaC currents, showing that transcellular Cl- transport plays a major role in that process. During hypotonic shock, a basolateral Cl- influx, partly inhibited by NPPB is essential for the hypotonic-induced current rise. Hypotonic shock promoted apical ATP secretion and increased intracellular Ca2+. While apyrase, an ATP scavenger, did not inhibit the hypotonic shock current response, W7 a calmodulin antagonist completely prevented the hypotonic current rise. These results indicate that a basolateral Cl- influx as well as Ca2+/calmodulin, but not ATP, are involved in the acute transepithelial current rise elicited by hypotonic shock. PMID:24019969

  5. cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells.

    PubMed

    Montesano, Roberto; Ghzili, Hafida; Carrozzino, Fabio; Rossier, Bernard C; Féraille, Eric

    2009-02-01

    Polycystic kidney diseases result from disruption of the genetically defined program that controls the size and geometry of renal tubules. Cysts which frequently arise from the collecting duct (CD) result from cell proliferation and fluid secretion. From mCCD(cl1) cells, a differentiated mouse CD cell line, we isolated a clonal subpopulation (mCCD-N21) that retains morphogenetic capacity. When grown in three-dimensional gels, mCCD-N21 cells formed highly organized tubular structures consisting of a palisade of polarized epithelial cells surrounding a cylindrical lumen. Subsequent addition of cAMP-elevating agents (forskolin or cholera toxin) or of membrane-permeable cAMP analogs (CPT-cAMP) resulted in rapid and progressive dilatation of existing tubules, leading to the formation of cystlike structures. When grown on filters, mCCD-N21 cells exhibited a high transepithelial resistance as well as aldosterone- and/or vasopressin-induced amiloride-sensitive and -insensitive current. The latter was in part inhibited by Na(+)-K(+)-2Cl(-) cotransporter (bumetanide) and chloride channel (NPPB) inhibitors. Real-time PCR analysis confirmed the expression of NKCC1, the ubiquitous Na(+)-K(+)-2Cl(-) cotransporter and cystic fibrosis transmembrane regulator (CFTR) in mCCD-N21 cells. Tubule enlargement and cyst formation were prevented by inhibitors of Na(+)-K(+)-2Cl(-) cotransporters (bumetanide or ethacrynic acid) or CFTR (NPPB or CFTR inhibitor-172). These results further support the notion that cAMP signaling plays a key role in renal cyst formation, at least in part by promoting chloride-driven fluid secretion. This new in vitro model of tubule-to-cyst conversion affords a unique opportunity for investigating the molecular mechanisms that govern the architecture of epithelial tubes, as well as for dissecting the pathophysiological processes underlying cystic kidney diseases.

  6. Impaired Cell Volume Regulation in Intestinal Crypt Epithelia of Cystic Fibrosis Mice

    NASA Astrophysics Data System (ADS)

    Valverde, M. A.; O'Brien, J. A.; Sepulveda, F. V.; Ratcliff, R. A.; Evans, M. J.; Colledge, W. H.

    1995-09-01

    Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl^- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl^- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl^- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K^+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl^- secretion.

  7. Intracellular Signaling Mechanisms Pharmacological Action of Jasminum amplexicaule Buch.-Ham. (Oleaceae) on Gastrointestinal Secretion.

    PubMed

    Gao, Zhenhua; Yin, Junqiang; Xie, Xiaolin; Long, Hanwu; Qi, Xiang; Lin, Changhu; Wu, Liangcai

    2014-01-01

    Jasminum amplexicaule Buch-Ham. (Oleaceae) has been commonly used in the traditional medicine in dysentery, diarrhoea and bellyache in China. In the present work, the methanol extract of Jasminum amplexicaule (JME) was examined for pharmacology on human colonic epithelial cell line T84 by the short-circuit current technique. The results showed that pretreatment of T84 cells with JME produced a concentration-dependent (0-1000 μg/mL. EC50 = 0.055 mg/ mL) inhibition effect on adrenalin (Adr.)-induced Cl- secretion. The maximal response was observed at 200 μg/mL. It has been demonstrated that JME has a direct effect on the enterocyte. Our results also demonstrated that the JME exerted inhibitory effect on gastrointestinal Cl(-)secretion that effected by acting on basolateral β-adrenoreceptors. These results suggested that the Chinese traditional medicine of JME can be used for the treatment of acute diarrhea and bellyache.

  8. A novel extract SB-300 from the stem bark latex of Croton lechleri inhibits CFTR-mediated chloride secretion in human colonic epithelial cells.

    PubMed

    Fischer, Horst; Machen, Terry E; Widdicombe, Jonathan H; Carlson, Thomas J S; King, Steven R; Chow, John W S; Illek, Beate

    2004-08-01

    An oligomeric proanthocyanidin (SP-303) extracted from the bark latex of the tree Croton lechleri (family Euphorbiaceae) is a potent inhibitor of cholera toxin-induced fluid accumulation and chloride secretion. The manufacturing process for SP-303 was optimized and simplified to produce an increased yield of the herbal extract. The novel extract (named SB-300) contained on average 70.6+/-7.2% SP-303 by weight (mean +/- S.D.; n=56 lots). Here, we describe the effectiveness of SB-300 on cAMP-regulated chloride secretion, which is mediated by the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) in human colonic T84 cells. Exposure of the apical surface to SB-300 blocked forskolin-stimulated Cl- secretion by 92.2+/-3.0% with a half-maximal inhibition constant (KB) of 4.8+/-0.8 microM. For SP-303, stimulated Cl- currents were decreased by 98.0+/-7.2 % and KB averaged 4.1+/-1.3 microM. There was no significant difference between the blocking kinetics of SP-303 and SB-300. Forskolin-stimulated whole cell Cl- currents were effectively blocked by extracellular addition of SB-300 (63+/-8.5%; n=3) and to a similar extent by SP-303 (83 +/- 0.6%; n=2; at 50 microM each). Both extracts inhibited a time- and voltage-independent Cl- conductance, which indicated the involvement of CFTR Cl- channels. We conclude that both SP-303 (used in Provir) and SB-300 (used in NSF Normal Stool Formula) are novel natural products that target the CFTR Cl- channel. SB-300 is a low cost herbal extract and may present a complementary and alternative medicine approach for the treatment of fluid loss in watery diarrhea.

  9. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  10. IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts.

    PubMed

    Zaika, Oleg; Mamenko, Mykola; Boukelmoune, Nabila; Pochynyuk, Oleh

    2015-01-01

    Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na(+) transport establishes driving force for Cl(-) reabsorption and K(+) secretion. Using patch-clamp electrophysiology, we document that a Cl(-) channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl(-)>NO3 (-) anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 μM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na(+) and Cl(-) reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na(+) reabsorption with K(+) secretion at the apical membrane contributing to kaliuresis. Copyright © 2015 the American Physiological Society.

  11. DA-6034-induced mucin secretion via Ca2+-dependent pathways through P2Y receptor stimulation.

    PubMed

    Lee, Hun; Kim, Eung Kweon; Kim, Ji Yeon; Yang, Yu-Mi; Shin, Dong Min; Kang, Kyung Koo; Kim, Tae-im

    2014-09-11

    We evaluated whether DA-6034 is involved in mucin secretion via P2Y receptor activation and/or intracellular Ca2+ concentration ([Ca2+]i) change. Also, we investigated the effect of P2Y receptor inhibitors or Ca2+ chelators on the DA-6034-induced mucin secretion and [Ca2+]i increases. Effects of DA-6034 on mucin expression in primary, cultured, conjunctival epithelial cells was studied using RT-PCR, Western blot analysis, and periodic acid-schiff (PAS) staining. To evaluate thin film layer thickness generated by mucin and fluid secretion, cells were incubated in DA-6034 with/without P2Y antagonists or extracellular/intracellular Ca2+ chelators, and were imaged with confocal microscope using Texas Red-dextran dye. In addition, DA-6034-induced Ca2+-dependent Cl- channels opening was evaluated using perforated patch clamp. Fluo-4/AM was used to measure changes in [Ca2+]i induced by DA-6034 in Ca2+-free or Ca2+-containing buffered condition, as well as P2Y antagonists. DA-6034 induced the expression of mucin genes, production of mucin protein, and increase of number of mucin-secreting cells. P2Y antagonists inhibited DA-6034-induced mucin and fluid secretion, which was also affected by extracellular/intracellular Ca2+ chelators. DA-6034 stimulated Cl- channel opening and [Ca2+]i elevation. Further, [Ca2+]i increases induced by DA-6034 were lacking in either P2Y antagonists or Ca2+-free buffered condition, and diminished when endoplasmic reticulum Ca2+ was depleted by cyclopiazonic acid in Ca2+-free buffered condition. This study demonstrated that DA-6034 has a potential to induce mucin secretion via Ca2+-dependent pathways through P2Y receptors in multilayer, cultured, human conjunctival epithelial cells. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. The role of KCNQ1/KCNE1 K(+) channels in intestine and pancreas: lessons from the KCNE1 knockout mouse.

    PubMed

    Warth, R; Garcia Alzamora, M; Kim, J K; Zdebik, A; Nitschke, R; Bleich, M; Gerlach, U; Barhanin, J; Kim, S J

    2002-03-01

    KCNE1 (IsK, minK) co-assembles with KCNQ1 (KvLQT1) to form voltage-dependent K(+) channels. Both KCNQ1 and KCNE1 are expressed in epithelial cells of gut and exocrine pancreas. We examined the role of KCNQ1/KCNE1 in Cl(-) secretion in small and large intestine and exocrine pancreas using the KCNE1 knockout mouse. Immunofluorescence revealed a similar basolateral localization of KCNQ1 in jejunum and colon of KCNE1 wild-type and knockout mice. Electrogenic Cl(-) secretion in the colon was not affected by gene disruption of KCNE1; in jejunum forskolin-induced short-circuit current was some 40% smaller but without being significantly different. Inhibition of KCNQ1 channels by 293B (IC(50) 1 micromol l(-1)) and by IKS224 (IC(50) 14 nmol l(-1)) strongly diminished intestinal Cl(-) secretion. In exocrine pancreas of wild-type mice, KCNQ1 was predominantly located at the basolateral membrane. In KCNE1 knockout mice, however, the basolateral staining was less pronounced and the distribution of secretory granules was irregular. A slowly activating and 293B-sensitive K(+) current was activated via cholinergic stimulation in pancreatic acinar cells of wild-type mice. In KCNE1 knockout mice this K(+) current was strongly reduced. In conclusion intestinal Cl(-) secretion is independent from KCNE1 but requires KCNQ1. In mouse pancreatic acini KCNQ1 probably co-assembled with KCNE1 leads to a voltage-dependent K(+) current that might be of importance for electrolyte and enzyme secretion.

  13. Distinct Action of Flavonoids, Myricetin and Quercetin, on Epithelial Cl− Secretion: Useful Tools as Regulators of Cl− Secretion

    PubMed Central

    Sun, Hongxin; Niisato, Naomi; Nishio, Kyosuke; Hamilton, Kirk L.; Marunaka, Yoshinori

    2014-01-01

    Epithelial Cl− secretion plays important roles in water secretion preventing bacterial/viral infection and regulation of body fluid. We previously suggested that quercetin would be a useful compound for maintaining epithelial Cl− secretion at a moderate level irrespective of cAMP-induced stimulation. However, we need a compound that stimulates epithelial Cl− secretion even under cAMP-stimulated conditions, since in some cases epithelial Cl− secretion is not large enough even under cAMP-stimulated conditions. We demonstrated that quercetin and myricetin, flavonoids, stimulated epithelial Cl− secretion under basal conditions in epithelial A6 cells. We used forskolin, which activates adenylyl cyclase increasing cytosolic cAMP concentrations, to study the effects of quercetin and myricetin on cAMP-stimulated epithelial Cl− secretion. In the presence of forskolin, quercetin diminished epithelial Cl− secretion to a level similar to that with quercetin alone without forskolin. Conversely, myricetin further stimulated epithelial Cl− secretion even under forskolin-stimulated conditions. This suggests that the action of myricetin is via a cAMP-independent pathway. Therefore, myricetin may be a potentially useful compound to increase epithelial Cl− secretion under cAMP-stimulated conditions. In conclusion, myricetin would be a useful compound for prevention from bacterial/viral infection even under conditions that the amount of water secretion driven by cAMP-stimulated epithelial Cl− secretion is insufficient. PMID:24818160

  14. Inhibitors of acid secretion can benefit gastric wound repair independent of luminal pH effects on the site of damage

    PubMed Central

    Demitrack, Elise S; Aihara, Eitaro; Kenny, Susan; Varro, Andrea; Montrose, Marshall H

    2012-01-01

    Background and aims The authors’ goal was to measure pH at the gastric surface (pHo) to understand how acid secretion affects the repair of microscopic injury to the gastric epithelium. Methods Microscopic gastric damage was induced by laser light, during confocal/two-photon imaging of pH-sensitive dyes (Cl-NERF, BCECF) that were superfused over the mucosal surface of the exposed gastric corpus of anaesthetised mice. The progression of repair was measured in parallel with pHo. Experimental conditions included varying pH of luminal superfusates, and using omeprazole (60 mg/kg ip) or famotidine (30 mg/kg ip) to inhibit acid secretion. Results Similar rates of epithelial repair and resting pHo values (~pH 4) were reported in the presence of luminal pH 3 or pH 5. Epithelial repair was unreliable at luminal pH 2 and pHo was lower (2.5±0.2, P <0.05 vs pH 3). Epithelial repair was slower at luminal pH 7 and pHo was higher (6.4±0.1, P<0.001). In all conditions, pHo increased adjacent to damage. At luminal pH 3 or pH 7, omeprazole reduced maximal damage size and accelerated epithelial repair, although only at pH 3 did omeprazole further increase surface pH above the level caused by imposed damage. At luminal pH 7, famotidine also reduced maximal damage size and accelerated epithelial repair. Neither famotidine nor omeprazole raised plasma gastrin levels during the time course of the experiments. Conclusions Epithelial repair in vivo is affected by luminal pH variation, but the beneficial effects of acutely blocking acid secretion extend beyond simply raising luminal and/or surface pH. PMID:21997560

  15. Intracellular Signaling Mechanisms Pharmacological Action of Jasminum amplexicaule Buch.-Ham. (Oleaceae) on Gastrointestinal Secretion

    PubMed Central

    Gao, Zhenhua; Yin, Junqiang; Xie, Xiaolin; Long, Hanwu; Qi, Xiang; Lin, Changhu; Wu, Liangcai

    2014-01-01

    Jasminum amplexicaule Buch-Ham. (Oleaceae) has been commonly used in the traditional medicine in dysentery, diarrhoea and bellyache in China. In the present work, the methanol extract of Jasminum amplexicaule (JME) was examined for pharmacology on human colonic epithelial cell line T84 by the short-circuit current technique. The results showed that pretreatment of T84 cells with JME produced a concentration-dependent (0-1000 μg/mL. EC50 = 0.055 mg/ mL) inhibition effect on adrenalin (Adr.)–induced Cl- secretion. The maximal response was observed at 200 μg/mL. It has been demonstrated that JME has a direct effect on the enterocyte. Our results also demonstrated that the JME exerted inhibitory effect on gastrointestinal Cl-secretion that effected by acting on basolateral β-adrenoreceptors. These results suggested that the Chinese traditional medicine of JME can be used for the treatment of acute diarrhea and bellyache. PMID:25276197

  16. IGF-1 and insulin exert opposite actions on ClC-K2 activity in the cortical collecting ducts

    PubMed Central

    Zaika, Oleg; Mamenko, Mykola; Boukelmoune, Nabila

    2014-01-01

    Despite similar stimulatory actions on the epithelial sodium channel (ENaC)-mediated sodium reabsorption in the distal tubule, insulin promotes kaliuresis, whereas insulin-like growth factor-1 (IGF-1) causes a reduction in urinary potassium levels. The factors contributing to this phenomenon remain elusive. Electrogenic distal nephron ENaC-mediated Na+ transport establishes driving force for Cl− reabsorption and K+ secretion. Using patch-clamp electrophysiology, we document that a Cl− channel is highly abundant on the basolateral plasma membrane of intercalated cells in freshly isolated mouse cortical collecting duct (CCD) cells. The channel has characteristics attributable to the ClC-K2: slow gating kinetics, conductance ∼10 pS, voltage independence, Cl−>NO3− anion selectivity, and inhibition/activation by low/high pH, respectively. IGF-1 (100 and 500 nM) acutely stimulates ClC-K2 activity in a reversible manner. Inhibition of PI3-kinase (PI3-K) with LY294002 (20 μM) abrogates activation of ClC-K2 by IGF-1. Interestingly, insulin (100 nM) reversibly decreases ClC-K2 activity in CCD cells. This inhibitory action is independent of PI3-K and is mediated by stimulation of a mitogen-activated protein kinase-dependent cascade. We propose that IGF-1, by stimulating ClC-K2 channels, promotes net Na+ and Cl− reabsorption, thus reducing driving force for potassium secretion by the CCD. In contrast, inhibition of ClC-K2 by insulin favors coupling of Na+ reabsorption with K+ secretion at the apical membrane contributing to kaliuresis. PMID:25339702

  17. Contrasting effects of linaclotide and lubiprostone on restitution of epithelial cell barrier properties and cellular homeostasis after exposure to cell stressors.

    PubMed

    Cuppoletti, John; Blikslager, Anthony T; Chakrabarti, Jayati; Nighot, Prashant K; Malinowska, Danuta H

    2012-05-03

    Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, (3)H-mannitol fluxes, short-circuit current (Cl(-) secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl(-) secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca(2+)]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS.

  18. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity.

    PubMed

    Chen, De-Ju; Xu, Yan-Ming; Zheng, Wei; Huang, Dong-Yang; Wong, Wing-Yan; Tai, William Chi-Shing; Cho, Yong-Yeon; Lau, Andy T Y

    2015-09-01

    For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chlorogenic Acid Activates CFTR-Mediated Cl- Secretion in Mice and Humans: Therapeutic Implications for Chronic Rhinosinusitis

    PubMed Central

    Illing, Elisa; Cho, Do-Yeon; Zhang, Shaoyan; Skinner, Daniel F.; Dunlap, Quinn A.; Sorscher, Eric J.; Woodworth, Bradford A.

    2016-01-01

    Objectives Salubrious effects of the green coffee bean are purportedly secondary to high concentrations of chlorogenic acid. Chlorogenic acid has a molecular structure similar to bioflavonoids that activate transepithelial Cl- transport in sinonasal epithelia. In contrast to flavonoids, the drug is freely soluble in water. The objective of this study is to evaluate the Cl- secretory capability of chlorogenic acid and its potential as a therapeutic activator of mucus clearance in sinus disease. Study Design Basic research Setting Laboratory Subjects and Methods Chlorogenic acid was tested on primary murine nasal septal epithelial(MNSE)[CFTR+/+ and transgenic CFTR-/-] and human sinonasal epithelial(HSNE)[CFTR+/+ and F508del/F508del] cultures under pharmacologic conditions in Ussing chambers to evaluate effects on transepithelial Cl- transport. Cellular cAMP, phosphorylation of the CFTR regulatory domain(R-D), and CFTR mRNA transcription were also measured. Results Chlorogenic acid stimulated transepithelial Cl- secretion [(change in short-circuit current(ΔISC=μA/cm2)] in MNSE(13.1+/-0.9 vs. 0.1+/-0.1, p<0.05) and HSNE(34.3+/-0.9 vs. 0.0+/-0.1, p<0.05). The drug had a long duration until peak effect at 15-30 minutes after application. Significant inhibition with INH-172, as well as absent stimulation in cultures lacking functional CFTR, suggests effects are dependent on CFTR-mediated pathways. However, the absence of elevated cellular cAMP and phosphorylation the CFTR R-D indicates chlorogenic acid does not work through a PKA-dependent mechanism. Conclusion Chlorogenic acid is a water soluble agent that promotes CFTR-mediated Cl- transport in mouse and human sinonasal epithelium. Translating activators of mucociliary transport to clinical use provides a new therapeutic approach to sinus disease. Further in vivo evaluation is planned. PMID:26019132

  20. Chlorogenic Acid Activates CFTR-Mediated Cl- Secretion in Mice and Humans: Therapeutic Implications for Chronic Rhinosinusitis.

    PubMed

    Illing, Elisa A; Cho, Do-Yeon; Zhang, Shaoyan; Skinner, Daniel F; Dunlap, Quinn A; Sorscher, Eric J; Woodworth, Bradford A

    2015-08-01

    Salubrious effects of the green coffee bean are purportedly secondary to high concentrations of chlorogenic acid. Chlorogenic acid has a molecular structure similar to bioflavonoids that activate transepithelial Cl(-) transport in sinonasal epithelia. In contrast to flavonoids, the drug is freely soluble in water. The objective of this study is to evaluate the Cl(-) secretory capability of chlorogenic acid and its potential as a therapeutic activator of mucus clearance in sinus disease. Basic research. Laboratory. Chlorogenic acid was tested on primary murine nasal septal epithelial (MNSE) (CFTR(+/+) and transgenic CFTR(-/-)) and human sinonasal epithelial (HSNE) (CFTR(+/+) and F508del/F508del) cultures under pharmacologic conditions in Ussing chambers to evaluate effects on transepithelial Cl(-) transport. Cellular cyclic adenosine monophosphate (cAMP), phosphorylation of the CFTR regulatory domain (R-D), and CFTR mRNA transcription were also measured. Chlorogenic acid stimulated transepithelial Cl(-) secretion (change in short-circuit current [ΔISC = µA/cm(2)]) in MNSE (13.1 ± 0.9 vs 0.1 ± 0.1; P < .05) and HSNE (34.3 ± 0.9 vs 0.0 ± 0.1; P < .05). The drug had a long duration until peak effect at 15 to 30 minutes after application. Significant inhibition with INH-172 as well as absent stimulation in cultures lacking functional CFTR suggest effects are dependent on CFTR-mediated pathways. However, the absence of elevated cellular cAMP and phosphorylation the CFTR R-D indicates chlorogenic acid does not work through a PKA-dependent mechanism. Chlorogenic acid is a water-soluble agent that promotes CFTR-mediated Cl(-) transport in mouse and human sinonasal epithelium. Translating activators of mucociliary transport to clinical use provides a new therapeutic approach to sinus disease. Further in vivo evaluation is planned. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  1. Constitutive and regulated secretion of secretory leukocyte proteinase inhibitor by human intestinal epithelial cells.

    PubMed

    Si-Tahar, M; Merlin, D; Sitaraman, S; Madara, J L

    2000-06-01

    Epithelial cells participate in immune regulation and mucosal integrity by generating a range of biologically active mediators. In the intestine, little is known about the potential endogenous anti-inflammatory molecules. Secretory leukocyte proteinase inhibitor (SLPI) is a major serine proteinase inhibitor, a potent antibiotic, and thus a potential anti-inflammatory molecule, although it is not known if it is secreted by intestinal epithelial cells. We show, by reverse-transcription polymerase chain reaction, the presence of SLPI messenger RNA in human model intestinal epithelial cell lines (Caco2-BBE, T84, and HT29-Cl.19A) and human jejunum and colon biopsy specimens. The polymerase chain reaction product was cloned and sequenced and is identical to that of SLPI isolated previously from the human parotid gland. As analyzed by enzyme-linked immunosorbent assay, the constitutive secretion of SLPI occurs in a markedly polarized manner toward the apical surface and is enhanced by inflammatory mediators including tumor necrosis factor alpha and interleukin 1beta (approximately 3.5-fold increase over control value). SLPI release is also stimulated by activation of protein kinase C isoenzymes, but not by activation of adenosine 3',5'-cyclic monophosphate- or Ca(2+)-regulated signaling molecules. SLPI protein is detectable in intestinal lavage fluids collected from normal adult humans. Recombinant SLPI attenuates digestive enzyme (trypsin)- or leukocyte proteinase (elastase)-induced permeability alteration of a model epithelia in a dose-dependent manner. Moreover, SLPI exhibits an antibacterial activity against at least one major intestinal pathogen, Salmonella typhimurium. In contrast, SLPI does not influence epithelial barrier integrity as assessed by transepithelial conductance measurements or electrogenic ion transport. These results establish that human intestinal epithelium expresses and apically secretes SLPI, a molecule that may significantly contribute to the protection against attack from inflammatory cells and digestive enzymes, as well as against microbial infection.

  2. Tumour necrosis factor alpha changes porcine intestinal ion transport through a paracrine mechanism involving prostaglandins.

    PubMed Central

    Kandil, H M; Berschneider, H M; Argenzio, R A

    1994-01-01

    Prostaglandins stimulate electrogenic anion secretion and inhibit sodium chloride absorption in cryptosporidium induced pig diarrhoea. Because tumour necrosis factor alpha (TNF alpha) is an early mediator of inflammation and stimulates prostaglandin secretion, we investigated its effect on intestinal ion transport. Cryptosporidium infected pig ileum showed higher macrophage infiltration and tissue TNF alpha-like activity than uninfected tissues (p < 0.05, n = 4 and p < 0.05, n = 12, respectively). TNF alpha treatment of control porcine ileal mucosa increased the short circuit current (Isc), a measurement of net anion secretion in this model (p < 0.001, n = 23). This effect was blocked by 10(-6) M indomethacin and Cl- replacement. Neither acute treatment nor preincubation of colonic intestinal epithelial cell monolayers (T84) with TNF alpha stimulated the Isc. However, co-mounting of TNF alpha preincubated pig jejunal fibroblasts (P2JF) monolayers back to back with untreated T84 monolayers dose-dependently induced an indomethacin sensitive increase in Isc compared with values in untreated co-mounted monolayers (p < 0.001, n = 11). These data suggest that in infectious diarrhoea, TNF alpha may induce Cl- secretion through a paracrine mechanism involving prostaglandin release from subepithelial cells, for example fibroblasts. PMID:8063221

  3. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    PubMed Central

    2010-01-01

    Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS). Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR). Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei. PMID:20540813

  4. Oxytocin and tumor necrosis factor alpha stimulate expression of prostaglandin E2 synthase and secretion of prostaglandin E2 by luminal epithelial cells of the porcine endometrium during early pregnancy.

    PubMed

    Waclawik, Agnieszka; Blitek, Agnieszka; Ziecik, Adam J

    2010-10-01

    Oxytocin (OXT) and tumor necrosis factor α (TNF) have been implicated in the control of luteolysis by stimulating endometrial secretion of luteolytic prostaglandin F(2α) (PGF(2α)). Nevertheless, OXT concentration in porcine uterine lumen increases markedly on days 11-12 of pregnancy, and TNF is expressed in endometrium during pregnancy. The objective of the study was to determine the effect of OXT and TNF on expression of the enzymes involved in PG synthesis: PG-endoperoxide synthase 2 (PTGS2), PGE(2) synthase (mPGES-1) and PGF synthase, and PGE(2) receptor (PTGER2), as well as on PG secretion by endometrial luminal epithelial cells (LECs) on days 11-12 of the estrous cycle and pregnancy. LECs isolated from gilts on days 11-12 of the estrous cycle (n=8) and pregnancy (n=7) were treated with OXT (100  nmol/l) and TNF (0.6  nmol/l) for 24  h. OXT increased PTGS2 mRNA and mPGES-1 protein contents, as well as PGE(2) secretion but only on days 11-12 of pregnancy. TNF stimulated PTGS2 and mPGES-1 mRNA, as well as mPGES-1 protein expression and PGE(2) release on days 11-12 of pregnancy and the estrous cycle. In addition, expressions of PTGER2 and PTGER4 were determined in corpus luteum (CL). Abundance of PTGER2 mRNA and PTGER4 protein in CL was upregulated on day 14 of pregnancy versus day 14 of the estrous cycle. This study indicates that TNF and OXT regulate PGE(2) synthesis in LECs during early pregnancy. PGE(2) secreted by LECs, after reaching ovaries, could have a luteoprotective effect through luteal PTGER2 and PTGER4, or may directly promote uterine function and conceptus development.

  5. Gastric mucosal protective mechanisms: roles of epithelial bicarbonate and mucus secretions.

    PubMed

    Garner, A; Flemström, G; Allen, A; Heylings, J R; McQueen, S

    1984-01-01

    Secretion of HCO3 (amounting to 2-10% of maximum H+ secretion) in conjunction with the adherent mucus gel layer (functioning as a mixing barrier) protects gastric mucosa from luminal acid by a process of surface neutralization. Gastric HCO3 secretion is augmented by cholinergic agonists, prostaglandins and low luminal pH. Ulcerogens attenuate HCO3 secretion although passive diffusion of alkali consequent upon an increase in mucosal permeability may mask these inhibitory actions. Studies in vitro indicate that HCO3 transport in the stomach is dependent on oxidative metabolism, carbonic anhydrase activity and involves a CL exchange mechanism. Mucus, synthesized and released from epithelial cells, adheres to the mucosal surface as a thin (less than 80 microns in rat) but continuous gel layer. Prostaglandins and carbachol induced release of preformed mucus and thereby increase thickness, whereas acute exposure to ulcerogens has little effect on overall dimensions of the surface mucus layer. Measurements of pH gradients adjacent to gastric mucosa indicate that the disposal of luminal H+ occurs by extracellular neutralization. However, the fall in pH at the apical cell membrane when luminal pH is low (pH 1.5) suggests that while a mucus-bicarbonate barrier comprises the first line of mucosal defence, other factors are involved in the overall process of mucosal protection in the stomach.

  6. Transepithelial nasal potential difference (NPD) measurements in cystic fibrosis (CF).

    PubMed

    Sands, Dorota

    2013-01-01

    The main underlying physiologic abnormality in cystic fibrosis (CF) is dysfunction of the CF transmembrane conductance regulator (CFTR), which results in abnormal transport of sodium and chloride across epithelial surfaces. CFTR function could be tested in vivo using measurements of nasal transepithelial potential difference (PD). Nasal measurements show characteristic features of CF epithelia, including hyperpolarized baseline readings (basal PD), excessive depolarization in response to sodium channel inhibitors, such as amiloride (ΔAmiloride), and little or no chloride (Cl-) secretion in response to isoproterenol in a chloride-free solution (ΔCl- free-isoproterenol). PD test is applied for CF diagnosis and monitoring of new therapeutic modulations and corrections.

  7. Chloride channel function is linked to epithelium-dependent airway relaxation.

    PubMed

    Fortner, C N; Lorenz, J N; Paul, R J

    2001-02-01

    We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.

  8. DETANO and nitrated lipids increase chloride secretion across lung airway cells.

    PubMed

    Chen, Lan; Bosworth, Charles A; Pico, Tristant; Collawn, James F; Varga, Karoly; Gao, Zhiqian; Clancy, John Paul; Fortenberry, James A; Lancaster, Jack R; Matalon, Sadis

    2008-08-01

    We investigated the cellular mechanisms by which nitric oxide (NO) increases chloride (Cl-) secretion across lung epithelial cells in vitro and in vivo. Addition of (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETANONOate [DETANO];1-1,000 microM) into apical compartments of Ussing chambers containing Calu-3 cells increased short-circuit currents (I(sc)) from 5.2 +/- 0.8 to 15.0 +/- 2.1 microA/cm(2) (X +/- 1 SE; n = 7; P < 0.001). NO generated from two nitrated lipids (nitrolinoleic and nitrooleic acids; 1-10 microM) also increased I(sc) by about 100%. Similar effects were noted across basolaterally, but not apically, permeabilized Calu-3 cells. None of these NO donors increased I(sc) in Calu-3 cells pretreated with 10 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase). Scavenging of NO either prevented or reversed the increase of I(sc). These data indicate that NO stimulation of soluble guanylyl cyclase was sufficient and necessary for the increase of I(sc) via stimulation of the apical cystic fibrosis transmembrane regulator (CFTR). Both Calu-3 and alveolar type II (ATII) cells contained CFTR, as demonstrated by in vitro phosphorylation of immunoprecipitated CFTR by protein kinase (PK) A. PKGII (but not PKGI) phosphorylated CFTR immuniprecipitated from Calu-3 cells. Corresponding values in ATII cells were below the threshold of detection. Furthermore, DETANO, 8-Br-cGMP, or 8-(4-chlorophenylthio)-cGMP (up to 2 mM each) did not increase Cl- secretion across amiloride-treated ATII cells in vitro. Measurements of nasal potential differences in anesthetized mice showed that perfusion of the nares with DETANO activated glybenclamide-sensitive Cl- secretion. These findings suggest that small concentrations of NO donors may prove beneficial in stimulating Cl- secretion across airway cells without promoting alveolar edema.

  9. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.

    PubMed

    Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L

    2005-06-01

    Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCrECL cultured from pigmented rabbits, while 85+/-0.7%, 36+/-1.6%, 38+/-1.8% and 15+/-3.5% decreases are observed for RCrECL from albino rabbits, respectively. Air-interface cultured RCrECL from either pigmented or albino rabbits exhibited active ion transport properties similar to those present in excised tissues. This primary culture system may be a reliable in-vitro model for mechanistic characterization of corneal epithelial function and regulation of transport properties.

  10. Prostaglandin E2 induces chloride secretion through crosstalk between cAMP and calcium signaling in mouse inner medullary collecting duct cells

    PubMed Central

    Rajagopal, Madhumitha; Thomas, Sheela V.; Kathpalia, Paru P.; Chen, Yu

    2013-01-01

    Under conditions of high dietary salt intake, prostaglandin E2 (PGE2) production is increased in the collecting duct and promotes urinary sodium chloride (NaCl) excretion; however, the molecular mechanisms by which PGE2 increases NaCl excretion in this context have not been clearly defined. We used the mouse inner medullary collecting duct (mIMCD)-K2 cell line to characterize mechanisms underlying PGE2-regulated NaCl transport. When epithelial Na+ channels were inhibited, PGE2 exclusively stimulated basolateral EP4 receptors to increase short-circuit current (IscPGE2). We found that IscPGE2 was sensitive to inhibition by H-89 and CFTR-172, indicating that EP4 receptors signal through protein kinase A to induce Cl− secretion via cystic fibrosis transmembrane conductance regulator (CFTR). Unexpectedly, we also found that IscPGE2 was sensitive to inhibition by BAPTA-AM (Ca2+ chelator), 2-aminoethoxydiphenyl borate (2-APB) (inositol triphosphate receptor blocker), and flufenamic acid (FFA) [Ca2+-activated Cl− channel (CACC) inhibitor], suggesting that EP4 receptors also signal through Ca2+ to induce Cl− secretion via CACC. Additionally, we observed that PGE2 stimulated an increase in Isc through crosstalk between cAMP and Ca2+ signaling; BAPTA-AM or 2-APB inhibited a component of IscPGE2 that was sensitive to CFTR-172 inhibition; H-89 inhibited a component of IscPGE2 that was sensitive to FFA inhibition. Together, our findings indicate that PGE2 activates basolateral EP4 receptors and signals through both cAMP and Ca2+ to stimulate Cl− secretion in IMCD-K2 cells. We propose that these signaling pathways, and the crosstalk between them, may provide a concerted mechanism for enhancing urinary NaCl excretion under conditions of high dietary NaCl intake. PMID:24284792

  11. Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea.

    PubMed

    Namkung, Wan; Thiagarajah, Jay R; Phuan, Puay-Wah; Verkman, A S

    2010-11-01

    TMEM16A was found recently to be a calcium-activated Cl(-) channel (CaCC). CaCCs perform important functions in cell physiology, including regulation of epithelial secretion, cardiac and neuronal excitability, and smooth muscle contraction. CaCC modulators are of potential utility for treatment of hypertension, diarrhea, and cystic fibrosis. Screening of drug and natural product collections identified tannic acid as an inhibitor of TMEM16A, with IC(50) ∼ 6 μM and ∼100% inhibition at higher concentrations. Tannic acid inhibited CaCCs in multiple cell types but did not affect CFTR Cl(-) channels. Structure-activity analysis indicated the requirement of gallic or digallic acid substituents on a macromolecular scaffold (gallotannins), as are present in green tea and red wine. Other polyphenolic components of teas and wines, including epicatechin, catechin, and malvidin-3-glucoside, poorly inhibited CaCCs. Remarkably, a 1000-fold dilution of red wine and 100-fold dilution of green tea inhibited CaCCs by >50%. Tannic acid, red wine, and green tea inhibited arterial smooth muscle contraction and intestinal Cl(-) secretion. Gallotannins are thus potent CaCC inhibitors whose biological activity provides a potential molecular basis for the cardioprotective and antisecretory benefits of red wine and green tea.

  12. Mistargeting of a truncated Na-K-2Cl cotransporter in epithelial cells.

    PubMed

    Koumangoye, Rainelli; Omer, Salma; Delpire, Eric

    2018-05-02

    We recently reported the case of a young patient with multi-system failure carrying a de novo mutation in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1. Heterologous expression studies in non-epithelial cells failed to demonstrate dominant-negative effects. In this study, we examined expression of the mutant cotransporter in epithelial cells. Using MDCK cells grown on glass coverslips, permeabilized support, and matrigel, we show that the fluorescently-tagged mutant cotransporter is expressed in cytoplasm and at the apical membrane and affects epithelium integrity. Expression of the mutant transporter at the apical membrane also results in the mislocalization of some of the wild-type transporter to the apical membrane. This mistargeting is specific to NKCC1 as the Na + /K + -ATPase remains localized on the basolateral membrane. To assess transporter localization in vivo, we created a mouse model using CRISPR/cas9 that reproduces the 11 bp deletion in exon 22 of Slc12a2. While the mice do not display an overt phenotype, we show that the colon and salivary gland expresses wild-type NKCC1 abundantly at the apical pole, confirming the data obtained in cultured epithelial cells. Enough cotransporter must remain, however, on the basolateral membrane to participate in saliva secretion, as no significant decrease in saliva production was observed in the mutant mice.

  13. Role of calcium signaling in epithelial bicarbonate secretion.

    PubMed

    Jung, Jinsei; Lee, Min Goo

    2014-06-01

    Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. THE SHARK RECTAL GLAND MODEL: A CHAMPION OF RECEPTOR MEDIATED CHLORIDE SECRETION THROUGH CFTR

    PubMed Central

    FORREST, JOHN N.

    2016-01-01

    The dogfish shark salt gland was predicted by Smith and discovered by Burger at the Mount Desert Island Biological Laboratory in Salisbury Cove, Maine. It is an epithelial organ in the intestine composed of tubules that serve a single function: the secretion of hypertonic NaCl. Many G protein receptors are present on the basolateral surface of these tubules, including stimulatory receptors for vasoactive intestinal peptide, adenosine A2, growth hormone releasing hormone, and inhibitory receptors for somatostatin and adenosine A1. An entirely different class of stimulatory receptors is present as C-type natriuretic peptide receptors. Each stimulatory receptor evokes powerful NaCl secretion. G protein receptors bind to Gαs to activate the catalytic unit of adenylate cyclase to form cyclic adenosine monophosphate (cAMP) and protein kinase A that phosphorylates the regulatory domain of cystic fibrosis transmembrane conductance regulator, opening the channel. The C-type natriuretic peptide receptor stimulates by activating guanylate cyclase and endogenous cyclic guanosine monophosphate which inhibits type 3 phosphodiesterase, the enzyme that breaks down cAMP, thereby elevating cAMP and activating the protein kinase A pathway. PMID:28066051

  15. Modulation of epidermal growth factor effects on epithelial ion transport by intestinal trefoil factor.

    PubMed Central

    Chinery, R.; Cox, H. M.

    1995-01-01

    1. The direct epithelial effects of epidermal growth factor (EGF) and its modulation by intestinal trefoil factor (ITF) have been studied in a human colonic adenocarcinoma cell line called Colony-29 (Col-29). 2. When grown in culture as confluent monolayers and voltage-clamped in Ussing chambers, these epithelia responded with an increase in short circuit current (SCC) to basolateral as well as to apically applied EGF although the latter responses (at 10 nM) were only 25% of those observed following basolateral peptide. 3. Recombinant rat ITF (added to the basolateral surface) did not alter basal SCC levels, but it did enhance the electrogenic effects of basolateral EGF. The EC50 values for EGF-induced ion transport were 0.25 nM in control, and 0.26 nM in ITF pretreated Col-29 epithelia. A significant increase in the size of EGF responses (0.1 nM-10 nM) was observed in the presence of 10 nM ITF and the half-maximal concentration for this modulatory effect of ITF was 7.6 nM. 4. The EGF-induced increases in SCC were partially inhibited (50%) by piretanide pretreatment, indicating that Cl- secretion is involved. EGF responses either in the presence or absence of ITF were also significantly reduced (84% and 66% respectively) by the cyclo-oxygenase inhibitor, piroxicam, therefore implicating prostaglandins as mediators of EGF-stimulated anion secretion. 5. We conclude that in confluent Col-29 epithelia, basolateral EGF stimulates a predominantly prostaglandin-dependent increase in Cl- secretion that is enhanced by basolateral ITF, and that these two peptides may interact in normal and damaged mucosa to alter the local apical solute and fluid environment. PMID:7647987

  16. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    PubMed

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  17. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for fluid secretion. PMID:22777674

  18. Stimulation of epithelial cell matrix metalloproteinase (MMP-2, -9, -13) and interleukin-8 secretion by fusobacteria.

    PubMed

    Gursoy, U K; Könönen, E; Uitto, V-J

    2008-10-01

    Bacterial pathogens involved in periodontal diseases exert their destructive effects primarily by stimulating the host cells to increase their secretion of proinflammatory cytokines and matrix metalloproteinases (MMPs). This study aimed to determine the epithelial cell matrix metalloproteinase and interleukin-8 (IL-8) secretion upon exposure to fusobacteria. Eight different oral and non-oral Fusobacterium strains were incubated with HaCaT epithelial cells. Gelatin zymography and Western blot analysis were performed to detect collagenase 3 (MMP-13), gelatinase A (MMP-2), gelatinase B (MMP-9), and IL-8 secretion by epithelial cells. All Fusobacterium strains, especially Fusobacterium necrophorum ATCC 25286, Fusobacterium nucleatum ATCC 25586, and Fusobacterium varium ATCC 51644, increased MMP-9 and MMP-13 secretion. Fusobacterium simiae ATCC 33568, and to a lesser extent F. nucleatum and F. necrophorum, increased epithelial MMP-2 secretion. F. nucleatum and F. necrophorum also increased IL-8 secretion. F. varium ATCC 27725, a strain that only weakly stimulated MMP production, strongly increased the IL-8 production, suggesting that their expression is differently regulated. We conclude that the pathogenic potential of fusobacteria may partly result from their ability to stimulate secretion of MMP-9, MMP-13, and IL-8 from epithelial cells.

  19. Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis.

    PubMed

    Pratha, V S; Hogan, D L; Martensson, B A; Bernard, J; Zhou, R; Isenberg, J I

    2000-06-01

    The duodenum is a cystic fibrosis transmembrane conductance regulator (CFTR)-expressing epithelium with high bicarbonate secretory capacity. We aimed to define the role of CFTR in human duodenal epithelial bicarbonate secretion in normal (NL) subjects and patients with cystic fibrosis (CF). Endoscopic biopsy specimens of the duodenal bulb were obtained from 9 CF patients and 16 volunteers. Tissues were mounted in modified Ussing chambers. Bicarbonate secretion and short-circuit current (Isc) were quantitated under basal conditions and in response to dibutyryl adenosine 3',5'-cyclic monophosphate (db-cAMP), carbachol, and the heat-stable toxin of Escherichia coli (STa). Duodenocytes were also isolated and loaded with the pH-sensitive fluoroprobe BCECF/AM, and intracellular pH (pH(i)) was measured at rest and after intracellular acidification and alkalinization. Basal HCO(3)(-) secretion and Isc were significantly lower in the CF vs. NL duodenal mucosa. In contrast to NL, db-cAMP failed to alter either HCO(3)(-) or Isc in CF tissues. However, in CF, carbachol resulted in an electroneutral HCO(3)(-) secretion, whereas STa induced electrogenic HCO(3)(-) secretion that was similar to NL. In CF and NL duodenocytes, basal pH(i) and recovery from an acid load were comparable, but pH(i) recovery after an alkaline load in CF duodenocytes was Cl(-) dependent, whereas in NL duodenocytes it was Cl(-) independent. These findings implicate CFTR in NL duodenal alkaline transport and its absence in CF. Although duodenal bicarbonate secretion is impaired in CF tissues, alternate pathway(s) likely exist that can be activated by carbachol and STa.

  20. Lubiprostone decreases mouse colonic inner mucus layer thickness and alters intestinal microbiota.

    PubMed

    Musch, Mark W; Wang, Yunwei; Claud, Erika C; Chang, Eugene B

    2013-03-01

    Lubiprostone has been used to treat constipation through its effects to stimulate Cl(-) secretion, resulting in water and electrolyte secretion. Potential associated changes in intestinal mucus and the colonizing bacteria (microbiome) have not been studied. As mucus obstructions may play a role in cystic fibrosis, the hypothesis that lubiprostone alters intestinal mucus and the microbiome was investigated. Ion transport studies were performed ex vivo. For mucus and microbiome studies, mice were gavaged daily with lubiprostone or vehicle. Mucin from intestinal sections was analyzed in Carnoy's fixed tissues stained with Alcian blue. Microbiome composition was analyzed by 16S rRNA gene-based sequencing. Lubiprostone stimulated short circuit current in all mouse intestinal segments after both serosal and mucosal additions, albeit at lower concentrations in the latter. Current was Cl-dependent and blocked by mucosal diphenylcarboxylic acid, serosal bumetanide, and serosal Ba(++). The CFTR inhibitor CFTRinh172 had a marginal effect. Mucus near epithelial cells (inner layer mucus) was not present in the small intestine of any mice. Proximal colon inner mucus layer was thicker in ∆F/∆F compared with +/∆F and +/+ mice. Lubiprostone decreased inner mucus layer thickness in both proximal and distal colon of all mice. Furthermore, lubiprostone altered the intestinal microbiome by increasing abundance of Lactobacillus and Alistipes. Lubiprostone activates non-CFTR Cl(-) secretion and alters the colonic inner mucus layer, which is associated with changes in the composition of the enteric microbiome.

  1. Trypsin Reduces Pancreatic Ductal Bicarbonate Secretion by Inhibiting CFTR Cl- channel and Luminal Anion Exchangers

    PubMed Central

    Pallagi, Petra; Venglovecz, Viktória; Rakonczay, Zoltán; Borka, Katalin; Korompay, Anna; Ózsvári, Béla; Judák, Linda; Sahin-Tóth, Miklós; Geisz, Andrea; Schnúr, Andrea; Maléth, József; Takács, Tamás; Gray, Mike A.; Argent, Barry E.; Mayerle, Julia; Lerch, Markus M.; Wittmann, Tibor; Hegyi, Péter

    2012-01-01

    Background & Aims The effects of trypsin on pancreatic ductal epithelial cells (PDEC) vary among species and depend on localization of proteinase-activated receptor-2 (PAR-2). Bicarbonate secretion is similar in human and guinea pig PDEC; we compared its localization in these cell types and isolated guinea pig ducts to study the effects of trypsin and a PAR-2 agonist on this process. Methods PAR-2 localization was analyzed by immunohistochemistry in guinea pig and human pancreatic tissue samples (from 15 patients with chronic pancreatitis and 15 without pancreatic disease). Functions of guinea pig PDEC were studied by microperfusion of isolated ducts, measurements of intracellular pH (pHi) and Ca2+ concentration [Ca2+]i, and patch clamp analysis. The effect of pH on trypsinogen autoactivation was assessed using recombinant human cationic trypsinogen. Results PAR-2 localized to the apical membrane of human and guinea pig PDEC. Trypsin increased [Ca2+]i and pHi, and inhibited secretion of bicarbonate by the luminal anion exchanger and the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Autoactivation of human cationic trypsinogen accelerated when the pH was reduced from 8.5 to 6.0. PAR-2 expression was strongly down-regulated, at transcriptional and protein levels, in the ducts of patients with chronic pancreatitis, consistent with increased activity of intraductal trypsin. Importantly, in PAR-2 knockout mice, the effects of trypsin were PAR-2 dependent. Conclusions Trypsin reduces pancreatic ductal bicarbonate secretion via PAR-2–dependent inhibition of the apical anion exchanger and the CFTR Cl- channel. This could contribute to the development of chronic pancreatitis, decreasing luminal pH and promoting premature activation of trypsinogen in the pancreatic ducts. PMID:21893120

  2. Nitric oxide inhibition of NaCl secretion in the opercular epithelium of seawater-acclimated killifish, Fundulus heteroclitus.

    PubMed

    Gerber, Lucie; Jensen, Frank B; Madsen, Steffen S; Marshall, William S

    2016-11-01

    Nitric oxide (NO) modulates epithelial ion transport pathways in mammals, but this remains largely unexamined in fish. We explored the involvement of NO in controlling NaCl secretion by the opercular epithelium of seawater killifish using an Ussing chamber approach. Pharmacological agents were used to explore the mechanism(s) triggering NO action. A modified Biotin-switch technique was used to investigate S-nitrosation of proteins. Stimulation of endogenous NO production via the nitric oxide synthase (NOS) substrate l-arginine (2.0 mmol l -1 ), and addition of exogenous NO via the NO donor SNAP (10 -6 to 10 -4  mol l -1 ), decreased the epithelial short-circuit current (I sc ). Inhibition of endogenous NO production by the NOS inhibitor l-NAME (10 -4  mol l -1 ) increased I sc and revealed a tonic control of ion transport by NO in unstimulated opercular epithelia. The NO scavenger PTIO (10 -5  mol l -1 ) supressed the NO-mediated decrease in I sc , and confirmed that the effect observed was elicited by release of NO. The effect of SNAP on I sc was abolished by inhibitors of the soluble guanylyl cyclase (sGC), ODQ (10 -6  mol l -1 ) and Methylene Blue (10 -4  mol l -1 ), revealing NO signalling via the sGC/cGMP pathway. Incubation of opercular epithelium and gill tissues with SNAP (10 -4  mol l -1 ) led to S-nitrosation of proteins, including Na + /K + -ATPase. Blocking of NOS with l-NAME (10 -6  mol l -1 ) or scavenging of NO with PTIO during hypotonic shock suggested an involvement of NO in the hypotonic-mediated decrease in I sc Yohimbine (10 -4  mol l -1 ), an inhibitor of α 2 -adrenoceptors, did not block NO effects, suggesting that NO is not involved in the α-adrenergic control of NaCl secretion. © 2016. Published by The Company of Biologists Ltd.

  3. Emodin induces chloride secretion in rat distal colon through activation of mast cells and enteric neurons

    PubMed Central

    Xu, J-D; Liu, S; Wang, W; Li, L-S; Li, X-F; Li, Y; Guo, H; Ji, T; Feng, X-Y; Hou, X-L; Zhang, Y; Zhu, J-X

    2012-01-01

    BACKGROUND AND PURPOSE Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an active component of many herb-based laxatives. However, its mechanism of action is unclear. The aim of the present study was to investigate the role of mast cells and enteric neurons in emodin-induced ion secretion in the rat colon. EXPERIMENTAL APPROACH Short-circuit current (ISC) recording was used to measure epithelial ion transport. A scanning ion-selective electrode technique was used to directly measure Cl- flux (JCl−) across the epithelium. RIA was used to measure emodin-induced histamine release. KEY RESULTS Basolateral addition of emodin induced a concentration-dependent increase in ISC in colonic mucosa/submucosa preparations, EC50 75 µM. The effect of emodin was blocked by apically applied glibenclamide, a Cl- channel blocker, and by basolateral application of bumetanide, an inhibitor of the Na+-K+-2Cl- cotransporter. Emodin-evoked JCl− in mucosa/submucosa preparations was measured by scanning ion-selective electrode technique, which correlated to the increase in ISC and was significantly suppressed by glibenclamide and bumetanide. Pretreatment with tetrodotoxin and the muscarinic receptor antagonist atropine had no effect on emodin-induced ΔISC in mucosa-only preparations, but significantly reduced emodin-induced ΔISC and JCl− in mucosa/submucosa preparations. The COX inhibitor indomethacin, the mast cell stabilizer ketotifen and H1 receptor antagonist pyrilamine significantly reduced emodin-induced ΔISC in mucosa and mucosa/submucosa preparations. The H2 receptor antagonist cimetidine inhibited emodin-induced ΔISC and JCl− only in the mucosa/submucosa preparations. Furthermore, emodin increased histamine release from the colonic mucosa/submucosa tissues. CONCLUSIONS AND IMPLICATIONS The results suggest that emodin-induced colonic Cl- secretion involves mast cell degranulation and activation of cholinergic and non-cholinergic submucosal neurons. PMID:21718311

  4. TPA induces a block of differentiation and increases the susceptibility to neoplastic transformation of a rat thyroid epithelial cell line.

    PubMed

    Portella, G; Vitagliano, D; Li, Z; Sferratore, F; Santoro, M; Vecchio, G; Fusco, A

    1998-01-01

    The PC Cl 3 cell line is a well-characterized epithelial cell line of rat thyroid origin. This cell line retains in vitro the typical markers of thyroid differentiation: thyroglobulin (TG) synthesis and secretion, iodide uptake, thyroperoxidase (TPO) expression, and dependency on TSH for growth. Although the differentiated phenotype of thyroid cells has been relatively well described, the molecular mechanisms that regulate both differentiation and neoplastic transformation of thyroid cells still need to be investigated in detail. Protein kinase C (PKC), the target of tetradecanoylphorbol acetate (TPA), regulates growth and differentiation of several cell types. Here we show that treatment of PC Cl 3 cells with TPA induces an acute block of thyroid differentiation. TPA-treated PC Cl 3 cells are unable to trap iodide and the expression levels of thyroglobulin, TSH receptor, and TPO genes are drastically reduced by TPA treatment. This differentiation block is not caused by a reduced expression of one of the master genes of thyroid differentiation, the thyroid transcription factor 1 (TTF-1). TPA-treated PC Cl 3 cells display an increased growth rate indicating that, in addition to the differentiation block, TPA also significantly affects the growth regulation of thyroid cells. Finally, TPA treatment dramatically increases the number of transformation foci induced in PC Cl 3 cells by retroviruses carrying v-Ki-ras, v-Ha-ras, and v-mos oncogenes. These findings support the notion that the PKC pathway can influence proliferation, differentiation, and neoplastic transformation of thyroid cells in culture.

  5. Toll-like receptor 2-mediated peptidoglycan uptake by immature intestinal epithelial cells from apical side and exosome-associated transcellular transcytosis

    PubMed Central

    Bu, Heng-Fu; Wang, Xiao; Tang, Yi; Koti, Viola; Tan, Xiao-Di

    2015-01-01

    Peptidoglycan is a potent immune adjuvant derived from bacterial cell walls. Previous investigations suggest that intestinal epithelium may absorb peptidoglycan from the lumen. Nonetheless, how peptidoglycan is taken up and crosses intestinal epithelium remains largely unclear. Here, we first characterized peptidoglycan transport in vitro using IEC-18 and HT29-CL19A cells, which represent less mature epithelial cells in intestinal crypts. With fluorescent microscopy, we visualized internalization of dual-labeled peptidoglycan by enterocytes. Engulfed peptidoglycan was found to form a complex with peptidoglycan recognition protein-3, which may facilitate delivering peptidoglycan in vivo. Utilizing electronic microscopy, we revealed that uptake of apical peptidoglycan across intestinal epithelial monolayers was involved in phagocytosis, multivesicular body formation, and exosome secretion. We also studied transport of peptidoglycan using the transwell system. Our data indicated that apically loaded peptidoglycan was exocytosed to the basolateral compartment with exosomes by HT29-CL19A cells. The peptidoglycan-contained basolateral exosome extracts induced macrophage activation. Through gavaging mice with labeled peptidoglycan, we found that luminal peptidoglycan was taken up by columnar epithelial cells in crypts of the small intestine. Furthermore, we showed that pre-confluent immature but not post-confluent mature C2BBe1 cells engulfed peptidoglycan via a toll-like receptor 2-dependent manner. Together, our findings suggest that (1) crypt-based immature intestinal epithelial cells play an important role in transport of luminal peptidoglycan over the intestinal epithelium; and (2) luminal peptidoglycan is transcytosed across intestinal epithelia via a toll-like receptor 2-meciated phagocytosis-multivesicular body-exosome pathway. The absorbed peptidoglycan and its derivatives may facilitate maintenance of intestinal immune homeostasis. PMID:20020500

  6. Bumetanide increases Cl--dependent short-circuit current in late distal colon: Evidence for the presence of active electrogenic Cl- absorption.

    PubMed

    Tang, Lieqi; Fang, Xiefan; Winesett, Steven P; Cheng, Catherine Y; Binder, Henry J; Rivkees, Scott A; Cheng, Sam X

    2017-01-01

    Mammalian colonic epithelia consist of cells that are capable of both absorbing and secreting Cl-. The present studies employing Ussing chamber technique identified two opposing short-circuit current (Isc) responses to basolateral bumetanide in rat distal colon. Apart from the transepithelial Cl--secretory Isc in early distal colon that was inhibited by bumetanide, bumetanide also stimulated Isc in late distal colon that had not previously been identified. Since bumetanide inhibits basolateral Na+-K+-2Cl- cotransporter (NKCC) in crypt cells and basolateral K+-Cl- cotransporter (KCC) in surface epithelium, we proposed this stimulatory Isc could represent a KCC-mediated Cl- absorptive current. In support of this hypothesis, ion substitution experiments established Cl- dependency of this absorptive Isc and transport inhibitor studies demonstrated the involvement of an apical Cl- conductance. Current distribution and RNA sequencing analyses revealed that this Cl- absorptive Isc is closely associated with epithelial Na+ channel (ENaC) but is not dependent on ENaC activity. Thus, inhibition of ENaC by 10 μM amiloride or benzamil neither altered the direction nor its activity. Physiological studies suggested that this Cl- absorptive Isc senses dietary Cl- content; thus when dietary Cl- was low, Cl- absorptive Isc was up-regulated. In contrast, when dietary Cl- was increased, Cl- absorptive Isc was down-regulated. We conclude that an active Cl- extrusion mechanism exists in ENaC-expressing late distal colon and likely operates in parallel with ENaC to facilitate NaCl absorption.

  7. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    PubMed

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  8. Yersinia enterocolitica-Induced Interleukin-8 Secretion by Human Intestinal Epithelial Cells Depends on Cell Differentiation

    PubMed Central

    Schulte, Ralf; Autenrieth, Ingo B.

    1998-01-01

    In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting β1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer’s patch tissue remains to be shown. PMID:9488416

  9. Renal intercalated cells and blood pressure regulation.

    PubMed

    Wall, Susan M

    2017-12-01

    Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl - absorption and HCO 3 - secretion largely through pendrin-dependent Cl - /HCO 3 - exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO 3 administration. In some rodent models, pendrin-mediated HCO 3 - secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl - absorption, but also by modulating the aldosterone response for epithelial Na + channel (ENaC)-mediated Na + absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.

  10. Expression and function of CLC and cystic fibrosis transmembrane conductance regulator chloride channels in renal epithelial tubule cells: pathophysiological implications.

    PubMed

    Vandewalle, Alain

    2007-01-01

    Cl(-) channels play important roles in the regulation of a variety of functions, including electrical excitability, cell volume regulation, transepithelial transport and acidification of cellular organelles. They are expressed in plasma membranes or reside in intracellular organelles. A large number of Cl(-) channels with different functions have been identified. Some of them are highly expressed in the kidney. They include members of the CLC Cl(-) channel family: ClC-K1 (or ClC-Ka), ClC-K2 (or ClC-Kb) and ClC-5. The identification of mutations responsible for human inherited diseases (Bartter syndrome for ClC-Kb and Dent's disease for ClC-5) and studies on knockout mice models have evidenced the physiological importance of these CLC Cl(-) channels, permitting better understanding on their functions in renal tubule epithelial cells. The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, also expressed in renal tubule epithelial cells, is involved in the transepithelial transport of Cl(-) in the distal nephron. This short review focuses on intrarenal distribution, subcellular localization and function of the ClK(-1), ClC-K2 and ClC-5 Cl(-) channels in renal tubule epithelial cells, and the role of the CFTR Cl(-) channel in chloride fluxes elicited by vasopressin in the distal nephron.

  11. Protons inhibit anoctamin 1 by competing with calcium.

    PubMed

    Chun, Hyeyeon; Cho, Hawon; Choi, Jimi; Lee, Jesun; Kim, Sung Min; Kim, Hyungsup; Oh, Uhtaek

    2015-11-01

    Cl(-) efflux through Ca(2+)-activated Cl(-) channels (CaCCs) in secretory epithelial cells plays a key role in the regulation of fluid secretion. The fluid and electrolyte secretion is closely related to intracellular pH. CaCCs have been known to be inhibited by intracellular acid. However, the molecular mechanism for the inhibition remains unknown. Anoctamin 1 (ANO1) is a Ca(2+)-activated Cl(-) channel that mediates numerous physiological functions including fluid secretion in secretory epithelia. However, little is known about whether ANO1 can be modulated by change of intracellular pH. Here, we demonstrate that Ca(2+)-induced activation of ANO1 and its homolog ANO2 are strongly inhibited by intracellular acid. Intracellular acid caused a rightward shift of the concentration-response curve of Ca(2+) in activating ANO1 and ANO2. To identify the location of the acid-induced inhibition, mutations were made on each of all histidine residues in cytoplasmic part of ANO1. However, none of the His-mutant showed the reduction in the acid-induced inhibition. Furthermore, mutation on Glu- or Asp-residues in the multiple acidic-amino acid regions was ineffective in blocking the acid-induced inhibition. Because the Ca(2+)-binding site of a fungal anoctamin (nhTMEM16) was uncovered by crystallography, mutagenesis was performed in this region. Surprisingly, mutations at Glu, Asp or Asn residues in the hydrophobic core that are known to be essential for Ca(2+)-induced activation of ANO1 blocked the acid-induced inhibition. These results suggest that protons interfere with Ca(2+) at the Ca(2+) binding site of ANO1. These findings provide a molecular mechanism underlying the acid-induced inhibition of ANO1, which may contribute to control fluid and electrolyte secretion in the secretory epithelia. Copyright © 2015. Published by Elsevier Ltd.

  12. Chloride ion transport and overexpression of TMEM16A in a guinea-pig asthma model.

    PubMed

    Kondo, M; Tsuji, M; Hara, K; Arimura, K; Yagi, O; Tagaya, E; Takeyama, K; Tamaoki, J

    2017-06-01

    TMEM16A, a Ca-activated Cl channel, regulates various physiological functions such as mucin secretion. However, the role of TMEM16A in hyper-secretion in asthma is not fully understood. The aim of this study is to evaluate Cl ion transport via TMEM16A and determine the localization of TMEM16A in a guinea-pig asthma model. Guinea-pigs were sensitized with ovalbumin (OVA) i.p. on Days 1 and 8. On Day 22, we assessed OVA challenge-induced Cl ion transport in the sensitized tracheas ex vivo in an Ussing chamber, compared with the non-sensitized tracheas. We then examined the effect of T16Ainh-A01, a TMEM16A inhibitor, on the increase in Cl ion transport. The tracheal epithelium was immunostained with an anti-TMEM16A antibody. Epithelial cells from guinea-pig tracheas were cultured at the air-liquid interface in the presence of IL-13 for in vitro study. We studied the effect of TMEM16A inhibitors on Ca-dependent agonist, uridine triphosphate (UTP)-induced increases in Cl ion transport in the cultured cells. The cells were immunostained with an anti-TMEM16A antibody, an anti-MUC5AC antibody and an anti-α-tubulin antibody. OVA challenge induced an increase in short circuit current within 1 min in the OVA-sensitized tracheas but not in the non-sensitized tracheas, which was inhibited by pretreatment of T16Ainh-A01. Sensitized tracheas showed goblet cell metaplasia with more positive TMEM16A immunostaining, particularly in the apical portion compared with the non-sensitized tracheas. The in vitro UTP-induced increase in Cl ion transport was strongly inhibited by pretreatment with T16Ainh-A01, benzbromarone, and niflumic acid. TMEM16A was positively immunostained at the apical portion and in the MUC5AC-positive area in IL-13-induced goblet cell metaplasia. Antigen challenge and Ca-dependent agonist treatment increased Cl ion transport via the overexpression of TMEM16A in goblet cell metaplasia in a guinea-pig asthma model. TMEM16A inhibitors may be useful for the treatment of hyper-secretion in asthma. © 2017 John Wiley & Sons Ltd.

  13. Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.

    PubMed

    Cooper, Christopher A; Whittamore, Jonathan M; Wilson, Rod W

    2010-04-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O absorption). The latter two processes involve high rates of epithelial HCO(3)(-) secretion stimulated by intestinal Ca(2+) and can drive a major portion of water absorption. At higher salinities and ambient Ca(2+) concentrations the osmoregulatory role of intestinal HCO(3)(-) secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO(2)) and acid-base regulation (as intestinal cells must export H(+) into the blood to balance apical HCO(3)(-) secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca(2+). Increasing the luminal Ca(2+) concentration caused a large elevation in intestinal HCO(3)(-) production and excretion. Additionally, blood pH decreased (-0.13 pH units) and plasma partial pressure of CO(2) (Pco(2)) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca(2+)] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO(3)(-) production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca(2+) independent of any other ion or overall osmolality in marine teleost fish.

  14. Thalidomide distinctly affected TNF-α, IL-6 and MMP secretion by an ovarian cancer cell line (SKOV-3) and primary ovarian cancer cells.

    PubMed

    Piura, Benjamin; Medina, Liat; Rabinovich, Alex; Dyomin, Victor; Huleihel, Mahmoud

    2013-01-01

    Thalidomide inhibits TNF-α production in lipopolysaccharide-stimulated monocytes. The aim of this study was to evaluate the effect of thalidomide on TNF-α, IL-6 and MMP secretion in epithelial ovarian carcinoma cells. SKOV-3 cells and primary epithelial ovarian carcinoma cells were cultured in the presence of various concentrations of thalidomide. Cell proliferation was examined by MTT proliferation assay. TNF-α and IL-6 levels were determined in the supernatants of the cell cultures by ELISA, and MMP activity was examined by gelatin zymography. Thalidomide did not significantly affect the proliferation and growth of SKOV-3 cells. However, it decreased significantly the capacity of SKOV-3 cells and primary epithelial ovarian carcinoma cells to secrete TNF-α. Thalidomide also significantly decreased the capacity of SKOV-3 cells, but not primary epithelial ovarian carcinoma cells, to secrete MMP-9 and MMP-2. However, thalidomide did not affect IL-6 secretion in SKOV-3 cells or primary epithelial ovarian carcinoma cells. Our study suggests that thalidomide distinctly affected TNF-α, IL-6 and MMPs secretion by an ovarian carcinoma cell line (SKOV-3) and primary ovarian cancer cells. This might suggest a different susceptibility of these two types of cells to thalidomide, and/or that the mechanisms of secretion of the factors examined are differently regulated in these cells. Our results may deepen our understanding the mechanism/s of action of thalidomide in ovarian carcinoma cells. The results might have important implications in future therapeutic strategies that will incorporate thalidomide and other cytokine inhibitors in the treatment of epithelial ovarian carcinoma.

  15. Candida albicans triggers interleukin-8 secretion by oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-04-01

    Oropharyngeal candidiasis is a frequent opportunistic infection associated with immunocompromised hosts. Candida albicans is the principal species responsible for this infection. Production of interleukin-8 (IL-8), by oral epithelial cells can be expected to play a major role in the recruitment and activation of professional phagocytes at the infected site. The purpose of this study was to determine whether C. albicans triggers secretion of IL-8 by oral epithelial cells in vitro and investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines (SCC4, SCC15, and OKF6/TERT-2) as well as primary gingival epithelial cells were used. Epithelial cells were cocultured with C. albicans, strains SC5314, ATCC28366 or ATCC32077, for 24-48 hr, and supernatants were analyzed for IL-8 content by ELISA. A germination-deficient mutant (efg1/efg1 cph1/cph1), otherwise isogenic to strain SC5314, was used to assess the requirement for germination in triggering IL-8 responses. In order to ascertain whether direct contact of yeast with host cells is required to trigger cytokine production, epithelial cells were separated from yeast using cell culture inserts. To test whether IL-8 secretion is dependent on IL-1alpha activity, epithelial cells were challenged with viable C. albicans in the presence or absence of neutralizing anti-IL-1alpha antibody or IL-1ra, and IL-8 secretion was measured in the supernatants. All cell lines and primary cultures responded to C. albicans with an increase in IL-8 secretion. IL-8 responses were contact-dependent, strain-specific, required yeast viability and germination into hyphae, and were in part autoregulated by IL-1alpha. Copyright 2003 Elsevier Science Ltd.

  16. Mechanophysical Stimulations of Mucin Secretion in Cultures of Nasal Epithelial Cells

    PubMed Central

    Even-Tzur Davidovich, Nurit; Kloog, Yoel; Wolf, Michael; Elad, David

    2011-01-01

    Nasal epithelial cells secret mucins and are exposed in vivo to airflow-induced mechanophysical stresses, including wall shear stress (WSS), temperature, and humidity. In this work, human nasal epithelial cells cultured under air-liquid interface conditions were subjected to fields of airflow-induced oscillatory WSS at different temperature and humidity conditions. Changes in mucin secretion due to WSS were measured and the role of the cytoskeleton in mucin secretion was explored. Mucin secretion significantly increased in response to WSS in a magnitude-dependent manner with respect to static cultures and independently of the airflow temperature and humidity. In static cultures, mucin secretion decreased at high humidity with or without elevation of the temperature with respect to cultures at a comfortable climate. In cultures exposed to WSS, mucin secretion increased at high temperature with respect to cultures at comfortable climate conditions. The polymerization of actin microfilaments was shown to increase mucin secretion under WSS, whereas the dynamics of microtubule polymerization did not affect secretion. In conclusion, the data in this study show that mucin secretion is sensitive to oscillatory WSS as well as high temperature and humidity conditions. PMID:21689518

  17. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmiummore » promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.« less

  18. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and submicromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  19. Mechanisms of bicarbonate secretion: lessons from the airways.

    PubMed

    Bridges, Robert J

    2012-08-01

    Early studies showed that airway cells secrete HCO(3)(-) in response to cAMP-mediated agonists and HCO(3)(-) secretion was impaired in cystic fibrosis (CF). Studies with Calu-3 cells, an airway serous model with high expression of CFTR, also show the secretion of HCO(3)(-) when cells are stimulated with cAMP-mediated agonists. Activation of basolateral membrane hIK-1 K(+) channels inhibits HCO(3)(-) secretion and stimulates Cl(-) secretion. CFTR mediates the exit of both HCO(3)(-) and Cl(-) across the apical membrane. Entry of HCO(3)(-) on a basolateral membrane NBC or Cl(-) on the NKCC determines which anion is secreted. Switching between these two secreted anions is determined by the activity of hIK-1 K(+) channels.

