Sample records for epithelial fluid secretion

  1. Molecular Mechanism of Pancreatic and Salivary Glands Fluid and HCO3− Secretion

    PubMed Central

    Lee, Min Goo; Ohana, Ehud; Park, Hyun Woo; Yang, Dongki; Muallem, Shmuel

    2013-01-01

    Fluid and HCO3− secretion is a vital function of all epithelia and is required for the survival of the tissue. Aberrant fluid and HCO3− secretion is associated with many epithelial diseases, such as cystic fibrosis, pancreatitis, Sjögren’s syndrome and other epithelial inflammatory and autoimmune diseases. Significant progress has been made over the last 20 years in our understanding of epithelial fluid and HCO3− secretion, in particular by secretory glands. Fluid and HCO3− secretion by secretory glands is a two step process. Acinar cells secrete isotonic fluid in which the major salt is NaCl. Subsequently, the duct modifies the volume and electrolyte composition of the fluid to absorb the Cl− and secrete HCO3−. The relative volume secreted by acinar and duct cells and modification of electrolyte composition of the secreted fluids varies among secretory glands to meet their physiological functions. In the pancreas, acinar cells secrete small amount of NaCl-rich fluid, while the duct absorbs the Cl− and secretes HCO3− and the bulk of the fluid in the pancreatic juice. Fluid secretion appears to be driven by active HCO3− secretion. In the salivary glands, acinar cells secrete the bulk of the fluid in the saliva that contains high concentrations of Na+ and Cl− and fluid secretion is mediated by active Cl− secretion. The salivary glands duct absorbs both the Na+ and Cl− and secretes K+ and HCO3−. In this review, we focus on the molecular mechanism of fluid and HCO3− secretion by the pancreas and salivary glands, to highlight the similarities of the fundamental mechanisms of acinar and duct cell functions, and point the differences to meet glands specific secretions. PMID:22298651

  2. Renal Epithelial Cyst Formation and Enlargement in vitro: Dependence on cAMP

    NASA Astrophysics Data System (ADS)

    Mangoo-Karim, Roberto; Uchic, Marie; Lechene, Claude; Grantham, Jared J.

    1989-08-01

    Cysts, a common abnormality of kidneys, are collections of urine-like fluid enclosed by a continuous layer of epithelial cells. Renal cysts derive from nephrons and collecting ducts and progressively enlarge as a consequence of epithelial proliferation and transepithelial fluid secretion. The initiation of cyst formation and the factors that control cyst enlargement are unknown. We used an in vitro model of renal cysts to explore the role of the cAMP signal transduction system in the formation and expansion of cysts. MDCK cells, cultured in hydrated-collagen gel, produced polarized monolayered epithelial cysts when intracellular cAMP was increased by prostaglandin E1, arginine vasopressin, cholera toxin, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate. All agonists were potentiated by 3-isobutyl-1-methylxanthine, a nucleotide phosphodiesterase inhibitor. The cell proliferation component of cyst enlargement was accelerated by cAMP agonists, as shown by the increased growth of MDCK cells in subconfluent monolayers. The fluid secretion component, reflected by the transepithelial movement of fluid across polarized monolayers of MDCK cells grown on permeable supports, was stimulated by cAMP agonists in the basolateral medium. Chloride levels were higher in the cyst fluid and the secreted fluid than in the bathing medium. We conclude that the development of MDCK cysts is dependent on cAMP. This signal transduction system may be an important modulator of epithelial cell proliferation and transepithelial fluid secretion in the kidney.

  3. Transepithelial Bicarbonate Secretion: Lessons from the Pancreas

    PubMed Central

    Park, Hyun Woo; Lee, Min Goo

    2012-01-01

    Many cystic fibrosis transmembrane conductance regulator (CFTR)-expressing epithelia secrete bicarbonate (HCO3−)-containing fluids. Recent evidence suggests that defects in epithelial bicarbonate secretion are directly involved in the pathogenesis of cystic fibrosis, in particular by building up hyperviscous mucus in the ductal structures of the lung and pancreas. Pancreatic juice is one of the representative fluids that contain a very high concentration of bicarbonate among bodily fluids that are secreted from CFTR-expressing epithelia. We introduce up-to-date knowledge on the basic principles of transepithelial bicarbonate transport by showing the mechanisms involved in pancreatic bicarbonate secretion. The model of pancreatic bicarbonate secretion described herein may also apply to other exocrine epithelia. As a central regulator of bicarbonate transport at the apical membrane, CFTR plays an essential role in both direct and indirect bicarbonate secretion. The major role of CFTR in bicarbonate secretion would be variable depending on the tissue and cell type. For example, in epithelial cells that produce a low concentration of bicarbonate-containing fluid (up to 80 mm), either CFTR-dependent Cl−/HCO3− exchange or CFTR anion channel with low bicarbonate permeability would be sufficient to generate such fluid. However, in cells that secrete high-bicarbonate-containing fluids, a highly selective CFTR bicarbonate channel activity is required. Therefore, understanding the molecular mechanism of transepithelial bicarbonate transport and the role of CFTR in each specific epithelium will provide therapeutic strategies to recover from epithelial defects induced by hyposecretion of bicarbonate in cystic fibrosis. PMID:23028131

  4. Distinct Action of Flavonoids, Myricetin and Quercetin, on Epithelial Cl− Secretion: Useful Tools as Regulators of Cl− Secretion

    PubMed Central

    Sun, Hongxin; Niisato, Naomi; Nishio, Kyosuke; Hamilton, Kirk L.; Marunaka, Yoshinori

    2014-01-01

    Epithelial Cl− secretion plays important roles in water secretion preventing bacterial/viral infection and regulation of body fluid. We previously suggested that quercetin would be a useful compound for maintaining epithelial Cl− secretion at a moderate level irrespective of cAMP-induced stimulation. However, we need a compound that stimulates epithelial Cl− secretion even under cAMP-stimulated conditions, since in some cases epithelial Cl− secretion is not large enough even under cAMP-stimulated conditions. We demonstrated that quercetin and myricetin, flavonoids, stimulated epithelial Cl− secretion under basal conditions in epithelial A6 cells. We used forskolin, which activates adenylyl cyclase increasing cytosolic cAMP concentrations, to study the effects of quercetin and myricetin on cAMP-stimulated epithelial Cl− secretion. In the presence of forskolin, quercetin diminished epithelial Cl− secretion to a level similar to that with quercetin alone without forskolin. Conversely, myricetin further stimulated epithelial Cl− secretion even under forskolin-stimulated conditions. This suggests that the action of myricetin is via a cAMP-independent pathway. Therefore, myricetin may be a potentially useful compound to increase epithelial Cl− secretion under cAMP-stimulated conditions. In conclusion, myricetin would be a useful compound for prevention from bacterial/viral infection even under conditions that the amount of water secretion driven by cAMP-stimulated epithelial Cl− secretion is insufficient. PMID:24818160

  5. Secretory NaCl and volume flow in renal tubules.

    PubMed

    Beyenbach, K W

    1986-05-01

    This review attempts to give a retrospective survey of the available evidence concerning the secretion of NaCl and fluid in renal tubules of the vertebrate kidney. In the absence of glomerular filtration, epithelial secretory mechanisms, which to this date have not been elucidated, are responsible for the renal excretion of NaCl and water in aglomerular fish. However, proximal tubules isolated from glomerular fish kidneys of the flounder, killifish, and the shark also have the capacity to secrete NaCl and fluid. In shark proximal tubules, fluid secretion appears to be driven via secondary active transport of Cl. In another marine vertebrate, the sea snake, secretion of Na (presumably NaCl) and fluid is observed in freshwater-adapted and water-loaded animals. Proximal tubules of mammals can be made to secrete NaCl in vitro together with secretion of aryl acids. An epithelial cell line derived from dog kidney exhibits secondary active secretion of Cl when stimulated with catecholamines. Tubular secretion of NaCl and fluid may serve a variety of renal functions, all of which are considered here. The occurrence of NaCl and fluid secretion in glomerular proximal tubules of teleosts, elasmobranchs, and reptiles and in mammalian renal tissue cultures suggests that the genetic potential for NaCl secretion is present in every vertebrate kidney.

  6. Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema

    PubMed Central

    Solymosi, Esther A.; Kaestle-Gembardt, Stefanie M.; Vadász, István; Wang, Liming; Neye, Nils; Chupin, Cécile Julie Adrienne; Rozowsky, Simon; Ruehl, Ramona; Tabuchi, Arata; Schulz, Holger; Kapus, Andras; Morty, Rory E.; Kuebler, Wolfgang M.

    2013-01-01

    Alveolar fluid clearance driven by active epithelial Na+ and secondary Cl− absorption counteracts edema formation in the intact lung. Recently, we showed that impairment of alveolar fluid clearance because of inhibition of epithelial Na+ channels (ENaCs) promotes cardiogenic lung edema. Concomitantly, we observed a reversal of alveolar fluid clearance, suggesting that reversed transepithelial ion transport may promote lung edema by driving active alveolar fluid secretion. We, therefore, hypothesized that alveolar ion and fluid secretion may constitute a pathomechanism in lung edema and aimed to identify underlying molecular pathways. In isolated perfused lungs, alveolar fluid clearance and secretion were determined by a double-indicator dilution technique. Transepithelial Cl− secretion and alveolar Cl− influx were quantified by radionuclide tracing and alveolar Cl− imaging, respectively. Elevated hydrostatic pressure induced ouabain-sensitive alveolar fluid secretion that coincided with transepithelial Cl− secretion and alveolar Cl− influx. Inhibition of either cystic fibrosis transmembrane conductance regulator (CFTR) or Na+-K+-Cl− cotransporters (NKCC) blocked alveolar fluid secretion, and lungs of CFTR−/− mice were protected from hydrostatic edema. Inhibition of ENaC by amiloride reproduced alveolar fluid and Cl− secretion that were again CFTR-, NKCC-, and Na+-K+-ATPase–dependent. Our findings show a reversal of transepithelial Cl− and fluid flux from absorptive to secretory mode at hydrostatic stress. Alveolar Cl− and fluid secretion are triggered by ENaC inhibition and mediated by NKCC and CFTR. Our results characterize an innovative mechanism of cardiogenic edema formation and identify NKCC1 as a unique therapeutic target in cardiogenic lung edema. PMID:23645634

  7. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation.

    PubMed

    Hong, Jeong Hee; Muhammad, Emad; Zheng, Changyu; Hershkovitz, Eli; Alkrinawi, Soliman; Loewenthal, Neta; Parvari, Ruti; Muallem, Shmuel

    2015-12-15

    Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  8. Role of calcium signaling in epithelial bicarbonate secretion.

    PubMed

    Jung, Jinsei; Lee, Min Goo

    2014-06-01

    Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A Tannic Acid-based Medical Food, Cesinex®, Exhibits Broad-spectrum Antidiarrheal Properties: a Mechanistic and Clinical Study

    PubMed Central

    Ren, Aixia; Zhang, Weiqiang; Thomas, Hugh Greg; Barish, Amy; Berry, Stephen; Kiel, Jeffrey S.

    2011-01-01

    Background To evaluate the efficacy and tolerability of a tannic acid-based medical food, Cesinex®, in the treatment of diarrhea, and to investigate the mechanisms underlying its antidiarrheal effect. Methods Cesinex® was prescribed to six children and four adults with diarrhea. Patient records were retrospectively reviewed for the primary outcome. Cesinex® and its major component, tannic acid, were tested for their effects on cholera toxin-induced intestinal fluid secretion in mouse. Polarized human gut epithelial cells (HT29-CL19A cells) were used to investigate the effects of tannic acid on epithelial barrier properties, transepithelial chloride secretion, and cell viability. Results Successful resolution of diarrheal symptoms was reported in nine of ten patients receiving Cesinex®. Treatment of HT29-CL19A cells with clinically relevant concentrations of tannic acid (0.01–1 mg/ml) significantly increased transepithelial resistance and inhibited the CFTR-dependent or the calcium-activated Cl− secretion. Tannic acid could also improve the impaired epithelial barrier function induced by TNFα and inhibited the disrupting effect of TNFα on the epithelial barrier function in these cells. CTX-induced mouse intestinal fluid secretion was significantly reduced by administration of Cesinex® or tannic acid. Cesinex® has high antioxidant capacity. Conclusions Cesinex® demonstrates an effective and safety profile in treatment of diarrhea. The broad-spectrum antidiarrheal effect of Cesinex® can be attributed to a combination of factors: its ability to improve the epithelial barrier properties, to inhibit intestinal fluid secretion, and the high antioxidant property. PMID:21748285

  10. Diarrhoeal disease through enterocyte secretion: a doctrine untroubled by proof.

    PubMed

    Lucas, Michael L

    2010-04-01

    For almost 40 years, one of the principal causes of diarrhoeal disease has been thought to be fluid secretion emanating from the epithelial cells of the small and large intestine. Given the extremely large fluid losses seen in cholera, where secretion can be up to several litres per day, this seems a plausible hypothesis. The enterocyte (epithelial cell) secretion hypothesis rapidly displaced all other alternatives, such as vasodilatation coupled with enhanced paracellular permeability. An essential mechanism underlying enterocyte secretion has always been assumed to be electrogenic chloride secretion, leading to a localized osmotic imbalance at the mucosal surface of the enterocytes that causes fluid entry into the lumen by osmosis. The chloride secretion basis for enterotoxin-deranged secretion is assumed to be measurable by changes in electrical currents and by altered transport of chloride ion. These can be detected after the small intestine is exposed to a heat-stable enterotoxin (STa) produced by Escherichia coli. However, in vivo, when the recovered volume technique is used, STa is found not to be secretory. The heat-stable enterotoxin is therefore a test case toxin, because the complex techniques used to demonstrate enterocyte secretion after STa exposure show apparent secretion, while the simplest technique based on fluid recovery and genuinely measuring the mass transport of fluid does not. This review scrutinizes the nature of the evidence put forward for enterocyte secretion and reaches the conclusion that there is no evidence for it. Debilitating secretion undoubtedly does take place in severe diarrhoeal disease, but secretion from enterocytes is unlikely to be the cause.

  11. Not All Lacrimal Epithelial Cells are Created Equal—Heterogeneity of the Rabbit Lacrimal Gland and Differential Secretion

    PubMed Central

    Ding, Chuanqing; Huang, Jianyan; MacVeigh-Aloni, Michelle; Lu, Michael

    2013-01-01

    Aims To test the hypotheses that some epithelial cells in the rabbit lacrimal gland (LG) are mucin-secreting cells that are also particularly rich in aquaporin 5 (AQP5) and sodium potassium ATPase β1 subunit (NKAβ1), LG-secreted mucins contribute to the total mucin pool in tear film, and that the rabbit LG is a heterogenic gland where proteins secreted in response to different agonists are varied. Materials and methods LGs were obtained from adult female rabbits and processed for paraffin sections for hematoxylin and eosin (HE) staining, periodic acid-Schiff (PAS), mucicarmine, and Alcian blue (pH 0.4, 1.0, and 2.5) for the detection of mucins. Serial sections were used for immunohistochemistry (IHC) and PAS. LG lysates and fluids were assayed by dot blot for detection of mucins, and by SDS-PAGE to detect differences in protein profiles of LG fluids stimulated by different agonists. Results HE staining demonstrated that the LG is a heterogeneous gland where most epithelial cells are serous, while all duct cells are mucous cells. Some acini and individual acinar cells within serous acini are also mucous or seromucous cells and these cells are particularly rich in AQP5 and NKAβ1. Dot blot assay showed the presence of mucins in the LG fluids. The protein profiles of LG fluids from pilocarpine, phenylephrine, and isoproterenol varied significantly, particularly in the mid range. Conclusions Our data indicated that the rabbit LG is a heterogeneous gland that is composed of both serous and mucin-secreting cells, and mucins produced by the LG contribute to the mucin pool in the tear film. The heterogeneity of the rabbit LG supports the notion of differential secretion, i.e. the volume and composition of the LG fluids vary depending on various circumstances in the ocular surface and the body’s needs. PMID:21999223

  12. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for fluid secretion. PMID:22777674

  13. Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome

    PubMed Central

    Keely, Simon; Kelly, Caleb J.; Weissmueller, Thomas; Burgess, Adrianne; Wagner, Brandie D.; Robertson, Charles E.; Harris, J. Kirk; Colgan, Sean P.

    2012-01-01

    Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl- secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p < 0.001) and decreased S. typhimurium internalization and translocation by as much as 71 ± 6% (p < 0.01). Such decreases in bacterial translocation were abolished by inhibition of electrogenic Cl- secretion and water transport using the Na-K-Cl- antagonist bumetanide (p < 0.01). Extensions of these findings to microbiome analysis in vivo revealed that lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl- secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism. PMID:22614705

  14. The Ethanol-Induced Stimulation of Rat Duodenal Mucosal Bicarbonate Secretion In Vivo Is Critically Dependent on Luminal Cl–

    PubMed Central

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl− from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl− and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms. PMID:25033198

  15. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    PubMed

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  16. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion.

    PubMed

    Cuman, Carly; Van Sinderen, Michelle; Gantier, Michael P; Rainczuk, Kate; Sorby, Kelli; Rombauts, Luk; Osianlis, Tiki; Dimitriadis, Evdokia

    2015-10-01

    Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs) are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM) from blastocysts that failed to implant (non-implanted) compared to blastocysts that implanted (implanted). Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs). miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure.

  17. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins

    PubMed Central

    Chappell, Alfred E.; Bunz, Michael; Smoll, Eric; Dong, Hui; Lytle, Christian; Barrett, Kim E.; McCole, Declan F.

    2018-01-01

    Reactive oxygen species (ROS) are key mediators in a number of inflammatory conditions, including inflammatory bowel disease (IBD). ROS, including hydrogen peroxide (H2O2), modulate intestinal epithelial ion transport and are believed to contribute to IBD-associated diarrhea. Intestinal crypt fluid secretion, driven by electrogenic Cl− secretion, hydrates and sterilizes the crypt, thus reducing bacterial adherence. Here, we show that pathophysiological concentrations of H2O2 inhibit Ca2+-dependent Cl− secretion across T84 colonic epithelial cells by elevating cytosolic Ca2+, which contributes to activation of two distinct signaling pathways. One involves recruitment of the Ca2+-responsive kinases, Src and Pyk-2, as well as extracellular signal-regulated kinase (ERK). A separate pathway recruits p38 MAP kinase and phosphoinositide 3-kinase (PI3-K) signaling. The ion transport response to Ca2+-dependent stimuli is mediated in part by K+ efflux through basolateral K+ channels and Cl− uptake by the Na+-K+-2Cl− cotransporter, NKCC1. We demonstrate that H2O2 inhibits Ca2+-dependent basolateral K+ efflux and also inhibits NKCC1 activity independently of inhibitory effects on apical Cl− conductance. Thus, we have demonstrated that H2O2 inhibits Ca2+-dependent Cl− secretion through multiple negative regulatory signaling pathways and inhibition of specific ion transporters. These findings increase our understanding of mechanisms by which inflammation disturbs intestinal epithelial function and contributes to intestinal pathophysiology.—Chappell, A. E., Bunz, M., Smoll, E., Dong, H., Lytle, C., Barrett, K. E., McCole, D. F. Hydrogen peroxide inhibits Ca2+-dependent chloride secretion across colonic epithelial cells via distinct kinase signaling pathways and ion transport proteins. FASEB J. 22, 000–000 (2008) PMID:18211955

  18. Intestinal nerves and ion transport: stimuli, reflexes, and responses.

    PubMed

    Hubel, K A

    1985-03-01

    The effects of extrinsic and intrinsic nerves on ion and water transport by the intestine are considered and discussed in terms of their possible physiological function. Adrenergic nerves enter the small intestine via mesenteric nerves. Adrenergic tone is usually absent in tissues in vitro but is present in vivo. The nerves increase absorption in response to homeostatic changes associated with acute depletion of extracellular fluid. Cholinergic tone that reduces fluid absorption or causes secretion has been detected in the small intestine of humans, dogs, and cats and in the colon of humans. Extrinsic cholinergic fibers generally do not affect ion transport in small intestine but probably do so in colon. Whether peptides liberated in the mucosa affect enterocytes directly is not clear. Studies on humans and rabbits suggest that the role of substance P is minor. The physiological roles of vasoactive intestinal polypeptide (VIP) and somatostatin remain to be defined. Intraluminal factors also affect ion and water transport. Mucosal rubbing, distension, and cholera toxin cause fluid secretion; acid solutions in the duodenum cause alkaline secretion; these stimuli and hypertonic glucose liberate serotonin into the lumen, the mesenteric venous blood, or both. It has been proposed that the enterochromaffin cell is an epithelial sensory cell that responds to noxious stimuli within the lumen by liberating serotonin. The serotonin initiates a neural reflex through a nicotinic ganglion to liberate a secretagogue that acts on the enterocyte. The function of VIP in this proposed reflex is unclear. The variety of intraluminal stimuli that influence epithelial function implies that there is more than one type of epithelial sensory cell (or sensory mechanism). Prostaglandins may mediate the alkaline secretion caused by acid in the duodenum. There may be other effective substances. Although it has been known for years that intraluminal stimuli affect the coordination of smooth muscle functions, it is not known whether similar stimuli also influence salt and water transport as a meal traverses the alimentary canal.

  19. Computational modeling of epithelial fluid and ion transport in the parotid duct after transfection of human aquaporin-1

    PubMed Central

    Chiorini, John A; Sneyd, James; Suresh, Vinod

    2017-01-01

    Previous studies have shown that localized delivery of the aquaporin-1 (AQP1) gene to the parotid duct can restore saliva flow in minipigs following irradiation-induced salivary hypofunction. The resulting flow rate and electrochemistry of secreted saliva contradicts current understanding of ductal fluid transport. We hypothesized that changes in expression of ion transport proteins have occurred following AQP1 transfection. We use a mathematical model of ion and fluid transport across the parotid duct epithelial cells to predict the expression profile of ion transporters that are consistent with the experimental measurements of saliva composition and secretion rates. Using a baseline set of parameters, the model reproduces the data for the irradiated, non-AQP1-transfected case. We propose three scenarios which may have occurred after transfection, which differ in the location of the AQP1 gene. The first scenario places AQP1 within nonsecretory cells, and requires that epithelial sodium channel (ENaC) expression is greatly reduced (1.3% of baseline), and ductal bicarbonate concentration is increased from 40.6 to 137.0 mM, to drive water secretion into the duct. The second scenario introduces the AQP1 gene into all ductal cells. The final scenario has AQP1 primarily in the proximal duct cells which secrete water under baseline conditions. We find the change in the remaining cells includes a 95.8% reduction in ENaC expression, enabling us to reproduce all experimental ionic concentrations within 9 mM. These findings provide a mechanistic basis for the observations and will guide the further development of gene transfer therapy for salivary hypofunction. NEW & NOTEWORTHY Following transfection of aquaporin into the parotid ducts of minipigs with salivary hypofunction, the resulting increase in salivary flow rates contradicts current understanding of ductal fluid transport. We show that the change in saliva electrochemistry and flow rate can be explained by changes in expression of ion transporters in the ductal cell membranes, using a mathematical model replicating a single parotid duct. PMID:27932503

  20. Computational modeling of epithelial fluid and ion transport in the parotid duct after transfection of human aquaporin-1.