  20. Nickel-induced Epithelial-Mesenchymal Transition by Reactive Oxygen Species Generation and E-cadherin Promoter Hypermethylation*

    PubMed Central

    Wu, Chih-Hsien; Tang, Sheau-Chung; Wang, Po-Hui; Lee, Huei; Ko, Jiunn-Liang

    2012-01-01

    Epithelial-mesenchymal transition (EMT) is considered a critical event in the pathogenesis of lung fibrosis and tumor metastasis. During EMT, the expression of differentiation markers switches from cell-cell junction proteins such as E-cadherin to mesenchymal markers such as fibronectin. Although nickel-containing compounds have been shown to be associated with lung carcinogenesis, the role of nickel in the EMT process in bronchial epithelial cells is not clear. The aim of this study was to examine whether nickel contributes to EMT in human bronchial epithelial cells. We also attempted to clarify the mechanisms involved in NiCl2-induced EMT. Our results showed that NiCl2 induced EMT phenotype marker alterations such as up-regulation of fibronectin and down-regulation of E-cadherin. In addition, the potent antioxidant N-acetylcysteine blocked EMT and expression of HIF-1α induced by NiCl2, whereas the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine restored the down-regulation of E-cadherin induced by NiCl2. Promoter hypermethylation of E-cadherin, determined by quantitative real time methyl-specific PCR and bisulfate sequencing, was also induced by NiCl2. These results shed new light on the contribution of NiCl2 to carcinogenesis. Specifically, NiCl2 induces down-regulation of E-cadherin by reactive oxygen species generation and promoter hypermethylation. This study demonstrates for the first time that nickel induces EMT in bronchial epithelial cells. PMID:22648416

  1. Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.

    PubMed

    Townley, Anna K; Schmidt, Katy; Hodgson, Lorna; Stephens, David J

    2012-02-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.

  2. Epithelial organization and cyst lumen expansion require efficient Sec13–Sec31-driven secretion

    PubMed Central

    Townley, Anna K.; Schmidt, Katy; Hodgson, Lorna; Stephens, David J.

    2012-01-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13–Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture. PMID:22331354

  3. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response.

    PubMed

    Younes, Jessica A; Reid, Gregor; van der Mei, Henny C; Busscher, Henk J

    2016-06-01

    ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Histamine stimulates chloride secretion in omeprazole-inhibited frog gastric mucosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGreevy, J.; Barton, R.; Housinger, T.

    1986-03-05

    Omeprazole (OME) stops hydrogen ion (H) secretion in the histamine (HIST)-stimulated gastric mucosa while the chloride (Cl) which had accompanied the H continues to be pumped into the lumen. This finding suggests that the Cl pump is independent of the H/K ATP-ase driven H pump. To test this hypothesis, 16 Ussing-chambered frog mucosas were exposed to OME prior to HIST stimulation. If the Cl pump is independent, HIST should stimulate Cl secretion in the OME-inhibited mucosa. A 1 hr control (CON) interval preceded exposure to OME (10/sup -4/M) in the nutrient solution. Potential difference (PD), short-circuit current (Isc), resistance (R),more » H flux (J/sup H/) and Cl flux (J/sup Cl/ with /sup 36/Cl) were measured every 15 min. After 1 hr of OME exposure, HIST (10/sup -5/M) was added to the nutrient solution. The findings demonstrate that HIST stimulates Cl secretion in the OME-inhibited bullfrog gastric mucosa.« less

  5. Propofol inhibits carbachol-induced chloride secretion by directly targeting the basolateral K+ channel in rat ileum epithelium.

    PubMed

    Tang, S-H; Wang, H-Y; Sun, H; An, N; Xiao, L; Sun, Q; Zhao, D-B

    2017-02-01

    Propofol is a widely used intravenous general anesthetic. Acetylcholine (ACh) is critical in controlling epithelial ion transport. This study was to investigate the effects of propofol on ACh-evoked secretion in rat ileum epithelium. The Ussing chamber technique was used to investigate the effects of propofol on carbachol (CCh)-evoked short-circuit currents (Isc). Propofol (10 -2 -10 -6  mol/L) attenuated CCh-evoked Isc of rat ileum mucosa in a dose-dependent manner. The inhibitory effect of propofol was only evident after application to the serosal side. Pretreatment with tetrodotoxin (TTX, 0.3 μmol/L, n=5) had no effect on propofol-induced inhibitory effect, whereas serosal application of K + channel inhibitor, glibenclamide, but not, an ATP-sensitive K + channel inhibitor, largely reduced the inhibitory effect of propofol. In addition, pretreatment with either hexamethonium bromide (HB, nicotinic nACh receptor antagonist) or Cl - channel blockers niflumic acid and cystic fibrosis transmembrane conductance regulator (inh)-172 did not produce any effect on the propofol-induced inhibitory effect. Propofol inhibits CCh-induced intestinal secretion by directly targeting basolateral K + channels. © 2016 John Wiley & Sons Ltd.

  6. Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells

    PubMed Central

    Chen, Qiuhong; Takada, Ritsuko; Noda, Chiyo; Kobayashi, Satoru; Takada, Shinji

    2016-01-01

    Accumulating evidence suggests that exosomes are heterogeneous in molecular composition and physical properties. Here we examined whether epithelial cells secrete a heterogeneous population of exosomes, and if that is the case, whether epithelial cell polarity affects release of different populations of exosomes, especially that of those carrying Wnt. Sucrose-density ultracentrifugation and molecular marker analysis revealed that different populations of exosomes or exosome-like vesicles were released from MDCK cells depending on the cell polarity. Wnt3a associated with these vesicles were detectable in culture media collected from both apical and basolateral sides of the cells. Basolaterally secreted Wnt3a were co-fractionated with a typical exosomal protein TSG101 in fractions having typical exosome densities. In contrast, most of apically secreted Wnt3a, as well as Wnt11, were co-fractionated with CD63 and Hsp70, which are also common to the most exosomes, but recovered in higher density fractions. Wnt3a exhibiting similar floatation behavior to the apically secreted ones were also detectable in the culture media of Wnt3a-expressing L and HEK293 cells. The lipidation of Wnt3a was required for its basolateral secretion in exosomes but was dispensable for the apical one. Thus, epithelial cells release Wnt via distinct populations of vesicles differing in secretion polarity and lipidation dependency. PMID:27765945

  7. Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection

    USDA-ARS?s Scientific Manuscript database

    IL-4 and IL-13 protect against parasitic helminths, but little is known about the mechanism of host protection. We show that IL-4/IL-13 confer immunity against worms by inducing intestinal epithelial cells (IEC) to differentiate into goblet cells that secrete resistin-like molecule beta (RELMB). R...

  8. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers.

    PubMed Central

    Madara, J L; Patapoff, T W; Gillece-Castro, B; Colgan, S P; Parkos, C A; Delp, C; Mrsny, R J

    1993-01-01

    Neutrophil transmigration across intestinal epithelia is thought to contribute to epithelial dysfunction and characterizes many inflammatory intestinal diseases. Neutrophils activated by factors, normally present in the lumen, release a neutrophil-derived secretagogue activity to which intestinal epithelia respond with an electrogenic chloride secretion, the transport event which underlies secretory diarrhea. Using sequential ultrafiltration, column chromatographic, and mass and Raman spectroscopic techniques, neutrophil-derived secretagogue was identified as 5'-AMP. Additional studies suggested that neutrophil-derived 5'-AMP is subsequently converted to adenosine at the epithelial cell surface by ecto-5'-nucleotidase and that adenosine subsequently activates intestinal secretion through adenosine receptors on the apical membrane of target intestinal epithelial cells. These findings suggest that this ATP metabolite may serve as a neutrophil-derived paracrine mediator that contributes to secretory diarrhea in states of intestinal inflammation. PMID:8486793

  9. Fractalkine (CX3CL1), a new factor protecting β-cells against TNFα.

    PubMed

    Rutti, Sabine; Arous, Caroline; Schvartz, Domitille; Timper, Katharina; Sanchez, Jean-Charles; Dermitzakis, Emmanouil; Donath, Marc Y; Halban, Philippe A; Bouzakri, Karim

    2014-10-01

    We have previously shown the existence of a muscle-pancreas intercommunication axis in which CX3CL1 (fractalkine), a CX3C chemokine produced by skeletal muscle cells, could be implicated. It has recently been shown that the fractalkine system modulates murine β-cell function. However, the impact of CX3CL1 on human islet cells especially regarding a protective role against cytokine-induced apoptosis remains to be investigated. Gene expression was determined using RNA sequencing in human islets, sorted β- and non-β-cells. Glucose-stimulated insulin secretion (GSIS) and glucagon secretion from human islets was measured following 24 h exposure to 1-50 ng/ml CX3CL1. GSIS and specific protein phosphorylation were measured in rat sorted β-cells exposed to CX3CL1 for 48 h alone or in the presence of TNFα (20 ng/ml). Rat and human β-cell apoptosis (TUNEL) and rat β-cell proliferation (BrdU incorporation) were assessed after 24 h treatment with increasing concentrations of CX3CL1. Both CX3CL1 and its receptor CX3CR1 are expressed in human islets. However, CX3CL1 is more expressed in non-β-cells than in β-cells while its receptor is more expressed in β-cells. CX3CL1 decreased human (but not rat) β-cell apoptosis. CX3CL1 inhibited human islet glucagon secretion stimulated by low glucose but did not impact human islet and rat sorted β-cell GSIS. However, CX3CL1 completely prevented the adverse effect of TNFα on GSIS and on molecular mechanisms involved in insulin granule trafficking by restoring the phosphorylation (Akt, AS160, paxillin) and expression (IRS2, ICAM-1, Sorcin, PCSK1) of key proteins involved in these processes. We demonstrate for the first time that human islets express and secrete CX3CL1 and CX3CL1 impacts them by decreasing glucagon secretion without affecting insulin secretion. Moreover, CX3CL1 decreases basal apoptosis of human β-cells. We further demonstrate that CX3CL1 protects β-cells from the adverse effects of TNFα on their function by restoring the expression and phosphorylation of key proteins of the insulin secretion pathway.

  10. Contrasting effects of linaclotide and lubiprostone on restitution of epithelial cell barrier properties and cellular homeostasis after exposure to cell stressors

    PubMed Central

    2012-01-01

    Background Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. Results In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, 3H-mannitol fluxes, short-circuit current (Cl− secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl− secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca2+]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Conclusions Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS. PMID:22553939

  11. Enteric nervous system: sensory physiology, diarrhea and constipation.

    PubMed

    Wood, Jackie D

    2010-03-01

    The enteric nervous system integrates secretion and motility into homeostatic patterns of behavior susceptible to disorder. Progress in understanding mechanosensory detection in these processes, disordered enteric nervous system integration in diarrhea and constipation and pharmacotherapy is summarized. Most neurons in the enteric nervous system discharge in response to distortion. Drugs acting directly to open chloride conductance channels in the mucosal epithelium are therapeutic options for constipation. Mechanoreception is required for negative feedback control. At issue is identification of the neurons that fulfil the requirement for mechanoreception. Understanding secretomotor neurons is basic to understanding neurogenic secretory diarrhea and constipation and therapeutic strategies. A strategy for treatment of chronic constipation is development of agents that act directly to open Cl channels, which thereby increases the liquidity of the luminal contents. Lubiprostone, a recently Food and Drug Administration-approved drug, increases intraluminal liquidity by opening Cl channels. The future for the drug is clouded by controversy over whether its action is directly at one or the other of chloride channel type 2 (ClC-2) or cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels or both and whether action reflects involvement of G protein-coupled prostaglandin receptors expressed by mucosal epithelial cells.

  12. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins

    PubMed Central

    Chappell, Alfred E.; Bunz, Michael; Smoll, Eric; Dong, Hui; Lytle, Christian; Barrett, Kim E.; McCole, Declan F.

    2018-01-01

    Reactive oxygen species (ROS) are key mediators in a number of inflammatory conditions, including inflammatory bowel disease (IBD). ROS, including hydrogen peroxide (H2O2), modulate intestinal epithelial ion transport and are believed to contribute to IBD-associated diarrhea. Intestinal crypt fluid secretion, driven by electrogenic Cl− secretion, hydrates and sterilizes the crypt, thus reducing bacterial adherence. Here, we show that pathophysiological concentrations of H2O2 inhibit Ca2+-dependent Cl− secretion across T84 colonic epithelial cells by elevating cytosolic Ca2+, which contributes to activation of two distinct signaling pathways. One involves recruitment of the Ca2+-responsive kinases, Src and Pyk-2, as well as extracellular signal-regulated kinase (ERK). A separate pathway recruits p38 MAP kinase and phosphoinositide 3-kinase (PI3-K) signaling. The ion transport response to Ca2+-dependent stimuli is mediated in part by K+ efflux through basolateral K+ channels and Cl− uptake by the Na+-K+-2Cl− cotransporter, NKCC1. We demonstrate that H2O2 inhibits Ca2+-dependent basolateral K+ efflux and also inhibits NKCC1 activity independently of inhibitory effects on apical Cl− conductance. Thus, we have demonstrated that H2O2 inhibits Ca2+-dependent Cl− secretion through multiple negative regulatory signaling pathways and inhibition of specific ion transporters. These findings increase our understanding of mechanisms by which inflammation disturbs intestinal epithelial function and contributes to intestinal pathophysiology.—Chappell, A. E., Bunz, M., Smoll, E., Dong, H., Lytle, C., Barrett, K. E., McCole, D. F. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J. 22, 000–000 (2008) PMID:18211955

  13. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    PubMed Central

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  14. Epithelial Cell–Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia

    PubMed Central

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A.; Zabinski, Mary C.; Yuen, Constance K.; Lung, Wing Yi; Gower, Adam C.; Belkina, Anna C.; Ramirez, Maria I.; Deng, Jane C.; Quinton, Lee J.; Jones, Matthew R.

    2016-01-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia. PMID:27064756

  15. Bicarbonate-rich fluid secretion predicted by a computational model of guinea-pig pancreatic duct epithelium.

    PubMed

    Yamaguchi, Makoto; Steward, Martin C; Smallbone, Kieran; Sohma, Yoshiro; Yamamoto, Akiko; Ko, Shigeru B H; Kondo, Takaharu; Ishiguro, Hiroshi

    2017-03-15

    The ductal system of the pancreas secretes large volumes of alkaline fluid containing HCO 3 - concentrations as high as 140 mm during hormonal stimulation. A computational model has been constructed to explore the underlying ion transport mechanisms. Parameters were estimated by fitting the model to experimental data from guinea-pig pancreatic ducts. The model was readily able to secrete 140 mm HCO 3 - . Its capacity to do so was not dependent upon special properties of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels and solute carrier family 26 member A6 (SLC26A6) anion exchangers. We conclude that the main requirement for secreting high HCO 3 - concentrations is to minimize the secretion of Cl - ions. These findings help to clarify the mechanism responsible for pancreatic HCO 3 - secretion, a vital process that prevents the formation of protein plugs and viscous mucus in the ducts, which could otherwise lead to pancreatic disease. A computational model of guinea-pig pancreatic duct epithelium was developed to determine the transport mechanism by which HCO 3 - ions are secreted at concentrations in excess of 140 mm. Parameters defining the contributions of the individual ion channels and transporters were estimated by least-squares fitting of the model predictions to experimental data obtained from isolated ducts and intact pancreas under a range of experimental conditions. The effects of cAMP-stimulated secretion were well replicated by increasing the activities of the basolateral Na + -HCO 3 - cotransporter (NBC1) and apical Cl - /HCO 3 - exchanger (solute carrier family 26 member A6; SLC26A6), increasing the basolateral K + permeability and apical Cl - and HCO 3 - permeabilities (CFTR), and reducing the activity of the basolateral Cl - /HCO 3 - exchanger (anion exchanger 2; AE2). Under these conditions, the model secreted ∼140 mm HCO 3 - at a rate of ∼3 nl min -1  mm -2 , which is consistent with experimental observations. Alternative 1:2 and 1:1 stoichiometries for Cl - /HCO 3 - exchange via SLC26A6 at the apical membrane were able to support a HCO 3 - -rich secretion. Raising the HCO 3 - /Cl - permeability ratio of CFTR from 0.4 to 1.0 had little impact upon either the secreted HCO 3 - concentration or the volume flow. However, modelling showed that a reduction in basolateral AE2 activity by ∼80% was essential in minimizing the intracellular Cl - concentration following cAMP stimulation and thereby maximizing the secreted HCO 3 - concentration. The addition of a basolateral Na + -K + -2Cl - cotransporter (NKCC1), assumed to be present in rat and mouse ducts, raised intracellular Cl - and resulted in a lower secreted HCO 3 - concentration, as is characteristic of those species. We conclude therefore that minimizing the driving force for Cl - secretion is the main requirement for secreting 140 mm HCO 3 - . © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    PubMed

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  17. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy.

    PubMed

    Li, Li; Somerset, Shawn

    2014-10-01

    Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Endogenous cyclo-oxygenase activity regulates mouse gastric surface pH

    PubMed Central

    Baumgartner, Heidi K; Kirbiyik, Uzay; Coskun, Tamer; Chu, Shaoyou; Montrose, Marshall H

    2002-01-01

    In the stomach, production of prostaglandins by cyclo-oxygenase (COX) is believed to be important in mucosal defence. We tested the hypothesis that endogenous COX activity is required for protective gastric surface pH control. Intact stomachs of anaesthetized mice were perfused with a weakly buffered solution (150 mmNaCl + 4 mm Homopipes) at pH values from 2.5 to 7.0. Gastric effluents were collected to measure pH and estimate amounts of acid or alkali secretion in nanomoles secreted per minute. A switch from net acid to net alkali secretion was seen in response to acidifying luminal pH with an apparent ‘set point’ between pH 4 and 5. At luminal pH 3, the net alkali secretion (12.7 ± 2.8 nmol OH− equivalents min−1) was abolished (2.2 ± 1.7 nmol OH− min−1) by the non-specific COX inhibitor indomethacin (5 mg kg−1 I.P.). Similar inhibition was observed using a COX-1 inhibitor (SC-560; 10 mg kg−1 I.P.), but not a COX-2 inhibitor (NS-398; 10 mg kg−1 I.P.). Subsequent treatment with 16,16-dimethyl prostaglandin E2 (dm-PGE2; 1 mg kg−1 I.P.) rescued the alkali secretion (21.8 ± 2.7 nmol OH− min−1). In either the absence or presence of the H+,K+-ATPase inhibitor omeprazole (60 mg kg−1 I.P.), indomethacin blocked similar amounts of net alkali secretion (10.5 ± 2.7 and 16.4 ± 3.4 nmol OH− min−1, respectively). We also used in vivo confocal microscopy to examine pH near the mucosal surface. The gastric mucosal surface of anaesthetized mice was exposed and mucosal surface pH was imaged using the fluorescence intensity ratio of Cl-NERF as a pH indicator. Results showed a switch from a continuous net acid to net alkali secretion by the stomach in response to changing superfusate pH from 5 to 3. At luminal pH 3, the relatively alkaline surface pH (4.3 ± 0.1) was acidified (3.6 ± 0.2) by indomethacin, and subsequent dm-PGE2 restored surface pH (4.2 ± 0.2). We conclude that the pre-epithelial alkaline layer is regulated by endogenous COX activity. PMID:12411530

  19. Mesosecrin: a secreted glycoprotein produced in abundance by human mesothelial, endothelial, and kidney epithelial cells in culture

    PubMed Central

    1987-01-01

    Human mesothelial cells, endothelial cells, and type II kidney epithelial cells growing in culture devote approximately 3% of their total protein synthesis to the production of an Mr approximately 46-kD, pI 7.1, secreted glycoprotein (designated Sp46). Fibroblasts make about 1/10th as much Sp46 as these cell types, and their synthesis is dependent upon hydrocortisone. Keratinocytes, urothelial cells, conjunctival epithelial cells, and mammary epithelial cells do not make detectable amounts of Sp46. Mesothelial cells secrete Sp46 onto the substratum, and from there it is subsequently released into the medium. Immunofluorescence analysis using specific antisera discloses that Sp46 is deposited beneath cells as a fine coating on the substratum. In sparse cultures, Sp46 is detected in trails behind motile cells. In contrast, secreted fibronectin coalesces into fibers, most of which remain in contact with and on top of the cells; thus Sp46 does not preferentially bind to fibronectin. About 6 kD of the mass of human Sp46 is N-linked oligosaccharide, which is terminally sialated before secretion. Sp46 has a low glycine content, indicating that it is not a collagenlike protein. Its NH2-terminal sequence over the first 40 amino acids does not resemble any protein for which sequence information is available. Sp46 appears to be a novel extracellular glycoprotein, high- level constitutive expression of which is restricted to mesoderm- derived epithelial and endothelial cells. We therefore propose for it the name "mesosecrin." PMID:3543023

  20. Isolation of Endoplasmic Reticulum Fractions from Mammary Epithelial Tissue.

    PubMed

    Chanat, Eric; Le Parc, Annabelle; Lahouassa, Hichem; Badaoui, Bouabid

    2016-06-01

    In the mammary glands of lactating animals, the mammary epithelial cells that surround the lumen of the acini produce and secrete copious amounts of milk. Functional differentiation of these mammary epithelial cells depends on the development of high-efficiency secretory pathways, notably for protein and lipid secretion. Protein secretion is a fundamental process common to all animal cells that involves a subset of cellular organelles, including the endoplasmic reticulum and the Golgi apparatus. In contrast, en masse secretion of triglycerides and cholesterol esters in the form of milk fat globules is a unique feature of the mammary epithelial cell. Cytoplasmic lipid droplets, the intracellular precursors of milk fat globules, originate from the endoplasmic reticulum, as do most milk-specific proteins. This organelle is therefore pivotal in the biogenesis of milk components. Fractionation of the cell into its subcellular parts is an approach that has proven very powerful for understanding organelle function and for studying the specific role of an organelle in a given cell activity. Here we describe a method for the purification of both smooth and rough microsomes, the membrane-bound endoplasmic reticulum fragments that form from endoplasmic reticulum domains when cells are broken up, from mammary gland tissue at lactation.

  1. Renal Epithelial Cyst Formation and Enlargement in vitro: Dependence on cAMP

    NASA Astrophysics Data System (ADS)

    Mangoo-Karim, Roberto; Uchic, Marie; Lechene, Claude; Grantham, Jared J.

    1989-08-01

    Cysts, a common abnormality of kidneys, are collections of urine-like fluid enclosed by a continuous layer of epithelial cells. Renal cysts derive from nephrons and collecting ducts and progressively enlarge as a consequence of epithelial proliferation and transepithelial fluid secretion. The initiation of cyst formation and the factors that control cyst enlargement are unknown. We used an in vitro model of renal cysts to explore the role of the cAMP signal transduction system in the formation and expansion of cysts. MDCK cells, cultured in hydrated-collagen gel, produced polarized monolayered epithelial cysts when intracellular cAMP was increased by prostaglandin E1, arginine vasopressin, cholera toxin, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate. All agonists were potentiated by 3-isobutyl-1-methylxanthine, a nucleotide phosphodiesterase inhibitor. The cell proliferation component of cyst enlargement was accelerated by cAMP agonists, as shown by the increased growth of MDCK cells in subconfluent monolayers. The fluid secretion component, reflected by the transepithelial movement of fluid across polarized monolayers of MDCK cells grown on permeable supports, was stimulated by cAMP agonists in the basolateral medium. Chloride levels were higher in the cyst fluid and the secreted fluid than in the bathing medium. We conclude that the development of MDCK cysts is dependent on cAMP. This signal transduction system may be an important modulator of epithelial cell proliferation and transepithelial fluid secretion in the kidney.

  2. Sodium 4-phenylbutyrate upregulates ENaC and sodium absorption in T84 cells.

    PubMed

    Iordache, Claudiu; Duszyk, Marek

    2007-01-15

    Butyrate and other short-chain fatty acids (SCFA), produced by colonic bacterial flora, affect numerous epithelial cell functions. To better understand how SCFA regulate ion transport, we investigated the effects of 4-phenylbutyrate (4-PBA) on Na(+) absorption in T84 cells. Under standard cell culture conditions, the short circuit current did not display any amiloride-sensitive Na(+) absorption and was wholly representative of Cl(-) secretion. However, when T84 cells were grown in the presence of 5 mM 4-PBA, a gradual appearance of amiloride-sensitive Na(+) channel (ENaC) activity was observed that reached a plateau after 24 h. Quantitative RT-PCR and Western blot studies of ENaC subunit expression indicated that 4-PBA stimulated alpha and gamma subunits. Trichostatin A, an inhibitor of histone deacetylase, mimicked the effects of 4-PBA, suggesting that 4-PBA affects ENaC expression by inhibiting deacetylases. 4-PBA had no effect on ENaC expression in airway epithelial cells indicating tissue-specific effect. We conclude that butyrate plays an important role in regulating colonic Na(+) absorption by increasing ENaC transcription and activity.

  3. Isolation of plasma membrane fractions from the intestinal epithelial model T84.

    PubMed

    Kaoutzani, P; Parkos, C A; Delp-Archer, C; Madara, J L

    1993-05-01

    The human intestinal epithelial cell line T84 is widely used as a model for studies of Cl- secretion and crypt cell biology. We report a fractionation approach that permits separation of purified apical and basolateral T84 plasma membrane domains. T84 cellular membranes were isolated by nitrogen cavitation and differential centrifugation from monolayers grown on permeable supports. Membranes were then fractionated by isopycnic sucrose density gradient sedimentation, and fractions were assessed, using enzymatic and Western blot techniques, for apical (alkaline phosphatase) and basolateral (Na(+)-K(+)-ATPase) plasma membrane markers and for cytosolic, lysosomal, Golgi, and mitochondrial markers. Buffer conditions were defined that permitted separation of enriched apical and basolateral markers. The validity of the selected markers for the apical and basolateral domains was verified by selective apical and basolateral surface labeling studies using trace iodinated wheat germ agglutinin or biotinylation. This approach allows for separation of apical and basolateral plasma membranes of T84 cells for biochemical analyses and should thus be of broad utility in studies of this model polarized and transporting epithelium.

  4. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    PubMed

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  5. Transepithelial Bicarbonate Secretion: Lessons from the Pancreas

    PubMed Central

    Park, Hyun Woo; Lee, Min Goo

    2012-01-01

    Many cystic fibrosis transmembrane conductance regulator (CFTR)-expressing epithelia secrete bicarbonate (HCO3−)-containing fluids. Recent evidence suggests that defects in epithelial bicarbonate secretion are directly involved in the pathogenesis of cystic fibrosis, in particular by building up hyperviscous mucus in the ductal structures of the lung and pancreas. Pancreatic juice is one of the representative fluids that contain a very high concentration of bicarbonate among bodily fluids that are secreted from CFTR-expressing epithelia. We introduce up-to-date knowledge on the basic principles of transepithelial bicarbonate transport by showing the mechanisms involved in pancreatic bicarbonate secretion. The model of pancreatic bicarbonate secretion described herein may also apply to other exocrine epithelia. As a central regulator of bicarbonate transport at the apical membrane, CFTR plays an essential role in both direct and indirect bicarbonate secretion. The major role of CFTR in bicarbonate secretion would be variable depending on the tissue and cell type. For example, in epithelial cells that produce a low concentration of bicarbonate-containing fluid (up to 80 mm), either CFTR-dependent Cl−/HCO3− exchange or CFTR anion channel with low bicarbonate permeability would be sufficient to generate such fluid. However, in cells that secrete high-bicarbonate-containing fluids, a highly selective CFTR bicarbonate channel activity is required. Therefore, understanding the molecular mechanism of transepithelial bicarbonate transport and the role of CFTR in each specific epithelium will provide therapeutic strategies to recover from epithelial defects induced by hyposecretion of bicarbonate in cystic fibrosis. PMID:23028131

  6. Modulation of insulin secretion by fatty acyl analogs.

    PubMed

    Las, Guy; Mayorek, Nina; Dickstein, Kobie; Bar-Tana, Jacob

    2006-12-01

    The secretagogue, the incretin-like, and the suppressive activities of long-chain fatty acids (LCFAs) in modulating insulin secretion in vivo and in cultured islets were simulated here by beta,beta'-tetramethyl-hexadecanedioic acid (M16) and alpha,alpha'-tetrachloro-tetradecanedioic acid (Cl-DICA). M16, but not Cl-DICA, serves as a substrate for ATP-dependent CoA thioesterification but is not further metabolized. M16, but not Cl-DICA, acted as a potent insulin secretagogue in islets cultured in basal but not high glucose. Short-term exposure to M16 or Cl-DICA resulted in activation of glucose- but not arginine-stimulated insulin secretion. Long-term exposure to M16, but not to Cl-DICA, resulted in suppression of glucose-, arginine-, and K(+)-stimulated insulin secretion; inhibition of glucose-induced proinsulin biosynthesis; and depletion of islets insulin. beta-Cell mass and islet ATP content remained unaffected. Hence, nonmetabolizable LCFA analogs may highlight discrete LCFA metabolites and pathways involved in modulating insulin secretion, which could be overlooked due to the rapid turnover of natural LCFA.

  7. Modulation of secretagogue-induced chloride secretion by intracellular bicarbonate.

    PubMed

    Dagher, P C; Morton, T Z; Joo, C S; Taglietta-Kohlbrecher, A; Egnor, R W; Charney, A N

    1994-05-01

    We have previously demonstrated inhibition of basal Cl- secretion by intracellular bicarbonate concentration ([HCO3-]i) in rat distal colon. We now examined whether secretagogue-induced Cl- secretion is inhibited by [HCO3-]i as well. Stripped segments of distal colon from male Sprague-Dawley rats and the colon tumor cell line T84 were studied. Flux measurements were performed in the Ussing chamber under short-circuit conditions. [HCO3-]i was calculated from intracellular pH (pHi) values that were estimated with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) and carbachol were used as secretagogues. In both distal colon and T84 cells, [HCO3-]i did not affect cAMP-induced Cl- secretion. However, carbachol-induced secretion was inhibited by [HCO3-]i; in rat colon, Cl- secretion decreased from 2.3 to 1.5 mueq.cm-2.h-1 when [HCO3-]i was increased from 15.0 to 28.4 mM (P < 0.05). In T84 cells, the change in short-circuit current decreased from 8.1 to 1.1 microA/cm2 over a range of [HCO3-]i from 0 to 15.6 mM (P < 0.001). We conclude that [HCO3-]i is an important modulator of carbachol-stimulated Cl- secretion in both rat distal colon and the T84 cell line. cAMP-mediated secretion is not affected by [HCO3-]i.

  8. Dynamic [Cl-]i measurement with chloride sensing quantum dots nanosensor in epithelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Yuchi; Mao, Hua; Wong, Lid B.

    2010-02-01

    We have synthesized a chloride sensing quantum dots (QD) nanosensor, Cl-QD, for the dynamic measurements of chloride ion concentration in the millimolar range, a sensitivity that is applicable to most physiological intracellular chloride ion concentration ([Cl-]i) measurements in epithelial cells. The Cl-QD is synthesized by conjugating an anion receptor, 1-(2-mercapto-ethyl)-3-phenyl-thiourea (MEPTU) to a water soluble CdSe/ZnS QD at an emission wavelength of 620 nm. Upon binding of chloride ions to the Cl-QD, a photo-induced electron transfer mechanism caused the fluorescence of the QD to quench. This resulted in an inversely proportional relationship between the chloride ion concentration and the fluorescence intensity of the Cl-QD. We have utilized this Cl-QD to measure [Cl-]i in T84 and CF-PAC cultured cells, with either the C1C-2 or CFTR chloride channels being manipulated by pharmacological chloride channel activators and inhibitors. Activations of C1C-2 and CFTR chloride channels in T84 by the respective lubiprostone and genistein caused predictive increases in the fluorescence of the Cl-QD, i.e., a decrease of [Cl-]i. Conversely, glibenclamide, a chloride channel inhibitor, applied to the CF-PAC cells caused a predictable decrease in the fluorescence of Cl-QD due to the increase of [Cl-]i. These are the first data in using QD-based chloride ion sensors for dynamic measurements of intracellular chloride ion concentrations in epithelial cells.

  9. Computer modeling of gastric parietal cell: significance of canalicular space, gland lumen, and variable canalicular [K+].

    PubMed

    Crothers, James M; Forte, John G; Machen, Terry E

    2016-05-01

    A computer model, constructed for evaluation of integrated functioning of cellular components involved in acid secretion by the gastric parietal cell, has provided new interpretations of older experimental evidence, showing the functional significance of a canalicular space separated from a mucosal bath by a gland lumen and also shedding light on basolateral Cl(-) transport. The model shows 1) changes in levels of parietal cell secretion (with stimulation or H-K-ATPase inhibitors) result mainly from changes in electrochemical driving forces for apical K(+) and Cl(-) efflux, as canalicular [K(+)] ([K(+)]can) increases or decreases with changes in apical H(+)/K(+) exchange rate; 2) H-K-ATPase inhibition in frog gastric mucosa would increase [K(+)]can similarly with low or high mucosal [K(+)], depolarizing apical membrane voltage similarly, so electrogenic H(+) pumping is not indicated by inhibition causing similar increase in transepithelial potential difference (Vt) with 4 and 80 mM mucosal K(+); 3) decreased H(+) secretion during strongly mucosal-positive voltage clamping is consistent with an electroneutral H-K-ATPase being inhibited by greatly decreased [K(+)]can (Michaelis-Menten mechanism); 4) slow initial change ("long time-constant transient") in current or Vt with clamping of Vt or current involves slow change in [K(+)]can; 5) the Na(+)-K(+)-2Cl(-) symporter (NKCC) is likely to have a significant role in Cl(-) influx, despite evidence that it is not necessary for acid secretion; and 6) relative contributions of Cl(-)/HCO3 (-) exchanger (AE2) and NKCC to Cl(-) influx would differ greatly between resting and stimulated states, possibly explaining reported differences in physiological characteristics of stimulated open-circuit Cl(-) secretion (≈H(+)) and resting short-circuit Cl(-) secretion (>H(+)). Copyright © 2016 the American Physiological Society.

  10. Pseudomonas aeruginosa LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator–IL-6–antimicrobial–repair pathway

    PubMed Central

    Saint-Criq, Vinciane; Villeret, Bérengère; Bastaert, Fabien; Kheir, Saadé; Hatton, Aurélie; Cazes, Aurélie; Xing, Zhou; Sermet-Gaudelus, Isabelle; Garcia-Verdugo, Ignacio; Edelman, Aleksander

    2018-01-01

    Background Pseudomonas aeruginosa lung infections are a huge problem in ventilator-associated pneumonia, cystic fibrosis (CF) and in chronic obstructive pulmonary disease (COPD) exacerbations. This bacterium secretes virulence factors that may subvert host innate immunity. Objective We evaluated the effect of P. aeruginosa elastase LasB, an important virulence factor secreted by the type II secretion system, on ion transport, innate immune responses and epithelial repair, both in vitro and in vivo. Methods Wild-type (WT) or cystic fibrosis transmembrane conductance regulator (CFTR)-mutated epithelial cells (cell lines and primary cells from patients) were treated with WT or ΔLasB pseudomonas aeruginosa O1 (PAO1) secretomes. The effect of LasB and PAO1 infection was also assessed in vivo in murine models. Results We showed that LasB was the most abundant protein in WT PAO1 secretomes and that it decreased epithelial CFTR expression and activity. In airway epithelial cell lines and primary bronchial epithelial cells, LasB degraded the immune mediators interleukin (IL)-6 and trappin-2, an important epithelial-derived antimicrobial molecule. We further showed that an IL-6/STAT3 signalling pathway was downregulated by LasB, resulting in inhibition of epithelial cell repair. In mice, intranasally instillated LasB induced significant weight loss, inflammation, injury and death. By contrast, we showed that overexpression of IL-6 and trappin-2 protected mice against WT-PAO1-induced death, by upregulating IL-17/IL-22 antimicrobial and repair pathways. Conclusions Our data demonstrate that PAO1 LasB is a major P. aeruginosa secreted factor that modulates ion transport, immune response and tissue repair. Targeting this virulence factor or upregulating protective factors such as IL-6 or antimicrobial molecules such as trappin-2 could be beneficial in P. aeruginosa-infected individuals. PMID:28790180

  11. Activation of chloride channels in normal and cystic fibrosis airway epithelial cells by multifunctional calcium/calmodulin-dependent protein kinase

    NASA Astrophysics Data System (ADS)

    Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis

    1991-02-01

    CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.

  12. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion.

    PubMed

    Cuman, Carly; Van Sinderen, Michelle; Gantier, Michael P; Rainczuk, Kate; Sorby, Kelli; Rombauts, Luk; Osianlis, Tiki; Dimitriadis, Evdokia

    2015-10-01

    Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs) are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM) from blastocysts that failed to implant (non-implanted) compared to blastocysts that implanted (implanted). Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs). miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure.

  13. HCO3(-) secretion by murine nasal submucosal gland serous acinar cells during Ca2+-stimulated fluid secretion.

    PubMed

    Lee, Robert J; Harlow, Janice M; Limberis, Maria P; Wilson, James M; Foskett, J Kevin

    2008-07-01

    Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca(2+)-activated Cl(-) secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca(2+)-activated Cl(-) secretion was accompanied by secretion of HCO(3)(-), possibly a critical ASL component, by simultaneous measurements of intracellular pH (pH(i)) and cell volume. Resting pH(i) was 7.17 +/- 0.01 in physiological medium (5% CO(2)-25 mM HCO(3)(-)). During carbachol (CCh) stimulation, pH(i) fell transiently by 0.08 +/- 0.01 U concomitantly with a fall in Cl(-) content revealed by cell shrinkage, reflecting Cl(-) secretion. A subsequent alkalinization elevated pH(i) to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO(2)-HCO(3)(-)-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO(3)(-) efflux by ion substitution or exposure to the Cl(-) channel inhibitor niflumic acid (100 microM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na(+)/H(+) exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1-4 and 6-9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pH(i) recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO(3)(-) during Ca(2+)-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl(-) channel, with HCO(3)(-) secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na(+)-dependent pH(i) regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na(+)-free media.

  14. Re-establishment of gap junctional intercellular communication (GJIC) between human endometrial carcinomas by prostaglandin E(2).

    PubMed

    Schlemmer, Scott R; Kaufman, David G

    2012-12-01

    Reduced intercellular communication via gap junctions is correlated with carcinogenesis. Gap junctional intercellular communication (GJIC), between normal human endometrial epithelial cells is enhanced when endometrial stromal cells were present in culture. This enhancement of GJIC between normal epithelial cells also occurs when they are cultured in medium conditioned by stromal cells. This observation indicated that a soluble compound (or compounds) produced and secreted by stromal cells mediates GJIC in epithelial cells. Previous studies have shown that endometrial stromal cells release prostaglandin E(2) (PGE(2)) and prostaglandin F(2α) (PGF(2α)) under physiological conditions. When we evaluated the response of normal endometrial epithelial cells to various concentrations of PGE(2,) we found enhanced GJIC with 1nM PGE(2). This is a smaller increase in GJIC than that induced by medium conditioned by stromal cells. When the extracellular concentration of PGE(2) was measured after incubation with stromal cells, it was found to be similar to the concentrations showing maximal GJIC between the normal epithelial cells. When indomethacin was used to inhibit prostaglandin synthesis by stromal cells, GJIC was reduced but not eliminated between normal endometrial epithelial cells. These observations suggest that although PGE(2) secreted by stromal cells is an important mediator of GJIC between the epithelial cells, it is not the sole mediator. Transformed endometrial epithelial cells did not demonstrate GJIC even in the presence of stromal cells. However, we were able to re-establish GJIC in transformed epithelial cells when we added PGE(2) to the cells. Our findings show that PGE(2) may serve as an intercellular mediator between stromal and epithelial cells that regulates GJIC in normal and malignant epithelial cells. This suggests that maintenance of GJIC by preserving or replacing PGE(2) secretion by endometrial stromal cells may have the potential to suppress carcinogenesis in endometrial epithelial cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Absence of CD9 reduces endometrial VEGF secretion and impairs uterine repair after parturition.

    PubMed

    Kawano, Natsuko; Miyado, Kenji; Yoshii, Noriko; Kanai, Seiya; Saito, Hidekazu; Miyado, Mami; Inagaki, Noboru; Odawara, Yasushi; Hamatani, Toshio; Umezawa, Akihiro

    2014-04-16

    In mammals, uterine epithelium is remodeled cyclically throughout adult life for pregnancy. Despite the expression of CD9 in the uterine epithelium, its role in maternal reproduction is unclear. Here, we addressed this issue by examining uterine secretions collected from patients undergoing fertility treatment and fertilization-competent Cd9(-/-) mice expressing CD9-GFP in their eggs (Cd9(-/-)TG). CD9 in uterine secretions was observed as extracellular matrix-like feature, and its amount of the secretions associated with repeated pregnancy failures. We also found that the litter size of Cd9(-/-)TG female mice was significantly reduced after their first birth. Severely delayed re-epithelialization of the endometrium was then occurred. Concomitantly, vascular endothelial growth factor (VEGF) was remarkably reduced in the uterine secretions of Cd9(-/-)TG female mice. These results provide the first evidence that CD9-mediated VEGF secretion plays a role in re-epithelialization of the uterus.

  16. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conducemore » to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.« less

  17. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP) and CCL11/eotaxin-1 in human asthmatic airways.

    PubMed

    Nino, Gustavo; Huseni, Shehlanoor; Perez, Geovanny F; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M; Pillai, Dinesh K; Rose, Mary C

    2014-01-01

    Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  18. Directional Secretory Response of Double Stranded RNA-Induced Thymic Stromal Lymphopoetin (TSLP) and CCL11/Eotaxin-1 in Human Asthmatic Airways

    PubMed Central

    Perez, Geovanny F.; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M.; Pillai, Dinesh K.; Rose, Mary C.

    2014-01-01

    Background Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Methods Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Results Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. Conclusions There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations. PMID:25546419

  19. Structural Basis of Chemokine Sequestration by CrmD, a Poxvirus-Encoded Tumor Necrosis Factor Receptor

    PubMed Central

    Wang, Dongli; Chen, Dongwei; He, Guangjun; Huang, Li; Wang, Hanzhong; Wang, Xinquan

    2011-01-01

    Pathogens have evolved sophisticated mechanisms to evade detection and destruction by the host immune system. Large DNA viruses encode homologues of chemokines and their receptors, as well as chemokine-binding proteins (CKBPs) to modulate the chemokine network in host response. The SECRET domain (smallpox virus-encoded chemokine receptor) represents a new family of viral CKBPs that binds a subset of chemokines from different classes to inhibit their activities, either independently or fused with viral tumor necrosis factor receptors (vTNFRs). Here we present the crystal structures of the SECRET domain of vTNFR CrmD encoded by ectromelia virus and its complex with chemokine CX3CL1. The SECRET domain adopts a β-sandwich fold and utilizes its β-sheet I surface to interact with CX3CL1, representing a new chemokine-binding manner of viral CKBPs. Structure-based mutagenesis and biochemical analysis identified important basic residues in the 40s loop of CX3CL1 for the interaction. Mutation of corresponding acidic residues in the SECRET domain also affected the binding for other chemokines, indicating that the SECRET domain binds different chemokines in a similar manner. We further showed that heparin inhibited the binding of CX3CL1 by the SECRET domain and the SECRET domain inhibited RAW264.7 cell migration induced by CX3CL1. These results together shed light on the structural basis for the SECRET domain to inhibit chemokine activities by interfering with both chemokine-GAG and chemokine-receptor interactions. PMID:21829356

  20. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line.

    PubMed

    Tong, Hui-Li; Li, Qing-Zhang; Gao, Xue-Jun; Yin, De-Yun

    2012-03-01

    To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.

  1. Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties

    PubMed Central

    Fessart, Delphine; Domblides, Charlotte; Avril, Tony; Eriksson, Leif A; Begueret, Hugues; Pineau, Raphael; Malrieux, Camille; Dugot-Senant, Nathalie; Lucchesi, Carlo; Chevet, Eric; Delom, Frederic

    2016-01-01

    The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.13887.001 PMID:27240165

  2. Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    PubMed Central

    Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.

    2013-01-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446

  3. Allergenic proteases cleave the chemokine CX3CL1 directly from the surface of airway epithelium and augment the effect of rhinovirus.

    PubMed

    Loxham, M; Smart, D E; Bedke, N J; Smithers, N P; Filippi, I; Blume, C; Swindle, E J; Tariq, K; Howarth, P H; Holgate, S T; Davies, D E

    2018-03-01

    CX3CL1 has been implicated in allergen-induced airway CD4 + T-lymphocyte recruitment in asthma. As epidemiological evidence supports a viral infection-allergen synergy in asthma exacerbations, we postulated that rhinovirus (RV) infection in the presence of allergen augments epithelial CX3CL1 release. Fully differentiated primary bronchial epithelial cultures were pretreated apically with house dust mite (HDM) extract and infected with rhinovirus-16 (RV16). CX3CL1 was measured by enzyme-linked immunosorbent assay and western blotting, and shedding mechanisms assessed using inhibitors, protease-activated receptor-2 (PAR-2) agonist, and recombinant CX3CL1-expressing HEK293T cells. Basolateral CX3CL1 release was unaffected by HDM but stimulated by RV16; inhibition by fluticasone or GM6001 implicated nuclear factor-κB and ADAM (A Disintegrin and Metalloproteinase) sheddases. Conversely, apical CX3CL1 shedding was stimulated by HDM and augmented by RV16. Although fluticasone or GM6001 reduced RV16+HDM-induced apical CX3CL1 release, heat inactivation or cysteine protease inhibition completely blocked CX3CL1 shedding. The HDM effect was via enzymatic cleavage of CX3CL1, not PAR-2 activation, yielding a product mitogenic for smooth muscle cells. Extracts of Alternaria fungus caused similar CX3CL1 shedding. We have identified a novel mechanism whereby allergenic proteases cleave CX3CL1 from the apical epithelial surface to yield a biologically active product. RV16 infection augmented HDM-induced CX3CL1 shedding-this may contribute to synergy between allergen exposure and RV infection in triggering asthma exacerbations and airway remodeling.

  4. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells

    NASA Astrophysics Data System (ADS)

    Rich, Devra P.; Anderson, Matthew P.; Gregory, Richard J.; Cheng, Seng H.; Paul, Sucharita; Jefferson, Douglas M.; McCann, John D.; Klinger, Katherine W.; Smith, Alan E.; Welsh, Michael J.

    1990-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (ΔF508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.

  5. Activation of intestinal Cl- secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Bijvelds, Marcel J C; Bot, Alice G M; Escher, Johanna C; De Jonge, Hugo R

    2009-09-01

    Lubiprostone alleviates constipation by stimulating intestinal fluid secretion, purportedly through activation of ClC-2-type Cl(-) channels. Intestinal obstruction is also a recurrent cause of distress in cystic fibrosis (CF) patients, caused by loss of CF transmembrane conductance regulator (CFTR) Cl(-) channel activity. Because ClC-2 recruitment might be beneficial to CF patients, we investigated lubiprostone's mode of action. Cl(-) transport was measured in an Ussing chamber, in 3 model systems: (1) T84 colonocytes, (2) intestinal epithelium of wild-type and CF mice, and (3) intestinal epithelium of CF patients and controls. In T84 monolayers, lubiprostone induced a robust secretory response. Selective permeabilization of the basolateral plasma membrane revealed that lubiprostone activated an apical Cl(-) conductance. The lubiprostone response was attenuated by H89, an inhibitor of the cAMP-dependent protein kinase, and lubiprostone precluded responsiveness to the cAMP agonist forskolin. CFTR blockage by CFTRinh172, but not ClC-2 blockage by CdCl(2), inhibited the lubiprostone response. Lubiprostone induced a CdCl(2)-insensitive secretory response in mouse intestine, but failed to induce intestinal Cl(-) secretion in Cftr-null mice. Correspondingly, lubiprostone induced a secretory response in human intestinal epithelium, but not in tissue of CF patients. The EP(4)-type prostanoid receptor antagonist L-161,982 blocked the lubiprostone response in all 3 models studied. In T84 cells, lubiprostone induced a rise in cAMP levels that was sensitive to EP(4)-receptor blockage. Lubiprostone enhances intestinal Cl(-) and fluid secretion via prostanoid receptor signaling, triggering activation of CFTR. Therefore, it is of limited use for treatment of CF-related intestinal disease.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkuni, Tsuyoshi; Department of Pathology, Sapporo Medical University School of Medicine, Sapporo; Kojima, Takashi, E-mail: ktakashi@sapmed.ac.jp

    Human nasal epithelium is an important physical barrier and innate immune defense protecting against inhaled substances and pathogens. Toll-like receptor (TLR) signaling, which plays a key role in the innate immune response, has not been well characterized in human nasal epithelial cells (HNECs), including the epithelial tight junctional barrier. In the present study, mRNAs of TLR1-10 were detected in hTERT-transfected HNECs, which can be used as an indispensable and stable model of normal HNECs, similar to primary cultured HNECs. To investigate the changes of tight junction proteins and the signal transduction pathways via TLRs in HNECs in vitro, hTERT-transfected HNECsmore » were treated with TLR2 ligand P{sub 3}CSK{sub 4}, TLR3 ligand poly(I:C), TLR4 ligand LPS, TLR7/8 ligand CL097, TLR8 ligand ssRNA40/LyoVec, and TLR9 ligand ODN2006. In hTERT-transfected HNECs, treatment with poly(I:C) significantly reduced expression of the tight junction protein JAM-A and induced secretion of proinflammatory cytokines IL-8 and TNF-{alpha}. Both the reduction of JAM-A expression and the induction of secretion of IL-8 and TNF-{alpha} after treatment with poly(I:C) were modulated by distinct signal transduction pathways via EGFR, PI3K, and p38 MAPK and finally regulated by a TLR3-mediated NF-{kappa}B pathway. The control of TLR3-mediated signaling pathways in HNECs may be important not only in infection by viral dsRNA but also in autoimmune diseases caused by endogenous dsRNA released from necrotic cells.« less

  7. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs)more » and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.« less

  8. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    PubMed

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-05-15

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoproteins. We also attempted to alter the fluidity of the apical membrane of the cells through extraction of cholesterol with beta-cyclodextrin (2.5-15 mM). The effect on TUDC-induced mucin secretion was studied. Cell viability was assessed by measuring lactate dehydrogenase (LDH) leakage or 51Cr release. 3. In contrast with the bile salts, the detergents were not able to cause an increase in mucin secretion without causing concomitant cell lysis. Concentrations of detergent that increased mucin release (>100 microM Triton X-100, >0.8 mM Tween-20), caused increased LDH release. Incubation with beta-cyclodextrin resulted in effective extraction of cholesterol without causing an increase in 51Cr release. However, no effect of the presumed altered membrane fluidity on TUDC (10 mM)-induced mucin secretion was observed. 4. The stimulatory effect of bile salts on mucin secretion by gallbladder epithelial cells is not affected by the fluidity of the apical membrane of the cells and also cannot be mimicked by other detergents. We conclude that the ability of bile salts to cause mucin secretion by the gallbladder epithelium is not determined by their detergent properties.

  9. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.).

    PubMed

    Gregório, Sílvia F; Carvalho, Edison S M; Encarnação, Sandra; Wilson, Jonathan M; Power, Deborah M; Canário, Adelino V M; Fuentes, Juan

    2013-02-01

    The processing of intestinal fluid, in addition to a high drinking rate, is essential for osmoregulation in marine fish. This study analyzed the long-term response of the sea bream (Sparus aurata L.) to relevant changes of external salinity (12, 35 and 55 p.p.t.), focusing on the anterior intestine and in the less-often studied rectum. Intestinal water absorption, epithelial HCO(3)(-) secretion and gene expression of the main molecular mechanisms (SLC26a6, SLC26a3, SLC4a4, atp6v1b, CFTR, NKCC1 and NKCC2) involved in Cl(-) and HCO(3)(-) movements were examined. The anion transporters SLC26a6 and SLC26a3 are expressed severalfold higher in the anterior intestine, while the expression of Atp6v1b (V-type H(+)-ATPase β-subunit) is severalfold higher in the rectum. Prolonged exposure to altered external salinity was without effect on water absorption but was associated with concomitant changes in intestinal fluid content, epithelial HCO(3)(-) secretion and salinity-dependent expression of SLC26a6, SLC26a3 and SLC4a4 in the anterior intestine. However, the most striking response to external salinity was obtained in the rectum, where a 4- to 5-fold increase in water absorption was paralleled by a 2- to 3-fold increase in HCO(3)(-) secretion in response to a salinity of 55 p.p.t. In addition, the rectum of high salinity-acclimated fish shows a sustained (and enhanced) secretory current (I(sc)), identified in vitro in Ussing chambers and confirmed by the higher expression of CFTR and NKCC1 and by immunohistochemical protein localization. Taken together, the present results suggest a functional anterior-posterior specialization with regard to intestinal fluid processing and subsequently to salinity adaptation of the sea bream. The rectum becomes more active at higher salinities and functions as the final controller of intestinal function in osmoregulation.

  10. Secretion of Sparfloxacin from the Human Intestinal Caco-2 Cell Line Is Altered by P-Glycoprotein Inhibitors

    PubMed Central

    Cormet-Boyaka, Estelle; Huneau, Jean-François; Mordrelle, Agnès; Boyaka, Prosper N.; Carbon, Claude; Rubinstein, Ethan; Tomé, Daniel

    1998-01-01

    The mechanism of intestinal secretion of the difluorinated quinolone sparfloxacin was investigated with the epithelial cell line Caco-2 and was compared to that of the P-glycoprotein (P-gp) substrate vinblastine. The P-gp inhibitors verapamil and progesterone significantly increased the epithelial cell accumulation of both vinblastine and sparfloxacin. This increase is likely to result from an inhibition of drug secretion since both vinblastine uptake and sparfloxacin uptake are known to proceed through a passive transmembrane diffusion. The unidirectional fluxes across cell monlayers grown on permeable filters indicated that a net secretion of sparfloxacin and vinblastine occurred across Caco-2 cells. These secretions were significantly inhibited by the MDR-reversing agent verapamil. We conclude that the P-gp is likely to be involved in the intestinal elimination of the difluorinated quinolone sparfloxacin. PMID:9756763

  11. Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.

    PubMed

    Hogan, D L; Yao, B; Isenberg, J I

    1998-01-01

    Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).

  12. Absence of CD9 reduces endometrial VEGF secretion and impairs uterine repair after parturition

    PubMed Central

    Kawano, Natsuko; Miyado, Kenji; Yoshii, Noriko; Kanai, Seiya; Saito, Hidekazu; Miyado, Mami; Inagaki, Noboru; Odawara, Yasushi; Hamatani, Toshio; Umezawa, Akihiro

    2014-01-01

    In mammals, uterine epithelium is remodeled cyclically throughout adult life for pregnancy. Despite the expression of CD9 in the uterine epithelium, its role in maternal reproduction is unclear. Here, we addressed this issue by examining uterine secretions collected from patients undergoing fertility treatment and fertilization-competent Cd9−/− mice expressing CD9-GFP in their eggs (Cd9−/−TG). CD9 in uterine secretions was observed as extracellular matrix-like feature, and its amount of the secretions associated with repeated pregnancy failures. We also found that the litter size of Cd9−/−TG female mice was significantly reduced after their first birth. Severely delayed re-epithelialization of the endometrium was then occurred. Concomitantly, vascular endothelial growth factor (VEGF) was remarkably reduced in the uterine secretions of Cd9−/−TG female mice. These results provide the first evidence that CD9-mediated VEGF secretion plays a role in re-epithelialization of the uterus. PMID:24736431

  13. Carbachol-induced colonic mucus formation requires transport via NKCC1, K+ channels and CFTR

    PubMed Central

    Lindén, Sara K.; Alwan, Ala H.; Scholte, Bob J.; Hansson, Gunnar C.; Sjövall, Henrik

    2016-01-01

    The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K+ channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K+ channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules. PMID:25139191

  14. Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR.

    PubMed

    Gustafsson, Jenny K; Lindén, Sara K; Alwan, Ala H; Scholte, Bob J; Hansson, Gunnar C; Sjövall, Henrik

    2015-07-01

    The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K(+) channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K(+) channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules.

  15. ORAL DELIVERY OF L-ARGININE STIMULATES PROSTAGLANDIN-DEPENDENT SECRETORY DIARRHEA IN C. PARVUM INFECTED NEONATAL PIGLETS

    PubMed Central

    Gookin, Jody L.; Foster, Derek M.; Coccaro, Maria R.; Stauffer, Stephen H.

    2008-01-01

    Objectives To determine if oral supplementation with L-arginine could augment nitric oxide (NO) synthesis and promote epithelial defense in neonatal piglets infected with C. parvum. Methods Neonatal piglets were fed a liquid milk replacer and on day 3 of age infected or not with 108 C. parvum oocysts and the milk replacer supplemented with L-arginine or L-alanine. Milk consumption, body weight, fecal consistency, and oocyst excretion were recorded daily. On day 3 post-infection, piglets were euthanized, and serum concentration of NO metabolites and histological severity of villous atrophy and epithelial infection were quantified. Sheets of ileal mucosa were mounted in Ussing chambers for measurement of barrier function (transepithelial resistance (TER) and permeability) and short-circuit current (Isc; an indirect measurement of Cl− secretion in this tissue). Results C. parvum infected piglets had large numbers of epithelial parasites, villous atrophy, decreased barrier function, severe watery diarrhea, and failure to gain weight. L-arginine promoted synthesis of NO by infected piglets which was unaccompanied by improvement in severity of infection but rather promoted epithelial chloride secretion and diarrhea. Epithelial secretion by infected mucosa from L-arginine supplemented piglets was fully inhibited by the cyclooxygenase inhibitor indomethacin, indicating that prostaglandin synthesis was responsible for this effect. Conclusions Results of these studies demonstrate that provision of additional NO substrate in the form of L-arginine incites prostaglandin-dependent secretory diarrhea and does not promote epithelial defense or barrier function of C. parvum infected neonatal ileum. PMID:18223372

  16. Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells

    PubMed Central

    2012-01-01

    Background Oral candidiasis is a common fungal disease mainly caused by Candida albicans. The aim of this study was to investigate the effects of A-type cranberry proanthocyanidins (AC-PACs) on pathogenic properties of C. albicans as well as on the inflammatory response of oral epithelial cells induced by this oral pathogen. Methods Microplate dilution assays were performed to determine the effect of AC-PACs on C. albicans growth as well as biofilm formation stained with crystal violet. Adhesion of FITC-labeled C. albicans to oral epithelial cells and to acrylic resin disks was monitored by fluorometry. The effects of AC-PACs on C. albicans-induced cytokine secretion, nuclear factor-kappa B (NF-κB) p65 activation and kinase phosphorylation in oral epithelial cells were determined by immunological assays. Results Although AC-PACs did not affect growth of C. albicans, it prevented biofilm formation and reduced adherence of C. albicans to oral epithelial cells and saliva-coated acrylic resin discs. In addition, AC-PACs significantly decreased the secretion of IL-8 and IL-6 by oral epithelial cells stimulated with C. albicans. This anti-inflammatory effect was associated with reduced activation of NF-κB p65 and phosphorylation of specific signal intracellular kinases. Conclusion AC-PACs by affecting the adherence properties of C. albicans and attenuating the inflammatory response induced by this pathogen represent potential novel therapeutic agents for the prevention/treatment of oral candidiasis. PMID:22248145

  17. Distinct roles of prolactin, epidermal growth factor, and glucocorticoids in β-casein secretion pathway in lactating mammary epithelial cells.

    PubMed

    Kobayashi, Ken; Oyama, Shoko; Kuki, Chinatsu; Tsugami, Yusaku; Matsunaga, Kota; Suzuki, Takahiro; Nishimura, Takanori

    2017-01-15

    Beta-casein is a secretory protein contained in milk. Mammary epithelial cells (MECs) synthesize and secrete β-casein during lactation. However, it remains unclear how the β-casein secretion pathway is developed after parturition. In this study, we focused on prolactin (PRL), epidermal growth factor (EGF), and glucocorticoids, which increase in blood plasma and milk around parturition. MECs cultured with PRL, EGF and dexamethasone (DEX: glucocorticoid analog) developed the β-casein secretion pathway. In the absence of PRL, MECs hardly expressed β-casein. EGF enhanced the expression and secretion of β-casein in the presence of PRL and DEX. DEX treatment rapidly increased secreted β-casein concurrent with enhancing β-casein expression. DEX also up-regulated the expression of SNARE proteins, such as SNAP-23, VAMP-8 and Syntaxin-12. Furthermore, PRL and DEX regulated the expression ratio of α s1 -, β- and κ-casein. These results indicate that PRL, EGF and glucocorticoids have distinct roles in the establishment of β-casein secretion pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Sensitivity of chloride efflux vs. transepithelial measurements in mixed CF and normal airway epithelial cell populations.

    PubMed

    Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C

    2010-01-01

    While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.

  19. Lubiprostone stimulates duodenal bicarbonate secretion in rats.

    PubMed

    Mizumori, Misa; Akiba, Yasutada; Kaunitz, Jonathan D

    2009-10-01

    Lubiprostone, a bicyclic fatty acid, is used for the treatment of chronic constipation. No published study has addressed the effect of lubiprostone on intestinal ion secretion in vivo. The aim of this study was to test the hypothesis that lubiprostone augments duodenal HCO(3) (-) secretion (DBS). Rat proximal duodenal loops were perfused with pH 7.0 Krebs, control vehicle (medium-chain triglycerides), or lubiprostone (0.1-10 microM). We measured DBS with flow-through pH and CO(2) electrodes, perfusate [Cl(-)] with a Cl(-) electrode, and water flux using a non-absorbable ferrocyanide marker. Some rats were pretreated with a potent, selective CFTR antagonist, CFTR(inh)-172 (1 mg/kg, ip), 1 h before experiments. Perfusion of lubiprostone concentration dependently increased DBS, whereas net Cl(-) output and net water output were only increased at 0.1 microM, compared with vehicle. CFTR(inh)-172 reduced lubiprostone (10 microM)-induced DBS increase, whereas net Cl(-) output was also unchanged. Nevertheless, CFTR(inh)-172 reduced basal net water output, which was reversed by lubiprostone. Furthermore, lubiprostone-induced DBS was inhibited by EP4 receptor antagonist, not by an EP1/2 receptor antagonist or by indomethacin pretreatment. In this first study of the effect of lubiprostone on intestinal ion secretion in vivo, lubiprostone stimulated CFTR-dependent DBS without changing net Cl(-) secretion. This effect supports the hypothesis that Cl(-) secreted by CFTR is recycled across the apical membrane by anion exchangers. Recovery of water output during CFTR inhibition suggests that lubiprostone may improve the intestinal phenotype in CF patients. Furthermore, increased DBS suggests that lubiprostone may protect the duodenum from acid-induced injury via EP4 receptor activation.

  20. MiR-29b affects the secretion of PROG and promotes the proliferation of bovine corpus luteum cells

    PubMed Central

    Zhang, Li-Qun; Sun, Xu-Lei; Luo, Dan; Fu, Yao; Gao, Yan; Zhang, Jia-Bao

    2018-01-01

    The regulatory role of miRNAs has been explored in ovarian cells, and their effects on gonadal development, apoptosis, ovulation, steroid production and corpus luteum (CL) development have been revealed. In this study, we analyzed the expression of miR-29b at different stages of bovine CL development and predicted the target genes of miR-29b. We confirmed that miR-29b reduces the expression of the oxytocin receptor (OXTR), affects progesterone (PROG) secretion and regulates the function of the CL. RT-PCR showed that the expression of miR-29b was significantly higher in functional CL phases than in the regressed CL phase. Immunohistochemistry showed that OXTR was expressed in both large and small CL cells and was mainly located in the cell membrane and cytoplasm of these cells. We analyzed the expression levels of OXTR and found that transfection with a miR-29b mimic decreased OXTR expression, but transfection with the inhibitor had a limited effect on the expression of the OXTR protein. At the same time, the secretion of PROG was significantly increased in the miR-29b mimic-transfected group. We also analyzed the effect of miR-29b on the apoptosis of CL cells. Finally, we found that miR-29b could promote the proliferation of bovine CL cells. In conclusion, we found that miR-29b reduces the expression of OXTR and can promote PROG secretion and the proliferation of CL cells via OXTR. PMID:29617446

  1. [Association between obesity and ovarian cancer].

    PubMed

    Valladares, Macarena; Corsini, Gino; Romero, Carmen

    2014-05-01

    Obesity is a risk factor for cancer. Epidemiological evidences associate ovarian cancer with obesity. Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer and accounts for a high rate of mortality. The association between ovarian cancer and obesity could be explained by molecular factors secreted by adipose tissue such as leptin. In EOC, leptin increases cell proliferation and inhibits apoptosis. Additionally, adipose tissue synthesizes endogenous estrogens, which increase cell proliferation of epithelial ovarian cells. Also, obesity associated hyperinsulinism could increase ovarian estrogen secretion.

  2. In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash.

    PubMed

    Ramezanpour, Mahnaz; Murphy, Jae; Smith, Jason L P; Vreugde, Sarah; Psaltis, Alkis James

    2017-12-01

    Carrageenans have shown to reduce the viral load in nasal secretions and lower the incidence of secondary infections in children with common cold. Despite the widespread use of carrageenans in topical applications, the effect of carrageenans on the sinonasal epithelial barrier has not been elucidated. We investigate the effect of different carrageenans on the sinonasal epithelial barrier and inflammatory response in vitro. Iota and Kappa carrageenan delivered in saline irrigation solutions applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells from chronic rhinosinusitis patients and controls. Epithelial barrier structure was assessed by measuring the transepithelial electrical resistance (TEER) and immunolocalization of F actin. Ciliary beat frequency (CBF), toxicity, and inflammatory response was studied. Kappa or Iota carrageenan in the different solutions was not toxic, did not have detrimental effects on epithelial barrier structure and CBF. Rather, application of Kappa carrageenan significantly increased TEER and suppressed interleukin 6 (IL-6) secretion in ALI cultures from CRS patients. Kappa or Iota carrageenan solution was safe and did not negatively affect epithelial barrier function. Kappa carrageenan increased TEER and decreased IL-6 production in CRS patients, indicating positive effects on epithelial barrier function in vitro. © 2017 ARS-AAOA, LLC.

  3. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  4. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion.

    PubMed

    Stiernet, Patrick; Guiot, Yves; Gilon, Patrick; Henquin, Jean-Claude

    2006-08-04

    Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion. However, others found glucose to increase granular pH in intact islets. In this study, we measured islet granular pH with Lysosensor DND-160, a fluorescent dye that permits ratiometric determination of pH < 6 in acidic compartments. Stimulation of mouse islets with glucose reversibly decreased granular pH by mechanisms that are dependent on metabolism and Cl- ions but independent of changes in [Ca2+]c and protein kinase A or C activity. Granular pH was increased by concanamycin (blocker of the vesicular type H+-ATPase) > methylamine (weak base) > Cl- omission. Concanamycin and methylamine did not alter glucose-induced [Ca2+]c increase in islets but strongly inhibited the two phases of insulin secretion. Omission of Cl- did not affect the first phase but decreased the second phase of both [Ca2+]c and insulin responses. Neither experimental condition affected the [Ca2+]c rise induced by 30 mM KCl, but the insulin responses were inhibited by concanamycin > methylamine and not affected by Cl- omission. The amplification of insulin secretion by glucose was not suppressed. We conclude that an acidic granular pH is important for insulin secretion but that the acute further acidification produced by glucose is not essential for the augmentation of secretion via the amplifying pathway.

  5. Epidermal Growth Factor Removal or Tyrphostin AG1478 Treatment Reduces Goblet Cells & Mucus Secretion of Epithelial Cells from Asthmatic Children Using the Air-Liquid Interface Model.

    PubMed

    Parker, Jeremy C; Douglas, Isobel; Bell, Jennifer; Comer, David; Bailie, Keith; Skibinski, Grzegorz; Heaney, Liam G; Shields, Michael D

    2015-01-01

    Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia. We hypothesised that EGF removal or tyrphostin AG1478 treatment of differentiating air-liquid interface cultures from asthmatic children would result in a reduction of epithelial goblet cells and mucus secretion. In Aim 1 primary bronchial epithelial cells from non-asthmatic (n = 5) and asthmatic (n = 5) children were differentiated under EGF-positive (10 ng/ml EGF) and EGF-negative culture conditions for 28 days. In Aim 2, cultures from a further group of asthmatic children (n = 5) were grown under tyrphostin AG1478, a tyrosine kinase inhibitor, conditions. All cultures were analysed for epithelial resistance, markers of differentiation using immunocytochemistry, ELISA for MUC5AC mucin secretion and qPCR for MUC5AC mRNA. In cultures from asthmatic children the goblet cell number was reduced in the EGF negative group (p = 0.01). Tyrphostin AG1478 treatment of cultures from asthmatic children had significant reductions in goblet cells at 0.2 μg/ml (p = 0.03) and 2 μg/ml (p = 0.003) as well as mucus secretion at 2 μg/ml (p = 0.04). We have shown in this preliminary study that through EGF removal and tyrphostin AG1478 treatment the goblet cell number and mucus hypersecretion in differentiating air-liquid interface cultures from asthmatic children is significantly reduced. This further highlights the epidermal growth factor receptor as a potential therapeutic target to inhibit goblet cell hyperplasia and mucus hypersecretion in asthma.

  6. Rifaximin decreases virulence of Crohn's disease-associated Escherichia coli and epithelial inflammatory responses.

    PubMed

    Dogan, Belgin; Fu, Jing; Zhang, Shiying; Scherl, Ellen J; Simpson, Kenneth W

    2018-05-01

    Escherichia coli with an adherent and invasive pathotype (AIEC) is implicated in the pathogenesis of Crohn's disease (CD). Rifaximin improves symptoms in mild-to-moderate CD. It is unclear if this outcome is due to its effects on bacteria or intestinal epithelial inflammatory responses. We examined the effects of rifaximin on the growth and virulence of CD-associated E. coli and intestinal epithelial inflammatory responses. Seven well-characterized CD-associated E. coli strains (six AIEC, one non-AIEC; four rifaximin-resistant, three sensitive) were evaluated. We assessed the effects of rifaximin on CD-associated E. coli growth, adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and survival in macrophages. Additionally, we determined the effects of rifaximin on intestinal epithelial inflammatory responses. In vitro rifaximin exerted a dose-dependent effect on the growth of sensitive strains but did not affect the growth of resistant strains. Rifaximin reduced adhesion, invasion, virulence gene expression and motility of CD-associated E. coli in a manner that was independent of its antimicrobial effect. Furthermore, rifaximin reduced IL-8 secretion from pregnane X receptor-expressing T84 colonic epithelial cells. The effect of rifaximin on adhesion was largely attributable to its action on bacteria, whereas decreases in invasion and cytokine secretion were due to its effect on the epithelium. In conclusion, our results show that rifaximin interferes with multiple steps implicated in host-AIEC interactions related to CD, including adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and pro-inflammatory cytokine secretion. Further study is required to determine the relationship of these effects to clinical responses in CD patients.

  7. Epiregulin (EREG) is upregulated through an IL-1β autocrine loop in Caco-2 epithelial cells with reduced CFTR function.

    PubMed

    Massip-Copiz, Macarena; Clauzure, Mariángeles; Valdivieso, Ángel G; Santa-Coloma, Tomás A

    2018-03-01

    CFTR is a cAMP-regulated chloride channel, whose mutations produce cystic fibrosis. The impairment of CFTR activity increases the intracellular Cl - concentration, which in turn produces an increased interleukin-1β (IL-1β) secretion. The secreted IL-1β then induces an autocrine positive feedback loop, further stimulating IL-1β priming and secretion. Since IL-1β can transactivate the epidermal growth factor receptor (EGFR), we study here the levels of expression for different EGFR ligands in Caco-2/pRS26 cells (expressing shRNA against CFTR resulting in a reduced CFTR expression and activity). The epiregulin (EREG), amphiregulin (AREG), and heparin binding EGF like growth factor (HBEGF) mRNAs, were found overexpressed in Caco-2/pRS26 cells. The EREG mRNA had the highest differential expression and was further characterized. In agreement with its mRNA levels, Western blots (WB) showed increased EREG levels in CFTR-impaired cells. In addition, EREG mRNA and protein levels were stimulated by incubation with exogenous IL-1β and inhibited by the Interleukin 1 receptor type I (IL1R1) antagonist IL1RN, suggesting that the overexpression of EREG is a consequence of the autocrine IL-1β loop previously described for these cells. In addition, the JNK inhibitor SP600125, and the EGFR inhibitors AG1478 and PD168393, also had an inhibitory effect on EREG expression, suggesting that EGFR, activated in Caco-2/pRS26 cells, is involved in the observed EREG upregulation. In conclusion, in Caco-2 CFTR-shRNA cells, the EGFR ligand EREG is overexpressed due to an active IL-1β autocrine loop that indirectly activates EGFR, constituting new signaling effectors for the CFTR signaling pathway, downstream of CFTR, Cl - , and IL-1β. © 2017 Wiley Periodicals, Inc.

  8. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction.

    PubMed

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J; Woodruff, Prescott G; Solberg, Owen D; Donne, Matthew L; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V; Wolters, Paul J; Hogan, Brigid L M; Finkbeiner, Walter E; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R

    2012-10-02

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.

  9. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the human intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which ...

  10. Epithelial cell specific properties and genetic complementation in a delta F508 cystic fibrosis nasal polyp cell line.

    PubMed

    Kunzelmann, K; Lei, D C; Eng, K; Escobar, L C; Koslowsky, T; Gruenert, D C

    1995-09-01

    Analysis of vectorial ion transport and protein trafficking in transformed cystic fibrosis (CF) epithelial cells has been limited because the cells tend to lose their tight junctions with multiple subcultures. To elucidate ion transport and protein trafficking in CF epithelial cells, a polar cell line with apical and basolateral compartments will facilitate analysis of the efficacy of different gene therapy strategies in a "tight epithelium" in vitro. This study investigates the genotypic and phenotypic properties of a CF nasal polyp epithelial, delta F508 homozygote, cell line that has tight junctions pre-crisis. The cells (sigma CFNPE14o-) were transformed with an origin-of-replication defective SV40 plasmid. They develop transepithelial resistance in Ussing chambers and are defective in cAMP-dependent Cl- transport as measured by efflux of radioactive Cl-, short circuit current (Isc), or whole-cell patch clamp. Stimulation of the cells by bradykinin, histamine, or ATP seems to activate both K(+)- and Ca(+2)-dependent Cl- transport. Measurement of 36Cl- efflux following stimulation with A23187 and ionomycin indicate a Ca(+2)-dependent Cl- transport. Volume regulatory capacity of the cells is indicated by cell swelling conductance. Expression of the CF transmembrane conductance regulator mRNA was indicated by RT-PCR amplification. When cells are grown at 26 degrees C for 48 h there is no indication of cAMP-dependent Cl- as has been previously indicated in heterologous expression systems. Antibodies specific for secretory cell antigens indicate the presence of antigens found in goblet, serous, and mucous cells; in goblet and serous cells; or in goblet and mucous cells; but not antigens found exclusively in mucous or serous cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models.

    PubMed

    Dota, Atsuyoshi; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu

    2013-01-01

    The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models. Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model. Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score. These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye.

  12. Correlating levels of type III secretion and secreted proteins with fecal shedding of Escherichia coli O157:H7 in cattle

    USDA-ARS?s Scientific Manuscript database

    The locus of enterocyte effacement (LEE) encodes a type III secretion system (T3SS) for secreting factors that enable Escherichia coli O157:H7 to produce attaching and effacing lesions (A/E) on epithelial cells. The importance of LEE-encoded proteins in intestinal colonization of cattle is well-stud...

  13. Oxytetracycline Inhibits Mucus Secretion and Inflammation in Human Airway Epithelial Cells.

    PubMed

    Shah, Said Ahmad; Ishinaga, Hajime; Takeuchi, Kazuhiko

    2017-01-01

    Oxytetracycline is a broad-spectrum antibiotic, but its nonantibacterial effects in the human respiratory tract are unknown. In this study, the effects of oxytetracycline on mucus secretion and inflammation were examined by PCR and ELISA in the human airway epithelial cell line NCI-H292. Oxytetracycline (10 μg/mL) significantly inhibited TNF-α-induced MUC5AC gene expression and MUC5AC protein levels in NCI-H292 cells. It also downregulated IL-8 and IL-1β gene expression and IL-1β protein levels. Our findings demonstrated that oxytetracycline suppressed mucus production and inflammation in human respiratory epithelial cells, providing further evidence for the usefulness of oxytetracycline for human airway inflammatory diseases. © 2017 S. Karger AG, Basel.

  14. Inhibition of Na+ transport in lung epithelial cells by respiratory syncytial virus infection.

    PubMed

    Chen, Lan; Song, Weifeng; Davis, Ian C; Shrestha, Kedar; Schwiebert, Erik; Sullender, Wayne M; Matalon, Sadis

    2009-05-01

    We investigated the mechanisms by which respiratory syncytial virus (RSV) infection decreases vectorial Na+ transport across respiratory epithelial cells. Mouse tracheal epithelial (MTE) cells from either BALB/c or C57BL/6 mice and human airway H441 cells were grown on semipermeable supports under an air-liquid interface. Cells were infected with RSV-A2 and mounted in Ussing chambers for measurements of short-circuit currents (I(sc)). Infection with RSV for 24 hours (multiplicity of infection = 1) resulted in positive immunofluorescence for RSV antigen in less than 10% of MTE or H441 cells. In spite of the limited number of cells infected, RSV reduced both basal and amiloride-sensitive I(sc) in both MTE and H441 cells by approximately 50%, without causing a concomitant reduction in transepithelial resistance. Agents that increased intracellular cAMP (forskolin, cpt-CAMP, and IBMX) increased mainly Cl(-) secretion in MTE cells and Na+ absorption in H441 cells. RSV infection for 24 hours blunted both variables. In contrast, ouabain sensitive I(sc), measured across apically permeabilized H441 monolayers, remained unchanged. Western blot analysis of H441 cell lysates demonstrated reductions in alpha- but not gamma-ENaC subunit protein levels at 24 hours after RSV infection. The reduction in amiloride-sensitive I(sc) in H441 cells was prevented by pretreatment with inhibitors of de novo pyrimidine or purine synthesis (A77-1726 and 6-MP, respectively, 50 microM). Our results suggest that infection of both murine and human respiratory epithelial cells with RSV inhibits vectorial Na+ transport via nucleotide release. These findings are consistent with our previous studies showing reduced alveolar fluid clearance after RSV infection of BALB/c mice.

  15. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.

    PubMed

    Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E

    2007-01-01

    The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.

  16. Activation of deltaF508 CFTR in a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate, genistein and CPX.

    PubMed

    Andersson, C; Roomans, G M

    2000-05-01

    The cellular basis of cystic fibrosis (CF) is a defect in a cyclic adenosine monophosphate (cAMP)-activated chloride channel (CF transmembrane conductance regulator) in epithelial cells that leads to decreased chloride ion transport and impaired water transport across the cell membrane. This study investigated whether it was possible to activate the defective chloride channel in cystic fibrosis respiratory epithelial cells with 4-phenylbutyrate (4PBA), genistein and 8-cyclopentyl-1,3-dipropylxanthine (CPX). The CF bronchial epithelial cell line CFBE41o-, which expresses the deltaF508 mutation, was treated with these agents and loss of Cl-, indicating Cl- efflux, measured by X-ray microanalysis. 8-bromo-cAMP alone did not induce Cl- efflux in CFBE41o- cells, but after incubation with 4PBA a significant efflux of Cl- occurred. Stimulation of cells with a combination of genistein and cAMP also induced Cl- efflux, whereas a combination of pretreatment with 4PBA and a combined stimulation with genistein and cAMP induced an even larger Cl- efflux. Cl- efflux could also be stimulated by CPX, but this effect was not enhanced by 4PBA pretreatment. The deltaF508 mutation leads to impaired processing of the cystic fibrosis transmembrane conductance regulator. The increased efflux of chloride after 4-phenylbutyrate treatment can be explained by the fact that 4-phenylbutyrate allows the deltaF508 cystic fibrosis transmembrane conductance regulator to escape degradation and to be transported to the cell surface. Genistein and 8-cyclopentyl-1,3-dipropylxanthine act by stimulating chloride ion efflux by increasing the probability of the cystic fibrosis transmembrane conductance regulator being open. The combination of 4-phenylbutyrate and genistein may be useful in a potential pharmacological therapy for cystic fibrosis patients with the deltaF508 mutation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.F.

    The ratio of Cl absorbed to HCO3 secreted by the in vitro small intestine of Amphiuma was measured using TWCl and titration. The aim was to estimate the stoichiometry and thereby elucidate the underlying transport mechanisms. For every mole of HCO3 secreted 1.8 mol of Cl underwent net absorption. Indirect measures of net Cl absorption and HCO3 secretion were validated. Several known and putative Cl transport inhibitors were examined for their ability to inhibit the anion transport events. Disulfonic stilbenes (DIDS) and the diuretics piretanide and furosemide inhibited the Cl absorptive flux (J/sub m s/sup Cl/) and simultaneously the HCO3more » secretory flux (J/sup HCO3 /). The diuretics acetazolamide and bumetanide also reduced J/sup HCO3 and J/sub m s/sup Cl/, although the latter effect was not statistically significant. The ratio of inhibition, J/sub m s/sup Cl// J/sup HCO3 /, varied from 1.2 to 1.8 for the different inhibitors. The presence of Cl -HCO3 exchange at the serosal membrane was deduced from 1) the reduction of J/sub m s/sup Cl/ and J/sup HCO3 / by serosally added stilbenes, 2) the reduction of Cl absorption when serosal Cl was replaced, 3) inhibition of the secretory-to-mucosal Cl flux by serosal stilbenes, and 4) enhancement of J/sup HCO3 when serosal medium HCO3 was elevated. The observations are not consistent with one-for-one exchange of Cl for HCO3 at the mucosal membrane. The observed coupling ratio is compatible with a one-for-one exchange of Cl for HCO3 at the serosal membrane.« less

  18. Cot kinase plays a critical role in Helicobacter pylori-induced IL-8 expression.

    PubMed

    Jang, Sungil; Kim, Jinmoon; Cha, Jeong-Heon

    2017-04-01

    Helicobacter pylori is a major pathogen causing various gastric diseases including gastric cancer. Infection of H. pylori induces pro-inflammatory cytokine IL-8 expression in gastric epithelial cells in the initial inflammatory process. It has been known that H. pylori can modulate Ras-Raf-Mek-Erk signal pathway for IL-8 induction. Recently, it has been shown that another signal molecule, cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, activates Mek and Erk and plays a role in the Erk pathway, similar to MAP3K signal molecule Raf kinase. Therefore, the objective of this study was to determine whether Cot kinase might be involved in IL-8 induction caused by H. pylori infection. AGS gastric epithelial cells were infected by H. pylori strain G27 or its isogenic mutants lacking cagA or type IV secretion system followed by treatment with Cot kinase inhibitor (KI) or siRNA specific for Cot kinase. Activation of Erk was assessed by Western blot analysis and expression of IL-8 was measured by ELISA. Treatment with Cot KI reduced both transient and sustained Erk activation. It also reduced early and late IL-8 secretion in the gastric epithelial cell line. Furthermore, siRNA knockdown of Cot inhibited early and late IL-8 secretion induced by H. pylori infection. Taken together, these results suggest that Cot kinase might play a critical role in H. pylori type IV secretion apparatus-dependent early IL-8 secretion and CagA-dependent late IL-8 secretion as an alternative signaling molecule in the Erk pathway.

  19. Insights from mathematical modeling of renal tubular function.

    PubMed

    Weinstein, A M

    1998-01-01

    Mathematical models of proximal tubule have been developed which represent the important solute species within the constraints of known cytosolic concentrations, transport fluxes, and overall epithelial permeabilities. In general, model simulations have been used to assess the quantitative feasibility of what appear to be qualitatively plausible mechanisms, or alternatively, to identify incomplete rationalization of experimental observations. The examples considered include: (1) proximal water reabsorption, for which the lateral interspace is a locus for solute-solvent coupling; (2) ammonia secretion, for which the issue is prioritizing driving forces - transport on the Na+/H+ exchanger, on the Na,K-ATPase, or ammoniagenesis; (3) formate-stimulated NaCl reabsorption, for which simple addition of a luminal membrane chloride/formate exchanger fails to represent experimental observation, and (4) balancing luminal entry and peritubular exit, in which ATP-dependent peritubular K+ channels have been implicated, but appear unable to account for the bulk of proximal tubule cell volume homeostasis.

  20. Gastrointestinal processing of Na+, Cl-, and K+ during digestion: implications for homeostatic balance in freshwater rainbow trout.

    PubMed

    Bucking, Carol; Wood, Chris M

    2006-12-01

    The role of the gastrointestinal tract in maintaining ionic homeostasis during digestion, as well as the relative contribution of the diet for providing electrolytes, has been generally overlooked in many aquatic species. An experimental diet that contained an inert reference marker (lead-glass beads) was used to quantify the net transport of Na(+), K(+), and Cl(-) during the digestion and absorption of a single meal (3% ration) by freshwater rainbow trout (Oncorhynchus mykiss). Secretion of Cl(-) into the stomach peaked at 8 and 12 h following feeding at a rate of 1.1 mmol.kg(-1).h(-1), corresponding to a theoretical pH of 0.6 in the secreted fluid (i.e., 240 mmol/l HCl). The majority ( approximately 90%) of dietary Na(+) and K(+) was absorbed in the stomach, whereas subsequent large fluxes of Na(+) and Cl(-) into the anterior intestine corresponded to a large flux of water previously observed. The estimated concentration of Na(+) in fluids secreted into the anterior intestine was approximately 155 mmol/l, equivalent to reported hepatic bile values, whereas the estimated concentration of Cl(-) ( approximately 285 mmol/l) suggested seepage of HCl acid from the stomach in advance of the chyme front. Net absorption of K(+) in the stomach occurred following the cessation of Cl(-) secretion, providing indirect evidence of K(+) involvement with HCl acid production. Overall, 80-90% of the K(+) and Cl(-) contents of the meal were absorbed on a net basis, whereas net Na(+) absorption was negligible. Chyme-to-plasma ion concentration gradients were often opposed to the direction of ion transport, especially for Na(+) and Cl(-).

  1. How to measure CFTR-dependent bicarbonate transport: from single channels to the intact epithelium.

    PubMed

    Hug, Martin J; Clarke, Lane L; Gray, Michael A

    2011-01-01

    Bicarbonate serves many functions in our body. It is the predominant buffer maintaining a physiological pH in the blood and within our cells. It is also essential for proper digestion of nutrients and solubilization of complex protein mixtures, such as digestive enzymes and mucins, in epithelial secretions. Transepithelial HCO3- transport also drives net fluid secretion in many epithelial tissues including those in the gastrointestinal and reproductive tracts as well as the airways. Indeed, defective bicarbonate secretion is a hallmark of the pathophysiology in the pancreas of most patients suffering from cystic fibrosis. Some, but not all, disease-causing mutations in the CF gene lead to impaired bicarbonate transport when expressed in heterologous systems. Recently developed pharmacological modulators of mutant CFTR have demonstrated an ability to activate chloride transport but little is known about whether they also increase the secretion of bicarbonate. It is therefore essential to assay bicarbonate transport when studying the effect of small molecules on CFTR function. However, due to the chaotropic nature of the ion, the measurement of the absolute bicarbonate concentration and its permeability through CFTR is far from trivial. In this chapter we will review some of the techniques available to measure bicarbonate transport through single ion channels, individual cells, and intact epithelial layers.

  2. Diarrhoeal disease through enterocyte secretion: a doctrine untroubled by proof.

    PubMed

    Lucas, Michael L

    2010-04-01

    For almost 40 years, one of the principal causes of diarrhoeal disease has been thought to be fluid secretion emanating from the epithelial cells of the small and large intestine. Given the extremely large fluid losses seen in cholera, where secretion can be up to several litres per day, this seems a plausible hypothesis. The enterocyte (epithelial cell) secretion hypothesis rapidly displaced all other alternatives, such as vasodilatation coupled with enhanced paracellular permeability. An essential mechanism underlying enterocyte secretion has always been assumed to be electrogenic chloride secretion, leading to a localized osmotic imbalance at the mucosal surface of the enterocytes that causes fluid entry into the lumen by osmosis. The chloride secretion basis for enterotoxin-deranged secretion is assumed to be measurable by changes in electrical currents and by altered transport of chloride ion. These can be detected after the small intestine is exposed to a heat-stable enterotoxin (STa) produced by Escherichia coli. However, in vivo, when the recovered volume technique is used, STa is found not to be secretory. The heat-stable enterotoxin is therefore a test case toxin, because the complex techniques used to demonstrate enterocyte secretion after STa exposure show apparent secretion, while the simplest technique based on fluid recovery and genuinely measuring the mass transport of fluid does not. This review scrutinizes the nature of the evidence put forward for enterocyte secretion and reaches the conclusion that there is no evidence for it. Debilitating secretion undoubtedly does take place in severe diarrhoeal disease, but secretion from enterocytes is unlikely to be the cause.

  3. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    PubMed Central

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  4. Modulation of chloride secretion in the rat ileum by intracellular bicarbonate.

    PubMed

    Dagher, P C; Chawla, H; Michael, J; Egnor, R W; Charney, A N

    1997-05-01

    Increasing intracellular bicarbonate concentration ([HCO3-]i) inhibits calcium-mediated Cl- secretion in rat distal colon and T84 cells. We investigated the effect of [HCO3-]i on Cl- secretion in rat ileum. Segments of intact ileum from Sprague-Dawley rats were studied in Ussing chambers and villus and crypt intracellular pH and [HCO3-]i were determined using BCECF. A range of crypt and villus [HCO3-]i from 0 to 31 mM was obtained by varying Ringer's composition. Basal serosal-to-mucosal Cl- flux (JsmCl) averaged 8.5 +/- 0.2 mu eq.h-1.cm-2 and was unaffected by changing [HCO3-]i or serosal bumetanide. Carbachol increased JsmCl by 3.9 +/- 0.5 mu eq.h-1.cm-2 at [HCO3-]i = 0 mM but only by 1.0 +/- 0.3 mu eq.h-1.cm-2 at high crypt and villus [HCO3-]i. Dibutyryl-cAMP increased JsmCl by 2.5 +/- 0.2 mu eq.h-1.cm-2 at all [HCO3-]i. Carbachol and db-cAMP showed mutual antagonism at low [HCO3-]i and near-additivity at high [HCO3-]i. We conclude that like rat colon and T84 cells, calcium-mediated but not cAMP-mediated Cl- secretion in the ileum is inhibited by increasing [HCO3-]i. Mutual antagonism between carbachol and db-cAMP at low [HCO3-]i was present in ileum and distal colon but not in T84 cells.

  5. Establishment of Functional Acinar-like Cultures from Human Salivary Glands

    PubMed Central

    Jang, S.I.; Ong, H.L.; Gallo, A.; Liu, X.; Illei, G.

    2015-01-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers—namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. PMID:25416669

  6. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models

    PubMed Central

    Dota, Atsuyoshi; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu

    2013-01-01

    Purpose The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models. Methods Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model. Results Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score. Conclusion These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye. PMID:23386781

  7. [Effect of resveratrol on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment].

    PubMed

    Lv, Jia-Shu; Jiang, Xue-Wei; Zhang, Yan; Zhen, Lei

    2017-02-01

    Through a study of the molecular mechanism of the effect of resveratrol(RSV) on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment, the therapeutic effect and molecular mechanism of resveratrol on periodontitis in patients with diabetes mellitus was investigated. Gingival epithelial cells were cultured in vitro; according to the way of action, the cultured cells were divided into control group, high glucose group(HG) and HG+RSV group. The mRNA expression of TLR4 was detected by PCR; The third generation of gingival epithelial cells were pre-treated with or without RSV for 24 h under high glucose conditions, and subsequently treated with LPS at 100 ng/mL for 2 h. ELISA was used to detect the secretion of IL-1 beta, IL-6, IL-8 and TNF- alpha; the activation of TLR4 downstream signaling molecules NF-κB p65, p38 MAPK, and STAT3 was determined by Western blot. SPSS17.0 software package was used for statistical analysis. RSV could reverse the increase of TLR4 level in gingival epithelial cells in high glucose medium.LPS markedly increased the expression and secretion of IL-1β, IL-6, IL-8, and TNF-α in GECs cultured in high glucose medium, which was partly blocked in the presence of RSV. Furthermore, Western blot results showed that RSV significantly suppressed the phosphorylation of TLR4 downstream factors NF-κB p65, p38MAPK, and STAT3. RSV reduces inflammatory cytokine secretion in gingival epithelial cells, through negative regulation of TLR4 signaling pathway.

  8. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells.

    PubMed

    Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J

    2017-09-01

    Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.

  9. Bradykinin-stimulated cyclooxygenase activity stimulates vas deferens epithelial anion secretion in vitro in swine and humans.

    PubMed

    Pierucci-Alves, Fernando; Schultz, Bruce D

    2008-09-01

    Epithelia lining the male reproductive duct modulate fertility by altering the luminal environment to which sperm are exposed. Although vas deferens epithelial cells reportedly express high levels of cyclooxygenases (Ptgs), and activation of bradykinin (BK) receptors can lead to upregulation of PTGS activity in epididymal epithelia, it remains unknown whether BKs and/or PTGSs have any role in modulating epithelial ion transport across vas deferens epithelia. Porcine and human vas deferens epithelial cell primary cultures and the PVD9902 cell line responded to lysylbradykinin with an increase in short circuit current (I SC; indicating net anion secretion), an effect that was 60%-93% reduced by indomethacin. The BK effect was inhibited by the B2 receptor subtype (BDKRB2) antagonist HOE140, whereas the B1 receptor subtype agonist des-Arg9-BK had no effect. BDKRB2 immunoreactivity was documented in most epithelial cells composing the native epithelium and on Western blots derived from cultured cells. Gene expression analysis revealed that the PTGS2 transcript is 20 times more abundant than its PTGS1 counterpart in cultured porcine vas deferens epithelia and that BDKRB2 mRNA is likewise highly expressed. Subsequent experiments revealed that prostaglandin E2, 1-OH prostaglandin E1 (prostaglandin E receptor 4 [PTGER4] agonist) and butaprost (PTGER2 agonist) increase I SC in a concentration-dependent manner, whereas sulprostone (mixed PTGER1 and PTGER3 agonist) produced no change in I SC. These results demonstrate that autacoids can affect epithelial cells to acutely modulate the luminal environment to which sperm are exposed in the vas deferens by enhancing PTGS activity, leading to the production of prostaglandins that act at PTGER4 and/or PTGER2 to induce or enhance anion secretion.

  10. Bradykinin-Stimulated Cyclooxygenase Activity Stimulates Vas Deferens Epithelial Anion Secretion In Vitro in Swine and Humans1

    PubMed Central

    Pierucci-Alves, Fernando; Schultz, Bruce D.

    2008-01-01

    Epithelia lining the male reproductive duct modulate fertility by altering the luminal environment to which sperm are exposed. Although vas deferens epithelial cells reportedly express high levels of cyclooxygenases (Ptgs), and activation of bradykinin (BK) receptors can lead to upregulation of PTGS activity in epididymal epithelia, it remains unknown whether BKs and/or PTGSs have any role in modulating epithelial ion transport across vas deferens epithelia. Porcine and human vas deferens epithelial cell primary cultures and the PVD9902 cell line responded to lysylbradykinin with an increase in short circuit current (ISC; indicating net anion secretion), an effect that was 60%–93% reduced by indomethacin. The BK effect was inhibited by the B2 receptor subtype (BDKRB2) antagonist HOE140, whereas the B1 receptor subtype agonist des-Arg9-BK had no effect. BDKRB2 immunoreactivity was documented in most epithelial cells composing the native epithelium and on Western blots derived from cultured cells. Gene expression analysis revealed that the PTGS2 transcript is 20 times more abundant than its PTGS1 counterpart in cultured porcine vas deferens epithelia and that BDKRB2 mRNA is likewise highly expressed. Subsequent experiments revealed that prostaglandin E2, 1-OH prostaglandin E1 (prostaglandin E receptor 4 [PTGER4] agonist) and butaprost (PTGER2 agonist) increase ISC in a concentration-dependent manner, whereas sulprostone (mixed PTGER1 and PTGER3 agonist) produced no change in ISC. These results demonstrate that autacoids can affect epithelial cells to acutely modulate the luminal environment to which sperm are exposed in the vas deferens by enhancing PTGS activity, leading to the production of prostaglandins that act at PTGER4 and/or PTGER2 to induce or enhance anion secretion. PMID:18480467

  11. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells.

    PubMed

    Sappino, André-Pascal; Buser, Raphaële; Lesne, Laurence; Gimelli, Stefania; Béna, Frédérique; Belin, Dominique; Mandriota, Stefano J

    2012-03-01

    Aluminium salts used as antiperspirants have been incriminated as contributing to breast cancer incidence in Western societies. To date, very little or no epidemiological or experimental data confirm or infirm this hypothesis. We report here that in MCF-10A human mammary epithelial cells, a well-established normal human mammary epithelial cell model, long-term exposure to aluminium chloride (AlCl(3) ) concentrations of 10-300 µ m, i.e. up to 100 000-fold lower than those found in antiperspirants, and in the range of those recently measured in the human breast, results in loss of contact inhibition and anchorage-independent growth. These effects were preceded by an increase of DNA synthesis, DNA double strand breaks (DSBs), and senescence in proliferating cultures. AlCl(3) also induced DSBs and senescence in proliferating primary human mammary epithelial cells. In contrast, it had no similar effects on human keratinocytes or fibroblasts, and was not detectably mutagenic in bacteria. MCF-10A cells morphologically transformed by long-term exposure to AlCl(3) display strong upregulation of the p53/p21(Waf1) pathway, a key mediator of growth arrest and senescence. These results suggest that aluminium is not generically mutagenic, but similar to an activated oncogene, it induces proliferation stress, DSBs and senescence in normal mammary epithelial cells; and that long-term exposure to AlCl(3) generates and selects for cells able to bypass p53/p21(Waf1) -mediated cellular senescence. Our observations do not formally identify aluminium as a breast carcinogen, but challenge the safety ascribed to its widespread use in underarm cosmetics. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Construction of a plasmid for human brain-derived neurotrophic factor and its effect on retinal pigment epithelial cell viability

    PubMed Central

    Yan, Bo-jing; Wu, Zhi-zhong; Chong, Wei-hua; Li, Gen-lin

    2016-01-01

    Several studies have investigated the protective functions of brain-derived neurotrophic factor (BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19 (ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases. PMID:28197196

  13. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  14. Stimulation of Intestinal Cl- Secretion Through CFTR by Caffeine Intake in Salt-Sensitive Hypertensive Rats.

    PubMed

    Wei, Xiao; Lu, Zongshi; Yang, Tao; Gao, Peng; Chen, Sijiao; Liu, Daoyan; Zhu, Zhiming

    2018-03-16

    High salt consumption is a major risk factor for hypertension, and sodium homeostasis is regulated by both intestinal sodium absorption and urinary sodium excretion. Chronic caffeine intake has been reported to attenuate salt-sensitive hypertension by promoting urinary sodium excretion; however, its exact role in intestinal sodium absorption remains unknown. Here, we investigated whether and how chronic caffeine consumption antagonizes salt-sensitive hypertension by inhibiting intestinal sodium absorption. Dahl salt-sensitive rats were fed 8% NaCl chow and 0.1% caffeine in their drinking water for 15 days. The blood pressure and fecal sodium content were measured. The effect of caffeine on the movement of Cl- in enterocyte cells was determined with the Ussing chamber assay. Rats that were treated with caffeine displayed significantly lower mean blood pressure and higher fecal sodium content than the controls. Consistent with these findings, caffeine intake decreased fluid absorption by the intestine in the fluid perfusion experiment. Further, the results from the Ussing chamber assay indicated that caffeine promoted Cl- secretion through enterocyte apical cystic fibrosis transmembrane conductance regulator (CFTR), and thus inhibited sodium absorption. Moreover, depletion of cAMP or inhibition of CFTR completely abolished the effect of caffeine on Cl- secretion. The results indicate that chronic caffeine consumption reduces sodium absorption by promoting CFTR-mediated Cl- secretion in the intestine, which contributes to the anti-hypertensive effect of caffeine in salt-sensitive rats. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. Lubiprostone Decreases Mouse Colonic Inner Mucus Layer Thickness and Alters Intestinal Microbiota

    PubMed Central

    Musch, Mark W.; Wang, Yunwei; Claud, Erika C.

    2013-01-01

    Background Lubiprostone has been used to treat constipation through its effects to stimulate Cl− secretion, resulting in water and electrolyte secretion. Aim Potential associated changes in intestinal mucus and the colonizing bacteria (microbiome) have not been studied. As mucus obstructions may play a role in cystic fibrosis, the hypothesis that lubiprostone alters intestinal mucus and the microbiome was investigated. Methods Ion transport studies were performed ex vivo. For mucus and microbiome studies, mice were gavaged daily with lubiprostone or vehicle. Mucin from intestinal sections was analyzed in Carnoy’s fixed tissues stained with Alcian blue. Microbiome composition was analyzed by 16S rRNA gene-based sequencing. Results Lubiprostone stimulated short circuit current in all mouse intestinal segments after both serosal and mucosal additions, albeit at lower concentrations in the latter. Current was Cl-dependent and blocked by mucosal diphenylcarboxylic acid, serosal bumetanide, and serosal Ba++. The CFTR inhibitor CFTRinh172 had a marginal effect. Mucus near epithelial cells (inner layer mucus) was not present in the small intestine of any mice. Proximal colon inner mucus layer was thicker in ΔF/ΔF compared with +/ΔF and +/+ mice. Lubiprostone decreased inner mucus layer thickness in both proximal and distal colon of all mice. Furthermore, lubiprostone altered the intestinal microbiome by increasing abundance of Lactobacillus and Alistipes. Conclusions Lubiprostone activates non-CFTR Cl− secretion and alters the colonic inner mucus layer, which is associated with changes in the composition of the enteric microbiome. PMID:23329012

  16. Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency.

    PubMed

    Todkar, Abhijeet; Picard, Nicolas; Loffing-Cueni, Dominique; Sorensen, Mads V; Mihailova, Marija; Nesterov, Viatcheslav; Makhanova, Natalia; Korbmacher, Christoph; Wagner, Carsten A; Loffing, Johannes

    2015-02-01

    Aldosterone-independent mechanisms may contribute to K(+) homeostasis. We studied aldosterone synthase knockout (AS(-/-)) mice to define renal control mechanisms of K(+) homeostasis in complete aldosterone deficiency. AS(-/-) mice were normokalemic and tolerated a physiologic dietary K(+) load (2% K(+), 2 days) without signs of illness, except some degree of polyuria. With supraphysiologic K(+) intake (5% K(+)), AS(-/-) mice decompensated and became hyperkalemic. High-K(+) diets induced upregulation of the renal outer medullary K(+) channel in AS(-/-) mice, whereas upregulation of the epithelial sodium channel (ENaC) sufficient to increase the electrochemical driving force for K(+) excretion was detected only with a 2% K(+) diet. Phosphorylation of the thiazide-sensitive NaCl cotransporter was consistently lower in AS(-/-) mice than in AS(+/+) mice and was downregulated in mice of both genotypes in response to increased K(+) intake. Inhibition of the angiotensin II type 1 receptor reduced renal creatinine clearance and apical ENaC localization, and caused severe hyperkalemia in AS(-/-) mice. In contrast with the kidney, the distal colon of AS(-/-) mice did not respond to dietary K(+) loading, as indicated by Ussing-type chamber experiments. Thus, renal adaptation to a physiologic, but not supraphysiologic, K(+) load can be achieved in aldosterone deficiency by aldosterone-independent activation of the renal outer medullary K(+) channel and ENaC, to which angiotensin II may contribute. Enhanced urinary flow and reduced activity of the thiazide-sensitive NaCl cotransporter may support renal adaptation by activation of flow-dependent K(+) secretion and increased intratubular availability of Na(+) that can be reabsorbed in exchange for K(+) secreted. Copyright © 2015 by the American Society of Nephrology.

  17. Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua.

    PubMed

    Hu, Marian Y; Michael, Katharina; Kreiss, Cornelia M; Stumpp, Meike; Dupont, Sam; Tseng, Yung-Che; Lucassen, Magnus

    2016-01-01

    CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid-base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na(+)/K(+)-ATPase (NKA), Na(+)/H(+)-exchanger 3 (NHE3), Na(+)/[Formula: see text] cotransporter (NBC1), pendrin-like Cl(-)/[Formula: see text] exchanger (SLC26a6), V-type H(+)-ATPase subunit a (VHA), and Cl(-) channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal [Formula: see text] secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood [Formula: see text] levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

  18. Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis.

    PubMed

    Rengarajan, Srinivas; Lee, Donna H; Oh, Young Taek; Delpire, Eric; Youn, Jang H; McDonough, Alicia A

    2014-05-01

    Dietary potassium loading results in rapid kaliuresis, natriuresis, and diuresis associated with reduced phosphorylation (p) of the distal tubule Na(+)-Cl(-) cotransporter (NCC). Decreased NCC-p inhibits NCC-mediated Na(+) reabsorption and shifts Na(+) downstream for reabsorption by epithelial Na(+) channels (ENaC), which can drive K(+) secretion. Whether the signal is initiated by ingesting potassium or a rise in plasma K(+) concentration ([K(+)]) is not understood. We tested the hypothesis, in male rats, that an increase in plasma [K(+)] is sufficient to reduce NCC-p and drive kaliuresis. After an overnight fast, a single 3-h 2% potassium (2%K) containing meal increased plasma [K(+)] from 4.0 ± 0.1 to 5.2 ± 0.2 mM; increased urinary K(+), Na(+), and volume excretion; decreased NCC-p by 60%; and marginally reduced cortical Na(+)-K(+)-2Cl(-) cotransporter (NKCC) phosphorylation 25% (P = 0.055). When plasma [K(+)] was increased by tail vein infusion of KCl to 5.5 ± 0.1 mM over 3 h, significant kaliuresis and natriuresis ensued, NCC-p decreased by 60%, and STE20/SPS1-related proline alanine-rich kinase (SPAK) phosphorylation was marginally reduced 35% (P = 0.052). The following were unchanged at 3 h by either the potassium-rich meal or KCl infusion: Na(+)/H(+) exchanger 3 (NHE3), NHE3-p, NKCC, ENaC subunits, and renal outer medullary K(+) channel. In summary, raising plasma [K(+)] by intravenous infusion to a level equivalent to that observed after a single potassium-rich meal triggers renal kaliuretic and natriuretic responses, independent of K(+) ingestion, likely driven by decreased NCC-p and activity sufficient to shift sodium reabsorption downstream to where Na(+) reabsorption and flow drive K(+) secretion.

  19. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    PubMed

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  20. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.

    PubMed

    Kabiri, Zahra; Greicius, Gediminas; Madan, Babita; Biechele, Steffen; Zhong, Zhendong; Zaribafzadeh, Hamed; Edison; Aliyev, Jamal; Wu, Yonghui; Bunte, Ralph; Williams, Bart O; Rossant, Janet; Virshup, David M

    2014-06-01

    Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.

  1. X-ray microanalysis of rotavirus-infected mouse intestine: A new concept of diarrhoeal secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, A.J.; Osborne, M.P.; Haddon, S.J.

    1990-05-01

    Neonatal mice were infected at 7 days of age with rotavirus (epizootic diarrhea of infant mice (EDIM) virus) and killed at 24-h intervals postinfection (PI). Cytoplasmic concentrations of Na, Mg, P, S, Cl, K, and Ca intestinal epithelial cells from infected and age-matched control animals were measured by x-ray microanalysis. In villus tip cells, Ca concentration increased at 24-96 h PI; Na concentration increased at 24-72 h PI; Ca and Na concentrations were near normal by 168 h PI. K concentration decreased 24-72 h PI, and Cl concentration decreased 48-96 h PI. In crypt cells, changes were observed without amore » discernible pattern: at 96 h PI, Na, Mg, S, and Cl concentrations increased and K concentration decreased; at 120 h PI, the concentrations of all elements except Na and Ca increased. In villus base cells, the mean concentrations of all elements except Ca peaked at 48-72 h PI and at 120 h PI. Na and Cl concentrations increased dramatically in some cells from 48 h PI onward. All the above concentration values were obtained from freeze-dried specimens and expressed in millimoles per kilogram of dry weight. Conversion of a limited number of data, pertaining to villus base cells, from dry weight to wet weight was possible. This conversion revealed that villus base cells in infected animals were more hydrated than corresponding cells from control animals. Also, the Na and Cl concentrations in mmol/kg H2O were significantly higher in villus base cells from infected animals than in those from corresponding controls: 137 +/- 7 versus 38 +/- 4 (Na) and 121 +/- 5 versus 89 +/- 6 (Cl). Wet weight concentrations of other elements were either the same (Mg) or lower (P, S, and K) after infection with virus.« less

  2. Na+-coupled bicarbonate transporters in duodenum, collecting ducts and choroid plexus.

    PubMed

    Praetorius, Jeppe

    2010-01-01

    Epithelia cover the internal and external surfaces of the organism and form barriers between the various compartments. Some of these epithelia are specialized for effective transmembrane or even transepithelial movement of acid-base equivalents. Certain epithelia with a high rate of HCO3- transport express a few potent Na+-coupled acid-base transporters to gain a net HCO3- movement across the epithelium. Examples of such epithelia are renal proximal tubules and pancreatic ducts. In contrast, multiple Na+-coupled HCO3- transporters are expressed in other HCO3- secreting epithelia, such as the duodenal mucosa or the choroid plexus, which maintain suitable intracellular pH despite a variable demand for secreting HCO3-. In the duodenum, the epithelial cells must secrete HCO3- for neutralization of the gastric acid, and at the same time prevent cellular acidification. During the neutralization, large quantities of CO2 are formed in the duodenal lumen, which enter the epithelial cells. This would tend to lower intracellular pH and require effective counteracting mechanisms to avoid cell death and to maintain HCO3- secretion. The choroid plexus secretes the cerebrospinal fluid (CSF) and controls the pH of the otherwise poorly buffered CSF. The pCO2 of CSF fluctuates with plasma pCO2, and the choroid plexus must regulate the HCO3- secretion to minimize the effects of these fluctuations on CSF pH. This is done while maintaining pH neutrality in the epithelial cells. Thus, the Na+-HCO3- cotransporters appear to be involved in HCO3- import in more epithelia, where Na+/H+ exchangers were until recently thought to be sufficient for maintaining intracellular pH.

  3. Role of NH3 and NH4+ transporters in renal acid-base transport.

    PubMed

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  4. Effects of the vegetable polyphenols epigallocatechin-3-gallate, luteolin, apigenin, myricetin, quercetin, and cyanidin in primary cultures of human retinal pigment epithelial cells

    PubMed Central

    Chen, Rui; Grosche, Antje; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2014-01-01

    Purpose Vegetable polyphenols (bioflavonoids) have been suggested to represent promising drugs for treating cancer and retinal diseases. We compared the effects of various bioflavonoids (epigallocatechin-3-gallate [EGCG], luteolin, apigenin, myricetin, quercetin, and cyanidin) on the physiological properties and viability of cultured human retinal pigment epithelial (RPE) cells. Methods Human RPE cells were obtained from several donors within 48 h of death. Secretion of vascular endothelial growth factor (VEGF) was determined with enzyme-linked immunosorbent assay. Messenger ribonucleic acid levels were determined with real-time reverse transcription polymerase chain reaction. Cellular proliferation was investigated with a bromodeoxyuridine immunoassay, and chemotaxis was examined with a Boyden chamber assay. The number of viable cells was determined by Trypan Blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation enzyme-linked immunosorbent assay. The phosphorylation level of signaling proteins was revealed by western blotting. Results With the exception of EGCG, all flavonoids tested decreased dose-dependently the RPE cell proliferation, migration, and secretion of VEGF. EGCG inhibited the secretion of VEGF evoked by CoCl2-induced hypoxia. The gene expression of VEGF was reduced by myricetin at low concentrations and elevated at higher concentrations. Luteolin, apigenin, myricetin, and quercetin induced significant decreases in the cell viability at higher concentration, by triggering cellular necrosis. Cyanidin reduced the rate of RPE cell necrosis. Myricetin caused caspase-3 independent RPE cell necrosis mediated by free radical generation and activation of calpain and phospholipase A2. The myricetin- and quercetin-induced RPE cell necrosis was partially inhibited by necrostatin-1, a blocker of programmed necrosis. Most flavonoids tested diminished the phosphorylation levels of extracellular signal-regulated kinases 1/2 and Akt proteins. Conclusions The intake of luteolin, apigenin, myricetin, and quercetin as supplemental cancer therapy or in treating retinal diseases should be accompanied by careful monitoring of the retinal function. The possible beneficial effects of EGCG and cyanidin, which had little effect on RPE cell viability, in treating retinal diseases should be examined in further investigations. PMID:24623967

  5. Enteroaggregative Escherichia coli flagellin-induced interleukin-8 secretion requires Toll-like receptor 5-dependent p38 MAP kinase activation

    PubMed Central

    Khan, Mohammed A S; Kang, Jian; Steiner, Theodore S

    2004-01-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen that causes acute and chronic diarrhoea in a number of clinical settings. EAEC diarrhoea involves bacterial aggregation, adherence to intestinal epithelial cells and elaboration of several toxigenic bacterial mediators. Flagellin (FliC-EAEC), a major bacterial surface protein of EAEC, causes interleukin (IL)-8 release from several epithelial cell lines. The host response to flagellins from E. coli and several other bacteria is mediated by Toll-like receptor 5 (TLR5), which signals through nuclear factor kappa B (NF-κB) to induce transcription of pro-inflammatory cytokines. p38 mitogen-activating protein (MAP) kinase (MAPK) is a member of a family of stress-related kinases that influences a diverse range of cellular functions including host inflammatory responses to microbial products. We studied the role of p38 MAPK in FliC-EAEC-induced IL-8 secretion from Caco-2 human intestinal epithelial cells and THP-1 human monocytic cells. We found that IL-8 secretion from both cell types is dependent on p38 MAPK, which is phospho-activated in response to FliC-EAEC. The role of TLR5 in p38 MAPK-dependent IL-8 secretion was verified in HEp-2 cells transiently transfected with a TLR5 expression construct. Activation of interleukin-1 receptor-associated kinase (IRAK) was also observed in Caco-2 and TLR5-transfected HEp-2 cells after exposure to FliC-EAEC. Finally, we demonstrated that pharmacological inhibition of p38 MAPK reduced IL-8 transcription and mRNA levels, but did not affect NF-κB activation. Collectively, our results suggest that TLR5 mediates p38 MAPK-dependent IL-8 secretion from epithelial and monocytic cells incubated with FliC-EAEC, and that this effect requires IL-8 promoter activation independent of NF-κB nuclear migration. PMID:15270737

  6. Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells

    PubMed Central

    Cavet, M E; West, M; Simmons, N L

    1997-01-01

    Human intestinal epithelial Caco-2 cells were used to investigate the mechanistic basis of transepithelial secretion of the fluoroquinolone antibiotic ciprofloxacin. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to competitive inhibition by sulphate, thiosulphate, oxalate, succinate and para-amino hippurate, probenecid (10 mM), taurocholate (100 μM) or bromosulphophthalein (100 μM). Similarly tetraethylammonium and N-′methylnicotinamide (10 mM) were without effect. Net secretion of ciprofloxacin was inhibited by the organic exchange inhibitor 4,4′-diisothiocyanostilbene-2-2′-disulphonic acid (DIDS, 400 μM). Net secretion of ciprofloxacin was partially inhibited by 100 μM verapamil, whilst net secretion of the P-glycoprotein substrate vinblastine was totally abolished under these conditions. Ciprofloxacin secretion was unaltered after preincubation of cells with two anti-P-glycoprotein antibodies (UIC2 and MRK16), which both significantly reduced secretory vinblastine flux (measured in the same cell batch). Ciprofloxacin (3 mM) failed to inhibit vinblastine net secretion in Caco-2 epithelia, and was not itself secreted by the P-glycoprotein expressing and vinblastine secreting dog kidney cell line, MDCK. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to alterations of either cytosolic or medium pH, or dependent on the presence of medium Na+, Cl− or K+ in the bathing media. The substrate specificity of the ciprofloxacin secretory transport in Caco-2 epithelia is distinct from both the renal organic anion and cation transport. A role for P-glycoprotein in ciprofloxacin secretion may also be excluded. A novel transport mechanism, sensitive to both DIDS and verapamil mediates secretion of ciprofloxacin by human intestinal Caco-2 epithelia. PMID:9283689

  7. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed Central

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-01-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption. PMID:6401766

  8. Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

    PubMed

    Davis, G R; Morawski, S G; Santa Ana, C A; Fordtran, J S

    1983-02-01

    During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption.

  9. Matrigel basement membrane matrix induces eccrine sweat gland cells to reconstitute sweat gland-like structures in nude mice.

    PubMed

    Li, Haihong; Chen, Lu; Zeng, Shaopeng; Li, Xuexue; Zhang, Xiang; Lin, Changmin; Zhang, Mingjun; Xie, Sitian; He, Yunpu; Shu, Shenyou; Yang, Lvjun; Tang, Shijie; Fu, Xiaobing

    2015-03-01

    Severe burn results in irreversible damage to eccrine sweat glands, for which no effective treatment is available. Interaction between the extracellular matrix and epithelial cells is critical for proper three-dimensional organization and function of the epithelium. Matrigel-embedded eccrine sweat gland cells were subcutaneously implanted into the inguinal regions of nude mice. Two weeks later, the Matrigel plugs were removed and evaluated for series of detection items. Sweat gland cells developed into sweat gland-like structures in the Matrigel plugs based on: (1) de novo formation of tubular-like structures with one or more hollow lumens, (2) expression of epithelial and sweat gland markers (pancytokeratin, CK5/7/14/19, α-SMA and CEA), (3) basement membrane formation, (4) myoepithelial cells presenting in and encompassing the tubular-like structures, (5) cellular polarization, evident by the expression of tight junction proteins (claudin-1 and ZO-2), anchoring junctions (desmoglein-1 and -2 and E-cadherin) and CEA in the luminal membrane, (6) expression of proteins related to sweat secretion and absorption (Na(+)-K(+)-ATPase α/β, Na(+)-K(+)-2Cl-cotranspoter 1, Na(+)/H(+) exchanger 1, aquaporin-5, epithelial sodium channel, cystic fibrosis transmembrane conductance regulator, potassium channel and vacuolar-type H+-ATPase), and (7) about 20% of the tubular-like structures are de novo coils and 80% are de novo ducts. This study provides not only an excellent model to study eccrine sweat gland development, cytodifferentiation and reconstitution, but also an in vivo model for regeneration of eccrine sweat glands. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies

    PubMed Central

    McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.

    2008-01-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID:18483420

  11. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.

    PubMed

    McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M

    2008-11-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation.

  12. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias.

    PubMed

    Shuttleworth, Trevor J; Thompson, Jill; Munger, R Stephen; Wood, Chris M

    2006-12-01

    We compared in vivo responses of rectal gland secretion to carbonic anhydrase (CA) inhibition (10(-4) mol l(-1) acetazolamide) in volume-loaded dogfish with in vitro responses in an isolated-perfused gland stimulated with 5 x 10(-6) mol l(-1) forskolin and removed from systemic influences. We also measured respiratory gas exchange in the perfused gland, described the acid-base status of the secreted fluid, and determined the relative importance of various extracellular and intracellular acid-base parameters in controlling rectal gland secretion in vitro. In vivo, acetazolamide inhibited Cl(-) secretion and decreased pHi in the rectal gland, but interpretation was confounded by an accompanying systemic respiratory acidosis, which would also have contributed to the inhibition. In the perfused gland, M(CO(2)) and M(O(2)) increased in linear relation to increases in Cl(-) secretion rate. CA inhibition (10(-4) mol l(-1) acetazolamide) had no effect on Cl(-) secretion rate or pHi in the perfused gland, in contrast to in vivo, but caused a transitory 30% inhibition of M(CO(2)) (relative to stable M(O(2))) and elevation in secretion P(CO(2)) effects, which peaked at 2 h and attenuated by 3.5-4 h. Secretion was inhibited by acidosis and stimulated by alkalosis; the relationship between relative Cl(-) secretion rate and pHe was almost identical to that seen in vivo. Experimental manipulations of perfusate pH, P(CO(2)) and HCO(3)(-) concentration, together with measurements of pHi, demonstrated that these responses were most strongly correlated with changes in pHe, and were not related to changes in P(CO(2)), extracellular HCO(3)(-), or intracellular HCO(3)(-) levels, though changes in pHi may also have played a role. The acid-base status of the secreted fluid varied with that of the perfusate, secretion pH remaining about 0.3-0.5 units lower, and changing in concert with pHe rather than pHi; secretion HCO(3)(-) concentrations remained low, even in the face of greatly elevated perfusate HCO(3)(-) concentrations. We conclude that pH effects on rectal gland secretion rate are adaptive, that CA functions to catalyze the hydration of CO(2), thereby maintaining a gradient for diffusive efflux of CO(2) from the working cells, and that differences in response to CA inhibition likely reflect the higher perfusion-to-secretion ratio in vitro than in vivo.

  13. New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells.

    PubMed

    Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P

    2018-04-01

    The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.

  14. Human esophageal myofibroblasts secrete proinflammatory cytokines in response to acid and Toll-like receptor 4 ligands

    PubMed Central

    Gargus, Matthew; Niu, Chao; Vallone, John G.; Binkley, Jana; Rubin, Deborah C.

    2015-01-01

    The pathophysiology of esophageal injury, repair, and inflammation in gastroesophageal reflux-disease (GERD) is complex. Whereas most studies have focused on the epithelial response to GERD injury, we are interested in the stromal response. We hypothesized that subepithelial esophageal myofibroblasts in GERD secrete proinflammatory cytokines in response to injurious agents encountered via epithelial barrier breaches or through dilated epithelial intercellular spaces. We determined the percentage of myofibroblasts [α-smooth muscle actin (α-SMA)+vimentin+CD31−] in the subepithelial GERD and normal esophageal stroma by immunomorphologic analysis. We performed α-SMA coimmunostaining with IL-6 and p65. We established and characterized primary cultures of α-SMA+vimentin+CD31−CD45− human esophageal myofibroblasts (HuEso MFs). We modeled GERD by treatment with pH 4.5-acidified media and Toll-like receptor 4 (TLR4) ligands, LPS and high-mobility group box 1 protein (HMGB1), and determined myofibroblast cytokine secretion in response to GERD injury. We demonstrate that spindle-shaped cell myofibroblasts are located near the basement membrane of stratified squamous epithelium in normal esophagus. We identify an increase in subepithelial myofibroblasts and activation of proinflammatory pathways in patients with GERD. Primary cultures of stromal cells obtained from normal esophagus retain myofibroblast morphology and express the acid receptor transient receptor potential channel vanilloid subfamily 1 (TRPV1) and TLR4. HuEso MFs stimulated with acid and TLR4 agonists LPS and HMGB1 increase IL-6 and IL-8 secretion via TRPV1 and NF-κB activation. Our work implicates a role for human subepithelial stromal cells in the pathogenesis of GERD-related esophageal injury. Findings of this study can be extended to the investigation of epithelial-stromal interactions in inflammatory esophageal mucosal disorders. PMID:25882613

  15. Establishment of functional acinar-like cultures from human salivary glands.

    PubMed

    Jang, S I; Ong, H L; Gallo, A; Liu, X; Illei, G; Alevizos, I

    2015-02-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. © International & American Associations for Dental Research 2014.

  16. Gastroduodenal mucosal defence mechanisms and the action of non-steroidal anti-inflammatory agents.

    PubMed

    Garner, A; Allen, A; Rowe, P H

    1987-01-01

    This review summarises gastroduodenal protective mechanisms, the actions of non-steroidal anti-inflammatory (NSAI) agents on mucus and HCO3 secretions, and the basis of gastric mucosal injury induced by acetylsalicylic and salicylic acids (ASA and SA). Resistance to autodigestion by acid and pepsin present in gastric juice is multifactorial involving pre-epithelial (mucus-bicarbonate barrier) and post-epithelial (blood flow, acid-base balance) factors in addition to properties of the surface cell layer per se. The latter includes mucosal re-epithelialisation, a property which appears particularly important with respect to recovery from acute injury. A range of NSAI agents (ASA, fenclofenac, ibuprofen and indomethacin) inhibit gastric HCO3 transport in isolated mucosal preparations. Inhibition of duodenal HCO3 transport has been demonstrated in response to indomethacin in vitro and in vivo. These effects on secretion can be antagonised by exogenous prostaglandins of the E series. The layer of secreted mucus gel overlying the epithelial surface is not affected by NSAI drugs in the short term. However a number of these agents have been shown to inhibit glycoprotein biosynthesis by the epithelial cells. Thus loss of this protective coat could be anticipated during chronic drug exposure since erosion of adherent mucus by luminal shear and proteolysis would not be compensated by continued secretion. Detailed analysis of the gastric mucosal injury induced by salicylates both in vitro and in vivo reveals that much of the damage previously attributed to ASA is in fact due to the metabolic product SA. In this respect it is concluded that mucosal injury caused by ASA is due to a combination of two factors.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Involvement of the anion exchanger SLC26A6 in prostaglandin E2- but not forskolin-stimulated duodenal HCO3- secretion.

    PubMed

    Tuo, Biguang; Riederer, Brigitte; Wang, Zhaohui; Colledge, William H; Soleimani, Manoocher; Seidler, Ursula

    2006-02-01

    SLC26A6 is a recently identified apical Cl(-)/HCO(3)(-) exchanger with strong expression in murine duodenum. The present study was designed to examine the role of SLC26A6 in prostaglandin E(2) (PGE(2))-, forskolin-, and carbachol-induced duodenal HCO(3)(-) secretion. Murine duodenal mucosal HCO(3)(-) secretion was examined in vitro in Ussing chambers and mucosal SLC26A6 expression levels were analyzed by semiquantitative reverse-transcription polymerase chain reaction. Basal HCO(3)(-) secretion was diminished by 20%, PGE(2)-stimulated HCO(3)(-) secretory response by 59%, and carbachol-stimulated response was reduced by 35% in SLC26A6-/- compared with +/+ duodenal mucosa, whereas the forskolin-stimulated HCO(3)(-) secretory response was not different. In Cl(-)-free solutions, PGE(2)- and carbachol-stimulated HCO(3)(-) secretion was reduced by 81% and 44%, respectively, whereas forskolin-stimulated HCO(3)(-) secretion was not altered significantly. PGE(2) and carbachol, but not forskolin, were able to elicit a Cl(-)-dependent HCO(3)(-) secretory response in the absence of short-circuit current changes in cystic fibrosis transmembrane conductance regulator knockout mice. In murine duodenum, PGE(2)-mediated HCO(3)(-) secretion is strongly SLC26A6 dependent and cystic fibrosis transmembrane conductance regulator independent, whereas forskolin-stimulated HCO(3)(-) secretion is completely SLC26A6 independent and cystic fibrosis transmembrane conductance regulator dependent. Carbachol-induced secretion is less pronounced, but occurs via both transport pathways. This suggests that PGE(2) and forskolin activate distinct HCO(3)(-) transport pathways in the murine duodenum.

  18. Mutations in the Epithelial Cadherin-p120-Catenin Complex Cause Mendelian Non-Syndromic Cleft Lip with or without Cleft Palate.

    PubMed

    Cox, Liza L; Cox, Timothy C; Moreno Uribe, Lina M; Zhu, Ying; Richter, Chika T; Nidey, Nichole; Standley, Jennifer M; Deng, Mei; Blue, Elizabeth; Chong, Jessica X; Yang, Yueqin; Carstens, Russ P; Anand, Deepti; Lachke, Salil A; Smith, Joshua D; Dorschner, Michael O; Bedell, Bruce; Kirk, Edwin; Hing, Anne V; Venselaar, Hanka; Valencia-Ramirez, Luz C; Bamshad, Michael J; Glass, Ian A; Cooper, Jonathan A; Haan, Eric; Nickerson, Deborah A; van Bokhoven, Hans; Zhou, Huiqing; Krahn, Katy N; Buckley, Michael F; Murray, Jeffrey C; Lidral, Andrew C; Roscioli, Tony

    2018-06-07

    Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  19. Studying Mucin Secretion from Human Bronchial Epithelial Cell Primary Cultures

    PubMed Central

    Abdullah, Lubna H.; Wolber, Cédric; Kesimer, Mehmet; Sheehan, John K.; Davis, C. William

    2016-01-01

    Mucin secretion is regulated by extracellular signaling molecules emanating from local, neuronal, or endocrine sources. Quantifying the rate of this secretion is important to understanding how the exocytic process is regulated, and also how goblet/mucous cells synthesize and release mucins under control and pathological conditions. Consequently, measuring mucins in a quantitatively accurate manner is the key to many experiments addressing these issues. This paper describes procedures used to determine agonist-induced mucin secretion from goblet cells in human bronchial epithelial (HBE) cell cultures. It begins with primary epithelial cell culture, offers methods for purifying MUC5AC and MUC5B mucins for standards, and describes five different microtiter plate binding assays which use various probes for mucins. A polymeric mucin-specific antibody is used in standard and sandwich ELISA formats for two assays while the others target the extensive glycosylated domains of mucins with lectin, periodate oxidation, and antibody-based probes. Comparing the data derived from the different assays applied to the same set of samples of HBE cell cultures indicates a qualitative agreement between baseline and agonist stimulated mucin release; however, the polymeric mucin-specific assays yield substantially lower values than the assays using nonspecific molecular reporters. These results indicate that the more non-specific assays are suitable to assess overall secretory responses by goblet cells, but are likely unsuited for specific measurements of polymeric mucins, per se. PMID:22259142

  20. In vitro exposure of cultured porcine choroid plexus epithelial cells to immunosuppressant, anti-inflammatory, and psychoactive drugs.

    PubMed

    Emerich, Dwaine F; Schneider, Patricia; Bintz, Briannan; Hudak, Jebecka; Thanos, Christopher G

    2007-01-01

    Delivery of neurotrophic molecules to the CNS is a potential treatment for preventing the neuronal loss in neurological disorders such as Huntington's disease (HD). Choroid plexus (CP) epithelial cell transplants secrete several neurotrophic factors and are neuroprotective in rat and monkey animal models of HD. HD patients receiving CP transplants would likely receive a course of immunosuppressant/anti-inflammatory treatment postsurgery and would remain on psychoactive medications to treat their motor, psychiatric, and emotional symptoms. Therefore, we examined whether CP epithelial cells are impacted by incubation with cyclosporine A (CsA), dexmethasone, haloperidol, fluoxetine, and carbamezapine. In each case, DNA was quantified to determine cell number, a formazen dye-based assay was used to quantify cell metabolism, and vascular endothelial growth factor (VEGF) levels were measured as a marker of protein secretion. Except for the highest dose of fluoxetine, none of the drugs tested exerted any detrimental effect on cell number. Incubation with CsA or dexamethasone did not have any consistent significant effect on VEGF secretion or cell metabolism. Carbamazepine was without effect while only the highest dose of haloperidol tested modestly lowered cell metabolism. VEGF secretion and cell metabolism was not measurable from CP cells exposed to 100 microM fluoxetine. These data continue to support the potential use of CP transplants in HD.

  1. Monomethylarsonous Acid (MMAIII) Has an Adverse Effect on the Innate Immune Response of Human Bronchial Epithelial Cells to Pseudomonas aeruginosa.

    PubMed

    Notch, Emily G; Goodale, Britton C; Barnaby, Roxanna; Coutermarsh, Bonita; Berwin, Brent; Taylor, Vivien F; Jackson, Brian P; Stanton, Bruce A

    2015-01-01

    Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa) induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa.

  2. Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema

    PubMed Central

    Solymosi, Esther A.; Kaestle-Gembardt, Stefanie M.; Vadász, István; Wang, Liming; Neye, Nils; Chupin, Cécile Julie Adrienne; Rozowsky, Simon; Ruehl, Ramona; Tabuchi, Arata; Schulz, Holger; Kapus, Andras; Morty, Rory E.; Kuebler, Wolfgang M.

    2013-01-01

    Alveolar fluid clearance driven by active epithelial Na+ and secondary Cl− absorption counteracts edema formation in the intact lung. Recently, we showed that impairment of alveolar fluid clearance because of inhibition of epithelial Na+ channels (ENaCs) promotes cardiogenic lung edema. Concomitantly, we observed a reversal of alveolar fluid clearance, suggesting that reversed transepithelial ion transport may promote lung edema by driving active alveolar fluid secretion. We, therefore, hypothesized that alveolar ion and fluid secretion may constitute a pathomechanism in lung edema and aimed to identify underlying molecular pathways. In isolated perfused lungs, alveolar fluid clearance and secretion were determined by a double-indicator dilution technique. Transepithelial Cl− secretion and alveolar Cl− influx were quantified by radionuclide tracing and alveolar Cl− imaging, respectively. Elevated hydrostatic pressure induced ouabain-sensitive alveolar fluid secretion that coincided with transepithelial Cl− secretion and alveolar Cl− influx. Inhibition of either cystic fibrosis transmembrane conductance regulator (CFTR) or Na+-K+-Cl− cotransporters (NKCC) blocked alveolar fluid secretion, and lungs of CFTR−/− mice were protected from hydrostatic edema. Inhibition of ENaC by amiloride reproduced alveolar fluid and Cl− secretion that were again CFTR-, NKCC-, and Na+-K+-ATPase–dependent. Our findings show a reversal of transepithelial Cl− and fluid flux from absorptive to secretory mode at hydrostatic stress. Alveolar Cl− and fluid secretion are triggered by ENaC inhibition and mediated by NKCC and CFTR. Our results characterize an innovative mechanism of cardiogenic edema formation and identify NKCC1 as a unique therapeutic target in cardiogenic lung edema. PMID:23645634

  3. Vibrio cholerae ACE stimulates Ca(2+)-dependent Cl(-)/HCO(3)(-) secretion in T84 cells in vitro.

    PubMed

    Trucksis, M; Conn, T L; Wasserman, S S; Sears, C L

    2000-09-01

    ACE, accessory cholera enterotoxin, the third enterotoxin in Vibrio cholerae, has been reported to increase short-circuit current (I(sc)) in rabbit ileum and to cause fluid secretion in ligated rabbit ileal loops. We studied the ACE-induced change in I(sc) and potential difference (PD) in T84 monolayers mounted in modified Ussing chambers, an in vitro model of a Cl(-) secretory cell. ACE added to the apical surface alone stimulated a rapid increase in I(sc) and PD that was concentration dependent and immediately reversed when the toxin was removed. Ion replacement studies established that the current was dependent on Cl(-) and HCO(3)(-). ACE acted synergistically with the Ca(2+)-dependent acetylcholine analog, carbachol, to stimulate secretion in T84 monolayers. In contrast, the secretory response to cAMP or cGMP agonists was not enhanced by ACE. The ACE-stimulated secretion was dependent on extracellular and intracellular Ca(2+) but was not associated with an increase in intracellular cyclic nucleotides. We conclude that the mechanism of secretion by ACE involves Ca(2+) as a second messenger and that this toxin stimulates a novel Ca(2+)-dependent synergy.

  4. Functional differences in the acinar cells of the murine major salivary glands.

    PubMed

    Kondo, Y; Nakamoto, T; Jaramillo, Y; Choi, S; Catalan, M A; Melvin, J E

    2015-05-01

    In humans, approximately 90% of saliva is secreted by the 3 major salivary glands: the parotid (PG), the submandibular (SMG), and the sublingual glands (SLG). Even though it is known that all 3 major salivary glands secrete saliva by a Cl(-)-dependent mechanism, salivary secretion rates differ greatly among these glands. The goal of this study was to gain insight into the properties of the ion-transporting pathways in acinar cells that might account for the differences among the major salivary glands. Pilocarpine-induced saliva was simultaneously collected in vivo from the 3 major salivary glands of mice. When normalized by gland weight, the amount of saliva secreted by the PG was more than 2-fold larger than that obtained from the SMG and SLG. At the cellular level, carbachol induced an increase in the intracellular [Ca(2+)] that was more than 2-fold larger in PG and SMG than in SLG acinar cells. Carbachol-stimulated Cl(-) efflux and the protein levels of the Ca(2+)-activated Cl(-) channel TMEM16A, the major apical Cl(-) efflux pathway in salivary acinar cells, were significantly greater in PG compared with SMG and SLG. In addition, we evaluated the transporter activity of the Na(+)-K(+)-2Cl(-) cotransporters (NKCC1) and anion exchangers (AE), the 2 primary basolateral Cl(-) uptake mechanisms in acinar cells. The SMG NKCC1 activity was about twice that of the PG and more than 12-fold greater than that of the SLG. AE activity was similar in PG and SLG, and both PG and SLG AE activity was about 2-fold larger than that of SMG. In summary, the salivation kinetics of the 3 major glands are distinct, and these differences can be explained by the unique functional properties of each gland related to Cl(-) movement, including the transporter activities of the Cl(-) uptake and efflux pathways, and intracellular Ca(2+) mobilization. © International & American Associations for Dental Research 2015.

  5. Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84.

    PubMed

    Ao, Mei; Venkatasubramanian, Jayashree; Boonkaewwan, Chaiwat; Ganesan, Nivetha; Syed, Asma; Benya, Richard V; Rao, Mrinalini C

    2011-02-01

    Lubiprostone, used clinically (b.i.d.) to treat constipation, has been reported to increase transepithelial Cl(-) transport in T84 cells by activating ClC-2 channels. To identify the underlying signaling pathway, we explored the effects of short-term and overnight lubiprostone treatment on second messenger signaling and Cl(-) transport. Cl(-) transport was assessed either as I(sc) across T84 monolayers grown on Transwells and mounted in Ussing chambers or by the iodide efflux assay. [cAMP](i) was measured by enzyme immunoassay, and [Ca(2+)](i) by Fluo-3 fluorescence. Quantitation of apical cell surface CFTR protein levels was assessed by Western blotting and biotinylation with the EZ-Link Sulfo-NHS-LC-LC-Biotin. ClC-2 mRNA level was studied by RT-PCR. Lubiprostone and the cAMP stimulator, forskolin, caused comparable and maximal increases of I(sc) in T84 cells. The I(sc) effects of lubiprostone and forskolin were each suppressed if the tissue had previously been treated with the other agent. These responses were unaltered even if the monolayers were treated with lubiprostone overnight. Lubiprostone-induced increases in iodide efflux were ~80% of those obtained with forskolin. Lubiprostone increased [cAMP](i). H89, bumetanide, or CFTR(inh)-172 greatly attenuated lubiprostone-stimulated Cl(-) secretion, whereas the ClC-2 inhibitor CdCl(2) did not. Compared to controls, FSK-treatment increased membrane-associated CFTR by 1.9 fold, and lubiprostone caused a 2.6-fold increase in apical membrane CFTR as seen by immunoblotting following cell surface biotinylation. Lubiprostone activates Cl(-) secretion in T84 cells via cAMP, protein kinase A, and by increasing apical membrane CFTR protein.

  6. PERP, a host tetraspanning membrane protein, is required for S almonella‐induced inflammation

    PubMed Central

    Hallstrom, Kelly N.; Srikanth, C. V.; Agbor, Terence A.; Dumont, Christopher M.; Peters, Kristen N.; Paraoan, Luminita; Casanova, James E.; Boll, Erik J.

    2015-01-01

    Summary S almonella enterica  Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from S almonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface. PMID:25486861

  7. Fungal Allergen β-Glucans Trigger p38 Mitogen-Activated Protein Kinase–Mediated IL-6 Translation in Lung Epithelial Cells

    PubMed Central

    Neveu, Wendy A.; Bernardo, Edgar; Allard, Jenna L.; Nagaleekar, Viswas; Wargo, Matthew J.; Davis, Roger J.; Iwakura, Yoichiro; Whittaker, Laurie A.

    2011-01-01

    In addition to immune cells, airway epithelial cells can contribute to and shape the immune response in the lung by secreting specific cytokines. IL-6 is a key factor in determining the effector fate of CD4+ T cells. Here we show that under basal conditions, the IL-6 gene is already highly expressed in lung epithelial cells, but not in immune cells resident in the lung. However, upon exposure of the lungs to fungal allergens, the direct contact of β-glucans present in the fungus cell wall with lung epithelial cells is sufficient to trigger the rapid synthesis and secretion of IL-6 protein. This posttranscriptional regulation of IL-6 in response to fungal extracts is mediated by the p38 mitogen-activated protein kinase pathway. The inhalation of β-glucans with a nonallergenic antigen is sufficient to provide an adjuvant effect that leads to mucous hyperplasia in the airways. Thus, β-glucans may constitute a common determinant of the fungal and plant-derived allergens responsible for some of the pathological features in allergic asthma. PMID:21642586

  8. Functional morphology of femoral glands in the Tegu lizard, Tupinambis merianae.

    PubMed

    Chamut, Silvia; Valdez, Valeria García; Manes, Mario E

    2009-04-01

    Several lizards have femoral glands, which have an influence in various reproductive behaviors. In this paper we describe the morphological organization of the femoral glands in the Tegu, Tupinambis merianae, by means of light and electron microscopy. Even though these glands are present in both genders, secretions during the reproductive period can only be found in males. The glandular parenchyma, which is organized in numerous secretory units, consists of keratinocyte-like cells and granular cells. The holocrine secretion is constituted from both cells, which lose their integrity and become a semi-amorphous material, reinforced by keratin sheets. The discharges of each unit merge together into a solid cylinder of secretion, surrounded by epithelial cells, that is extruded to the exterior. The keratin sheets and epithelial layers that surround both the complete and partial secretions form a sort of structural support suitable for the type of territorial demarcation characteristic of the species. The granular cells, supposedly the producers of pheromones, are characterized by the presence of electron-dense granules and multilaminar membranous bodies that show ultrastructural changes of unknown function. The free granules in the secretion cylinder may act as pheromone deposits.

  9. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    PubMed

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation.

  10. Aging reduces the neuroprotective capacity, VEGF secretion, and metabolic activity of rat choroid plexus epithelial cells.