    PubMed

    Fong, Shelley; Chiorini, John A; Sneyd, James; Suresh, Vinod

    2017-02-01

    Previous studies have shown that localized delivery of the aquaporin-1 (AQP1) gene to the parotid duct can restore saliva flow in minipigs following irradiation-induced salivary hypofunction. The resulting flow rate and electrochemistry of secreted saliva contradicts current understanding of ductal fluid transport. We hypothesized that changes in expression of ion transport proteins have occurred following AQP1 transfection. We use a mathematical model of ion and fluid transport across the parotid duct epithelial cells to predict the expression profile of ion transporters that are consistent with the experimental measurements of saliva composition and secretion rates. Using a baseline set of parameters, the model reproduces the data for the irradiated, non-AQP1-transfected case. We propose three scenarios which may have occurred after transfection, which differ in the location of the AQP1 gene. The first scenario places AQP1 within nonsecretory cells, and requires that epithelial sodium channel (ENaC) expression is greatly reduced (1.3% of baseline), and ductal bicarbonate concentration is increased from 40.6 to 137.0 mM, to drive water secretion into the duct. The second scenario introduces the AQP1 gene into all ductal cells. The final scenario has AQP1 primarily in the proximal duct cells which secrete water under baseline conditions. We find the change in the remaining cells includes a 95.8% reduction in ENaC expression, enabling us to reproduce all experimental ionic concentrations within 9 mM. These findings provide a mechanistic basis for the observations and will guide the further development of gene transfer therapy for salivary hypofunction. Following transfection of aquaporin into the parotid ducts of minipigs with salivary hypofunction, the resulting increase in salivary flow rates contradicts current understanding of ductal fluid transport. We show that the change in saliva electrochemistry and flow rate can be explained by changes in expression of ion transporters in the ductal cell membranes, using a mathematical model replicating a single parotid duct. Copyright © 2017 the American Physiological Society.

  1. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasalvia, Maria; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari; Castellani, Stefano

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalizedmore » airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity in the plasmamembrane. • CFTR overexpression changes morphology and actin organization. • CFBE cells absorb more apical fluid than wild type bronchial epithelial cells. • Fluid absorption is increased by disorganization of actin cytoskeleton.« less

  2. Cftr controls lumen expansion and function of Kupffer’s vesicle in zebrafish

    PubMed Central

    Navis, Adam; Marjoram, Lindsay; Bagnat, Michel

    2013-01-01

    Regulated fluid secretion is crucial for the function of most organs. In vertebrates, the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) is a master regulator of fluid secretion. Although the biophysical properties of CFTR have been well characterized in vitro, little is known about its in vivo role during development. Here, we investigated the function of Cftr during zebrafish development by generating several cftr mutant alleles using TAL effector nucleases. We found that loss of cftr function leads to organ laterality defects. In zebrafish, left-right (LR) asymmetry requires cilia-driven fluid flow within the lumen of Kupffer’s vesicle (KV). Using live imaging we found that KV morphogenesis is disrupted in cftr mutants. Loss of Cftr-mediated fluid secretion impairs KV lumen expansion leading to defects in organ laterality. Using bacterial artificial chromosome recombineering, we generated transgenic fish expressing functional Cftr fusion proteins with fluorescent tags under the control of the cftr promoter. The transgenes completely rescued the cftr mutant phenotype. Live imaging of these transgenic lines showed that Cftr is localized to the apical membrane of the epithelial cells in KV during lumen formation. Pharmacological stimulation of Cftr-dependent fluid secretion led to an expansion of the KV lumen. Conversely, inhibition of ion gradient formation impaired KV lumen inflation. Interestingly, cilia formation and motility in KV were not affected, suggesting that fluid secretion and flow are independently controlled in KV. These findings uncover a new role for cftr in KV morphogenesis and function during zebrafish development. PMID:23487313

  3. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation.

    PubMed

    Kulshreshtha, Ankur; Ahmad, Tanveer; Agrawal, Anurag; Ghosh, Balaram

    2013-04-01

    Exosomes are nanovesicles involved in intercellular communication. Their roles in various diseases are often contextual, depending on the cell type producing them. Although few studies hint toward the proinflammatory role of bronchoalveolar lavage fluid-derived exosomes in asthmatic progression, the cell types in lungs associated with exosome-mediated crosstalk and their resultant effects remain unexplored. It is well established that exosome-mediated cellular communication can influence disease phenotypes. This study explores exosome-mediated cellular crosstalk between structural and immune cells in asthma pathogenesis. Exosomes were isolated and detected from bronchoalveolar lavage fluid of control and asthmatic mice and were quantified by using a bead-based assay. Involvement of epithelial cells and macrophages were established by using immunohistochemical techniques in lung tissue sections. The role of IL-13 in exosome production was ascertained by using various in vitro and in vivo techniques. Exosome secretion was blocked in in vitro and in vivo settings by using a chemical inhibitor, and the effects on various asthmatic features were studied. Using combinatorial in vitro and in vivo approaches, we found that exosome secretion and production of exosome-associated proteins are higher in lungs of asthmatic mice compared with that seen in sham mice. Asthma is marked by enhanced secretion of exosomes by epithelial cells, but not macrophages, under the influence of IL-13. These epithelial cell exosomes induce proliferation and chemotaxis of undifferentiated macrophages. On the other hand, GW4869, which inhibited exosome production, resulted in a reduced population of proliferating monocytes and alleviation of various asthmatic features. Under the influence of IL-13, epithelial cell-derived exosomes can induce enhanced proliferation and chemotaxis of undifferentiated macrophages in the lungs during asthmatic inflammatory conditions. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. How to measure CFTR-dependent bicarbonate transport: from single channels to the intact epithelium.

    PubMed

    Hug, Martin J; Clarke, Lane L; Gray, Michael A

    2011-01-01

    Bicarbonate serves many functions in our body. It is the predominant buffer maintaining a physiological pH in the blood and within our cells. It is also essential for proper digestion of nutrients and solubilization of complex protein mixtures, such as digestive enzymes and mucins, in epithelial secretions. Transepithelial HCO3- transport also drives net fluid secretion in many epithelial tissues including those in the gastrointestinal and reproductive tracts as well as the airways. Indeed, defective bicarbonate secretion is a hallmark of the pathophysiology in the pancreas of most patients suffering from cystic fibrosis. Some, but not all, disease-causing mutations in the CF gene lead to impaired bicarbonate transport when expressed in heterologous systems. Recently developed pharmacological modulators of mutant CFTR have demonstrated an ability to activate chloride transport but little is known about whether they also increase the secretion of bicarbonate. It is therefore essential to assay bicarbonate transport when studying the effect of small molecules on CFTR function. However, due to the chaotropic nature of the ion, the measurement of the absolute bicarbonate concentration and its permeability through CFTR is far from trivial. In this chapter we will review some of the techniques available to measure bicarbonate transport through single ion channels, individual cells, and intact epithelial layers.

  5. Establishment of Functional Acinar-like Cultures from Human Salivary Glands

    PubMed Central

    Jang, S.I.; Ong, H.L.; Gallo, A.; Liu, X.; Illei, G.

    2015-01-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers—namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. PMID:25416669

  6. Protease-Activated Receptor 2, Dipeptidyl Peptidase I, and Proteases Mediate Clostridium difficile Toxin A Enteritis

    PubMed Central

    COTTRELL, GRAEME S.; AMADESI, SILVIA; PIKIOS, STELLA; CAMERER, ERIC; WILLARDSEN, J. ADAM; MURPHY, BRETT R.; CAUGHEY, GEORGE H.; WOLTERS, PAUL J.; COUGHLIN, SHAUN R.; PETERSON, ANDERS; KNECHT, WOLFGANG; POTHOULAKIS, CHARALABOS; BUNNETT, NIGEL W.; GRADY, EILEEN F.

    2008-01-01

    Background & Aims We studied the role of protease-activated receptor 2 (PAR2) and its activating enzymes, trypsins and tryptase, in Clostridium difficile toxin A (TxA)-induced enteritis. Methods We injected TxA into ileal loops in PAR2 or dipeptidyl peptidase I (DPPI) knockout mice or in wild-type mice pretreated with tryptase inhibitors (FUT-175 or MPI-0442352) or soybean trypsin inhibitor. We examined the effect of TxA on expression and activity of PAR2 and trypsin IV messenger RNA in the ileum and cultured colonocytes. We injected activating peptide (AP), trypsins, tryptase, and p23 in wild-type mice, some pretreated with the neurokinin 1 receptor antagonist SR140333. Results TxA increased fluid secretion, myeloperoxidase activity in fluid and tissue, and histologic damage. PAR2 deletion decreased TxA-induced ileitis, reduced luminal fluid secretion by 20%, decreased tissue and fluid myeloperoxidase by 50%, and diminished epithelial damage, edema, and neutrophil infiltration. DPPI deletion reduced secretion by 20% and fluid myeloperoxidase by 55%. In wild-type mice, FUT-175 or MPI-0442352 inhibited secretion by 24%−28% and tissue and fluid myeloperoxidase by 31%−71%. Soybean trypsin inhibitor reduced secretion to background levels and tissue myeloperoxidase by up to 50%. TxA increased expression of PAR2 and trypsin IV in enterocytes and colonocytes and caused a 2-fold increase in Ca2+ responses to PAR2 AP. AP, tryptase, and trypsin isozymes (trypsin I/II, trypsin IV, p23) caused ileitis. SR140333 prevented AP-induced ileitis. Conclusions PAR2 and its activators are proinflammatory in TxA-induced enteritis. TxA stimulates existing PAR2 and up-regulates PAR2 and activating proteases, and PAR2 causes inflammation by neurogenic mechanisms. PMID:17570216

  7. DA-6034-induced mucin secretion via Ca2+-dependent pathways through P2Y receptor stimulation.

    PubMed

    Lee, Hun; Kim, Eung Kweon; Kim, Ji Yeon; Yang, Yu-Mi; Shin, Dong Min; Kang, Kyung Koo; Kim, Tae-im

    2014-09-11

    We evaluated whether DA-6034 is involved in mucin secretion via P2Y receptor activation and/or intracellular Ca2+ concentration ([Ca2+]i) change. Also, we investigated the effect of P2Y receptor inhibitors or Ca2+ chelators on the DA-6034-induced mucin secretion and [Ca2+]i increases. Effects of DA-6034 on mucin expression in primary, cultured, conjunctival epithelial cells was studied using RT-PCR, Western blot analysis, and periodic acid-schiff (PAS) staining. To evaluate thin film layer thickness generated by mucin and fluid secretion, cells were incubated in DA-6034 with/without P2Y antagonists or extracellular/intracellular Ca2+ chelators, and were imaged with confocal microscope using Texas Red-dextran dye. In addition, DA-6034-induced Ca2+-dependent Cl- channels opening was evaluated using perforated patch clamp. Fluo-4/AM was used to measure changes in [Ca2+]i induced by DA-6034 in Ca2+-free or Ca2+-containing buffered condition, as well as P2Y antagonists. DA-6034 induced the expression of mucin genes, production of mucin protein, and increase of number of mucin-secreting cells. P2Y antagonists inhibited DA-6034-induced mucin and fluid secretion, which was also affected by extracellular/intracellular Ca2+ chelators. DA-6034 stimulated Cl- channel opening and [Ca2+]i elevation. Further, [Ca2+]i increases induced by DA-6034 were lacking in either P2Y antagonists or Ca2+-free buffered condition, and diminished when endoplasmic reticulum Ca2+ was depleted by cyclopiazonic acid in Ca2+-free buffered condition. This study demonstrated that DA-6034 has a potential to induce mucin secretion via Ca2+-dependent pathways through P2Y receptors in multilayer, cultured, human conjunctival epithelial cells. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. Na+-coupled bicarbonate transporters in duodenum, collecting ducts and choroid plexus.

    PubMed

    Praetorius, Jeppe

    2010-01-01

    Epithelia cover the internal and external surfaces of the organism and form barriers between the various compartments. Some of these epithelia are specialized for effective transmembrane or even transepithelial movement of acid-base equivalents. Certain epithelia with a high rate of HCO3- transport express a few potent Na+-coupled acid-base transporters to gain a net HCO3- movement across the epithelium. Examples of such epithelia are renal proximal tubules and pancreatic ducts. In contrast, multiple Na+-coupled HCO3- transporters are expressed in other HCO3- secreting epithelia, such as the duodenal mucosa or the choroid plexus, which maintain suitable intracellular pH despite a variable demand for secreting HCO3-. In the duodenum, the epithelial cells must secrete HCO3- for neutralization of the gastric acid, and at the same time prevent cellular acidification. During the neutralization, large quantities of CO2 are formed in the duodenal lumen, which enter the epithelial cells. This would tend to lower intracellular pH and require effective counteracting mechanisms to avoid cell death and to maintain HCO3- secretion. The choroid plexus secretes the cerebrospinal fluid (CSF) and controls the pH of the otherwise poorly buffered CSF. The pCO2 of CSF fluctuates with plasma pCO2, and the choroid plexus must regulate the HCO3- secretion to minimize the effects of these fluctuations on CSF pH. This is done while maintaining pH neutrality in the epithelial cells. Thus, the Na+-HCO3- cotransporters appear to be involved in HCO3- import in more epithelia, where Na+/H+ exchangers were until recently thought to be sufficient for maintaining intracellular pH.

  9. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  10. An alternative explanation for the occurrence of short circuit current increases in the small intestine following challenge by bacterial enterotoxins.

    PubMed

    Lucas, M L

    2013-10-01

    Secretory diarrhoeal disease due to enterotoxins is thought to arise from the enhancement to pathologically high rates of normally occurring chloride ion and therefore fluid secretion from enterocytes. In support of this concept, many enterotoxins increase intestinal short-circuit current, regarded now as faithfully reflecting the increased chloride ion secretion. Contradicting this assumption, STa reduces absorption but does not cause secretion in vivo although short-circuit current is increased in vitro. There is therefore a mismatch between an assumed enterocyte mediated secretory event that should but does not cause net fluid secretion and an undoubtedly increased short-circuit current. It is proposed here that short-circuit current increases are not themselves secretory events but result from interrupted fluid absorption. A noteworthy feature of compounds that inhibit the increase in short-circuit current is that the majority are vasoactive, neuroactive or both. In general, vasodilator substances increase current. An alternative hypothesis for the origin of short-circuit current increases is that these result from reflex induction of electrogenic fluid absorption. This reflex enhances a compensatory response that is also present at a cellular level. An intestinal reflex is therefore proposed by which decreases in interstitial and intravascular volume or pressure within the intestine initiate an electrogenic fluid absorption mechanism that compensates for the loss of electrically neutral fluid absorption. This hypothesis would explain the apparently complex pharmacology of short-circuit current increases since many depressor substances have receptors in common with enterocytes and enteric nerves. The proposed alternative view of the origin of short-circuit current increases assumes that these do not represent chloride secretion from the enterocytes. This view may therefore aid the successful development of anti-diarrhoeal drugs to overcome a major cause of infant mortality worldwide, if short-circuit current data are being persistently misinterpreted. The putative but testable link between interstitial volume or pressure and fluid absorption also provides support for the alternative view of secretion; namely, that enhanced capillary and epithelial cell tight junctional permeability together with increased intracapillary pressure may cause secretion and not chloride exit from the enterocytes. Copyright © 2013. Published by Elsevier Ltd.

  11. Establishment of functional acinar-like cultures from human salivary glands.

    PubMed

    Jang, S I; Ong, H L; Gallo, A; Liu, X; Illei, G; Alevizos, I

    2015-02-01

    Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after β-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients. © International & American Associations for Dental Research 2014.

  12. Constitutive and regulated secretion of secretory leukocyte proteinase inhibitor by human intestinal epithelial cells.

    PubMed

    Si-Tahar, M; Merlin, D; Sitaraman, S; Madara, J L

    2000-06-01

    Epithelial cells participate in immune regulation and mucosal integrity by generating a range of biologically active mediators. In the intestine, little is known about the potential endogenous anti-inflammatory molecules. Secretory leukocyte proteinase inhibitor (SLPI) is a major serine proteinase inhibitor, a potent antibiotic, and thus a potential anti-inflammatory molecule, although it is not known if it is secreted by intestinal epithelial cells. We show, by reverse-transcription polymerase chain reaction, the presence of SLPI messenger RNA in human model intestinal epithelial cell lines (Caco2-BBE, T84, and HT29-Cl.19A) and human jejunum and colon biopsy specimens. The polymerase chain reaction product was cloned and sequenced and is identical to that of SLPI isolated previously from the human parotid gland. As analyzed by enzyme-linked immunosorbent assay, the constitutive secretion of SLPI occurs in a markedly polarized manner toward the apical surface and is enhanced by inflammatory mediators including tumor necrosis factor alpha and interleukin 1beta (approximately 3.5-fold increase over control value). SLPI release is also stimulated by activation of protein kinase C isoenzymes, but not by activation of adenosine 3',5'-cyclic monophosphate- or Ca(2+)-regulated signaling molecules. SLPI protein is detectable in intestinal lavage fluids collected from normal adult humans. Recombinant SLPI attenuates digestive enzyme (trypsin)- or leukocyte proteinase (elastase)-induced permeability alteration of a model epithelia in a dose-dependent manner. Moreover, SLPI exhibits an antibacterial activity against at least one major intestinal pathogen, Salmonella typhimurium. In contrast, SLPI does not influence epithelial barrier integrity as assessed by transepithelial conductance measurements or electrogenic ion transport. These results establish that human intestinal epithelium expresses and apically secretes SLPI, a molecule that may significantly contribute to the protection against attack from inflammatory cells and digestive enzymes, as well as against microbial infection.

  13. Cevimeline-induced monophasic salivation from the mouse submandibular gland: decreased Na+ content in saliva results from specific and early activation of Na+/H+ exchange.

    PubMed

    Kondo, Yusuke; Nakamoto, Tetsuji; Mukaibo, Taro; Kidokoro, Manami; Masaki, Chihiro; Hosokawa, Ryuji

    2011-04-01

    Cevimeline and pilocarpine are muscarinic agonists used clinically to treat dry mouth. In this study, we explored fluid secretion from mouse submandibular glands to determine the mechanism of cevimeline, pilocarpine, and an experimentally used agent carbachol. Cevimeline evoked almost the same amount of secretion at concentrations from 30 μM to 1 mM. Pilocarpine also induced secretion at a concentration as low as 1 μM and was the most powerful secretagogue at 10 μM. Secretion was induced by carbachol at 0.1 μM, with maximum secretion at 1.0 μM. Cevimeline induced monophasic secretion at all concentrations tested, whereas higher concentrations of pilocarpine and carbachol induced secretion with variable kinetics, i.e., an initial transient high flow rate, followed by decreased secretion after 2 to 3 min. In the presence of an epithelial Na(+) channel blocker, amiloride, neither carbachol nor pilocarpine affected the Na(+) level of secreted saliva; however, it significantly increased the Na(+) content of cevimeline-induced saliva. The intracellular Ca(2+) response of acinar cells was almost identical among all three agents, although recovery after drug removal was slower for cevimeline and pilocarpine. A profound decrease in intracellular pH was observed during pilocarpine and carbachol treatment, whereas intracellular acidification induced by cevimeline was only seen in the presence of a Na(+)/H(+) exchange inhibitor. When external HCO(3)(-) was removed, cevimeline-induced saliva significantly decreased. These findings suggest that cevimeline specifically activates Na(+)/H(+) exchange and may promote Na(+) reabsorption by stabilizing epithelial sodium channel activity.

  14. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca2+-dependent Cl− and K+ channels

    PubMed Central

    Hollenhorst, Monika I; Lips, Katrin S; Wolff, Miriam; Wess, Jürgen; Gerbig, Stefanie; Takats, Zoltan; Kummer, Wolfgang; Fronius, Martin

    2012-01-01

    BACKGROUND AND PURPOSE Recent studies detected the expression of proteins involved in cholinergic metabolism in airway epithelial cells, although the function of this non-neuronal cholinergic system is not known in detail. Thus, this study focused on the effect of luminal ACh as a regulator of transepithelial ion transport in epithelial cells. EXPERIMENTAL APPROACH RT-PCR experiments were performed using mouse tracheal epithelial cells for ChAT and organic cation transporter (OCT) transcripts. Components of tracheal airway lining fluid were analysed with desorption electrospray ionization (DESI) MS. Effects of nicotine on mouse tracheal epithelial ion transport were examined with Ussing-chamber experiments. KEY RESULTS Transcripts encoding ChAT and OCT1–3 were detected in mouse tracheal epithelial cells. The DESI experiments identified ACh in the airway lining fluid. Luminal ACh induced an immediate, dose-dependent increase in the transepithelial ion current (EC50: 23.3 µM), characterized by a transient peak and sustained plateau current. This response was not affected by the Na+-channel inhibitor amiloride. The Cl−-channel inhibitor niflumic acid or the K+-channel blocker Ba2+ attenuated the ACh effect. The calcium ionophore A23187 mimicked the ACh effect. Luminal nicotine or muscarine increased the ion current. Experiments with receptor gene-deficient animals revealed the participation of muscarinic receptor subtypes M1 and M3. CONCLUSIONS AND IMPLICATIONS The presence of luminal ACh and activation of transepithelial ion currents by luminal ACh receptors identifies a novel non-neuronal cholinergic pathway in the airway lining fluid. This pathway could represent a novel drug target in the airways. PMID:22300281

  15. Amniotic fluid: Source of trophic factors for the developing intestine

    PubMed Central

    Dasgupta, Soham; Arya, Shreyas; Choudhary, Sanjeev; Jain, Sunil K

    2016-01-01

    The gastrointestinal tract (GIT) is a complex system, which changes in response to requirements of the body. GIT represents a barrier to the external environment. To achieve this, epithelial cells must renew rapidly. This renewal of epithelial cells starts in the fetal life under the influence of many GIT peptides by swallowing amniotic fluid (AF). Development and maturation of GIT is a very complex cascade that begins long before birth and continues during infancy and childhood by breast-feeding. Many factors like genetic preprogramming, local and systemic endocrine secretions and many trophic factors (TF) from swallowed AF contribute and modulate the development and growth of the GIT. GIT morphogenesis, differentiation and functional development depend on the activity of various TF in the AF. This manuscript will review the role of AF borne TF in the development of GIT. PMID:26909227

  16. Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment.

    PubMed

    Pillai, Viju Vijayan; Weber, Darren M; Phinney, Brett S; Selvaraj, Vimal

    2017-01-01

    The oviductal microenvironment is a site for key events that involve gamete maturation, fertilization and early embryo development. Secretions into the oviductal lumen by either the lining epithelium or by transudation of plasma constituents are known to contain elements conducive for reproductive success. Although previous studies have identified some of these factors involved in reproduction, knowledge of secreted proteins in the oviductal fluid remains rudimentary with limited definition of function even in extensively studied species like cattle. In this study, we used a shotgun proteomics approach followed by bioinformatics sequence prediction to identify secreted proteins present in the bovine oviductal fluid (ex vivo) and secretions from the bovine oviductal epithelial cells (in vitro). From a total of 2087 proteins identified, 266 proteins could be classified as secreted, 109 (41%) of which were common for both in vivo and in vitro conditions. Pathway analysis indicated different classes of proteins that included growth factors, metabolic regulators, immune modulators, enzymes, and extracellular matrix components. Functional analysis revealed mechanisms in the oviductal lumen linked to immune homeostasis, gamete maturation, fertilization and early embryo development. These results point to several novel components that work together with known elements mediating functional homeostasis, and highlight the diversity of machinery associated with oviductal physiology and early events in cattle fertility.

  17. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.

  18. Morphogenetic Implications of Peristalsis-Driven Fluid Flow in the Embryonic Lung

    PubMed Central

    Bokka, Kishore K.; Jesudason, Edwin C.; Lozoya, Oswaldo A.; Guilak, Farshid; Warburton, David; Lubkin, Sharon R.

    2015-01-01

    Epithelial organs are almost universally secretory. The lung secretes mucus of extremely variable consistency. In the early prenatal period, the secretions are of largely unknown composition, consistency, and flow rates. In addition to net outflow from secretion, the embryonic lung exhibits transient reversing flows from peristalsis. Airway peristalsis (AP) begins as soon as the smooth muscle forms, and persists until birth. Since the prenatal lung is liquid-filled, smooth muscle action can transport fluid far from the immediately adjacent tissues. The sensation of internal fluid flows has been shown to have potent morphogenetic effects, as has the transport of morphogens. We hypothesize that these effects play an important role in lung morphogenesis. To test these hypotheses in a quantitative framework, we analyzed the fluid-structure interactions between embryonic tissues and lumen fluid resulting from peristaltic waves that partially occlude the airway. We found that if the airway is closed, fluid transport is minimal; by contrast, if the trachea is open, shear rates can be very high, particularly at the stenosis. We performed a parametric analysis of flow characteristics' dependence on tissue stiffnesses, smooth muscle force, geometry, and fluid viscosity, and found that most of these relationships are governed by simple ratios. We measured the viscosity of prenatal lung fluid with passive bead microrheology. This paper reports the first measurements of the viscosity of embryonic lung lumen fluid. In the range tested, lumen fluid can be considered Newtonian, with a viscosity of 0.016 ± 0.008 Pa-s. We analyzed the interaction between the internal flows and diffusion and conclude that AP has a strong effect on flow sensing away from the tip and on transport of morphogens. These effects may be the intermediate mechanisms for the enhancement of branching seen in occluded embryonic lungs. PMID:26147967

  19. Stimulation of epithelial cell matrix metalloproteinase (MMP-2, -9, -13) and interleukin-8 secretion by fusobacteria.

    PubMed

    Gursoy, U K; Könönen, E; Uitto, V-J

    2008-10-01

    Bacterial pathogens involved in periodontal diseases exert their destructive effects primarily by stimulating the host cells to increase their secretion of proinflammatory cytokines and matrix metalloproteinases (MMPs). This study aimed to determine the epithelial cell matrix metalloproteinase and interleukin-8 (IL-8) secretion upon exposure to fusobacteria. Eight different oral and non-oral Fusobacterium strains were incubated with HaCaT epithelial cells. Gelatin zymography and Western blot analysis were performed to detect collagenase 3 (MMP-13), gelatinase A (MMP-2), gelatinase B (MMP-9), and IL-8 secretion by epithelial cells. All Fusobacterium strains, especially Fusobacterium necrophorum ATCC 25286, Fusobacterium nucleatum ATCC 25586, and Fusobacterium varium ATCC 51644, increased MMP-9 and MMP-13 secretion. Fusobacterium simiae ATCC 33568, and to a lesser extent F. nucleatum and F. necrophorum, increased epithelial MMP-2 secretion. F. nucleatum and F. necrophorum also increased IL-8 secretion. F. varium ATCC 27725, a strain that only weakly stimulated MMP production, strongly increased the IL-8 production, suggesting that their expression is differently regulated. We conclude that the pathogenic potential of fusobacteria may partly result from their ability to stimulate secretion of MMP-9, MMP-13, and IL-8 from epithelial cells.

  20. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid secretion in airway epithelia

    PubMed Central

    Turner, Mark J.; Saint‐Criq, Vinciane; Patel, Waseema; Ibrahim, Salam H.; Verdon, Bernard; Ward, Christopher; Garnett, James P.; Tarran, Robert; Cann, Martin J.

    2015-01-01

    Key points Raised arterial blood CO2 (hypercapnia) is a feature of many lung diseases.CO2 has been shown to act as a cell signalling molecule in human cells, notably by influencing the levels of cell signalling second messengers: cAMP and Ca2+.Hypercapnia reduced cAMP‐stimulated cystic fibrosis transmembrane conductance regulator‐dependent anion and fluid transport in Calu‐3 cells and primary human airway epithelia but did not affect cAMP‐regulated HCO3 − transport via pendrin or Na+/HCO3 − cotransporters.These results further support the role of CO2 as a cell signalling molecule and suggests CO2‐induced reductions in airway anion and fluid transport may impair innate defence mechanisms of the lungs. Abstract Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist‐stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)‐mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP‐regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin‐stimulated elevations in intracellular cAMP as well as both adenosine‐ and forskolin‐stimulated increases in CFTR‐dependent transepithelial short‐circuit current, in polarised cultures of Calu‐3 human airway cells. This CO2‐induced reduction in anion secretion was not due to a decrease in HCO3 − transport given that neither a change in CFTR‐dependent HCO3 − efflux nor Na+/HCO3 − cotransporter‐dependent HCO3 − influx were CO2‐sensitive. Hypercapnia also reduced the volume of forskolin‐stimulated fluid secretion over 24 h, yet had no effect on the HCO3 − content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR‐dependent, electrogenic Cl− and fluid secretion, but not CFTR‐dependent HCO3 − secretion, which highlights a differential sensitivity of Cl− and HCO3 − transporters to raised CO2 in Calu‐3 cells. Hypercapnia also reduced forskolin‐stimulated CFTR‐dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs. PMID:26574187

  1. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells.

    PubMed

    Pongkorpsakol, Pawin; Yimnual, Chantapol; Chatsudthipong, Varanuj; Rukachaisirikul, Vatcharin; Muanprasat, Chatchai

    2017-06-01

    Intestinal Cl - secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA) suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl - secretion in human intestinal epithelial (T84) cells. FFA inhibited cAMP-dependent Cl - secretion in T84 cell monolayers with IC 50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl - channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K + channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca 2+ -dependent Cl - secretion with IC 50 of ∼10 μM. FFA inhibited activities of Ca 2+ -activated Cl - channels and K Ca 3.1, a Ca 2+ -activated basolateral K + channels, but had no effect on activities of Na + -K + -Cl - cotransporters and Na + -K + ATPases. These results indicate that FFA inhibits both cAMP and Ca 2+ -dependent Cl - secretion by suppressing activities of both apical Cl - channels and basolateral K + channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  2. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    PubMed

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.

  3. Ursodeoxycholic acid attenuates colonic epithelial secretory function

    PubMed Central

    Kelly, Orlaith B; Mroz, Magdalena S; Ward, Joseph B J; Colliva, Carolina; Scharl, Michael; Pellicciari, Roberto; Gilmer, John F; Fallon, Padraic G; Hofmann, Alan F; Roda, Aldo; Murray, Frank E; Keely, Stephen J

    2013-01-01

    Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in the regulation of colonic epithelial secretion. Cl− secretion was measured across voltage-clamped monolayers of T84 cells and muscle-stripped sections of mouse or human colon. Cell surface biotinylation was used to assess abundance/surface expression of transport proteins. Acute (15 min) treatment of T84 cells with bilateral UDCA attenuated Cl− secretory responses to the Ca2+ and cAMP-dependent secretagogues carbachol (CCh) and forskolin (FSK) to 14.0 ± 3.8 and 40.2 ± 7.4% of controls, respectively (n= 18, P < 0.001). Investigation of the molecular targets involved revealed that UDCA acts by inhibiting Na+/K+-ATPase activity and basolateral K+ channel currents, without altering their cell surface expression. In contrast, intraperitoneal administration of UDCA (25 mg kg−1) to mice enhanced agonist-induced colonic secretory responses, an effect we hypothesised to be due to bacterial metabolism of UDCA to lithocholic acid (LCA). Accordingly, LCA (50–200 μm) enhanced agonist-induced secretory responses in vitro and a metabolically stable UDCA analogue, 6α-methyl-UDCA, exerted anti-secretory actions in vitro and in vivo. In conclusion, UDCA exerts direct anti-secretory actions on colonic epithelial cells and metabolically stable derivatives of the bile acid may offer a new approach for treating intestinal diseases associated with diarrhoea. PMID:23507881

  4. Neuropeptide S reduces duodenal bicarbonate secretion and ethanol-induced increases in duodenal motility in rats

    PubMed Central

    Wan Saudi, Wan Salman

    2017-01-01

    Alcohol disrupts the intestinal mucosal barrier by inducing metabolic and functional changes in epithelial cells. Recently, we showed that neuropeptide S (NPS) decreases duodenal motility and increases mucosal paracellular permeability, suggesting a role of NPS in the pathogenesis of disorders and dysfunctions in the small intestine. The aim of the present study was to investigate the effects of NPS on ethanol- and HCl-induced changes of duodenal mucosal barrier function and motility. Rats were anaesthetized with thiobarbiturate, and a 30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ. The effects on duodenal bicarbonate secretion, the blood-to-lumen clearance of 51Cr-EDTA, motility and transepithelial net fluid flux were investigated. Intravenous (i.v.) administration of NPS significantly reduced duodenal mucosal bicarbonate secretion and stimulated mucosal transepithelial fluid absorption, mechanisms dependent on nitrergic signaling. NPS dose-dependently reduced ethanol-induced increases in duodenal motility. NPS (83 pmol·kg-1·min-1, i.v.) reduced the bicarbonate and fluid secretory response to luminal ethanol, whereas a 10-fold higher dose stimulated fluid secretion but did not influence bicarbonate secretion. In NPS-treated animals, duodenal perfusion of acid (pH 3) induced greater bicarbonate secretory rates than in controls. Pre-treating animals with Nω-nitro-L-arginine methyl ester (L-NAME) inhibited the effect of NPS on bicarbonate secretion. In response to luminal acid, NPS-treated animals had significantly higher paracellular permeability compared to controls, an effect that was abolished by L-NAME. Our findings demonstrate that NPS reduces basal and ethanol-induced increases in duodenal motility. In addition, NPS increases luminal alkalinization and mucosal permeability in response to luminal acid via mechanisms that are dependent on nitric oxide signaling. The data support a role for NPS in neurohumoral regulation of duodenal mucosal barrier function and motility. PMID:28384243

  5. The O-Linked Glycome and Blood Group Antigens ABO on Mucin-Type Glycoproteins in Mucinous and Serous Epithelial Ovarian Tumors

    PubMed Central

    Vitiazeva, Varvara; Kattla, Jayesh J.; Flowers, Sarah A.; Lindén, Sara K.; Premaratne, Pushpa; Weijdegård, Birgitta; Sundfeldt, Karin; Karlsson, Niclas G.

    2015-01-01

    Background Mucins are heavily O-glycosylated proteins where the glycosylation has been shown to play an important role in cancer. Normal epithelial ovarian cells do not express secreted mucins, but their abnormal expression has previously been described in epithelial ovarian cancer and may relate to tumor formation and progression. The cyst fluids were shown to be a rich source for acidic glycoproteins. The study of these proteins can potentially lead to the identification of more effective biomarkers for ovarian cancer. Methods In this study, we analyzed the expression of the MUC5AC and the O-glycosylation of acidic glycoproteins secreted into ovarian cyst fluids. The samples were obtained from patients with serous and mucinous ovarian tumors of different stages (benign, borderline, malignant) and grades. The O-linked oligosaccharides were released and analyzed by negative-ion graphitized carbon Liquid Chromatography (LC) coupled to Electrospray Ionization tandem Mass Spectrometry (ESI-MSn). The LC-ESI-MSn of the oligosaccharides from ovarian cyst fluids displayed differences in expression of fucose containing structures such as blood group ABO antigens and Lewis-type epitopes. Results The obtained data showed that serous and mucinous benign adenomas, mucinous low malignant potential carcinomas (LMPs, borderline) and mucinous low-grade carcinomas have a high level of blood groups and Lewis type epitopes. In contrast, this type of fucosylated structures were low abundant in the high-grade mucinous carcinomas or in serous carcinomas. In addition, the ovarian tumors that showed a high level of expression of blood group antigens also revealed a strong reactivity towards the MUC5AC antibody. To visualize the differences between serous and mucinous ovarian tumors based on the O-glycosylation, a hierarchical cluster analysis was performed using mass spectrometry average compositions (MSAC). Conclusion Mucinous benign and LMPs along with mucinous low-grade carcinomas appear to be different from serous and high-grade mucinous carcinomas based on their O-glycan profiles. PMID:26075384

  6. Adaptation to different salinities exposes functional specialization in the intestine of the sea bream (Sparus aurata L.).

    PubMed

    Gregório, Sílvia F; Carvalho, Edison S M; Encarnação, Sandra; Wilson, Jonathan M; Power, Deborah M; Canário, Adelino V M; Fuentes, Juan

    2013-02-01

    The processing of intestinal fluid, in addition to a high drinking rate, is essential for osmoregulation in marine fish. This study analyzed the long-term response of the sea bream (Sparus aurata L.) to relevant changes of external salinity (12, 35 and 55 p.p.t.), focusing on the anterior intestine and in the less-often studied rectum. Intestinal water absorption, epithelial HCO(3)(-) secretion and gene expression of the main molecular mechanisms (SLC26a6, SLC26a3, SLC4a4, atp6v1b, CFTR, NKCC1 and NKCC2) involved in Cl(-) and HCO(3)(-) movements were examined. The anion transporters SLC26a6 and SLC26a3 are expressed severalfold higher in the anterior intestine, while the expression of Atp6v1b (V-type H(+)-ATPase β-subunit) is severalfold higher in the rectum. Prolonged exposure to altered external salinity was without effect on water absorption but was associated with concomitant changes in intestinal fluid content, epithelial HCO(3)(-) secretion and salinity-dependent expression of SLC26a6, SLC26a3 and SLC4a4 in the anterior intestine. However, the most striking response to external salinity was obtained in the rectum, where a 4- to 5-fold increase in water absorption was paralleled by a 2- to 3-fold increase in HCO(3)(-) secretion in response to a salinity of 55 p.p.t. In addition, the rectum of high salinity-acclimated fish shows a sustained (and enhanced) secretory current (I(sc)), identified in vitro in Ussing chambers and confirmed by the higher expression of CFTR and NKCC1 and by immunohistochemical protein localization. Taken together, the present results suggest a functional anterior-posterior specialization with regard to intestinal fluid processing and subsequently to salinity adaptation of the sea bream. The rectum becomes more active at higher salinities and functions as the final controller of intestinal function in osmoregulation.

  7. Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds

    PubMed Central

    Skardal, Aleksander; Mack, David; Kapetanovic, Edi; Atala, Anthony; Jackson, John D.; Yoo, James

    2012-01-01

    Stem cells obtained from amniotic fluid show high proliferative capacity in culture and multilineage differentiation potential. Because of the lack of significant immunogenicity and the ability of the amniotic fluid-derived stem (AFS) cells to modulate the inflammatory response, we investigated whether they could augment wound healing in a mouse model of skin regeneration. We used bioprinting technology to treat full-thickness skin wounds in nu/nu mice. AFS cells and bone marrow-derived mesenchymal stem cells (MSCs) were resuspended in fibrin-collagen gel and “printed” over the wound site. At days 0, 7, and 14, AFS cell- and MSC-driven wound closure and re-epithelialization were significantly greater than closure and re-epithelialization in wounds treated by fibrin-collagen gel only. Histological examination showed increased microvessel density and capillary diameters in the AFS cell-treated wounds compared with the MSC-treated wounds, whereas the skin treated only with gel showed the lowest amount of microvessels. However, tracking of fluorescently labeled AFS cells and MSCs revealed that the cells remained transiently and did not permanently integrate in the tissue. These observations suggest that the increased wound closure rates and angiogenesis may be due to delivery of secreted trophic factors, rather than direct cell-cell interactions. Accordingly, we performed proteomic analysis, which showed that AFS cells secreted a number of growth factors at concentrations higher than those of MSCs. In parallel, we showed that AFS cell-conditioned media induced endothelial cell migration in vitro. Taken together, our results indicate that bioprinting AFS cells could be an effective treatment for large-scale wounds and burns. PMID:23197691

  8. Macrophage-derived LIF and IL1B regulate alpha(1,2)fucosyltransferase 2 (Fut2) expression in mouse uterine epithelial cells during early pregnancy.

    PubMed

    Jasper, Melinda J; Care, Alison S; Sullivan, Brad; Ingman, Wendy V; Aplin, John D; Robertson, Sarah A

    2011-01-01

    Macrophages accumulate within stromal tissue subjacent to the luminal epithelium in the mouse uterus during early pregnancy after seminal fluid exposure at coitus. To investigate their role in regulating epithelial cell expression of fucosylated structures required for embryo attachment and implantation, fucosyltransferase enzymes Fut1, Fut2 (Enzyme Commission number [EC] 2.4.1.69), and Fut4 (EC 2.4.1.214) and Muc1 and Muc4 mRNAs were quantified by quantitative real-time PCR in uterine epithelial cells after laser capture microdissection in situ or after epithelial cell coculture with macrophages or macrophage-secreted factors. When uterine macrophage recruitment was impaired by mating with seminal plasma-deficient males, epithelial cell Fut2 expression on Day 3.5 postcoitus (pc) was reduced compared to intact-mated controls. Epithelial cell Fut2 was upregulated in vitro by coculture with macrophages or macrophage-conditioned medium (MCM). Macrophage-derived cytokines LIF, IL1B, and IL12 replicated the effect of MCM on Fut2 mRNA expression, and MCM-stimulated expression was inhibited by anti-LIF and anti-IL1B neutralizing antibodies. The effects of acute macrophage depletion on fucosylated structures detected with lectins Ulex europaeus 1 (UEA-1) and Lotus tetragonolobus purpureas (LTP), or LewisX immunoreactivity, were quantified in vivo in Cd11b-dtr transgenic mice. Depletion of macrophages caused a 30% reduction in luminal epithelial UEA-1 staining and a 67% reduction in LewisX staining in uterine tissues of mice hormonally treated to mimic early pregnancy. Together, these data demonstrate that uterine epithelial Fut2 mRNA expression and terminal fucosylation of embryo attachment ligands is regulated in preparation for implantation by factors including LIF and IL1B secreted from macrophages recruited during the inflammatory response to insemination.

  9. Immune Modulation by Human Secreted RNases at the Extracellular Space.

    PubMed

    Lu, Lu; Li, Jiarui; Moussaoui, Mohammed; Boix, Ester

    2018-01-01

    The ribonuclease A superfamily is a vertebrate-specific family of proteins that encompasses eight functional members in humans. The proteins are secreted by diverse innate immune cells, from blood cells to epithelial cells and their levels in our body fluids correlate with infection and inflammation processes. Recent studies ascribe a prominent role to secretory RNases in the extracellular space. Extracellular RNases endowed with immuno-modulatory and antimicrobial properties can participate in a wide variety of host defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. Their expression and secretion are induced in response to a variety of injury stimuli. The secreted proteins can target damaged cells and facilitate their removal from the focus of infection or inflammation. Following tissue damage, RNases can participate in clearing RNA from cellular debris or work as signaling molecules to regulate the host response and contribute to tissue remodeling and repair. We provide here an overall perspective on the current knowledge of human RNases' biological properties and their role in health and disease. The review also includes a brief description of other vertebrate family members and unrelated extracellular RNases that share common mechanisms of action. A better knowledge of RNase mechanism of actions and an understanding of their physiological roles should facilitate the development of novel therapeutics.

  10. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells.

    PubMed

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J; Rodriguez, Elena; Shaffer, Thomas H

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) < 20% (dry), 69% (noninterventional comparator), and >90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  11. The Effects of Gas Humidification with High-Flow Nasal Cannula on Cultured Human Airway Epithelial Cells

    PubMed Central

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J.; Rodriguez, Elena; Shaffer, Thomas H.

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) < 20% (dry), 69% (noninterventional comparator), and >90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation. PMID:22988501

  12. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770

    PubMed Central

    Van Goor, Fredrick; Hadida, Sabine; Grootenhuis, Peter D. J.; Burton, Bill; Cao, Dong; Neuberger, Tim; Turnbull, Amanda; Singh, Ashvani; Joubran, John; Hazlewood, Anna; Zhou, Jinglan; McCartney, Jason; Arumugam, Vijayalaksmi; Decker, Caroline; Yang, Jennifer; Young, Chris; Olson, Eric R.; Wine, Jeffery J.; Frizzell, Raymond A.; Ashlock, Melissa; Negulescu, Paul

    2009-01-01

    Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a protein kinase A (PKA)-activated epithelial anion channel involved in salt and fluid transport in multiple organs, including the lung. Most CF mutations either reduce the number of CFTR channels at the cell surface (e.g., synthesis or processing mutations) or impair channel function (e.g., gating or conductance mutations) or both. There are currently no approved therapies that target CFTR. Here we describe the in vitro pharmacology of VX-770, an orally bioavailable CFTR potentiator in clinical development for the treatment of CF. In recombinant cells VX-770 increased CFTR channel open probability (Po) in both the F508del processing mutation and the G551D gating mutation. VX-770 also increased Cl− secretion in cultured human CF bronchial epithelia (HBE) carrying the G551D gating mutation on one allele and the F508del processing mutation on the other allele by ≈10-fold, to ≈50% of that observed in HBE isolated from individuals without CF. Furthermore, VX-770 reduced excessive Na+ and fluid absorption to prevent dehydration of the apical surface and increased cilia beating in these epithelial cultures. These results support the hypothesis that pharmacological agents that restore or increase CFTR function can rescue epithelial cell function in human CF airway. PMID:19846789

  13. cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells.