    PubMed

    Emerich, Dwaine F; Schneider, Patricia; Bintz, Briannan; Hudak, Jebecka; Thanos, Christopher G

    2007-01-01

    Delivery of neurotrophic molecules to the brain has potential for preventing neuronal loss in neurodegenerative disorders. Choroid plexus (CP) epithelial cells secrete numerous neurotrophic factors, and encapsulated CP transplants are neuroprotective in models of stroke and Huntington's disease (HD). To date, all studies examining the neuroprotective potential of CP transplants have used cells isolated from young donor animals. Because the aging process significantly impacts the cytoarchitecture and function of the CP the following studies determined whether age-related impairments occur in its neuroprotective capacity. CP was isolated from either young (3-4 months) or aged (24 months) rats. In vitro, young CP epithelial cells secreted more VEGF and were metabolically more active than aged CP epithelial cells. Additionally, conditioned medium from cultured aged CP was less potent than young CP at enhancing the survival of serum-deprived neurons. Finally, encapsulated CP was tested in an animal model of HD. Cell-loaded or empty alginate capsules (control group) were transplanted unilaterally into the rat striatum. Seven days later, the animals received an injection of quinolinic acid (QA; 225 nmol) adjacent to the implant site. Animals were tested for motor function 28 days later. In the control group, QA lesions severely impaired function of the contralateral forelimb. Implants of young CP were potently neuroprotective as rats receiving CP transplants were not significantly impaired when tested for motor function. In contrast, implants of CP from aged rats were only modestly effective and were much less potent than young CP transplants. These data are the first to directly link aging with diminished neuroprotective capacity of CP epithelial cells.

  11. Proteinases secreted by Fasciola hepatica degrade extracellular matrix and basement membrane components.

    PubMed

    Berasaín, P; Goñi, F; McGonigle, S; Dowd, A; Dalton, J P; Frangione, B; Carmona, C

    1997-02-01

    The invasive stages of the parasitic trematode Fasciola hepatica release proteinases into the medium in which they are maintained. In this study, we investigated the interaction of F. hepatica excretory/secretory (E/S) products and 2 cysteine proteinases (CL1 and CL2) purified from these products with extracellular matrix and basement membrane macromolecules. Fasciola hepatica E/S products contained collagenolytic activity on fibrillar types I and III collagen as well as basement membrane type IV collagen. CL1 and CL2 were capable of degrading acid-soluble type III and type IV collagen but not insoluble type I collagen. In contrast, neither the E/S products nor the purified CL1 and CL2 showed elastinolytic activity. Fibronectin and laminin were degraded by E/S products and by CL1 and CL2. Sequence analysis of fibronectin degradation products showed that the fragments obtained corresponded to complete biologically active domains. These results indicate that the cysteine proteinases secreted by F. hepatica may be involved in the process of tissue invasion by the parasite.

  12. Cevimeline-induced monophasic salivation from the mouse submandibular gland: decreased Na+ content in saliva results from specific and early activation of Na+/H+ exchange.

    PubMed

    Kondo, Yusuke; Nakamoto, Tetsuji; Mukaibo, Taro; Kidokoro, Manami; Masaki, Chihiro; Hosokawa, Ryuji

    2011-04-01

    Cevimeline and pilocarpine are muscarinic agonists used clinically to treat dry mouth. In this study, we explored fluid secretion from mouse submandibular glands to determine the mechanism of cevimeline, pilocarpine, and an experimentally used agent carbachol. Cevimeline evoked almost the same amount of secretion at concentrations from 30 μM to 1 mM. Pilocarpine also induced secretion at a concentration as low as 1 μM and was the most powerful secretagogue at 10 μM. Secretion was induced by carbachol at 0.1 μM, with maximum secretion at 1.0 μM. Cevimeline induced monophasic secretion at all concentrations tested, whereas higher concentrations of pilocarpine and carbachol induced secretion with variable kinetics, i.e., an initial transient high flow rate, followed by decreased secretion after 2 to 3 min. In the presence of an epithelial Na(+) channel blocker, amiloride, neither carbachol nor pilocarpine affected the Na(+) level of secreted saliva; however, it significantly increased the Na(+) content of cevimeline-induced saliva. The intracellular Ca(2+) response of acinar cells was almost identical among all three agents, although recovery after drug removal was slower for cevimeline and pilocarpine. A profound decrease in intracellular pH was observed during pilocarpine and carbachol treatment, whereas intracellular acidification induced by cevimeline was only seen in the presence of a Na(+)/H(+) exchange inhibitor. When external HCO(3)(-) was removed, cevimeline-induced saliva significantly decreased. These findings suggest that cevimeline specifically activates Na(+)/H(+) exchange and may promote Na(+) reabsorption by stabilizing epithelial sodium channel activity.

  13. Rebamipide suppresses TNF-α production and macrophage infiltration in the conjunctiva.

    PubMed

    Tajima, Kazuki; Hattori, Takaaki; Takahashi, Hiroki; Katahira, Haruki; Narimatsu, Akitomo; Kumakura, Shigeto; Goto, Hiroshi

    2017-12-18

    To evaluate the anti-inflammatory effect of rebamipide during corneal epithelial wound healing using a mouse wound repair model. A 2-mm circular disc of the central cornea was demarcated in the right eye of C57BL/6 mice and the epithelium removed. Rebamipide 2% eyedrop was instilled onto the wounded eye 5 times a day (n = 26). Phosphate-buffered saline (PBS) was used in the control group (n = 26). Corneal and conjunctival IL-1β and TNF-α levels were measured at 6 h and 24 h postinjury by ELISA. The wounded area was evaluated by fluorescein staining at 24 h postinjury. Macrophage infiltration was assessed immunohistochemically, and TNF-α secretion from macrophages was examined in vitro. Conjunctival IL-1β and corneal IL-1β levels were not significantly different between PBS-treated and rebamipide-treated groups. However, conjunctival TNF-α level was significantly lower in the rebamipide-treated group compared with the PBS-treated group. Macrophage migration into the conjunctiva, but not into the cornea, was suppressed by rebamipide treatment. In addition, TNF-α secretion from cultured macrophages was suppressed by rebamipide in a concentration-dependent manner. Rebamipide treatment significantly accelerated corneal epithelial wound healing at 24 h postinjury. In a mouse corneal epithelial wound model, rebamipide suppressed TNF-α secretion and macrophage infiltration in the conjunctiva, which might have contributed to accelerated corneal epithelial wound healing in the first 24 h following injury. © 2017 American College of Veterinary Ophthalmologists.

  14. Secreted Oral Epithelial Cell Membrane Vesicles Induce Epstein-Barr Virus Reactivation in Latently Infected B Cells

    PubMed Central

    Lin, Zhen; Swan, Kenneth; Zhang, Xin; Cao, Subing; Brett, Zoe; Drury, Stacy; Fewell, Claire; Puetter, Adriane; Wang, Xia; Ferris, MaryBeth; Sullivan, Deborah E.; Li, Li

    2016-01-01

    ABSTRACT In the oral epithelium, peripheral stores of Epstein-Barr virus (EBV) are transmitted from infiltrating B cells to epithelial cells. Once the virus is transmitted to epithelial cells, the highly permissive nature of this cell type for lytic replication allows virus amplification and exchange to other hosts. Since the initial transfer of EBV from B cells to epithelial cells requires transitioning of the B-cell to a state that induces virus reactivation, we hypothesized that there might be epithelium-specific signals that allow the infiltrating B cells to sense the appropriate environment to initiate reactivation and begin this exchange process. We previously found that the epithelium-specific miR-200 family of microRNAs promotes EBV lytic replication. Here we show that there are high levels of miR-200 family members in oral and tonsillar epithelia and in saliva. Analysis of cultured oral epithelial cells (OKF6) showed that they actively secrete membrane vesicles (exosomes) that are enriched with miR-200 family members. Coculturing of EBV-positive B cells with OKF6 cells induced viral reactivation. Further, treatment of EBV-positive B cells with OKF6 cell-derived membrane vesicles promoted reactivation. Using a cell system that does not naturally express miR-200 family members, we found that enforced expression of a miR-200 family member produced membrane vesicles that were able to induce the lytic cascade in EBV-positive B cells. We propose that membrane vesicles secreted by oral and tonsillar epithelial cells may serve as a tissue-specific environmental cue that initiates reactivation in B cells, promoting the transfer of virus from peripheral B-cell stores to the oral epithelium to facilitate virus amplification and exchange to other hosts. IMPORTANCE Epstein-Barr virus (EBV) is an important human pathogen that is causally associated with several lymphomas and carcinomas. The switch from latency to the lytic cycle is critical for successful host infection and for EBV pathogenesis. Although the EBV lytic cycle can be triggered by certain agents in vitro, the mechanisms that signal reactivation in vivo are poorly understood. We previously reported that endogenously expressed miR-200 family members likely play a role in facilitating the lytic tendencies of EBV in epithelial cells. Here we show that membrane vesicles secreted from oral epithelial cells contain miR-200 family members and that they can be transmitted to proximal EBV-positive B cells, where they trigger reactivation. We propose that this intercellular communication pathway may serve as a sensor mechanism for infiltrating B cells to recognize an appropriate environment to initiate reactivation, thereby allowing the exchange of virus to the oral epithelium. PMID:26764001

  15. Granulocyte-macrophage colony-stimulating factor responses of oral epithelial cells to Candida albicans.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-06-01

    Candida albicans is the principal fungal species responsible for oropharyngeal candidiasis, the most frequent opportunistic infection associated with immune deficiencies. Cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), are important in the generation of effective immunity to C. albicans. The purposes of this investigation were to determine whether C. albicans triggers secretion of GM-CSF by oral epithelial cells in vitro and to investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines as well as primary oral mucosal epithelial cells were challenged with stationary phase viable C. albicans, added to human cell cultures at varying yeast:oral cell ratios. Yeast were allowed to germinate for up to 48 h and supernatants were analyzed for GM-CSF by ELISA. Fixed organisms, germination-deficient mutants and separation of yeast from epithelial cells using cell culture inserts were used to assess the effects of viability, germination and physical contact, respectively, on the GM-CSF responses of these cells. Two out of three cell lines and three out of six primary cultures responded to C. albicans with an increase in GM-CSF secretion. GM-CSF responses were contact-dependent, strain-dependent, required yeast viability and were optimal when the yeast germinated into hyphae.

  16. Control of the proinflammatory state in cystic fibrosis lung epithelial cells by genes from the TNF-alphaR/NFkappaB pathway.

    PubMed Central

    Eidelman, O.; Srivastava, M.; Zhang, J.; Leighton, X.; Murtie, J.; Jozwik, C.; Jacobson, K.; Weinstein, D. L.; Metcalf, E. L.; Pollard, H. B.

    2001-01-01

    BACKGROUND: Cystic fibrosis (CF) is the most common, lethal autosomal recessive disease affecting children in the United States and Europe. Extensive work is being performed to develop both gene and drug therapies. The principal mutation causing CF is in the CFTR gene ([Delta F508]CFTR). This mutation causes the mutant protein to traffic poorly to the plasma membrane, and degrades CFTR chloride channel activity. CPX, a candidate drug for CF, binds to mutant CFTR and corrects the trafficking deficit. CPX also activates mutant CFTR chloride channel activity. CF airways are phenotypically inundated by inflammatory signals, primarily contributed by sustained secretion of the proinflammatory cytokine interleukin 8 (IL-8) from mutant CFTR airway epithelial cells. IL-8 production is controlled by genes from the TNF-alphaR/NFkappaB pathway, and it is possible that the CF phenotype is due to dysfunction of genes from this pathway. In addition, because drug therapy with CPX and gene therapy with CFTR have the same common endpoint of raising the levels of CFTR, we have hypothesized that either approach should have a common genomic endpoint. MATERIALS AND METHODS: To test this hypothesis, we studied IL-8 secretion and global gene expression in IB-3 CF lung epithelial cells. The cells were treated by either gene therapy with wild-type CFTR, or by pharmacotherapy with the CFTR-surrogate drug CPX. CF cells, treated with either CFTR or CPX, were also exposed to Pseudomonas aeruginosa, a common chronic pathogen in CF patients. cDNA microarrays were used to assess global gene expression under the different conditions. A novel bioinformatic algorithm (GENESAVER) was developed to identify genes whose expression paralleled secretion of IL-8. RESULTS: We report here that IB3 CF cells secrete massive levels of IL-8. However, both gene therapy with CFTR and drug therapy with CPX substantially suppress IL-8 secretion. Nonetheless, both gene and drug therapy allow the CF cells to respond with physiologic secretion of IL-8 when the cells are exposed to P. aeruginosa. Thus, neither CFTR nor CPX acts as a nonspecific suppressor of IL-8 secretion from CF cells. Consistently, pharmacogenomic analysis indicates that CF cells treated with CPX greatly resemble CF cells treated with CFTR by gene therapy. Additionally, the same result obtains in the presence of P. aeruginosa. Classical hierarchical cluster analysis, based on similarity of global gene expression, also supports this conclusion. The GENESAVER algorithm, using the IL-8 secretion level as a physiologic variable, identifies a subset of genes from the TNF-alphaR/NFkappaB pathway that is expressed in phase with IL-8 secretion from CF epithelial cells. Certain other genes, previously known to be positively associated with CF, also fall into this category. Identified genes known to code for known inhibitors are expressed inversely, out of phase with IL-8 secretion. CONCLUSIONS: Wild-type CFTR and CPX both suppress proinflammatory IL-8 secretion from CF epithelial cells. The mechanism, as defined by pharmacogenomic analysis, involves identified genes from the TNF-alphaR/NFkappaB pathway. The close relationship between IL-8 secretion and genes from the TNF-alphaR/NFkappaB pathway suggests that molecular or pharmaceutical targeting of these novel genes may have strategic use in the development of new therapies for CF. From the perspective of global gene expression, both gene and drug therapy have similar genomic consequences. This is the first example showing equivalence of gene and drug therapy in CF, and suggests that a gene therapy-defined endpoint may prove to be a powerful paradigm for CF drug discovery. Finally, because the GENESAVER algorithm is capable of isolating disease-relevant genes in a hypothesis-driven manner without recourse to any a priori knowledge about the system, this new algorithm may also prove useful in applications to other genetic diseases. PMID:11591888

  17. Translocation of botulinum neurotoxins and associated proteins across intestinal epithelial cells(Abstract)

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins(BoNTs)secreted by Clostridium botulinum are some of the most poisonous toxins in nature and considered to be major bioterrorism threats. To date, seven BoNT subtypes (A to G) have been identified. When secreted from bacteria, some BoNTs associate with a non-toxic, non hemagglu...

  18. Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum.

    PubMed

    Domínguez-Santos, Rebeca; Kosalková, Katarina; García-Estrada, Carlos; Barreiro, Carlos; Ibáñez, Ana; Morales, Alejandro; Martín, Juan-Francisco

    2017-03-06

    Transport of penicillin intermediates and penicillin secretion are still poorly characterized in Penicillium chrysogenum (re-identified as Penicillium rubens). Calcium (Ca 2+ ) plays an important role in the metabolism of filamentous fungi, and casein phosphopeptides (CPP) are involved in Ca 2+ internalization. In this study we observe that the effect of CaCl 2 and CPP is additive and promotes an increase in penicillin production of up to 10-12 fold. Combination of CaCl 2 and CPP greatly promotes expression of the three penicillin biosynthetic genes. Comparative proteomic analysis by 2D-DIGE, identified 39 proteins differentially represented in P. chrysogenum Wisconsin 54-1255 after CPP/CaCl 2 addition. The most interesting group of overrepresented proteins were a peroxisomal catalase, three proteins of the methylcitrate cycle, two aminotransferases and cystationine β-synthase, which are directly or indirectly related to the formation of penicillin amino acid precursors. Importantly, two of the enzymes of the penicillin pathway (isopenicillin N synthase and isopenicillin N acyltransferase) are clearly induced after CPP/CaCl 2 addition. Most of these overrepresented proteins are either authentic peroxisomal proteins or microbody-associated proteins. This evidence suggests that addition of CPP/CaCl 2 promotes the formation of penicillin precursors and the penicillin biosynthetic enzymes in peroxisomes and vesicles, which may be involved in transport and secretion of penicillin. Penicillin biosynthesis in Penicillium chrysogenum is one of the best characterized secondary metabolism processes. However, the mechanism by which penicillin is secreted still remains to be elucidated. Taking into account the role played by Ca 2+ and CPP in the secretory pathway and considering the positive effect that Ca 2+ exerts on penicillin production, the analysis of global protein changes produced after CPP/CaCl 2 addition is very helpful to decipher the processes related to the biosynthesis and secretion of penicillin. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Key role of regulated upon activation normal T-cell expressed and secreted, nonstructural protein1 and myeloperoxidase in cytokine storm induced by influenza virus PR-8 (A/H1N1) infection in A549 bronchial epithelial cells.

    PubMed

    Phung, Thuy Thi Bich; Sugamata, Ryuichi; Uno, Kazuko; Aratani, Yasuaki; Ozato, Keiko; Kawachi, Shoji; Thanh Nguyen, Liem; Nakayama, Toshinori; Suzuki, Kazuo

    2011-12-01

    Influenza virus infection causes severe respiratory disease such as that due to avian influenza (H5N1). Influenza A viruses proliferate in human epithelial cells, which produce inflammatory cytokines/chemokines as a "cytokine storm" attenuated with the viral nonstructural protein 1 (NS1). Cytokine/chemokine production in A549 epithelial cells infected with influenza A/H1N1 virus (PR-8) or nonstructural protein 1 (NS1) plasmid was examined in vitro. Because tumor necrosis factor-α (TNF-α) and regulated upon activation normal T-cell expressed and secreted (RANTES) are predominantly produced from cells infected with PR-8 virus, the effects of mRNA knockdown of these cytokines were investigated. Small interfering (si)TNF-α down-regulated RANTES expression and secretion of RANTES, interleukin (IL)-8, and monocyte chemotactic protein-1 (MCP-1). In addition, siRANTES suppressed interferon (IFN)-γ expression and secretion of RANTES, IL-8, and MCP-1, suggesting that TNF-α stimulates production of RANTES, IL-8, MCP-1, and IFN-γ, and RANTES also increased IL-8, MCP-1, and IFN-γ. Furthermore, administration of TNF-α promoted increased secretion of RANTES, IL-8, and MCP-1. Administration of RANTES enhanced IL-6, IL-8, and MCP-1 production without PR-8 infection. These results strongly suggest that, as an initial step, TNF-α regulates RANTES production, followed by increase of IL-6, IL-8, and MCP-1 and IFNs concentrations. At a later stage, cells transfected with viral NS1 plasmid showed production of a large amount of IL-8 and MCP-1 in the presence of the H(2)O(2)-myeloperoxidse (MPO) system, suggesting that NS1 of PR-8 may induce a "cytokine storm" from epithelial cells in the presence of an H(2)O(2)-MPO system. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  20. Calcium-activated potassium channels in basolateral membranes of colon epithelial cells; reconstitution and functional properties.

    PubMed

    Wiener, H; Turnheim, K

    1990-10-26

    Using differential sedimentation, isopycnic and Ficoll-400 barrier centrifugation, basolateral membrane vesicles of surface and crypt cells of the rabbit distal colon were enriched 34- and 9-fold, respectively. 86Rb(+)-uptake into these vesicles, driven by an electrical potential difference, was stimulated by submicromolar Ca2+ activities and inhibited by Ba2+. These findings indicate the presence of Ca2(+)-activated K+ channels. The K+ channels in surface and crypt cell membranes differed with respect to inhibition by the bee venom apamin, the scorpion venom charybdotoxin and tetraethylammonium and exhibited a different pH dependence. Fusion of basolateral membrane vesicles with planar phospholipid bilayers revealed the presence of high-conductance Ba2(+)-sensitive K+ channels which were activated by micromolar Ca2+ and inhibited by crude scorpion venom and trifluoperazine. These K+ channels may be involved in the coupling of apical and basolateral membrane conductances during Na+ absorption and Cl- secretion, but they may also play a role in cell volume regulation.

  1. Translocation of Helicobacter pylori CagA into Gastric Epithelial Cells by Type IV Secretion

    NASA Astrophysics Data System (ADS)

    Odenbreit, Stefan; Püls, Jürgen; Sedlmaier, Bettina; Gerland, Elke; Fischer, Wolfgang; Haas, Rainer

    2000-02-01

    The Gram-negative bacterium Helicobacter pylori is a causative agent of gastritis and peptic ulcer disease in humans. Strains producing the CagA antigen (cagA+) induce strong gastric inflammation and are strongly associated with gastric adenocarcinoma and MALT lymphoma. We show here that such strains translocate the bacterial protein CagA into gastric epithelial cells by a type IV secretion system, encoded by the cag pathogenicity island. CagA is tyrosine-phosphorylated and induces changes in the tyrosine phosphorylation state of distinct cellular proteins. Modulation of host cells by bacterial protein translocation adds a new dimension to the chronic Helicobacter infection with yet unknown consequences.

  2. Not All Lacrimal Epithelial Cells are Created Equal—Heterogeneity of the Rabbit Lacrimal Gland and Differential Secretion

    PubMed Central

    Ding, Chuanqing; Huang, Jianyan; MacVeigh-Aloni, Michelle; Lu, Michael

    2013-01-01

    Aims To test the hypotheses that some epithelial cells in the rabbit lacrimal gland (LG) are mucin-secreting cells that are also particularly rich in aquaporin 5 (AQP5) and sodium potassium ATPase β1 subunit (NKAβ1), LG-secreted mucins contribute to the total mucin pool in tear film, and that the rabbit LG is a heterogenic gland where proteins secreted in response to different agonists are varied. Materials and methods LGs were obtained from adult female rabbits and processed for paraffin sections for hematoxylin and eosin (HE) staining, periodic acid-Schiff (PAS), mucicarmine, and Alcian blue (pH 0.4, 1.0, and 2.5) for the detection of mucins. Serial sections were used for immunohistochemistry (IHC) and PAS. LG lysates and fluids were assayed by dot blot for detection of mucins, and by SDS-PAGE to detect differences in protein profiles of LG fluids stimulated by different agonists. Results HE staining demonstrated that the LG is a heterogeneous gland where most epithelial cells are serous, while all duct cells are mucous cells. Some acini and individual acinar cells within serous acini are also mucous or seromucous cells and these cells are particularly rich in AQP5 and NKAβ1. Dot blot assay showed the presence of mucins in the LG fluids. The protein profiles of LG fluids from pilocarpine, phenylephrine, and isoproterenol varied significantly, particularly in the mid range. Conclusions Our data indicated that the rabbit LG is a heterogeneous gland that is composed of both serous and mucin-secreting cells, and mucins produced by the LG contribute to the mucin pool in the tear film. The heterogeneity of the rabbit LG supports the notion of differential secretion, i.e. the volume and composition of the LG fluids vary depending on various circumstances in the ocular surface and the body’s needs. PMID:21999223

  3. Lacritin and other new proteins of the lacrimal functional unit.

    PubMed

    McKown, Robert L; Wang, Ningning; Raab, Ronald W; Karnati, Roy; Zhang, Yinghui; Williams, Patricia B; Laurie, Gordon W

    2009-05-01

    The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as 'an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them'. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over 200 new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin's low nanomolar mitogenic activity. The lacritin-binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction.

  4. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair. © FASEB.

  5. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells

    PubMed Central

    Kumar, Anoop; Alrefai, Waddah A.; Dudeja, Pradeep K.

    2015-01-01

    Butyrate, a key short-chain fatty acid metabolite of colonic luminal bacterial action on dietary fiber, serves as a primary fuel for the colonocytes, ameliorates mucosal inflammation, and stimulates NaCl absorption. Absorption of butyrate into the colonocytes is essential for these intracellular effects. Monocarboxylate transporter 1 (MCT1) plays a major role in colonic luminal butyrate absorption. Previous studies (Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. Adv Immunol 121: 91–119, 2014.) showed decreased MCT1 expression and function in intestinal inflammation. We have previously shown (Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK. Am J Physiol Gastrointest Liver Physiol 290: G30–G35, 2006.) impaired butyrate absorption in human intestinal epithelial Caco-2 cells due to decreased MCT1 level at the apical cell surface following enteropathogenic E. coli (EPEC) infection. Current studies, therefore, examined the potential role of probiotic Lactobacilli in stimulating MCT1-mediated butyrate uptake and counteracting EPEC inhibition of MCT1 function. Of the five species of Lactobacilli, short-term (3 h) treatment with L. acidophilus (LA) significantly increased MCT1-mediated butyrate uptake in Caco-2 cells. Heat-killed LA was ineffective, whereas the conditioned culture supernatant of LA (LA-CS) was equally effective in stimulating MCT1 function, indicating that the effects are mediated by LA-secreted soluble factor(s). Furthermore, LA-CS increased apical membrane levels of MCT1 protein via decreasing its basal endocytosis, suggesting that LA-CS stimulation of butyrate uptake could be secondary to increased levels of MCT1 on the apical cell surface. LA-CS also attenuated EPEC inhibition of butyrate uptake and EPEC-mediated endocytosis of MCT1. Our studies highlight distinct role of specific LA-secreted molecules in modulating colonic butyrate absorption. PMID:26272259

  6. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension

    PubMed Central

    Leenen, Frans H. H.; Chen, Ling; Golovina, Vera A.; Hamlyn, John M.; Pallone, Thomas L.; Van Huysse, James W.; Zhang, Jin; Wier, W. Gil

    2012-01-01

    Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na+ and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na+]. This leads, via the Na+-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na+ pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na+]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na+ channels, EO, ouabain-sensitive α2 Na+ pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na+ channel-EO-α2 Na+ pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α2 Na+ pump-Na+/Ca2+ exchanger-Ca2+ signaling pathway. Circulating EO also activates an EO-α2 Na+ pump-Src kinase signaling cascade. This increases the expression of the Na+/Ca2+ exchanger-transient receptor potential cation channel Ca2+ signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP. PMID:22058154

  7. Competitive inhibition of thyroidal uptake of dietary iodide by perchlorate does not describe perturbations in rat serum total T4 and TSH.

    PubMed

    McLanahan, Eva D; Andersen, Melvin E; Campbell, Jerry L; Fisher, Jeffrey W

    2009-05-01

    Perchlorate (ClO4(-)) is an environmental contaminant known to disrupt the thyroid axis of many terrestrial and aquatic species. ClO4(-) competitively inhibits iodide uptake into the thyroid at the sodium/iodide symporter and disrupts hypothalamic-pituitary-thyroid (HPT) axis homeostasis in rodents. We evaluated the proposed mode of action for ClO4(-)-induced rat HPT axis perturbations using a biologically based dose-response (BBDR) model of the HPT axis coupled with a physiologically based pharmacokinetic model of ClO4(-). We configured a BBDR-HPT/ClO4(-) model to describe competitive inhibition of thyroidal uptake of dietary iodide by ClO4(-) and used it to simulate published adult rat drinking water studies. We compared model-predicted serum thyroid-stimulating hormone (TSH) and total thyroxine (TT4) concentrations with experimental observations reported in these ClO4(-) drinking water studies. The BBDR-HPT/ClO4(-) model failed to predict the ClO4(-)-induced onset of disturbances in the HPT axis. Using ClO4(-) inhibition of dietary iodide uptake into the thyroid, the model underpredicted both the rapid decrease in serum TT4 concentrations and the rise in serum TSH concentrations. Assuming only competitive inhibition of thyroidal uptake of dietary iodide, BBDR-HPT/ClO4(-) model calculations were inconsistent with the rapid decrease in serum TT4 and the corresponding increase in serum TSH. Availability of bound iodide in the thyroid gland governed the rate of hormone secretion from the thyroid. ClO4(-) is translocated into the thyroid gland, where it may act directly or indirectly on thyroid hormone synthesis/secretion in the rat. The rate of decline in serum TT4 in these studies after 1 day of treatment with ClO4(-) appeared consistent with a reduction in thyroid hormone production/secretion. This research demonstrates the utility of a biologically based model to evaluate a proposed mode of action for ClO4(-) in a complex biological process.

  8. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    PubMed Central

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan

    2012-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  9. Culture of prostate epithelial cells of the rhesus monkey on extracellular matrix substrate: influence of steroids and insulin-like growth factors.

    PubMed

    Udayakumar, T S; Jeyaraj, D A; Rajalakshmi, M; Sharma, R S

    1999-09-01

    Rhesus monkey prostate epithelial cells from the cranial lobe were isolated and cultured in flasks coated either with collagen IV or laminin. The effects of stromal cell medium, androgens and growth factors on cell number, thymidine incorporation and secretory activity were assessed. The results indicate that dihydrotestosterone (DHT) and androstenedione have stimulatory influences on cell proliferation and secretion in coated flasks. DHT was more effective in increasing cell number but the induction of secretory activity was similar with both steroids. The combination of IGF-I and -II resulted in inducing better cell proliferation and secretory activity than the individual IGFs but, of the two IGFs, IGF-I was more effective than IGF-II. DHT with IGFs was more potent in inducing proliferation, differentiation and secretion than androstenedione. Even in the absence of steroids or growth factors, colony formation and confluence occurred in coated flasks but cell differentiation and secretion only to a limited extent. In conclusion, we were able to establish an in vitro primary culture of prostate epithelial cells from rhesus monkey using extracellular matrix proteins, steroids and growth factors as additional supplements. This culture system may be useful to study prostate cell physiology and to identify drugs that can inhibit cell proliferation.

  10. Expression of membrane-associated mucins MUC1 and MUC4 in major human salivary glands.

    PubMed

    Liu, Bing; Lague, Jessica R; Nunes, David P; Toselli, Paul; Oppenheim, Frank G; Soares, Rodrigo V; Troxler, Robert F; Offner, Gwynneth D

    2002-06-01

    Mucins are high molecular weight glycoproteins secreted by salivary glands and epithelial cells lining the digestive, respiratory, and reproductive tracts. These glycoproteins, encoded in at least 13 distinct human genes, can be subdivided into gel-forming and membrane-associated forms. The gel-forming mucin MUC5B is secreted by mucous acinar cells in major and minor salivary glands, but little is known about the expression pattern of membrane-associated mucins. In this study, RT-PCR and Northern blotting demonstrated the presence of transcripts for MUC1 and MUC4 in both parotid and submandibular glands, and in situ hybridization localized these transcripts to epithelial cells lining striated and excretory ducts and in some serous acinar cells. The same cellular distribution was observed by immunohistochemistry. Soluble forms of both mucins were detected in parotid secretion after immunoprecipitation with mucin-specific antibodies. These studies have shown that membrane-associated mucins are produced in both parotid and submandibular glands and that they are expressed in different cell types than gel-forming mucins. Although the function of these mucins in the oral cavity remains to be elucidated, it is possible that they both contribute to the epithelial protective mucin layer and act as receptors initiating one or more intracellular signal transduction pathways.

  11. Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures

    PubMed Central

    Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914

  12. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells.

    PubMed

    Pothlichet, Julien; Meunier, Isabelle; Davis, Beckley K; Ting, Jenny P-Y; Skamene, Emil; von Messling, Veronika; Vidal, Silvia M

    2013-01-01

    Influenza A virus (IAV) triggers a contagious and potentially lethal respiratory disease. A protective IL-1β response is mediated by innate receptors in macrophages and lung epithelial cells. NLRP3 is crucial in macrophages; however, which sensors elicit IL-1β secretion in lung epithelial cells remains undetermined. Here, we describe for the first time the relative roles of the host innate receptors RIG-I (DDX58), TLR3, and NLRP3 in the IL-1β response to IAV in primary lung epithelial cells. To activate IL-1β secretion, these cells employ partially redundant recognition mechanisms that differ from those described in macrophages. RIG-I had the strongest effect through a MAVS/TRIM25/Riplet-dependent type I IFN signaling pathway upstream of TLR3 and NLRP3. Notably, RIG-I also activated the inflammasome through interaction with caspase 1 and ASC in primary lung epithelial cells. Thus, NS1, an influenza virulence factor that inhibits the RIG-I/type I IFN pathway, strongly modulated the IL-1β response in lung epithelial cells and in ferrets. The NS1 protein derived from a highly pathogenic strain resulted in increased interaction with RIG-I and inhibited type I IFN and IL-1β responses compared to the least pathogenic virus strains. These findings demonstrate that in IAV-infected lung epithelial cells RIG-I activates the inflammasome both directly and through a type I IFN positive feedback loop.

  13. The effect of NO-donors on chloride efflux, intracellular Ca(2+) concentration and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells.

    PubMed

    Oliynyk, Igor; Hussain, Rashida; Amin, Ahmad; Johannesson, Marie; Roomans, Godfried M

    2013-06-01

    Since previous studies showed that the endogenous bronchodilator, S-nitrosglutathione (GSNO), caused a marked increase in CFTR-mediated chloride (Cl(-)) efflux and improved the trafficking of CFTR to the plasma membrane, and that also the nitric oxide (NO)-donor GEA3162 had a similar, but smaller, effect on Cl(-) efflux, it was investigated whether the NO-donor properties of GSNO were relevant for its effect on Cl(-) efflux from airway epithelial cells. Hence, the effect of a number of other NO-donors, sodium nitroprusside (SNP), S-nitroso-N-acetyl-DL-penicillamine (SNAP), diethylenetriamine/nitric oxide adduct (DETA-NO), and diethylenetriamine/nitric oxide adduct (DEA-NONOate) on Cl(-) efflux from CFBE (∆F508/∆F508-CFTR) airway epithelial cells was tested. Cl(-) efflux was determined using the fluorescent N-(ethoxycarbonylmethyl)-6-methoxyquinoliniu bromide (MQAE)-technique. Possible changes in the intracellular Ca(2+) concentration were tested by the fluorescent fluo-4 method in a confocal microscope system. Like previously with GSNO, after 4 h incubation with the NO-donor, an increased Cl(-) efflux was found (in the order SNAP>DETA-NO>SNP). The effect of DEA-NONOate on Cl(-) efflux was not significant, and the compound may have (unspecific) deleterious effects on the cells. Again, as with GSNO, after a short (5 min) incubation, SNP had no significant effect on Cl(-) efflux. None of the NO-donors that had a significant effect on Cl(-) efflux caused significant changes in the intracellular Ca(2+) concentration. After 4 h preincubation, SNP caused a significant increase in the mRNA expression of CFTR. SNAP and DEA-NONOate decreased the mRNA expression of all ENaC subunits significantly. DETA-NO caused a significant decrease only in α-ENaC expression. After a short preincubation, none of the NO-donors had a significant effect, neither on the expression of CFTR, nor on that of the ENaC subunits in the presence and absence of L-cysteine. It can be concluded that the effect of GSNO on Cl(-) efflux is, at least in part, due to its properties as an NO-donor, and the effect is likely to be mediated by CFTR, not by Ca(2+)-activated Cl(-) channels. Copyright © 2013. Published by Elsevier Inc.

  14. IL-13 induces a bronchial epithelial phenotype that is profibrotic

    PubMed Central

    Malavia, Nikita K; Mih, Justin D; Raub, Christopher B; Dinh, Bao T; George, Steven C

    2008-01-01

    Background Inflammatory cytokines (e.g. IL-13) and mechanical perturbations (e.g. scrape injury) to the epithelium release profibrotic factors such as TGF-β2, which may, in turn, stimulate subepithelial fibrosis in asthma. We hypothesized that prolonged IL-13 exposure creates a plastic epithelial phenotype that is profibrotic through continuous secretion of soluble mediators at levels that stimulate subepithelial fibrosis. Methods Normal human bronchial epithelial cells (NHBE) were treated with IL-13 (0, 0.1, 1, or 10 ng/ml) for 14 days (day 7 to day 21 following seeding) at an air-liquid interface during differentiation, and then withdrawn for 1 or 7 days. Pre-treated and untreated NHBE were co-cultured for 3 days with normal human lung fibroblasts (NHLF) embedded in rat-tail collagen gels during days 22–25 or days 28–31. Results IL-13 induced increasing levels of MUC5AC protein, and TGF-β2, while decreasing β-Tubulin IV at day 22 and 28 in the NHBE. TGF-β2, soluble collagen in the media, salt soluble collagen in the matrix, and second harmonic generation (SHG) signal from fibrillar collagen in the matrix were elevated in the IL-13 pre-treated NHBE co-cultures at day 25, but not at day 31. A TGF-β2 neutralizing antibody reversed the increase in collagen content and SHG signal. Conclusion Prolonged IL-13 exposure followed by withdrawal creates an epithelial phenotype, which continuously secretes TGF-β2 at levels that increase collagen secretion and alters the bulk optical properties of an underlying fibroblast-embedded collagen matrix. Extended withdrawal of IL-13 from the epithelium followed by co-culture does not stimulate fibrosis, indicating plasticity of the cultured airway epithelium and an ability to return to a baseline. Hence, IL-13 may contribute to subepithelial fibrosis in asthma by stimulating biologically significant TGF-β2 secretion from the airway epithelium. PMID:18348727

  15. Shigella gets captured to gain entry.

    PubMed

    McCormick, Beth A

    2011-06-16

    The type III secretion system-dependent epithelial invasion and dissemination of Shigella is stimulated by ATP released through hemichannels. Romero et al. (2011) show that prior to epithelial contact, Shigella is captured by nanometer-thin micropodial extensions at a distance from the cell surface, in a process involving ATP and connexin-mediated signaling. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Dendritic cells from the elderly display an intrinsic defect in the production of IL-10 in response to lithium chloride.

    PubMed

    Agrawal, Sudhanshu; Gollapudi, Sastry; Gupta, Sudhir; Agrawal, Anshu

    2013-11-01

    Chronic, low grade inflammation is a characteristic of old age. Innate immune system cells such as dendritic cells (DCs) from the elderly display a pro-inflammatory phenotype associated with increased reactivity to self. Lithium is a well-established anti-inflammatory agent used in the treatment of bipolar disorders. It has also been reported to reduce inflammation in DCs. Here, we investigated whether Lithium is effective in reducing the inflammatory responses in DCs from the elderly. The effect of Lithium Chloride (LiCl) was compared on the response of TLR4 agonist, LPS and TLR2 agonist, PAM3CSK4 stimulated aged and young DCs. LiCl enhanced the production of IL-10 in LPS stimulated young DCs. However, it did not affect TNF-α and IL-6 production. In contrast, in aged DCs, LiCl reduced the secretion of TNF-α and IL-6 in LPS stimulated DCs but did not increase IL-10. LiCl had no significant effect on PAM3CSK4 responses in aged and young DCs. LiCl treated DCs also displayed differences at the level of CD4 T cell priming and polarization. LPS-stimulated young DCs reduced IFN-γ secretion and biased the Th cell response towards Th2/Treg while LiCl treated aged DCs only reduced IFN-γ secretion but did not bias the response towards Th2/Treg. In summary, our data suggests that LiCl reduces inflammation in aged and young DCs via different mechanisms. Furthermore, the effect of LiCl is different on LPS and PAM3CSK4 responses. © 2013.

  17. Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory effects in a rat model of retinal degeneration.

    PubMed

    Huang, Libin; Xu, Wei; Xu, Guoxing

    2013-08-01

    To investigate the neuroprotective and immunomodulatory effects of mesenchymal stem cells (MSCs) engineered to secrete CX3CL1 on the light-injured retinal structure and function. Normal MSCs and CX3CL1-expressing MSCs (CX3CL1-MSCs) were transplanted into the subretinal space of light-injured rats. By ERG and TUNEL methods, their rescue effect of the host retina was compared with untreated light-injured and vehicle-injected rats. Activated microglia in the retina were stained by ED-1 antibody, and Western blot was performed to quantify cytokines secreted by the retina post-transplantation. ERG analysis showed better function in CX3CL1-MSC-injected group than other groups at 21 days after transplantation (p < 0.05). CX3CL1-MSCs inhibited apoptosis of the retinal cells and microglial activation. Neurotrophic factors expression in host retina that received CX3CL1-MSCs was stronger than in the retina that received normal MSCs. Conversely, the expression of proinflammatory factors was downregulated. CX3CL1-MSCs subretinal transplantation may enhance protective effect against light-induced retinal degeneration.

  18. Reconciling the Krogh and Ussing interpretations of epithelial chloride transport - presenting a novel hypothesis for the physiological significance of the passive cellular chloride uptake.

    PubMed

    Larsen, Erik Hviid

    2011-07-01

    In 1937, August Krogh discovered a powerful active Cl(-) uptake mechanism in frog skin. After WWII, Hans Ussing continued the studies on the isolated skin and discovered the passive nature of the chloride uptake. The review concludes that the two modes of transport are associated with a minority cell type denoted as the γ-type mitochondria-rich (MR) cell, which is highly specialized for epithelial Cl(-) uptake whether the frog is in the pond of low [NaCl] or the skin is isolated and studied by Ussing chamber technique. One type of apical Cl(-) channels of the γ-MR cell is activated by binding of Cl(-) to an external binding site and by membrane depolarization. This results in a tight coupling of the uptake of Na(+) by principal cells and Cl(-) by MR cells. Another type of Cl(-) channels (probably CFTR) is involved in isotonic fluid uptake. It is suggested that the Cl(-) channels serve passive uptake of Cl(-) from the thin epidermal film of fluid produced by mucosal glands. The hypothesis is evaluated by discussing the turnover of water and ions of the epidermal surface fluid under terrestrial conditions. The apical Cl(-) channels close when the electrodiffusion force is outwardly directed as it is when the animal is in the pond. With the passive fluxes eliminated, the Cl(-) flux is governed by active transport and evidence is discussed that this is brought about by an exchange of cellular HCO(3) (-) with Cl(-) of the outside bath driven by an apical H(+) V-ATPase. © 2011 The Author. Acta Physiologica © 2011 Scandinavian Physiological Society.

  19. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin.

    PubMed

    Jiang, Yu; Yu, Bo; Wang, Xue; Sui, Yujie; Zhang, Yaofang; Yang, Shuang; Yang, Hong; Ma, Tonghui

    2014-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. In the present study, we identified tangeretin from Pericarpium Citri Reticulatae Viride as a CFTR activator using high-throughput screening based on FRT cell-based fluorescence assay. The activation effect of tangeretin on CFTR chloride channel and the possible underlying mechanisms were investigated. Fluorescence quenching tests showed that tangeretin dose- and time-dependently activated CFTR chloride channel, the activity had rapid and reversible characteristics and the activation effect could be completely reversed by the CFTR specific blocker CFTRinh-172. Primary mechanism studies indicated that the activation effect of tangeretin on CFTR chloride channel was FSK dependent as well as had additional effect with FSK and IBMX suggesting that tangeretin activates CFTR by direct interacting with the protein. Ex-vivo tests revealed that tangeretin could accelerate the speed of the submucosal gland fluid secretion. Short-circuit current measurement demonstrated that tangeretin activated rat colonic mucosa chloride current. Thus, CFTR Cl(-) channel is a molecular target of natural compound tangeretin. Tangeretin may have potential use for the treatment of CFTR-related diseases like cystic fibrosis, bronchiectasis and habitual constipation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The secretion of organic acids is also regulated by factors other than aluminum.

    PubMed

    Ding, Haiyan; Wen, Danni; Fu, Zhengwei; Qian, Haifeng

    2014-02-01

    As a result of natural processes and human activities, aluminum (Al) toxicity is recognized as a major limiting factor for plant productivity, and the secretion of organic acids facilitated by channel proteins is one of the most important Al resistance mechanisms in plants. The objective of this study was to evaluate the effects of several types of stress, including herbicide (imazethapyr (IM) and diclofop-methyl (DM)), heavy metal (Al and Cu), salt stress (NaCl), and proton stress (HCl), on the release of organic acids in rice. The results showed that 0.05 mg/L IM, 0.1 mg/L DM, 4680 mg/L NaCl, 0.5 mg/L CuSO4, and 18 mg/L AlCl3 significantly inhibited rice root elongation and the root fresh weight. In contrast, no significant inhibitory effects on rice growth were found with HCl (pH = 4.5). Similar to the effect of AlCl3 on organic acid induction, treatment with IM, DM, NaCl, and CuSO4 also induced the synthesis of endogenous citric acid and oxalic acid but decreased endogenous malic acid synthesis in the seedlings, though only citric acid was released into the environment after these treatments. We also analyzed the transcripts of three citrate channel proteins and found they were up-regulated by NaCl, CuSO4, and AlCl3 but not by IM or DM. This study clarified that organic acid secretion in plants might be a common phenomenon when plants are exposed to environmental stress other than Al toxicity.

  1. Human rhinovirus-induced ISG15 selectively modulates epithelial antiviral immunity

    PubMed Central

    Zaheer, R S; Wiehler, S; Hudy, M H; Traves, S L; Pelikan, J B; Leigh, R; Proud, D

    2014-01-01

    Human rhinovirus (HRV) infections trigger exacerbations of lower airway diseases. HRV infects human airway epithelial cells and induces proinflammatory and antiviral molecules that regulate the response to HRV infection. Interferon (IFN)-stimulated gene of 15 kDa (ISG15) has been shown to regulate other viruses. We now show that HRV-16 infection induces both intracellular epithelial ISG15 expression and ISG15 secretion in vitro. Moreover, ISG15 protein levels increased in nasal secretions of subjects with symptomatic HRV infections. HRV-16-induced ISG15 expression is transcriptionally regulated via an IFN regulatory factor pathway. ISG15 does not directly alter HRV replication but does modulate immune signaling via the viral sensor protein RIG-I to impact production of CXCL10, which has been linked to innate immunity to viruses. Extracellular ISG15 also alters CXCL10 production. We conclude that ISG15 has a complex role in host defense against HRV infection, and that additional studies are needed to clarify the role of this molecule. PMID:24448099

  2. Soluble CD14 in human breast milk and its role in innate immune responses.

    PubMed

    Vidal, K; Labéta, M O; Schiffrin, E J; Donnet-Hughes, A

    2001-10-01

    Immune factors secreted in milk are important for health in the neonatal gut. We have detected the bacterial pattern recognition receptor, soluble CD14 (sCD14) in human breast milk at different times during lactation. The molecule occurs in a single form in milk, in contrast to human serum, in which there are two isoforms. Produced by mammary epithelial cells, milk sCD14 mediates secretion of innate immune response molecules such as interleukin-8, tumor necrosis factor-alpha, and epithelial neutrophil activator-78 by CD14-negative intestinal epithelial cells exposed to lipopolysaccharide (LPS) or bacteria. Although present at low concentrations in milk, LPS-binding protein may be implicated in the biological effects observed. Our findings support the premise that milk sCD14 acts as a 'sentinel' molecule and immune modulator in homeostasis and in the defense of the neonatal intestine. In so doing, it may prevent the immune and inflammatory conditions of the gut to which non-breastfed infants are predisposed.

  3. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells.

    PubMed

    Hernandez, Amanda L; Kitz, Alexandra; Wu, Chuan; Lowther, Daniel E; Rodriguez, Donald M; Vudattu, Nalini; Deng, Songyan; Herold, Kevan C; Kuchroo, Vijay K; Kleinewietfeld, Markus; Hafler, David A

    2015-11-02

    FOXP3+ Tregs are central for the maintenance of self-tolerance and can be defective in autoimmunity. In multiple sclerosis and type-1 diabetes, dysfunctional self-tolerance is partially mediated by a population of IFNγ-secreting Tregs. It was previously reported that increased NaCl concentrations promote the induction of proinflammatory Th17 cells and that high-salt diets exacerbate experimental models of autoimmunity. Here, we have shown that increasing NaCl, either in vitro or in murine models via diet, markedly impairs Treg function. NaCl increased IFNγ secretion in Tregs, and reducing IFNγ - either by neutralization with anti-IFNγ antibodies or shRNA-mediated knockdown - restored suppressive activity in Tregs. The heightened IFNγ secretion and loss of Treg function were mediated by the serum/glucocorticoid-regulated kinase (SGK1). A high-salt diet also impaired human Treg function and was associated with the induction of IFNγ-secreting Tregs in a xenogeneic graft-versus-host disease model and in adoptive transfer models of experimental colitis. Our results demonstrate a putative role for an environmental factor that promotes autoimmunity by inducing proinflammatory responses in CD4 effector cells and Treg pathways.

  4. Porphyromonas gingivalis-mediated shedding of extracellular matrix metalloproteinase inducer (EMMPRIN) by oral epithelial cells: a potential role in inflammatory periodontal disease.

    PubMed

    Feldman, Mark; La, Vu Dang; Lombardo Bedran, Telma Blanca; Palomari Spolidorio, Denise Madalena; Grenier, Daniel

    2011-12-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Triiodothyronine stimulates VEGF expression and secretion via steroids and HIF-1α in murine Leydig cells.

    PubMed

    Dhole, Bodhana; Gupta, Surabhi; Venugopal, Senthil Kumar; Kumar, Anand

    2018-06-01

    Leydig cells are the principal steroidogenic cells of the testis. Leydig cells also secrete a number of growth factors including vascular endothelial growth factor (VEGF) which has been shown to regulate both testicular steroidogenesis and spermatogenesis. The thyroid hormone, T 3, is known to stimulate steroidogenesis in Leydig cells. T 3 has also been shown to stimulate VEGF production in a variety of cell lines. However, studies regarding the effect of T 3 on VEGF synthesis and secretion by the Leydig cells were lacking. Therefore, we investigated the effect of T 3 on VEGF synthesis and secretion in a mouse Leydig tumour cell line, MLTC-1. The effect of T 3 was compared with that of LH/cAMP and hypoxia, two known stimulators of Leydig cell functions. The cells were treated with T 3 , 8-Br-cAMP (a cAMP analogue), or CoCl 2 (a hypoxia mimetic) and VEGF secreted in the cell supernatant was measured using ELISA. The mRNA levels of VEGF were measured by quantitative RT-PCR. In the MLTC-1 cells, T 3 , 8-Br-cAMP, and CoCl 2 stimulated VEGF mRNA levels and the protein secretion. T 3 also increased steroid secretion as well as HIF-1α protein levels, two well-established upstream regulators of VEGF. Inhibitors of steroidogenesis as well as HIF-1α resulted in inhibition of T 3 -stimulated VEGF secretion by the MLTC-1 cells. This suggested a mediatory role of steroids and HIF-1α protein in T 3 -stimulated VEGF secretion by MLTC-1 cells. The mediation by steroids and HIF-1α were independent of each other. 8-Br-cAMP: 8-bromo - 3', 5' cyclic adenosine monophosphate; CoCl 2 : cobalt chloride; HIF-1α: hypoxia inducible factor -1α; LH: luteinizing hormone; T 3 : 3, 5, 3'-L-triiodothyronine; VEGF: vascular endothelial growth factor.

  6. A Single Injection of Interleukin-1 Induces Reversible Aqueous-tear Deficiency, Lacrimal Gland Inflammation, and Acinar and Ductal Cell Proliferation

    PubMed Central

    Zoukhri, Driss; Macari, Elizabeth; Kublin, Claire L.

    2011-01-01

    Emerging studies from our laboratory demonstrate that interleukin-1 (IL-1) family members play a major role in impairing lacrimal gland functions. Here we have extended our investigations to observe the effects of IL-1 on aqueous tear production, lacrimal gland secretion, lacrimal gland histology, and acinar and ductal cell proliferation. We demonstrate that a single injection of IL-1 into the lacrimal glands inhibited neurally- as well as agonist-induced protein secretion resulting in decreased tear output. Meanwhile, IL-1 injection induced a severe, but reversible (7–13 days), inflammatory response that led to destruction of lacrimal gland acinar epithelial cells. Finally, we demonstrate that as the inflammatory response subsided and lacrimal gland secretion and tear production returned to normal levels, there was increased proliferation of acinar and ductal epithelial cells. Our work uncovers novel effects of IL-1 on lacrimal gland functions and the potential regenerative capacity of the mouse lacrimal gland. PMID:17362931

  7. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity

    PubMed Central

    Lee, Catherine S.; Perreault, Nathalie; Brestelli, John E.; Kaestner, Klaus H.

    2002-01-01

    The notch signaling pathway is essential for the endocrine cell fate in various tissues including the enteroendocrine system of the gastrointestinal tract. Enteroendocrine cells are one of the four major cell types found in the gastric epithelium of the glandular stomach. To understand the molecular basis of enteroendocrine cell development, we have used gene targeting in mouse embryonic stem cells to derive an EGFP-marked null allele of the bHLH transcription factor, neurogenin 3 (ngn3). In ngn3−/− mice, glucagon secreting A-cells, somatostatin secreting D-cells, and gastrin secreting G-cells are absent from the epithelium of the glandular stomach, whereas the number of serotonin-expressing enterochromaffin (EC) cells is decreased dramatically. In addition, ngn3−/− mice display intestinal metaplasia of the gastric epithelium. Thus, ngn3 is required for the differentiation of enteroendocrine cells in the stomach and the maintenance of gastric epithelial cell identity. PMID:12080087

  8. Chronic lithium treatment up-regulates cell surface Na(V)1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: enhancement of Na(+) influx, Ca(2+) influx and catecholamine secretion after lithium withdrawal.

    PubMed

    Yanagita, Toshihiko; Maruta, Toyoaki; Nemoto, Takayuki; Uezono, Yasuhito; Matsuo, Kiyotaka; Satoh, Shinya; Yoshikawa, Norie; Kanai, Tasuku; Kobayashi, Hideyuki; Wada, Akihiko

    2009-09-01

    In cultured bovine adrenal chromaffin cells expressing Na(V)1.7 isoform of voltage-dependent Na(+) channels, we have previously reported that lithium chloride (LiCl) inhibits function of Na(+) channels independent of glycogen synthase kinase-3 (GSK-3) (Yanagita et al., 2007). Here, we further examined the effects of chronic lithium treatment on Na(+) channels. LiCl treatment (1-30 mM, > or = 12 h) increased cell surface [(3)H]saxitoxin ([(3)H]STX) binding by approximately 32% without altering the affinity of [(3)H]STX binding. This increase was prevented by cycloheximide and actinomycin D. SB216763 and SB415286 (GSK-3 inhibitors) also increased cell surface [(3)H]STX binding by approximately 31%. Simultaneous treatment with LiCl and SB216763 or SB415286 did not produce an increased effect on [(3)H]STX binding compared with either treatment alone. LiCl increased Na(+) channel alpha-subunit mRNA level by 32% at 24 h. LiCl accelerated alpha-subunit gene transcription by 35% without altering alpha-subunit mRNA stability. In LiCl-treated cells, LiCl inhibited veratridine-induced (22)Na(+) influx as in untreated cells. However, washout of LiCl after chronic treatment enhanced veratridine-induced (22)Na(+) influx, (45)Ca(2+) influx and catecholamine secretion by approximately 30%. Washout of LiCl after 24 h treatment shifted concentration-response curve of veratridine upon (22)Na(+) influx upward, without altering its EC(50) value. Ptychodiscus brevis toxin-3 allosterically enhanced veratridine-induced (22)Na(+) influx by two-fold in untreated and LiCl-treated cells. Whole-cell patch-clamp analysis indicated that I-V curve and steady-state inactivation/activation curves were comparable between untreated and LiCl-treated cells. Thus, GSK-3 inhibition by LiCl up-regulated cell surface Na(V)1.7 via acceleration of alpha-subunit gene transcription, enhancing veratridine-induced Na(+) influx, Ca(2+) influx and catecholamine secretion.

  9. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    PubMed

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Sexual maturation and changes in water and salt transport components in the kidney and intestine of three-spined stickleback (Gasterosteus aculeatus L.).

    PubMed

    Madsen, Steffen S; Weber, Claus; Nielsen, Andreas M; Mohiseni, Mohammad; Bosssus, Maryline C; Tipsmark, Christian K; Borg, Bertil

    2015-10-01

    Mature three-spined stickleback males use spiggin threads secreted from their kidney to glue together nest material. This requires strongly hypertrophied renal proximal tubular cells, which compromises renal osmoregulatory function during the breeding period. Experimental evidence suggests that the intestine takes over hypotonic fluid secretion at that stage but the mechanism is unexplored. To unravel the molecular mechanism we analyzed and compared transcript levels of several membrane proteins involved in water and salt transport in intestinal and renal tissues, in non-mature males (NM), mature males (MM), and mature females (MF). Aquaporin paralogs aqp1a, -3a, -8aa, -8ab, -10a, and -10b, two Na(+),K(+)-ATPase alpha-1 subunit isoforms (nka547, nka976), Na(+),K(+),2Cl(-)-, and Na(+),Cl(-)-cotransporters (nkcc1a, nkcc2, ncc), the cystic fibrosis transmembrane conductance regulator (cftr) and two claudin isoforms (cldn2, cldn15a) were expressed in the intestine and kidney in all groups. There were no differences in aqp and cldn expression between intestines of NM and MM; nkcc2 was lower and nka levels tended to be higher in intestines of MM than in NM. In the kidney, aqp1 and aqp8ab levels were lower in MM than in NM, whereas aqp3a, nkcc1a, cldn15a, and spiggin were markedly elevated. This was accompanied by marked hypertrophy of kidney tubules in MM. The data support an altered kidney function in terms of water handling in mature males, whereas there was no support for modified trans-epithelial water permeability or salt-secretory activity in the intestine of mature males. Salt-absorptive activity in the intestine may, however, be down-regulated during male maturation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation.

    PubMed

    Kulshreshtha, Ankur; Ahmad, Tanveer; Agrawal, Anurag; Ghosh, Balaram

    2013-04-01

    Exosomes are nanovesicles involved in intercellular communication. Their roles in various diseases are often contextual, depending on the cell type producing them. Although few studies hint toward the proinflammatory role of bronchoalveolar lavage fluid-derived exosomes in asthmatic progression, the cell types in lungs associated with exosome-mediated crosstalk and their resultant effects remain unexplored. It is well established that exosome-mediated cellular communication can influence disease phenotypes. This study explores exosome-mediated cellular crosstalk between structural and immune cells in asthma pathogenesis. Exosomes were isolated and detected from bronchoalveolar lavage fluid of control and asthmatic mice and were quantified by using a bead-based assay. Involvement of epithelial cells and macrophages were established by using immunohistochemical techniques in lung tissue sections. The role of IL-13 in exosome production was ascertained by using various in vitro and in vivo techniques. Exosome secretion was blocked in in vitro and in vivo settings by using a chemical inhibitor, and the effects on various asthmatic features were studied. Using combinatorial in vitro and in vivo approaches, we found that exosome secretion and production of exosome-associated proteins are higher in lungs of asthmatic mice compared with that seen in sham mice. Asthma is marked by enhanced secretion of exosomes by epithelial cells, but not macrophages, under the influence of IL-13. These epithelial cell exosomes induce proliferation and chemotaxis of undifferentiated macrophages. On the other hand, GW4869, which inhibited exosome production, resulted in a reduced population of proliferating monocytes and alleviation of various asthmatic features. Under the influence of IL-13, epithelial cell-derived exosomes can induce enhanced proliferation and chemotaxis of undifferentiated macrophages in the lungs during asthmatic inflammatory conditions. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  13. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells

    PubMed Central

    Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807

  14. Upregulation of autophagy decreases chlorine-induced mitochondrial injury and lung inflammation.

    PubMed

    Jurkuvenaite, Asta; Benavides, Gloria A; Komarova, Svetlana; Doran, Stephen F; Johnson, Michelle; Aggarwal, Saurabh; Zhang, Jianhua; Darley-Usmar, Victor M; Matalon, Sadis

    2015-08-01

    The mechanisms of toxicity during exposure of the airways to chlorinated biomolecules generated during the course of inflammation and to chlorine (Cl2) gas are poorly understood. We hypothesized that lung epithelial cell mitochondria are damaged by Cl2 exposure and activation of autophagy mitigates this injury. To address this, NCI-H441 (human lung adenocarcinoma epithelial) cells were exposed to Cl2 (100 ppm/15 min) and bioenergetics were assessed. One hour after Cl2, cellular bioenergetic function and mitochondrial membrane potential were decreased. These changes were associated with increased MitoSOX signal, and treatment with the mitochondrial redox modulator MitoQ attenuated these bioenergetic defects. At 6h postexposure, there was significant increase in autophagy, which was associated with an improvement of mitochondrial function. Pretreatment of H441 cells with trehalose (an autophagy activator) improved bioenergetic function, whereas 3-methyladenine (an autophagy inhibitor) resulted in increased bioenergetic dysfunction 1h after Cl2 exposure. These data indicate that Cl2 induces bioenergetic dysfunction, and autophagy plays a protective role in vitro. Addition of trehalose (2 vol%) to the drinking water of C57BL/6 mice for 6 weeks, but not 1 week, before Cl2 (400 ppm/30 min) decreased white blood cells in the bronchoalveolar lavage fluid at 6h after Cl2 by 70%. Acute administration of trehalose delivered through inhalation 24 and 1h before the exposure decreased alveolar permeability but not cell infiltration. These data indicate that Cl2 induces bioenergetic dysfunction associated with lung inflammation and suggests that autophagy plays a protective role. Published by Elsevier Inc.

  15. Renal Dysfunction Induced by Kidney-Specific Gene Deletion of Hsd11b2 as a Primary Cause of Salt-Dependent Hypertension.

    PubMed

    Ueda, Kohei; Nishimoto, Mitsuhiro; Hirohama, Daigoro; Ayuzawa, Nobuhiro; Kawarazaki, Wakako; Watanabe, Atsushi; Shimosawa, Tatsuo; Loffing, Johannes; Zhang, Ming-Zhi; Marumo, Takeshi; Fujita, Toshiro

    2017-07-01

    Genome-wide analysis of renal sodium-transporting system has identified specific variations of Mendelian hypertensive disorders, including HSD11B2 gene variants in apparent mineralocorticoid excess. However, these genetic variations in extrarenal tissue can be involved in developing hypertension, as demonstrated in former studies using global and brain-specific Hsd11b2 knockout rodents. To re-examine the importance of renal dysfunction on developing hypertension, we generated kidney-specific Hsd11b2 knockout mice. The knockout mice exhibited systemic hypertension, which was abolished by reducing salt intake, suggesting its salt-dependency. In addition, we detected an increase in renal membrane expressions of cleaved epithelial sodium channel-α and T53-phosphorylated Na + -Cl - cotransporter in the knockout mice. Acute intraperitoneal administration of amiloride-induced natriuresis and increased urinary sodium/potassium ratio more in the knockout mice compared with those in the wild-type control mice. Chronic administration of amiloride and high-KCl diet significantly decreased mean blood pressure in the knockout mice, which was accompanied with the correction of hypokalemia and the resultant decrease in Na + -Cl - cotransporter phosphorylation. Accordingly, a Na + -Cl - cotransporter blocker hydrochlorothiazide significantly decreased mean blood pressure in the knockout mice. Chronic administration of mineralocorticoid receptor antagonist spironolactone significantly decreased mean blood pressure of the knockout mice along with downregulation of cleaved epithelial sodium channel-α and phosphorylated Na + -Cl - cotransporter expression in the knockout kidney. Our data suggest that kidney-specific deficiency of 11β-HSD2 leads to salt-dependent hypertension, which is attributed to mineralocorticoid receptor-epithelial sodium channel-Na + -Cl - cotransporter activation in the kidney, and provides evidence that renal dysfunction is essential for developing the phenotype of apparent mineralocorticoid excess. © 2017 American Heart Association, Inc.

  16. Leptin expression in human mammary epithelial cells and breast milk.

    PubMed

    Smith-Kirwin, S M; O'Connor, D M; De Johnston, J; Lancey, E D; Hassink, S G; Funanage, V L

    1998-05-01

    Leptin has recently been shown to be produced by the human placenta and potentially plays a role in fetal and neonatal growth. Many functions of the placenta are replaced by the mammary gland in terms of providing critical growth factors for the newborn. In this study, we show that leptin is produced by human mammary epithelial cells as revealed by RT/PCR analysis of total RNA from mammary gland and immunohistochemical staining of breast tissue, cultured mammary epithelial cells, and secretory epithelial cells present in human milk. We also verify that immunoreactive leptin is present in whole milk at 30- to 150-fold higher concentrations than skim milk. We propose that leptin is secreted by mammary epithelial cells in milk fat globules, which partition into the lipid portion of breast milk.

  17. Acid-base responses to feeding and intestinal Cl- uptake in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus, an agastric euryhaline teleost.

    PubMed

    Wood, Chris M; Bucking, Carol; Grosell, Martin

    2010-08-01

    Marine teleosts generally secrete basic equivalents (HCO(3)(-)) and take up Na(+) and Cl(-) in the intestine so as to promote absorption of H(2)O. However, neither the integration of these functions with feeding nor the potential role of the gut in ionoregulation and acid-base balance in freshwater have been well studied. The euryhaline killifish (Fundulus heteroclitus) is unusual in lacking both an acid-secreting stomach and a mechanism for Cl(-) uptake at the gills in freshwater. Responses to a satiation meal were evaluated in both freshwater- and seawater-acclimated killifish. In intact animals, there was no change in acid or base flux to the external water after the meal, in accord with the absence of any post-prandial alkaline tide in the blood. Indeed, freshwater animals exhibited a post-prandial metabolic acidosis ('acidic tide'), whereas seawater animals showed no change in blood acid-base status. In vitro gut sac experiments revealed a substantially higher rate of Cl(-) absorption by the intestine in freshwater killifish, which was greatest at 1-3 h after feeding. The Cl(-) concentration of the absorbate was higher in preparations from freshwater animals than from seawater killifish and increased with fasting. Surprisingly, net basic equivalent secretion rates were also much higher in preparations from freshwater animals, in accord with the 'acidic tide'; in seawater preparations, they were lowest after feeding and increased with fasting. Bafilomycin (1 micromol l(-1)) promoted an 80% increase in net base secretion rates, as well as in Cl(-) and fluid absorption, at 1-3 h post-feeding in seawater preparations only, explaining the difference between freshwater and seawater fish. Preparations from seawater animals at 1-3 h post-feeding also acidified the mucosal saline, and this effect was associated with a marked rise in P(CO(2)), which was attenuated by bafilomycin. Measurements of chyme pH from intact animals confirmed that intestinal fluid (chyme) pH and basic equivalent concentration were lowest after feeding in seawater killifish, whereas P(CO(2)) was greatly elevated (80-95 Torr) in chyme from both seawater and freshwater animals but declined to lower levels (13 Torr) after 1-2 weeks fasting. There were no differences in pH, P(CO(2)) or the concentrations of basic equivalents in intestinal fluid from seawater versus freshwater animals at 12-24 h or 1-2 weeks post-feeding. The results are interpreted in terms of the absence of gastric HCl secretion, the limitations of the gills for acid-base balance and Cl(-) transport, and therefore the need for intestinal Cl(-) uptake in freshwater killifish, and the potential for O(2) release from the mucosal blood flow by the high P(CO(2)) in the intestinal fluids. At least in seawater killifish, H(+)-ATPase running in parallel to HCO(3)(-):Cl(-) exchange in the apical membranes of teleost enterocytes might reduce net base secretion and explain the high P(CO(2)) in the chyme after feeding.

  18. The Cystic Fibrosis Transmembrane Conductance Regulator and Chloride-Dependent Ion Fluxes of Ovine Vocal Fold Epithelium

    ERIC Educational Resources Information Center

    Leydon, Ciara; Fisher, Kimberly V.; Lodewyck-Falciglia, Danielle

    2009-01-01

    Purpose: Ion-driven transepithelial water fluxes participate in maintaining superficial vocal fold hydration, which is necessary for normal voice production. The authors hypothesized that Cl[superscript -] channels are present in vocal fold epithelial cells and that transepithelial Cl[superscript -] fluxes can be manipulated pharmacologically.…

  19. The effect of DDT and its metabolite (DDE) on prostaglandin secretion from epithelial cells and on contractions of the smooth muscle of the bovine oviduct in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wrobel, Michal H.; Mlynarczuk, Jaroslaw; Kotwica, Jan, E-mail: janko@pan.olsztyn.pl

    2012-03-01

    The insecticide DDT and its metabolite (DDE), due to their lipolytic nature and resistance to biodegradation, are accumulated in the living tissues. In cows, DDT and DDE were found to affect prostaglandin (PG) secretion from the endometrium and contractions of the myometrium. In this study, the impact of both xenobiotics (0.1, 1, 10 or 100 ng/ml) on the function of epithelial cells and muscle strips of bovine oviducts from 1 to 5 day of the oestrous cycle was examined. Therefore the concentration of PGE2 and PGFM (a metabolite of PGF2α) in culture media, mRNA expression of genes involved in PGsmore » synthesis in epithelial cells and the force and amplitude of strips contractions were measured after 2 and 24 or 48 h of incubation. Neither DDT nor DDE affected the viability of cells after 48 h (P > 0.05). Both DDT and DDE increased the concentrations of PGFM in culture medium and secretion of PGE2 after only 2 h of cell culture (P < 0.05). Similar effects were seen for the influence of DDE on amount of PGFM after 48 h, while DDT decreased secretion of PGE2 (P < 0.05). DDT after 2 h increased (P < 0.05) mRNA expression of PGF2α synthase (PGFS), while both xenobiotics decreased (P < 0.05) mRNA expression of cyclooxygenase-2 (COX-2) after 24 h. DTT also increased the force of isthmus contractions after 2 h, as did both xenobiotics after 48 h (P < 0.05). Moreover, after 2 and 48 h, DDE stimulated the amplitude of contractions of the isthmus as well as the ampulla, (P < 0.05). The effect of both compounds on oviduct contractions was diminished by indomethacin, which blocks PG synthesis. We conclude that oviductal secretion of prostaglandins is affected, by DDT and DDE. The influence of these xenobiotics on PGF2α and PGE2 secretion and ratio may be part of the mechanism by which both DDT and its metabolite disturb the contractions of oviductal muscle. -- Highlights: ► DDT and its metabolite – DDE are accumulated in the living tissues. ► The insecticides affected PGF2α and PGE2 release from epithelial cells of oviduct. ► They also stimulated markedly the contractions of oviductal strips. ► Prostaglandins were involved in the effect of insecticides on oviduct function.« less

  20. The effect of organotin compounds on chloride secretion by the in vitro perfused rectal gland of Squalus acanthias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, R.; Lear, S.; Cohen, R.

    1989-09-01

    The effects of various organotins on membrane function and electrolyte transport were studied in the marine elasmobranch, Squalus acanthias. The isolated perfused rectal gland was used as a model of electrolyte transport. This gland can be stimulated to secrete chloride by atrial natriuretic peptide, veratrine, and vasoactive intestinal polypeptide although the mechanism of action of each secretagogue is different. By analysis of the inhibitory effect of an organotin in the presence of each secretagogue, the mechanism of inhibition can be inferred. Tributyltin (TBT) produced a reversible inhibition of epithelial transport at 10(-8) to 10(-7) M which resulted from inhibition ofmore » stimulus-secretion coupling in VIP-containing neurons within the gland. The transporting epithelial cells were unaffected at these concentrations. Trimethytin (TMT) produced inhibition at 10(-7) M which was not reversible and which affected primarily the transporting epithelial cells. Triethyltin and triphenyltin were without effect. The inhibitory effect of TBT and TMT was not affected by simultaneous administration of dithiothreitol. TBT also produced inhibition of oxygen consumption, Na+,K-ATPase, and proton ATPase in dispersed rectal gland cells. These results indicate that organotins are toxic to cell membrane functions which are intimately involved in the movement of electrolytes. This is the first evidence of toxicity to membrane transport functions in a marine species which is at risk from environmental exposure.« less

  1. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    PubMed

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  2. Effects of DA-6034, a flavonoid derivative, on mucin-like glycoprotein and ocular surface integrity in a rabbit model.