    PubMed

    Montesano, Roberto; Ghzili, Hafida; Carrozzino, Fabio; Rossier, Bernard C; Féraille, Eric

    2009-02-01

    Polycystic kidney diseases result from disruption of the genetically defined program that controls the size and geometry of renal tubules. Cysts which frequently arise from the collecting duct (CD) result from cell proliferation and fluid secretion. From mCCD(cl1) cells, a differentiated mouse CD cell line, we isolated a clonal subpopulation (mCCD-N21) that retains morphogenetic capacity. When grown in three-dimensional gels, mCCD-N21 cells formed highly organized tubular structures consisting of a palisade of polarized epithelial cells surrounding a cylindrical lumen. Subsequent addition of cAMP-elevating agents (forskolin or cholera toxin) or of membrane-permeable cAMP analogs (CPT-cAMP) resulted in rapid and progressive dilatation of existing tubules, leading to the formation of cystlike structures. When grown on filters, mCCD-N21 cells exhibited a high transepithelial resistance as well as aldosterone- and/or vasopressin-induced amiloride-sensitive and -insensitive current. The latter was in part inhibited by Na(+)-K(+)-2Cl(-) cotransporter (bumetanide) and chloride channel (NPPB) inhibitors. Real-time PCR analysis confirmed the expression of NKCC1, the ubiquitous Na(+)-K(+)-2Cl(-) cotransporter and cystic fibrosis transmembrane regulator (CFTR) in mCCD-N21 cells. Tubule enlargement and cyst formation were prevented by inhibitors of Na(+)-K(+)-2Cl(-) cotransporters (bumetanide or ethacrynic acid) or CFTR (NPPB or CFTR inhibitor-172). These results further support the notion that cAMP signaling plays a key role in renal cyst formation, at least in part by promoting chloride-driven fluid secretion. This new in vitro model of tubule-to-cyst conversion affords a unique opportunity for investigating the molecular mechanisms that govern the architecture of epithelial tubes, as well as for dissecting the pathophysiological processes underlying cystic kidney diseases.

  14. Yersinia enterocolitica-Induced Interleukin-8 Secretion by Human Intestinal Epithelial Cells Depends on Cell Differentiation

    PubMed Central

    Schulte, Ralf; Autenrieth, Ingo B.

    1998-01-01

    In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting β1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer’s patch tissue remains to be shown. PMID:9488416

  15. Influence of Bicarbonate/Low-GDP Peritoneal Dialysis Fluid (Bicavera) on In Vitro and Ex Vivo Epithelial-to-Mesenchymal Transition of Mesothelial Cells

    PubMed Central

    Fernández–Perpén, Antonio; Pérez–Lozano, María Luisa; Bajo, María–Auxiliadora; Albar–Vizcaino, Patricia; Correa, Pilar Sandoval; del Peso, Gloria; Castro, María–José; Aguilera, Abelardo; Ossorio, Marta; Peter, Mirjam E.; Passlick–Deetjen, Jutta; Aroeira, Luiz S.; Selgas, Rafael; López–Cabrera, Manuel; Sánchez–Tomero, J. Antonio

    2012-01-01

    ♦ Background: Peritoneal membrane damage induced by peritoneal dialysis (PD) is largely associated with epithelial-to-mesenchymal transition (EMT) of mesothelial cells (MCs), which is believed to be a result mainly of the glucose degradation products (GDPs) present in PD solutions. ♦ Objectives: This study investigated the impact of bicarbonate-buffered, low-GDP PD solution (BicaVera: Fresenius Medical Care, Bad Homburg, Germany) on EMT of MCs in vitro and ex vivo. ♦ Methods: In vitro studies: Omentum-derived MCs were incubated with lactate-buffered standard PD fluid or BicaVera fluid diluted 1:1 with culture medium. Ex vivo studies: From 31 patients randomly distributed to either standard or BicaVera solution and followed for 24 months, effluents were collected every 6 months for determination of EMT markers in effluent MCs. ♦ Results: Culturing of MCs with standard fluid in vitro resulted in morphology change to a non-epithelioid shape, with downregulation of E-cadherin (indicative of EMT) and strong induction of vascular endothelial growth factor (VEGF) expression. By contrast, in vitro exposure of MCs to bicarbonate/low-GDP solution had less impact on both EMT parameters. Ex vivo studies partially confirmed the foregoing results. The BicaVera group, with a higher prevalence of the non-epithelioid MC phenotype at baseline (for unknown reasons), showed a clear and significant trend to gain and maintain an epithelioid phenotype at medium- and longer-term and to show fewer fibrogenic characteristics. By contrast, the standard solution group demonstrated a progressive and significantly higher presence of the non-epithelioid phenotype. Compared with effluent MCs having an epithelioid phenotype, MCs with non-epithelioid morphology showed significantly lower levels of E-cadherin and greater levels of fibronectin and VEGF. In comparing the BicaVera and standard solution groups, MCs from the standard solution group showed significantly higher secretion of interleukin 8 and lower secretion of collagen I, but no differences in the levels of other EMT-associated molecules, including fibronectin, VEGF, E-cadherin, and transforming growth factor β1. Peritonitis incidence was similar in both groups. Functionally, the use of BicaVera fluid was associated with higher transport of small molecules and lower ultrafiltration capacity. ♦ Conclusions: Effluent MCs grown ex vivo from patients treated with bicarbonate/low-GDP BicaVera fluid showed a trend to acquire an epithelial phenotype, with lower production of proinflammatory cytokines and chemokines (such as interleukin 8) than was seen with MCs from patients treated with a lactate-buffered standard PD solution. PMID:22215656

  16. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer.

    PubMed

    Li, Xiaoduan; Wang, Xipeng

    2017-05-15

    Ovarian cancer (OC) is one of the three types of malignant tumors in the female reproductive system, and epithelial ovarian cancer (EOC) is its most typical form. Due to the asymptomatic nature of the early stages and resistance to chemotherapy, EOC has both a poor prognosis and a high fatality rate. Current treatments for OC are very limited, and the 5-years survival rate is approximately 30%. Exosomes, which are microvesicles ranging from approximately 30-100 nm in size that are secreted by living cells, can be produced from different cell types and detected in various body fluids. Cancer cells can secrete more exosomes than healthy cells, and more importantly, the content of cancer cell-derived exosomes is distinct. The exosomes shedding from tumor cells are considered to be involved in tumor progression and metastasis. As such, exosomes are expected to be potential tools for tumor diagnosis and treatment. In this review, we briefly present the emerging roles of exosomes in OC and summarize related articles about their roles as diagnostic or prognostic biomarkers and in the treatment and drug resistance of OC.

  17. The epididymal microenvironment: a site of attack for a male contraceptive?

    PubMed

    Hinton, B T

    1980-07-01

    During their development, spermatozoa are continually bathed in fluid provided by epithelial secretions of the seminiferous tubule and the epididymal duct. This fluid or microenvironment is probably very important for spermatozoal maturation and survival. Micropuncture and microanalytic studies have revealed the occurrence of several biochemical changes of this specialized microenvironment along the epididymal duct; these changes seem to be linked to sperm maturation. The interactions between maturing spermatozoa and their microenvironment must be understood before interference in sperm maturation through intervention of the formation of the microenvironment is possible. Several compounds have been shown to interfere in spermatozoal maturation in the epididymis although their use as male contraceptives requires further investigation.

  18. Oxidants, antioxidants, and respiratory tract lining fluids.

    PubMed Central

    Cross, C E; van der Vliet, A; O'Neill, C A; Louie, S; Halliwell, B

    1994-01-01

    Respiratory tract lining fluids (RTLFs) are a heterogeneous group of substances covering the respiratory tract epithelial cells (RTECs) from nasal mucosa to alveoli. Antioxidant contained in the RTLFs can be expected to provide an initial defense against inhaled environmental toxins. The major antioxidants in RTLF include mucin, uric acid, protein (largely albumin), ascorbic acid, and reduced glutathione (GSH). RTLF antioxidants can be augmented by such processes as transudation/exudation of plasma constituents; RTEC secretory processes, including glandular mucus secretion; and cellular antioxidants derived from lysis of RTECs and of inflammatory cells. The antioxidant composition of RTLFs and their role in modulating normal and pathophysiologic RTEC functions under conditions of oxidative stress are yet to be fully characterized. PMID:7705296

  19. Physiology of bile secretion.

    PubMed

    Esteller, Alejandro

    2008-10-07

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bile-duct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.

  20. Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro

    PubMed Central

    Papafragkou, Efstathia; Weaver, James C.; Ferrante, Thomas C.; Bahinski, Anthony; Elkins, Christopher A.; Kulka, Michael; Ingber, Donald E.

    2017-01-01

    Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower ‘vascular’ channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis. PMID:28146569

  1. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake

    PubMed Central

    Ensign, Laura M.; Hoen, Timothy; Maisel, Katharina; Cone, Richard; Hanes, Justin

    2013-01-01

    Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that administration of hypotonic solutions would induce fluid uptake that could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We found that hypotonic formulations markedly increased the rate at which small molecule drugs and muco-inert nanoparticles (mucus-penetrating particles, or MPP), but not conventional mucoadhesive nanparticles (CP), reached the vaginal epithelial surface in vivo in mice. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that drugs or MPP in isotonic formulations failed to reach efficiently. However, hypotonic formulations caused unencapsulated “free” drugs to be drawn through the epithelium, reducing vaginal retention. In contrast, hypotonic formulations caused MPP to accumulate rapidly and uniformly on vaginal surfaces, ideally positioned for localized sustained drug delivery. Using a mouse model of vaginal genital herpes (HSV-2) infection, we found that hypotonic delivery of free drug led to improved immediate protection, but diminished longer-term protection. In contrast, as we previously demonstrated, hypotonic delivery of drug via MPP led to better long-term retention and protection in the vagina. Importantly, we demonstrate that slightly hypotonic formulations provided rapid and uniform delivery of MPP to the entire vaginal surface, thus enabling formulations with minimal risk of epithelial toxicity. Hypotonic formulations for vaginal drug delivery via MPP may significantly improve prevention and treatment of reproductive tract diseases and disorders. PMID:23769419

  2. YghJ, the secreted metalloprotease of pathogenic E. coli induces hemorrhagic fluid accumulation in mouse ileal loop.

    PubMed

    Tapader, Rima; Bose, Dipro; Pal, Amit

    2017-04-01

    YghJ, also known as SslE (Secreted and surface associated lipoprotein) is a cell surface associated and secreted lipoprotein harbouring M60 metalloprotease domain. Though the gene is known to be conserved among both pathogenic and commensal Escherichia coli isolates, the expression and secretion of YghJ was found to be higher among diverse E. coli pathotypes. YghJ, secreted from intestinal pathogens such as enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC) has been demonstrated to possess mucinase activity and hence facilitates colonization of these enteric pathogens to intestinal epithelial cells. Importantly, YghJ is also reported to be secreted from extraintestinal pathogenic E. coli isolates. In our previous study we have shown that YghJ, purified from a neonatal septicemic E. coli isolate could trigger induction of various proinflammatory cytokines in vitro. This led us to investigate the role of YghJ in causing in vivo tissue hemorrhage. In the present study, we validate the earlier in vitro finding and have showed that YghJ can cause extensive tissue damage in mouse ileum and is also able to induce significant fluid accumulation in a dose dependent manner in a mouse ileal loop (MIL) assay. Hence, our present study not only confirms the pathogenic potential of YghJ in sepsis pathophysiology but also indicates the enterotoxic ability of YghJ which makes it an important virulence determinant of intestinal pathogenic E. coli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The fate of epithelial cells in the human large intestine.

    PubMed

    Barkla, D H; Gibson, P R

    1999-08-01

    One hundred and forty biopsies of the colon and rectum, collected during routine colonoscopies of 51 patients aged 19 to 74 years, were examined using light microscopy and transmission and scanning electron microscopy. The results indicated that surface epithelial cells undergo apoptosis, passing through fenestrations in the basement membrane to where they enter the lamina propria and are taken up by macrophages; and it is hypothesized that apoptotic cells are carried through the fenestrations on a current of fluid. The study also found that epithelial cells positioned over the crypts are better attached and more robust than those more distant from the crypt opening; and it is further hypothesized that, after reaching the top of the crypts, some goblet cells cease secreting mucus and pass onto the surface compartment of absorptive cells. An unexpected finding was that the lower regions of the crypts commonly contain isolated necrotic colonocytes. Apoptotic cells were rarely observed in the crypt epithelium. The findings of this study support the "recycling" model of epithelial cell death in the surface compartment of the human colon.

  4. Nippostrongylus brasiliensis: infection induces upregulation of acetylcholinesterase activity on rat intestinal epithelial cells.

    PubMed

    Russell, W S; Henson, S M; Hussein, A S; Tippins, J R; Selkirk, M E

    2000-12-01

    Expression of cholines terases and muscarinic acetylcholine receptors in the jejunal mucosa has been investigated during infection of rats with the nematode parasite Nippostrongylus brasiliensis. Selective expression of m3 receptors was observed on epithelial cells from uninfected rats and animals 7 days postinfection, and saturation binding with [(3)H]quinuclidinyl benzilate indicated that receptor expression on cell membranes was unaltered by infection. Butyrylcholinesterase was highly expressed in mucosal epithelia, but acetylcholinesterase was present at low levels in uninfected animals. In contrast, discrete foci of intense acetylcholinesterase activity were observed on the basement membrane of intestinal epithelial cells in animals infected with N. brasiliensis. This was demonstrated to be due to upregulation of expression of endogenous enzyme, which peaked at Day 10 postinfection and subsequently declined to preinfection levels. It is suggested that this occurs in response to hyper-activation of the enteric nervous system as a result of infection, and may benefit the host by limiting excessive fluid secretion due to cholinergic stimulation. Copyright 2000 Academic Press.

  5. Thalidomide distinctly affected TNF-α, IL-6 and MMP secretion by an ovarian cancer cell line (SKOV-3) and primary ovarian cancer cells.

    PubMed

    Piura, Benjamin; Medina, Liat; Rabinovich, Alex; Dyomin, Victor; Huleihel, Mahmoud

    2013-01-01

    Thalidomide inhibits TNF-α production in lipopolysaccharide-stimulated monocytes. The aim of this study was to evaluate the effect of thalidomide on TNF-α, IL-6 and MMP secretion in epithelial ovarian carcinoma cells. SKOV-3 cells and primary epithelial ovarian carcinoma cells were cultured in the presence of various concentrations of thalidomide. Cell proliferation was examined by MTT proliferation assay. TNF-α and IL-6 levels were determined in the supernatants of the cell cultures by ELISA, and MMP activity was examined by gelatin zymography. Thalidomide did not significantly affect the proliferation and growth of SKOV-3 cells. However, it decreased significantly the capacity of SKOV-3 cells and primary epithelial ovarian carcinoma cells to secrete TNF-α. Thalidomide also significantly decreased the capacity of SKOV-3 cells, but not primary epithelial ovarian carcinoma cells, to secrete MMP-9 and MMP-2. However, thalidomide did not affect IL-6 secretion in SKOV-3 cells or primary epithelial ovarian carcinoma cells. Our study suggests that thalidomide distinctly affected TNF-α, IL-6 and MMPs secretion by an ovarian carcinoma cell line (SKOV-3) and primary ovarian cancer cells. This might suggest a different susceptibility of these two types of cells to thalidomide, and/or that the mechanisms of secretion of the factors examined are differently regulated in these cells. Our results may deepen our understanding the mechanism/s of action of thalidomide in ovarian carcinoma cells. The results might have important implications in future therapeutic strategies that will incorporate thalidomide and other cytokine inhibitors in the treatment of epithelial ovarian carcinoma.

  6. Candida albicans triggers interleukin-8 secretion by oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-04-01

    Oropharyngeal candidiasis is a frequent opportunistic infection associated with immunocompromised hosts. Candida albicans is the principal species responsible for this infection. Production of interleukin-8 (IL-8), by oral epithelial cells can be expected to play a major role in the recruitment and activation of professional phagocytes at the infected site. The purpose of this study was to determine whether C. albicans triggers secretion of IL-8 by oral epithelial cells in vitro and investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines (SCC4, SCC15, and OKF6/TERT-2) as well as primary gingival epithelial cells were used. Epithelial cells were cocultured with C. albicans, strains SC5314, ATCC28366 or ATCC32077, for 24-48 hr, and supernatants were analyzed for IL-8 content by ELISA. A germination-deficient mutant (efg1/efg1 cph1/cph1), otherwise isogenic to strain SC5314, was used to assess the requirement for germination in triggering IL-8 responses. In order to ascertain whether direct contact of yeast with host cells is required to trigger cytokine production, epithelial cells were separated from yeast using cell culture inserts. To test whether IL-8 secretion is dependent on IL-1alpha activity, epithelial cells were challenged with viable C. albicans in the presence or absence of neutralizing anti-IL-1alpha antibody or IL-1ra, and IL-8 secretion was measured in the supernatants. All cell lines and primary cultures responded to C. albicans with an increase in IL-8 secretion. IL-8 responses were contact-dependent, strain-specific, required yeast viability and germination into hyphae, and were in part autoregulated by IL-1alpha. Copyright 2003 Elsevier Science Ltd.

  7. Mechanophysical Stimulations of Mucin Secretion in Cultures of Nasal Epithelial Cells

    PubMed Central

    Even-Tzur Davidovich, Nurit; Kloog, Yoel; Wolf, Michael; Elad, David

    2011-01-01

    Nasal epithelial cells secret mucins and are exposed in vivo to airflow-induced mechanophysical stresses, including wall shear stress (WSS), temperature, and humidity. In this work, human nasal epithelial cells cultured under air-liquid interface conditions were subjected to fields of airflow-induced oscillatory WSS at different temperature and humidity conditions. Changes in mucin secretion due to WSS were measured and the role of the cytoskeleton in mucin secretion was explored. Mucin secretion significantly increased in response to WSS in a magnitude-dependent manner with respect to static cultures and independently of the airflow temperature and humidity. In static cultures, mucin secretion decreased at high humidity with or without elevation of the temperature with respect to cultures at a comfortable climate. In cultures exposed to WSS, mucin secretion increased at high temperature with respect to cultures at comfortable climate conditions. The polymerization of actin microfilaments was shown to increase mucin secretion under WSS, whereas the dynamics of microtubule polymerization did not affect secretion. In conclusion, the data in this study show that mucin secretion is sensitive to oscillatory WSS as well as high temperature and humidity conditions. PMID:21689518

  8. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmiummore » promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.« less

  9. Protons inhibit anoctamin 1 by competing with calcium.

    PubMed

    Chun, Hyeyeon; Cho, Hawon; Choi, Jimi; Lee, Jesun; Kim, Sung Min; Kim, Hyungsup; Oh, Uhtaek

    2015-11-01

    Cl(-) efflux through Ca(2+)-activated Cl(-) channels (CaCCs) in secretory epithelial cells plays a key role in the regulation of fluid secretion. The fluid and electrolyte secretion is closely related to intracellular pH. CaCCs have been known to be inhibited by intracellular acid. However, the molecular mechanism for the inhibition remains unknown. Anoctamin 1 (ANO1) is a Ca(2+)-activated Cl(-) channel that mediates numerous physiological functions including fluid secretion in secretory epithelia. However, little is known about whether ANO1 can be modulated by change of intracellular pH. Here, we demonstrate that Ca(2+)-induced activation of ANO1 and its homolog ANO2 are strongly inhibited by intracellular acid. Intracellular acid caused a rightward shift of the concentration-response curve of Ca(2+) in activating ANO1 and ANO2. To identify the location of the acid-induced inhibition, mutations were made on each of all histidine residues in cytoplasmic part of ANO1. However, none of the His-mutant showed the reduction in the acid-induced inhibition. Furthermore, mutation on Glu- or Asp-residues in the multiple acidic-amino acid regions was ineffective in blocking the acid-induced inhibition. Because the Ca(2+)-binding site of a fungal anoctamin (nhTMEM16) was uncovered by crystallography, mutagenesis was performed in this region. Surprisingly, mutations at Glu, Asp or Asn residues in the hydrophobic core that are known to be essential for Ca(2+)-induced activation of ANO1 blocked the acid-induced inhibition. These results suggest that protons interfere with Ca(2+) at the Ca(2+) binding site of ANO1. These findings provide a molecular mechanism underlying the acid-induced inhibition of ANO1, which may contribute to control fluid and electrolyte secretion in the secretory epithelia. Copyright © 2015. Published by Elsevier Ltd.

  10. Soluble Megalin is Reduced in Cerebrospinal Fluid Samples of Alzheimer's Disease Patients.

    PubMed

    Spuch, Carlos; Antequera, Desireé; Pascual, Consuelo; Abilleira, Soledad; Blanco, María; Moreno-Carretero, María José; Romero-López, Jesús; Ishida, Tetsuya; Molina, Jose Antonio; Villarejo, Alberto; Bermejo-Pareja, Felix; Carro, Eva

    2015-01-01

    Megalin or low-density lipoprotein receptor-related protein-2 is a member of the low-density lipoprotein receptor family, which has been linked to Alzheimer's disease (AD) by clearing brain amyloid β-peptide (Aβ) across the blood-cerebrospinal fluid barrier at the choroid plexus. Here, we found a soluble form of megalin secreted from choroid plexus epithelial cells. Soluble megalin levels were also localized in the human cerebrospinal fluid (CSF), being reduced in AD patients. We have also shown that soluble megalin binding to Aβ is decreased in the CSF of AD patients, suggesting that decreased sequestration of Aβ in the CSF could be associated with defective clearance of Aβ and an increase of brain Aβ levels. Thus, therapies, which increase megalin expression, at the choroid plexus and/or enhance circulating soluble megalin hold potential to control brain Aβ-related pathologies in AD.

  11. Soluble Megalin is Reduced in Cerebrospinal Fluid Samples of Alzheimer’s Disease Patients

    PubMed Central

    Spuch, Carlos; Antequera, Desireé; Pascual, Consuelo; Abilleira, Soledad; Blanco, María; Moreno-Carretero, María José; Romero-López, Jesús; Ishida, Tetsuya; Molina, Jose Antonio; Villarejo, Alberto; Bermejo-Pareja, Felix; Carro, Eva

    2015-01-01

    Megalin or low-density lipoprotein receptor-related protein-2 is a member of the low-density lipoprotein receptor family, which has been linked to Alzheimer’s disease (AD) by clearing brain amyloid β-peptide (Aβ) across the blood–cerebrospinal fluid barrier at the choroid plexus. Here, we found a soluble form of megalin secreted from choroid plexus epithelial cells. Soluble megalin levels were also localized in the human cerebrospinal fluid (CSF), being reduced in AD patients. We have also shown that soluble megalin binding to Aβ is decreased in the CSF of AD patients, suggesting that decreased sequestration of Aβ in the CSF could be associated with defective clearance of Aβ and an increase of brain Aβ levels. Thus, therapies, which increase megalin expression, at the choroid plexus and/or enhance circulating soluble megalin hold potential to control brain Aβ-related pathologies in AD. PMID:25926771

  12. Identification of molting fluid carboxypeptidase A (MF-CPA) in Bombyx mori.

    PubMed

    Ote, Manabu; Mita, Kazuei; Kawasaki, Hideki; Daimon, Takaaki; Kobayashi, Masahiko; Shimada, Toru

    2005-07-01

    Using microarray analyses, we identified carboxypeptidase A (MF-CPA), which was induced during pupal ecdysis in the wing discs of Bombyx mori. Here, we report the functional characterization of MF-CPA. MF-CPA has amino acid sequence similarities with the proteins in the carboxypeptidase A/B subfamily, from human to nematode. The MF-CPA gene is expressed during the molting periods in the epithelial tissues. MF-CPA is detected in the molting fluid, which fills the space between the old and new cuticle during molting. By Western blot analysis, we show that MF-CPA is secreted as a zymogen and processed in the molting fluid. Recombinant MF-CPA expressed in the insect cells has carboxypeptidase A activity. We propose that MF-CPA degrades the proteins from the old cuticle during the molting periods and contributes to recycling of the amino acids.

  13. Multifunctional Bioreactor System for Human Intestine Tissues

    PubMed Central

    2017-01-01

    The three-dimensional (3D) cultivation of intestinal cells and tissues in dynamic bioreactor systems to represent in vivo intestinal microenvironments is essential for developing regenerative medicine treatments for intestinal diseases. We have previously developed in vitro human intestinal tissue systems using a 3D porous silk scaffold system with intestinal architectures and topographical features for the adhesion, growth, and differentiation of intestinal cells under static culture conditions. In this study, we designed and fabricated a multifunctional bioreactor system that incorporates pre-epithelialized 3D silk scaffolds in a dynamic culture environment for in vitro engineering of human intestine tissues. The bioreactor system allows for control of oxygen levels in perfusion fluids (aerobic simulated intestinal fluid (SIF), microaerobic SIF, and anaerobic SIF), while ensuring control over the mechanical and chemical microenvironments present in native human intestines. The bioreactor system also enables 3D cell culture with spatial separation and cultivation of cocultured epithelial and stromal cells. Preliminary functional analysis of tissues housed in the bioreactor demonstrated that the 3D tissue constructs survived and maintained typical phenotypes of intestinal epithelium, including epithelial tight junction formation, intestinal biomarker expression, microvilli formation, and mucus secretion. The unique combination of a dynamic bioreactor and 3D intestinal constructs offers utility for engineering human intestinal tissues for the study of intestinal diseases and discovery options for new treatments. PMID:29333491

  14. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    PubMed

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  15. Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor.

    PubMed

    Gregório, Sílvia F; Fuentes, Juan

    2018-04-04

    In marine fish, high epithelial intestinal HCO₃ − secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR) in the regulation of HCO₃ − secretion in the intestine of the sea bream ( Sparus aurata L.). Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO₃ − secretion in vitro using the anterior intestine. HCO₃ − secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO₃ − secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.

  16. Dietary glutamate signal evokes gastric juice excretion in dogs.

    PubMed

    Khropycheva, Raisa; Andreeva, Julia; Uneyama, Hisayuki; Torii, Kunio; Zolotarev, Vasiliy

    2011-01-01

    Dietary-free L-glutamate (Glu) in the stomach interacts with specific Glu receptors (T1R1/T1R3 and mGluR1-8) expressed on surface epithelial and gastric gland cells. Furthermore, luminal Glu activates the vagal afferents in the stomach through the paracrine cascade including nitric oxide and serotonin (5-HT). To elucidate the role of dietary Glu in neuroendocrine control of the gastrointestinal phase of gastric secretion. In Pavlov or Heidenhain gastric pouch dogs, secretion was measured in the pouch while monosodium glutamate (MSG) was intubated into the main stomach alone or in combination with liquid diets. In both experimental models, supplementation of the amino acid-rich diet with MSG (100 mmol/l) enhanced secretions of acid, pepsinogen and fluid, and elevated plasma gastrin-17. However, MSG did not affect secretion stimulated by the carbohydrate-rich diet and had no effect on basal secretion when applied in aqueous solution. Effects of MSG were abolished by denervation of the stomach and proximal small intestine with intragastrically applied lidocaine and partially suppressed with the 5-HT(3) receptor blocker granisetron. Supplementation of amino acid-rich liquid diets with MSG enhances gastrointestinal phase secretion through neuroendocrine pathways which are partially mediated by 5-HT. Possible mechanisms are discussed. Copyright © 2011 S. Karger AG, Basel.

  17. The Neonatal Fc Receptor (FcRn) Enhances Human Immunodeficiency Virus Type 1 (HIV-1) Transcytosis across Epithelial Cells

    PubMed Central

    Gupta, Sandeep; Gach, Johannes S.; Becerra, Juan C.; Phan, Tran B.; Pudney, Jeffrey; Moldoveanu, Zina; Joseph, Sarah B.; Landucci, Gary; Supnet, Medalyn Jude; Ping, Li-Hua; Corti, Davide; Moldt, Brian; Hel, Zdenek; Lanzavecchia, Antonio; Ruprecht, Ruth M.; Burton, Dennis R.; Mestecky, Jiri; Anderson, Deborah J.; Forthal, Donald N.

    2013-01-01

    The mechanisms by which human immunodeficiency virus type 1 (HIV-1) crosses mucosal surfaces to establish infection are unknown. Acidic genital secretions of HIV-1-infected women contain HIV-1 likely coated by antibody. We found that the combination of acidic pH and Env-specific IgG, including that from cervicovaginal and seminal fluids of HIV-1-infected individuals, augmented transcytosis across epithelial cells as much as 20-fold compared with Env-specific IgG at neutral pH or non-specific IgG at either pH. Enhanced transcytosis was observed with clinical HIV-1 isolates, including transmitted/founder strains, and was eliminated in Fc neonatal receptor (FcRn)-knockdown epithelial cells. Non-neutralizing antibodies allowed similar or less transcytosis than neutralizing antibodies. However, the ratio of total:infectious virus was higher for neutralizing antibodies, indicating that they allowed transcytosis while blocking infectivity of transcytosed virus. Immunocytochemistry revealed abundant FcRn expression in columnar epithelia lining the human endocervix and penile urethra. Acidity and Env-specific IgG enhance transcytosis of virus across epithelial cells via FcRn and could facilitate translocation of virus to susceptible target cells following sexual exposure. PMID:24278022

  18. Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.

    PubMed

    Townley, Anna K; Schmidt, Katy; Hodgson, Lorna; Stephens, David J

    2012-02-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.

  19. Epithelial organization and cyst lumen expansion require efficient Sec13–Sec31-driven secretion

    PubMed Central

    Townley, Anna K.; Schmidt, Katy; Hodgson, Lorna; Stephens, David J.

    2012-01-01

    Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13–Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture. PMID:22331354

  20. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response.

    PubMed

    Younes, Jessica A; Reid, Gregor; van der Mei, Henny C; Busscher, Henk J

    2016-06-01

    ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice

    PubMed Central

    MacDonald, Kelvin D.; McKenzie, Karen R.; Henderson, Mark J.; Hawkins, Charles E.; Vij, Neeraj; Zeitlin, Pamela L.

    2008-01-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl− transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 μM lubiprostone was −5.8 ± 2.1 mV (CF, n = 12), −8.1 ± 2.6 mV (C57Bl/6 wild-type, n = 12), and −5.3 ± 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 μM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia. PMID:18805957

  2. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice.

    PubMed

    MacDonald, Kelvin D; McKenzie, Karen R; Henderson, Mark J; Hawkins, Charles E; Vij, Neeraj; Zeitlin, Pamela L

    2008-11-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.

  3. Bicarbonate diffusion through mucus.

    PubMed

    Livingston, E H; Miller, J; Engel, E

    1995-09-01

    The mucus layer overlying duodenal epithelium maintains a pH gradient against high luminal acid concentrations. Despite these adverse conditions, epithelial surface pH remains close to neutrality. The exact nature of the gradient-forming barrier remains unknown. The barrier consists of mucus into which HCO3- is secreted. Quantification of the ability of HCO3- to establish and maintain the gradient depends on accurate measurement of this ion's diffusion coefficient through mucus. We describe new experimental and mathematical methods for diffusion measurement and report diffusion coefficients for HCO3- diffusion through saline, 5% mucin solutions, and rat duodenal mucus. The diffusion coefficients were 20.2 +/- 0.10, 3.02 +/- 0.31, and 1.81 +/- 0.12 x 10(-6) cm2/s, respectively. Modeling of the mucobicarbonate layer with this latter value suggests that for conditions of high luminal acid strength the neutralization of acid by HCO3- occurs just above the epithelial surface. Under these conditions the model predicts that fluid convection toward the lumen could be important in maintaining the pH gradient. In support of this hypothesis we were able to demonstrate a net luminal fluid flux of 5 microliters.min-1.cm-2 after perfusion of 0.15 N HCl in the rat duodenum.

  4. Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells

    PubMed Central

    Chen, Qiuhong; Takada, Ritsuko; Noda, Chiyo; Kobayashi, Satoru; Takada, Shinji

    2016-01-01

    Accumulating evidence suggests that exosomes are heterogeneous in molecular composition and physical properties. Here we examined whether epithelial cells secrete a heterogeneous population of exosomes, and if that is the case, whether epithelial cell polarity affects release of different populations of exosomes, especially that of those carrying Wnt. Sucrose-density ultracentrifugation and molecular marker analysis revealed that different populations of exosomes or exosome-like vesicles were released from MDCK cells depending on the cell polarity. Wnt3a associated with these vesicles were detectable in culture media collected from both apical and basolateral sides of the cells. Basolaterally secreted Wnt3a were co-fractionated with a typical exosomal protein TSG101 in fractions having typical exosome densities. In contrast, most of apically secreted Wnt3a, as well as Wnt11, were co-fractionated with CD63 and Hsp70, which are also common to the most exosomes, but recovered in higher density fractions. Wnt3a exhibiting similar floatation behavior to the apically secreted ones were also detectable in the culture media of Wnt3a-expressing L and HEK293 cells. The lipidation of Wnt3a was required for its basolateral secretion in exosomes but was dispensable for the apical one. Thus, epithelial cells release Wnt via distinct populations of vesicles differing in secretion polarity and lipidation dependency. PMID:27765945

  5. Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection

    USDA-ARS?s Scientific Manuscript database

    IL-4 and IL-13 protect against parasitic helminths, but little is known about the mechanism of host protection. We show that IL-4/IL-13 confer immunity against worms by inducing intestinal epithelial cells (IEC) to differentiate into goblet cells that secrete resistin-like molecule beta (RELMB). R...

  6. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers.

    PubMed Central

    Madara, J L; Patapoff, T W; Gillece-Castro, B; Colgan, S P; Parkos, C A; Delp, C; Mrsny, R J

    1993-01-01

    Neutrophil transmigration across intestinal epithelia is thought to contribute to epithelial dysfunction and characterizes many inflammatory intestinal diseases. Neutrophils activated by factors, normally present in the lumen, release a neutrophil-derived secretagogue activity to which intestinal epithelia respond with an electrogenic chloride secretion, the transport event which underlies secretory diarrhea. Using sequential ultrafiltration, column chromatographic, and mass and Raman spectroscopic techniques, neutrophil-derived secretagogue was identified as 5'-AMP. Additional studies suggested that neutrophil-derived 5'-AMP is subsequently converted to adenosine at the epithelial cell surface by ecto-5'-nucleotidase and that adenosine subsequently activates intestinal secretion through adenosine receptors on the apical membrane of target intestinal epithelial cells. These findings suggest that this ATP metabolite may serve as a neutrophil-derived paracrine mediator that contributes to secretory diarrhea in states of intestinal inflammation. PMID:8486793

  7. Effect of azithromycin on the LPS-induced production and secretion of phospholipase A2 in lung cells.

    PubMed

    Kitsiouli, Eirini; Antoniou, Georgia; Gotzou, Helen; Karagiannopoulos, Michalis; Basagiannis, Dimitris; Christoforidis, Savvas; Nakos, George; Lekka, Marilena E

    2015-07-01

    Azithromycin is a member of macrolides, utilized in the treatment of infections. Independently, these antibiotics also possess anti-inflammatory and immunomodulatory properties. Phospholipase A2 isotypes, which are implicated in the pathophysiology of inflammatory lung disorders, are produced by alveolar macrophages and other lung cells during inflammatory response and can promote lung injury by destructing lung surfactant. The aim of the study was to investigate whether in lung cells azithromycin can inhibit secretory and cytosolic phospholipases A2, (sPLA2) and (cPLA2), respectively, which are induced by an inflammatory trigger. In this respect, we studied the lipopolysaccharide (LPS)-mediated production or secretion of sPLA2 and cPLA2 from A549 cells, a cancer bronchial epithelial cell line, and alveolar macrophages, isolated from bronchoalveolar lavage fluid of ARDS and control patients without cardiopulmonary disease or sepsis. Pre-treatment of cells with azithromycin caused a dose-dependent decrease in the LPS-induced sPLA2-IIA levels in A549 cells. This inhibition was rather due to reduced PLA2G2A mRNA expression and secretion of sPLA2-IIA protein levels, as observed by western blotting and indirect immunofluorescence by confocal microscopy, respectively, than to the inhibition of the enzymic activity per se. On the contrary, azithromycin had no effect on the LPS-induced production or secretion of sPLA2-IIA from alveolar macrophages. The levels of LPS-induced c-PLA2 were not significantly affected by azithromycin in either cell type. We conclude that azithromycin exerts anti-inflammatory properties on lung epithelial cells through the inhibition of both the expression and secretion of LPS-induced sPLA2-IIA, while it does not affect alveolar macrophages. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines

    PubMed Central

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-01-01

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1–11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines. PMID:27589719

  9. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    PubMed

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-08-29

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines.

  10. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    PubMed Central

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  11. Epithelial Cell–Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia

    PubMed Central

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A.; Zabinski, Mary C.; Yuen, Constance K.; Lung, Wing Yi; Gower, Adam C.; Belkina, Anna C.; Ramirez, Maria I.; Deng, Jane C.; Quinton, Lee J.; Jones, Matthew R.

    2016-01-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia. PMID:27064756

  12. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    PubMed

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  13. Secretion of a recombinant protein without a signal peptide by the exocrine glands of transgenic rabbits

    PubMed Central

    Iski, Gergely; Lipták, Nándor; Gócza, Elen; Kues, Wilfried A.; Bősze, Zsuzsanna

    2017-01-01

    Transgenic rabbits carrying mammary gland specific gene constructs are extensively used for excreting recombinant proteins into the milk. Here, we report refined phenotyping of previously generated Venus transposon-carrying transgenic rabbits with particular emphasis on the secretion of the reporter protein by exocrine glands, such as mammary, salivary, tear and seminal glands. The Sleeping Beauty (SB) transposon transgenic construct contains the Venus fluorophore cDNA, but without a signal peptide for the secretory pathway, driven by the ubiquitous CAGGS (CAG) promoter. Despite the absence of a signal peptide, the fluorophore protein was readily detected in milk, tear, saliva and seminal fluids. The expression pattern was verified by Western blot analysis. Mammary gland epithelial cells of SB-CAG-Venus transgenic lactating does also showed Venus-specific expression by tissue histology and fluorescence microscopy. In summary, the SB-CAG-Venus transgenic rabbits secrete the recombinant protein by different glands. This finding has relevance not only for the understanding of the biological function of exocrine glands, but also for the design of constructs for expression of recombinant proteins in dairy animals. PMID:29077768

  14. Mesosecrin: a secreted glycoprotein produced in abundance by human mesothelial, endothelial, and kidney epithelial cells in culture

    PubMed Central

    1987-01-01

    Human mesothelial cells, endothelial cells, and type II kidney epithelial cells growing in culture devote approximately 3% of their total protein synthesis to the production of an Mr approximately 46-kD, pI 7.1, secreted glycoprotein (designated Sp46). Fibroblasts make about 1/10th as much Sp46 as these cell types, and their synthesis is dependent upon hydrocortisone. Keratinocytes, urothelial cells, conjunctival epithelial cells, and mammary epithelial cells do not make detectable amounts of Sp46. Mesothelial cells secrete Sp46 onto the substratum, and from there it is subsequently released into the medium. Immunofluorescence analysis using specific antisera discloses that Sp46 is deposited beneath cells as a fine coating on the substratum. In sparse cultures, Sp46 is detected in trails behind motile cells. In contrast, secreted fibronectin coalesces into fibers, most of which remain in contact with and on top of the cells; thus Sp46 does not preferentially bind to fibronectin. About 6 kD of the mass of human Sp46 is N-linked oligosaccharide, which is terminally sialated before secretion. Sp46 has a low glycine content, indicating that it is not a collagenlike protein. Its NH2-terminal sequence over the first 40 amino acids does not resemble any protein for which sequence information is available. Sp46 appears to be a novel extracellular glycoprotein, high- level constitutive expression of which is restricted to mesoderm- derived epithelial and endothelial cells. We therefore propose for it the name "mesosecrin." PMID:3543023

  15. K2P TASK-2 and KCNQ1-KCNE3 K+ channels are major players contributing to intestinal anion and fluid secretion.

    PubMed

    Julio-Kalajzić, Francisca; Villanueva, Sandra; Burgos, Johanna; Ojeda, Margarita; Cid, L Pablo; Jentsch, Thomas J; Sepúlveda, Francisco V

    2018-02-01

    K + channels are important in intestinal epithelium as they ensure the ionic homeostasis and electrical potential of epithelial cells during anion and fluid secretion. Intestinal epithelium cAMP-activated anion secretion depends on the activity of the (also cAMP dependent) KCNQ1-KCNE3 K + channel, but the secretory process survives after genetic inactivation of the K + channel in the mouse. Here we use double mutant mice to investigate which alternative K + channels come into action to compensate for the absence of KCNQ1-KCNE3 K + channels. Our data establish that whilst Ca 2+ -activated K Ca 3.1 channels are not involved, K 2P two-pore domain TASK-2 K + channels are major players providing an alternative conductance to sustain the intestinal secretory process. Work with double mutant mice lacking both TASK-2 and KCNQ1-KCNE3 channels nevertheless points to yet-unidentified K + channels that contribute to the robustness of the cAMP-activated anion secretion process. Anion and fluid secretion across the intestinal epithelium, a process altered in cystic fibrosis and secretory diarrhoea, is mediated by cAMP-activated CFTR Cl - channels and requires the simultaneous activity of basolateral K + channels to maintain cellular ionic homeostasis and membrane potential. This function is fulfilled by the cAMP-activated K + channel formed by the association of pore-forming KCNQ1 with its obligatory KCNE3 β-subunit. Studies using mice show sizeable cAMP-activated intestinal anion secretion in the absence of either KCNQ1 or KCNE3 suggesting that an alternative K + conductance must compensate for the loss of KCNQ1-KCNE3 activity. We used double mutant mouse and pharmacological approaches to identify such a conductance. Ca 2+ -dependent anion secretion can also be supported by Ca 2+ -dependent K Ca 3.1 channels after independent CFTR activation, but cAMP-dependent anion secretion is not further decreased in the combined absence of K Ca 3.1 and KCNQ1-KCNE3 K + channel activity. We show that the K 2P K + channel TASK-2 is expressed in the epithelium of the small and large intestine. Tetrapentylammonium, a TASK-2 inhibitor, abolishes anion secretory current remaining in the absence of KCNQ1-KCNE3 activity. A double mutant mouse lacking both KCNQ1-KCNE3 and TASK-2 showed a much reduced cAMP-mediated anion secretion compared to that observed in the single KCNQ1-KCNE3 deficient mouse. We conclude that KCNQ1-KCNE3 and TASK-2 play major roles in the intestinal anion and fluid secretory phenotype. The persistence of an, admittedly reduced, secretory activity in the absence of these two conductances suggests that further additional K + channel(s) as yet unidentified contribute to the robustness of the intestinal anion secretory process. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  16. Isolation of Endoplasmic Reticulum Fractions from Mammary Epithelial Tissue.

    PubMed

    Chanat, Eric; Le Parc, Annabelle; Lahouassa, Hichem; Badaoui, Bouabid

    2016-06-01

    In the mammary glands of lactating animals, the mammary epithelial cells that surround the lumen of the acini produce and secrete copious amounts of milk. Functional differentiation of these mammary epithelial cells depends on the development of high-efficiency secretory pathways, notably for protein and lipid secretion. Protein secretion is a fundamental process common to all animal cells that involves a subset of cellular organelles, including the endoplasmic reticulum and the Golgi apparatus. In contrast, en masse secretion of triglycerides and cholesterol esters in the form of milk fat globules is a unique feature of the mammary epithelial cell. Cytoplasmic lipid droplets, the intracellular precursors of milk fat globules, originate from the endoplasmic reticulum, as do most milk-specific proteins. This organelle is therefore pivotal in the biogenesis of milk components. Fractionation of the cell into its subcellular parts is an approach that has proven very powerful for understanding organelle function and for studying the specific role of an organelle in a given cell activity. Here we describe a method for the purification of both smooth and rough microsomes, the membrane-bound endoplasmic reticulum fragments that form from endoplasmic reticulum domains when cells are broken up, from mammary gland tissue at lactation.

  17. P2 purinoceptors regulate calcium-activated chloride and fluid transport in 31EG4 mammary epithelia.

    PubMed

    Blaug, Sasha; Rymer, Jodi; Jalickee, Stephen; Miller, Sheldon S

    2003-04-01

    It has been reported that secretory mammary epithelial cells (MEC) release ATP, UTP, and UDP upon mechanical stimulation. Here we examined the physiological changes caused by ATP/UTP in nontransformed, clonal mouse mammary epithelia (31EG4 cells). In control conditions, transepithelial potential (apical side negative) and resistance were -4.4 +/- 1.3 mV (mean +/- SD, n = 12) and 517.7 +/- 39.4 Omega. cm(2), respectively. The apical membrane potential was -43.9 +/- 1.7 mV, and the ratio of apical to basolateral membrane resistance (R(A)/R(B)) was 3.5 +/- 0.2. Addition of ATP or UTP to the apical or basolateral membranes caused large voltage and resistance changes with an EC(50) of approximately 24 microM (apical) and approximately 30 microM (basal). Apical ATP/UTP (100 microM) depolarized apical membrane potential by 17.6 +/- 0.8 mV (n = 7) and decreased R(A)/R(B) by a factor of approximately 3. The addition of adenosine to either side (100 microM) had no effect on any of these parameters. The ATP/UTP responses were partially inhibited by DIDS and suramin and mediated by a transient increase in free intracellular Ca(2+) concentration (427 +/- 206 nM; 15-25 microM ATP, apical; n = 6). This Ca(2+) increase was blocked by cyclopiazonic acid, by BAPTA, or by xestospongin C. 31EG4 MEC monolayers also secreted or absorbed fluid in the resting state, and ATP or UTP increased fluid secretion by 5.6 +/- 3 microl x cm(-2) x h(-1) (n = 10). Pharmacology experiments indicate that 31EG4 epithelia contain P2Y(2) purinoceptors on the apical and basolateral membranes, which upon activation stimulate apical Ca(2+)-dependent Cl channels and cause fluid secretion across the monolayer. This suggests that extracellular nucleotides could play a fundamental role in mammary gland paracrine signaling and the regulation of milk composition in vivo.