    PubMed

    Choi, Seul Min; Seo, Mi Jeong; Lee, Yeong Geon; Lee, Min Jung; Jeon, Hyung Jun; Kang, Kyung Koo; Ahn, Byoung Ok; Yoo, Moohi

    2009-01-01

    This study was designed to assess whether DA-6034 (7-carboxymethyloxy-3',4',5-trimethoxy flavone monohydrate), a new synthetic derivative of eupatilin, increases secretion of mucin-like glycoprotein and some mucins species in conjunctiva and cornea, and contributes to the preservation of ocular surface integrity. Human conjunctival and corneal epithelial cells were incubated with DA-6034 (1-250 microM). To investigate mucin secreting activity more directly, isolated rat conjunctival goblet cells were also used. Corneal protection was investigated using a desiccation-induced rabbit model of dry eye syndrome. It was found that DA-6034 increased mucin-like glycoprotein levels of both conjunctival and corneal epithelial cells at concentrations above 100 microM. Using human conjunctival epithelial cells, it was demonstrated that treatment with DA-6034 (200 microM) significantly increased production of some mucins species including MUC1, MUC2, MUC4, MUC5AC, MUC5B, and MUC16. DA-6034 also significantly increased MUC5AC production from conjunctival goblet cells isolated from rats. In the rabbit desiccation model, an ophthalmic suspension containing 3% DA-6034 significantly reduced corneal damage induced by desiccation. These results suggest that DA-6034 is a good candidate for treatment of dry eye through maintaining ocular surface integrity, which might be related to mucin secretion.

  3. Gastric mucosal defence mechanism during stress of pyloric obstruction in albino rats.

    PubMed

    Somasundaram, K; Ganguly, A K

    1987-04-01

    1. The integrity of the gastric mucosa and its ability to secrete mucus are believed to be essential for protection of gastric mucosa against ulceration induced by aggressive factors active in any stress situation. This study involves a three-compartmental analysis of gastric mucosal barrier in pylorus-ligated albino rats. 2. Quantitative analyses of histologically identifiable gastric mucosal epithelial neutral glycoproteins and gastric adherent mucus from oxyntic and pyloric gland areas, and components of non-dialysable mucosubstances in gastric secretion were made under stress of pyloric obstruction for 4, 8, and 16 h durations. Epithelial mucin was identified by periodic acid-Schiff (PAS) staining technique and assessed from the ratio of gastric mucosal thickness to the depth of PAS positive materials in it. The remaining visible mucus adhered to the gastric mucosa was estimated by Alcian blue binding technique. The results were compared with that of identical control groups. 3. A significant reduction in mucosal epithelial PAS positive materials after 8 or 16 h of pylorus ligation was observed. 4. The Alcian blue binding capacity of the pyloric gland area was increased significantly after 4 h of pylorus ligation, while after 8 or 16 h it was reduced in both oxyntic and pyloric gland areas. 5. Significant reductions in the rate of gastric secretion and volume, as well as concentration of the components of non-dialysable mucosubstances, were observed, indicating decreased synthesis of mucus glycoproteins. 6. Disruption of the mucosal barrier may have occurred due to decreased mucus synthesis and acid-pepsin accumulation; both could be due to stress associated with gastric distension. 7. The present findings confirm the role of mucus in protecting the underlying gastric epithelium during stress. The adherent mucus offers a first line of defence and epithelial mucus a second line of defence.

  4. Ursodeoxycholic acid attenuates colonic epithelial secretory function

    PubMed Central

    Kelly, Orlaith B; Mroz, Magdalena S; Ward, Joseph B J; Colliva, Carolina; Scharl, Michael; Pellicciari, Roberto; Gilmer, John F; Fallon, Padraic G; Hofmann, Alan F; Roda, Aldo; Murray, Frank E; Keely, Stephen J

    2013-01-01

    Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in the regulation of colonic epithelial secretion. Cl− secretion was measured across voltage-clamped monolayers of T84 cells and muscle-stripped sections of mouse or human colon. Cell surface biotinylation was used to assess abundance/surface expression of transport proteins. Acute (15 min) treatment of T84 cells with bilateral UDCA attenuated Cl− secretory responses to the Ca2+ and cAMP-dependent secretagogues carbachol (CCh) and forskolin (FSK) to 14.0 ± 3.8 and 40.2 ± 7.4% of controls, respectively (n= 18, P < 0.001). Investigation of the molecular targets involved revealed that UDCA acts by inhibiting Na+/K+-ATPase activity and basolateral K+ channel currents, without altering their cell surface expression. In contrast, intraperitoneal administration of UDCA (25 mg kg−1) to mice enhanced agonist-induced colonic secretory responses, an effect we hypothesised to be due to bacterial metabolism of UDCA to lithocholic acid (LCA). Accordingly, LCA (50–200 μm) enhanced agonist-induced secretory responses in vitro and a metabolically stable UDCA analogue, 6α-methyl-UDCA, exerted anti-secretory actions in vitro and in vivo. In conclusion, UDCA exerts direct anti-secretory actions on colonic epithelial cells and metabolically stable derivatives of the bile acid may offer a new approach for treating intestinal diseases associated with diarrhoea. PMID:23507881

  5. Ca2+-driven intestinal HCO3− secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport

    PubMed Central

    Cooper, Christopher A.; Whittamore, Jonathan M.

    2010-01-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO3−) secretion and Cl− absorption via Cl−/HCO3− exchange fueled by metabolic CO2; and 3) alkaline precipitation of Ca2+ as insoluble CaCO3, which aids H2O absorption). The latter two processes involve high rates of epithelial HCO3− secretion stimulated by intestinal Ca2+ and can drive a major portion of water absorption. At higher salinities and ambient Ca2+ concentrations the osmoregulatory role of intestinal HCO3− secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO2) and acid-base regulation (as intestinal cells must export H+ into the blood to balance apical HCO3− secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca2+. Increasing the luminal Ca2+ concentration caused a large elevation in intestinal HCO3− production and excretion. Additionally, blood pH decreased (−0.13 pH units) and plasma partial pressure of CO2 (Pco2) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca2+] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO3− production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca2+ independent of any other ion or overall osmolality in marine teleost fish. PMID:20130227

  6. LPS-Challenged TNFα Production, Prostaglandin Secretion, and TNFα/TNFRs Expression in the Endometrium of Domestic Cats in Estrus or Diestrus, and in Cats with Pyometra or Receiving Medroxyprogesterone Acetate

    PubMed Central

    Jursza, Ewelina; Szóstek, Anna Z.; Kowalewski, Mariusz P.; Boos, Alois; Okuda, Kiyoshi; Siemieniuch, Marta J.

    2014-01-01

    Progesterone (P4) derivatives which are commonly used to block the cyclicity of domestic cats disturb the endocrine balance in the endometrium. The aims of this study were (i) to examine whether lipopolysaccharide (LPS) is responsible for enhancement of tumor necrosis factor-α (TNFα) secretion by the feline endometrial epithelial and stromal cells in vitro, (ii) to know whether immunolocalization of TNFα/TNFR1 and TNFR2 differs in cats at estrus or diestrus, receiving medroxyprogesterone acetate and suffering from pyometra, and (iii) to determine if TNFα-challenged prostaglandin secretion is stopped by prostaglandin synthases inhibitors. A total of 37 domestic adult cats in estrus or diestrus, receiving octane medroxyprogesterone or having clinical symptoms of pyometra, were enrolled in this study. The results obtained showed a distinct increase in LPS-challenged TNFα secretion in endometrial epithelial, but not stromal cells. TNFα augmented PG secretion was blocked by phospholipase A2 (PLA2) and cyclooxygeanase-2 (COX-2), but not by mitogen-activated protein kinase (MAPK) inhibitor. TNFα/TNFR1 and 2 protein expressions were limited mostly to the surface and glandular epithelium. TNFα/TNFRs protein was upregulated in the inflammatory uterus and hence may be involved in development of pathologic changes in the endometrial glands in cats receiving exogenous P4 as a hormonal contraceptive. PMID:25028529

  7. Hypoxia induces mucin expression and secretion in human bronchial epithelial cells.

    PubMed

    Zhou, Xiangdong; Tu, Jing; Li, Qi; Kolosov, Victor P; Perelman, Juliy M

    2012-12-01

    The study objective was to investigate the role of hypoxia-inducible factor 1 (HIF-1) in the transcriptional activation of MUC5AC in human bronchial epithelial (HBE) 16 cells under hypoxia conditions and the effect of hypoxia on expression and secretion of MUC5AC. Cells were incubated in hypoxia medium. Serial deletions or mutations of the MUC5AC promoter were cloned in the reporter pGL3-basic plasmid (Promega Biotech Co, Ltd, Beijing, China). These reporter plasmids were cotransfected with HIF-1α small interfering RNA. Hypoxia markedly increased the level of MUC5AC secretion and the transcriptional activity of MUC5AC promoters. Western blot analysis showed that HIF-1α and MUC5AC proteins were strongly increased after HBE16 cells were exposed to hypoxic conditions. Treatment of HBE16 cells with HIF-1α inhibitor (YC-1) or HIF-1α small interfering RNA significantly inhibited the expression of HIF-1α and MUC5AC, and the secretion of MUC5AC. Depletion of the promoter sequence did not reduce the MUC5AC promoter activity to hypoxia. Luciferase assay indicated that HRE in the MUC5AC promoter was in the region from -120 to +54. Promoter sequence analysis showed that 1 HRE site at -65 plays an important role in hypoxia activation of the MUC5AC. The inactivation of the HRE site using site-directed mutagenesis led to the complete loss of induction by hypoxia, which further confirmed the key role of the HRE site. MUC5AC expression and secretion are upregulated in response to hypoxia. The HRE site at -65 in the MUC5AC promoter and the HIF-1α are the major regulators for the cellular response against hypoxia in human bronchial epithelial cells. Copyright © 2012 Mosby, Inc. All rights reserved.

  8. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    PubMed

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  9. IN VITRO LUNG ALVEOLAR EPITHELIAL CELL INJURY AND INFLAMMATORY RESPONSE TO PARTICULATE MATTER-ASSOCIATED METALS - MODULATION BY EXPOSURE TO TNF-ALPHA, IL-BETA, OR IFN-GAMMA

    EPA Science Inventory

    IN VITRO LUNG ALVEOLAR EPITHELIAL CELL INJURY AND INFLAMMATORY RESPONSE TO PARTICULATE MATTER-ASSOCIATED METALS - MODULATION BY EXPOSURE TO TNF , IL-1 , OR IFN .

    JA Dye, KE Peoples*, CL Hayes?. US EPA, ORD, Pulmonary Toxicology Branch, RTP, NC, *HHMI-SRI, NCSU, Raleigh, NC...

  10. Regulation of vascular endothelial growth factor-C by tumor necrosis factor-α in the conjunctiva and pterygium.

    PubMed

    Dong, Yoko; Kase, Satoru; Dong, Zhenyu; Fukuhara, Junichi; Tagawa, Yoshiaki; Ishizuka, Erdal Tan; Murata, Miyuki; Shinmei, Yasuhiro; Ohguchi, Takeshi; Kanda, Atsuhiro; Noda, Kousuke; Ishida, Susumu

    2016-08-01

    Vascular endothelial growth factor C (VEGF-C) plays an important role in the development of a pterygium through lymphangiogenesis. We examined the association between VEGF-C and tumor necrosis factor-α (TNF-α) in the pathogenesis of pterygia. Cultured conjunctival epithelial cells were treated with TNF-α, and the gene expression levels of VEGFC were evaluated by quantitative polymerase chain reaction (qPCR) and VEGF-C protein expression levels were measured using an enzyme-linked immunosorbent assay (ELISA). In addition, using ELISA, we evaluated the VEGF-C protein expression in the supernatants of cultured conjunctival epithelial cells, in which we neutralized TNF-α using anti‑TNF-α antibody. The gene expression of tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A), known as TNF receptor 1 (TNFR1), was confirmed using reverse transcription PCR in cultured conjunctival epithelial cells. Immunofluorescence microscopy was used to examine the localization of VEGF-C and TNFR1 in pterygium tissues and TNFR1 expression in cultured conjunctival epithelial cells. Immunohistochemistry was used to examine the localization of TNFR1 in pterygia and normal conjunctival tissues. VEGFC gene expression increased in cultured conjunctival epithelial cells 24 h after the addition of TNF-α. The secretion of VEGF-C protein was significantly increased 48 h after the stimulation of cultured conjunctival epithelial cells with TNF-α. Increased VEGF-C protein secretion stimulated by TNF-α was significantly reduced by anti-TNF-α neutralizing antibody treatment. In cultured conjunctival epithelial cells, TNFRSF1A and TNFR1 were expressed. TNFR1 was immunolocalized in normal conjunctival tissues and in human pterygium tissues as well as in VEGF‑C‑positive epithelial cells from human pterygia. Our data demonstrate that TNF-α mediates VEGF-C expression, which plays a critical role in the pathogenesis of pterygia.

  11. Macrophage-derived LIF and IL1B regulate alpha(1,2)fucosyltransferase 2 (Fut2) expression in mouse uterine epithelial cells during early pregnancy.

    PubMed

    Jasper, Melinda J; Care, Alison S; Sullivan, Brad; Ingman, Wendy V; Aplin, John D; Robertson, Sarah A

    2011-01-01

    Macrophages accumulate within stromal tissue subjacent to the luminal epithelium in the mouse uterus during early pregnancy after seminal fluid exposure at coitus. To investigate their role in regulating epithelial cell expression of fucosylated structures required for embryo attachment and implantation, fucosyltransferase enzymes Fut1, Fut2 (Enzyme Commission number [EC] 2.4.1.69), and Fut4 (EC 2.4.1.214) and Muc1 and Muc4 mRNAs were quantified by quantitative real-time PCR in uterine epithelial cells after laser capture microdissection in situ or after epithelial cell coculture with macrophages or macrophage-secreted factors. When uterine macrophage recruitment was impaired by mating with seminal plasma-deficient males, epithelial cell Fut2 expression on Day 3.5 postcoitus (pc) was reduced compared to intact-mated controls. Epithelial cell Fut2 was upregulated in vitro by coculture with macrophages or macrophage-conditioned medium (MCM). Macrophage-derived cytokines LIF, IL1B, and IL12 replicated the effect of MCM on Fut2 mRNA expression, and MCM-stimulated expression was inhibited by anti-LIF and anti-IL1B neutralizing antibodies. The effects of acute macrophage depletion on fucosylated structures detected with lectins Ulex europaeus 1 (UEA-1) and Lotus tetragonolobus purpureas (LTP), or LewisX immunoreactivity, were quantified in vivo in Cd11b-dtr transgenic mice. Depletion of macrophages caused a 30% reduction in luminal epithelial UEA-1 staining and a 67% reduction in LewisX staining in uterine tissues of mice hormonally treated to mimic early pregnancy. Together, these data demonstrate that uterine epithelial Fut2 mRNA expression and terminal fucosylation of embryo attachment ligands is regulated in preparation for implantation by factors including LIF and IL1B secreted from macrophages recruited during the inflammatory response to insemination.

  12. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Chimote, Ameet A; Adragna, Norma C

    2008-01-01

    During regulatory volume decrease (RVD) of human lens epithelial cells (hLECs) by clotrimazole (CTZ)-sensitive K fluxes, Na-K-2Cl cotransport (NKCC) remains active and K-Cl cotransport (KCC) inactive. To determine whether such an abnormal behavior was caused by RVD-induced cell shrinkage, NKCC was measured in the presence of either CTZ or in high K media to prevent RVD. NKCC transports RbCl + NaCl, and LiCl + KCl; thus ouabain-insensitive, bumetanide-sensitive (BS) or Cl-dependent (ClD) Rb and Li fluxes were determined in hyposmotic high NaCl media with CTZ, or in high KCl media alone, or with sulfamate (Sf) or nitrate as Cl replacement at varying Rb, Li or Cl mol fractions (MF). Unexpectedly, NKCC was inhibited by 80% with CTZ (IC(50) = 31 microM). In isosmotic (300 mOsM) K, Li influx was approximately 1/3 of Rb influx in Na, 50% lower in Sf, and bumetanide-insensitive (BI). In hypotonic (200 mOsM) K, only the ClD but not BS Li fluxes were detected. At Li MFs from 0.1-1, Li fluxes fitted a bell-shaped curve maxing at approximately 0.6 Li MF, with the BS fluxes equaling approximately 1/4 of the ClD-Li influx. The difference, i.e. the BI/ClD Li influx, saturated with increasing Li and Cl MFs, with K(ms) for Li of 11 with, and 7 mM without K, and of approximately 46 mM for Cl. Inhibition of this K-independent Li influx by thiazides was weak whilst furosemide (<100 microM) was ineffective. Reverse transcription polymerase chain reaction and Western blots verified presence of both NKCC1 and Na-Cl cotransport (NCC). In conclusion, in hyposmotic high K media, which prevents CTZ-sensitive K flux-mediated RVD in hLECs, NKCC1, though molecularly expressed, was functionally silent. However, a K-independent and moderately thiazide-sensitive ClD-Li flux, i.e. LiCC, likely occurring through NCC was detected operationally and molecularly. (c) 2008 S. Karger AG, Basel.

  13. FUNCTIONS EXERTED BY THE VIRULENCE ASSOCIATED TYPE THREE SECRETION SYSTEMS DURING SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION OF CHICKEN OVIDUCT EPITHELIAL CELLS AND MACROPHAGES

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar, Enteritidis (SE) infection of chicken is a major contributing factor to non-typhoidal salmonellosis. The roles of the type three secretion systems (T3SS-1 and T3SS-2) in the pathogenesis of SE infection of chickens are poorly understood. In this study, the functions exer...

  14. Nutritional support for adaptation to radiation-induced suppression of mucosal immunity in the intestine of the rat.

    PubMed

    Harari, Y; Grossie, V B; Castro, G A

    1996-06-01

    Appropriate enteral nutrition provided immediately after injury or trauma to the gastrointestinal tract may limit or reverse damage to the mucosal barrier. In this regard, diets containing amino acids, such as arginine and glutamine, or fish oil have been identified as beneficial. This report assesses the role of amino acids as "essential nutrients" in the repair of intestinal mucosa damaged by gamma radiation. Rats were used experimentally to test the hypothesis that the recovery of the immune responses in the intestinal mucosa, which are suppressed by radiation, can be improved by feeding an elemental amino acid diet, referred to hereafter as the diet, immediately after irradiation. The objective was to assess the impact of the diet on the expression of type I hypersensitivity or anaphylaxis in the jejunal mucosa. The local expression of this immunological response, which involves several radiosensitive cell types, was studied in rats immunized by oral infection with the nematode parasite, Trichinella spiralis. Rats that recover from infection become immunized and their small intestine undergoes anaphylaxis when subsequently challenged with parasite-derived antigen. This hypersensitivity response is expressed, in part, as Cl- secretion and can be observed in vitro or in vivo. When challenge is provided by a secondary inoculum of infective T. spiralis larvae, Cl- secretion is accompanied by fluid secretion and by the rapid expulsion of the parasite from the intestine. Immunized rats maintained on a stock diet and exposed to 7 Gy of total-abdominal irradiation from a cobalt-60 gamma-ray source failed to express antigen-induced Cl- secretion fully for up to 14 days postirradiation, and rejection of the parasite was suppressed for at least 30 days postirradiation. The suppression of immune responsiveness is associated with the disappearance of intestinal mucosal mast cells, which normally trigger the anaphylactic response. When rats are maintained on the diet after irradiation, the capacity to reject the parasite remains suppressed. However, the ability to express anaphylaxis-mediated Cl- secretion returns by 3 days postirradiation. The quick, diet-supported recovery of antigen-induced Cl- secretion occurs despite the continued absence of mast cells. Although the recovery of anaphylaxis-mediated responses suppressed by irradiation is only partial, our experimental results underscore the potential for enhancing the recovery process through nutritional support.

  15. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels

    PubMed Central

    Jun, Ikhyun; Cheng, Mary Hongying; Sim, Eunji; Jung, Jinsei; Suh, Bong Lim; Kim, Yonjung; Son, Hankil; Park, Kyungsoo; Kim, Chul Hoon; Yoon, Joo‐Heon; Whitcomb, David C.; Bahar, Ivet

    2016-01-01

    Key points Cellular stimuli can modulate the ion selectivity of some anion channels, such as CFTR, ANO1 and the glycine receptor (GlyR), by changing pore size.Ion selectivity of CFTR, ANO1 and GlyR is critically affected by the electric permittivity and diameter of the channel pore.Pore size change affects the energy barriers of ion dehydration as well as that of size‐exclusion of anion permeation.Pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of CFTR, ANO1 and GlyR.Dynamic change in P HC O3/ Cl may mediate many physiological and pathological processes. Abstract Chloride (Cl−) and bicarbonate (HCO3 −) are two major anions and their permeation through anion channels plays essential roles in our body. However, the mechanism of ion selection by the anion channels is largely unknown. Here, we provide evidence that pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of anion channels by reducing energy barriers of size‐exclusion and ion dehydration of HCO3 − permeation. Molecular, physiological and computational analyses of major anion channels, such as cystic fibrosis transmembrane conductance regulator (CFTR), anoctamin‐1(ANO1/TMEM16A) and the glycine receptor (GlyR), revealed that the ion selectivity of anion channels is basically determined by the electric permittivity and diameter of the pore. Importantly, cellular stimuli dynamically modulate the anion selectivity of CFTR and ANO1 by changing the pore size. In addition, pore dilatation by a mutation in the pore‐lining region alters the anion selectivity of GlyR. Changes in pore size affected not only the energy barriers of size exclusion but that of ion dehydration by altering the electric permittivity of water‐filled cavity in the pore. The dynamic increase in P HC O3/ Cl by pore dilatation may have many physiological and pathophysiological implications ranging from epithelial HCO3 − secretion to neuronal excitation. PMID:26663196

  16. Distinct Defensin Profiles in Neisseria gonorrhoeae and Chlamydia trachomatis Urethritis Reveal Novel Epithelial Cell-Neutrophil Interactions

    PubMed Central

    Porter, Edith; Yang, Huixia; Yavagal, Sujata; Preza, Gloria C.; Murillo, Omar; Lima, Heriberto; Greene, Sheila; Mahoozi, Laily; Klein-Patel, Marcia; Diamond, Gill; Gulati, Sunita; Ganz, Tomas; Rice, Peter A.; Quayle, Alison J.

    2005-01-01

    Defensins are key participants in mucosal innate defense. The varied antimicrobial activity and differential distribution of defensins at mucosal sites indicate that peptide repertoires are tailored to site-specific innate defense requirements. Nonetheless, few studies have investigated changes in peptide profiles and function after in vivo pathogen challenge. Here, we determined defensin profiles in urethral secretions of healthy men and men with Chlamydia trachomatis- and Neisseria gonorrhoeae-mediated urethritis by immunoblotting for the epithelial defensins HBD1, HBD2, and HD5 and the neutrophil defensins HNP1 to -3 (HNP1-3). HBD1 was not detectable in secretions, and HBD2 was only induced in a small proportion of the urethritis patients; however, HD5 and HNP1-3 were increased in C. trachomatis infection and significantly elevated in N. gonorrhoeae infection. When HNP1-3 levels were low, HD5 appeared mostly as the propeptide; however, when HNP1-3 levels were >10 μg/ml, HD5 was proteolytically processed, suggesting neutrophil proteases might contribute to HD5 processing. HD5 and HNP1-3 were bactericidal against C. trachomatis and N. gonorrhoeae, but HD5 activity was dependent upon N-terminal processing of the peptide. In vitro proteolysis of proHD5 by neutrophil proteases and analysis of urethral secretions by surface-enhanced laser desorption ionization substantiated that neutrophils contribute the key convertases for proHD5 in the urethra during these infections. This contrasts with the small intestine, where Paneth cells secrete both proHD5 and its processing enzyme, trypsin. In conclusion, we describe a unique defensin expression repertoire in response to inflammatory sexually transmitted infections and a novel host defense mechanism wherein epithelial cells collaborate with neutrophils to establish an antimicrobial barrier during infection. PMID:16040996

  17. Luminal-Applied Flagellin Is Internalized by Polarized Intestinal Epithelial Cells and Elicits Immune Responses via the TLR5 Dependent Mechanism

    PubMed Central

    Eaves-Pyles, Tonyia; Bu, Heng-Fu; Tan, Xiao-di; Cong, Yingzi; Patel, Jignesh; Davey, Robert A.; Strasser, Jane E.

    2011-01-01

    Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn’s lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures. PMID:21949773

  18. Piperine treatment suppresses Helicobacter pylori toxin entry in to gastric epithelium and minimizes β-catenin mediated oncogenesis and IL-8 secretion in vitro

    PubMed Central

    Tharmalingam, Nagendran; Park, Min; Lee, Min Ho; Woo, Hyun Jun; Kim, Hyun Woo; Yang, Ji Yeong; Rhee, Ki-Jong; Kim, Jong-Bae

    2016-01-01

    Helicobacter pylori related gastric cancer initiation has been studied widely. The objective of our present study was to evaluate the effect of a single compound piperine on H. pylori infection and its anti-inflammatory and anti-cancer effects in vitro. Cytotoxicity was tested by Ez-cytox cell viability assay kit. Effects of piperine on H. pylori toxin gene expression and IL-8 expression in mammalian cells during infection were assessed by RT-PCR. Effects of piperine on toxin entry into host cells, E-cadherin cleavage by H. pylori, and the changes in H. pylori mediated β-catenin expression and IL-8 secretion were determined by immunoblotting. Piperine treatment restrained the entry of CagA and VacA into AGS cells. Piperine administration in H. pylori infection reduced E-cadherin cleavage in stomach epithelium. In addition, H. pylori induced β-catenin up-regulation was reduced. Piperine administration impaired IL-8 secretion in H. pylori-infected gastric epithelial cells. As we reported previously piperine restrained H. pylori motility. The possible reason behind the H. pylori inhibition mechanism of piperine could be the dwindled motility, which weakened H. pylori adhesion to gastric epithelial cells. The reduced adhesion decreased the toxin entry thereby secreting less amount of IL-8. In addition, piperine treatment suppressed H. pylori protease led to reduction of E-cadherin cleavage and β-catenin expression resulting in diminished β-catenin translocation into the nucleus thus decreasing the risk of oncogenesis. To our knowledge, this is the preliminary report of piperine mediated H. pylori infection control on gastric epithelial cells in-vitro. PMID:27158376

  19. The Effect of Coumestrol on Progesterone and Prostaglandin Production in the Mare: In Vitro and In Vivo Studies.

    PubMed

    Szóstek, Anna Z; Sadowska, Agnieszka; Piotrowska-Tomala, Katarzyna K; Botelho, Marta; Fradinho, Maria João; Rebordão, Maria Rosa; Ferreira-Dias, Graça M; Skarzynski, Dariusz J

    2016-09-01

    Coumestrol (Cou) is a plant-derived phytoestrogen that induces various pathologies in the female reproductive tract. Although effects of phytoestrogens on reproductive function in other species are well documented, their influence on progesterone (P 4 ) and prostaglandin (PG) secretion in the mare is unknown. The aim of this study was to determine if Cou directly affects P 4 and PG concentrations (in vivo) and endometrial PG secretion (in vitro) in the mare. In experiment 1, the mares (n = 4) were fed for 14 days on a diet containing increasing proportions of alfalfa pellets (250 g-1 kg/day). An additional 4 mares were fed a standard diet (control group). Sequential blood samples were obtained for 8 h after feeding on Days 13 and 14 (1 kg/day alfalfa pellets). Feeding the mares alfalfa pellets up-regulated PGE 2 and 13,14-dihydro-15-ketoprostaglandin F 2alpha (PGFM) and down-regulated P 4 in the blood plasma compared to those in the control group (P < 0.05). In experiment 2, epithelial and stromal cells were exposed to E 2 (10 -9 M) or Cou (10 -8 M) for 24 h. In the in vitro study, Cou increased PG secretion in epithelial and stromal cells (P < 0.05). In both types of endometrial cells, Cou up-regulated PTGS-2 protein expression (P < 0.05). Moreover, PGES and PGFS proteins were up-regulated by Cou in epithelial cells (P < 0.01). These results indicate that Cou can disturb reproductive function by affecting reproductive hormone secretion and altering the endometrial milieu through PG stimulation. Coumestrol therefore may impair physiologic regulation of the estrous cycle and early pregnancy. © 2016 by the Society for the Study of Reproduction, Inc.

  20. Aluminium chloride promotes tumorigenesis and metastasis in normal murine mammary gland epithelial cells

    PubMed Central

    Tenan, Mirna; Ferrari, Paolo; Sappino, André‐Pascal

    2016-01-01

    Aluminium salts, present in many industrial products of frequent use like antiperspirants, anti‐acid drugs, food additives and vaccines, have been incriminated in contributing to the rise in breast cancer incidence in Western societies. However, current experimental evidence supporting this hypothesis is limited. For example, no experimental evidence that aluminium promotes tumorigenesis in cultured mammary epithelial cells exists. We report here that long‐term exposure to concentrations of aluminium—in the form of aluminium chloride (AlCl3)—in the range of those measured in the human breast, transform normal murine mammary gland (NMuMG) epithelial cells in vitro as revealed by the soft agar assay. Subcutaneous injections into three different mouse strains with decreasing immunodeficiency, namely, NOD SCID gamma (NSG), NOD SCID or nude mice, revealed that untreated NMuMG cells form tumors and metastasize, to a limited extent, in the highly immunodeficient and natural killer (NK) cell deficient NSG strain, but not in the less permissive and NK cell competent NOD SCID or nude strains. In contrast, NMuMG cells transformed in vitro by AlCl3 form large tumors and metastasize in all three mouse models. These effects correlate with a mutagenic activity of AlCl3. Our findings demonstrate for the first time that concentrations of aluminium in the range of those measured in the human breast fully transform cultured mammary epithelial cells, thus enabling them to form tumors and metastasize in well‐established mouse cancer models. Our observations provide experimental evidence that aluminium salts could be environmental breast carcinogens. PMID:27541736

  1. Ion transport its regulation in the endolymphatic sac: suggestions for clinical aspects of Meniere's disease.

    PubMed

    Mori, Nozomu; Miyashita, Takenori; Inamoto, Ryuhei; Matsubara, Ai; Mori, Terushige; Akiyama, Kosuke; Hoshikawa, Hiroshi

    2017-04-01

    Ion transport and its regulation in the endolymphatic sac (ES) are reviewed on the basis of recent lines of evidence. The morphological and physiological findings demonstrate that epithelial cells in the intermediate portion of the ES are more functional in ion transport than those in the other portions. Several ion channels, ion transporters, ion exchangers, and so on have been reported to be present in epithelial cells of ES intermediate portion. An imaging study has shown that mitochondria-rich cells in the ES intermediate portion have a higher activity of Na + , K + -ATPase and a higher Na + permeability than other type of cells, implying that molecules related to Na + transport, such as epithelial sodium channel (ENaC), Na + -K + -2Cl - cotransporter 2 (NKCC2) and thiazide-sensitive Na + -Cl - cotransporter (NCC), may be present in mitochondria-rich cells. Accumulated lines of evidence suggests that Na + transport is most important in the ES, and that mitochondria-rich cells play crucial roles in Na + transport in the ES. Several lines of evidence support the hypothesis that aldosterone may regulate Na + transport in ES, resulting in endolymph volume regulation. The presence of molecules related to acid/base transport, such as H + -ATPase, Na + -H + exchanger (NHE), pendrin (SLC26A4), Cl - -HCO 3 - exchanger (SLC4A2), and carbonic anhydrase in ES epithelial cells, suggests that acid/base transport is another important one in the ES. Recent basic and clinical studies suggest that aldosterone may be involved in the effect of salt-reduced diet treatment in Meniere's disease.

  2. Intestinal bicarbonate secretion in Amphiuma measured by pH stat in vitro: relationship with metabolism and transport of sodium and chloride ions.

    PubMed Central

    Imon, M A; White, J F

    1981-01-01

    1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption. PMID:7310697

  3. Intestinal bicarbonate secretion in Amphiuma measured by pH stat in vitro: relationship with metabolism and transport of sodium and chloride ions.

    PubMed

    Imon, M A; White, J F

    1981-05-01

    1. Isolated Amphiuma small intestine exposed on both surfaces to buffered or unbuffered media generated gradients of pH under short-circuited conditions consistent with secretion of HCO3(-). 2. When unbuffered mucosal medium was maintained at pH 7.4 by addition of acid, alkalinization of the mucosal medium occurred at a rate of 1-2 microequiv/hr cm2 under short-circuit conditions (Isc) and was reduced by anoxia, acetazolamide or removal of CO2. 3. The rate of HCO3(-) secretion (JHCO3(-)) was reduced at a mucosal pH above or below 7.4 and was proportional to serosal HCO3(-). 4. JHCO3(-) was reduced in Na+-free (choline) and Cl-free (SO4(2-) media and after exposure to the stilbene SITS. 5. The difference JHCO3(-)--Isc was consistent with net Cl- absorption. 6. The tissue resistance (Rt) was elevated upon exposure to serosal HCO3(-) and lowered by mucosal HCO3(-). 7. The intestinal mucosa exhibited carbonic anhydrase activity that was sensitive to ethoxazolamide. 8. It is concluded that HCO3(-) secretion is active, influenced by intracellular carbonic anhydrase activity and coupled to Cl- and possibly Na+ absorption.

  4. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppé, Jean-Philippe; Patil, Christopher; Rodier, Francis

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cellsmore » in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.« less

  5. Activation of VPAC1 receptors by VIP and PACAP-27 in human bronchial epithelial cells induces CFTR-dependent chloride secretion

    PubMed Central

    Dérand, Renaud; Montoni, Alicia; Bulteau-Pignoux, Laurence; Janet, Thierry; Moreau, Bertrand; Muller, Jean-Marc; Becq, Frédéric

    2004-01-01

    In the human airway epithelium, VIP/PACAP receptors are distributed in nerve fibers and in epithelial cells but their role in transepithelial ion transport have not been reported. Here, we show that human bronchial epithelial Calu-3 cells expressed the VPAC1 receptor subtype which shares similar high affinity for VIP and PACAP-27. The stoichiometric binding parameters characterizing the 125I-VIP and 125I-PACAP-27 binding to these receptors were determined. We found that VIP (EC50≈7.6 nM) and PACAP-27 (EC50≈10 nM) stimulated glibenclamide-sensitive and DIDS-insensitive iodide efflux in Calu-3 cells. The protein kinase A (PKA) inhibitor, H-89 and the protein kinase C (PKC) inhibitor, chelerythrine chloride prevented activation by both peptides demonstrating that PKA and PKC are part of the signaling pathway. This profile corresponds to the pharmacological signature of CFTR. In the cystic fibrosis airway epithelial IB3-1 cell lacking functional CFTR but expressing VPAC1 receptors, neither VIP, PACAP-27 nor forskolin stimulated chloride transport. Ussing chamber experiments demonstrated stimulation of CFTR-dependent short-circuit currents by VIP or PACAP-27 applied to the basolateral but not to the apical side of Calu-3 cells monolayers. This study shows the stimulation in human bronchial epithelial cells of CFTR-dependent chloride secretion following activation by VIP and PACAP-27 of basolateral VPAC1 receptors. PMID:14744818

  6. The Role of BRCA1 in Suppressing Epithelial-Mesenchymal Transition in Mammary Gland and Tumor Development

    DTIC Science & Technology

    2015-09-01

    intrinsic subtypes: basal-like (BL), claudin-low (CL), Her2+ (H2), luminal A (LA), luminal B (LB), and normal breast-like ( NBL ), each of which has...normal breast-like ( NBL ), each of which has unique biologic and prognostic features (28). Of these subtypes of breast cancer, the CL subtype is

  7. Innate immunity in the vagina (part I): estradiol inhibits HBD2 and elafin secretion by human vaginal epithelial cells.

    PubMed

    Patel, Mickey V; Fahey, John V; Rossoll, Richard M; Wira, Charles R

    2013-05-01

    Vaginal epithelial cells (VEC) are the first line of defense against incoming pathogens in the female reproductive tract. Their ability to produce the anti-HIV molecules elafin and HBD2 under hormonal stimulation is unknown. Vaginal epithelial cells were recovered using a menstrual cup and cultured overnight prior to treatment with estradiol (E₂), progesterone (P₄) or a panel of selective estrogen response modulators (SERMs). Conditioned media were recovered and analyzed for protein concentration and anti-HIV activity. E₂ significantly decreased the secretion of HBD2 and elafin by VEC over 48 hrs, while P4 and the SERMs (tamoxifen, PHTTP, ICI or Y134) had no effect. VEC conditioned media from E₂ -treated cells had no anti-HIV activity, while that from E₂ /P₄ -treated cells significantly inhibited HIV-BaL infection. The menstrual cup allows for effective recovery of primary VEC. Their production of HBD2 and elafin is sensitive to E₂, suggesting that innate immune protection varies in the vagina across the menstrual cycle. © 2013 John Wiley & Sons A/S.

  8. Structural changes of oviduct of freshwater shrimp, Macrobrachium nipponense (Decapoda, Palaemonidae), during spawning*

    PubMed Central

    Lu, Jian-ping; Zhang, Xiao-hui; Yu, Xiao-yun

    2006-01-01

    The structural change of the oviduct of freshwater shrimp (Macrobrachium nipponense) during spawning was examined by electron microscopy. The oviduct wall structural characteristics seem to be influenced significantly by the spawning process. Before the parturition and ovulation, two types of epithelial cells (types I and II) are found in the epithelium. The free surfaces of type I and type II cells have very dense long microvilli. Under the type I and type II cells, are a relatively thick layer of secreting material and a layer of mostly dead cells. After ovulation, two other types of epithelial cells (types III and IV) are found in the oviduct wall epithelium. The free surface of type III cells only has short microvilli scattered on the surface. The thick layer with secreting material and the dead cell layer disappeared at this stage. In some type III cells, the leaking out of cytoplasm from broken cell membrane led to the death of these type III cells. The transformation of all four types of epithelial cells was in the order: IV→I→II→III. PMID:16365928

  9. Germline Mutations of Inhibins in Early-Onset Ovarian Epithelial Tumors

    PubMed Central

    Tournier, Isabelle; Marlin, Régine; Walton, Kelly; Charbonnier, Françoise; Coutant, Sophie; Théry, Jean-Christophe; Charbonnier, Camille; Spurrell, Cailyn; Vezain, Myriam; Ippolito, Lorena; Bougeard, Gaëlle; Roman, Horace; Tinat, Julie; Sabourin, Jean-Christophe; Stoppa-Lyonnet, Dominique; Caron, Olivier; Bressac-de Paillerets, Brigitte; Vaur, Dominique; King, Mary-Claire; Harrison, Craig; Frebourg, Thierry

    2014-01-01

    To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the βA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the βA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors. PMID:24302632

  10. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish

    USGS Publications Warehouse

    Hiroi, J.; Yasumasu, S.; McCormick, S.D.; Hwang, P.-P.; Kaneko, T.

    2008-01-01

    Cation-chloride cotransporters, such as the Na+/K +/2Cl- cotransporter (NKCC) and Na+/Cl - cotransporter (NCC), are localized to the apical or basolateral plasma membranes of epithelial cells and are involved in active ion absorption or secretion. The objectives of this study were to clone and identify 'freshwater-type' and 'seawater-type' cation-chloride cotransporters of euryhaline Mozambique tilapia (Oreochromis mossambicus) and to determine their intracellular localization patterns within mitochondria-rich cells (MRCs). From tilapia gills, we cloned four full-length cDNAs homologous to human cation-chloride cotransporters and designated them as tilapia NKCC1a, NKCC1b, NKCC2 and NCC. Out of the four candidates, the mRNA encoding NKCC1a was highly expressed in the yolk-sac membrane and gills (sites of the MRC localization) of seawater-acclimatized fish, whereas the mRNA encoding NCC was exclusively expressed in the yolk-sac membrane and gills of freshwater-acclimatized fish. We then generated antibodies specific for tilapia NKCC1a and NCC and conducted whole-mount immunofluorescence staining for NKCC1a and NCC, together with Na+/K+-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/H+ exchanger 3 (NHE3), on the yolk-sac membrane of tilapia embryos acclimatized to freshwater or seawater. The simultaneous quintuple-color immunofluorescence staining allowed us to classify MRCs clearly into four types: types I, II, III and IV. The NKCC1a immunoreactivity was localized to the basolateral membrane of seawater-specific type-IV MRCs, whereas the NCC immunoreactivity was restricted to the apical membrane of freshwater-specific type-II MRCs. Taking account of these data at the level of both mRNA and protein, we deduce that NKCC1a is the seawater-type cotransporter involved in ion secretion by type-IV MRCs and that NCC is the freshwater-type cotransporter involved in ion absorption by type-II MRCs. We propose a novel ion-uptake model by MRCs in freshwater that incorporates apically located NCC. We also reevaluate a traditional ion-uptake model incorporating NHE3; the mRNA was highly expressed in freshwater, and the immunoreactivity was found at the apical membrane of other freshwater-specific MRCs.

  11. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways?

    PubMed Central

    Kesimer, Mehmet; Kirkham, Sara; Pickles, Raymond J.; Henderson, Ashley G.; Alexis, Neil E.; DeMaria, Genevieve; Knight, David; Thornton, David J.; Sheehan, John K.

    2009-01-01

    Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces “mucus” with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products. PMID:18931053

  12. Cortisol receptor blockade and seawater adaptation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Marshall, W.S.; Cozzi, R.R.F.; Pelis, Ryan M.; McCormick, S.D.

    2005-01-01

    To examine the role of cortisol in seawater osmoregulation in a euryhaline teleost, adult killifish were acclimated to brackish water (10???) and RU486 or vehicle was administered orally in peanut oil daily for five days at low (40 mg.kg-1) or high dose (200 mg.kg-1). Fish were transferred to 1.5 x seawater (45???) or to brackish water (control) and sampled at 24 h and 48 h after transfer, when Cl- secretion is upregulated. At 24 h, opercular membrane Cl- secretion rate, as Isc, was increased only in the high dose RU486 group. Stimulation of membranes by 3-isobutyl-1-methylxanthine and cAMP increased Isc in vehicle treated controls but those from RU486-treated animals were unchanged and membranes from brackish water animals showed a decrease in Isc. At 48 h, Isc increased and transepithelial resistance decreased in vehicle and RU486 groups, compared to brackish water controls. Plasma cortisol increased in all groups transferred to high salinity, compared to brackish water controls. RU486 treated animals had higher cortisol levels compared to vehicle controls. Vehicle treated controls had lower cortisol levels than untreated or RU486 treated animals, higher stimulation of Isc, and lower hematocrit at 24 h, beneficial effects attributed to increased caloric intake from the peanut oil vehicle. Chloride cell density was significantly increased in the high dose RU486 group at 48 hours, yet Isc was unchanged, suggesting a decrease in Cl- secretion per cell. Thus cortisol enhances NaCl secretion capacity in chloride cells, likely via glucocorticoid type receptors. ?? 2005 Wiley-Liss, Inc.

  13. Control of Cl- transport in the operculum epithelium of Fundulus heteroclitus: long- and short-term salinity adaptation.

    PubMed

    Hoffmann, E K; Hoffmann, E; Lang, F; Zadunaisky, J A

    2002-11-13

    The eurohaline fish, Fundulus heteroclitus, adapts rapidly to enhanced salinity by increasing the ion secretion by gill chloride cells. An increase of approximately 70 mOsm in plasma osmolarity was previously found during the transition. To mimic this in vitro, isolated opercular epithelia of seawater-adapted Fundulus mounted in a modified Ussing chamber were exposed to an increase in NaCl and/or osmolarity on the basolateral side, which immediately increased I(SC). Various Cl(-) channel blockers as well as the K(+) channel blocker Ba(2+) added to the basolateral side all inhibited the steady-state as well as the hypertonic stimulation of I(SC). The exists -agonist isoproterenol stimulates I(SC) in standard Ringer solutions. In contrast, when cell volume was kept at the larger value by simultaneous addition of water, the stimulation with isoproterenol was abolished, suggesting that the key process for activation of the Na(+), K(+), 2Cl(-) cotransporter is cell shrinkage. The protein kinase C (PKC) inhibitor chelerythrine and the myosin light chain kinase (MLCK) inhibitor ML-7 had strong inhibitory effects on the mannitol activation of I(SC), thus both MLCK and PKC are involved. The two specific protein kinase A (PKA) inhibitors H-89 and KT 5720 had no effect after mannitol addition whereas isoproterenol stimulation was completely blocked by H-89. This indicates that PKA is involved in the activation of the apical Cl(-) channel via c-AMP whereas the shrinkage activation of the Na(+), K(+), 2Cl(-) cotransporter is independent of PKA activation. The steady-state Cl(-) secretion was stimulated by an inhibitor of serine/threonine phosphatases of the PP-1 and PP-2A type and inhibited by a PKC inhibitor but not by a PKA inhibitor. Thus, it seems to be determined by continuous phosphorylation and dephosphorylation involving PKC but not PKA. The steady-state Cl(-) secretion and the maximal obtainable Cl(-) secretion were measured in freshwater-adapted fish and in fish retransferred to saltwater. No I(SC) could be measured in freshwater-adapted fish or in the fish within the first 18 h after transfer to saltwater. As evidenced from Western blot analysis using antiserine-antibodies, a heavily serine phosphorylated protein of about 190 kDa was consistently observed in the saltwater-acclimated fish, but was only weakly present in freshwater-acclimated fish. This observation indicates that acclimatization to saltwater stimulates the expression of this 190-kDa protein and/or a serine/threonine kinase, which subsequently phosphorylates the protein.

  14. Role for ion transport in porcine vocal fold epithelial defense to acid challenge.

    PubMed

    Erickson-Levendoski, Elizabeth; Sivasankar, M Preeti

    2012-02-01

    The vocal fold epithelium is routinely exposed to gastric contents, including acid and pepsin, during laryngopharyngeal reflux events. The epithelium may possess intrinsic defenses to reflux. The first objective of the current study was to examine whether vocal fold epithelial ion transport is one potential mechanism of defense to gastric contents. The second objective was to determine whether ion transport in response to gastric contents is associated with the secretion of bicarbonate. Prospective design in excised porcine larynges. Laboratory. Porcine vocal folds (N = 56) were exposed on the luminal surface to acid, pepsin, or sham challenges. Ion transport at baseline and following challenge exposure was measured using electrophysiological techniques. To examine specific ion transport mechanisms, vocal folds were pretreated with either a sodium channel blocker or bicarbonate channel blocker. Within 60 seconds of acid but not pepsin exposure, there was a significant increase in ion transport. This rapid increase in ion transport was transient and related to bicarbonate secretion. The current data suggest that porcine vocal folds immediately increase bicarbonate secretion following exposure to acid. Bicarbonate secretion may act to neutralize acid. These findings contribute to the identification of the mechanisms underlying vocal fold defense to reflux and offer implications for the development of treatments for reflux-induced vocal fold injury.

  15. Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus*

    PubMed Central

    Tsuboi, Koichiro; Nishitani, Mayo; Takakura, Atsushi; Imai, Yasuyuki; Komatsu, Masaaki; Kawashima, Hiroto

    2015-01-01

    Genome-wide association studies of inflammatory bowel diseases identified susceptible loci containing an autophagy-related gene. However, the role of autophagy in the colon, a major affected area in inflammatory bowel diseases, is not clear. Here, we show that colonic epithelial cell-specific autophagy-related gene 7 (Atg7) conditional knock-out (cKO) mice showed exacerbation of experimental colitis with more abundant bacterial invasion into the colonic epithelium. Quantitative PCR analysis revealed that cKO mice had abnormal microflora with an increase of some genera. Consistently, expression of antimicrobial or antiparasitic peptides such as angiogenin-4, Relmβ, intelectin-1, and intelectin-2 as well as that of their inducer cytokines was significantly reduced in the cKO mice. Furthermore, secretion of colonic mucins that function as a mucosal barrier against bacterial invasion was also significantly diminished in cKO mice. Taken together, our results indicate that autophagy in colonic epithelial cells protects against colitis by the maintenance of normal gut microflora and secretion of mucus. PMID:26149685

  16. EMMPRIN Is Secreted by Human Uterine Epithelial Cells in Microvesicles and Stimulates Metalloproteinase Production by Human Uterine Fibroblast Cells

    PubMed Central

    Dayger, C. A.; Mehrotra, P.; Belton, R. J.; Nowak, R. A.

    2012-01-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C. PMID:22729071

  17. EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells.

    PubMed

    Braundmeier, A G; Dayger, C A; Mehrotra, P; Belton, R J; Nowak, R A

    2012-12-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C.

  18. Probing into the Secret of the Chinese Air Force.

    DTIC Science & Technology

    1983-11-30

    Ri35 968 PROBING INTO THE SECRET OF THE CHINESE AIR FOREE(IJ 1/2 FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON RFB OH 9 38 NOV 83 FTD-ID(,RS)T 1088 3...FOREIGN TECHNOLOGY DIVISION. PROBING INTO THE SECRET OF THE CHINESE AIRFORCE CL1 Approved for public re.lease; distribution unlimited C=)X ~ EET...MICROFICHE NR: FTD-83-C-001469 PROBING INTO THE SECRET OF THE CHINESE AIRFORCE -" -English pages: 111 Source: Enclosure to IR 6 842 0088 83-Booklet

  19. Mammary Adipose Tissue-derived Lysophospholipids Promote Estrogen Receptor-negative Mammary Epithelial Cell Proliferation

    PubMed Central

    Volden, Paul A.; Skor, Maxwell N.; Johnson, Marianna B.; Singh, Puneet; Patel, Feenalie N.; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.

    2016-01-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiological and pathological processes including cancer. LPA is converted to lysophosphatidylcholine (LPC) by the secreted phospholipase, autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA-axis) signaling to breast cancer is poorly understood. Using mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA-axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA-axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA-axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. PMID:26862086

  20. [Dual role for prostaglandin D2 in intestinal epithelial homeostasis].

    PubMed

    Le Loupp, Anne-Gaelle; Bach-Ngohou, Kalyane; Bettan, Armel; Denis, Marc; Masson, Damien

    2015-01-01

    Prostaglandin D2 (PGD2) and derivatives are lipid mediators involved in the control of the intestinal epithelial barrier homeostasis. Their involvement in the pathophysiology of chronic inflammatory bowel disease (IBD) is still debated. Several results highlight the duality of PGD2 as an anti- or pro-inflammatory mediator. This duality seems to be related to a differential expression of its receptors by intestinal epithelial cells and the surrounding immunocompetent cells. The enteric glial cells from the enteric nervous system (ENS) express the lipocalin-type-prostaglandin D synthase and secrete PGD2 and 15d-PGJ2. The protective role of the ENS in the homeostatic control of the epithelial intestinal barrier and its involvement in the pathogenesis of IBD have already been demonstrated. Thus, these lipid mediators seem to be new actors of the neuro-glio-epithelial unit and could play a crucial role maintaining gut barrier integrity. © 2015 médecine/sciences – Inserm.

  1. IL-23 secreted by bronchial epithelial cells contributes to allergic sensitization in asthma model: role of IL-23 secreted by bronchial epithelial cells.

    PubMed

    Lee, Hyun Seung; Park, Da-Eun; Lee, Ji-Won; Chang, Yuna; Kim, Hye Young; Song, Woo-Jung; Kang, Hye-Ryun; Park, Heung-Woo; Chang, Yoon-Seok; Cho, Sang-Heon

    2017-01-01

    IL-23 has been postulated to be a critical mediator contributing to various inflammatory diseases. Dermatophagoides pteronyssinus (Der p) is one of the most common inhalant allergens. However, the role of IL-23 in Der p-induced mouse asthma model is not well understood, particularly with regard to the development of allergic sensitization in the airways. The objective of this study was to evaluate roles of IL-23 in Der p sensitization and asthma development. BALB/c mice were repeatedly administered Der p intranasally to develop Der p allergic sensitization and asthma. After Der p local administration, changes in IL-23 expression were examined in lung tissues and primary epithelial cells. Anti-IL-23p19 antibody was given during the Der p sensitization period, and its effects were examined. Effects of anti-IL-23p19 antibody at bronchial epithelial levels were also examined in vitro. The expression of IL-23 at bronchial epithelial layers was increased after Der p local administration in mouse. In Der p-induced mouse models, anti-IL-23p19 antibody treatment during allergen sensitization significantly diminished Der p allergic sensitization and several features of allergic asthma including the production of Th2 cytokines and the population of type 2 innate lymphoid cells in lungs. The activation of dendritic cells in lung-draining lymph nodes was also reduced by anti-IL-23 treatment. In murine lung alveolar type II-like epithelial cell line (MLE-12) cells, IL-23 blockade prevented cytokine responses to Der p stimulation, such as IL-1α, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-33, and also bone marrow-derived dendritic cell activation. In conclusion, IL-23 is another important bronchial epithelial cell-driven cytokine which may contribute to the development of house dust mite allergic sensitization and asthma. Copyright © 2017 the American Physiological Society.

  2. Multi-Drug Resistance Transporter 2 Regulates Mucosal Inflammation by Facilitating the Synthesis of Hepoxilin A3

    PubMed Central

    Pazos, Michael; Siccardi, Dario; Mumy, Karen L.; Bien, Jeffrey D.; Louie, Steve; Shi, Hai Ning; Gronert, Karsten; Mrsny, Randall J.; McCormick, Beth A.

    2008-01-01

    Neutrophil transmigration across mucosal surfaces contributes to dysfunction of epithelial barrier properties, a characteristic underlying many mucosal inflammatory diseases. Thus, insight into the directional movement of neutrophils across epithelial barriers will provide important information relating to the mechanisms of such inflammatory disorders. The eicosanoid hepoxilin A3, an endogenous product of 12-lipoxygenase activity, is secreted from the apical surface of the epithelial barrier and establishes a chemotatic gradient to guide neutrophils from the submucosa, across epithelia to the luminal site of an inflammatory stimulus - the final step in neutrophil recruitment. Currently, little is known regarding how hepoxilin A3 is secreted from the intestinal epithelium during an inflammatory insult. In this study we reveal that hepoxilin A3 is a substrate for the apical efflux ABC transporter, multi-drug resistance protein 2 (MRP2). Moreover, using multiple in vitro and in vivo models we show that induction of intestinal inflammation profoundly up-regulates apical expression of MRP2, and that interfering with hepoxilin A3 synthesis and/or inhibition of MRP2 function results in a marked reduction in inflammation and severity of disease. Lastly, examination of inflamed intestinal epithelia in human biopsies revealed up-regulation of MRP2. Thus, blocking hepoxilin A3 synthesis and/or inhibiting MRP2 may lead to the development of new therapeutic strategies for the treatment of epithelial-associated inflammatory conditions. PMID:19017997

  3. Inflammatory signaling pathways induced by Helicobacter pylori in primary human gastric epithelial cells.

    PubMed

    Tran, Cong Tri; Garcia, Magali; Garnier, Martine; Burucoa, Christophe; Bodet, Charles

    2017-02-01

    Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.

  4. Sodium bicarbonate secretion indicated by ultrastructural cytochemical localization of HCO3(-), Cl-, and Na+ ions on rat bile duct brush cells.

    PubMed

    Ogata, Takuro

    2005-12-01

    Brush cells are widely distributed in the digestive and respiratory apparatus, but their function is still unknown. Because brush cells (BC) are found in organs secreting NaHCO3, it was hypothesized that these cells may secrete NaHCO3. To test this possibility, rat common bile duct epithelia were examined by ultrastructural cytochemical methods for localizing HCO3(-), Cl-, and Na+ ions. All three ion precipitates were few in or on BCs of rats without stimulation. Lead carbonate precipitates, which localized HCO3(-) ions by the lead nitrate-osmium method, increased markedly on the surface of the microvilli (MV) of BCs after secretin or meal stimulation, but similar precipitates were few on the luminal surface of principal cells (PCs). Silver chloride precipitates, which indicate the presence of Cl- ions by the silver-osmium method, increased in the apical cytoplasm and in MV of BCs after secretin or meal stimulation, but they were few in PCs. Sodium pyroantimonate precipitates, which localize Na+ ions by the potassium pyroantimonate-osmium method, increased on the surface of the MV, along the basolateral membrane, and in the apical cytoplasm of BCs after secretin or meal stimulation, but they were few in PCs. These results strongly suggest that BCs may be a significant source of NaHCO3 secretion.

  5. Microbiota-host interplay at the gut epithelial level, health and nutrition.

    PubMed

    Lallès, Jean-Paul

    2016-01-01

    Growing evidence suggests the implication of the gut microbiota in various facets of health and disease. In this review, the focus is put on microbiota-host molecular cross-talk at the gut epithelial level with special emphasis on two defense systems: intestinal alkaline phosphatase (IAP) and inducible heat shock proteins (iHSPs). Both IAP and iHSPs are induced by various microbial structural components (e.g. lipopolysaccharide, flagellin, CpG DNA motifs), metabolites (e.g. n-butyrate) or secreted signal molecules (e.g., toxins, various peptides, polyphosphate). IAP is produced in the small intestine and secreted into the lumen and in the interior milieu. It detoxifies microbial components by dephosphorylation and, therefore, down-regulates microbe-induced inflammation mainly by inhibiting NF-κB pro-inflammatory pathway in enterocytes. IAP gene expression and enzyme activity are influenced by the gut microbiota. Conversely, IAP controls gut microbiota composition both directly, and indirectly though the detoxification of pro-inflammatory free luminal adenosine triphosphate and inflammation inhibition. Inducible HSPs are expressed by gut epithelial cells in proportion to the microbial load along the gastro-intestinal tract. They are also induced by various microbial components, metabolites and secreted molecules. Whether iHSPs contribute to shape the gut microbiota is presently unknown. Both systems display strong anti-inflammatory and anti-oxidant properties that are protective to the gut and the host. Importantly, epithelial gene expressions and protein concentrations of IAP and iHSPs can be stimulated by probiotics, prebiotics and a large variety of dietary components, including macronutrients (protein and amino acids, especially L-glutamine, fat, fiber), and specific minerals (e.g. calcium) and vitamins (e.g. vitamins K1 and K2). Some food components (e.g. lectins, soybean proteins, various polyphenols) may inhibit or disturb these systems. The general cellular and molecular mechanisms involved in the microbiota-host epithelial crosstalk and subsequent gut protection through IAP and iHSPs are reviewed along with their nutritional modulation. Special emphasis is also given to the pig, an economically important species and valuable biomedical model.

  6. Altered morphology and function of the lacrimal functional unit in protein kinase C{alpha} knockout mice.

    PubMed

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J; Pflugfelder, Stephen C

    2010-11-01

    Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout ((-/-)) mice have impaired ocular surface-lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα(-/-) mice. In PKCα(+/+) control mice and PKCα(-/-) mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Compared with the PKCα(+/+) mice, the PKCα(-/-) mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα(-/-) mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα(+/+) mice. The PKCα(-/-) mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα(-/-) mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration.

  7. PREPUBERTAL EXPOSURES TO COMPOUNDS THAT INCREASE PROLACTIN SECRETION IN THE MALE RAT: EFFECTS ON ADULT PROSTATE

    EPA Science Inventory

    Prepubertal exposure to compounds that increase prolactin secretion in the male rat: effects on the adult prostate.

    Stoker TE, Robinette CL, Britt BH, Laws SC, Cooper RL.

    Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effec...

  8. Lacritin and Other New Proteins of the Lacrimal Functional Unit

    PubMed Central

    McKown, Robert L.; Wang, Ningning; Raab, Ronald W.; Karnati, Roy; Zhang, Yinghui; Williams, Patricia B.; Laurie, Gordon W.

    2009-01-01

    The lacrimal functional unit (LFU) is defined by the 2007 International Dry Eye WorkShop as ‘an integrated system comprising the lacrimal glands, ocular surface (cornea, conjunctiva and meibomian glands) and lids, and the sensory and motor nerves that connect them’. The LFU maintains a healthy ocular surface primarily through a properly functioning tear film that provides protection, lubrication, and an environment for corneal epithelial cell renewal. LFU cells express thousands of proteins. Over two hundred new LFU proteins have been discovered in the last decade. Lacritin is a new LFU-specific growth factor in human tears that flows through ducts to target corneal epithelial cells on the ocular surface. When applied topically in rabbits, lacritin appears to increase the volume of basal tear secretion. Lacritin is one of only a handful of tear proteins preliminarily reported to be downregulated in blepharitis and in two dry eye syndromes. Computational analysis predicts an ordered C-terminal domain that binds the corneal epithelial cell surface proteoglycan syndecan-1 (SDC1) and is required for lacritin’s low nanomolar mitogenic activity. The lacritin binding site on the N-terminus of SDC1 is exposed by heparanase. Heparanase is constitutively expressed by the corneal epithelium and appears to be a normal constituent of tears. Binding triggers rapid signaling to downstream NFAT and mTOR. A wealth of other new proteins, originally designated as hypothetical when first identified by genomic sequencing, are expressed by the human LFU including: ALS2CL, ARHGEF19, KIAA1109, PLXNA1, POLG, WIPI1 and ZMIZ2. Their demonstrated or implied roles in human genetic disease or basic cellular functions are fuel for new investigation. Addressing topical areas in ocular surface physiology with new LFU proteins may reveal interesting new biological mechanisms and help get to the heart of ocular surface dysfunction. PMID:18840430

  9. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways

    PubMed Central

    Ogunwobi, Olorunseun O.

    2013-01-01

    Advanced hepatocellular carcinoma (HCC) is an important cause of cancer mortality. Epithelial-mesenchymal transition (EMT) has been shown to be an important biological process in cancer progression and metastasis. We have focused on elucidating factors that induce EMT to promote carcinogenesis and subsequent metastasis in HCC using the BNL CL.2 (BNL) and BNL 1ME A. 7R.1 (1MEA) cell lines. BNL cells are normal hepatocytes whereas the 1MEA cells are HCC cells derived from chemical transformation of the BNL cells. Their morphological characteristics were examined. Expression levels of hepatocyte growth factor (HGF), markers of EMT and mediators of HGF signaling were determined and functional characteristics were compared. BNL cells were treated with HGF and effects on EMT-marker and mediators of HGF signaling were analyzed. BNL cells display characteristic epithelial morphology whereas 1MEA cells display mesenchymal characteristics. 1MEA cells express and secrete more HGF than BNL cells. There was significantly decreased expression of E-cadherin, albumin, AAT and increased expression of fibronectin, collagen-1, vimentin, snail and slug in 1MEA cells. There was also increased expression of cyclooxygenase-2 (COX-2), Akt and phosphorylated Akt (pAkt) in 1MEA cells. Moreover, 1MEA cells had increased migratory capacity inhibited by inhibition of COX-2 and Akt but not extracellular signal regulated kinase (ERK). Molecular mesenchymal characteristics of 1MEA cells were reversed by inhibition of COX-2, Akt and ERK. Treatment of BNL cells with HGF led to decreased expression of E-cadherin and increased expression of fibronectin, vimentin, snail, slug, COX-2, Akt, pAkt and increased migration, invasiveness and clonogenicity. We conclude that development of HCC is associated with upregulation of HGF which promotes EMT and carcinogenesis via upregulation of COX-2 and Akt. Consequently, HGF signaling may be targeted for therapy in advanced and metastatic HCC. PMID:21744257

  10. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways.

    PubMed

    Ogunwobi, Olorunseun O; Liu, Chen

    2011-12-01

    Advanced hepatocellular carcinoma (HCC) is an important cause of cancer mortality. Epithelial-mesenchymal transition (EMT) has been shown to be an important biological process in cancer progression and metastasis. We have focused on elucidating factors that induce EMT to promote carcinogenesis and subsequent metastasis in HCC using the BNL CL.2 (BNL) and BNL 1ME A. 7R.1 (1MEA) cell lines. BNL cells are normal hepatocytes whereas the 1MEA cells are HCC cells derived from chemical transformation of the BNL cells. Their morphological characteristics were examined. Expression levels of hepatocyte growth factor (HGF), markers of EMT and mediators of HGF signaling were determined and functional characteristics were compared. BNL cells were treated with HGF and effects on EMT-marker and mediators of HGF signaling were analyzed. BNL cells display characteristic epithelial morphology whereas 1MEA cells display mesenchymal characteristics. 1MEA cells express and secrete more HGF than BNL cells. There was significantly decreased expression of E-cadherin, albumin, AAT and increased expression of fibronectin, collagen-1, vimentin, snail and slug in 1MEA cells. There was also increased expression of cyclooxygenase-2 (COX-2), Akt and phosphorylated Akt (pAkt) in 1MEA cells. Moreover, 1MEA cells had increased migratory capacity inhibited by inhibition of COX-2 and Akt but not extracellular signal regulated kinase (ERK). Molecular mesenchymal characteristics of 1MEA cells were reversed by inhibition of COX-2, Akt and ERK. Treatment of BNL cells with HGF led to decreased expression of E-cadherin and increased expression of fibronectin, vimentin, snail, slug, COX-2, Akt, pAkt and increased migration, invasiveness and clonogenicity. We conclude that development of HCC is associated with upregulation of HGF which promotes EMT and carcinogenesis via upregulation of COX-2 and Akt. Consequently, HGF signaling may be targeted for therapy in advanced and metastatic HCC.

  11. Macrophage Control of Phagocytosed Mycobacteria Is Increased by Factors Secreted by Alveolar Epithelial Cells through Nitric Oxide Independent Mechanisms

    PubMed Central

    Freidl, Raphaela; Fernández, Carmen

    2014-01-01

    Tissue-resident macrophages are heterogeneous with tissue-specific and niche-specific functions. Thus, simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo. We focus here on the respiratory tract and ask whether factors secreted by alveolar epithelial cells (AEC) can influence the functionality of resident pulmonary macrophages (PuM). We have previously reported that factors secreted by AEC increase control of intracellular growth of BCG in macrophages. In the current study, we also aimed to investigate possible mechanisms by which AEC-derived factors increase intracellular control of BCG in both primary murine interstitial macrophages, and bone marrow-derived macrophages and characterize further the effect of these factors on macrophage differentiation. We show that; a) in contrast to other macrophage types, IFN-γ did not increase intracellular growth control of Mycobacterium bovis, Bacillus Calmette-Guérin (BCG) by interstitial pulmonary macrophages although the same macrophages could be activated by factors secreted by AEC; b) the lack of response of pulmonary macrophages to IFN-γ was apparently regulated by suppressor of cytokine signaling (SOCS)1; c) AEC-derived factors did not induce pro-inflammatory pathways induced by IFN-γ e.g. expression of inducible nitric oxide synthase (iNOS), secretion of nitric oxide (NO), or IL-12, d) in contrast to IFN-γ, intracellular bacterial destruction induced by AEC-derived factors was not dependent on iNOS transcription and NO production. Collectively, our data show that PuM were restricted in inflammatory responses mediated by IFN-γ through SOCS1 and that factors secreted by AEC- enhanced the microbicidal capacities of macrophages by iNOS independent mechanisms. PMID:25089618

  12. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yawen; Huang Chunfa; Yang Chingyao

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} alsomore » displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.« less

  13. Severe changes in colon epithelium in the Mecp2-null mouse model of Rett syndrome.

    PubMed

    Millar-Büchner, Pamela; Philp, Amber R; Gutierrez, Noemí; Villanueva, Sandra; Kerr, Bredford; Flores, Carlos A

    2016-12-01

    Rett syndrome is best known due to its severe and devastating symptoms in the central nervous system. It is produced by mutations affecting the Mecp2 gene that codes for a transcription factor. Nevertheless, evidence for MECP2 activity has been reported for tissues other than those of the central nervous system. Patients affected by Rett presented with intestinal affections whose origin is still not known. We have observed that the Mecp2-null mice presented with episodes of diarrhea, and decided to study the intestinal phenotype in these mice. Mecp2-null mice or bearing the conditional intestinal deletion of MECP2 were used. Morphometirc and histologic analysis of intestine, and RT-PCR, western blot and immunodetection were perfomed on intestinal samples of the animals. Electrical parameters of the intestine were determined by Ussing chamber experiments in freshly isolated colon samples. First we determined that MECP2 protein is mainly expressed in cells of the lower part of the colonic crypts and not in the small intestine. The colon of the Mecp2-null mice was shorter than that of the wild-type. Histological analysis showed that epithelial cells of the surface have abnormal localization of key membrane proteins like ClC-2 and NHE-3 that participate in the electroneutral NaCl absorption; nevertheless, electrogenic secretion and absorption remain unaltered. We also detected an increase in a proliferation marker in the crypts of the colon samples of the Mecp2-null mice, but the specific silencing of Mecp2 from intestinal epithelium was not able to recapitulate the intestinal phenotype of the Mecp2-null mice. In summary, we showed that the colon is severely affected by Mecp2 silencing in mice. Changes in colon length and epithelial histology are similar to those observed in colitis. Changes in the localization of proteins that participate in fluid absorption can explain watery stools, but the exclusive deletion of Mecp2 from the intestine did not reproduce colon changes observed in the Mecp2-null mice, indicating the participation of other cells in this phenotype and the complex interaction between different cell types in this disease.

  14. Serpin Facilitates Tumor-Suppressive Cell Competition by Blocking Toll-Mediated Yki Activation in Drosophila.

    PubMed

    Katsukawa, Mitsuko; Ohsawa, Shizue; Zhang, Lina; Yan, Yan; Igaki, Tatsushi

    2018-06-04

    Normal epithelial tissue exerts an intrinsic tumor-suppressive effect against oncogenically transformed cells. In Drosophila imaginal epithelium, clones of oncogenic polarity-deficient cells mutant for scribble (scrib) or discs large (dlg) are eliminated by cell competition when surrounded by wild-type cells. Here, through a genetic screen in Drosophila, we identify Serpin5 (Spn5), a secreted negative regulator of Toll signaling, as a crucial factor for epithelial cells to eliminate scrib mutant clones from epithelium. Downregulation of Spn5 in wild-type cells leads to elevation of Toll signaling in neighboring scrib cells. Strikingly, forced activation of Toll signaling or Toll-related receptor (TRR) signaling in scrib clones transforms scrib cells from losers to supercompetitors, resulting in tumorous overgrowth of mutant clones. Mechanistically, Toll activation in scrib clones leads to c-Jun N-terminal kinase (JNK) activation and F-actin accumulation, which cause strong activation of the Hippo pathway effector Yorkie that blocks cell death and promotes cell proliferation. Our data suggest that Spn5 secreted from normal epithelial cells acts as a component of the extracellular surveillance system that facilitates elimination of pre-malignant cells from epithelium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Innate Immunity in the Vagina (Part I): Estradiol Inhibits HBD2 and Elafin Secretion by Human Vaginal Epithelial Cells

    PubMed Central

    Patel, Mickey V.; Fahey, John V.; Rossoll, Richard M.; Wira, Charles R.

    2013-01-01

    Problem Vaginal epithelial cells (VEC) are the first line of defense against incoming pathogens in the female reproductive tract. Their ability to produce the anti-HIV molecules elafin and HBD2 under hormonal stimulation is unknown. Method of study Vaginal epithelial cells were recovered using a menstrual cup and cultured overnight prior to treatment with estradiol (E2), progesterone (P4) or a panel of selective estrogen response modulators (SERMs). Conditioned media were recovered and analyzed for protein concentration and anti-HIV activity. Results E2 significantly decreased the secretion of HBD2 and elafin by VEC over 48 hrs, while P4 and the SERMs (tamoxifen, PHTTP, ICI or Y134) had no effect. VEC conditioned media from E2-treated cells had no anti-HIV activity, while that from E2/P4-treated cells significantly inhibited HIV-BaL infection. Conclusion The menstrual cup allows for effective recovery of primary VEC. Their production of HBD2 and elafin is sensitive to E2, suggesting that innate immune protection varies in the vagina across the menstrual cycle. PMID:23398087

  16. Identifying Mechanisms by Which Escherichia coli O157:H7 Subverts Interferon-γ Mediated Signal Transducer and Activator of Transcription-1 Activation

    PubMed Central

    Ho, Nathan K.; Crandall, Ian; Sherman, Philip M.