  18. SDF-1 in Mammary Fibroblasts of Bovine with Mastitis Induces EMT and Inflammatory Response of Epithelial Cells.

    PubMed

    He, Guiliang; Ma, Mengru; Yang, Wei; Wang, Hao; Zhang, Yong; Gao, Ming-Qing

    2017-01-01

    Fibroblasts constitute the majority of the stromal cells within bovine mammary gland, yet the functional contributions of these cells to mastitis and fibrosis and the mechanism are poorly understood. In this study, we demonstrate that inflammation-associated fibroblasts (INFs) extracted from bovine mammary glands with clinical mastitis had different expression pattern regarding to several extracellular matrix (ECM) proteins, chemokines and cytokines compared to normal fibroblasts (NFs) from dairy cows during lactation. The INFs induced epithelial-mesenchymal transition (EMT) and inflammatory responses of mammary epithelial cells in a vitro co-culture model. These functional contributions of INFs to normal epithelial cells were mediated through their ability to secrete stromal cell-derived factor 1 (SDF-1). SDF-1 was highly secreted/expressed by INFs, lipopolysaccharide (LPS) -treated NFs, lipoteichoic acid (LTA) -treated NFs, as well as mastitic tissue compared to their counterparts. Exogenous SDF-1 promoted EMT on epithelial cells through activating NF-κB pathway, induced inflammation response and inhibited proliferation of epithelial cells. In addition, SDF-1 was able to induce mastitis and slight fibrosis of mouse mammary gland, which was attenuated by a specific inhibitor of the receptor of SDF-1. Our findings indicate that stromal fibroblasts within mammary glands with mastitis contribute to EMT and inflammatory responses of epithelial cells through the secretion of SDF-1, which could result in the inflammation spread and fibrosis within mammary gland.

  19. Pseudomonas aeruginosa LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator–IL-6–antimicrobial–repair pathway

    PubMed Central

    Saint-Criq, Vinciane; Villeret, Bérengère; Bastaert, Fabien; Kheir, Saadé; Hatton, Aurélie; Cazes, Aurélie; Xing, Zhou; Sermet-Gaudelus, Isabelle; Garcia-Verdugo, Ignacio; Edelman, Aleksander

    2018-01-01

    Background Pseudomonas aeruginosa lung infections are a huge problem in ventilator-associated pneumonia, cystic fibrosis (CF) and in chronic obstructive pulmonary disease (COPD) exacerbations. This bacterium secretes virulence factors that may subvert host innate immunity. Objective We evaluated the effect of P. aeruginosa elastase LasB, an important virulence factor secreted by the type II secretion system, on ion transport, innate immune responses and epithelial repair, both in vitro and in vivo. Methods Wild-type (WT) or cystic fibrosis transmembrane conductance regulator (CFTR)-mutated epithelial cells (cell lines and primary cells from patients) were treated with WT or ΔLasB pseudomonas aeruginosa O1 (PAO1) secretomes. The effect of LasB and PAO1 infection was also assessed in vivo in murine models. Results We showed that LasB was the most abundant protein in WT PAO1 secretomes and that it decreased epithelial CFTR expression and activity. In airway epithelial cell lines and primary bronchial epithelial cells, LasB degraded the immune mediators interleukin (IL)-6 and trappin-2, an important epithelial-derived antimicrobial molecule. We further showed that an IL-6/STAT3 signalling pathway was downregulated by LasB, resulting in inhibition of epithelial cell repair. In mice, intranasally instillated LasB induced significant weight loss, inflammation, injury and death. By contrast, we showed that overexpression of IL-6 and trappin-2 protected mice against WT-PAO1-induced death, by upregulating IL-17/IL-22 antimicrobial and repair pathways. Conclusions Our data demonstrate that PAO1 LasB is a major P. aeruginosa secreted factor that modulates ion transport, immune response and tissue repair. Targeting this virulence factor or upregulating protective factors such as IL-6 or antimicrobial molecules such as trappin-2 could be beneficial in P. aeruginosa-infected individuals. PMID:28790180

  20. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  1. Regulation of exosome release from mammary epithelial and breast cancer cells - a new regulatory pathway.

    PubMed

    Riches, Andrew; Campbell, Elaine; Borger, Eva; Powis, Simon

    2014-03-01

    Exosomes are small 50-100nm sized extracellular vesicles released from normal and tumour cells and are a source of a new intercellular communication pathway. Tumour exosomes promote tumour growth and progression. What regulates the release and homoeostatic levels of exosomes, in cancer, in body fluids remains undefined. We utilised a human mammary epithelial cell line (HMEC B42) and a breast cancer cell line derived from it (B42 clone 16) to investigate exosome production and regulation. Exosome numbers were quantified using a Nanosight LM10 and measured in culture supernatants in the absence and presence of exosomes in the medium. Concentrated suspensions of exosomes from the normal mammary epithelial cells, the breast cancer cells and bladder cancer cells were used. The interaction of exosomes with tumour cells was also investigated using fluorescently labelled exosomes. Exosome release from normal human mammary epithelial cells and breast cancer cells is regulated by the presence of exosomes, derived from their own cells, in the extracellular environment of the cells. Exosomes from normal mammary epithelial cells also inhibit exosome secretion by breast cancer cells, which occurs in a tissue specific manner. Labelled exosomes from mammary epithelial cells are internalised into the tumour cells implicating a dynamic equilibrium and suggesting a mechanism for feedback control. These data suggest a previously unknown novel feedback regulatory mechanism for controlling exosome release, which may highlight a new therapeutic approach to controlling the deleterious effects of tumour exosomes. This regulatory mechanism is likely to be generic to other tumours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A novel extract SB-300 from the stem bark latex of Croton lechleri inhibits CFTR-mediated chloride secretion in human colonic epithelial cells.

    PubMed

    Fischer, Horst; Machen, Terry E; Widdicombe, Jonathan H; Carlson, Thomas J S; King, Steven R; Chow, John W S; Illek, Beate

    2004-08-01

    An oligomeric proanthocyanidin (SP-303) extracted from the bark latex of the tree Croton lechleri (family Euphorbiaceae) is a potent inhibitor of cholera toxin-induced fluid accumulation and chloride secretion. The manufacturing process for SP-303 was optimized and simplified to produce an increased yield of the herbal extract. The novel extract (named SB-300) contained on average 70.6+/-7.2% SP-303 by weight (mean +/- S.D.; n=56 lots). Here, we describe the effectiveness of SB-300 on cAMP-regulated chloride secretion, which is mediated by the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) in human colonic T84 cells. Exposure of the apical surface to SB-300 blocked forskolin-stimulated Cl- secretion by 92.2+/-3.0% with a half-maximal inhibition constant (KB) of 4.8+/-0.8 microM. For SP-303, stimulated Cl- currents were decreased by 98.0+/-7.2 % and KB averaged 4.1+/-1.3 microM. There was no significant difference between the blocking kinetics of SP-303 and SB-300. Forskolin-stimulated whole cell Cl- currents were effectively blocked by extracellular addition of SB-300 (63+/-8.5%; n=3) and to a similar extent by SP-303 (83 +/- 0.6%; n=2; at 50 microM each). Both extracts inhibited a time- and voltage-independent Cl- conductance, which indicated the involvement of CFTR Cl- channels. We conclude that both SP-303 (used in Provir) and SB-300 (used in NSF Normal Stool Formula) are novel natural products that target the CFTR Cl- channel. SB-300 is a low cost herbal extract and may present a complementary and alternative medicine approach for the treatment of fluid loss in watery diarrhea.

  3. Role of monovalent cations in fluid secretion from the exocrine rabbit pancreas.

    PubMed

    Kuijpers, G A; Van Nooy, I G; De Pont, J J

    1989-08-21

    The role of Na+ in fluid secretion by the isolated rabbit pancreas was investigated. The fluid secretion rate is reduced upon replacement of Na+ in the bathing medium by Li+, K+ or choline. The inhibition depends on the nature of the substituting cation, and is largest with choline. Upon replacement, the substituent cation appears in the secreted fluid, and the Na+ concentration in the secreted fluid is decreased in a mirror-like fashion. When Na+ is replaced by Li+ or choline, the secretory Na+ concentration is decreased, although less than in the bathing medium, and the K+ concentration is increased. When Na+ is replaced by K+, the Na+ and the K+ concentration in the secreted fluid are approximately equal to their bathing medium concentrations. In the Li+ and choline medium, stimulation of the pancreas by carbachol or CCK-8 increases the fluid secretion rate. In addition, it increases the Li+ or choline concentration, and decreases the Na+ and K+ concentrations in the secreted fluid. In normal and K+ medium, stimulation causes only a slight increase in fluid secretion rate, with no change in the secretory Na+ concentration. In normal medium, stimulation leads to a decrease in the secretory K+ concentration. The effects of replacing Na+ appear to be the result of a direct inhibition of the active HCO3- transport underlying secretion, and an indirect inhibition related to the permeability of the pancreas for the various cations. The stimulants are likely to act by increasing the permeability of the tight junctions.

  4. Re-establishment of gap junctional intercellular communication (GJIC) between human endometrial carcinomas by prostaglandin E(2).

    PubMed

    Schlemmer, Scott R; Kaufman, David G

    2012-12-01

    Reduced intercellular communication via gap junctions is correlated with carcinogenesis. Gap junctional intercellular communication (GJIC), between normal human endometrial epithelial cells is enhanced when endometrial stromal cells were present in culture. This enhancement of GJIC between normal epithelial cells also occurs when they are cultured in medium conditioned by stromal cells. This observation indicated that a soluble compound (or compounds) produced and secreted by stromal cells mediates GJIC in epithelial cells. Previous studies have shown that endometrial stromal cells release prostaglandin E(2) (PGE(2)) and prostaglandin F(2α) (PGF(2α)) under physiological conditions. When we evaluated the response of normal endometrial epithelial cells to various concentrations of PGE(2,) we found enhanced GJIC with 1nM PGE(2). This is a smaller increase in GJIC than that induced by medium conditioned by stromal cells. When the extracellular concentration of PGE(2) was measured after incubation with stromal cells, it was found to be similar to the concentrations showing maximal GJIC between the normal epithelial cells. When indomethacin was used to inhibit prostaglandin synthesis by stromal cells, GJIC was reduced but not eliminated between normal endometrial epithelial cells. These observations suggest that although PGE(2) secreted by stromal cells is an important mediator of GJIC between the epithelial cells, it is not the sole mediator. Transformed endometrial epithelial cells did not demonstrate GJIC even in the presence of stromal cells. However, we were able to re-establish GJIC in transformed epithelial cells when we added PGE(2) to the cells. Our findings show that PGE(2) may serve as an intercellular mediator between stromal and epithelial cells that regulates GJIC in normal and malignant epithelial cells. This suggests that maintenance of GJIC by preserving or replacing PGE(2) secretion by endometrial stromal cells may have the potential to suppress carcinogenesis in endometrial epithelial cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Absence of CD9 reduces endometrial VEGF secretion and impairs uterine repair after parturition.

    PubMed

    Kawano, Natsuko; Miyado, Kenji; Yoshii, Noriko; Kanai, Seiya; Saito, Hidekazu; Miyado, Mami; Inagaki, Noboru; Odawara, Yasushi; Hamatani, Toshio; Umezawa, Akihiro

    2014-04-16

    In mammals, uterine epithelium is remodeled cyclically throughout adult life for pregnancy. Despite the expression of CD9 in the uterine epithelium, its role in maternal reproduction is unclear. Here, we addressed this issue by examining uterine secretions collected from patients undergoing fertility treatment and fertilization-competent Cd9(-/-) mice expressing CD9-GFP in their eggs (Cd9(-/-)TG). CD9 in uterine secretions was observed as extracellular matrix-like feature, and its amount of the secretions associated with repeated pregnancy failures. We also found that the litter size of Cd9(-/-)TG female mice was significantly reduced after their first birth. Severely delayed re-epithelialization of the endometrium was then occurred. Concomitantly, vascular endothelial growth factor (VEGF) was remarkably reduced in the uterine secretions of Cd9(-/-)TG female mice. These results provide the first evidence that CD9-mediated VEGF secretion plays a role in re-epithelialization of the uterus.

  6. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice.

    PubMed

    Seys, Leen J M; Verhamme, Fien M; Dupont, Lisa L; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F; Brusselle, Guy G; Mall, Marcus A; Bracke, Ken R

    2015-01-01

    Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.

  7. Directional secretory response of double stranded RNA-induced thymic stromal lymphopoetin (TSLP) and CCL11/eotaxin-1 in human asthmatic airways.

    PubMed

    Nino, Gustavo; Huseni, Shehlanoor; Perez, Geovanny F; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M; Pillai, Dinesh K; Rose, Mary C

    2014-01-01

    Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations.

  8. Directional Secretory Response of Double Stranded RNA-Induced Thymic Stromal Lymphopoetin (TSLP) and CCL11/Eotaxin-1 in Human Asthmatic Airways

    PubMed Central

    Perez, Geovanny F.; Pancham, Krishna; Mubeen, Humaira; Abbasi, Aleeza; Wang, Justin; Eng, Stephen; Colberg-Poley, Anamaris M.; Pillai, Dinesh K.; Rose, Mary C.

    2014-01-01

    Background Thymic stromal lymphoproetin (TSLP) is a cytokine secreted by the airway epithelium in response to respiratory viruses and it is known to promote allergic Th2 responses in asthma. This study investigated whether virally-induced secretion of TSLP is directional in nature (apical vs. basolateral) and/or if there are TSLP-mediated effects occurring at both sides of the bronchial epithelial barrier in the asthmatic state. Methods Primary human bronchial epithelial cells (HBEC) from control (n = 3) and asthmatic (n = 3) donors were differentiated into polarized respiratory tract epithelium under air-liquid interface (ALI) conditions and treated apically with dsRNA (viral surrogate) or TSLP. Sub-epithelial effects of TSLP were examined in human airway smooth muscle cells (HASMC) from normal (n = 3) and asthmatic (n = 3) donors. Clinical experiments examined nasal airway secretions obtained from asthmatic children during naturally occurring rhinovirus-induced exacerbations (n = 20) vs. non-asthmatic uninfected controls (n = 20). Protein levels of TSLP, CCL11/eotaxin-1, CCL17/TARC, CCL22/MDC, TNF-α and CXCL8 were determined with a multiplex magnetic bead assay. Results Our data demonstrate that: 1) Asthmatic HBEC exhibit an exaggerated apical, but not basal, secretion of TSLP after dsRNA exposure; 2) TSLP exposure induces unidirectional (apical) secretion of CCL11/eotaxin-1 in asthmatic HBEC and enhanced CCL11/eotaxin-1 secretion in asthmatic HASMC; 3) Rhinovirus-induced asthma exacerbations in children are associated with in vivo airway secretion of TSLP and CCL11/eotaxin-1. Conclusions There are virally-induced TSLP-driven secretory immune responses at both sides of the bronchial epithelial barrier characterized by enhanced CCL11/eotaxin-1 secretion in asthmatic airways. These results suggest a new model of TSLP-mediated eosinophilic responses in the asthmatic airway during viral-induced exacerbations. PMID:25546419

  9. [The cornea: stasis and dynamics].

    PubMed

    Nishida, Teruo

    2008-03-01

    The physiological roles of the cornea are to conduct external light into the eye, focus it, together with the lens, onto the retina, and to provide rigidity to the entire eyeball. Good vision thus requires maintenance of the transparency and proper refractive shape of the cornea. Although the cornea appears to be a relatively static structure, dynamic processes operate within and around the cornea at the tissue, cell, and molecular level. In this article, I review the mechanisms responsible for maintenance of corneal homeostasis as well as the development of new modes of treatment for various corneal diseases. I. The static cornea: structure and physiological functions. The cornea is derived from ectoderm, so that it can be considered as transparent skin. It is devoid of blood vessels and manifests the highest sensitivity in the entire body. The surface of the cornea is covered by tear fluid, which serves both as a lubricant and as a conduit for regulatory molecules. The cornea is also supplied with oxygen and various nutrients by the aqueous humor and a loop vascular system in addition to tear fluid. The cornea interacts with its surrounding tissues directly as well as indirectly through tear fluid or aqueous humor, with such interactions playing an important role in the regulation of corneal structure and functions. The resident cells of the cornea-epithelial cells, fibroblasts (keratocytes), and endothelial cells--also engage in mutual interactions through network systems. These interactions as well as those with infiltrated cells and regulation by nerves contribute to the maintenance of the normal structure and functions of the cornea as well as to the repair of corneal injuries. II. The dynamic cornea: maintenance of structure and functions by network systems. Developments in laser and computer technology have allowed observation of the cells and collagen fibers within the cornea. Furthermore, progress in cell and molecular biology has allowed characterization of dynamic network systems-including cell-cell and cell-extracellular matrix interactions as well as cytokines and neural factors-that contribute to the maintenance of corneal transparency and shape. III. Disruption of network systems: persistent corneal epithelial defects and corneal ulcer. Selection of the appropriate treatment for pathologic lesions of the cornea and the accompanying decrease in visual acuity requires localization of the lesion with regard to the epithelium, stroma, or endothelium of the cornea. In certain instances, however, it is not possible to determine the cause of the problem within the cornea. In such cases, the cause of the pathologic lesion and the target for treatment may lie in the surrounding tissues or environment. For example, corneal epithelial wound healing may be delayed, leading to the development of persistent epithelial defects, as a result of disruption of intercellular junctions between epithelial cells, an abnormality of the corneal basement membrane, altered concentrations of various cytokines in tear fluid, a lowered corneal sensation, or allergic reactions in the lid conjunctiva. Loss of corneal epithelial barrier function can further allow inflammatory cytokines present in tear fluid, together with infiltrated cells, to activate keratocytes and elicit excessive degradation of collagen in the stroma, thereby giving rise to corneal ulcer. IV. Development of new drugs for corneal diseases. We have attempted to apply the results of basic scientific research to the development of new drugs for corneal diseases that remain difficult to treat. The process of authorization for new drugs from the Ministry of Health, Labor, and Welfare takes more than two decades, however. The path from the bench to clinical practice is thus a long one. 1. Development of eyedrops for treatment of persistent corneal epithelial defects. We demonstrated the clinical efficacy of fibronectin eyedrops for the treatment of persistent epithelial defects of the cornea. However, the possibility of blood-borne infections has interfered with the development of serum-derived fibronectin as a drug. An automated machine for the preparation of autologous fibronectin eyedrops has therefore recently been developed. Furthermore, in seeking an alternative to fibronectin eyedrops, we are investigating the effects of a peptide corresponding to the second cell-binding domain of fibronectin on corneal epithelial wound healing. Considering that urokinase-type plasminogen activator may be expressed at the site of corneal epithelial defects and facilitates epithelial migration, the potential clinical application of annexin V, which stimulates the secretion of urokinase-type plasminogen activator for the treatment of persistent corneal epithelial defects is also now under investigation in Japan. 2. Development of eyedrops for treatment of neurotrophic keratopathy. Substance P, a neurotransmitter, stimulates corneal epithelial migration in a synergistic manner with insulin-like growth factor (IGF)--1. We have shown that eyedrops containing both the substance P-derived peptide FGLM-amide and the IGF-1--derived peptide SSSR are effective for the treatment of persistent corneal epithelial defects in individuals with diabetic keratopathy or neurotrophic keratopathy, both of which are associated with a reduction in corneal sensation. 3. Development of drugs for corneal ulcer. Treatment of corneal infection with antibiotics does not necessarily halt the process of corneal ulceration, which is characterized by excessive degradation of stromal collagen, or resolve persistent corneal epithelial defects. In addition to eyedrops for the treatment of persistent corneal epithelial defects, we have therefore also been working on the development of new drugs for the treatment of corneal ulcer. To this end, we have established an experimental system in which corneal fibroblasts are cultured in a three-dimensional collagen gel. With this system, we have shown that triptolide and steroids inhibit collagen degradation by corneal fibroblasts. Triptolide or its derivatives are thus potential drugs for the treatment of corneal ulcer and would work by acting directly on corneal fibroblasts rather than by inhibiting the secreted enzymes(matrix metalloproteinases) responsible for collagen degradation.

  10. Mechanisms for Cellular NO Oxidation and Nitrite Formation in Lung Epithelial Cells

    PubMed Central

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Wang, Jun; Frizzell, Sam; Gladwin, Mark T.

    2013-01-01

    Airway lining fluid contains relatively high concentrations of nitrite and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 hrs under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low oxygen conditions. The addition of oxy-hemoglobin (oxy-Hb) to the A549 cell media decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and bitrate, suggesting an enzymatic activity is required. This NO oxidation activity was found to be highest in membrane bound proteins with molecular sizes < 100 kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ) and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation (NO+). We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via ρ-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol (SNO) formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell membrane associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells. PMID:23639566

  11. Why doesn't conventional IVF work in the horse? The equine oviduct as a microenvironment for capacitation/fertilization.

    PubMed

    Leemans, Bart; Gadella, Bart M; Stout, Tom A E; De Schauwer, Catharina; Nelis, Hilde; Hoogewijs, Maarten; Van Soom, Ann

    2016-12-01

    In contrast to man and many other mammalian species, conventional in vitro fertilization (IVF) with horse gametes is not reliably successful. The apparent inability of stallion spermatozoa to penetrate the zona pellucida in vitro is most likely due to incomplete activation of spermatozoa (capacitation) because of inadequate capacitating or fertilizing media. In vivo, the oviduct and its secretions provide a microenvironment that does reliably support and regulate interaction between the gametes. This review focuses on equine sperm-oviduct interaction. Equine sperm-oviduct binding appears to be more complex than the presumed species-specific calcium-dependent lectin binding phenomenon; unfortunately, the nature of the interaction is not understood. Various capacitation-related events are induced to regulate sperm release from the oviduct epithelium and most data suggest that exposure to oviduct secretions triggers sperm capacitation in vivo However, only limited information is available about equine oviduct secreted factors, and few have been identified. Another aspect of equine oviduct physiology relevant to capacitation is acid-base balance. In vitro, it has been demonstrated that stallion spermatozoa show tail-associated protein tyrosine phosphorylation after binding to oviduct epithelial cells containing alkaline secretory granules. In response to alkaline follicular fluid preparations (pH 7.9), stallion spermatozoa also show tail-associated protein tyrosine phosphorylation, hyperactivated motility and (limited) release from oviduct epithelial binding. However, these 'capacitating conditions' are not able to induce the acrosome reaction and fertilization. In conclusion, developing a defined capacitating medium to support successful equine IVF will depend on identifying as yet uncharacterized capacitation triggers present in the oviduct. © 2016 Society for Reproduction and Fertility.

  12. Modulation of epidermal growth factor effects on epithelial ion transport by intestinal trefoil factor.

    PubMed Central

    Chinery, R.; Cox, H. M.

    1995-01-01

    1. The direct epithelial effects of epidermal growth factor (EGF) and its modulation by intestinal trefoil factor (ITF) have been studied in a human colonic adenocarcinoma cell line called Colony-29 (Col-29). 2. When grown in culture as confluent monolayers and voltage-clamped in Ussing chambers, these epithelia responded with an increase in short circuit current (SCC) to basolateral as well as to apically applied EGF although the latter responses (at 10 nM) were only 25% of those observed following basolateral peptide. 3. Recombinant rat ITF (added to the basolateral surface) did not alter basal SCC levels, but it did enhance the electrogenic effects of basolateral EGF. The EC50 values for EGF-induced ion transport were 0.25 nM in control, and 0.26 nM in ITF pretreated Col-29 epithelia. A significant increase in the size of EGF responses (0.1 nM-10 nM) was observed in the presence of 10 nM ITF and the half-maximal concentration for this modulatory effect of ITF was 7.6 nM. 4. The EGF-induced increases in SCC were partially inhibited (50%) by piretanide pretreatment, indicating that Cl- secretion is involved. EGF responses either in the presence or absence of ITF were also significantly reduced (84% and 66% respectively) by the cyclo-oxygenase inhibitor, piroxicam, therefore implicating prostaglandins as mediators of EGF-stimulated anion secretion. 5. We conclude that in confluent Col-29 epithelia, basolateral EGF stimulates a predominantly prostaglandin-dependent increase in Cl- secretion that is enhanced by basolateral ITF, and that these two peptides may interact in normal and damaged mucosa to alter the local apical solute and fluid environment. PMID:7647987

  13. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells.

    PubMed

    Brown, Dennis; Bouley, Richard; Păunescu, Teodor G; Breton, Sylvie; Lu, Hua A J

    2012-05-15

    Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.

  14. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells

    PubMed Central

    Bouley, Richard; Pǎunescu, Teodor G.; Breton, Sylvie; Lu, Hua A. J.

    2012-01-01

    Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these “professional” proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes. PMID:22460710

  15. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line.

    PubMed

    Tong, Hui-Li; Li, Qing-Zhang; Gao, Xue-Jun; Yin, De-Yun

    2012-03-01

    To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.

  16. Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology

    PubMed Central

    Saxena, Kapil; Blutt, Sarah E.; Ettayebi, Khalil; Zeng, Xi-Lei; Broughman, James R.; Crawford, Sue E.; Karandikar, Umesh C.; Sastri, Narayan P.; Conner, Margaret E.; Opekun, Antone R.; Graham, David Y.; Qureshi, Waqar; Sherman, Vadim; Foulke-Abel, Jennifer; In, Julie; Kovbasnjuk, Olga; Zachos, Nicholas C.; Donowitz, Mark

    2015-01-01

    ABSTRACT Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures. PMID:26446608

  17. Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties

    PubMed Central

    Fessart, Delphine; Domblides, Charlotte; Avril, Tony; Eriksson, Leif A; Begueret, Hugues; Pineau, Raphael; Malrieux, Camille; Dugot-Senant, Nathalie; Lucchesi, Carlo; Chevet, Eric; Delom, Frederic

    2016-01-01

    The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis. DOI: http://dx.doi.org/10.7554/eLife.13887.001 PMID:27240165

  18. Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    PubMed Central

    Okada, Seiko F.; Ribeiro, Carla M. P.; Sesma, Juliana I.; Seminario-Vidal, Lucia; Abdullah, Lubna H.; van Heusden, Catharina; Lazarowski, Eduardo R.

    2013-01-01

    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion. PMID:23763446

  19. The surface of the eye--a superficial entity with deep repercussions.

    PubMed

    Potop, Vasile; Dumitrache, Marieta; Ciocalteu, Alina

    2009-01-01

    The surface of the eye is an anatomical and functional entity with a relatively recent delimitation but with significant therapeutic and diagnostic consequences. The pathology of the conjunctive and cornea must be approached by looking at the interrelations between the two tissues that are so different anatomically and functionally but in the same time form a unit in structuring the eye's surface. There are two major categories of relations between the two tissues: one of them is mediated by lachrymal secretion, a process whose complexity is not yet fully understood, and the other is germinal, referring to the stem cells located at the limbus which become epithelial cornea cells that can fixate lachrymal fluid. Imbalances in the quantity and quality of lachrymal secretion can be compensated, up to a certain point, by artificial products, but in severe cases only specially prepared autologous serum can compensate the deficit. The limbic deficits that affect stem cells require complex therapeutic procedures like limbic cell transplant, using an amniotic membrane or autologous serum.

  20. Regulation of Cl(-) secretion by AMPK in vivo.

    PubMed

    Kongsuphol, Patthara; Hieke, Bernhard; Ousingsawat, Jiraporn; Almaca, Joana; Viollet, Benoit; Schreiber, Rainer; Kunzelmann, Karl

    2009-03-01

    Previous in vitro studies suggested that Cl(-) currents produced by the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7) are inhibited by the alpha1 isoform of the adenosine monophosphate (AMP)-stimulated kinase (AMPK). AMPK is a serine/threonine kinase that is activated during metabolic stress. It has been proposed as a potential mediator for transport-metabolism coupling in epithelial tissues. All previous studies have been performed in vitro and thus little is known about the regulation of Cl(-) secretion by AMPK in vivo. Using AMPKalpha1(-/-) mice and wild-type littermates, we demonstrate that phenformin, an activator of AMPK, strongly inhibits cAMP-activated Cl(-) secretion in mouse airways and colon, when examined in ex vivo in Ussing chamber recordings. However, phenformin was equally effective in AMPKalpha1(-/-) and wild-type animals, suggesting additional AMPK-independent action of phenformin. Phenformin inhibited CFTR Cl(-) conductance in basolaterally permeabilized colonic epithelium from AMPKalpha1(+/+) but not AMPKalpha1(-/-) mice. The inhibitor of AMPK compound C enhanced CFTR-mediated Cl(-) secretion in epithelial tissues of AMPKalpha1(-/-) mice, but not in wild-type littermates. There was no effect on Ca(2+)-mediated Cl(-) secretion, activated by adenosine triphosphate or carbachol. Moreover CFTR-dependent Cl(-) secretion was enhanced in the colon of AMPKalpha1(-/-) mice, as indicated in Ussing chamber ex vivo and rectal PD measurements in vivo. Taken together, these data suggest that epithelial Cl(-) secretion mediated by CFTR is controlled by AMPK in vivo.

  1. Antigen presentation by small intestinal epithelial cells uniquely enhances IFN-γ secretion from CD4{sup +} intestinal intraepithelial lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, Ryo; Yamada, Kiyoshi; Iwamoto, Taku

    2013-06-14

    Highlights: •Small intestinal epithelial cells (sIECs). •sIECs are able to induce antigen specific proliferation of CD4{sup +} IELs. •sIECs induce markedly enhanced IFN-γ secretion by CD4{sup +} IELs. •Induction of enhanced IFN-γ secretion by sIECs is uniquely observed in CD4{sup +} IELs. -- Abstract: Small intestinal epithelial cells (sIECs) express major histocompatibility complex class II molecules even in a normal condition, and are known to function as antigen presenting cells (APCs) at least in vitro. These findings raised the possibility that sIECs play an important role in inducing immune responses against luminal antigens, especially those of intestinal intraepithelial lymphocytes (IELs)more » and lamina propria lymphocytes (LPLs). We herein showed that antigenic stimulation with sIECs induced markedly greater secretion of interferon-gamma (IFN-γ) by CD4{sup +} IELs, but not interleukin (IL)-4, IL-10 and IL-17 although the proliferative response was prominently lower than that with T cell-depleted splenic APCs. In contrast, no enhanced IFN-γ secretion by CD4{sup +} LPLs and primed splenic CD4{sup +} T cells was observed when stimulated with sIECs. Taken together, these results suggest that sIECs uniquely activate CD4{sup +} IELs and induce remarkable IFN-γ secretion upon antigenic stimulation in vivo.« less

  2. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    PubMed

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-05-15

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoproteins. We also attempted to alter the fluidity of the apical membrane of the cells through extraction of cholesterol with beta-cyclodextrin (2.5-15 mM). The effect on TUDC-induced mucin secretion was studied. Cell viability was assessed by measuring lactate dehydrogenase (LDH) leakage or 51Cr release. 3. In contrast with the bile salts, the detergents were not able to cause an increase in mucin secretion without causing concomitant cell lysis. Concentrations of detergent that increased mucin release (>100 microM Triton X-100, >0.8 mM Tween-20), caused increased LDH release. Incubation with beta-cyclodextrin resulted in effective extraction of cholesterol without causing an increase in 51Cr release. However, no effect of the presumed altered membrane fluidity on TUDC (10 mM)-induced mucin secretion was observed. 4. The stimulatory effect of bile salts on mucin secretion by gallbladder epithelial cells is not affected by the fluidity of the apical membrane of the cells and also cannot be mimicked by other detergents. We conclude that the ability of bile salts to cause mucin secretion by the gallbladder epithelium is not determined by their detergent properties.

  3. Secretion of Sparfloxacin from the Human Intestinal Caco-2 Cell Line Is Altered by P-Glycoprotein Inhibitors

    PubMed Central

    Cormet-Boyaka, Estelle; Huneau, Jean-François; Mordrelle, Agnès; Boyaka, Prosper N.; Carbon, Claude; Rubinstein, Ethan; Tomé, Daniel

    1998-01-01

    The mechanism of intestinal secretion of the difluorinated quinolone sparfloxacin was investigated with the epithelial cell line Caco-2 and was compared to that of the P-glycoprotein (P-gp) substrate vinblastine. The P-gp inhibitors verapamil and progesterone significantly increased the epithelial cell accumulation of both vinblastine and sparfloxacin. This increase is likely to result from an inhibition of drug secretion since both vinblastine uptake and sparfloxacin uptake are known to proceed through a passive transmembrane diffusion. The unidirectional fluxes across cell monlayers grown on permeable filters indicated that a net secretion of sparfloxacin and vinblastine occurred across Caco-2 cells. These secretions were significantly inhibited by the MDR-reversing agent verapamil. We conclude that the P-gp is likely to be involved in the intestinal elimination of the difluorinated quinolone sparfloxacin. PMID:9756763

  4. Modulation of bicarbonate secretion in rabbit duodenum: the role of calcium.

    PubMed

    Hogan, D L; Yao, B; Isenberg, J I

    1998-01-01

    Surface epithelial bicarbonate secretion protects the proximal duodenum from acid peptic injury. Cyclic adenosine monophosphate and calcium serve as intracellular mediators of intestinal transport. Experiments were performed to examine whether calcium participates in duodenal bicarbonate transport. Stripped duodenal mucosa from rabbits was studied in Ussing chambers. HCO3- transport was stimulated by the calcium ionophore A23187, carbachol, vasoactive intestinal peptide, prostaglandin E2, dibutyryl-cyclic adenosine monophosphate, and electrical field stimulation. A23187 stimulated HCO3- secretion and Isc; tetrodotoxin failed to inhibit this effect. The calcium-channel blocker verapamil abolished HCO3- secretion stimulated by carbachol, vasoactive intestinal peptide, and electrical field stimulation, but failed to alter basal, prostaglandin E2- or dibutyryl-cyclic adenosine monophosphate-stimulated HCO3- secretion. Therefore, calcium is likely required during stimulation of duodenal epithelial HCO3- transport by carbachol, vasoactive intestinal peptide, and electrical field stimulation. Prostaglandin E2 and dibutyryl-cyclic adenosine monophosphate appear to activate duodenal HCO3- secretion by a calcium-independent pathway(s).

  5. Absence of CD9 reduces endometrial VEGF secretion and impairs uterine repair after parturition

    PubMed Central

    Kawano, Natsuko; Miyado, Kenji; Yoshii, Noriko; Kanai, Seiya; Saito, Hidekazu; Miyado, Mami; Inagaki, Noboru; Odawara, Yasushi; Hamatani, Toshio; Umezawa, Akihiro

    2014-01-01

    In mammals, uterine epithelium is remodeled cyclically throughout adult life for pregnancy. Despite the expression of CD9 in the uterine epithelium, its role in maternal reproduction is unclear. Here, we addressed this issue by examining uterine secretions collected from patients undergoing fertility treatment and fertilization-competent Cd9−/− mice expressing CD9-GFP in their eggs (Cd9−/−TG). CD9 in uterine secretions was observed as extracellular matrix-like feature, and its amount of the secretions associated with repeated pregnancy failures. We also found that the litter size of Cd9−/−TG female mice was significantly reduced after their first birth. Severely delayed re-epithelialization of the endometrium was then occurred. Concomitantly, vascular endothelial growth factor (VEGF) was remarkably reduced in the uterine secretions of Cd9−/−TG female mice. These results provide the first evidence that CD9-mediated VEGF secretion plays a role in re-epithelialization of the uterus. PMID:24736431

  6. Carbachol-induced colonic mucus formation requires transport via NKCC1, K+ channels and CFTR

    PubMed Central

    Lindén, Sara K.; Alwan, Ala H.; Scholte, Bob J.; Hansson, Gunnar C.; Sjövall, Henrik

    2016-01-01

    The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K+ channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K+ channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules. PMID:25139191

  7. Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR.

    PubMed

    Gustafsson, Jenny K; Lindén, Sara K; Alwan, Ala H; Scholte, Bob J; Hansson, Gunnar C; Sjövall, Henrik

    2015-07-01

    The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K(+) channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K(+) channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules.

  8. Mycoplasma pulmonis Inhibits Electrogenic Ion Transport across Murine Tracheal Epithelial Cell Monolayers

    PubMed Central

    Lambert, Linda C.; Trummell, Hoa Q.; Singh, Ashvani; Cassell, Gail H.; Bridges, Robert J.

    1998-01-01

    Murine chronic respiratory disease is characterized by persistent colonization of tracheal and bronchial epithelial cell surfaces by Mycoplasma pulmonis, submucosal and intraluminal immune and inflammatory cells, and altered airway activity. To determine the direct effect of M. pulmonis upon transepithelial ion transport in the absence of immune and inflammatory cell responses, primary mouse tracheal epithelial cell monolayers (MTEs) were apically infected and assayed in Ussing chambers. M. pulmonis-infected MTEs, but not those infected with a nonmurine mycoplasma, demonstrated reductions in amiloride-sensitive Na+ absorption, cyclic AMP, and cholinergic-stimulated Cl− secretion and transepithelial resistance. These effects were shown to require interaction of viable organisms with the apical surface of the monolayer and to be dependent upon organism number and duration of infection. Altered transport due to M. pulmonis was not merely a result of epithelial cell death as evidenced by the following: (i) active transport of Na+ and Cl−, albeit at reduced rates; (ii) normal cell morphology, including intact tight junctions, as demonstrated by electron microscopy; (iii) maintenance of a mean transepithelial resistance of 440 Ω/cm2; and (iv) lack of leakage of fluid from the basolateral to the apical surface of the monolayer. Alteration in epithelial ion transport in vitro is consistent with impaired pulmonary clearance and altered airway function in M. pulmonis-infected animals. Furthermore, the ability of M. pulmonis to alter transport without killing the host cell may explain its successful parasitism and long-term persistence in the host. Further study of the MTE-M. pulmonis model should elucidate the molecular mechanisms which mediate this reduction in transepithelial ion transport. PMID:9423868

  9. Genetic and environmental determinants of interferon-tau secretion by in vivo- and in vitro-derived bovine blastocysts.

    PubMed

    Kubisch, H M; Larson, M A; Ealy, A D; Murphy, C N; Roberts, R M

    2001-04-30

    Several experiments were conducted to assess the effects of genotype and various culture media on interferon-tau secretion by in vitro-derived bovine blastocysts and to compare these values with interferon released by blastocysts flushed from superovulated cows. In experiment 1, oocytes were inseminated with semen from three different bulls. While paternal genotype had no effect on cleavage rate, the size or hatching ability of blastocysts, it was a significant determinant of the embryo's ability to develop to the blastocyst stage and of subsequent interferon-tau secretion. In the second experiment, embryos were cultured in synthetic oviductal fluid containing either polyvinyl alcohol, bovine serum albumin or fetal bovine serum. While there was no effect of supplement on the percentage of embryos developing to the blastocyst stage, blastocysts which formed in medium with polyvinyl alcohol had significantly fewer cells, were older at blastocyst formation and produced significantly more interferon-tau. In the third experiment, embryos were cultured to the blastocyst stage in either TCM199 alone or in co-culture with buffalo rat liver, bovine oviductal or bovine uterine epithelial cells. Culture with oviductal or buffalo rat liver cells increased blastocyst cell number, although secretion of interferon-tau was not affected. In the final experiment, bovine blastocysts were flushed from superovulated cows on Day 7 following insemination. Overall, secretion of interferon-tau by in vivo-produced blastocysts did not differ from that of age-matched blastocysts produced in vitro.

  10. ORAL DELIVERY OF L-ARGININE STIMULATES PROSTAGLANDIN-DEPENDENT SECRETORY DIARRHEA IN C. PARVUM INFECTED NEONATAL PIGLETS

    PubMed Central

    Gookin, Jody L.; Foster, Derek M.; Coccaro, Maria R.; Stauffer, Stephen H.

    2008-01-01

    Objectives To determine if oral supplementation with L-arginine could augment nitric oxide (NO) synthesis and promote epithelial defense in neonatal piglets infected with C. parvum. Methods Neonatal piglets were fed a liquid milk replacer and on day 3 of age infected or not with 108 C. parvum oocysts and the milk replacer supplemented with L-arginine or L-alanine. Milk consumption, body weight, fecal consistency, and oocyst excretion were recorded daily. On day 3 post-infection, piglets were euthanized, and serum concentration of NO metabolites and histological severity of villous atrophy and epithelial infection were quantified. Sheets of ileal mucosa were mounted in Ussing chambers for measurement of barrier function (transepithelial resistance (TER) and permeability) and short-circuit current (Isc; an indirect measurement of Cl− secretion in this tissue). Results C. parvum infected piglets had large numbers of epithelial parasites, villous atrophy, decreased barrier function, severe watery diarrhea, and failure to gain weight. L-arginine promoted synthesis of NO by infected piglets which was unaccompanied by improvement in severity of infection but rather promoted epithelial chloride secretion and diarrhea. Epithelial secretion by infected mucosa from L-arginine supplemented piglets was fully inhibited by the cyclooxygenase inhibitor indomethacin, indicating that prostaglandin synthesis was responsible for this effect. Conclusions Results of these studies demonstrate that provision of additional NO substrate in the form of L-arginine incites prostaglandin-dependent secretory diarrhea and does not promote epithelial defense or barrier function of C. parvum infected neonatal ileum. PMID:18223372

  11. Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells

    PubMed Central

    2012-01-01

    Background Oral candidiasis is a common fungal disease mainly caused by Candida albicans. The aim of this study was to investigate the effects of A-type cranberry proanthocyanidins (AC-PACs) on pathogenic properties of C. albicans as well as on the inflammatory response of oral epithelial cells induced by this oral pathogen. Methods Microplate dilution assays were performed to determine the effect of AC-PACs on C. albicans growth as well as biofilm formation stained with crystal violet. Adhesion of FITC-labeled C. albicans to oral epithelial cells and to acrylic resin disks was monitored by fluorometry. The effects of AC-PACs on C. albicans-induced cytokine secretion, nuclear factor-kappa B (NF-κB) p65 activation and kinase phosphorylation in oral epithelial cells were determined by immunological assays. Results Although AC-PACs did not affect growth of C. albicans, it prevented biofilm formation and reduced adherence of C. albicans to oral epithelial cells and saliva-coated acrylic resin discs. In addition, AC-PACs significantly decreased the secretion of IL-8 and IL-6 by oral epithelial cells stimulated with C. albicans. This anti-inflammatory effect was associated with reduced activation of NF-κB p65 and phosphorylation of specific signal intracellular kinases. Conclusion AC-PACs by affecting the adherence properties of C. albicans and attenuating the inflammatory response induced by this pathogen represent potential novel therapeutic agents for the prevention/treatment of oral candidiasis. PMID:22248145

  12. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension

    PubMed Central

    Leenen, Frans H. H.; Chen, Ling; Golovina, Vera A.; Hamlyn, John M.; Pallone, Thomas L.; Van Huysse, James W.; Zhang, Jin; Wier, W. Gil

    2012-01-01

    Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na+ and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na+]. This leads, via the Na+-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na+ pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na+]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na+ channels, EO, ouabain-sensitive α2 Na+ pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na+ channel-EO-α2 Na+ pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α2 Na+ pump-Na+/Ca2+ exchanger-Ca2+ signaling pathway. Circulating EO also activates an EO-α2 Na+ pump-Src kinase signaling cascade. This increases the expression of the Na+/Ca2+ exchanger-transient receptor potential cation channel Ca2+ signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP. PMID:22058154

  13. The complexity of oral physiology and its impact on salivary diagnostics.

    PubMed

    Helmerhorst, E J; Dawes, C; Oppenheim, F G

    2018-04-01

    Saliva contains biomarkers for systemic as well as oral diseases. This study was undertaken to assess the variability in the sources of such biomarkers (plasma, cells) and attempted to identify saliva deterioration markers in order to improve saliva diagnostic outcomes. Inter- and intrasubject variations in salivary gingival crevicular fluid levels were determined by measuring salivary albumin and transferrin levels. The purity of collected glandular secretions was determined by bacterial culture, and the variability in epithelial cell numbers by cell counting and optical density measurement. Saliva sample deterioration markers were identified by RP-HPLC and LC-ESI-MS/MS. Tenfold variations were observed in plasma-derived albumin and transferrin levels, emphasizing the need for biomarker normalization with respect to plasma contributions to saliva. Epithelial cell levels varied 50-fold in samples collected before and after a meal. Salivary fungal levels varied within subjects and among subjects from 0 to >1,000 colony-forming units per milliliter. In saliva samples incubated for various time intervals at 37°C, five peptides were identified that steadily increased in intensity over time and which could be explored as "deterioration markers." Taking saliva characteristics appropriately into account will help realize the promise that this body fluid is suitable to be exploited for reliable healthcare monitoring and surveillance. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  14. Distinct roles of prolactin, epidermal growth factor, and glucocorticoids in β-casein secretion pathway in lactating mammary epithelial cells.

    PubMed

    Kobayashi, Ken; Oyama, Shoko; Kuki, Chinatsu; Tsugami, Yusaku; Matsunaga, Kota; Suzuki, Takahiro; Nishimura, Takanori

    2017-01-15

    Beta-casein is a secretory protein contained in milk. Mammary epithelial cells (MECs) synthesize and secrete β-casein during lactation. However, it remains unclear how the β-casein secretion pathway is developed after parturition. In this study, we focused on prolactin (PRL), epidermal growth factor (EGF), and glucocorticoids, which increase in blood plasma and milk around parturition. MECs cultured with PRL, EGF and dexamethasone (DEX: glucocorticoid analog) developed the β-casein secretion pathway. In the absence of PRL, MECs hardly expressed β-casein. EGF enhanced the expression and secretion of β-casein in the presence of PRL and DEX. DEX treatment rapidly increased secreted β-casein concurrent with enhancing β-casein expression. DEX also up-regulated the expression of SNARE proteins, such as SNAP-23, VAMP-8 and Syntaxin-12. Furthermore, PRL and DEX regulated the expression ratio of α s1 -, β- and κ-casein. These results indicate that PRL, EGF and glucocorticoids have distinct roles in the establishment of β-casein secretion pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    PubMed

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  16. [Association between obesity and ovarian cancer].