    2012-01-01

    Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein. PMID:22253910

  17. Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

    PubMed Central

    Jayakumar, Calpurnia; Mohamed, Riyaz; Ranganathan, Punithavathi Vilapakkam; Ramesh, Ganesan

    2011-01-01

    Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells. PMID:22046354

  18. Bacillus megaterium SF185 induces stress pathways and affects the cell cycle distribution of human intestinal epithelial cells.

    PubMed

    Di Luccia, B; D'Apuzzo, E; Varriale, F; Baccigalupi, L; Ricca, E; Pollice, A

    2016-09-01

    The interaction between the enteric microbiota and intestinal cells often involves signal molecules that affect both microbial behaviour and host responses. Examples of such signal molecules are the molecules secreted by bacteria that induce quorum sensing mechanisms in the producing microorganism and signal transduction pathways in the host cells. The pentapeptide competence and sporulation factor (CSF) of Bacillus subtilis is a well characterized quorum sensing factor that controls competence and spore formation in the producing bacterium and induces cytoprotective heat shock proteins in intestinal epithelial cells. We analysed several Bacillus strains isolated from human ileal biopsies of healthy volunteers and observed that some of them were unable to produce CSF but still able to act in a CSF-like fashion on model intestinal epithelial cells. One of those strains belonging to the Bacillus megaterium species secreted at least two factors with effects on intestinal HT29 cells: a peptide smaller than 3 kDa able to induce heat shock protein 27 (hsp27) and p38-MAPK, and a larger molecule able to induce protein kinase B (PKB/Akt) with a pro-proliferative effect.

  19. Combinatorial effects of quercetin and sex-steroids on fluid and electrolytes’ (Na+, Cl-, HCO3-) secretory mechanisms in the uterus of ovariectomised female Sprague-Dawley rats

    PubMed Central

    Shahzad, Huma; Giribabu, Nelli; Karim, Kamarulzaman; Kassim, Normadiah M.; Muniandy, Sekaran

    2017-01-01

    Dysregulation of uterine fluid environment could impair successful reproduction and this could be due to the effect of environmental estrogens. Therefore, in this study, effect of quercetin, an environmental estrogen on uterine fluid and electrolytes concentrations were investigated under sex-steroid influence. Ovariectomised adult female Sprague-Dawley rats were given 10, 50 or 100mg/kg/day quercetin subcutaneously with 17-β estradiol (E) for seven days or three days E, then three days E plus progesterone (P) (E+P) treatment. Uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations were determined by in-vivo perfusion. Following sacrifice, uteri were harvested and levels of the proteins of interest were identified by Western blotting and Realtime PCR. Distribution of these proteins in the uterus was observed by immunofluorescence. Levels of uterine cAMP were measured by enzyme-linked immunoassay (EIA). Administration of quercetin at increasing doses increased uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations, but to the levels lesser than that of E. In concordant, levels of CFTR, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP in the uterus increased following increased in the doses of quercetin. Co-administration of quercetin with E caused uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations to decrease. In concordant, uterine CFTR, SLC26A6, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP decreased. Greatest effects were observed following co-administration of 10mg/kg/day quercetin with E. Co-administration of quercetin with E+P caused uterine fluid Na+ and HCO3- concentrations to increase but no changes in fluid secretion rate and Cl- concentration were observed. Co-administration of high dose quercetin (100 mg/kg/day) with E+P caused uterine CFTR, SLC26A6, AC, GPα/β and ENaC (α, β and γ) to increase. Quercetin-induced changes in the uterine fluid secretion rate and electrolytes concentrations could potentially affect the uterine reproductive functions under female sex-steroid influence. PMID:28253299

  20. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    PubMed

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  1. Regulation of Lipid Droplet Size in Mammary Epithelial Cells by Remodeling of Membrane Lipid Composition—A Potential Mechanism

    PubMed Central

    Cohen, Bat-Chen; Shamay, Avi; Argov-Argaman, Nurit

    2015-01-01

    Milk fat globule size is determined by the size of its precursors—intracellular lipid droplets—and is tightly associated with its composition. We examined the relationship between phospholipid composition of mammary epithelial cells and the size of both intracellular and secreted milk fat globules. Primary culture of mammary epithelial cells was cultured in medium without free fatty acids (control) or with 0.1 mM free capric, palmitic or oleic acid for 24 h. The amount and composition of the cellular lipids and the size of the lipid droplets were determined in the cells and medium. Mitochondrial quantity and expression levels of genes associated with mitochondrial biogenesis and polar lipid composition were determined. Cells cultured with oleic and palmitic acids contained similar quantities of triglycerides, 3.1- and 3.8-fold higher than in controls, respectively (P < 0.0001). When cultured with oleic acid, 22% of the cells contained large lipid droplets (>3 μm) and phosphatidylethanolamine concentration was higher by 23 and 63% compared with that in the control and palmitic acid treatments, respectively (P < 0.0001). In the presence of palmitic acid, only 4% of the cells contained large lipid droplets and the membrane phosphatidylcholine concentration was 22% and 16% higher than that in the control and oleic acid treatments, respectively (P < 0.0001). In the oleic acid treatment, approximately 40% of the lipid droplets were larger than 5 μm whereas in that of the palmitic acid treatment, only 16% of the droplets were in this size range. Triglyceride secretion in the oleic acid treatment was 2- and 12-fold higher compared with that in the palmitic acid and control treatments, respectively. Results imply that membrane composition of bovine mammary epithelial cells plays a role in controlling intracellular and secreted lipid droplets size, and that this process is not associated with cellular triglyceride content. PMID:25756421

  2. Role for Ion Transport in Porcine Vocal Fold Epithelial Defense to Acid Challenge

    PubMed Central

    Erickson-Levendoski, Elizabeth; Sivasankar, M. Preeti

    2012-01-01

    Objective The vocal fold epithelium is routinely exposed to gastric contents, including acid and pepsin, during laryngopharyngeal reflux events. The epithelium may possess intrinsic defenses to reflux. The first objective of the current study was to examine whether vocal fold epithelial ion transport is one potential mechanism of defense to gastric contents. The second objective was to determine whether ion transport in response to gastric contents is associated with the secretion of bicarbonate. Study Design Prospective design in excised porcine larynges. Setting Laboratory. Subjects and Methods Porcine vocal folds (N = 56) were exposed on the luminal surface to acid, pepsin, or sham challenges. Ion transport at baseline and following challenge exposure was measured using electrophysiological techniques. To examine specific ion transport mechanisms, vocal folds were pretreated with either a sodium channel blocker or bicarbonate channel blocker. Results Within 60 seconds of acid but not pepsin exposure, there was a significant increase in ion transport. This rapid increase in ion transport was transient and related to bicarbonate secretion. Conclusion The current data suggest that porcine vocal folds immediately increase bicarbonate secretion following exposure to acid. Bicarbonate secretion may act to neutralize acid. These findings contribute to the identification of the mechanisms underlying vocal fold defense to reflux and offer implications for the development of treatments for reflux-induced vocal fold injury. PMID:22086905

  3. In vitro and in vivo delivery of the secretagogue diadenosine tetraphosphate from conventional and silicone hydrogel soft contact lenses

    PubMed Central

    Dominguez-Godinez, Carmen Olalla; Martin-Gil, Alba; Carracedo, Gonzalo; Guzman-Aranguez, Ana; González-Méijome, José Manuel; Pintor, Jesús

    2013-01-01

    Purpose To evaluate the possible use of soft contact lenses (CL) to improve the secretagogue role of diadenosine tetraphosphate (Ap4A) promoting tear secretion. Methods Two conventional hydrogel CL (Omafilcon A and Ocufilcon D) and two silicone hydrogel (SiH) CL (Comfilcon A and Balafilcon A) were used. Ap4A was loaded into the lenses by soaking in a 1 mM Ap4A solution during 12 h. In vitro experiments were performed by placing the lenses in multi-wells during 2 h containing 1 ml of ultrapure water. 100 μl aliquots were taken at time zero and every minute for the first 10 min, and then every 15 min. In vivo experiments were performed in New Zealand rabbits and both the dinucleotide release from SiH and tear secretion were measured by means of Schirmer strips and high-pressure liquid chromatography (HPLC) analysis. Results Ap4A in vitro release experiments in hydrogel CL presented a release time 50 (RT50) of 3.9 ± 0.2 min and 3.1 ± 0.1 min for the non-ionic and the ionic CL, respectively. SiH CL released also Ap4A with RT50 values of 5.1 ± 0.1 min for the non-ionic and 2.7 ± 0.1 min for the ionic CL. In vivo experiments with SiH CL showed RT50 values of 9.3 ± 0.2 min and 8.5 ± 0.2 min for the non-ionic and the ionic respectively. The non-ionic lens Ap4A release was able to induce tear secretion above baseline tear levels for almost 360 min. Conclusion The delivery of Ap4A is slower and the effect lasts longer with non-ionic lenses than ionic lenses.

  4. Cell dynamics in cervical loop epithelium during transition from crown to root: implications for Hertwig's epithelial root sheath formation.

    PubMed

    Sakano, M; Otsu, K; Fujiwara, N; Fukumoto, S; Yamada, A; Harada, H

    2013-04-01

    Some clinical cases of hypoplastic tooth root are congenital. Because the formation of Hertwig's epithelial root sheath (HERS) is an important event for root development and growth, we have considered that understanding the HERS developmental mechanism contributes to elucidate the causal factors of the disease. To find integrant factors and phenomenon for HERS development and growth, we studied the proliferation and mobility of the cervical loop (CL). We observed the cell movement of CL by the DiI labeling and organ culture system. To examine cell proliferation, we carried out immunostaining of CL and HERS using anti-Ki67 antibody. Cell motility in CL was observed by tooth germ slice organ culture using green fluorescent protein mouse. We also examined the expression of paxillin associated with cell movement. Imaging using DiI labeling showed that, at the apex of CL, the epithelium elongated in tandem with the growth of outer enamel epithelium (OEE). Cell proliferation assay using Ki67 immunostaining showed that OEE divided more actively than inner enamel epithelium (IEE) at the onset of HERS formation. Live imaging suggested that mobility of the OEE and cells in the apex of CL were more active than in IEE. The expression of paxillin was observed strongly in OEE and the apex of CL. The more active growth and movement of OEE cells contributed to HERS formation after reduction of the growth of IEE. The expression pattern of paxillin was involved in the active movement of OEE and HERS. The results will contribute to understand the HERS formation mechanism and elucidate the cause of anomaly root. © 2012 John Wiley & Sons A/S.

  5. Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathiyamoorthy, Karthik; Jiang, Jiansen; Mohl, Britta S.

    Herpesvirus entry into cells requires the coordinated action of multiple virus envelope glycoproteins, including gH, gL, and gB. For EBV, the gp42 protein assembles into complexes with gHgL heterodimers and binds HLA class II to activate gB-mediated membrane fusion with B cells. EBV tropism is dictated by gp42 levels in the virion, as it inhibits entry into epithelial cells while promoting entry into B cells. The gHgL and gB proteins are targets of neutralizing antibodies and potential candidates for subunit vaccine development, but our understanding of their neutralizing epitopes and the mechanisms of inhibition remain relatively unexplored. Here we studiedmore » the structures and mechanisms of two anti-gHgL antibodies, CL40 and CL59, that block membrane fusion with both B cells and epithelial cells. We determined the structures of the CL40 and CL59 complexes with gHgL using X-ray crystallography and EM to identify their epitope locations. CL59 binds to the C-terminal domain IV of gH, while CL40 binds to a site occupied by the gp42 receptor binding domain. CL40 binding to gHgL/gp42 complexes is not blocked by gp42 and does not interfere with gp42 binding to HLA class II, indicating that its ability to block membrane fusion with B cells represents a defect in gB activation. Furthermore, these data indicate that anti-gHgL neutralizing antibodies can block gHgL-mediated activation of gB through different surface epitopes and mechanisms.« less

  6. Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathiyamoorthy, Karthik; Jiang, Jiansen; Möhl, Britta S.

    Herpesvirus entry into cells requires the coordinated action of multiple virus envelope glycoproteins, including gH, gL, and gB. For EBV, the gp42 protein assembles into complexes with gHgL heterodimers and binds HLA class II to activate gB-mediated membrane fusion with B cells. EBV tropism is dictated by gp42 levels in the virion, as it inhibits entry into epithelial cells while promoting entry into B cells. The gHgL and gB proteins are targets of neutralizing antibodies and potential candidates for subunit vaccine development, but our understanding of their neutralizing epitopes and the mechanisms of inhibition remain relatively unexplored. Here we studiedmore » the structures and mechanisms of two anti-gHgL antibodies, CL40 and CL59, that block membrane fusion with both B cells and epithelial cells. We determined the structures of the CL40 and CL59 complexes with gHgL using X-ray crystallography and EM to identify their epitope locations. CL59 binds to the C-terminal domain IV of gH, while CL40 binds to a site occupied by the gp42 receptor binding domain. CL40 binding to gHgL/gp42 complexes is not blocked by gp42 and does not interfere with gp42 binding to HLA class II, indicating that its ability to block membrane fusion with B cells represents a defect in gB activation. These data indicate that anti-gHgL neutralizing antibodies can block gHgL-mediated activation of gB through different surface epitopes and mechanisms.« less

  7. Chlorine gas exposure disrupts nitric oxide homeostasis in the pulmonary vasculature

    PubMed Central

    Honavar, Jaideep; Bradley, Eddie; Bradley, Kelley; Oh, Joo Yeun; Vallejo, Matthew O.; Kelley, Eric E.; Cantu-Medellin, Nadiezhda; Doran, Stephen; Dell’italia, Louis J.; Matalon, Sadis; Patel, Rakesh P.

    2014-01-01

    Exposure to chlorine (Cl2) gas during industrial accidents or chemical warfare leads to significant airway and distal lung epithelial injury that continues post exposure. While lung epithelial injury is prevalent, relatively little is known about whether Cl2 gas also promotes injury to the pulmonary vasculature. To determine this, rats were subjected to a sub-lethal Cl2 gas exposure (400ppm, 30min) and then brought back to room air. Pulmonary arteries (PA) were isolated from rats at various times post-exposure and contractile (phenylephrine) and nitric oxide (NO)-dependent vasodilation (acetylcholine and mahmanonoate) responses measured ex-vivo. PA contractility did not change, however significant inhibition of NO-dependent vasodilation was observed that was maximal at 24–48 hours post exposure. Superoxide dismutase restored NO-dependent vasodilation suggesting a role for increased superoxide formation. This was supported by ~2-fold increase in superoxide formation (measured using 2-hydroethidine oxidation to 2-OH-E+) from PA isolated from Cl2 exposed rats. We next measured PA pressures in anesthetized rats. Surprisingly, PA pressures were significantly (~4mmHg) lower in rats that had been exposed to Cl2 gas 24 hours earlier suggesting that deficit in NO-signaling observed in isolated PA experiments did not manifest as increased PA pressures in vivo. Administration of the iNOS selective inhibitor 1400W, restored PA pressures to normal in Cl2 exposed, but not control rats suggesting that any deficit in NO-signaling due to increased superoxide formation in the PA, is offset by increased NO-formation from iNOS. These data indicate that disruption of endogenous NO-signaling mechanisms that maintain PA tone is an important aspect of post-Cl2 gas exposure toxicity. PMID:24769334

  8. Lubiprostone Activates CFTR, but not ClC-2, via the Prostaglandin Receptor (EP4)

    PubMed Central

    Norimatsu, Yohei; Moran, Aurelia R.; MacDonald, Kelvin D.

    2012-01-01

    The goal of this study was to determine the mechanism of lubiprostone activation of epithelial chloride transport. Lubiprostone is a bicyclic fatty acid approved for the treatment of constipation [1]. There is uncertainty, however, as to how lubiprostone increases epithelial chloride transport. Direct stimulation of ClC-2 and CFTR chloride channels as well as stimulation of these channels via the EP4 receptor has been described [2; 3; 4; 5]. To better define this mechanism, two-electrode voltage clamp was used to assay Xenopus oocytes expressing ClC-2, with or without co-expression of the EP4 receptor or β adrenergic receptor (βAR), for changes in conductance elicited by lubiprostone. Oocytes co-expressing CFTR and either βAR or the EP4 receptor were also studied. In oocytes co-expressing ClC-2 and βAR conductance was stimulated by hyperpolarization and acidic pH (pH=6), but there was no response to the β adrenergic agonist, isoproterenol. Oocytes expressing ClC-2 only or co-expressing ClC-2 and EP4 did not respond to the presence of 0.1, 1, or 10 µM lubiprostone in the superperfusate. Oocytes co-expressing CFTR and βAR did not respond to hyperpolarization, acidic pH, or 1µM lubiprostone. However, conductance was elevated by isoproterenol and inhibited by CFTRinh172. Co-expression of CFTR and EP4 resulted in lubiprostone-stimulated conductance, which was also sensitive to CFTRinh172. The EC50 for lubiprostone mediated CFTR activation was ~ 10 nM. These results demonstrate no direct action of lubiprostone on either ClC-2 or CFTR channels expressed in oocytes. However, the results confirm that CFTR can be activated by lubiprostone via the EP4 receptor in oocytes. PMID:22960173

  9. Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies

    DOE PAGES

    Sathiyamoorthy, Karthik; Jiang, Jiansen; Mohl, Britta S.; ...

    2017-09-22

    Herpesvirus entry into cells requires the coordinated action of multiple virus envelope glycoproteins, including gH, gL, and gB. For EBV, the gp42 protein assembles into complexes with gHgL heterodimers and binds HLA class II to activate gB-mediated membrane fusion with B cells. EBV tropism is dictated by gp42 levels in the virion, as it inhibits entry into epithelial cells while promoting entry into B cells. The gHgL and gB proteins are targets of neutralizing antibodies and potential candidates for subunit vaccine development, but our understanding of their neutralizing epitopes and the mechanisms of inhibition remain relatively unexplored. Here we studiedmore » the structures and mechanisms of two anti-gHgL antibodies, CL40 and CL59, that block membrane fusion with both B cells and epithelial cells. We determined the structures of the CL40 and CL59 complexes with gHgL using X-ray crystallography and EM to identify their epitope locations. CL59 binds to the C-terminal domain IV of gH, while CL40 binds to a site occupied by the gp42 receptor binding domain. CL40 binding to gHgL/gp42 complexes is not blocked by gp42 and does not interfere with gp42 binding to HLA class II, indicating that its ability to block membrane fusion with B cells represents a defect in gB activation. Furthermore, these data indicate that anti-gHgL neutralizing antibodies can block gHgL-mediated activation of gB through different surface epitopes and mechanisms.« less

  10. An in vitro study of urea, water, ion and CO2/HCO3- transport in the gastrointestinal tract of the dogfish shark (Squalus acanthias): the influence of feeding.

    PubMed

    Liew, Hon Jung; De Boeck, Gudrun; Wood, Chris M

    2013-06-01

    In vitro gut sac preparations made from the cardiac stomach (stomach 1), pyloric stomach (stomach 2), intestine (spiral valve) and colon were used to examine the impact of feeding on transport processes in the gastrointestinal tract of the dogfish shark. Preparations were made from animals that were euthanized after 1-2 weeks of fasting, or at 24-48 h after voluntary feeding on a 3% ration of teleost fish (hake). Sacs were incubated under initially symmetrical conditions with dogfish saline on both surfaces. In comparison to an earlier in vivo study, the results confirmed that feeding caused increases in H(+) secretion in both stomach sections, but an increase in Cl(-) secretion only in stomach 2. Na(+) absorption, rather than Na(+) secretion, occurred in both stomach sections after feeding. All sections of the tract absorbed water and the intestine strongly absorbed Na(+) and Cl(-), regardless of feeding condition. The results also confirmed that feeding increased water absorption in the intestine (but not in the colon), and had little influence on the handling of Ca(2+) and Mg(2+), which exhibited negligible absorption across the tract. However, K(+) was secreted in the intestine in both fasted and fed preparations. Increased intestinal water absorption occurred despite net osmolyte secretion into the mucosal saline. The largest changes occurred in urea and CO2/HCO3(-) fluxes. In fasted preparations, urea was absorbed at a low rate in all sections except the intestine, where it was secreted. Instead of an increase in intestinal urea secretion predicted from in vivo data, feeding caused a marked switch to net urea absorption. This intestinal urea transport occurred at a rate comparable to urea reabsorption rates reported at gills and kidney, and was apparently active, establishing a large serosal-to-mucosal concentration gradient. Feeding also greatly increased intestinal CO2/HCO3(-) secretion; if interpreted as HCO3(-) transport, the rates were in the upper range of those reported in marine teleosts. Phloretin (0.25 mmol l(-1), applied mucosally) completely blocked the increases in intestinal urea absorption and CO2/HCO3(-) secretion caused by feeding, but had no effect on Na(+), Cl(-) or water absorption.

  11. FECAL PROGESTERONE METABOLITES IN POSTPARTUM SIBERIAN FLYING SQUIRRELS.

    PubMed

    Shimamoto, Tatsuki; Suzuki, Kei K; Hamada, Mizuho; Furukawa, Ryuji; Matsui, Motozumi; Yanagawa, Hisashi

    2018-03-01

    The Siberian flying squirrel ( Pteromys volans) produces up to two litters a year. To deliver second litters in breeding season, P. volans may have a postpartum estrus similarly to that of a variety of small mammals. If this were the case, females would have periods of elevated progesterone levels because of the formation of corpora lutea (CL) after postpartum ovulation. To test this hypothesis, fecal progesterone metabolite dynamics was investigated during lactation in this species using an enzyme immunoassay. In five of the six lactating females, periods of high fecal progesterone metabolite concentration were observed, and, furthermore, progesterone secretion patterns were periodic. Therefore, the source of progesterone during lactation could be arising CL from postpartum ovulation, indicating that ovarian activity was reinitiated after parturition and the CL that formed began secreting progesterone. This study thus showed that P. volans likely has the physiologic potential to mate during lactation.

  12. Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue.

    PubMed

    Ishikawa, Shinkichi; Ito, Shigeaki

    2017-02-01

    In vitro models of human bronchial epithelium are useful for toxicological testing because of their resemblance to in vivo tissue. We constructed a model of human bronchial tissue which has a fibroblast layer embedded in a collagen matrix directly below a fully-differentiated epithelial cell layer. The model was applied to whole cigarette smoke (CS) exposure repeatedly from an air-liquid interface culture while bronchial epithelial cells were differentiating. The effects of CS exposure on differentiation were determined by histological and gene expression analyses on culture day 21. We found a decrease in ciliated cells and perturbation of goblet cell differentiation. We also analyzed the effects of CS exposure on the inflammatory response, and observed a significant increase in secretion of IL-8, GRO-α, IL-1β, and GM-CSF. Interestingly, secretion of these mediators was augmented with repetition of whole CS exposure. Our data demonstrate the usefulness of our bronchial tissue model for in vitro testing and the importance of exposure repetition in perturbing the differentiation and inflammation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The secretion and biological function of tumor suppressor maspin as an exosome cargo protein.

    PubMed

    Dean, Ivory; Dzinic, Sijana H; Bernardo, M Margarida; Zou, Yi; Kimler, Vickie; Li, Xiaohua; Kaplun, Alexander; Granneman, James; Mao, Guangzhao; Sheng, Shijie

    2017-01-31

    Maspin is an epithelial-specific tumor suppressor shown to exert its biological effects as an intracellular, cell membrane-associated, and secreted free molecule. A recent study suggests that upon DNA-damaging g-irradiation, tumor cells can secrete maspin as an exosome-associated protein. To date, the biological significance of exosomal secretion of maspin is unknown. The current study aims at addressing whether maspin is spontaneously secreted as an exosomal protein to regulate tumor/stromal interactions. We prepared exosomes along with cell extracts and vesicle-depleted conditioned media (VDCM) from normal epithelial (CRL2221, MCF-10A and BEAS-2B) and cancer (LNCaP, PC3 and SUM149) cell lines. Atomic force microscopy and dynamic light scattering analysis revealed similar size distribution patterns and surface zeta potentials between the normal cells-derived and tumor cells-derived exosomes. Electron microscopy revealed that maspin was encapsulated by the exosomal membrane as a cargo protein. While western blotting revealed that the level of exosomal maspin from tumor cell lines was disproportionally lower relative to the levels of corresponding intracellular and VDCM maspin, as compared to that from normal cell lines, maspin knockdown in MCF-10A cells led to maspin-devoid exosomes, which exhibited significantly reduced suppressive effects on the chemotaxis activity of recipient NIH3T3 fibroblast cells. These data are the first to demonstrate the potential of maspin delivered by exosomes to block tumor-induced stromal response, and support the clinical application of exosomal maspin in cancer diagnosis and treatment.

  14. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    PubMed

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice. Copyright © 2016. Published by Elsevier B.V.

  15. Colonic epithelial cell activation and the paradoxical effects of butyrate.

    PubMed

    Gibson, P R; Rosella, O; Wilson, A J; Mariadason, J M; Rickard, K; Byron, K; Barkla, D H

    1999-04-01

    Butyrate may have paradoxical effects on epithelial cells of similar origin. This study aimed to examine the hypothesis that one mechanism that dictates a cell's response to butyrate is its state of activation. First, the responses to 24 h exposure to butyrate (1-2 mM) of normal and neoplastic human colonic epithelial cells activated by their isolation and primary culture, and of colon cancer cell lines, LIM1215 and Caco-2, were examined. In primary cultures of normal and cancer cells, butyrate had no effect on alkaline phosphatase activities but significantly suppressed urokinase receptor expression by a mean +/- SEM of 30 +/- 12% and 36 +/- 9%, respectively. Interleukin-8 secretion was suppressed by 44 +/- 7% in normal cells (P < 0.05) but was unchanged in cancer cells. In contrast, the cell lines significantly increased alkaline phosphatase activities by >50%, urokinase receptor expression >2-fold and interleukin-8 secretion >3-fold in response to butyrate. Secondly, the effect of butyrate on Caco-2 cells was examined with or without prior exposure to a specific activating stimulus [tumour necrosis factor alpha (TNF alpha)]. Interleukin-8 secretion increased by 145 +/- 23% and 132 +/- 17% on 24 h exposure to 2 mM butyrate or 0.1 microM TNF alpha alone, respectively. However, in cells pre-treated with TNF alpha, butyrate significantly inhibited secretion by 34 +/- 7% below unstimulated levels. The response to butyrate of urokinase receptor, whose expression was not stimulated by TNF alpha, was unchanged. These effects were mimicked by trichostatin A, an inhibitor of histone deacetylase, suggesting that butyrate's paradoxical effects may have been operating by the same mechanism. In conclusion, some of the paradoxical effects of butyrate do not appear to represent inherent differences between normal and transformed cells. Rather, the response may be determined by the state of activation of the cells.

  16. Intestinal nerves and ion transport: stimuli, reflexes, and responses.

    PubMed

    Hubel, K A

    1985-03-01

    The effects of extrinsic and intrinsic nerves on ion and water transport by the intestine are considered and discussed in terms of their possible physiological function. Adrenergic nerves enter the small intestine via mesenteric nerves. Adrenergic tone is usually absent in tissues in vitro but is present in vivo. The nerves increase absorption in response to homeostatic changes associated with acute depletion of extracellular fluid. Cholinergic tone that reduces fluid absorption or causes secretion has been detected in the small intestine of humans, dogs, and cats and in the colon of humans. Extrinsic cholinergic fibers generally do not affect ion transport in small intestine but probably do so in colon. Whether peptides liberated in the mucosa affect enterocytes directly is not clear. Studies on humans and rabbits suggest that the role of substance P is minor. The physiological roles of vasoactive intestinal polypeptide (VIP) and somatostatin remain to be defined. Intraluminal factors also affect ion and water transport. Mucosal rubbing, distension, and cholera toxin cause fluid secretion; acid solutions in the duodenum cause alkaline secretion; these stimuli and hypertonic glucose liberate serotonin into the lumen, the mesenteric venous blood, or both. It has been proposed that the enterochromaffin cell is an epithelial sensory cell that responds to noxious stimuli within the lumen by liberating serotonin. The serotonin initiates a neural reflex through a nicotinic ganglion to liberate a secretagogue that acts on the enterocyte. The function of VIP in this proposed reflex is unclear. The variety of intraluminal stimuli that influence epithelial function implies that there is more than one type of epithelial sensory cell (or sensory mechanism). Prostaglandins may mediate the alkaline secretion caused by acid in the duodenum. There may be other effective substances. Although it has been known for years that intraluminal stimuli affect the coordination of smooth muscle functions, it is not known whether similar stimuli also influence salt and water transport as a meal traverses the alimentary canal.

  17. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    PubMed

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein-pretreated conditions in a similar manner.

  18. Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells.

    PubMed

    Yue, Grace Gar-Lee; Lau, Clara Bik-San; Fung, Kwok-Pui; Leung, Ping-Chung; Ko, Wing-Hung

    2008-04-17

    The traditional Chinese medicine Cordyceps sinensis (CS) (Clavicipitaceae) improves pulmonary function and is used to treat respiratory disease. Here, we compare the efficacy and mechanisms of action of Cordyceps sinensis and Cordyceps militaris (CM) (Clavicipitaceae) in Calu-3 human airway epithelial monolayer model. The extracts of Cordyceps sinensis and Cordyceps militaris, as well as their isolated compounds, cordycepin and adenosine, stimulated ion transport in a dose-dependent manner in Calu-3 monolayers. In subsequent experiments, transport inhibitor bumetanide and carbonic anhydrase inhibitor acetazolamide were added after Cordyceps sinensis and Cordyceps militaris extracts to determine their effects on Cl- and HCO3- movement. The results suggested that Cordyceps sinensis and Cordyceps militaris extracts may affect the anion movement from the basolateral to apical compartments in the airway epithelia. Basolateral Na+-K+-2Cl- cotransporter and apical cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel are involved in the process. The results provide the first evidence for the pharmacological mechanism of Cordyceps sinensis and Cordyceps militaris on respiratory tract.

  19. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  20. Effect of mitomycin C on IL-1R expression, IL-1-related hepatocyte growth factor secretion and corneal epithelial cell migration.

    PubMed

    Chen, Tsan-Chi; Chang, Shu-Wen

    2010-03-01

    To investigate how mitomycin C (MMC) modulates hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) secretions in human corneal fibroblasts and regulates human corneal epithelial (HCE) cell migration. Primary human corneal fibroblasts were treated with MMC (0.05, 0.1, or 0.2 mg/mL for 5 minutes) and were cultivated with or without interleukin (IL)-1beta. Transcript and secretion of HGF and KGF were determined by quantitative real-time RT-PCR and Western blot analysis, respectively. The effect of MMC-treated fibroblasts on HCE cell migration was evaluated using a transwell migration assay. The influence of MMC on HGF expression/secretion and HCE cell migration was further confirmed by RNA interference. The number of IL-1 receptors (IL-1R) on the fibroblast surface was analyzed by flow cytometry. MMC alone did not affect endogenous HGF expression, whereas IL-1beta alone significantly upregulated HGF transcripts and secretion. By modifying IL-1R numbers, MMC further upregulated IL-1beta-related HGF expression at a concentration of 0.05 mg/mL but to a lesser extent at 0.1 and 0.2 mg/mL. KGF transcripts and intracellular expression were suppressed by MMC dose dependently in the presence or absence of IL-1beta, whereas KGF secretion was not affected. Conditioned medium from MMC-treated fibroblasts exerted a similar concentration-dependent effect on HCE cell migration, enhancing migration most significantly at 0.05 mg/mL MMC in the presence of IL-1beta. The MMC dose-dependent modulation of HCE cell migration was abolished in HGF-silenced fibroblasts. MMC differentially modulated IL-1R expression at various concentrations and regulated HGF and KGF differently. MMC alone did not alter HGF expression. In the presence of IL-1beta, MMC-treated corneal fibroblasts modified HCE cell migration through IL-1beta-induced HGF secretion.

  1. Urban particulate matter increases human airway epithelial cell IL-1β secretion following scratch wounding and H1N1 influenza A exposure in vitro.

    PubMed

    Hirota, Jeremy A; Marchant, David J; Singhera, Gurpreet K; Moheimani, Fatemeh; Dorscheid, Delbert R; Carlsten, Christopher; Sin, Don; Knight, Darryl

    2015-01-01

    The airway epithelium represents the first line of defense against inhaled environmental insults including air pollution, allergens, and viruses. Epidemiological and experimental evidence has suggested a link between air pollution exposure and the symptoms associated with respiratory viral infections. We hypothesized that multiple insults integrated by the airway epithelium NLRP3 inflammasome would result in augmented IL-1β release and downstream cytokine production following respiratory virus exposure. We performed in vitro experiments with a human airway epithelial cell line (HBEC-6KT) that involved isolated or combination exposure to mechanical wounding, PM10, house dust mite, influenza A virus, and respiratory syncytial virus. We performed confocal microscopy to image the localization of PM10 within HBEC-6KT and ELISAs to measure soluble mediator production. Airway epithelial cells secrete IL-1β in a time-dependent fashion that is associated with internalization of PM10 particles. PM10 exposure primes human airway epithelial cells to subsequent models of cell damage and influenza A virus exposure. Prior PM10 exposure had no effect on IL-1β responses to RSV exposure. Finally we demonstrate that PM10-priming of human airway epithelial cell IL-1β and GM-CSF responses to influenza A exposure are sensitive to NLRP3 inflammasome inhibition. Our results suggest the NLRP3 inflammasome may contribute to exaggerated immune responses to influenza A virus following periods of poor air quality. Intervention strategies targeting the NLRP3 inflammasome in at risk individuals may restrict poor air quality priming of mucosal immune responses that result from subsequent viral exposures.

  2. Altered Morphology and Function of the Lacrimal Functional Unit in Protein Kinase Cα Knockout Mice

    PubMed Central

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J.

    2010-01-01

    Purpose. Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout (−/−) mice have impaired ocular surface–lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα−/− mice. Methods. In PKCα+/+ control mice and PKCα−/− mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Results. Compared with the PKCα+/+ mice, the PKCα−/− mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα−/− mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα+/+ mice. Conclusions. The PKCα−/− mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα−/− mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration. PMID:20505191

  3. Systematic Analysis of Cell-Type Differences in the Epithelial Secretome Reveals Insights into the Pathogenesis of RSV-Induced Lower Respiratory Tract Infections

    PubMed Central

    Zhao, Yingxin; Jamaluddin, Mohammad; Zhang, Yueqing; Sun, Hong; Ivanciuc, Teodora; Garofalo, Roberto P.; Brasier, Allan R.

    2017-01-01

    Lower respiratory tract infections (LRTIs) from Respiratory Syncytial Virus (RSV) are due, in part, to secreted signals from lower airway cells that modify immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea (hBECs) vs small airway bronchiolar cells (hSAECs). A workflow was established using telomerase- immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in both secreted proteins and nanoparticles (exosomes). Approximately one-third of secretome proteins are exosomal, with the remainder from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea (phBECs) vs bronchioles (phSAECs). 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate (FDR). Fifteen proteins unique to RSV-infected phBECs were regulated by epithelial-specific ets homology factor (EHF). 106 proteins unique to RSV-infected hSAECs were regulated by the transcription factor NFκB. In this latter group, we validated the differential expression of Chemokine (C-C Motif) Ligand 20 (CCL20)/macrophage-inducible protein (MIP)3α, thymic stromal lymphopoietin (TSLP) and chemokine (CC) ligand 3-like 1(CCL3-L1) because of their roles in Th2 polarization. CCL20/MIP3α was the most active mucin-inducing factor in the RSV-infected hSAEC secretome, and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses, and regional differences in epithelial secretome participating in RSV LRTI-induced airway remodeling. PMID:28258195

  4. Airway epithelial cell response to human metapneumovirus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, X.; Liu, T.; Spetch, L.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and typemore » I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.« less

  5. Bioactive interleukin-1alpha is cytolytically released from Candida albicans-infected oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H; Villar, C Cunha

    2004-12-01

    Oral epithelial cells are primary targets of Candida albicans in the oropharynx and may regulate the inflammatory host response to this pathogen. This investigation studied the mechanisms underlying interleukin-1alpha (IL-1alpha) release by oral epithelial cells and the role of IL-1alpha in regulating the mucosal inflammatory response to C. albicans. Infected oral epithelial cells released processed IL-1alpha protein in culture supernatants. The IL-1alpha generated was stored intracellularly and was released upon cell lysis. This was further supported by the fact that different C. albicans strains induced variable IL-1alpha release, depending on their cytolytic activity. IL-1alpha from C. albicans-infected oral epithelial cells upregulated proinflammatory cytokine secretion (IL-8 and GM-CSF) in uninfected oral epithelial or stromal cells. Our studies suggest that production of IL-1alpha, IL-8 and GM-CSF may take place in the oral mucosa in response to lytic infection of epithelial cells with C. albicans. This process can act as an early innate immune surveillance system and may contribute to the clinicopathologic signs of infection in the oral mucosa.

  6. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti).

    PubMed

    Pacey, Evan K; O'Donnell, Michael J

    2014-02-01

    Following ingestion of a blood meal, the adult female mosquito undergoes a massive diuresis during which Na(+), Cl(-) and water are secreted at high rates by the Malpighian tubules. In the hours following completion of diuresis, digestion of the K(+)-rich blood cells provides a source of energy as well as amino acids for proteins in the developing eggs. Although the transport of inorganic ions by the Malpighian tubules of blood-fed mosquitoes has been extensively characterized, relatively little is known of the epithelial transport mechanisms responsible for movement of Na(+), H(+), and K(+) across the posterior midgut. In this paper we have used the Scanning Ion-selective Electrode Technique (SIET) to measure the basal (unstimulated) rates of transport of K(+), Na(+) and H(+) across the isolated posterior midgut at intervals after the blood meal. We have also measured luminal concentrations of Na(+) and K(+) and the transepithelial electrical potential at the same time points and have calculated the electrochemical potentials for Na(+), K(+) and H(+) across the midgut. SIET measurements reveal absorption (lumen to bath) of Na(+) and H(+) and secretion of K(+) for the first 2h after blood-feeding. By 24h after the meal, absorption of Na(+) and H(+) remains active while there is an electrochemical gradient favouring absorption of K(+). Inhibition by ouabain and Ba(2+) suggest a role for the Na(+)/K(+)-ATPase and K(+) channels in absorption of Na(+) and K(+), respectively. Inhibition of H(+) absorption by acetazolamide implicates carbonic anhydrase in transepithelial H(+) transport. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    PubMed

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater increase in lumbar sympathetic nerve activity (SNA), adrenal SNA and ABP than equi-osmotic sorbitol (2.0 osmol l -1 ). Second, OVLT microinjection (20 nl) of 1.0 m NaCl significantly raised lumbar SNA, adrenal SNA and ABP. Equi-osmotic sorbitol did not alter any variable. Third, in vitro whole-cell recordings demonstrate that 50% (18/36) of OVLT neurons display an increased discharge to both hypertonic NaCl (+7.5 mm) and mannitol (+15 mm). Of these neurons, 56% (10/18) displayed a greater discharge response to hypertonic NaCl vs mannitol. Fourth, in vivo single-unit recordings revealed that intracarotid injection of hypertonic NaCl produced a concentration-dependent increase in OVLT cell discharge, lumbar SNA and ABP. The responses to equi-osmotic infusions of hypertonic sorbitol were significantly smaller. Lastly, icv infusion of 0.5 m NaCl produced significantly greater increases in OVLT discharge and ABP than icv infusion of equi-osmotic sorbitol. Collectively, these findings indicate NaCl and osmotic stimuli produce different responses across OVLT neurons and may represent distinct cellular processes to regulate thirst, vasopressin secretion and autonomic function. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  8. [Investigations on the physiology of the glands of carnivorous plants : IV. The kinetics of chloride secretion by the gland tissue of Nepenthes].

    PubMed

    Lüttge, U

    1966-03-01

    The transport of chloride in isolated tissue from Nepenthes pitchers was investigated using (36)Cl(-), an Aminco-Cotlove chloride-titrator for the determinations of Cl(-) concentrations, and KCN and AsO 4 (-) -as metabolic inhibitors.The tissue was brought in contact with different experimental solutions (=medium). The surface corresponding to the outside of the pitchers was cut with a razor blade to remove the cutinized epidermal layer. At this surface the Cl(-) uptake from the medium is a metabolic process which depends on the Cl(-)-concentration of the medium in a manner that corresponds to the MICHAELIS-MENTEN kinetics. The Michaelis-constant of this transport step was 3×10(-2)M. The Cl(-)-efflux into the medium, however, is a passive process.The opposite surface of the tissue slices (corresponding to the inside of the pitchers) carries the glands. The chloride secretion taking place here is also dependent on metabolism. In vitro it occurs even when a high gradient of chloride concentration has been set up between the medium and the solution which is in contact with the glands. In vivo the Cl(-)-concentration of the pitcher fluid and the amount of Cl(-) per gram of tissue water are almost equal.The rôle of chloride in the physiology of Nepenthes is still under investigation, A correlation between the chloride content of the pitcher fluid and its enzymatic activity (Casein-test), however, could already be demonstrated.

  9. P2 purinoceptors regulate calcium-activated chloride and fluid transport in 31EG4 mammary epithelia.

    PubMed

    Blaug, Sasha; Rymer, Jodi; Jalickee, Stephen; Miller, Sheldon S

    2003-04-01

    It has been reported that secretory mammary epithelial cells (MEC) release ATP, UTP, and UDP upon mechanical stimulation. Here we examined the physiological changes caused by ATP/UTP in nontransformed, clonal mouse mammary epithelia (31EG4 cells). In control conditions, transepithelial potential (apical side negative) and resistance were -4.4 +/- 1.3 mV (mean +/- SD, n = 12) and 517.7 +/- 39.4 Omega. cm(2), respectively. The apical membrane potential was -43.9 +/- 1.7 mV, and the ratio of apical to basolateral membrane resistance (R(A)/R(B)) was 3.5 +/- 0.2. Addition of ATP or UTP to the apical or basolateral membranes caused large voltage and resistance changes with an EC(50) of approximately 24 microM (apical) and approximately 30 microM (basal). Apical ATP/UTP (100 microM) depolarized apical membrane potential by 17.6 +/- 0.8 mV (n = 7) and decreased R(A)/R(B) by a factor of approximately 3. The addition of adenosine to either side (100 microM) had no effect on any of these parameters. The ATP/UTP responses were partially inhibited by DIDS and suramin and mediated by a transient increase in free intracellular Ca(2+) concentration (427 +/- 206 nM; 15-25 microM ATP, apical; n = 6). This Ca(2+) increase was blocked by cyclopiazonic acid, by BAPTA, or by xestospongin C. 31EG4 MEC monolayers also secreted or absorbed fluid in the resting state, and ATP or UTP increased fluid secretion by 5.6 +/- 3 microl x cm(-2) x h(-1) (n = 10). Pharmacology experiments indicate that 31EG4 epithelia contain P2Y(2) purinoceptors on the apical and basolateral membranes, which upon activation stimulate apical Ca(2+)-dependent Cl channels and cause fluid secretion across the monolayer. This suggests that extracellular nucleotides could play a fundamental role in mammary gland paracrine signaling and the regulation of milk composition in vivo.

  10. The role of type III secretion system and lens material on adhesion of Pseudomonas aeruginosa to contact lenses.

    PubMed

    Shen, Elizabeth P; Tsay, Ruey-Yug; Chia, Jean-San; Wu, Semon; Lee, Jing-Wen; Hu, Fung-Rong

    2012-09-21

    To determine the distribution of invasive and cytotoxic genotypes among ocular isolates of P. aeruginosa and investigate the influence of the type III secretion system (T3SS) on adhesion to conventional, cosmetic, and silicone hydrogel contact lenses (CL). Clinical isolates from 2001 to 2010 were analyzed by multiplex PCR for exoS, exoU, and exoT genes. Bacterial adhesion to etafilcon, nelfilcon (gray colored), balafilcon, and galyfilcon CL with or without artificial tear fluid (ATF) incubation were compared. Surface characteristics were determined with scanning electron microscopy (SEM). Among 87 total isolates, 64 strains were from microbial keratitis cases. CL-related microbial keratitis (CLMK) isolates were mostly of the cytotoxic genotype (expressing exoU) (P = 0.002). No significant differences were found in bacterial adhesion to all types of CL between the genotypes under T3SS-inducing conditions. A trend for least bacterial adhesion of galyfilcon compared to the other CL was noted for both genotypes. Needle complex pscC mutants adhered less to all materials than the wild type (P < 0.05), indicating a role of the T3SS in contact lens adhesion. ATF-incubated CL had significantly more bacterial adhesion (P < 0.05). SEM showed most of the bacteria adhering on CL surfaces. CLMK isolates were mostly of cytotoxic genotype. Different genotypes did not significantly differ in its adhesion to various CL. T3SS and other adhesins are involved in bacteria-contact lens adhesion through complex interactions. Contact lens materials may also play an important role in the adherence of both genotypes of P. aeruginosa.

  11. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells.

    PubMed

    Bernhart, Eva; Kogelnik, Nora; Prasch, Jürgen; Gottschalk, Benjamin; Goeritzer, Madeleine; Depaoli, Maria Rosa; Reicher, Helga; Nusshold, Christoph; Plastira, Ioanna; Hammer, Astrid; Fauler, Günter; Malli, Roland; Graier, Wolfgang F; Malle, Ernst; Sattler, Wolfgang

    2018-05-01

    Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H 2 O 2 -chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a 'clickable' alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)-6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Development, validation and implementation of an in vitro model for the study of metabolic and immune function in normal and inflamed human colonic epithelium.

    PubMed

    Pedersen, Gitte

    2015-01-01

    Ulcerative colitis (UC) and Crohn's disease (CD), collectively referred to as inflammatory bowel disease (IBD), are chronic immune disorders affecting the gastrointestinal tract. The aetiology of IBD remains an enigma, but increasing evidence suggests that the development of IBD may be triggered by a disturbance in the balance between gut commensal bacteria and host response in the intestinal mucosa. It is now known that epithelial cells have the capacity to secrete and respond to a range of immunological mediators and this suggests that these cells play a prominent role in the pathogenesis of IBD. Current knowledge about the intestinal epithelium has mainly been obtained using models based on animal cells, transformed human intestinal cell lines and isolated cells from resected colonic bowel segments. Species difference, malignant origin and confounders related to surgery, obviously make these cell models however less applicable for patophysiological studies. Consequently, there was a clear need for models of representative intestinal epithelial cells that would allow functional and dynamic studies of the differentiated human colonic epithelium in vitro. The primary purpose of this thesis was to explore and validate the optimal conditions for establishing a model based on short-term cultures of human colonic epithelial cells obtained from endoscopical biopsies. The cell cultures were accordingly used to describe the interplay between proinflammatory cytokines and colonic epithelium, with focus on alterations in viability, butyrate metabolism and secretion of a chemokine and metalloproteinases (MMP). Finally, the model was used to characterize expression and activation of receptors like toll like receptor (TLR)9 and peroxisome activated proliferators (PPAR)- known to be important players in regulation of innate and adaptive immune responses in human colonic epithelium. The results showed that it is possible to establish short-term cultures of representative, viable human colonic epithelial cells from endoscopic mucosal biopsies of patients with IBD. Short-time isolation by EGTA/EDTA from colonic biopsies allowed establishment of small scale cultures of epithelial cells which were viable and metabolic active for up to 48 hours in vitro. The cell model preserved important cellular metabolic and immunological functions of the human colonic epithelium, including the ability to oxidate butyrate, detoxificate phenolic compounds and secrete the chemokine interleukin (IL)-8 in vitro. Tumour necrosis factor (TNF)-α and interferon (IFN)-γ are pro-inflammatory cytokines, which are present in increased amounts in inflamed colonic mucosa. The precise mechanisms of cytokine-mediated mucosal injury are unknown, but one might be that TNF-α and IFN-γ directly impair epithelial cell function similar to effects seen on distinct target cells in other autoimmune diseases. Using the model, both cytokines were found directly to impair the viability of colonic epithelial cells and to induce secretion of IL-8 in vitro. Interestingly, the cells from inflamed IBD mucosa were less sensitive to cytokine-induced damage, which suggests that an intrinsic defense mechanism is triggered in these cells, perhaps as a result of exposure to toxic luminal factors or high local cytokine levels in vivo. TNF-α and IFN-γ may also be involved in regulation of intestinal inflammation through stimulation of MMP expression and proteolytic activity. We found that colonic epithelial cells express a range of MMPs and moreover that expression of distinct MMPs is increased in cells from inflamed IBD mucosa. Using a functional peptide cleavage assay it was shown that epithelial cells secreted proteolytic active enzymes and that the functional MMP activity was increased in inflamed IBD mucosa. This suggests that colonic epithelial cells, like myofibroblasts and immune cells, may contribute to local intestinal mucosal damage, through secretion of active MMPs. Disturbance of recognition and discrimination of potentially harmful pathogens from commensals in the intestinal mucosa have increasingly been implicated in the pathogenesis of IBD. Our results revealed that colonic epithelial cells express TLR9, a key pattern recognition receptor. Interestingly, the differentiated epithelial cells, which have been exposed to the luminal bacterial flora in vivo, were unresponsive to TLR9 ligand stimulation, contrasting findings in the epithelial cell line HT-29 that is cultured continuously in bacteria free environment. These findings suggest, theoretically, that colonic epithelium may regulate immune responses to microbial antigens including commensal bacterial DNA through modulation of the TLR9 pathway. Currently, the results are in line with the emerging view, that the epithelium represents an important frontline cellular component of the innate immune system in the gut. PPARγ is a nuclear receptor involved in the regulation of lipid and carbonhydrate metabolism. Recent studies in rodent colitis models suggest that PPARγ also is involved in modulation of inflammatory processes in the colon. Using the model, we characterise expression and activity of PPARs in human colonic epithelium and, additionally, evaluated the functional significance of a possible imbalanced PPARγ regulation in relation to inflammation. Our experiments showed that colonic epithelial cells express PPARγ and furthermore that PPARγ signalling was impaired in inflamed UC epithelium. It was possible to restore PPARγ signalling in the cell cultures by stimulation with rosiglitazone (a synthetic PPARγ ligand) in vitro. Hence, these experiments prompted us to design a small controlled, clinical study exploring the possible stimulatory effects of rosiglitazone (a PPAR ligand) in vivo. Interestingly, it was found that topical application of rosiglitazone in patients with active distal UC reduced clinical activity and mucosal inflammation similar to the effects measured in patients treated with mesalazine enemas. Moreover, rectal application of rosiglitazone induced PPARγ signalling in the epithelium in vivo, supporting the view that activation of PPARγ may be a new potential therapeutic target in the treatment of UC. Overall, the in vitro model of representative human colonic epithelial cells has shown to be a useful technique for detailed studies of metabolic and immunological functions that are important for homeostasis of the colonic epithelium. Currently, the findings support the view that intestinal epithelial cells actively participate in immunological processes in the colonic mucosa. Additionally, the model seems to be applicable for generating and evaluating new therapeutic approaches from laboratory bench to bed line as illustrated by the PPARγ study. It is therefore probable, that studies in models of representative colonic epithelial cells, as the one described here, could contribute with important knowledge about the pathogenesis of human inflammatory colonic diseases also in the future.

  13. Modulation of chloride, potassium and bicarbonate transport by muscarinic receptors in a human adenocarcinoma cell line.

    PubMed

    Holliday, N D; Cox, H M

    1999-01-01

    1. Short-circuit current (I(SC)) responses to carbachol (CCh) were investigated in Colony 1 epithelia, a subpopulation of the HCA-7 adenocarcinoma cell line. In Krebs-Henseleit (KH) buffer, CCh responses consisted of three I(SC) components: an unusual rapid decrease (the 10 s spike) followed by an upward spike at 30 s and a slower transient increase (the 2 min peak). This response was not potentiated by forskolin; rather, CCh inhibited cyclic AMP-stimulated I(SC). 2. In HCO3- free buffer, the decrease in forskolin-elevated I(SC) after CCh was reduced, although the interactions between CCh and forskolin remained at best additive rather than synergistic. When Cl- anions were replaced by gluconate, both Ca2+- and cyclic AMP-mediated electrogenic responses were significantly inhibited. 3. Basolateral Ba2+ (1-10 mM) and 293B (10 microM) selectively inhibited forskolin stimulation of I(SC), without altering the effects of CCh. Under Ba2+- or 293B-treated conditions, CCh responses were potentiated by pretreatment with forskolin. 4. Basolateral charybdotoxin (50 nM) significantly increased the size of the 10 s spike of CCh responses in both KH and HCO3- free medium, without affecting the 2 min peak. The enhanced 10 s spike was inhibited by prior addition of 5 mM apical Ba2+. Charybdotoxin did not affect forskolin responses. 5. In epithelial layers prestimulated with forskolin, the muscarinic antagonists atropine and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, both at 100 nM) abolished subsequent 10 microM CCh responses. Following addition of p-fluoro hexahydro-sila-difenidol (pF-HHSiD, 10 microM) or pirenzepine (1 microM), qualitative changes in the CCh response time-profile also indicated a rightward shift of the agonist concentration-response curve; however, 1 microM gallamine had no effect. These results suggest that a single M3-like receptor subtype mediates the secretory response to CCh. 6. It is concluded that CCh and forskolin activate discrete populations of basolateral K+ channels gated by either Ca2+ or cyclic AMP, but that the Cl- permeability of the apical membrane may limit their combined effects on electrogenic Cl- secretion. In addition, CCh activates a Ba2+-sensitive apical K+ conductance leading to electrogenic K+ transport. Both agents may also modulate HCO3- secretion through a mechanism at least partially dependent on carbonic anhydrase.

  14. Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy with cathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts.

    PubMed

    Lombardo Bedran, Telma Blanca; Palomari Spolidorio, Denise; Grenier, Daniel

    2015-06-01

    The human antimicrobial peptide cathelicidin (LL-37) possesses anti-inflammatory properties that may contribute to attenuating the inflammatory process associated with chronic periodontitis. Plant polyphenols, including those from cranberry and green tea, have been reported to reduce inflammatory cytokine secretion by host cells. In the present study, we hypothesized that A-type cranberry proanthocyanidins (AC-PACs) and green tea epigallocatechin-3-gallate (EGCG) act in synergy with LL-37 to reduce the secretion of inflammatory mediators by oral mucosal cells. A three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts treated with non-cytotoxic concentrations of AC-PACs (25 and 50 μg/ml), EGCG (1 and 5 μg/ml), and LL-37 (0.1 and 0.2 μM) individually and in combination (AC-PACs+LL-37 and EGCG+LL-37) were stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS). Multiplex ELISA assays were used to quantify the secretion of 54 host factors, including chemokines, cytokines, growth factors, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). LL-37, AC-PACs, and EGCG, individually or in combination, had no effect on the regulation of MMP and TIMP secretion but inhibited the secretion of several cytokines. AC-PACs and LL-37 acted in synergy to reduce the secretion of CXC-chemokine ligand 1 (GRO-α), granulocyte colony-stimulating factor (G-CSF), and interleukin-6 (IL-6), and had an additive effect on reducing the secretion of interleukin-8 (IL-8), interferon-γ inducible protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) in response to LPS stimulation. EGCG and LL-37 acted in synergy to reduce the secretion of GRO-α, G-CSF, IL-6, IL-8, and IP-10, and had an additive effect on MCP-1 secretion. The combination of LL-37 and natural polyphenols from cranberry and green tea acted in synergy to reduce the secretion of several cytokines by an LPS-stimulated 3D co-culture model of oral mucosal cells. Such combinations show promising results as potential adjunctive therapies for treating inflammatory periodontitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Lectin Pathway of Complement and Rheumatic Heart Disease

    PubMed Central

    Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José

    2014-01-01

    The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073

  16. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress.

    PubMed

    Vitzthum, Constanze; Clauss, Wolfgang G; Fronius, Martin

    2015-11-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel that is essential for electrolyte and fluid homeostasis. Preliminary evidence indicates that CFTR is a mechanosensitive channel. In lung epithelia, CFTR is exposed to different mechanical forces such as shear stress (Ss) and membrane distention. The present study questioned whether Ss and/or stretch influence CFTR activity (wild type, ∆F508, G551D). Human CFTR (hCFTR) was heterologously expressed in Xenopus oocytes and the response to the mechanical stimulus and forskolin/IBMX (FI) was measured by two-electrode voltage-clamp experiments. Ss had no influence on hCFTR activity. Injection of an intracellular analogous solution to increase cell volume alone did not affect hCFTR activity. However, hCFTR activity was augmented by injection after pre-stimulation with FI. The response to injection was similar in channels carrying the common mutations ∆F508 and G551D compared to wild type hCFTR. Stretch-induced CFTR activation was further assessed in Ussing chamber measurements using Xenopus lung preparations. Under control conditions increased hydrostatic pressure (HP) decreased the measured ion current including activation of a Cl(-) secretion that was unmasked by the CFTR inhibitor GlyH-101. These data demonstrate activation of CFTR in vitro and in a native pulmonary epithelium in response to mechanical stress. Mechanosensitive regulation of CFTR is highly relevant for pulmonary physiology that relies on ion transport processes facilitated by pulmonary epithelial cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. K2P TASK-2 and KCNQ1-KCNE3 K+ channels are major players contributing to intestinal anion and fluid secretion.

    PubMed

    Julio-Kalajzić, Francisca; Villanueva, Sandra; Burgos, Johanna; Ojeda, Margarita; Cid, L Pablo; Jentsch, Thomas J; Sepúlveda, Francisco V

    2018-02-01

    K + channels are important in intestinal epithelium as they ensure the ionic homeostasis and electrical potential of epithelial cells during anion and fluid secretion. Intestinal epithelium cAMP-activated anion secretion depends on the activity of the (also cAMP dependent) KCNQ1-KCNE3 K + channel, but the secretory process survives after genetic inactivation of the K + channel in the mouse. Here we use double mutant mice to investigate which alternative K + channels come into action to compensate for the absence of KCNQ1-KCNE3 K + channels. Our data establish that whilst Ca 2+ -activated K Ca 3.1 channels are not involved, K 2P two-pore domain TASK-2 K + channels are major players providing an alternative conductance to sustain the intestinal secretory process. Work with double mutant mice lacking both TASK-2 and KCNQ1-KCNE3 channels nevertheless points to yet-unidentified K + channels that contribute to the robustness of the cAMP-activated anion secretion process. Anion and fluid secretion across the intestinal epithelium, a process altered in cystic fibrosis and secretory diarrhoea, is mediated by cAMP-activated CFTR Cl - channels and requires the simultaneous activity of basolateral K + channels to maintain cellular ionic homeostasis and membrane potential. This function is fulfilled by the cAMP-activated K + channel formed by the association of pore-forming KCNQ1 with its obligatory KCNE3 β-subunit. Studies using mice show sizeable cAMP-activated intestinal anion secretion in the absence of either KCNQ1 or KCNE3 suggesting that an alternative K + conductance must compensate for the loss of KCNQ1-KCNE3 activity. We used double mutant mouse and pharmacological approaches to identify such a conductance. Ca 2+ -dependent anion secretion can also be supported by Ca 2+ -dependent K Ca 3.1 channels after independent CFTR activation, but cAMP-dependent anion secretion is not further decreased in the combined absence of K Ca 3.1 and KCNQ1-KCNE3 K + channel activity. We show that the K 2P K + channel TASK-2 is expressed in the epithelium of the small and large intestine. Tetrapentylammonium, a TASK-2 inhibitor, abolishes anion secretory current remaining in the absence of KCNQ1-KCNE3 activity. A double mutant mouse lacking both KCNQ1-KCNE3 and TASK-2 showed a much reduced cAMP-mediated anion secretion compared to that observed in the single KCNQ1-KCNE3 deficient mouse. We conclude that KCNQ1-KCNE3 and TASK-2 play major roles in the intestinal anion and fluid secretory phenotype. The persistence of an, admittedly reduced, secretory activity in the absence of these two conductances suggests that further additional K + channel(s) as yet unidentified contribute to the robustness of the intestinal anion secretory process. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  18. Residual oil fly ash induces cytotoxicity and mucin secretion by guinea pig tracheal epithelial cells via an oxidant-mediated mechanism.

    PubMed

    Jiang, N; Dreher, K L; Dye, J A; Li, Y; Richards, J H; Martin, L D; Adler, K B

    2000-03-15

    Inhalation of ambient air particulate matter (PM) is associated with pulmonary injury and inflammation. Using primary cultures of guinea pig tracheal epithelial (GPTE) cells as an in vitro model of airway epithelium, we examined effects of exposure to suspensions of six different emission and ambient air PM samples: residual oil fly ash (ROFA) from an electrical power plant; fly ash from a domestic oil burning furnace (DOFA); ambient air dust from St. Louis (STL), Ottawa (OT), and Washington, DC (WDC); and volcanic ash from the eruption of Mount Saint Helens (MSH) in 1980. Effects of these particulates on cell viability (assessed via LDH assay), secretion of mucin (measured by a monoclonal antibody-based ELISA), and steady-state mRNA levels of the mucin gene MUC2 were determined. ROFA was the most toxic of the dusts tested, as it significantly increased LDH release following a 24-h incubation with 50 microg/cm(2) ROFA. ROFA also enhanced MUC2 mRNA after 4-h exposure, and mucin secretion after 8 h. ROFA-induced mucin secretion and cytotoxicity were attenuated by the oxidant scavenger, dimethylthiourea (DMTU). ROFA exposure also depleted cells of glutathione (GSH). Relatedly, depletion of intracellular GSH by treatment of the cells with buthionine sulfoxamine (BSO) also provoked mucin secretion, as well as enhancing the secretory effect of ROFA when the two agents were added together. L-NMA, the nitric oxide synthase (NOS) inhibitor, did not affect ROFA-induced mucin secretion. Of the soluble transition metals in ROFA (nickel, iron, vanadium), only vanadium individually, or combinations of the metals containing vanadium, provoked secretion. The results suggest ROFA enhances mucin secretion and generates toxicity in vitro to airway epithelium via a mechanism(s) involving generation of oxidant stress, perhaps related to depletion of cellular antioxidant capacity. Deleterious effects of inhalation of ROFA in the respiratory tract in vivo may relate to these cellular responses. Vanadium, a component of ROFA, may be important in generating these reactions. Copyright 2000 Academic Press.

  19. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-03-26

    Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses.

  20. Control of rectal gland secretion by blood acid-base status in the intact dogfish shark (Squalus acanthias).

    PubMed

    Wood, Chris M; Munger, R Stephen; Thompson, Jill; Shuttleworth, Trevor J

    2007-05-14

    In order to address the possible role of blood acid-base status in controlling the rectal gland, dogfish were fitted with indwelling arterial catheters for blood sampling and rectal gland catheters for secretion collection. In intact, unanaesthetized animals, isosmotic volume loading with 500 mmol L-1 NaCl at a rate of 15 mL kg-1 h-1 produced a brisk, stable rectal gland secretion flow of about 4 mL kg-1 h-1. Secretion composition (500 mmol L-1 Na+ and Cl-; 5 mmol L-1 K+; <1 mmol L-1 Ca2+, Mg2+, SO(4)2-, or phosphate) was almost identical to that of the infusate with a pH of about 7.2, HCO3- mmol L-1<1 mmol L-1 and a PCO2 (1 Torr) close to PaCO2. Experimental treatments superimposed on the infusion caused the expected disturbances in systemic acid-base status: respiratory acidosis by exposure to high environmental PCO2, metabolic acidosis by infusion of HCl, and metabolic alkalosis by infusion of NaHCO3. Secretion flow decreased markedly with acidosis and increased with alkalosis, in a linear relationship with extracellular pH. Secretion composition did not change, apart from alterations in its acid-base status, and made negligible contribution to overall acid-base balance. An adaptive control of rectal gland secretion by systemic acid-base status is postulated-stimulation by the "alkaline tide" accompanying the volume load of feeding and inhibition by the metabolic acidosis accompanying the volume contraction of exercise.

  1. CLC-2 single nucleotide polymorphisms (SNPs) as potential modifiers of cystic fibrosis disease severity

    PubMed Central

    Blaisdell, Carol J; Howard, Timothy D; Stern, Augustus; Bamford, Penelope; Bleecker, Eugene R; Stine, O Colin

    2004-01-01

    Background Cystic fibrosis (CF) lung disease manifest by impaired chloride secretion leads to eventual respiratory failure. Candidate genes that may modify CF lung disease severity include alternative chloride channels. The objectives of this study are to identify single nucleotide polymorphisms (SNPs) in the airway epithelial chloride channel, CLC-2, and correlate these polymorphisms with CF lung disease. Methods The CLC-2 promoter, intron 1 and exon 20 were examined for SNPs in adult CF dF508/dF508 homozygotes with mild and severe lung disease (forced expiratory volume at one second (FEV1) > 70% and < 40%). Results PCR amplification of genomic CLC-2 and sequence analysis revealed 1 polymorphism in the hClC -2 promoter, 4 in intron 1, and none in exon 20. Fisher's analysis within this data set, did not demonstrate a significant relationship between the severity of lung disease and SNPs in the CLC-2 gene. Conclusions CLC-2 is not a key modifier gene of CF lung phenotype. Further studies evaluating other phenotypes associated with CF may be useful in the future to assess the ability of CLC-2 to modify CF disease severity. PMID:15507145

  2. Pyrethroid stimulation of ion transport across frog skin.

    PubMed

    Cassano, Giuseppe; Bellantuono, Vito; Ardizzone, Concetta; Lippe, Claudio

    2003-06-01

    Pyrethroids are grouped into two classes (types I and II) because of the absence or presence of an alpha-cyano substituent and the production of a different intoxication syndrome in rodents. In this study, we investigated the effect of pyrethroids on the ion transport across frog skin (Rana esculenta). The short-circuit current value (estimate of ion transport) was increased by each of the eight pyrethroids tested, with the following order of potency: lambda-cyhalothrin > deltamethrin > alpha-cypermethrin = beta-cyfluthrin > bioallethrin > permethrin > bioresmethrin > phenothrin. The first four compounds are type II pyrethroids. Therefore, ion transport is stimulated more by type II pyrethroids than by type I. Experiments performed in the presence of amiloride support the conclusion that pyrethroids mainly increase Na+ absorption and to a lesser extent Cl- secretion. In these experiments, no systematic difference between type I and II pyrethroids was found. Finally, the stimulation by pyrethroids was inhibited by indomethacin and W7 (inhibitors of cyclooxygenases and the Ca2+/calmodulin system, respectively). These observations suggest that pyrethroids do not directly affect the epithelial Na+ channel (ENaC) but indirectly influence an intracellular event involved in ENaC modulation and linked to the Ca2+ signaling cascade.

  3. The calcium-sensing receptor regulates mammary gland parathyroid hormone–related protein production and calcium transport

    PubMed Central

    VanHouten, Joshua; Dann, Pamela; McGeoch, Grace; Brown, Edward M.; Krapcho, Karen; Neville, Margaret; Wysolmerski, John J.

    2004-01-01

    The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone–related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppress PTHrP secretion by mammary epithelial cells in vitro, whereas in vivo, systemic hypocalcemia increases PTHrP production, an effect that can be prevented by treatment with a calcimimetic. Hypocalcemia also reduces overall milk production and calcium content, while increasing milk osmolality and protein concentrations. The changes in milk calcium content, milk osmolality, and milk protein concentration were mitigated by calcimimetic infusions. Finally, in a three-dimensional culture system that recapitulates the lactating alveolus, activation of the basolateral CaR increases transcellular calcium transport independent of its effect on PTHrP. We conclude that the lactating mammary gland can sense calcium and adjusts its secretion of calcium, PTHrP, and perhaps water in response to changes in extracellular calcium concentration. We believe this defines a homeostatic system that helps to match milk production to the availability of calcium. PMID:14966569

  4. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    PubMed

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  5. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    PubMed Central

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708

  6. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells.

    PubMed

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J; Rodriguez, Elena; Shaffer, Thomas H

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) < 20% (dry), 69% (noninterventional comparator), and >90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  7. The Effects of Gas Humidification with High-Flow Nasal Cannula on Cultured Human Airway Epithelial Cells

    PubMed Central

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J.; Rodriguez, Elena; Shaffer, Thomas H.

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) < 20% (dry), 69% (noninterventional comparator), and >90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation. PMID:22988501

  8. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    PubMed Central

    Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia

    2013-01-01

    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714

  9. Neural modulation of salt secretion in teleostopercular epithelium by 2-adrenergic receptors and inositol 1,4,5-trisphosphate

    PubMed

    Marshall; Duquesnay; Gillis; Bryson; Liedtke

    1998-05-21

    Opercular epithelia from seawater-adapted killifish (Fundulus heteroclitus) were dissected with the nerve intact, mounted in Ussing-style membrane chambers and bathed in symmetrical saline solutions. Nerve stimulation rapidly inhibited transepithelial current (a measure of Cl- secretion rate) by 27.3+/-3.3 % (N=22), and the effect could be sustained for more than 10 min using intermittent pulse trains at 10 Hz. The effect was blocked in a dose-dependent manner by yohimbine, but not by propranolol, atropine or tubocurarine, indicating mediation by 2-adrenergic receptors. The effect was also present, but significantly diminished, in opercular membranes from animals that had been transferred to sea water for 48 h (18+/-8.6 % inhibition, N=14). The resting current and the effect were absent in membranes from freshwater-adapted animals. The addition of clonidine (1.0 micromol l-1 serosal side) started to inhibit Cl- current after 40-60 s; immediately before this, at 30 s, there was a significant rise (P<0.05, N=14) in tissue inositol 1,4,5, -trisphosphate (InsP3) level, but no change at later times, compared with LiCl-treated control membranes and measured by radiolabeled receptor assay. The results indicate that seawater-adapted killifish can decrease their Cl- secretion rate through the action of the sympathetic nervous system, a response appropriate for the entry of estuarine fish to fresh water, and that the effect is mediated by 2-adrenoceptors via InsP3. The results imply that euryhaline fish entering fresh water can undergo an autonomic reflex reduction in salt secretion that does not require a stress response.

  10. Per a 10 activates human derived epithelial cell line in a protease dependent manner via PAR-2.

    PubMed

    Kale, Sagar L; Arora, Naveen

    2015-04-01

    Protease activity of Per a 10 has been shown to modulate dendritic cells toward Th-2 polarization and to induce airway inflammation. To elucidate the role of serine protease activity of Per a 10 in inducing biochemical responses in epithelial cells. Per a 10 was inactivated by heat treatment (ΔPer a 10) or AEBSF (iPer a 10). A549 cells were exposed to either enzymatically active/inactive Per a 10. The supernatant was analyzed for the secretion of proinflammatory cytokines by ELISA. Ca(2+) mobilization was analyzed by flow cytometry. A PAR-2 derived synthetic peptide 28GTNRSSKGRSLIGKVDGTSHVTGKGVTC54 was incubated with Per a 10 and the resultant cleaved products were analyzed by LC-MS. PAR-2 activation was inhibited by PAR-2 cleavage inhibiting antibody. ΔPer a 10 was completely inactivated whereas iPer a 10 showed some residual activity. nPer a 10 having protease activity increased the secretion of IL-6, IL-8 and GMCSF from A549 in a dose and time dependent manner whereas iPer a 10 has reduced cytokine secretion. ΔPer a 10 and rPer a 10 were unable to activate the cells. nPer a 10 mobilized intracellular Ca(2+). nPer a 10 cleaved the PAR-2 derived peptide between arginine and serine residues (36R-S37) to expose PAR-2 ligand SLIGKV, as determined by LC-MS. Incubating with anti-PAR-2 cleavage antibody showed diminished cytokine secretion when treated with nPer a 10. Serine protease activity of Per a 10 activates A549 cells to secrete proinflammatory cytokines by PAR-2 activation and Ca(2+)mobilization and can be exploited therapeutically. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Reactive Oxygen Species Induce Antiviral Innate Immune Response through IFN-λ Regulation in Human Nasal Epithelial Cells

    PubMed Central

    Kim, Hyun Jik; Kim, Chang-Hoon; Ryu, Ji-Hwan; Kim, Min-Ji; Park, Chong Yoon; Lee, Jae Myun; Holtzman, Michael J.

    2013-01-01

    This study sought to explore the role of the IFN-related innate immune responses (IFN-β and IFN-λ) and of reactive oxygen species (ROS) after influenza A virus (IAV) infection for antiviral innate immune activity in normal human nasal epithelial (NHNE) cells that are highly exposed to IAV. Passage-2 NHNE cells were inoculated with the IAV WSN/33 for 1, 2, and 3 days to assess the capacity of IFN and the relationship between ROS generation and IFN-λ secretion for controlling IAV infection. Viral titers and IAV mRNA levels increased after infection. In concert with viral titers, we found that the generation of IFNs, such as IFN-β, IFN-λ1, and IFN-λ2/3, was induced after IAV infection until 3 days after infection. The induction of IFN-λ gene expression and protein secretion may be predominant after IAV infection. Similarly, we observed that intracellular ROS generation increased 60 minutes after IAV infection. Viral titers and mRNA levels of IAV were significantly higher in cases with scavenging ROS, in cases with an induced IFN-λ mRNA level, or where the secreted protein concentration of IFN-λ was attenuated after the suppression of ROS generation. Both mitochondrial and dual oxidase (Doux)2-generated ROS were correlated with IAV mRNA and viral titers. The inhibition of mitochondrial ROS generation and the knockdown of Duox2 gene expression highly increased IAV viral titers and decreased IFN-λ secretion. Our findings suggest that the production of ROS may be responsible for IFN-λ secretion to control IAV infection. Both mitochondria and Duox2 are possible sources of ROS generation, which is required to initiate an innate immune response in NHNE cells. PMID:23786562

  12. Acid-base relations in epithelium of turtle bladder: site of active step in acidification and role of metabolic CO2.

    PubMed

    Steinmetz, P R

    1969-07-01

    The acid-base relations across the two surfaces of the epithelium of the turtle bladder were examined. By means of the 5,5-dimethyl-2,4-oxazolidinedione (DMO) technique the intracellular OH(-) concentration was measured in the presence and absence of a transepithelial pH gradient. When both sides of the bladder were bathed with solutions free of exogenous CO(2) and bicarbonate at pH 7.41 ([OH(-)] = 239 nmoles/liter), the epithelial cells were alkaline, the mean intracellular [OH(-)] being 347nmoles/liter. This alkalinity of the cells was preserved in bladders that secreted H(+) against a gradient of over 2 pH units. In bathing solutions stirred with 4.85% CO(2) and buffered with 25 mM HCO(3) (-) at pH 7.41 the intracellular [OH(-)] was lower than in CO(2)-free solutions and close to the extracellular [OH(-)]. In the CO(2)-free system anaerobiosis caused increased alkalinity of the cells and inhibition of H(+) secretion presumably by decreased metabolic CO(2) production. Carbonic acid inhibitors reduced H(+) secretion, but had no significant effect on the alkalinity of the cells. An inactive analogue of acetazolamide had no effect on H(+) secretion. The results indicate that the active step in acidification is located near the mucosal surface of the epithelium and that the alkali formed within the epithelial cells moves passively into the serosal solution along an electro-chemical gradient. The inhibitory effect of certain sulfonamides on H(+) secretion by the bladder is directly correlated with their known carbonic anhydrase inhibitory activity, but not associated with a measurable change in the mean intracellular [OH(-)].

  13. Reduced IL-10 Production in Fetal Type II Epithelial Cells Exposed to Mechanical Stretch Is Mediated via Activation of IL-6-SOCS3 Signaling Pathway

    PubMed Central

    Hawwa, Renda L.; Huang, Zheping; Sharma, Surendra; Sanchez-Esteban, Juan

    2013-01-01

    An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury. PMID:23527226

  14. Reduced IL-10 production in fetal type II epithelial cells exposed to mechanical stretch is mediated via activation of IL-6-SOCS3 signaling pathway.

    PubMed

    Hokenson, Michael A; Wang, Yulian; Hawwa, Renda L; Huang, Zheping; Sharma, Surendra; Sanchez-Esteban, Juan

    2013-01-01

    An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.

  15. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    PubMed Central

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  16. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia

    PubMed Central

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-01-01

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  17. The Ethanol-Induced Stimulation of Rat Duodenal Mucosal Bicarbonate Secretion In Vivo Is Critically Dependent on Luminal Cl–

    PubMed Central

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl− from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl− and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms. PMID:25033198

  18. EG-VEGF, BV8, and their receptor expression in human bronchi and their modification in cystic fibrosis: Impact of CFTR mutation (delF508).

    PubMed

    Chauvet, Sylvain; Traboulsi, Wael; Thevenon, Laura; Kouadri, Amal; Feige, Jean-Jacques; Camara, Boubou; Alfaidy, Nadia; Benharouga, Mohamed

    2015-08-01

    Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion. Copyright © 2015 the American Physiological Society.

  19. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction

    PubMed Central

    Namkung, Wan; Yao, Zhen; Finkbeiner, Walter E.; Verkman, A. S.

    2011-01-01

    TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca2+. By patch-clamp, N-aroylaminothiazole “activators” (Eact) strongly increased Cl− current at 0 Ca2+, whereas tetrazolylbenzamide “potentiators” (Fact) were not active at 0 Ca2+ but reduced the EC50 for Ca2+-dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (Eact) and potentiator (Fact) produced large and more sustained CaCC Cl− currents than general agonists of Ca2+ signaling, with EC50 3–6 μM and Cl− conductance comparable to that induced transiently by Ca2+-elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl− conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.—Namkung, W., Yao, Z., Finkbeiner, W. E., Verkman, A. S. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. PMID:21836025

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auger, Floriane; Gendron, Marie-Claude; Chamot, Christophe

    Numerous epidemiological studies support the contention that ambient air pollution particles can adversely affect human health. To explain the acute inflammatory process in airways exposed to particles, a number of in vitro studies have been performed on cells grown submerged on plastic and poorly differentiated, and on cell lines, the physiology of which is somewhat different from that of well-differentiated cells. In order to obtain results using a model system in which epithelial cells are similar to those of the human airway in vivo, apical membranes of well-differentiated human nasal epithelial (HNE) cells cultured in an air-liquid interface (ALI) weremore » exposed for 24 h to diesel exhaust particles (DEP) and Paris urban air particles (PM{sub 2.5}). DEP and PM{sub 2.5} (10-80 {mu}g/cm{sup 2}) stimulated both IL-8 and amphiregulin (ligand of EGFR) secretion exclusively towards the basal compartment. In contrast, there was no IL-1{beta} secretion and only weak non-reproducible secretion of TNF-{alpha}. IL-6 and GM-CSF were consistently stimulated towards the apical compartment and only when cells were exposed to PM{sub 2.5}. ICAM-1 protein expression on cell surfaces remained low after particle exposure, although it increased after TNF-{alpha} treatment. Internalization of particles, which is believed to initiate oxidative stress and proinflammatory cytokine expression, was restricted to small nanoparticles ({<=} 40 nm). Production of reactive oxygen species (ROS) was detected, and DEP were more efficient than PM{sub 2.5}. Collectively, our results suggest that airway epithelial cells exposed to particles augment the local inflammatory response in the lung but cannot alone initiate a systemic inflammatory response.« less

  1. Interleukin-1 stimulates zinc uptake by human thymic epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coto, J.A.; Hadden, J.W.

    1991-03-15

    Thymic epithelial cells (TEC) are known to secrete peptides which influence the differentiation and maturation of T-lymphocytes. These peptides include the thymic hormones thymulin, thymosin-{alpha}1, and thymopoietin. The biological activity of thymulin is dependent on the presence of zinc in an equimolar ratio. The authors have shown that both interleukin-1{alpha}(IL-1{alpha}) and interleukin-1{beta}(IL-1{beta}), which stimulate proliferation of TEC, stimulate the uptake of Zn-65 in-vitro independent of this proliferation. Mitomycin-C was used to inhibit the proliferation of TEC. Two other stimulators of proliferation of TEC, bovine pituitary extract (BPE) and epidermal growth factor (EGF), did not stimulate zinc uptake by the TECmore » independent of proliferation. They have also shown, utilizing in-situ hybridization, that IL-1 and zinc induce metallothionein(MT) mRNA expression in human thymic epithelial cells. The exact role of metallothionein is not clear, but it is thought to be involved in regulation of trace metal metabolism, especially in maintenance of zinc homeostasis. Their current hypothesis is that IL-1 stimulates uptake of zinc into the TEC, followed by its complexing with metallothionein. Zinc is then thought to be transferred from metallothionein to thymulin. Immunostaining, utilizing an antithymulin antibody and a fluoresceinated goat anti-rabbit second antibody, confirms the presence of thymulin in TEC and its dependence on zinc. Upon stimulation, thymulin is then secreted. Known stimulants for thymulin include progesterone, dexamethasone, estradiol, testosterone, and prolactin. None of these secretagogues increase zinc uptake, suggesting the priming of the zinc-thymulin complex is unrelated to the regulation of its secretion.« less

  2. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation.

    PubMed Central

    Bahrani, F K; Sansonetti, P J; Parsot, C

    1997-01-01

    The type III Mxi-Spa secretion machinery of Shigella flexneri is responsible for secretion of Ipa proteins, which are involved in the entry of bacteria into epithelial cells. Ipa proteins accumulate within bacteria growing in laboratory media, and their secretion is activated upon contact of bacteria with eukaryotic cells. In this study, we have identified a group of chemical compounds, including Congo red, Evans blue, and direct orange, which are able to induce secretion of Ipa proteins by bacteria suspended in phosphate-buffered saline. Parameters of kinetics of activation of Ipa secretion by Congo red were determined by measuring by enzyme-linked immunosorbent assay the amount of IpaC secreted and by investigating the increase in susceptibility of Ipa proteins to proteinase K degradation. Ipa secretion occurred at 37 degrees C, was obtained with 5 to 10 microM Congo red, and was complete within 30 min. In addition, activation of Ipa secretion by Congo red was observed with bacteria harvested throughout the exponential phase of growth but not with bacteria in the stationary phase. The interactions of Congo red and Congo red-related compounds with the Mxi-Spa secretion apparatus might be specific hydrophobic interactions similar to those involved in binding of Congo red to amyloid proteins. PMID:9316999

  3. New dinuclear palladium(II) complexes: Studies of the nucleophilic substitution reactions, DNA/BSA interactions and cytotoxic activity.

    PubMed

    Ćoćić, Dušan; Jovanović, Snežana; Nišavić, Marija; Baskić, Dejan; Todorović, Danijela; Popović, Suzana; Bugarčić, Živadin D; Petrović, Biljana

    2017-10-01

    Six new dinuclear Pd(II) complexes, [{Pd(2,2'-bipy)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd1), [{Pd(dach)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd2), [{Pd(en)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd3), [{Pd(2,2'-bipy)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd4), [{Pd(dach)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd5) and [{Pd(en)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd6) (where 2,2'-bipy=2,2'-bipyridyl, pz=pyrazine, dach=trans-(±)-1,2-diaminocyclohexane, en=ethylenediamine, 4,4'-bipy=4,4'-bipyridyl) have been synthesized and characterized by elemental microanalysis, IR, 1 H NMR and MALDI-TOF mass spectrometry. The pK a values of corresponding diaqua complexes were determined by spectrophotometric pH titration. Substitution reactions with thiourea (Tu), l-methionine (l-Met), l-cysteine (l-Cys), l-histidine (l-His) and guanosine-5'-monophosphate (5'-GMP) were studied under the pseudo-first order conditions at pH7.2. Reactions of Pd1 with Tu, l-Met and l-Cys were followed by decomposition of complexes, while structures of dinuclear complexes were preserved during the substitution with nitrogen donors. Interactions with calf-thymus DNA (CT-DNA) were followed by absorption spectroscopy and fluorescence quenching measurements. All complexes can bind to CT-DNA exhibiting high intrinsic binding constants (K b =10 4 -10 5 M -1 ). Competitive studies with ethidium bromide (EB) have shown that complexes can displace DNA-bound EB. High values of binding constants towards bovine serum albumin protein (BSA) indicate good binding affinity. Finally, all complexes showed moderate to high cytotoxic activity against HeLa (human cervical epithelial carcinoma cell lines) and MDA-MB-231 (human breast epithelial carcinoma cell lines) tumor cell lines inducing apoptotic type cell death, whereas normal fibroblasts were significantly less sensitive. The impact on cell cycle of these cells was distinctive, where Pd4, Pd5 and Pd6 showed the most prominent effect arresting MDA-MB-231 (human lung fibroblast cell lines) cell in G1/S phase of cell cycle. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ultrastructure of the Intramandibular Gland of Workers and Queens of the Stingless Bee, Melipona quadrifasciata

    PubMed Central

    Da Cruz-Landim, Carminda; Gracioli-Vitti, Luciana F.; Abdalla, Fábio C.

    2011-01-01

    The intramandibular glands of workers and queens of Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae), at different ages and from different functional groups, were studied using light and transmission electron microscopy. The results demonstrated that these glands are composed of two types of secretory structures: 1.A hypertrophied epidermis on the dorsal side of the mandible that is an epithelial gland. 2. Free secretory cells filling the inner spaces of the appendices that constitute a unicellular gland. The epithelial gland is larger in the young (1-2-day-old workers), and the gland becomes involuted during the nurse worker stage. The unicellular glands of the workers posses some secretion during all of the studied phases, but secretory activity is more intensive in the foraging workers. Vesicles of secretion are absent in the unicellular glands of queens. These results demonstrate that these glands show functional adaptations in different castes corresponding to the functions of each caste. PMID:22220493

  5. Ultrastructure of the intramandibular gland of workers and queens of the stingless bee, Melipona quadrifasciata.

    PubMed

    Da Cruz-Landim, Carminda; Gracioli-Vitti, Luciana F; Abdalla, Fábio C

    2011-01-01

    The intramandibular glands of workers and queens of Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae), at different ages and from different functional groups, were studied using light and transmission electron microscopy. The results demonstrated that these glands are composed of two types of secretory structures: 1.A hypertrophied epidermis on the dorsal side of the mandible that is an epithelial gland. 2. Free secretory cells filling the inner spaces of the appendices that constitute a unicellular gland. The epithelial gland is larger in the young (1-2-day-old workers), and the gland becomes involuted during the nurse worker stage. The unicellular glands of the workers posses some secretion during all of the studied phases, but secretory activity is more intensive in the foraging workers. Vesicles of secretion are absent in the unicellular glands of queens. These results demonstrate that these glands show functional adaptations in different castes corresponding to the functions of each caste.

  6. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins.

    PubMed

    Montalbetti, Nicolas; Dalghi, Marianela G; Albrecht, Christiane; Hediger, Matthias A

    2014-03-01

    Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.

  7. An innate defense peptide BPIFA1/SPLUNC1 restricts influenza A virus infection.

    PubMed

    Akram, K M; Moyo, N A; Leeming, G H; Bingle, L; Jasim, S; Hussain, S; Schorlemmer, A; Kipar, A; Digard, P; Tripp, R A; Shohet, R V; Bingle, C D; Stewart, J P

    2018-01-01

    The airway epithelium secretes proteins that function in innate defense against infection. Bactericidal/permeability-increasing fold-containing family member A1 (BPIFA1) is secreted into airways and has a protective role during bacterial infections, but it is not known whether it also has an antiviral role. To determine a role in host defense against influenza A virus (IAV) infection and to find the underlying defense mechanism, we developed transgenic mouse models that are deficient in BPIFA1 and used these, in combination with in vitro three-dimensional mouse tracheal epithelial cell (mTEC) cultures, to investigate its antiviral properties. We show that BPIFA1 has a significant role in mucosal defense against IAV infection. BPIFA1 secretion was highly modulated after IAV infection. Mice deficient in BPIFA1 lost more weight after infection, supported a higher viral load and virus reached the peripheral lung earlier, indicative of a defect in the control of infection. Further analysis using mTEC cultures showed that BPIFA1-deficient cells bound more virus particles, displayed increased nuclear import of IAV ribonucleoprotein complexes, and supported higher levels of viral replication. Our results identify a critical role of BPIFA1 in the initial phase of infection by inhibiting the binding and entry of IAV into airway epithelial cells.

  8. Enhancing the Biological Relevance of Secretome-Based Proteomics by Linking Tumor Cell Proliferation and Protein Secretion.

    PubMed

    Gregori, Josep; Méndez, Olga; Katsila, Theodora; Pujals, Mireia; Salvans, Cándida; Villarreal, Laura; Arribas, Joaquin; Tabernero, Josep; Sánchez, Alex; Villanueva, Josep

    2014-07-15

    Secretome profiling has become a methodology of choice for the identification of tumor biomarkers. We hypothesized that due to the dynamic nature of secretomes cellular perturbations could affect their composition but also change the global amount of protein secreted per cell. We confirmed our hypothesis by measuring the levels of secreted proteins taking into account the amount of proteome produced per cell. Then, we established a correlation between cell proliferation and protein secretion that explained the observed changes in global protein secretion. Next, we implemented a normalization correcting the statistical results of secretome studies by the global protein secretion of cells into a generalized linear model (GLM). The application of the normalization to two biological perturbations on tumor cells resulted in drastic changes in the list of statistically significant proteins. Furthermore, we found that known epithelial-to-mesenchymal transition (EMT) effectors were only statistically significant when the normalization was applied. Therefore, the normalization proposed here increases the sensitivity of statistical tests by increasing the number of true-positives. From an oncology perspective, the correlation between protein secretion and cellular proliferation suggests that slow-growing tumors could have high-protein secretion rates and consequently contribute strongly to tumor paracrine signaling.

  9. Epithelial chloride channel. Development of inhibitory ligands

    PubMed Central

    1987-01-01

    Chloride channels are present in the majority of epithelial cells, where they mediate absorption or secretion of NaCl. Although the absorptive and secretory channels are well characterized in terms of their electrophysiological behavior, there is a lack of pharmacological ligands that can aid us in further functional and eventually molecular characterization. To obtain such ligands, we prepared membrane vesicles from bovine kidney cortex and apical membrane vesicles from trachea and found that they contain a chloride transport process that is electrically conductive. This conductance was reduced by preincubating the vesicles in media containing ATP or ATP-gamma-S, but not beta- methylene ATP, which suggests that the membranes contain a kinase that can close the channels. We then screened compounds derived from three classes: indanyloxyacetic acid (IAA), anthranilic acid (AA), and ethacrynic acid. We identified potent inhibitors from the IAA and the AA series. We tritiated IAA-94 and measured binding of this ligand to the kidney cortex membrane vesicles and found a high-affinity binding site whose dissociation constant (0.6 microM) was similar to the inhibition constant (1 microM). There was a good correlation between the inhibitory potency of several IAA derivatives and their efficacy in displacing [3H]IAA-94 from its binding site. Further, other chloride channel inhibitors, including AA derivatives, ethacrynic acid, bumetanide, and DIDS, also displaced the ligand from its binding site. A similar conductance was found in apical membrane vesicles from bovine trachea that was also inhibited by IAA-94 and AA-130B, but the inhibitory effects of these compounds were weaker than their effects on the renal cortex channel. The two drugs were also less potent in displacing [3H]IAA-94 from the tracheal binding site. PMID:2450168

  10. Salinity alters snakeskin and mesh transcript abundance and permeability in midgut and Malpighian tubules of larval mosquito, Aedes aegypti.

    PubMed

    Jonusaite, Sima; Donini, Andrew; Kelly, Scott P

    2017-03-01

    This study examined the distribution and localization of the septate junction (SJ) proteins snakeskin (Ssk) and mesh in osmoregulatory organs of larval mosquito (Aedes aegypti), as well as their response to altered environmental salt levels. Ssk and mesh transcripts and immunoreactivity were detected in tissues of endodermal origin such as the midgut and Malpighian tubules of A. aegypti larvae, but not in ectodermally derived hindgut and anal papillae. Immunolocalization of Ssk and mesh in the midgut and Malpighian tubules indicated that both proteins are concentrated at regions of cell-cell contact between epithelial cells. Transcript abundance of ssk and mesh was higher in the midgut and Malpighian tubules of brackish water (BW, 30% SW) reared A. aegypti larvae when compared with freshwater (FW) reared animals. Therefore, [ 3 H]polyethylene glycol (MW 400Da, PEG-400) flux was examined across isolated midgut and Malpighian tubule preparations as a measure of their paracellular permeability. It was found that PEG-400 flux was greater across the midgut of BW versus FW larvae while the Malpighian tubules of BW-reared larvae had reduced PEG-400 permeability in conjunction with increased Cl - secretion compared to FW animals. Taken together, data suggest that Ssk and mesh are found in smooth SJs (sSJs) of larval A. aegypti and that their abundance alters in association with changes in epithelial permeability when larvae reside in water of differing salt content. This latter observation suggests that Ssk and mesh play a role in the homeostatic control of salt and water balance in larval A. aegypti. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Glucocorticoid activity and metabolism with NaCl-induced low-grade metabolic acidosis and oral alkalization: results of two randomized controlled trials.

    PubMed

    Buehlmeier, Judith; Remer, Thomas; Frings-Meuthen, Petra; Maser-Gluth, Christiane; Heer, Martina

    2016-04-01

    Low-grade metabolic acidosis (LGMA), as induced by high dietary acid load or sodium chloride (NaCl) intake, has been shown to increase bone and protein catabolism. Underlying mechanisms are not fully understood, but from clinical metabolic acidosis interactions of acid-base balance with glucocorticoid (GC) metabolism are known. We aimed to investigate GC activity/metabolism under alkaline supplementation and NaCl-induced LGMA. Eight young, healthy, normal-weight men participated in two crossover designed interventional studies. In Study A, two 10-day high NaCl diet (32 g/d) periods were conducted, one supplemented with 90 mmol KHCO3/day. In Study B, participants received a high and a low NaCl diet (31 vs. 3 g/day), each for 14 days. During low NaCl, the diet was moderately acidified by replacement of a bicarbonate-rich mineral water (consumed during high NaCl) with a non-alkalizing drinking water. In repeatedly collected 24-h urine samples, potentially bioactive-free GCs (urinary-free cortisol + free cortisone) were analyzed, as well as tetrahydrocortisol (THF), 5α-THF, and tetrahydrocortisone (THE). With supplementation of 90 mmol KHCO3, the marker of total adrenal GC secretion (THF + 5α-THF + THE) dropped (p = 0.047) and potentially bioactive-free GCs were reduced (p = 0.003). In Study B, however, GC secretion and potentially bioactive-free GCs did not exhibit the expected fall with NaCl-reduction as net acid excretion was raised by 30 mEq/d. Diet-induced acidification/alkalization affects GC activity and metabolism, which in case of long-term ingestion of habitually acidifying western diets may constitute an independent risk factor for bone degradation and cardiometabolic diseases.

  12. Epithelial propionyl‐ and butyrylcholine as novel regulators of colonic ion transport

    PubMed Central

    Moreno, Sarah; Gerbig, Stefanie; Schulz, Sabine; Spengler, Bernhard; Bader, Sandra

    2016-01-01

    Abstract Background and Purpose The colonic surface epithelium produces acetylcholine, released after the binding of propionate to GPCRs for this short‐chain fatty acid (SCFA). This epithelial acetylcholine then induces anion secretion via stimulation of acetylcholine receptors. The key enzyme responsible for acetylcholine synthesis, choline acetyltransferase, is known to be unselective as regards the fatty acid used for esterification of choline. As the colonic epithelium is permanently exposed to high concentrations of different SCFAs produced by bacterial fermentation, we investigated whether choline esters other than acetylcholine, propionylcholine and butyrylcholine, are produced by the colonic epithelium, too, and whether these ‘atypical’ esters are able to stimulate the acetylcholine receptors involved in the regulation of colonic ion transport. Experimental Approach Desorption electrospray ionization mass spectroscopy (DESI‐MS), Ussing chamber and Ca2+‐imaging experiments were performed on rat distal colon. Key Results DESI‐MS analyses revealed the production of acetylcholine, propionylcholine and butyrylcholine in the surface epithelium. Relative expression rates were 2–3% in comparison with acetylcholine. In Ussing chamber experiments, both atypical choline esters caused a concentration‐dependent increase in short‐circuit current, that is, stimulated anion secretion. Inhibitor experiments in the absence and presence of the submucosal plexus revealed the involvement of neuronal and epithelial acetylcholine receptors. While butyrylcholine obviously stimulated both nicotinic and muscarinic receptors, propionylcholine predominantly acted on muscarinic receptors. Conclusions and Implications These results suggest a novel pathway for communication between intestinal microbes producing SCFA and the host via modification of epithelial production of choline esters involved in the paracrine regulation of the colonic epithelium. PMID:27423041

  13. Arsenic alters transcriptional responses to Pseudomonas aeruginosa infection and decreases antimicrobial defense of human airway epithelial cells.

    PubMed

    Goodale, Britton C; Rayack, Erica J; Stanton, Bruce A

    2017-09-15

    Arsenic contamination of drinking water and food threatens the health of hundreds of millions of people worldwide by increasing the risk of numerous diseases. Arsenic exposure has been associated with infectious lung disease in epidemiological studies, but it is not yet understood how ingestion of low levels of arsenic increases susceptibility to bacterial infection. Accordingly, the goal of this study was to examine the effect of arsenic on gene expression in primary human bronchial epithelial (HBE) cells and to determine if arsenic altered epithelial cell responses to Pseudomonas aeruginosa, an opportunistic pathogen. Bronchial epithelial cells line the airway surface, providing a physical barrier and serving critical roles in antimicrobial defense and signaling to professional immune cells. We used RNA-seq to define the transcriptional response of HBE cells to Pseudomonas aeruginosa, and investigated how arsenic affected HBE gene networks in the presence and absence of the bacterial challenge. Environmentally relevant levels of arsenic significantly changed the expression of genes involved in cellular redox homeostasis and host defense to bacterial infection, and decreased genes that code for secreted antimicrobial factors such as lysozyme. Using pathway analysis, we identified Sox4 and Nrf2-regulated gene networks that are predicted to mediate the arsenic-induced decrease in lysozyme secretion. In addition, we demonstrated that arsenic decreased lysozyme in the airway surface liquid, resulting in reduced lysis of Microccocus luteus. Thus, arsenic alters the expression of genes and proteins in innate host defense pathways, thereby decreasing the ability of the lung epithelium to fight bacterial infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture.

    PubMed

    Gangalum, Rajendra K; Bhat, Ankur M; Kohan, Sirus A; Bhat, Suraj P

    2016-06-17

    Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Alteration of corneal epithelial ion transport by sympathectomy.

    PubMed

    Klyce, S D; Beuerman, R W; Crosson, C E

    1985-04-01

    The cornea is dually innervated, receiving afferent nerves from the trigeminal ganglion and efferent nerves from the superior cervical ganglion. This study examines the specific effects of superior cervical ganglionectomy (SCGX) on the in vitro ion transport characteristics of the rabbit corneal epithelium. Two weeks after SCGX, epithelial Cl--dependent transport and total ionic conductance were increased in comparison to values obtained in paired control eyes. This increased transport level appeared to be independent of membrane receptor activity as demonstrated by lack of responsiveness to alpha-adrenergic, beta-adrenergic, serotonergic, dopaminergic, nicotinic cholinergic, or muscarinic cholinergic blockade. Nevertheless, SCGX produced a supersensitivity to epinephrine-stimulated transport as measured by the responsiveness of the ion transport current. Furthermore, SCGX abolished the responsiveness of the epithelium to serotonin. On the basis of these and earlier findings, the authors conclude that corneal sympathetic innervation influences membrane and receptor properties. Autonomic neurotrophic effects in the corneal epithelium include suppression of apical membrane Cl- permeability and of beta-adrenoreceptor sensitivity to biogenic amines. It is proposed that the corneal serotonergic receptors that activate Cl- transport lie on the sympathetic nerve terminals and stimulate this transport process by causing the neural release of a catecholamine.

  16. Regulation of potassium transport in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Warwar, Ronald; Brown, Thomas L; Adragna, Norma C

    2006-01-01

    The major K influx pathways and their response to thiol modification by N-ethylmaleimide (NEM) and protein kinase and phosphatase inhibitors were characterized in human lens epithelial B3 (HLE-B3) cells with Rb as K congener. Ouabain (0.1 mM) and bumetanide (5 microM) discriminated between the Na/K pump ( approximately 35% of total Rb influx) and Na-K-2Cl cotransport (NKCC) ( approximately 50%). Cl-replacement with nitrate or sulfamate revealed <10% residual [ouabain+bumetanide]-insensitive K-Cl cotransport (KCC). At 0.3-0.5 mM, NEM stimulated the Na/K pump by 2-fold independent of external Na, KCC between 2 and 4-fold, and abolished approximately 90% of NKCC. Calyculin-A, a serine/threonine protein phosphatase-1 inhibitor, did not affect NKCC but inhibited KCC, whereas 10 microM staurosporine, a serine/threonine kinase inhibitor, abolished NKCC, and stimulated KCC only when followed by NEM treatment. The tyrosine-kinase inhibitor genistein, at concentrations >100 microM, activated the Na/K pump and abolished NKCC but did not affect KCC. The data suggest at least partial inverse regulation of KCC and NKCC in HLE-B3 cells by signaling cascades involving serine, threonine and tyrosine phosphorylation/dephosphorylation equilibria.

  17. Putting on the brakes: Bacterial impediment of wound healing

    PubMed Central

    Brothers, Kimberly M.; Stella, Nicholas A.; Hunt, Kristin M.; Romanowski, Eric G.; Liu, Xinyu; Klarlund, Jes K.; Shanks, Robert M. Q.

    2015-01-01

    The epithelium provides a crucial barrier to infection, and its integrity requires efficient wound healing. Bacterial cells and secretomes from a subset of tested species of bacteria inhibited human and porcine corneal epithelial cell migration in vitro and ex vivo. Secretomes from 95% of Serratia marcescens, 71% of Pseudomonas aeruginosa, 29% of Staphylococcus aureus strains, and other bacterial species inhibited epithelial cell migration. Migration of human foreskin fibroblasts was also inhibited by S. marcescens secretomes indicating that the effect is not cornea specific. Transposon mutagenesis implicated lipopolysaccharide (LPS) core biosynthetic genes as being required to inhibit corneal epithelial cell migration. LPS depletion of S. marcescens secretomes with polymyxin B agarose rendered secretomes unable to inhibit epithelial cell migration. Purified LPS from S. marcescens, but not from Escherichia coli or S. marcescens strains with mutations in the waaG and waaC genes, inhibited epithelial cell migration in vitro and wound healing ex vivo. Together these data suggest that S. marcescens LPS is sufficient for inhibition of epithelial wound healing. This study presents a novel host-pathogen interaction with implications for infections where bacteria impact wound healing and provides evidence that secreted LPS is a key factor in the inhibitory mechanism. PMID:26365869

  18. Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development

    PubMed Central

    Yin, Yongjun; Wang, Fen; Ornitz, David M.

    2011-01-01

    Fibroblast growth factor (FGF) 9 is a secreted signaling molecule that is expressed in lung mesothelium and epithelium and is required for lung development. Embryos lacking FGF9 show mesenchymal hypoplasia, decreased epithelial branching and, by the end of gestation, hypoplastic lungs that cannot support life. Mesenchymal FGF signaling interacts with β-catenin-mediated WNT signaling in a feed-forward loop that functions to sustain mesenchymal FGF responsiveness and mesenchymal WNT/β-catenin signaling. During pseudoglandular stages of lung development, Wnt2a and Wnt7b are the canonical WNT ligands that activate mesenchymal WNT/β-catenin signaling, whereas FGF9 is the only known ligand that signals to mesenchymal FGF receptors (FGFRs). Here, we demonstrate that mesothelial- and epithelial-derived FGF9, mesenchymal Wnt2a and epithelial Wnt7b have unique functions in lung development in mouse. Mesothelial FGF9 and mesenchymal WNT2A are principally responsible for maintaining mesenchymal FGF-WNT/β-catenin signaling, whereas epithelial FGF9 primarily affects epithelial branching. We show that FGF signaling is primarily responsible for regulating mesenchymal proliferation, whereas β-catenin signaling is a required permissive factor for mesenchymal FGF signaling. PMID:21750028

  19. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using low LET radiation showed a dose-dependent increase in migration of epithelial cells when exposed to conditioned media from irradiated vs. non-irradiated fibroblasts. We also observed enhanced invasion through a basement membrane simulant. To identify chemotactic proteins secreted by irradiated stromal fibroblasts, we used antibody capture cytokine arrays and have identified several proteins as candidates. Increased secretion of these factors by irradiated fibroblasts was confirmed using ELISA. We are currently analyzing the contribution of these individual factors on epithelial migration and invasion, as well as their influence on cell survival and DNA repair. Studies using high-LET radiation will help determine radiation quality effects on these processes. These results should further our understanding of the mechanisms by which radiation impacts the tissue microenvironment and how it influences cancer development processes.

  20. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    PubMed Central

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Martina; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-01-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit. PMID:25996248

  1. Evaluation of intra- and extra-epithelial secretory IgA in chlamydial infections

    PubMed Central

    Armitage, Charles W; O’Meara, Connor P; Harvie, Marina C G; Timms, Peter; Wijburg, Odilia L; Beagley, Kenneth W

    2014-01-01

    Immunoglobulin A is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intra-epithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant secretory IgA (SIgA) we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra- and intra-epithelial stages of infection. We developed an in vitro model using polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model using pIgR−/− mice. Secretory IgA targeting the extra-epithelial chlamydial antigen, the major outer membrane protein, significantly reduced infection in vitro by 24% and in vivo by 44%. Conversely, pIgR-mediated delivery of IgA targeting the intra-epithelial inclusion membrane protein A bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intra-epithelial IgA targeting the secreted protease Chlamydia protease-like activity factor also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra-epithelial, but not intra-epithelial, chlamydial antigens for protection against a genital tract infection. PMID:24827556

  2. Friend or foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer

    PubMed Central

    Chen, Shaohua; Zhang, Daohai

    2015-01-01

    The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer. PMID:25709888

  3. Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4)).

    PubMed

    Norimatsu, Yohei; Moran, Aurelia R; MacDonald, Kelvin D

    2012-09-28

    The goal of this study was to determine the mechanism of lubiprostone activation of epithelial chloride transport. Lubiprostone is a bicyclic fatty acid approved for the treatment of constipation [1]. There is uncertainty, however, as to how lubiprostone increases epithelial chloride transport. Direct stimulation of ClC-2 and CFTR chloride channels as well as stimulation of these channels via the EP(4) receptor has been described [2-5]. To better define this mechanism, two-electrode voltage clamp was used to assay Xenopus oocytes expressing ClC-2, with or without co-expression of the EP(4) receptor or β adrenergic receptor (βAR), for changes in conductance elicited by lubiprostone. Oocytes co-expressing CFTR and either βAR or the EP(4) receptor were also studied. In oocytes co-expressing ClC-2 and βAR conductance was stimulated by hyperpolarization and acidic pH (pH = 6), but there was no response to the β adrenergic agonist, isoproterenol. Oocytes expressing ClC-2 only or co-expressing ClC-2 and EP(4) did not respond to the presence of 0.1, 1, or 10 μM lubiprostone in the superperfusate. Oocytes co-expressing CFTR and βAR did not respond to hyperpolarization, acidic pH, or 1 μM lubiprostone. However, conductance was elevated by isoproterenol and inhibited by CFTR(inh)172. Co-expression of CFTR and EP(4) resulted in lubiprostone-stimulated conductance, which was also sensitive to CFTR(inh)172. The EC(50) for lubiprostone mediated CFTR activation was ~10 nM. These results demonstrate no direct action of lubiprostone on either ClC-2 or CFTR channels expressed in oocytes. However, the results confirm that CFTR can be activated by lubiprostone via the EP(4) receptor in oocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. The enteric nervous system modulates mammalian duodenal mucosal bicarbonate secretion.

    PubMed

    Hogan, D L; Yao, B; Steinbach, J H; Isenberg, J I

    1993-08-01

    Interaction of the enteric nerves in regulating mammalian duodenal mucosal bicarbonate secretion is not well understood. The purpose of the present experiments was to evaluate the role of the enteric nervous system on bicarbonate secretion from rabbit duodenal mucosa in vitro. Proximal duodenum from male New Zealand White rabbits was stripped of seromuscular layers, mounted in Ussing chambers, and studied under short-circuited conditions. Effects of electrical field stimulation, vasoactive intestinal polypeptide (VIP), carbachol, prostaglandin E2 (PGE2), dibutyryl-cyclic adenosine monophosphate (db-cAMP), and the neurotoxin tetrodotoxin (TTX) and muscarinic blockade by atropine were studied. Electrical field stimulation significantly (P < 0.01) stimulated bicarbonate secretion, short-circuit current (Isc), and electrical potential difference (PD) that was sensitive to both TTX and atropine. VIP-stimulated bicarbonate secretion was significantly inhibited by TTX (-73%), yet Isc and PD remained unchanged. Atropine decreased VIP-induced bicarbonate secretion (-69%) and Isc (-43%). Carbachol-stimulated bicarbonate secretion, Isc, and PD were abolished by atropine, whereas TTX was without affect. Neither TTX nor atropine had a significant effect on PGE2 or db-cAMP-stimulated bicarbonate secretion. These results suggest that (1) enteric nerve stimulation activates an acetylcholine receptor that in turn stimulates duodenal epithelial bicarbonate secretion; (2) VIP stimulates bicarbonate secretion, in large part, via the enteric nervous system; and (3) PGE2 and cAMP stimulate bicarbonate secretion independent of the enteric nervous system.

  5. Computational modeling of epithelial fluid and ion transport in the parotid duct after transfection of human aquaporin-1

    PubMed Central

    Chiorini, John A; Sneyd, James; Suresh, Vinod

    2017-01-01

    Previous studies have shown that localized delivery of the aquaporin-1 (AQP1) gene to the parotid duct can restore saliva flow in minipigs following irradiation-induced salivary hypofunction. The resulting flow rate and electrochemistry of secreted saliva contradicts current understanding of ductal fluid transport. We hypothesized that changes in expression of ion transport proteins have occurred following AQP1 transfection. We use a mathematical model of ion and fluid transport across the parotid duct epithelial cells to predict the expression profile of ion transporters that are consistent with the experimental measurements of saliva composition and secretion rates. Using a baseline set of parameters, the model reproduces the data for the irradiated, non-AQP1-transfected case. We propose three scenarios which may have occurred after transfection, which differ in the location of the AQP1 gene. The first scenario places AQP1 within nonsecretory cells, and requires that epithelial sodium channel (ENaC) expression is greatly reduced (1.3% of baseline), and ductal bicarbonate concentration is increased from 40.6 to 137.0 mM, to drive water secretion into the duct. The second scenario introduces the AQP1 gene into all ductal cells. The final scenario has AQP1 primarily in the proximal duct cells which secrete water under baseline conditions. We find the change in the remaining cells includes a 95.8% reduction in ENaC expression, enabling us to reproduce all experimental ionic concentrations within 9 mM. These findings provide a mechanistic basis for the observations and will guide the further development of gene transfer therapy for salivary hypofunction. NEW & NOTEWORTHY Following transfection of aquaporin into the parotid ducts of minipigs with salivary hypofunction, the resulting increase in salivary flow rates contradicts current understanding of ductal fluid transport. We show that the change in saliva electrochemistry and flow rate can be explained by changes in expression of ion transporters in the ductal cell membranes, using a mathematical model replicating a single parotid duct. PMID:27932503

  6. Computational modeling of epithelial fluid and ion transport in the parotid duct after transfection of human aquaporin-1.

    PubMed

    Fong, Shelley; Chiorini, John A; Sneyd, James; Suresh, Vinod

    2017-02-01

    Previous studies have shown that localized delivery of the aquaporin-1 (AQP1) gene to the parotid duct can restore saliva flow in minipigs following irradiation-induced salivary hypofunction. The resulting flow rate and electrochemistry of secreted saliva contradicts current understanding of ductal fluid transport. We hypothesized that changes in expression of ion transport proteins have occurred following AQP1 transfection. We use a mathematical model of ion and fluid transport across the parotid duct epithelial cells to predict the expression profile of ion transporters that are consistent with the experimental measurements of saliva composition and secretion rates. Using a baseline set of parameters, the model reproduces the data for the irradiated, non-AQP1-transfected case. We propose three scenarios which may have occurred after transfection, which differ in the location of the AQP1 gene. The first scenario places AQP1 within nonsecretory cells, and requires that epithelial sodium channel (ENaC) expression is greatly reduced (1.3% of baseline), and ductal bicarbonate concentration is increased from 40.6 to 137.0 mM, to drive water secretion into the duct. The second scenario introduces the AQP1 gene into all ductal cells. The final scenario has AQP1 primarily in the proximal duct cells which secrete water under baseline conditions. We find the change in the remaining cells includes a 95.8% reduction in ENaC expression, enabling us to reproduce all experimental ionic concentrations within 9 mM. These findings provide a mechanistic basis for the observations and will guide the further development of gene transfer therapy for salivary hypofunction. Following transfection of aquaporin into the parotid ducts of minipigs with salivary hypofunction, the resulting increase in salivary flow rates contradicts current understanding of ductal fluid transport. We show that the change in saliva electrochemistry and flow rate can be explained by changes in expression of ion transporters in the ductal cell membranes, using a mathematical model replicating a single parotid duct. Copyright © 2017 the American Physiological Society.

  7. Regulation of K transport in a mathematical model of the cortical collecting tubule.

    PubMed

    Strieter, J; Weinstein, A M; Giebisch, G; Stephenson, J L

    1992-12-01

    The effect of luminal flow rate and peritubular pH on Na and K transport is investigated in a mathematical model of the rabbit cortical collecting tubule. The model is used to simulate a 0.4-cm segment of tubule comprised of principal cell, alpha- and beta-intercalated cells, and lateral interspace. Calculations produce luminal profiles of Na, K, Cl, HCO3, and phosphate, as well as of electrical potential and pH. Parameter sets are developed that permit representation of both unstimulated and deoxycorticosterone acetate-stimulated tubules. A series of simulations is performed in which initial luminal flow rate is varied over the range of values between 0.1 and 30 nl/min. A marked flow-dependent enhancement of Na reabsorption and K secretion is seen, especially at lower flows, while Cl and HCO3 transport remain relatively constant. In experimental studies, it has been observed that metabolic alkalosis stimulates and metabolic acidosis inhibits K secretion, while leaving Na transport relatively unaffected [B. A. Stanton and G. Giebisch. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F544-F551, 1982; K. Tabei, S. Muto, Y. Ando, Y. Sakairi, and Y. Asano. J. Am. Soc. Nephrol. 1: 693, 1990; and K. Tabei, S. Muto, H. Furuya, and Y. Asano. J. Am. Soc. Nephrol. 2: 752, 1991]. Model calculations indicate that, when ion permeabilities are fixed and not dependent on pH, the impact of peritubular HCO3 on K secretion cannot be simulated. When junctional Cl permeability decreases with increasing interspace pH (E. M. Wright and J. M. Diamond. Biochim. Biophys. Acta 163: 57-74, 1968) in the model, there is a marked stimulation of K secretion with alkalosis and inhibition with acidosis. Furthermore, inclusion of a pH-dependent apical Na permeability [L. G. Palmer and G. Frindt. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333-F339, 1987] that increases with increasing principal cell pH significantly reduces the change in Na+ reabsorption seen with the pH-dependent junctional Cl permeability alone. In these calculations, a pH-dependent apical K permeability [W. Wang, A. Schwab, and G. Giebisch. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F494-F502, 1990] that increases with increasing principal cell pH shows relatively little impact on K secretion.

  8. TLR7/TLR8 Activation Restores Defective Cytokine Secretion by Myeloid Dendritic Cells but Not by Plasmacytoid Dendritic Cells in HIV-Infected Pregnant Women and Newborns

    PubMed Central

    Cardoso, Elaine Cristina; Pereira, Nátalli Zanete; Mitsunari, Gabrielle Eimi; Oliveira, Luanda Mara da Silva; Ruocco, Rosa Maria S. A.; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo; da Silva Duarte, Alberto José; Sato, Maria Notomi

    2013-01-01

    Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway could function as an adjuvant to improve maternal-neonatal innate immunity. PMID:23826189

  9. TLR7/TLR8 Activation Restores Defective Cytokine Secretion by Myeloid Dendritic Cells but Not by Plasmacytoid Dendritic Cells in HIV-Infected Pregnant Women and Newborns.

    PubMed

    Cardoso, Elaine Cristina; Pereira, Nátalli Zanete; Mitsunari, Gabrielle Eimi; Oliveira, Luanda Mara da Silva; Ruocco, Rosa Maria S A; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo; da Silva Duarte, Alberto José; Sato, Maria Notomi

    2013-01-01

    Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway could function as an adjuvant to improve maternal-neonatal innate immunity.

  10. Inflammation in dry eye.

    PubMed

    Stern, Michael E; Pflugfelder, Stephen C

    2004-04-01

    Dry eye is a condition of altered tear composition that results from a diseased or dysfunctional lacrimal functional unit. Evidence suggests that inflammation causes structural alterations and/or functional paralysis of the tear-secreting glands. Changes in tear composition resulting from lacrimal dysfunction, increased evaporation and/or poor clearance have pro-inflammatory effects on the ocular surface. This inflammation is responsible in part for the irritation symptoms, ocular surface epithelial disease, and altered corneal epithelial barrier function in dry eye. Anti-inflammatory therapies for dry eye target one or more of the inflammatory mediators/pathways that have been identified in dry eye.

  11. Unicuspid and bicuspid tooth crown formation in squamates.

    PubMed

    Handrigan, Gregory R; Richman, Joy M

    2011-12-15

    The molecular and developmental factors that regulate tooth morphogenesis in nonmammalian species, such as snakes and lizards, have received relatively little attention compared to mammals. Here we describe the development of unicuspid and bicuspid teeth in squamate species. The simple, cone-shaped tooth crown of the bearded dragon and ball python is established at cap stage and fixed in shape by the differentiation of cells and the secretion of dental matrices. Enamel production, as demonstrated by amelogenin expression, occurs relatively earlier in squamate teeth than in mouse molars. We suggest that the early differentiation in squamate unicuspid teeth at cap stage correlates with a more rudimentary tooth crown shape. The leopard gecko can form a bicuspid tooth crown despite the early onset of differentiation. Cusp formation in the gecko does not occur by the folding of the inner enamel epithelium, as in the mouse molar, but by the differential secretion of enamel. Ameloblasts forming the enamel epithelial bulge, a central swelling of cells in the inner enamel epithelium, secrete amelogenin at cap stage, but cease to do so by bell stage. Meanwhile, other ameloblasts in the inner enamel epithelium continue to secrete enamel, forming cusp tips on either side of the bulge. Bulge cells specifically express the gene Bmp2, which we suggest serves as a pro-differentiation signal for cells of the gecko enamel organ. In this regard, the enamel epithelial bulge of the gecko may be more functionally analogous to the secondary enamel knot of mammals than the primary enamel knot. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  12. Stimulation of secretion by the T84 colonic epithelial cell line with dietary flavonols.

    PubMed

    Nguyen, T D; Canada, A T; Heintz, G G; Gettys, T W; Cohn, J A

    1991-06-15

    Flavonols are dietary compounds widely distributed in plants and characterized by a 2-phenyl-benzo(alpha)pyrane nucleus possessing hydroxyl and ketone groups at positions 3 and 4, respectively. Kaempferol, quercetin, and myricetin are flavonols that are further mono-, di-, or trihydroxylated on the phenyl ring, respectively. To test whether these ingested flavonols might exert a direct secretory effect on intestinal epithelial cells, monolayers of the T84 colonocyte cell line were mounted in Ussing chambers and examined for ion transport response. Twenty minutes after addition of 100 microM quercetin to either the serosal or mucosal side, the short-circuit current change was maximal at 16.6 microA/cm2. Kaempferol was less potent than quercetin, while myricetin and glycosylated quercetin (rutin) did not induce secretion. The secretion induced by quercetin did not seem to be mediated by the reactive oxygen species generated by quercetin through auto-oxidation and/or redox cycling (superoxide, hydrogen peroxide, and the hydroxyl radical) because it was neither enhanced by iron, nor inhibited by desferroxamine B or catalase (alone or in combination with superoxide dismutase). Like vasoactive intestinal peptide, quercetin induced a secretory response that was inhibited by barium chloride and bumetanide, and which exhibited synergism with carbachol. Quercetin also stimulated a modest increase in intracellular cAMP levels and the phosphorylation of endogenous protein substrates for cAMP-dependent protein kinase. Thus, quercetin is a potent stimulus of colonocyte secretion that resembles secretagogues which act via a cAMP-mediated signaling pathway.

  13. Nucleoside-Diphosphate-Kinase of P. gingivalis is Secreted from Epithelial Cells In the Absence of a Leader Sequence Through a Pannexin-1 Interactome

    PubMed Central

    Atanasova, Kalina; Lee, Jungnam; Roberts, JoAnn; Lee, Kyulim; Ojcius, David M; Yilmaz, Özlem

    2016-01-01

    Nucleoside-diphosphate-kinases (NDKs) are leaderless, multifunctional enzymes. The mode(s) of NDK secretion is currently undefined, while extracellular translocation of bacterial NDKs is critical for avoidance of host pathogen clearance by opportunistic pathogens such as Porphyromonas gingivalis. P. gingivalis-NDK during infection inhibits extracellular-ATP (eATP)/P2X7-receptor mediated cell death in gingival epithelial cells (GECs) via eATP hydrolysis. Furthermore, depletion of pannexin-1-hemichannel (PNX1) coupled with P2X7-receptor blocks the infection-induced eATP release in GECs, and P. gingivalis-NDK impacts this pathway. Ultrastructural and confocal microscopy of P. gingivalis-co-cultured GECs or green-fluorescent-protein (GFP)-P. gingivalis-NDK transfected GECs revealed a perinuclear/cytoplasmic localization of NDK. eATP stimulation induced NDK recruitment to the cell periphery. Depletion of PNX1 by siRNA or inhibition by probenecid resulted in significant blocking of extracellular NDK activity and secretion using ATPase and ELISA assays. Co-immunoprecipitation-coupled Mass-spectrometry method revealed association of P. gingivalis-NDK to the myosin-9 motor molecule. Interestingly, inhibition of myosin-9, actin, and lipid-rafts, shown to be involved in PNX1-hemichannel function, resulted in marked intracellular accumulation of NDK and decreased NDK secretion from infected GECs. These results elucidate for the first time PNX1-hemichannels as potentially main extracellular translocation pathway for NDKs from an intracellular pathogen, suggesting that PNX1-hemichannels may represent a therapeutic target for chronic opportunistic infections. PMID:27883084

  14. Supplemental invasion of Salmonella from the perspective of Salmonella enterica serovars Kentucky and Typhimurium

    USDA-ARS?s Scientific Manuscript database

    Background: Critical to the development of Salmonellosis in humans is the interaction of the bacterium with the epithelial lining of the gastrointestinal tract. Traditional scientific reasoning held type III secretion system (T3SS) as the virulence factor responsible for bacterial invasion. In this ...

  15. An in vitro evaluation of various biomaterials for the development of a tissue-engineered lacrimal gland

    NASA Astrophysics Data System (ADS)

    Selvam, Shivaram

    The most common cause of ocular morbidity in developed countries is dry eye, many cases of which are due to lacrimal insufficiency. It has been established that lacrimal insufficiency results from processes caused by both immune-related and non-immune related events such as Sjogren's syndrome, Stevens-Johnson syndrome, chemical and thermal injuries and ocular cicatricial pemphigoid. Patients with these conditions would benefit from repair of their damaged lacrimal tissue by the creation of a replacement for the lacrimal gland. The new field of tissue engineering built on the interface between principles and methods of the life sciences with those of engineering to develop biocompatible materials has created the possibility for repairing or replacing damaged tissues. This thesis explores the use of tissue engineering principles for the development of a tissue-engineered lacrimal gland. This thesis also contributes to the development of a novel model for addressing lacrimal gland physiology and epithelial fluid transport. The first part of the research work focused on the evaluation of morphological and physiological properties of purified lacrimal gland acinar cells (pLGACs) cultured on various biopolymers: silicone, collagen I, poly-D,L-lactide-co-glycolide (PLGA; 85:15 and 50:50), and poly-L-lactic acid (PLLA) in the presence and absence of an extracellular matrix, MatrigelRTM. Results indicated that PLLA demonstrated the best support expression of acinar cell-like morphology. The second part demonstrated the ex vivo reconstitution of an electrophysiologically functional lacrimal gland tissue on porous polyester membrane scaffolds. Results showed that pLGACs were capable of establishing continuous epithelial monolayers that generate active ionic fluxes consistent with current models for Na +-dependent Cl-- secretion. The third part outlined the fabrication of porous PLLA membranes, the optimal biomaterial for culturing lacrimal epithelial cells. Microporous PLLA-Polyethylene glycol (PEG) blend membranes (mpPLLAbm) with interconnected pores were prepared by the water extraction of PEG from solution cast blend membranes using the solvent-cast/particulate leaching technique. Diffusion experiments on mpPLLAbm (57.1/42.9 wt%) were performed to demonstrate that the membrane was permeable to glucose, L-tryptophan, and dextran.

  16. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa.

    PubMed

    Karaki, Shin-Ichiro; Ishikawa, Junji; Tomizawa, Yuka; Kuwahara, Atsukazu

    2016-05-01

    ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier functions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Probiotic lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans.

    PubMed

    Wagner, R Doug; Johnson, Shemedia J

    2012-06-20

    Vaginal epithelial cells have receptors, signal transduction mechanisms, and cytokine secretion capabilities to recruit host defenses against Candida albicans infections. This research evaluates how probiotic lactobacilli affect the defensive epithelial response. This study used quantitative reverse transcription-polymerase chain reaction assay (qRT-PCR), flow cytometry, and a multiplex immunoassay to observe changes in the regulation of gene expression related to cytokine responses in the VK2 (E6/E7) vaginal epithelial cell line treated with 17β-estradiol, exposed to probiotic Lactobacillus rhamnosus GR-1® and Lactobacillus reuteri RC-14® and challenged with C. albicans. Data were statistically evaluated by repeated measures analysis of variance and paired t-tests where appropriate. C. albicans induced mRNA expression of genes related to inflammatory cytokine responses associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signal transduction pathways. 17β-estradiol suppressed expression of interleukin-1α (IL-1α), IL-6, IL-8, and tumor necrosis factor alpha (TNFα) mRNA. Probiotic lactobacilli suppressed C. albicans-induced nuclear factor-kappa B inhibitor kinase kinase alpha (Iκκα), Toll-like receptor-2 (TLR2), TLR6, IL-8, and TNFα, also suggesting inhibition of NF-κB signaling. The lactobacilli induced expression of IL-1α, and IL-1β mRNA, which was not inhibited by curcumin, suggesting that they induce an alternate inflammatory signal transduction pathway to NF-κB, such as the mitogen activated protein kinase and activator protein-1 (MAPK/AP-1) signal transduction pathway. Curcumin inhibited IL-13 secretion, suggesting that expression of this cytokine is mainly regulated by NF-κB signaling in VK2 cells. The results suggest that C. albicans infection induces pro-inflammatory responses in vaginal epithelial cells, and estrogen and lactobacilli suppress expression of NF-κB-related inflammatory genes. Probiotic lactobacilli may induce IL-1α and IL-1β expression by an alternate signal transduction pathway, such as MAPK/AP-1. Activation of alternate signaling mechanisms by lactobacilli to modify epithelial cell cytokine production may be a mechanism for probiotic modulation of morbidity in vulvovaginal candidiasis.

  18. Colleters in Rubiaceae from forest and savanna: the link between secretion and environment

    NASA Astrophysics Data System (ADS)

    Tresmondi, Fernanda; Canaveze, Yve; Guimarães, Elza; Machado, Silvia Rodrigues

    2017-04-01

    This study aims to investigate colleters' secretory function, on cellular level, in Rubiaceae species from contrasting environments looking to explore the association between secretion and environment. We collected samples from eight species of Rubiaceae growing in forest and savanna having standard-type colleters with diverse histochemistry (hydrophilic, lipophilic and mixed secretions) and processed for both conventional and cytochemical study under transmission electron microscopy (TEM). The standard colleters, although similar in morphology and anatomy, exhibited marked differences on cellular level, especially in the abundance and topology of Golgi bodies, endoplasmic reticulum and plastids when comparing forest and savanna species. These differences were clearly aligned with the chemical nature of the secretions they produce, with predominance of hydrophilic secretions in forest species and lipophilic or mixed secretions in savanna species. The combination of methods in electron microscopy revealed the sites of synthesis and intracellular compartmentation of substances, the mechanisms of their secretion from the protoplast and confirmed the involvement of the outer walls of the epithelial cells in the elimination of exudates to the gland surface. Our study suggests a potential environment-associated plasticity of the secretory cells of standard-type colleters in modulating their secretory function performance.

  19. A redox-based mechanism for induction of interleukin-1 production by nitric oxide in a human colonic epithelial cell line (HT29-Cl.16E).

    PubMed Central

    Vallette, G; Jarry, A; Branka, J E; Laboisse, C L

    1996-01-01

    We evaluated the effects of two NO donors, sodium nitroprusside (SNP) and 3-morpholino-sydnonimine (SIN-1), characterized by alternative redox states, i.e. nitrosonium ion (NO+) and nitric oxide (NO.) respectively, on intracellular interleukin-1 (IL-1) production, by a human colonic epithelial cell line (HT29-Cl.16E). SNP was able to induce intracellular IL-1 alpha production up to 10 h incubation, in a dose-dependent manner. Several experiments provide evidence that the NO+ redox form, and not the free radical NO., is implicated in the IL-1 alpha production: (i) SIN-1, devoid of any NO+ character, led to a very weak IL-1 production as compared with SNP; (ii) the reductive action of a thiol such as cysteine on NO+ led to a dose-dependent increase in NO, concentration, measured as NO2-/NO3- accumulation, and to large decrease in IL-1 production. Dibutyryl cGMP had no effect on IL-1 production, this finding supporting the concept that a cGMP-independent pathway is involved in the intracellular signalling of NO+. Together these results point out that NO, depending on its redox form, is able to modulate IL-1 production in cultured colonic epithelial cells. PMID:8546706

  20. A redox-based mechanism for induction of interleukin-1 production by nitric oxide in a human colonic epithelial cell line (HT29-Cl.16E).

    PubMed

    Vallette, G; Jarry, A; Branka, J E; Laboisse, C L

    1996-01-01

    We evaluated the effects of two NO donors, sodium nitroprusside (SNP) and 3-morpholino-sydnonimine (SIN-1), characterized by alternative redox states, i.e. nitrosonium ion (NO+) and nitric oxide (NO.) respectively, on intracellular interleukin-1 (IL-1) production, by a human colonic epithelial cell line (HT29-Cl.16E). SNP was able to induce intracellular IL-1 alpha production up to 10 h incubation, in a dose-dependent manner. Several experiments provide evidence that the NO+ redox form, and not the free radical NO., is implicated in the IL-1 alpha production: (i) SIN-1, devoid of any NO+ character, led to a very weak IL-1 production as compared with SNP; (ii) the reductive action of a thiol such as cysteine on NO+ led to a dose-dependent increase in NO, concentration, measured as NO2-/NO3- accumulation, and to large decrease in IL-1 production. Dibutyryl cGMP had no effect on IL-1 production, this finding supporting the concept that a cGMP-independent pathway is involved in the intracellular signalling of NO+. Together these results point out that NO, depending on its redox form, is able to modulate IL-1 production in cultured colonic epithelial cells.

  1. The Bimodal Lifestyle of Intracellular Salmonella in Epithelial Cells: Replication in the Cytosol Obscures Defects in Vacuolar Replication

    PubMed Central

    Steele-Mortimer, Olivia

    2012-01-01

    Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying intracellular pathogens. PMID:22719929

  2. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    PubMed

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. NOD1 is required for Helicobacter pylori induction of IL-33 responses in gastric epithelial cells.

    PubMed

    Tran, Le Son; Tran, Darren; De Paoli, Amanda; D'Costa, Kimberley; Creed, Sarah J; Ng, Garrett Z; Le, Lena; Sutton, Philip; Silke, J; Nachbur, U; Ferrero, Richard L

    2018-05-01

    Helicobacter pylori (H. pylori) causes chronic inflammation which is a key precursor to gastric carcinogenesis. It has been suggested that H. pylori may limit this immunopathology by inducing the production of interleukin 33 (IL-33) in gastric epithelial cells, thus promoting T helper 2 immune responses. The molecular mechanism underlying IL-33 production in response to H. pylori infection, however, remains unknown. In this study, we demonstrate that H. pylori activates signalling via the pathogen recognition molecule Nucleotide-Binding Oligomerisation Domain-Containing Protein 1 (NOD1) and its adaptor protein receptor-interacting serine-threonine Kinase 2, to promote production of both full-length and processed IL-33 in gastric epithelial cells. Furthermore, IL-33 responses were dependent on the actions of the H. pylori Type IV secretion system, required for activation of the NOD1 pathway, as well as on the Type IV secretion system effector protein, CagA. Importantly, Nod1 +/+ mice with chronic H. pylori infection exhibited significantly increased gastric IL-33 and splenic IL-13 responses, but decreased IFN-γ responses, when compared with Nod1 -/- animals. Collectively, our data identify NOD1 as an important regulator of mucosal IL-33 responses in H. pylori infection. We suggest that NOD1 may play a role in protection against excessive inflammation. © 2018 John Wiley & Sons Ltd.

  4. Acid and alkaline phosphatase localization in the digestive tract mucosa of the Hemisorubim platyrhynchos.

    PubMed

    Faccioli, Claudemir Kuhn; Chedid, Renata Alari; Mori, Ricardo Hideo; Amaral, Antônio Carlos do; Franceschini-Vicentini, Irene Bastos; Vicentini, Carlos Alberto

    2016-09-01

    This cytochemical study investigated the acid and alkaline phosphatase of the digestive tract of Hemisorubim platyrhynchos. Acid phosphatase was detected in the lining epithelium throughout the digestive tract, whereas alkaline phosphatase was only observed in the intestine. In the esophagus, an acid phosphatase reaction occurred in the apical cytoplasm of the epithelial cells and was related to epithelial protection and freeing of superficial cells for sloughing. Similar results were also observed in epithelial cells of gastric epithelium. In the gastric glands, acid phosphatase occurred in lysosomes of the oxynticopeptic cells acting in the macromolecule degradation for use as an energy source, whereas in the vesiculotubular system, its presence could be related to secretion processes. Furthermore, acid phosphatase in the intestine occurred in microvilli and lysosomes of the enterocytes and was correlated to absorption and intracellular digestion. However, no difference was reported among the regions of the intestine. However, alkaline phosphatase reaction revealed a large number of reaction dots in the anterior intestine, with the number decreasing toward the posterior intestine. This enzyme has been related to several functions, highlighting its role in the nutrient absorption primarily in the anterior intestine but also being essential in pH regulation because this is a carnivorous species with many gastric glands with secretions that could damage the intestine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    PubMed

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prevention of duodenal ileus reveals functional differences in the duodenal response to luminal hypertonicity in Sprague-Dawley and Dark Agouti rats.

    PubMed

    Sedin, J; Sjöblom, M; Nylander, O

    2014-03-01

    The mechanism by which the duodenum adjusts the luminal osmolality remains unclear. The aim was to compare the duodenal osmoregulation in response to different hyperosmolar solutions in Sprague-Dawley and Dark Agouti rats and to elucidate whether cyclooxygenase-2 inhibition affects these responses. The duodenum was perfused in situ with a 700-milliosmolar solution (NaCl alone, D-glucose ± NaCl, D-mannitol ± NaCl or orange juice), and the effects on the duodenal motility, mucosal permeability, luminal alkalinization, fluid flux and osmoregulation were assessed in anaesthetized rats. The change in net fluid flux and luminal osmolality, in response to a given hyperosmolar solution, was almost identical in control rats of both strains. In control rats, hypertonic D-glucose-NaCl induced fluid secretion only in the presence of phlorizin, an inhibitor of SGLT1. Cyclooxygenase-2 inhibition potentiated the hypertonicity-induced fluid secretion and increased the osmolality-adjusting capability in both strains, but the responses were greater in Dark Agouti rats. While cyclooxygenase-2-inhibited Dark Agouti rats responded to the hyperosmolar solutions with depression of motility and increased mucosal permeability, these effects were absent or smaller in the Sprague-Dawley strain. In contrast, orange juice induced the same duodenal responses in cyclooxygenase-2-inhibited Dark Agouti and Sprague-Dawley rats. The duodenum possesses the ability to absorb fluid despite a very high luminal osmolality. Inhibition of cyclooxygenase-2 markedly enhanced the capability of the duodenum to secrete fluid and to decrease luminal osmolality, irrespective of the hyperosmolar solution or the rat strain used, and revealed notable differences between the two strains with regard to their osmolality-adjusting capability. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Soluble Proteins Produced by Probiotic Bacteria Regulate Intestinal Epithelial Cell Survival and Growth

    PubMed Central

    YAN, FANG; CAO, HANWEI; COVER, TIMOTHY L.; WHITEHEAD, ROBERT; WASHINGTON, M. KAY; POLK, D. BRENT

    2011-01-01

    Background & Aims Increased inflammatory cytokine levels and intestinal epithelial cell apoptosis leading to disruption of epithelial integrity are major pathologic factors in inflammatory bowel diseases. The probiotic bacterium Lactobacillus rhamnosus GG (LGG) and factors recovered from LGG broth culture supernatant (LGG-s) prevent cytokine-induced apoptosis in human and mouse intestinal epithelial cells by regulating signaling pathways. Here, we purify and characterize 2 secreted LGG proteins that regulate intestinal epithelial cell antiapoptotic and proliferation responses. Methods LGG proteins were purified from LGG-s, analyzed, and used to generate polyclonal antibodies for immunodepletion of respective proteins from LGG-conditioned cell culture media (CM). Mouse colon epithelial cells and cultured colon explants were treated with purified proteins in the absence or presence of tumor necrosis factor (TNF). Akt activation, proliferation, tissue injury, apoptosis, and caspase-3 activation were determined. Results We purified 2 novel proteins, p75 (75 kilodaltons) and p40 (40 kilodaltons), from LGG-s. Each of these purified protein preparations activated Akt, inhibited cytokine-induced epithelial cell apoptosis, and promoted cell growth in human and mouse colon epithelial cells and cultured mouse colon explants. TNF-induced colon epithelial damage was significantly reduced by p75 and p40. Immunodepletion of p75 and p40 from LGG-CM reversed LGG-CM activation of Akt and its inhibitory effects on cytokine-induced apoptosis and loss of intestinal epithelial cells. Conclusions p75 and p40 are the first probiotic bacterial proteins demonstrated to promote intestinal epithelial homeostasis through specific signaling pathways. These findings suggest that probiotic bacterial components may be useful for preventing cytokine-mediated gastrointestinal diseases. PMID:17258729

  8. Quantifying the effects of altering ambient humidity on ionic composition of vocal fold surface fluid.

    PubMed

    Sivasankar, M Preeti; Carroll, Thomas L; Kosinski, Aaron M; Rosen, Clark A

    2013-07-01

    Vocal fold surface fluid (VFSF) is important in hydration and defense of underlying epithelial cells. The objective of this study was to quantify changes in the ionic composition of VFSF after altering the humidity of inhaled air. We tested the hypothesis that low humidity exposure would increase the concentration of VFSF sodium (Na(+)) and chloride (Cl(-)) ions but that high humidity exposure would decrease the concentration of VFSF Na(+) and Cl(-) ions as compared to the low humidity challenge. Prospective design. Eighteen healthy adults participated in this study. VFSF was collected from each subject at baseline and following exposure to low humidity and high humidity environments. VFSF Na(+) concentration was assessed using inductively coupled plasma mass spectrometry. VFSF Cl(-) concentration was measured with indirect potentiometry. All analyses were completed by personnel blinded to the hypothesis being tested. The low humidity environment increased Na(+) concentration in the majority of the subjects. Data for changes in Cl(-) concentrations were variable. Overall the data did not reach statistical significance (P > .05). Subjective impressions suggested that VFSF collection was more difficult in low humidity as compared to the high humidity and baseline conditions. This study is the first attempt to measure the ionic concentration of VFSF. The results from the current study have important implications for future programmatic research quantifying the effects of pollutants and laryngopharyngeal reflux on VFSF composition, epithelial hydration, and vocal fold defense. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Protein Secretion Is Required for Pregnancy-Associated Plasma Protein-A to Promote Lung Cancer Growth In Vivo

    PubMed Central

    Pan, Hong; Hanada, Sayaka; Zhao, Jun; Mao, Li; Ma, Mark Zhi-Qing

    2012-01-01

    Pregnancy-associated plasma protein-A (PAPPA) has been reported to regulate the activity of insulin-like growth factor (IGF) signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs) thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE) tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression. PMID:23152806

  10. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney-specific isoform of WNK1 and prevents hypertension.

    PubMed

    Hadchouel, Juliette; Soukaseum, Christelle; Büsst, Cara; Zhou, Xiao-ou; Baudrie, Véronique; Zürrer, Tany; Cambillau, Michelle; Elghozi, Jean-Luc; Lifton, Richard P; Loffing, Johannes; Jeunemaitre, Xavier

    2010-10-19

    Mutations in WNK1 and WNK4 lead to familial hyperkalemic hypertension (FHHt). Because FHHt associates net positive Na(+) balance together with K(+) and H(+) renal retention, the identification of WNK1 and WNK4 led to a new paradigm to explain how aldosterone can promote either Na(+) reabsorption or K(+) secretion in a hypovolemic or hyperkalemic state, respectively. WNK1 gives rise to L-WNK1, an ubiquitous kinase, and KS-WNK1, a kinase-defective isoform expressed in the distal convoluted tubule. By inactivating KS-WNK1 in mice, we show here that this isoform is an important regulator of sodium transport. KS-WNK1(-/-) mice display an increased activity of the Na-Cl cotransporter NCC, expressed specifically in the distal convoluted tubule, where it participates in the fine tuning of sodium reabsorption. Moreover, the expression of the ROMK and BKCa potassium channels was modified in KS-WNK1(-/-) mice, indicating that KS-WNK1 is also a regulator of potassium transport in the distal nephron. Finally, we provide an alternative model for FHHt. Previous studies suggested that the activation of NCC plays a central role in the development of hypertension and hyperkalemia. Even though the increase in NCC activity in KS-WNK1(-/-) mice was less pronounced than in mice overexpressing a mutant form of WNK4, our study suggests that the activation of Na-Cl cotransporter is not sufficient by itself to induce a hyperkalemic hypertension and that the deregulation of other channels, such as the Epithelial Na(+) channel (ENaC), is probably required.

  11. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts

    PubMed Central

    Iskandar, Anita R.; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    Organotypic 3D cultures of epithelial cells are grown at the air–liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. PMID:26085348

  12. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts.

    PubMed

    Iskandar, Anita R; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2015-09-01

    Organotypic 3D cultures of epithelial cells are grown at the air-liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.

  13. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila.

    PubMed

    Morelli, Elena; Ginefra, Pierpaolo; Mastrodonato, Valeria; Beznoussenko, Galina V; Rusten, Tor Erik; Bilder, David; Stenmark, Harald; Mironov, Alexandre A; Vaccari, Thomas

    2014-01-01

    How autophagic degradation is linked to endosomal trafficking routes is little known. Here we screened a collection of uncharacterized Drosophila mutants affecting membrane transport to identify new genes that also have a role in autophagy. We isolated a loss of function mutant in Snap29 (Synaptosomal-associated protein 29 kDa), the gene encoding the Drosophila homolog of the human protein SNAP29 and have characterized its function in vivo. Snap29 contains 2 soluble NSF attachment protein receptor (SNARE) domains and a asparagine-proline-phenylalanine (NPF motif) at its N terminus and rescue experiments indicate that both SNARE domains are required for function, whereas the NPF motif is in part dispensable. We find that Snap29 interacts with SNARE proteins, localizes to multiple trafficking organelles, and is required for protein trafficking and for proper Golgi apparatus morphology. Developing tissue lacking Snap29 displays distinctive epithelial architecture defects and accumulates large amounts of autophagosomes, highlighting a major role of Snap29 in autophagy and secretion. Mutants for autophagy genes do not display epithelial architecture or secretion defects, suggesting that the these alterations of the Snap29 mutant are unlikely to be caused by the impairment of autophagy. In contrast, we find evidence of elevated levels of hop-Stat92E (hopscotch-signal transducer and activator of transcription protein at 92E) ligand, receptor, and associated signaling, which might underlie the epithelial defects. In summary, our findings support a role of Snap29 at key steps of membrane trafficking, and predict that signaling defects may contribute to the pathogenesis of cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma (CEDNIK), a human congenital syndrome due to loss of Snap29.

  14. TNF-alpha sensitizes HT-29 colonic epithelial cells to intestinal lactobacilli.

    PubMed

    McCracken, Vance J; Chun, Taehoon; Baldeón, Manuel E; Ahrné, Siv; Molin, Göran; Mackie, Roderick I; Gaskins, H Rex

    2002-09-01

    The ability of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) to influence epithelial interleukin (IL)-8 responses to the intestinal bacterium Lactobacillus plantarum 299v was analyzed in the human HT-29 colonic epithelial cell line. In the absence of TNF-alpha, IL-8 mRNA expression was not detectable by Northern blot analysis in HT-29 cells alone or in HT-29 cells co-cultured with L. plantarum 299v. However, TNF-alpha induced IL-8 mRNA expression, and co-culture of TNF-alpha-treated HT-29 cells with L. plantarum 299v significantly increased IL-8 mRNA expression above levels induced by TNF-alpha alone in an adhesion-dependent manner. The increase in IL-8 mRNA expression was not observed in TNF-alpha-treated HT-29/L. plantarum 299v co-cultures using heat-killed lactobacilli or when L. plantarum adhesion was prevented using mannoside or a trans-well membrane. Paradoxically, IL-8 secretion was decreased in TNF-alpha-treated HT-29 cells with L. plantarum 299v relative to cells treated with TNF-alpha alone. TNF-alpha-mediated responsiveness to L. plantarum 299v was further investigated by analyzing expression of a coreceptor for bacterial cell wall products CD14. HT-29 cells expressed CD14 mRNA and cell-surface CD14; however, TNF-alpha did not alter CD14 mRNA or cell-surface expression, and blockade of CD14 with monoclonal antibody MY4 did not alter the IL-8 response to L. plantarum 299v in TNF-alpha-treated HT-29 cells. These results indicate that although TNF-alpha sensitizes HT-29 epithelial cells to intestinal lactobacilli, the bacteria exert a protective effect by downregulating IL-8 secretion.

  15. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model

    PubMed Central

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-01-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914

  16. Altered Regulation of Airway Epithelial Cell Chloride Channels in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Frizzell, Raymond A.; Rechkemmer, Gerhard; Shoemaker, Richard L.

    1986-08-01

    In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that β -adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis (CF). However, when membrane patches were excised from CF cells into media containing sufficient free calcium (approximately 180 nanomolar), chloride channels were activated. The chloride channels of CF cells were similar to those of normal cells as judged by their current-voltage relations, ion selectivity, and kinetic behavior. These findings demonstrate the presence of chloride channels in the apical membranes of CF airway cells. Their regulation by calcium appears to be intact, but cyclic adenosine monophosphate (cAMP)-dependent control of their activity is defective.

  17. In Vitro Model for Predicting the Protective Effect of Ultraviolet-Blocking Contact Lens in Human Corneal Epithelial Cells.

    PubMed

    Abengózar-Vela, Antonio; Arroyo, Cristina; Reinoso, Roberto; Enríquez-de-Salamanca, Amalia; Corell, Alfredo; González-García, María Jesús

    2015-01-01

    To develop an in vitro method to determine the protective effect of UV-blocking contact lenses (CLs) in human corneal epithelial (HCE) cells exposed to UV-B radiation. SV-40-transformed HCE cells were covered with non-UV-blocking CL, UV-blocking CL or not covered, and exposed to UV-B radiation. As control, HCE cells were covered with both types of CLs or not covered, but not exposed to UV-B radiation. Cell viability at 24, 48 and 72 h, after UV-B exposure and removing CLs, was determined by alamarBlue(®) assay. Percentage of live, dead and apoptotic cells was also assessed by flow cytometry after 24 h of UV-B exposure. Intracellular reactive oxygen species (ROS) production after 1 h of exposure was assessed using the dye H(2)DCF-DA. Cell viability significantly decreased, apoptotic cells and intracellular ROS production significantly increased when UVB-exposed cells were covered with non-UV-blocking CL or not covered compared to non-irradiated cells. When cells were covered with UV-blocking CL, cell viability significantly increased and apoptotic cells and intracellular ROS production did not increase compared to exposed cells. UV-B radiation induces cell death by apoptosis, increases ROS production and decreases viable cells. UV-blocking CL is able to avoid these effects increasing cell viability and protecting HCE cells from apoptosis and ROS production induced by UV-B radiation. This in vitro model is an alternative to in vivo methods to determine the protective effect of UV-blocking ophthalmic biomaterials because it is a quicker, cheaper and reliable model that avoids the use of animals.

  18. General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels.

    PubMed

    Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard

    2004-03-01

    1. Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl(-) channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl(-) channel activity of wild-type CFTR and delF508-CFTR mutant. 2. The effects of n-alkanols like octanol on CFTR activity were measured by iodide ((125)I) efflux and patch-clamp techniques on three distinct cellular models: (1). CFTR-expressing Chinese hamster ovary cells, (2). human airway Calu-3 epithelial cells and (3). human airway JME/CF15 epithelial cells which express the delF508-CFTR mutant. 3. Our data show for the first time that n-alkanols activate both wild-type CFTR and delF508-CFTR mutant. Octanol stimulated (125)I efflux in a dose-dependent manner in CFTR-expressing cells (wild-type and delF508) but not in cell lines lacking CFTR. (125)I efflux and Cl(-) currents induced by octanol were blocked by glibenclamide but insensitive to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, as expected for a CFTR Cl(-) current. 4. CFTR activation by octanol was neither due to cell-to-cell uncoupling properties of octanol nor to an intracellular cAMP increase. CFTR activation by octanol requires phosphorylation by protein kinase-A (PKA) since it was prevented by H-89, a PKA inhibitor. 5. n-Alkanols chain length was an important determinant for channel activation, with rank order of potencies: 1-heptanol<1-octanol<2-octanol<1-decanol. Our findings may be of valuable interest for developing novel therapeutic strategies for CF.

  19. Effect of hemin, baicalein and heme oxygenase-1 (HO-1) enzyme activity inhibitors on Cd-induced accumulation of HO-1, HSPs and aggresome-like structures in Xenopus kidney epithelial cells.

    PubMed

    Campbell, James H; Heikkila, John J

    2018-04-23

    Cadmium is a highly toxic environmental pollutant that can cause many adverse effects including cancer, neurological disease and kidney damage. Aquatic amphibians are particularly susceptible to this toxicant as it was shown to cause developmental abnormalities and genotoxic effects. In mammalian cells, the accumulation of heme oxygenase-1 (HO-1), which catalyzes the breakdown of heme into CO, free iron and biliverdin, was reported to protect cells against potentially lethal concentrations of CdCl 2 . In the present study, CdCl 2 treatment of A6 kidney epithelial cells, derived from the frog, Xenopus laevis, induced the accumulation of HO-1, heat shock protein 70 (HSP70) and HSP30 as well as an increase in the production of aggregated protein and aggresome-like structures. Treatment of cells with inhibitors of HO-1 enzyme activity, tin protoporphyrin (SnPP) and zinc protoporphyrin (ZnPP), enhanced CdCl 2 -induced actin cytoskeletal disorganization and the accumulation of HO-1, HSP70, aggregated protein and aggresome-like structures. Treatment of cells with hemin and baicalein, which were previously shown to provide cytoprotection against various stresses, induced HO-1 accumulation in a concentration-dependent manner. Also, treatment of cells with hemin and baicalein suppressed CdCl 2 -induced actin dysregulation and the accumulation of aggregated protein and aggresome-like structures. This cytoprotective effect was inhibited by SnPP. These results suggest that HO-1-mediated protection against CdCl 2 toxicity includes the maintenance of actin cytoskeletal and microtubular structure and the suppression of aggregated protein and aggresome-like structures. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Integrin-Mediated Transforming Growth Factor-β Activation Regulates Homeostasis of the Pulmonary Epithelial-Mesenchymal Trophic Unit

    PubMed Central

    Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L.

    2006-01-01

    Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-β is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, αvβ6 and αvβ8, are responsible for almost all of the TGF-β activation in the EMTU. Both αvβ8 and αvβ6 contribute to fetal tracheal epithelial activation of TGF-β, whereas only αvβ8 contributes to fetal tracheal fibroblast activation of TGF-β. Interestingly, fetal tracheal epithelial αvβ8-mediated TGF-β activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in αvβ8-mediated activation of TGF-β. Autocrine αvβ8-mediated TGF-β activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-β within the EMTU. PMID:16877343

  1. Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit.

    PubMed

    Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L

    2006-08-01

    Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.

  2. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets

    PubMed Central

    Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  3. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM)-1) expression and neutrophil adhesion.

    PubMed Central

    Huang, G T; Eckmann, L; Savidge, T C; Kagnoff, M F

    1996-01-01

    The acute host response to gastrointestinal infection with invasive bacteria is characterized by an accumulation of neutrophils in the lamina propria, and neutrophil transmigration to the luminal side of the crypts. Intestinal epithelial cells play an important role in the recruitment of inflammatory cells to the site of infection through the secretion of chemokines. However, little is known regarding the expression, by epithelial cells, of molecules that are involved in interactions between the epithelium and neutrophils following bacterial invasion. We report herein that expression of ICAM-1 on human colon epithelial cell lines, and on human enterocytes in an in vivo model system, is upregulated following infection with invasive bacteria. Increased ICAM-1 expression in the early period (4-9 h) after infection appeared to result mainly from a direct interaction between invaded bacteria and host epithelial cells since it co-localized to cells invaded by bacteria, and the release of soluble factors by epithelial cells played only a minor role in mediating increased ICAM-1 expression. Furthermore, ICAM-1 was expressed on the apical side of polarized intestinal epithelial cells, and increased expression was accompanied by increased neutrophil adhesion to these cells. ICAM-1 expression by intestinal epithelial cells following infection with invasive bacteria may function to maintain neutrophils that have transmigrated through the epithelium in close contact with the intestinal epithelium, thereby reducing further invasion of the mucosa by invading pathogens. PMID:8755670

  4. A gastric acid secretion model.

    PubMed Central

    de Beus, A M; Fabry, T L; Lacker, H M

    1993-01-01

    A theory of gastric acid production and self-protection is formulated mathematically and examined for clinical and experimental correlations, implications, and predictions using analytic and numerical techniques. In our model, gastric acid secretion in the stomach, as represented by an archetypal gastron, consists of two chambers, circulatory and luminal, connected by two different regions of ion exchange. The capillary circulation of the gastric mucosa is arranged in arterial-venous arcades which pass from the gastric glands up to the surface epithelial lining of the lumen; therefore the upstream region of the capillary chamber communicates with oxyntic cells, while the downstream region communicates with epithelial cells. Both cell types abut the gastric lumen. Ion currents across the upstream region are calculated from a steady-state oxyntic cell model with active ion transport, while the downstream ion fluxes are (facilitated) diffusion driven or secondarily active. Water transport is considered iso-osmotic. The steady-state model is solved in closed form for low gastric lumen pH. A wide variety of previously performed static and dynamic experiments on ion and CO2 transport in the gastric lumen and gastric blood supply are for the first time correlated with each other for an (at least) semiquantitative test of current concepts of gastric acid secretion and for the purpose of model verification. Agreement with the data is reported with a few outstanding and instructive exceptions. Model predictions and implications are also discussed. Images FIGURE 1 PMID:8396457

  5. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Fei; Xu, Yuan; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3more » signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.« less

  6. Restoration of mutant bestrophin-1 expression, localisation and function in a polarised epithelial cell model.

    PubMed

    Uggenti, Carolina; Briant, Kit; Streit, Anne-Kathrin; Thomson, Steven; Koay, Yee Hui; Baines, Richard A; Swanton, Eileithyia; Manson, Forbes D

    2016-11-01

    Autosomal recessive bestrophinopathy (ARB) is a retinopathy caused by mutations in the bestrophin-1 protein, which is thought to function as a Ca 2+ -gated Cl - channel in the basolateral surface of the retinal pigment epithelium (RPE). Using a stably transfected polarised epithelial cell model, we show that four ARB mutant bestrophin-1 proteins were mislocalised and subjected to proteasomal degradation. In contrast to the wild-type bestrophin-1, each of the four mutant proteins also failed to conduct Cl - ions in transiently transfected cells as determined by whole-cell patch clamp. We demonstrate that a combination of two clinically approved drugs, bortezomib and 4-phenylbutyrate (4PBA), successfully restored the expression and localisation of all four ARB mutant bestrophin-1 proteins. Importantly, the Cl - conductance function of each of the mutant bestrophin-1 proteins was fully restored to that of wild-type bestrophin-1 by treatment of cells with 4PBA alone. The functional rescue achieved with 4PBA is significant because it suggests that this drug, which is already approved for long-term use in infants and adults, might represent a promising therapy for the treatment of ARB and other bestrophinopathies resulting from missense mutations in BEST1. © 2016. Published by The Company of Biologists Ltd.

  7. Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1α Stabilization during Pneumonia.

    PubMed

    Holden, Victoria I; Breen, Paul; Houle, Sébastien; Dozois, Charles M; Bachman, Michael A

    2016-09-13

    Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals iron from its host by secreting siderophores, small iron-chelating molecules. Classically, siderophores are thought to worsen infections by promoting bacterial growth. In this study, we determined that siderophore-secreting K. pneumoniae causes lung inflammation and bacterial dissemination to the bloodstream independently of bacterial growth. Furthermore, we determined that siderophore-secreting K. pneumoniae activates a host protein, hypoxia inducible factor (HIF)-1α, and requires it for siderophore-dependent bacterial dissemination. Although HIF-1α can protect against some infections, it appears to worsen infection with K. pneumoniae Together, these results indicate that bacterial siderophores directly alter the host response to pneumonia in addition to providing iron for bacterial growth. Therapies that disrupt production of siderophores could provide a two-pronged attack against K. pneumoniae infection by preventing bacterial growth and preventing bacterial dissemination to the blood. Copyright © 2016 Holden et al.

  8. Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis

    PubMed Central

    Hansmann, Jan; Winter, Dominic; Schramm, Guido; Erttmann, Klaus D.; Liebau, Eva

    2016-01-01

    The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S) products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx) and Trx-like protein (Trx-lp) were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite's mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa. PMID:27872753

  9. Molecular basis of potassium channels in pancreatic duct epithelial cells

    PubMed Central

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance. PMID:23962792

  10. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung.

    PubMed

    Abdullah, Mahdi; Goldmann, Torsten

    2012-11-20

    Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with surfactant protein-B in lamellar bodies of alveolar epithelial cells type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912.

  11. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro.

    PubMed

    Begley, Lesa; Monteleon, Christine; Shah, Rajal B; Macdonald, James W; Macoska, Jill A

    2005-12-01

    The direct relationship between the aging process and the incidence and prevalence of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) implies that certain risk factors associated with the development of both diseases increase with the aging process. In particular, both diseases share an overly proliferative phenotype, suggesting that mechanisms that normally act to suppress cellular proliferation are disrupted or rendered dysfunctional as a consequence of the aging process. We propose that one such mechanism involves changes in the prostate microenvironment, which 'evolves' during the aging process and disrupts paracrine interactions between epithelial and associated stromal fibroblasts. We show that stromal fibroblasts isolated from the prostates of men 63-81 years of age at the time of surgery express and secrete higher levels of the CXCL12 chemokine compared with those isolated from younger men, and stimulate CXCR4-mediated signaling pathways that induce cellular proliferation. These studies represent an important first step towards a mechanistic elucidation of the role of aging in the etiology of benign and malignant prostatic diseases.

  12. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer.

    PubMed

    Li, Xiaoduan; Wang, Xipeng

    2017-05-15

    Ovarian cancer (OC) is one of the three types of malignant tumors in the female reproductive system, and epithelial ovarian cancer (EOC) is its most typical form. Due to the asymptomatic nature of the early stages and resistance to chemotherapy, EOC has both a poor prognosis and a high fatality rate. Current treatments for OC are very limited, and the 5-years survival rate is approximately 30%. Exosomes, which are microvesicles ranging from approximately 30-100 nm in size that are secreted by living cells, can be produced from different cell types and detected in various body fluids. Cancer cells can secrete more exosomes than healthy cells, and more importantly, the content of cancer cell-derived exosomes is distinct. The exosomes shedding from tumor cells are considered to be involved in tumor progression and metastasis. As such, exosomes are expected to be potential tools for tumor diagnosis and treatment. In this review, we briefly present the emerging roles of exosomes in OC and summarize related articles about their roles as diagnostic or prognostic biomarkers and in the treatment and drug resistance of OC.

  13. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    PubMed

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  14. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG-6-Dependent Stem Cell Activation and Macrophage Switch.

    PubMed

    Di, Guohu; Du, Xianli; Qi, Xia; Zhao, Xiaowen; Duan, Haoyun; Li, Suxia; Xie, Lixin; Zhou, Qingjun

    2017-08-01

    To explore the role and mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in corneal epithelial wound healing in type 1 diabetic mice. Diabetic mice were treated with subconjunctival injections of BM-MSCs or recombinant tumor necrosis factor-α-stimulated gene/protein-6 (TSG-6). The corneal epithelial wound healing rate was examined by fluorescein staining. The mRNA and protein expression levels of TSG-6 were measured by quantitative RT-PCR and Western blot. The infiltrations of leukocytes and macrophages were analyzed by flow cytometry and immunofluoresence staining. The effect of TSG-6 was further evaluated in cultured limbal epithelial stem/progenitor cells, macrophages, and diabetic mice by short hairpin RNA (shRNA) knockdown. Local MSC transplantation significantly promoted diabetic corneal epithelial wound healing, accompanied by elevated corneal TSG-6 expression, increased corneal epithelial cell proliferation, and attenuated inflammatory response. Moreover, in cultured human limbal epithelial stem/progenitor cells, TSG-6 enhanced the colony-forming efficiency, stimulated mitogenic proliferation, and upregulated the expression level of ΔNp63. Furthermore, in diabetic mouse cornea and in vitro macrophage culture, TSG-6 alleviated leukocyte infiltration and promoted the polarization of recruited macrophages to anti-inflammatory M2 phenotypes with increased phagocytotic capacity. In addition, the promotion of epithelial stem/progenitor cell activation and macrophage polarization by MSC transplantation was largely abrogated by shRNA knockdown of TSG-6. This study provided the first evidence of TSG-6 secreted by MSCs promoting corneal epithelial wound healing in diabetic mice through activating corneal epithelial stem/progenitor cells and accelerating M2 macrophage polarization.

  15. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions.

    PubMed

    Park, Hongzoo; Lee, Dae-Sung; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Jang, Won Hee; Yea, Sung Su; Park, Won Sun; Lee, Chang-Min; Jung, Won-Kyo; Choi, Il-Whan

    2015-07-01

    Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.

  16. The FhaB/FhaC two-partner secretion system is involved in adhesion of Acinetobacter baumannii AbH12O-A2 strain

    PubMed Central

    Pérez, A.; Merino, M.; Rumbo-Feal, S.; Álvarez-Fraga, L.; Vallejo, J. A.; Beceiro, A.; Ohneck, E. J.; Mateos, J.; Fernández-Puente, P.; Actis, L. A.; Poza, M.; Bou, G.

    2017-01-01

    ABSTRACT Acinetobacter baumannii is a hospital-acquired pathogen that shows an extraordinary capacity to stay in the hospital environment. Adherence of the bacteria to eukaryotic cells or to abiotic surfaces is the first step for establishing an infection. The A. baumannii strain AbH12O-A2 showed an exceptional ability to adhere to A549 epithelial cells. The AbFhaB/FhaC 2-partner secretion (TPS) system involved in adhesion was discovered after the screening of the recently determined A. baumannii AbH12O-A2 strain genome (CP009534.1). The AbFhaB is a large exoprotein which transport to the bacterial surface is mediated by the AbFhaC protein. In the present study, the role of this TPS system in the AbH12O-A2 adherence phenotype was investigated. The functional inactivation of this 2-partner secretion system was addressed by analyzing the outer membrane vesicles (OMV) proteomic profile from the wild-type strain and its derivative mutant AbH12O-A2ΔfhaC demonstrating that AbFhaB is no longer detected in the absence of AbFhaC. Scanning electron microscopy (SEM) and adhesion experiments demonstrated that inactivation of the AbFhaB/FhaC system significantly decreases bacterial attachment to A549 alveolar epithelial cells. Moreover, it has been demonstrated that this 2-partner secretion system is involved in fibronectin-mediated adherence of the A. baumannii AbH12O-A2 isolate. Finally, we report that the AbFhaB/FhaC system is involved in virulence when tested using invertebrate and vertebrate hosts. These data suggest the potential role that this AbFhaB/FhaC secretion system could play in the pathobiology of A. baumannii. PMID:27858524

  17. The FhaB/FhaC two-partner secretion system is involved in adhesion of Acinetobacter baumannii AbH12O-A2 strain.

    PubMed

    Pérez, A; Merino, M; Rumbo-Feal, S; Álvarez-Fraga, L; Vallejo, J A; Beceiro, A; Ohneck, E J; Mateos, J; Fernández-Puente, P; Actis, L A; Poza, M; Bou, G

    2017-08-18

    Acinetobacter baumannii is a hospital-acquired pathogen that shows an extraordinary capacity to stay in the hospital environment. Adherence of the bacteria to eukaryotic cells or to abiotic surfaces is the first step for establishing an infection. The A. baumannii strain AbH12O-A2 showed an exceptional ability to adhere to A549 epithelial cells. The AbFhaB/FhaC 2-partner secretion (TPS) system involved in adhesion was discovered after the screening of the recently determined A. baumannii AbH12O-A2 strain genome (CP009534.1). The AbFhaB is a large exoprotein which transport to the bacterial surface is mediated by the AbFhaC protein. In the present study, the role of this TPS system in the AbH12O-A2 adherence phenotype was investigated. The functional inactivation of this 2-partner secretion system was addressed by analyzing the outer membrane vesicles (OMV) proteomic profile from the wild-type strain and its derivative mutant AbH12O-A2ΔfhaC demonstrating that AbFhaB is no longer detected in the absence of AbFhaC. Scanning electron microscopy (SEM) and adhesion experiments demonstrated that inactivation of the AbFhaB/FhaC system significantly decreases bacterial attachment to A549 alveolar epithelial cells. Moreover, it has been demonstrated that this 2-partner secretion system is involved in fibronectin-mediated adherence of the A. baumannii AbH12O-A2 isolate. Finally, we report that the AbFhaB/FhaC system is involved in virulence when tested using invertebrate and vertebrate hosts. These data suggest the potential role that this AbFhaB/FhaC secretion system could play in the pathobiology of A. baumannii.

  18. HK2 Proximal Tubule Epithelial Cells Synthesize and Secrete Plasma Proteins Predominantly Through the Apical Surface.

    PubMed

    Zhao, Ke-Wei; Murray, Elsa J Brochmann; Murray, Samuel S

    2017-04-01

    Renal proximal tubule epithelial cells (PTECs) are known to reabsorb salts and small plasma proteins filtered through Bowman's capsule. Following acute kidney injury, PTECs assume some characteristics of hepatocytes in producing various plasma proteins. We now demonstrate that even at a resting state, a PTEC cell line, HK2 expresses mRNAs for and synthesizes and secretes plasma proteins in a complex with complement C3, an α 2 -macroglobulin family chaperone, including albumin, transferrin, α 1 -antitrypsin, α 1 -antichymotrypsin, α 2 -HS-glycoprotein, ceruloplasmin, haptoglobin, C1-inhibitor, secreted phosphoprotein-24, and insulin-like growth factor-1. When grown on transwell inserts, HK2 cells predominantly secrete (∼90%) plasma proteins into the apical side and a smaller fraction into the basolateral side as determined by ELISA assays. When cultured in the presence of exogenous cytokines such as IL1β, IL6, TNFα, BMP2, or TGFβ1, HK2 cell mRNA expressions for plasma proteins were variably affected whereas basolateral secretions were elevated to or in excess of those of the apical level. In addition, HK2 cells produce proTGFβ1 with its intact N-terminal latency associated peptide and latent-TGF-β-binding proteins. The complex cannot be dissociated under conditions of SDS, heating, and electrophoresis. Moreover, HK2 cells maintain their ability to quickly uptake exogenously added serum proteins from the culture medium, as if they are recognized differently by the endocytic receptors. These results provide new insight into the hepatization of PTECs. In addition to their unique uptake of plasma proteins and salts from the filtrate, they are a source of urinary proteins under normal conditions as wells as in chronic and acute kidney diseases. J. Cell. Biochem. 118: 924-933, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Effect of azithromycin on the LPS-induced production and secretion of phospholipase A2 in lung cells.

    PubMed

    Kitsiouli, Eirini; Antoniou, Georgia; Gotzou, Helen; Karagiannopoulos, Michalis; Basagiannis, Dimitris; Christoforidis, Savvas; Nakos, George; Lekka, Marilena E

    2015-07-01

    Azithromycin is a member of macrolides, utilized in the treatment of infections. Independently, these antibiotics also possess anti-inflammatory and immunomodulatory properties. Phospholipase A2 isotypes, which are implicated in the pathophysiology of inflammatory lung disorders, are produced by alveolar macrophages and other lung cells during inflammatory response and can promote lung injury by destructing lung surfactant. The aim of the study was to investigate whether in lung cells azithromycin can inhibit secretory and cytosolic phospholipases A2, (sPLA2) and (cPLA2), respectively, which are induced by an inflammatory trigger. In this respect, we studied the lipopolysaccharide (LPS)-mediated production or secretion of sPLA2 and cPLA2 from A549 cells, a cancer bronchial epithelial cell line, and alveolar macrophages, isolated from bronchoalveolar lavage fluid of ARDS and control patients without cardiopulmonary disease or sepsis. Pre-treatment of cells with azithromycin caused a dose-dependent decrease in the LPS-induced sPLA2-IIA levels in A549 cells. This inhibition was rather due to reduced PLA2G2A mRNA expression and secretion of sPLA2-IIA protein levels, as observed by western blotting and indirect immunofluorescence by confocal microscopy, respectively, than to the inhibition of the enzymic activity per se. On the contrary, azithromycin had no effect on the LPS-induced production or secretion of sPLA2-IIA from alveolar macrophages. The levels of LPS-induced c-PLA2 were not significantly affected by azithromycin in either cell type. We conclude that azithromycin exerts anti-inflammatory properties on lung epithelial cells through the inhibition of both the expression and secretion of LPS-induced sPLA2-IIA, while it does not affect alveolar macrophages. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. cGMP inhibition of type 3 phosphodiesterase is the major mechanism by which C-type natriuretic peptide activates CFTR in the shark rectal gland

    PubMed Central

    De Jonge, Hugo R.; Tilly, Ben C.; Hogema, Boris M.; Pfau, Daniel J.; Kelley, Catherine A.; Kelley, Megan H.; Melita, August M.; Morris, Montana T.; Viola, Ryan M.

    2013-01-01

    The in vitro perfused rectal gland of the dogfish shark (Squalus acanthias) and filter-grown monolayers of primary cultures of shark rectal gland (SRG) epithelial cells were used to analyze the signal transduction pathway by which C-type natriuretic peptide (CNP) stimulates chloride secretion. CNP binds to natriuretic receptors in the basolateral membrane, elevates cellular cGMP, and opens cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in the apical membrane. CNP-provoked chloride secretion was completely inhibitable by the nonspecific protein kinase inhibitor staurosporine and the PKA inhibitor H89 but insensitive to H8, an inhibitor of type I and II isoforms of cGMP-dependent protein kinase (cGKI and cGKII). CNP-induced secretion could not be mimicked by nonhydrolyzable cGMP analogs added alone or in combination with the protein kinase C activator phorbolester, arguing against a role for cGK or for cGMP-induced PKC signaling. We failed to detect a dogfish ortholog of cGKII by molecular cloning and affinity chromatography. However, inhibitors of the cGMP-inhibitable isoform of phosphodiesterase (PDE3) including milrinone, amrinone, and cilostamide but not inhibitors of other PDE isoenzymes mimicked the effect of CNP on chloride secretion in perfused glands and monolayers. CNP raised cGMP and cAMP levels in the SRG epithelial cells. This rise in cAMP as well as the CNP and amrinone-provoked chloride secretion, but not the rise in cGMP, was almost completely blocked by the Gαi-coupled adenylyl cyclase inhibitor somatostatin, arguing against a role for cGMP cross-activation of PKA in CNP action. These data provide molecular, functional, and pharmacological evidence for a CNP/cGMP/PDE3/cAMP/PKA signaling cascade coupled to CFTR in the SRG. PMID:24259420

  1. Structural basis for KCNE3 modulation of potassium recycling in epithelia.

    PubMed

    Kroncke, Brett M; Van Horn, Wade D; Smith, Jarrod; Kang, CongBao; Welch, Richard C; Song, Yuanli; Nannemann, David P; Taylor, Keenan C; Sisco, Nicholas J; George, Alfred L; Meiler, Jens; Vanoye, Carlos G; Sanders, Charles R

    2016-09-01

    The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(-)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated "up" state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the "CF gender gap."

  2. Using omeprazole to link the components of the post-prandial alkaline tide in the spiny dogfish, Squalus acanthias.

    PubMed

    Wood, Chris M; Schultz, Aaron G; Munger, R Stephen; Walsh, Patrick J

    2009-03-01

    After a meal, dogfish exhibit a metabolic alkalosis in the bloodstream and a marked excretion of basic equivalents across the gills to the external seawater. We used the H(+), K(+)-ATPase pump inhibitor omeprazole to determine whether these post-prandial alkaline tide events were linked to secretion of H(+) (accompanied by Cl(-)) in the stomach. Sharks were fitted with indwelling stomach tubes for pretreatment with omeprazole (five doses of 5 mg omeprazole per kilogram over 48 h) or comparable volumes of vehicle (saline containing 2% DMSO) and for sampling of gastric chyme. Fish were then fed an involuntary meal by means of the stomach tube consisting of minced flatfish muscle (2% of body mass) suspended in saline (4% of body mass total volume). Omeprazole pre-treatment delayed the post-prandial acidification of the gastric chyme, slowed the rise in Cl(-) concentration of the chyme and altered the patterns of other ions, indicating inhibition of H(+) and accompanying Cl(-) secretion. Omeprazole also greatly attenuated the rise in arterial pH and bicarbonate concentrations and reduced the net excretion of basic equivalents to the water by 56% over 48 h. Arterial blood CO(2) pressure (Pa(CO(2))) and plasma ions were not substantially altered. These results indicate that elevated gastric H(+) secretion (as HCl) in the digestive process is the major cause of the systemic metabolic alkalosis and the accompanying rise in base excretion across the gills that constitute the alkaline tide in the dogfish.

  3. Amiloride-Sensitive and Amiloride-Insensitive Responses to NaCl + Acid Mixtures in Hamster Chorda Tympani Nerve

    PubMed Central

    Hettinger, Thomas P.; Savoy, Lawrence D.; Frank, Marion E.

    2012-01-01

    Component signaling in taste mixtures containing both beneficial and dangerous chemicals depends on peripheral processing. Unidirectional mixture suppression of chorda tympani (CT) nerve responses to sucrose by quinine and acid is documented for golden hamsters (Mesocricetus auratus). To investigate mixtures of NaCl and acids, we recorded multifiber responses to 50 mM NaCl, 1 and 3 mM citric acid and acetic acid, 250 μM citric acid, 20 mM acetic acid, and all binary combinations of each acid with NaCl (with and without 30 μM amiloride added). By blocking epithelial Na+ channels, amiloride treatment separated amiloride-sensitive NaCl-specific responses from amiloride-insensitive electrolyte-generalist responses, which encompass all of the CT response to the acids as well as responses to NaCl. Like CT sucrose responses, the amiloride-sensitive NaCl responses were suppressed by as much as 50% by citric acid (P = 0.001). The amiloride-insensitive electrolyte-generalist responses to NaCl + acid mixtures approximated the sum of NaCl and acid component responses. Thus, although NaCl-specific responses to NaCl were weakened in NaCl–acid mixtures, electrolyte-generalist responses to acid and NaCl, which tastes KCl-like, were transmitted undiminished in intensity to the central nervous system. The 2 distinct CT pathways are consistent with known rodent behavioral discriminations. PMID:22451526

  4. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  5. Physiology of bile secretion.

    PubMed

    Esteller, Alejandro

    2008-10-07

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bile-duct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.

  6. [Role of phosphorylation of MARCKS-PSD in the secretion of MUC5AC induced by cold temperatures in human airway epithelial cells].

    PubMed

    Li, Minchao; Perelman, Juliy M; Zhou, Xiangdong

    2012-05-01

    To construct phosphorylation sites domain (PSD) mutant of myristoylated alaninerich C kinase substrate (MARCKS) and explore the role of transient receptor potential melastatin 8 cation channels (TRPM8) and MARCKS in cold-induced synthesis and exocytosis of mucin (MUC) 5AC. Human placental cDNA was used as a template to amplify the full coding region of MARCKS cDNA by PCR. Ser159, Ser 163, Ser 167, Ser 170 in the PSD were mutated to aspartic acids by an overlap PCR method. The resultant PSD mutant cDNA and the wild-type MARCKS cDNA were each subcloned into a mammalian expression vector pcDNA3.0. Recombinant constructs were confirmed by restriction enzyme digestion analysis and DNA sequencing. In intervention experiments, cells were pretreated with the TRPM8 channel antagonist BCTC and transfected with MARCKS-PSD mutant cDNA, and thereafter cold stimulation was applied. The levels of MUC5AC were measured by immunofluorescence and ELISA to clarify the roles of TRPM8 and PSD mutant on the synthesis and secretion of MUC5AC induced by cold, respectively. Restriction enzyme digestion analysis and DNA sequencing revealed that the pcDNA3.0- MARCKS and pcDNA3.0-MARCKS-PSD mutants were successfully constructed. The levels of intracellular and secreted MUC5AC of cold treated group were significantly higher than those of control group (P<0.05). BCTC attenuated the cold-induced synthesis and secretion of MUC5AC when compared with cold treated group (P<0.05). Transfection of 16HBE cells with the MARCKS-PSD mutant cDNA resulted in significant inhibition of mucin secretion in response to cold, and significantly higher level of intracellular MUC5AC than that of control group (P<0.01), whereas transfection with the vector DNA or the wild-type MARCKS cDNA had no effect on the mucin synthesis and secretion in response to cold (P>0.05). TRPM8 and phosphorylation of MARCKS-PSD mediates the cold-induced exocytosis of MUC5AC by airway epithelial cells.

  7. Biochemical Testing of Potentially Hazardous Chemicals for Toxicity Using Mammalian Liver Cell Cultures.

    DTIC Science & Technology

    1992-04-09

    the culture medium. The HEPA-2 mouse cells are known to synthesize and to secrete albumin, alpha - fetoprotein , transferrin, ceruloplasmin and...Parker, C.L. and Kute, T.E. (1981). Immunoprecipitation assay of alpha - fetoprotein synthesis by cultured mouse hepatoma cells treated with estrogens and...Infection and Immunity 34:908-914. Rosebrock, J.A., C.L. Parker and T.E. Kute (1981). Immunoprecipitation assay of alpha - fetoprotein synthesis by cultured

  8. The ultrastructure of imaginal disc cells in primary cultures and during cell aggregation in continuous cell lines.

    PubMed

    Peel, D J; Johnson, S A; Milner, M J

    1990-01-01

    We have examined the ultrastructure of cellular vesicles in primary cultures of wing imaginal disc cells of Drosophila melanogaster. These cells maintain the apico-basal polarity characteristic of epithelial cells. The apical surfaces secrete extracellular material into the lumen of the vesicle from plasma membrane plaques at the tip of microvilli. During the course of one passage, cells from the established cell lines grow to confluence and then aggregate into discrete condensations joined by aligned bridges of cells. Cells in these aggregates are tightly packed, and there appears to be a loss of the epithelial polarity characteristic of the vesicle cells. Elongated cell extensions containing numerous microtubules are found in aggregates, and we suggest that these may be epithelial feet involved in the aggregation process. Virus particles are commonly found both within the nucleus and the cytoplasm of cells in the aggregates.

  9. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio.

    PubMed

    Wang, Yanbo; Yan, Xuxia; Fu, Linglin

    2013-01-01

    Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp.

  10. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio

    PubMed Central

    Wang, Yanbo; Yan, Xuxia; Fu, Linglin

    2013-01-01

    Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. PMID:24204137

  11. Studies of the kallikrein-kinin system and prostaglandins in epithelial ion transport.

    PubMed

    Margolius, H S; Halushka, P V; Chao, J; Miller, D H; Cuthbert, A W; Spayne, J A

    1985-01-01

    Tissue kallikrein of colon mucosa is synthesized rapidly, and this synthetic process can now be examined in relation to hormonal or dietary manipulations or pathological circumstances that affect intestinal ion transport. Although the identical renal tissue enzyme is known to be enriched in membranes of distal convoluted tubular epithelial cells, the precise localization of the intestinal enzyme is uncertain. An understanding of the intestinal cellular locale of kallikrein will help in defining its local role. That tissue kallikreins can be inhibited by monovalent cations and some drugs (e.g., amiloride) and that kallikrein inhibitors affect cation transport across epithelial surfaces containing such enzymes must be reconciled with the new observations of kinin-induced chloride secretion. Extracellular calcium, eicosanoid synthesis, and cyclic nucleotide production are involved in the secretory response to kinins, although an absolute requirement for intact eicosanoid synthesis may not exist.

  12. A single-cell survey of the small intestinal epithelium

    PubMed Central

    Haber, Adam L.; Biton, Moshe; Rogel, Noga; Herbst, Rebecca H.; Shekhar, Karthik; Smillie, Christopher; Burgin, Grace; Delorey, Toni M.; Howitt, Michael R.; Katz, Yarden; Tirosh, Itay; Beyaz, Semir; Dionne, Danielle; Zhang, Mei; Raychowdhury, Raktima; Garrett, Wendy S.; Rozenblatt-Rosen, Orit; Shi, Hai Ning; Yilmaz, Omer; Xavier, Ramnik J.; Regev, Aviv

    2018-01-01

    Intestinal epithelial cells (IECs) absorb nutrients, respond to microbes, provide barrier function and help coordinate immune responses. We profiled 53,193 individual epithelial cells from mouse small intestine and organoids, and characterized novel subtypes and their gene signatures. We showed unexpected diversity of hormone-secreting enteroendocrine cells and constructed their novel taxonomy. We distinguished between two tuft cell subtypes, one of which expresses the epithelial cytokine TSLP and CD45 (Ptprc), the pan-immune marker not previously associated with non-hematopoietic cells. We also characterized how cell-intrinsic states and cell proportions respond to bacterial and helminth infections. Salmonella infection caused an increase in Paneth cells and enterocytes abundance, and broad activation of an antimicrobial program. In contrast, Heligmosomoides polygyrus caused an expansion of goblet and tuft cell populations. Our survey highlights new markers and programs, associates sensory molecules to cell types, and uncovers principles of gut homeostasis and response to pathogens. PMID:29144463

  13. Inhibitory effects of HgCl2 on excitation-secretion coupling at the motor nerve terminal and excitation-contraction coupling in the muscle cell.

    PubMed

    Røed, A; Herlofson, B B

    1994-12-01

    1. Indirect and direct twitch (0.1-Hz) stimulation of the rat phrenic nerve-diaphragm disclosed that the inhibitory effect of HgCl2, 3.7 x 10(-5) M, on the neuromuscular transmission and in the muscle cell, was accelerated by 10-sec periods of 50-Hz tetanic stimulation every 10 min. This activity-dependent enhancement suggested an inhibitory mechanism of HgCl2 related to the development of fatigue, like membrane depolarization or decreased excitability, decreased availability of transmitter, or interference with the factors controlling excitation-secretion coupling of the nerve terminal, i.e. (Ca2+)0 or (Ca2+)i, and excitation-contraction coupling in the muscle cell, i.e., (Ca2+)i. 2. During both indirect and direct stimulation, HgCl2-induced inhibition was enhanced markedly by pretreatment with caffeine, which releases Ca2+ from endoplasmic and sarcoplasmic reticulum in the nerve terminal and muscle cell, respectively. This caffeine-induced enhancement was completely antagonized by dantrolene, which inhibits the caffeine-induced release. However, dantrolene alone did not antagonize the HgCl2-induced inhibition. 3. Since caffeine depletes the intracellular Ca2+ stores of the smooth endoplasmic reticulum, HgCl2 probably inhibits by binding to SH groups of transport proteins conveying the messenger function of (Ca2+)i. In the muscle cell this leads to inhibition of contraction. In the nerve terminal, an additional enhancement of the HgCl2-induced inhibition, by inhibiting reuptake of choline by TEA and tetanic stimulation, suggested that HgCl2 inhibited a (Ca2+)i signal necessary for this limiting factor in resynthesis of acetylcholine. 4. The (Ca2+)0 signal necessary for stimulus-induced release of acetylcholine was not affected by HgCl2. Hyperpolarization in K(+)-free solution antagonized the inhibitory effect of HgCl2 at indirect stimulation, and Ca(2+)-free solution enhanced the inhibitory effect at direct stimulation. K+ depolarization, membrane electric field increase with high Ca2+, membrane stabilization with lidocaine, and half-threshold stimulation, did not change the inhibitory effect of HgCl CH3HgCl. 1.85 x 10(-5) M, disclosed a synergistic interaction with caffeine during direct, but not during indirect, stimulation.

  14. Human Tear Fluid Reduces Culturability of Contact Lens Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence Associated Type III Secretion System

    PubMed Central

    Wu, Yvonne T.; Tam, Connie; Zhu, Lucia S.; Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    Purpose The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. Methods P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. Results With or without tear fluid, biofilms grew to ~108 cfu viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ~180-fold (p<.001). CL growth increased T3SS gene expression versus planktonic bacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (p=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (p=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (p = 0.04) and 1.89 ± 0.26-fold (p<.001), respectively. Conclusions Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis. PMID:27670247

  15. Cross talk between primary human renal tubular cells and endothelial cells in cocultures.

    PubMed

    Tasnim, Farah; Zink, Daniele

    2012-04-15

    Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.

  16. Epithelial Proinflammatory Response and Curcumin-Mediated Protection from Staphylococcal Toxic Shock Syndrome Toxin-1

    PubMed Central

    Schaefers, Matthew M.; Breshears, Laura M.; Anderson, Michele J.; Lin, Ying-Chi; Grill, Alex E.; Panyam, Jayanth; Southern, Peter J.; Schlievert, Patrick M.; Peterson, Marnie L.

    2012-01-01

    Staphylococcus aureus initiates infections and produces virulence factors, including superantigens (SAgs), at mucosal surfaces. The SAg, Toxic Shock Syndrome Toxin-1 (TSST-1) induces cytokine secretion from epithelial cells, antigen presenting cells (APCs) and T lymphocytes, and causes toxic shock syndrome (TSS). This study investigated the mechanism of TSST-1-induced secretion of proinflammatory cytokines from human vaginal epithelial cells (HVECs) and determined if curcumin, an anti-inflammatory agent, could reduce TSST-1-mediated pathology in a rabbit vaginal model of TSS. TSST-1 caused a significant increase in NF-κB-dependent transcription in HVECs that was associated with increased expression of TNF- α, MIP-3α, IL-6 and IL-8. Curcumin, an antagonist of NF-κB-dependent transcription, inhibited IL-8 production from ex vivo porcine vaginal explants at nontoxic doses. In a rabbit model of TSS, co-administration of curcumin with TSST-1 intravaginally reduced lethality by 60% relative to 100% lethality in rabbits receiving TSST-1 alone. In addition, TNF-α was undetectable from serum or vaginal tissue of curcumin treated rabbits that survived. These data suggest that the inflammatory response induced at the mucosal surface by TSST-1 is NF-κB dependent. In addition, the ability of curcumin to prevent TSS in vivo by co-administration with TSST-1 intravaginally suggests that the vaginal mucosal proinflammatory response to TSST-1 is important in the progression of mTSS. PMID:22431984

  17. Altered chloride metabolism in cultured cystic fibrosis skin fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattes, P.M.; Maloney, P.C.; Littlefield, J.W.

    1987-05-01

    An abnormal regulation of chloride permeability has been described for epithelial cells from patients with cystic fibrosis (CF). To learn more about the biochemical basis of this inherited disease, the authors have studied chloride metabolism in cultured CF fibroblasts by comparing the efflux of /sup 36/Cl/sup -/ from matched pairs of CF and normal fibroblasts. The rate constants describing /sup 36/Cl/sup -/ efflux did not differ between the two cell types, but in each of the four pairs tested the amount of /sup 36/Cl/sup -/ contained within CF cells was consistently reduced, by 25-30%, relative to normal cells. Comparisons ofmore » cell water content and /sup 22/Na/sup +/ efflux showed no differences between the two cell types, suggesting that overall intracellular chloride concentration is lower than normal in CF fibroblasts. Such data suggest that the CF gene defect is expressed in skin fibroblasts and that this defect may alter the regulation of intracellular Cl/sup -/ concentration, perhaps through changes in Cl/sup -/ permeability.« less

  18. Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel.

    PubMed

    Malinowska, D H; Kupert, E Y; Bahinski, A; Sherry, A M; Cuppoletti, J

    1995-01-01

    cDNA encoding a Cl- channel was isolated from a rabbit gastric library, sequenced, and expressed in Xenopus oocytes. The predicted protein (898 amino acids, relative molecular mass 98,433 Da) was overall 93% similar to the rat brain ClC-2 Cl- channel. However, a 151-amino acid stretch toward the COOH-terminus was 74% similar to ClC-2 with six amino acids deleted. Two new potential protein kinase A (PKA) phosphorylation sites (also protein kinase C phosphorylation sites) were introduced. cRNA-injected Xenopus oocytes expressed a Cl- channel that was active at pHtrans 3 and had a linear current-voltage (I-V) curve and a slope conductance of 29 +/- 1 pS at 800 mM CsCl. A fivefold Cl- gradient caused a rightward shift in the I-V curve with a reversal potential of +30 +/- 3 mV, indicating anion selectivity. The selectivity was I- > Cl- > NO3-. The native and recombinant Cl- channel were both activated in vitro by PKA catalytic subunit and ATP. The electrophysiological and regulatory properties of the cloned and the native channel were similar. The cloned protein may be the Cl- channel involved in gastric HCl secretion.

  19. Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix.

    PubMed Central

    Sanderson, I R; Ezzell, R M; Kedinger, M; Erlanger, M; Xu, Z X; Pringault, E; Leon-Robine, S; Louvard, D; Walker, W A

    1996-01-01

    The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8755542

  20. Bioavailability, Intracellular Mobilization of Nickel, and HIF-1α Activation in Human Lung Epithelial Cells Exposed to Metallic Nickel and Nickel Oxide Nanoparticles

    PubMed Central

    Liu, Xinyuan; Smith, Ashley; McNeil, Kevin; Weston, Paula; Zhitkovich, Anatoly; Hurt, Robert; Kane, Agnes B.

    2011-01-01

    Micron-sized particles of poorly soluble nickel compounds, but not metallic nickel, are established human and rodent carcinogens. In contrast, little is known about the toxic effects of a growing number of Ni-containing materials in the nano-sized range. Here, we performed physicochemical characterization of NiO and metallic Ni nanoparticles and examined their metal ion bioavailability and toxicological properties in human lung epithelial cells. Cellular uptake of metallic Ni and NiO nanoparticles, but not metallic Ni microparticles, was associated with the release of Ni(II) ions after 24–48 h as determined by Newport Green fluorescence. Similar to soluble NiCl2, NiO nanoparticles induced stabilization and nuclear translocation of hypoxia-inducible factor 1α (HIF-1α) transcription factor followed by upregulation of its target NRDG1 (Cap43). In contrast to no response to metallic Ni microparticles, nickel nanoparticles caused a rapid and prolonged activation of the HIF-1α pathway that was stronger than that induced by soluble Ni (II). Soluble NiCl2 and NiO nanoparticles were equally toxic to H460 human lung epithelial cells and primary human bronchial epithelial cells; metallic Ni nanoparticles showed lower toxicity and Ni microparticles were nontoxic. Cytotoxicity induced by all forms of Ni occurred concomitant with activation of an apoptotic response, as determined by dose- and time-dependent cleavage of caspases and poly (ADP-ribose) polymerase. Our results show that metallic Ni nanoparticles, in contrast to micron-sized Ni particles, activate a toxicity pathway characteristic of carcinogenic Ni compounds. Moderate cytotoxicity and sustained activation of the HIF-1α pathway by metallic Ni nanoparticles could promote cell transformation and tumor progression. PMID:21828359

  1. Retinoic acid signaling determines the fate of uterine stroma in the mouse Müllerian duct

    PubMed Central

    Nakajima, Tadaaki; Iguchi, Taisen; Sato, Tomomi

    2016-01-01

    The Müllerian duct develops into the oviduct, uterus, and vagina, all of which are quite distinct in their morphology and function. The epithelial fate of these female reproductive organs in developing mice is determined by factors secreted from the stroma; however, how stromal differentiation occurs in the female reproductive organs derived from the Müllerian duct is still unclear. In the present study, roles of retinoic acid (RA) signaling in developing female reproductive tracts were investigated. Retinol dehydrogenase 10 (RDH10) and aldehyde dehydrogenase family 1 subfamily A2 (ALDH1A2) mRNAs and proteins and transactivation activity of endogenous RA were found in the stroma of proximal Müllerian ducts and gradually decreased from the proximal to caudal regions in fetal mice. In organ-cultured Müllerian ducts, retinaldehyde or RA treatment induced uterine epithelial differentiation, defined as a layer of columnar epithelial cells negative for oviductal and vaginal epithelial markers. In contrast, inhibition of RA receptor (RAR) signaling induced vaginal epithelial differentiation, characterized as vaginal epithelial marker genes–positive stratified epithelium. Grafting experiments of the organ-cultured Müllerian duct revealed irreversible epithelial fate determination. Although RAR did not directly bind to the homeobox A10 (Hoxa10) promoter region, RA–RAR signaling stimulated Hoxa10 expression. Thus, RA–RAR signaling in the Müllerian duct determines the fate of stroma to form the future uterus and vagina. PMID:27911779

  2. The fate of epithelial cells in the human large intestine.

    PubMed

    Barkla, D H; Gibson, P R

    1999-08-01

    One hundred and forty biopsies of the colon and rectum, collected during routine colonoscopies of 51 patients aged 19 to 74 years, were examined using light microscopy and transmission and scanning electron microscopy. The results indicated that surface epithelial cells undergo apoptosis, passing through fenestrations in the basement membrane to where they enter the lamina propria and are taken up by macrophages; and it is hypothesized that apoptotic cells are carried through the fenestrations on a current of fluid. The study also found that epithelial cells positioned over the crypts are better attached and more robust than those more distant from the crypt opening; and it is further hypothesized that, after reaching the top of the crypts, some goblet cells cease secreting mucus and pass onto the surface compartment of absorptive cells. An unexpected finding was that the lower regions of the crypts commonly contain isolated necrotic colonocytes. Apoptotic cells were rarely observed in the crypt epithelium. The findings of this study support the "recycling" model of epithelial cell death in the surface compartment of the human colon.

  3. Isolation and functional studies of human fetal gastric epithelium in primary culture.

    PubMed

    Chailler, Pierre; Beaulieu, Jean-François; Ménard, Daniel

    2012-01-01

    Our understanding of gastric epithelial physiology in man is limited by the absence of normal or appropriate cancer cell lines that could serve as an in vitro model. Research mostly relied on primary culture of gastric epithelial cells of animal species, enriched with surface mucous cells, and devoid of glandular zymogenic chief cells. We successfully applied a new nonenzymatic procedure using Matrisperse Cell Recovery Solution to dissociate the entire epithelium from human fetal stomach. Cultures were generated by seeding multicellular aggregates prepared by mechanical fragmentation. We further demonstrate that this simple and convenient technique allows for the maintenance of heterogenous gastric epithelial primary cultures on plastic without a biological matrix as well as the persistence of viable chief cells able to synthesize and secrete gastric digestive enzymes, i.e., pepsinogen and gastric lipase. In wounding experiments, epithelial restitution occurred in serum-reduced conditions and was modulated by exogenous agents. This culture system is thus representative of the foveolus-gland axis and offers new perspectives to establish the influence of individual growth factors and extracellular matrix components as well as their combinatory effects on gastric epithelium homeostasis.

  4. Live Imaging of HIV-1 Transfer across T Cell Virological Synapse to Epithelial Cells that Promotes Stromal Macrophage Infection.

    PubMed

    Real, Fernando; Sennepin, Alexis; Ganor, Yonatan; Schmitt, Alain; Bomsel, Morgane

    2018-05-08

    During sexual intercourse, HIV-1 crosses epithelial barriers composing the genital mucosa, a poorly understood feature that requires an HIV-1-infected cell vectoring efficient mucosal HIV-1 entry. Therefore, urethral mucosa comprising a polarized epithelium and a stroma composed of fibroblasts and macrophages were reconstructed in vitro. Using this system, we demonstrate by live imaging that efficient HIV-1 transmission to stromal macrophages depends on cell-mediated transfer of the virus through virological synapses formed between HIV-1-infected CD4 + T cells and the epithelial cell mucosal surface. We visualized HIV-1 translocation through mucosal epithelial cells via transcytosis in regions where virological synapses occurred. In turn, interleukin-13 is secreted and HIV-1 targets macrophages, which develop a latent state of infection reversed by lipopolysaccharide (LPS) activation. The live observation of virological synapse formation reported herein is key in the design of vaccines and antiretroviral therapies aimed at blocking HIV-1 access to cellular reservoirs in genital mucosa. Copyright © 2018. Published by Elsevier Inc.

  5. Inflammasomes in livestock and wildlife: Insights into the intersection of pathogens and natural host species

    USDA-ARS?s Scientific Manuscript database

    The inflammasome serves as a mechanism by which the body senses damage or danger. These multiprotein complexes form in the cytosol of myeloid, epithelial and potentially other cell types to drive caspase cleavage and the secretion of the pro-inflammatory cytokines IL-1ß and IL-18. Different types ...

  6. The establishment of polarized membrane traffic in Xenopus laevis embryos.

    PubMed

    Roberts, S J; Leaf, D S; Moore, H P; Gerhart, J C

    1992-09-01

    Delineation of apical and basolateral membrane domains is a critical step in the epithelialization of the outer layer of cells in the embryo. We have examined the initiation of polarized membrane traffic in Xenopus and show that membrane traffic is not polarized in oocytes but polarized membrane domains appear at first cleavage. The following proteins encoded by injected RNA transcripts were used as markers to monitor membrane traffic: (a) VSV G, a transmembrane glycoprotein preferentially inserted into the basolateral surface of polarized epithelial cells; (b) GThy-1, a fusion protein of VSV G and Thy-1 that is localized to the apical domains of polarized epithelial cells; and (c) prolactin, a peptide hormone that is not polarly secreted. In immature oocytes, there is no polarity in the expression of VSV G or GThy-1, as shown by the constitutive expression of both proteins at the surface in the animal and vegetal hemispheres. At meiotic maturation, membrane traffic to the surface is blocked; the plasma membrane no longer accepts the vesicles synthesized by the oocyte (Leaf, D. L., S. J. Roberts, J. C. Gerhart, and H.-P. Moore. 1990. Dev. Biol. 141:1-12). When RNA transcripts are injected after fertilization, VSV G is expressed only in the internal cleavage membranes (basolateral orientation) and is excluded from the outer surface (apical orientation, original oocyte membrane). In contrast, GThy-1 and prolactin, when expressed in embryos, are inserted or released at both the outer membrane derived from the oocyte and the inner cleavage membranes. Furthermore, not all of the cleavage membrane comes from an embryonic pool of vesicles--some of the cleavage membrane comes from vesicles synthesized during oogenesis. Using prolactin as a marker, we found that a subset of vesicles synthesized during oogenesis was only released after fertilization. However, while embryonic prolactin was secreted from both apical and basolateral surfaces, the secretion of oogenic prolactin was polarized. Oogenic prolactin was secreted only into the blastocoel (from the cleavage membrane), none could be detected in the external medium (from the original oocyte membrane). These results provide the first direct evidence that the oocyte synthesizes a cache of vesicles for specific recruitment to the embryonic cleavage membranes which are polarized beginning with the first cleavage division.

  7. A family of tissue-specific resistin-like molecules

    PubMed Central

    Steppan, Claire M.; Brown, Elizabeth J.; Wright, Christopher M.; Bhat, Savitha; Banerjee, Ronadip R.; Dai, Charlotte Y.; Enders, Gregory H.; Silberg, Debra G.; Wen, Xiaoming; Wu, Gary D.; Lazar, Mitchell A.

    2001-01-01

    We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMα is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMβ, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMβ gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules. PMID:11209052

  8. A family of tissue-specific resistin-like molecules.

    PubMed

    Steppan, C M; Brown, E J; Wright, C M; Bhat, S; Banerjee, R R; Dai, C Y; Enders, G H; Silberg, D G; Wen, X; Wu, G D; Lazar, M A

    2001-01-16

    We have identified a family of resistin-like molecules (RELMs) in rodents and humans. Resistin is a hormone produced by fat cells. RELMalpha is a secreted protein that has a restricted tissue distribution with highest levels in adipose tissue. Another family member, RELMbeta, is a secreted protein expressed only in the gastrointestinal tract, particularly the colon, in both mouse and human. RELMbeta gene expression is highest in proliferative epithelial cells and is markedly increased in tumors, suggesting a role in intestinal proliferation. Resistin and the RELMs share a cysteine composition and other signature features. Thus, the RELMs together with resistin comprise a class of tissue-specific signaling molecules.

  9. Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland

    PubMed Central

    Scully, Kathleen M.; Skowronska-Krawczyk, Dorota; Krawczyk, Michal; Merkurjev, Daria; Taylor, Havilah; Livolsi, Antonia; Tollkuhn, Jessica; Stan, Radu V.; Rosenfeld, Michael G.

    2016-01-01

    As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin β1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin β1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin β1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin β1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non–cell-autonomous effects on angiogenesis. We conclude that epithelial integrin β1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development. PMID:27810956

  10. Mechanisms for Cellular NO Oxidation and Nitrite Formation in Lung Epithelial Cells

    PubMed Central

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Wang, Jun; Frizzell, Sam; Gladwin, Mark T.

    2013-01-01

    Airway lining fluid contains relatively high concentrations of nitrite and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 hrs under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low oxygen conditions. The addition of oxy-hemoglobin (oxy-Hb) to the A549 cell media decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and bitrate, suggesting an enzymatic activity is required. This NO oxidation activity was found to be highest in membrane bound proteins with molecular sizes < 100 kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ) and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation (NO+). We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via ρ-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol (SNO) formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell membrane associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells. PMID:23639566

  11. Phosphoproteomics of the goat milk fat globule membrane: New insights into lipid droplet secretion from the mammary epithelial cell.

    PubMed

    Henry, Céline; Saadaoui, Besma; Bouvier, Frédéric; Cebo, Christelle

    2015-07-01

    Mechanisms of milk lipid secretion are highly controversial. Analyzing the fine protein composition of the "milk fat globule membrane" (MFGM), the triple-layered membrane surrounding milk lipid droplets (LDs) can provide mechanistic clues to better understand LD biosynthesis and secretion pathways in mammary epithelial cells (MECs). We therefore combined a high-sensitive Q-Exactive LC-MS/MS analysis of MFGM-derived peptides to the use of an in-house database intended to improve protein identification in the goat species. Using this approach, we performed the identification of 442 functional groups of proteins in the MFGM from goat milk. To get a more dynamic view of intracellular mechanisms driving LD dynamics in the MECs, we decided to investigate for the first time whether MFGM proteins were phosphorylated. MFGM proteins were sequentially digested by lysine-C and trypsin proteases and the resulting peptides were fractionated by a strong cation exchange chromatography. Titanium beads were used to enrich phosphopeptides from strong cation exchange chromatography eluted fractions. This approach lets us pinpoint 271 sites of phosphorylation on 124 unique goat MFGM proteins. Enriched GO terms associated with phosphorylated MFGM proteins were protein transport and actin cytoskeleton organization. Gained data are discussed with regard to lipid secretory mechanisms in the MECs. All MS data have been deposited in the ProteomeXchange with identifier PXD001039 (http://proteomecentral.proteomexchange.org/dataset/PXD001039). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    PubMed

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Antibody-secreting cells in respiratory tract tissues in the absence of eosinophils as supportive partners.

    PubMed

    Sealy, Robert E; Surman, Sherri L; Vogel, Peter; Hurwitz, Julia L

    2016-11-01

    Antibody-secreting cells (ASCs) in respiratory tract tissues provide a first line of defense against invading pathogens. These cells often secrete IgA that is efficiently transcytosed across epithelial barriers into the airway lumen where pathogens can be blocked at their point of entry. Previous literature has reported that in the bone marrow, eosinophils are required for the maintenance of ASCs, and that eosinophils co-localize with ASCs as nearest neighbors. To determine if these rules similarly apply to the maintenance of ASCs in respiratory tract tissues, we evaluated virus-specific responses 1 month and 4 months following an intranasal virus infection of eosinophil-null (∆dblGATA-1) mice. Results showed that ASCs were fractionally reduced, but were nonetheless observed in respiratory tract tissues in the absence of eosinophils. Virus-specific antibodies were similarly observed in the airways of eosinophil-deficient mice. Respiratory tract ASCs were also present in mice lacking neutrophils (Mcl1 ∆M ). The staining of tissue sections from the upper respiratory tract of wild-type mice following viral infections demonstrated that virus-specific ASCs were most frequently situated adjacent to epithelial cells rather than eosinophils or neutrophils. Taken together, these data emphasize that rules for cell maintenance are not absolute and that ASCs can survive in the respiratory tract without eosinophils or neutrophils as their nearest neighbors. © The Japanese Society for Immunology. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Baicalin Inhibits Lipopolysaccharide-Induced Inflammation Through Signaling NF-κB Pathway in HBE16 Airway Epithelial Cells.

    PubMed

    Dong, Shou-jin; Zhong, Yun-qing; Lu, Wen-ting; Li, Guan-hong; Jiang, Hong-li; Mao, Bing

    2015-08-01

    Baicalin, a flavonoid monomer derived from Scutellaria baicalensis called Huangqin in mandarin, is the main active ingredient contributing to S. baicalensis' efficacy. It is known in China that baicalin has potential therapeutic effects on inflammatory diseases. However, its anti-inflammatory mechanism has still not been fully interpreted. We aim to investigate the anti-inflammatory effect of baicalin on lipopolysaccharide (LPS)-induced inflammation in HBE16 airway epithelial cells and also to explore the underlying signaling mechanisms. The anti-inflammatory action of baicalin was evaluated in human airway epithelial cells HBE16 treated with LPS. Airway epithelial cells HBE16 were pretreated with a range of concentrations of baicalin for 30 min and then stimulated with 10 μg/ml LPS. The secretions of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) in cell culture supernatants were quantified by enzyme-linked immunosorbent assay (ELISA). The messenger RNA (mRNA) expressions of IL-6, IL-8, and TNF-α were tested by quantitative real-time polymerase chain reaction (real-time RT-PCR). Furthermore, Western blotting was used to determine whether the signaling pathway NF-κB was involved in the anti-inflammatory action of baicalin. The inflammatory cell model was successfully built with 10 μg/ml LPS for 24 h in our in vitro experiments. Both the secretions and the mRNA expressions of IL-6, IL-8, and TNF-α were significantly inhibited by baicalin. Moreover, the expression levels of phospho-IKKα/β and phospho-NF-κB p65 were downregulated, and the phospho-IκB-α level was upregulated by baicalin. These findings suggest that the anti-inflammatory properties of baicalin may be resulted from the inhibition of IL-6, IL-8, and TNF-α expression via preventing signaling NF-κB pathway in HBE16 airway epithelial cells. In addition, this study provides evidence to understand the therapeutic effects of baicalin on inflammatory diseases in clinical practice.

  15. Simultaneous measurements of gastric motility and acid-bicarbonate secretions in the anaesthetized cat.

    PubMed

    Fändriks, L; Stage, L

    1986-12-01

    Chloralosed cats were acutely vagotomized, their splanchnic nerves cut and the adrenal glands ligated. The gastric lumen was perfused with isotonic NaCl and gastric motility was monitored as changes in hydrostatic pressure within the perfusion circuit. Gastric secretion of H+ and HCO3- were calculated from continuous measurements of pH and PCO2. Methodological tests ex vivo showed good accuracy of the estimations. Recovery of H+ after HCl instillation into the stomach in vivo was almost complete, while HCO3- recovery after NaHCO3 instillations was 85-95%. Pentagastrin (10 micrograms kg-1 h-1 i.v.) stimulated gastric contractile activity and increased gastric H+ secretion 30-fold, while HCO3- secretion decreased somewhat. Carbachol (4 micrograms kg-1 h-1) induced gastric contractions and increased H+ secretion by 400% and HCO3- output by 100-130%. Electrical stimulation of the cut vagal nerves (10 Hz for 10 min) induced well known gastric motor responses and increased gastric H+ secretion 20-fold preceded by a transient doubling of HCO3- secretion. Omeprazole, a selective inhibitor of gastric H+ secretion, decreased the vagally induced H+ secretion, while recorded gastric HCO3- secretion was clearly enhanced. In conclusion, the technique permits simultaneous recordings of rapid alterations of gastric motility and H+ and HCO3- secretions. However, HCO3- secretion was modestly underestimated, probably due to mucosal CO2 absorption.

  16. CFTR is restricted to a small population of high expresser cells that provide a forskolin-sensitive transepithelial Cl- conductance in the proximal colon of the possum, Trichosurus vulpecula.

    PubMed

    Fan, Shujun; Harfoot, Natalie; Bartolo, Ray C; Butt, A Grant

    2012-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is central to anion secretion in both the possum and eutherian small intestine. Here, we investigated its role in the possum proximal colon, which has novel transport properties compared with the eutherian proximal colon. Despite considerable CFTR expression, high doses of the CFTR activator forskolin (EC(50)≈10 μmol l(-1)) were required for a modest, CFTR-dependent increase in short-circuit current (I(sc)) in the proximal colon. Presumably, this is because CFTR is restricted to the apical membrane of a small population of CFTR high expresser (CHE) cells in the surface and upper crypt epithelium. Furthermore, although the forskolin-stimulated I(sc) was dependent on serosal Na(+), Cl(-) and HCO(3)(-), consistent with anion secretion, inhibition of the basolateral Na-K-2Cl(-) (NKCC1) or Na-HCO(3) (pNBCe1) cotransporters did not prevent it. Therefore, although NKCC1 and pNBCe1 are expressed in the colonic epithelium they do not appear to be expressed in CHE cells. At low doses (IC(50)≈1 μmol l(-1)), forskolin also decreased the transepithelial conductance (G(T)) of the colon through inhibition of a 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid-sensitive anion conductance in the basolateral membrane of the CHE cells. This conductance is arranged in series with CFTR in the CHE cells and, therefore, the CHE cells provide a transepithelial Cl(-) conductance for passive Cl(-) absorption across the epithelium. Inhibition of the basolateral Cl(-) conductance of the CHE cells by forskolin will inhibit Na(+) absorption by restricting the movement of its counter-ion Cl(-), assisting in the conversion of the tissue from an absorptive to a secretory state.

  17. Hypertonic saline in the treatment of corneal jellyfish stings.

    PubMed

    Yu Yao, Hsin; Cho, Ta Hsiung; Lu, Ching Hsiang; Lin, Feng Chi; Horng, Chi Ting

    2016-02-01

    A 20-year-old male soldier was hit by the jellyfish. The ophthalmic examination revealed that epithelial keratitis and corneal oedema in the right eye. We prescribed 3% NaCl eyedrops and 0.3% Norfloxacin eyedrops in the treatment of the corneal jellyfish stings. Two weeks later, the cornea in the right eye healed. In this case report, 3% NaCl eyedrops was effective in the treatment of acute phase of jellyfish stings of the cornea. © International Society of Travel Medicine, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium

    PubMed Central

    Santos, Anderson F.; Valle, Roberta S.; Pacheco, Clarissa A.; Alvarez, Vanessa M.; Seldin, Lucy; Santos, André L.S.

    2013-01-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties. PMID:24688526

  19. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    PubMed

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  20. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    PubMed Central

    Barnett, Alicia M.; Roy, Nicole C.; McNabb, Warren C.; Cookson, Adrian L.

    2016-01-01

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function. PMID:27164134

Top