    PubMed

    Valladares, Macarena; Corsini, Gino; Romero, Carmen

    2014-05-01

    Obesity is a risk factor for cancer. Epidemiological evidences associate ovarian cancer with obesity. Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer and accounts for a high rate of mortality. The association between ovarian cancer and obesity could be explained by molecular factors secreted by adipose tissue such as leptin. In EOC, leptin increases cell proliferation and inhibits apoptosis. Additionally, adipose tissue synthesizes endogenous estrogens, which increase cell proliferation of epithelial ovarian cells. Also, obesity associated hyperinsulinism could increase ovarian estrogen secretion.

  17. Protein tyrosine phosphatase 1B negatively regulates S100A9-mediated lung damage during respiratory syncytial virus exacerbations.

    PubMed

    Foronjy, R F; Ochieng, P O; Salathe, M A; Dabo, A J; Eden, E; Baumlin, N; Cummins, N; Barik, S; Campos, M; Thorp, E B; Geraghty, P

    2016-09-01

    Protein tyrosine phosphatase 1B (PTP1B) has anti-inflammatory potential but PTP1B responses are desensitized in the lung by prolonged cigarette smoke exposure. Here we investigate whether PTP1B expression affects lung disease severity during respiratory syncytial viral (RSV) exacerbations of chronic obstructive pulmonary disease (COPD). Ptp1b(-/-) mice infected with RSV exhibit exaggerated immune cell infiltration, damaged epithelial cell barriers, cytokine production, and increased apoptosis. Elevated expression of S100A9, a damage-associated molecular pattern molecule, was observed in the lungs of Ptp1b(-/-) mice during RSV infection. Utilizing a neutralizing anti-S100A9 IgG antibody, it was determined that extracellular S100A9 signaling significantly affects lung damage during RSV infection. Preexposure to cigarette smoke desensitized PTP1B activity that coincided with enhanced S100A9 secretion and inflammation in wild-type animals during RSV infection. S100A9 levels in human bronchoalveolar lavage fluid had an inverse relationship with lung function in healthy subjects, smokers, and COPD subjects. Fully differentiated human bronchial epithelial cells isolated from COPD donors cultured at the air liquid interface secreted more S100A9 than cells from healthy donors or smokers following RSV infection. Together, these findings show that reduced PTP1B responses contribute to disease symptoms in part by enhancing S100A9 expression during viral-associated COPD exacerbations.

  18. Mating induces production of MMP2 in the llama oviduct: Analysis of MMP2 effect on semen.

    PubMed

    Zampini, Renato; Sari, Luciana M; Argañaraz, Martin E; Fumuso, Fernanda G; Barraza, Daniela E; Carretero, María I; Apichela, Silvana A

    2018-05-01

    Ovulation of South American Camelids is induced by mating. After copulation, sperm are stored into the oviduct to be released near ovulation time. To study whether copulation induces matrix metalloproteinase-2 (MMP2) secretion in the oviduct, the occurrence of MMP2 in oviductal tissue and oviductal fluid (OF) from 24 h post-mated was compared with non-mated llama females. There was an incremental increase of MMP2 in the oviductal epithelial cells, and MMP2 activity in OF after copulation. Additionally, MMP2 activator (MMP14), inducer (EMMPRIN) and inhibitor (TIMP2) were present in the oviductal epithelial cells of both non-mated and post-mated females. A post-mating segment-specific regulation occurred because relative abundance of TIMP2 mRNA was greater in the utero tubal-junction which was accompanied with a reduced amount of MMP14 in the ampulla in comparison with the non-mated females. To examine the effect of MMP2 on semen liquefaction and sperm physiology, the effects of addition of recombinant human MMP2 was evaluated. The MMP2 had no effect on semen thread formation and seminal plasma protein profile. Sperm viability and plasma membrane function were not influenced by the enzyme treatment either. In summary, in llamas the oviductal microenvironment changes in response to stimuli induced by copulation, increasing the production and secretion of MMP2. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash.

    PubMed

    Ramezanpour, Mahnaz; Murphy, Jae; Smith, Jason L P; Vreugde, Sarah; Psaltis, Alkis James

    2017-12-01

    Carrageenans have shown to reduce the viral load in nasal secretions and lower the incidence of secondary infections in children with common cold. Despite the widespread use of carrageenans in topical applications, the effect of carrageenans on the sinonasal epithelial barrier has not been elucidated. We investigate the effect of different carrageenans on the sinonasal epithelial barrier and inflammatory response in vitro. Iota and Kappa carrageenan delivered in saline irrigation solutions applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells from chronic rhinosinusitis patients and controls. Epithelial barrier structure was assessed by measuring the transepithelial electrical resistance (TEER) and immunolocalization of F actin. Ciliary beat frequency (CBF), toxicity, and inflammatory response was studied. Kappa or Iota carrageenan in the different solutions was not toxic, did not have detrimental effects on epithelial barrier structure and CBF. Rather, application of Kappa carrageenan significantly increased TEER and suppressed interleukin 6 (IL-6) secretion in ALI cultures from CRS patients. Kappa or Iota carrageenan solution was safe and did not negatively affect epithelial barrier function. Kappa carrageenan increased TEER and decreased IL-6 production in CRS patients, indicating positive effects on epithelial barrier function in vitro. © 2017 ARS-AAOA, LLC.

  20. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  1. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  2. Epidermal Growth Factor Removal or Tyrphostin AG1478 Treatment Reduces Goblet Cells & Mucus Secretion of Epithelial Cells from Asthmatic Children Using the Air-Liquid Interface Model.

    PubMed

    Parker, Jeremy C; Douglas, Isobel; Bell, Jennifer; Comer, David; Bailie, Keith; Skibinski, Grzegorz; Heaney, Liam G; Shields, Michael D

    2015-01-01

    Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia. We hypothesised that EGF removal or tyrphostin AG1478 treatment of differentiating air-liquid interface cultures from asthmatic children would result in a reduction of epithelial goblet cells and mucus secretion. In Aim 1 primary bronchial epithelial cells from non-asthmatic (n = 5) and asthmatic (n = 5) children were differentiated under EGF-positive (10 ng/ml EGF) and EGF-negative culture conditions for 28 days. In Aim 2, cultures from a further group of asthmatic children (n = 5) were grown under tyrphostin AG1478, a tyrosine kinase inhibitor, conditions. All cultures were analysed for epithelial resistance, markers of differentiation using immunocytochemistry, ELISA for MUC5AC mucin secretion and qPCR for MUC5AC mRNA. In cultures from asthmatic children the goblet cell number was reduced in the EGF negative group (p = 0.01). Tyrphostin AG1478 treatment of cultures from asthmatic children had significant reductions in goblet cells at 0.2 μg/ml (p = 0.03) and 2 μg/ml (p = 0.003) as well as mucus secretion at 2 μg/ml (p = 0.04). We have shown in this preliminary study that through EGF removal and tyrphostin AG1478 treatment the goblet cell number and mucus hypersecretion in differentiating air-liquid interface cultures from asthmatic children is significantly reduced. This further highlights the epidermal growth factor receptor as a potential therapeutic target to inhibit goblet cell hyperplasia and mucus hypersecretion in asthma.

  3. Inhibitors of acid secretion can benefit gastric wound repair independent of luminal pH effects on the site of damage

    PubMed Central

    Demitrack, Elise S; Aihara, Eitaro; Kenny, Susan; Varro, Andrea; Montrose, Marshall H

    2012-01-01

    Background and aims The authors’ goal was to measure pH at the gastric surface (pHo) to understand how acid secretion affects the repair of microscopic injury to the gastric epithelium. Methods Microscopic gastric damage was induced by laser light, during confocal/two-photon imaging of pH-sensitive dyes (Cl-NERF, BCECF) that were superfused over the mucosal surface of the exposed gastric corpus of anaesthetised mice. The progression of repair was measured in parallel with pHo. Experimental conditions included varying pH of luminal superfusates, and using omeprazole (60 mg/kg ip) or famotidine (30 mg/kg ip) to inhibit acid secretion. Results Similar rates of epithelial repair and resting pHo values (~pH 4) were reported in the presence of luminal pH 3 or pH 5. Epithelial repair was unreliable at luminal pH 2 and pHo was lower (2.5±0.2, P <0.05 vs pH 3). Epithelial repair was slower at luminal pH 7 and pHo was higher (6.4±0.1, P<0.001). In all conditions, pHo increased adjacent to damage. At luminal pH 3 or pH 7, omeprazole reduced maximal damage size and accelerated epithelial repair, although only at pH 3 did omeprazole further increase surface pH above the level caused by imposed damage. At luminal pH 7, famotidine also reduced maximal damage size and accelerated epithelial repair. Neither famotidine nor omeprazole raised plasma gastrin levels during the time course of the experiments. Conclusions Epithelial repair in vivo is affected by luminal pH variation, but the beneficial effects of acutely blocking acid secretion extend beyond simply raising luminal and/or surface pH. PMID:21997560

  4. Rifaximin decreases virulence of Crohn's disease-associated Escherichia coli and epithelial inflammatory responses.

    PubMed

    Dogan, Belgin; Fu, Jing; Zhang, Shiying; Scherl, Ellen J; Simpson, Kenneth W

    2018-05-01

    Escherichia coli with an adherent and invasive pathotype (AIEC) is implicated in the pathogenesis of Crohn's disease (CD). Rifaximin improves symptoms in mild-to-moderate CD. It is unclear if this outcome is due to its effects on bacteria or intestinal epithelial inflammatory responses. We examined the effects of rifaximin on the growth and virulence of CD-associated E. coli and intestinal epithelial inflammatory responses. Seven well-characterized CD-associated E. coli strains (six AIEC, one non-AIEC; four rifaximin-resistant, three sensitive) were evaluated. We assessed the effects of rifaximin on CD-associated E. coli growth, adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and survival in macrophages. Additionally, we determined the effects of rifaximin on intestinal epithelial inflammatory responses. In vitro rifaximin exerted a dose-dependent effect on the growth of sensitive strains but did not affect the growth of resistant strains. Rifaximin reduced adhesion, invasion, virulence gene expression and motility of CD-associated E. coli in a manner that was independent of its antimicrobial effect. Furthermore, rifaximin reduced IL-8 secretion from pregnane X receptor-expressing T84 colonic epithelial cells. The effect of rifaximin on adhesion was largely attributable to its action on bacteria, whereas decreases in invasion and cytokine secretion were due to its effect on the epithelium. In conclusion, our results show that rifaximin interferes with multiple steps implicated in host-AIEC interactions related to CD, including adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and pro-inflammatory cytokine secretion. Further study is required to determine the relationship of these effects to clinical responses in CD patients.

  5. Prediction of Body Fluids where Proteins are Secreted into Based on Protein Interaction Network

    PubMed Central

    Hu, Le-Le; Huang, Tao; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Determining the body fluids where secreted proteins can be secreted into is important for protein function annotation and disease biomarker discovery. In this study, we developed a network-based method to predict which kind of body fluids human proteins can be secreted into. For a newly constructed benchmark dataset that consists of 529 human-secreted proteins, the prediction accuracy for the most possible body fluid location predicted by our method via the jackknife test was 79.02%, significantly higher than the success rate by a random guess (29.36%). The likelihood that the predicted body fluids of the first four orders contain all the true body fluids where the proteins can be secreted into is 62.94%. Our method was further demonstrated with two independent datasets: one contains 57 proteins that can be secreted into blood; while the other contains 61 proteins that can be secreted into plasma/serum and were possible biomarkers associated with various cancers. For the 57 proteins in first dataset, 55 were correctly predicted as blood-secrete proteins. For the 61 proteins in the second dataset, 58 were predicted to be most possible in plasma/serum. These encouraging results indicate that the network-based prediction method is quite promising. It is anticipated that the method will benefit the relevant areas for both basic research and drug development. PMID:21829572

  6. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction.

    PubMed

    Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J; Woodruff, Prescott G; Solberg, Owen D; Donne, Matthew L; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V; Wolters, Paul J; Hogan, Brigid L M; Finkbeiner, Walter E; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R

    2012-10-02

    Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.

  7. Relaxation of DNA supercoiling leads to increased invasion of epithelial cells and protein secretion by Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the human intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which ...

  8. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin.

    PubMed

    Jiang, Yu; Yu, Bo; Wang, Xue; Sui, Yujie; Zhang, Yaofang; Yang, Shuang; Yang, Hong; Ma, Tonghui

    2014-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. In the present study, we identified tangeretin from Pericarpium Citri Reticulatae Viride as a CFTR activator using high-throughput screening based on FRT cell-based fluorescence assay. The activation effect of tangeretin on CFTR chloride channel and the possible underlying mechanisms were investigated. Fluorescence quenching tests showed that tangeretin dose- and time-dependently activated CFTR chloride channel, the activity had rapid and reversible characteristics and the activation effect could be completely reversed by the CFTR specific blocker CFTRinh-172. Primary mechanism studies indicated that the activation effect of tangeretin on CFTR chloride channel was FSK dependent as well as had additional effect with FSK and IBMX suggesting that tangeretin activates CFTR by direct interacting with the protein. Ex-vivo tests revealed that tangeretin could accelerate the speed of the submucosal gland fluid secretion. Short-circuit current measurement demonstrated that tangeretin activated rat colonic mucosa chloride current. Thus, CFTR Cl(-) channel is a molecular target of natural compound tangeretin. Tangeretin may have potential use for the treatment of CFTR-related diseases like cystic fibrosis, bronchiectasis and habitual constipation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models.

    PubMed

    Dota, Atsuyoshi; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu

    2013-01-01

    The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models. Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model. Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score. These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye.

  10. Correlating levels of type III secretion and secreted proteins with fecal shedding of Escherichia coli O157:H7 in cattle

    USDA-ARS?s Scientific Manuscript database

    The locus of enterocyte effacement (LEE) encodes a type III secretion system (T3SS) for secreting factors that enable Escherichia coli O157:H7 to produce attaching and effacing lesions (A/E) on epithelial cells. The importance of LEE-encoded proteins in intestinal colonization of cattle is well-stud...

  11. Oxytetracycline Inhibits Mucus Secretion and Inflammation in Human Airway Epithelial Cells.

    PubMed

    Shah, Said Ahmad; Ishinaga, Hajime; Takeuchi, Kazuhiko

    2017-01-01

    Oxytetracycline is a broad-spectrum antibiotic, but its nonantibacterial effects in the human respiratory tract are unknown. In this study, the effects of oxytetracycline on mucus secretion and inflammation were examined by PCR and ELISA in the human airway epithelial cell line NCI-H292. Oxytetracycline (10 μg/mL) significantly inhibited TNF-α-induced MUC5AC gene expression and MUC5AC protein levels in NCI-H292 cells. It also downregulated IL-8 and IL-1β gene expression and IL-1β protein levels. Our findings demonstrated that oxytetracycline suppressed mucus production and inflammation in human respiratory epithelial cells, providing further evidence for the usefulness of oxytetracycline for human airway inflammatory diseases. © 2017 S. Karger AG, Basel.

  12. Mechanisms of fluid production in smooth adhesive pads of insects

    PubMed Central

    Dirks, Jan-Henning; Federle, Walter

    2011-01-01

    Insect adhesion is mediated by thin fluid films secreted into the contact zone. As the amount of fluid affects adhesive forces, a control of secretion appears probable. Here, we quantify for the first time the rate of fluid secretion in adhesive pads of cockroaches and stick insects. The volume of footprints deposited during consecutive press-downs decreased exponentially and approached a non-zero steady state, demonstrating the presence of a storage volume. We estimated its size and the influx rate into it from a simple compartmental model. Influx was independent of step frequency. Fluid-depleted pads recovered maximal footprint volumes within 15 min. Pads in stationary contact accumulated fluid along the perimeter of the contact zone. The initial fluid build-up slowed down, suggesting that flow is driven by negative Laplace pressure. Freely climbing stick insects left hardly any traceable footprints, suggesting that they save secretion by minimizing contact area or by recovering fluid during detachment. However, even the highest fluid production rates observed incur only small biosynthesis costs, representing less than 1 per cent of the resting metabolic rate. Our results show that fluid secretion in insect wet adhesive systems relies on simple physical principles, allowing for passive control of fluid volume within the contact zone. PMID:21208970

  13. Mechanisms for cellular NO oxidation and nitrite formation in lung epithelial cells.

    PubMed

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Myerburg, Mike M; Wang, Jun; Frizzell, Sam; Gladwin, Mark T

    2013-08-01

    Airway lining fluid contains relatively high concentrations of nitrite, and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 h under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low-oxygen conditions. The addition of oxyhemoglobin to the A549 cell medium decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and nitrate, suggesting an enzymatic activity is required. This NO oxidation activity was highest in membrane-bound proteins with molecular size <100kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation. We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into the medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via p-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in either nitrite or cellular S-nitrosothiol formation compared to scrambled siRNA control under basal conditions or cytokine stimulation. These data suggest that lung epithelial cells possess NO oxidase activity, which is enhanced in cell-membrane-associated proteins and not regulated by intracellular or secreted Cp, indicating that alternative NO oxidases determine hypoxic and normoxic nitrite formation from NO in human lung epithelial cells. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.

    PubMed

    Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E

    2007-01-01

    The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.

  15. More than just water channels: unexpected cellular roles of aquaporins.

    PubMed

    Verkman, A S

    2005-08-01

    Aquaporins (AQPs) are membrane proteins that transport water and, in some cases, also small solutes such as glycerol. AQPs are expressed in many fluid-transporting tissues, such as kidney tubules and glandular epithelia, as well as in non-fluid-transporting tissues, such as epidermis, adipose tissue and astroglia. Their classical role in facilitating trans-epithelial fluid transport is well understood, as in the urinary concentrating mechanism and gland fluid secretion. AQPs are also involved in swelling of tissues under stress, as in the injured cornea and the brain in stroke, tumor and infection. Recent analysis of AQP-knockout mice has revealed unexpected cellular roles of AQPs. AQPs facilitate cell migration, as manifested by reduced tumor angiogenesis in AQP1-knockout mice, by a mechanism that might involve facilitated water transport in lamellipodia of migrating cells. AQPs that transport both glycerol and water regulate glycerol content in epidermis and fat, and consequently skin hydration/biosynthesis and fat metabolism. AQPs might also be involved in neural signal transduction, cell volume regulation and organellar physiology. The many roles of AQPs could be exploited for clinical benefit; for example, treatments that modulate AQP expression/function could be used as diuretics, and in the treatment of brain swelling, glaucoma, epilepsy, obesity and cancer.

  16. Electrogenic NBCe1 (SLC4A4), but not electroneutral NBCn1 (SLC4A7), cotransporter undergoes cholinergic-stimulated endocytosis in salivary ParC5 cells.

    PubMed

    Perry, Clint; Quissell, David O; Reyland, Mary E; Grichtchenko, Irina I

    2008-11-01

    Cholinergic agonists are major stimuli for fluid secretion in parotid acinar cells. Saliva bicarbonate is essential for maintaining oral health. Electrogenic and electroneutral Na(+)-HCO(3)(-) cotransporters (NBCe1 and NBCn1) are abundant in parotid glands. We previously reported that angiotensin regulates NBCe1 by endocytosis in Xenopus oocytes. Here, we studied cholinergic regulation of NBCe1 and NBCn1 membrane trafficking by confocal fluorescent microscopy and surface biotinylation in parotid epithelial cells. NBCe1 and NBCn1 colocalized with E-cadherin monoclonal antibody at the basolateral membrane (BLM) in polarized ParC5 cells. Inhibition of constitutive recycling with the carboxylic ionophore monensin or the calmodulin antagonist W-13 caused NBCe1 to accumulate in early endosomes with a parallel loss from the BLM, suggesting that NBCe1 is constitutively endocytosed. Carbachol and PMA likewise caused redistribution of NBCe1 from BLM to early endosomes. The PKC inhibitor, GF-109203X, blocked this redistribution, indicating a role for PKC. In contrast, BLM NBCn1 was not downregulated in parotid acinar cells treated with constitutive recycling inhibitors, cholinergic stimulators, or PMA. We likewise demonstrate striking differences in regulation of membrane trafficking of NBCe1 vs. NBCn1 in resting and stimulated cells. We speculate that endocytosis of NBCe1, which coincides with the transition to a steady-state phase of stimulated fluid secretion, could be a part of acinar cell adjustment to a continuous secretory response. Stable association of NBCn1 at the membrane may facilitate constitutive uptake of HCO(3)(-) across the BLM, thus supporting HCO(3)(-) luminal secretion and/or maintaining acid-base homeostasis in stimulated cells.

  17. Correction of glutathione deficiency in the lower respiratory tract of HIV seropositive individuals by glutathione aerosol treatment.

    PubMed

    Holroyd, K J; Buhl, R; Borok, Z; Roum, J H; Bokser, A D; Grimes, G J; Czerski, D; Cantin, A M; Crystal, R G

    1993-10-01

    Concentrations of glutathione, a ubiquitous tripeptide with immune enhancing and antioxidant properties, are decreased in the blood and lung epithelial lining fluid of human immunodeficiency virus (HIV) seropositive individuals. Since the lung is the most common site of infection in those who progress to AIDS it is rational to consider whether it is possible to safely augment glutathione levels in the epithelial lining fluid of HIV seropositive individuals, thus potentially improving local host defence. Purified reduced glutathione was delivered by aerosol to HIV seropositive individuals (n = 14) and the glutathione levels in lung epithelial lining fluid were compared before and at one, two, and three hours after aerosol administration. Before treatment total glutathione concentrations in the epithelial lining fluid were approximately 60% of controls. After three days of twice daily doses each of 600 mg reduced glutathione, total glutathione levels in the epithelial lining fluid increased and remained in the normal range for at least three hours after treatment. Strikingly, even though > 95% of the glutathione in the aerosol was in its reduced form, the percentage of oxidised glutathione in epithelial lining fluid increased from 5% before treatment to about 40% three hours after treatment, probably reflecting the use of glutathione as an antioxidant in vivo. No adverse effects were observed. It is feasible and safe to use aerosolised reduced glutathione to augment the deficient glutathione levels of the lower respiratory tract of HIV seropositive individuals. It is rational to evaluate further the efficacy of this tripeptide in improving host defence in HIV seropositive individuals.

  18. Correction of glutathione deficiency in the lower respiratory tract of HIV seropositive individuals by glutathione aerosol treatment.

    PubMed Central

    Holroyd, K. J.; Buhl, R.; Borok, Z.; Roum, J. H.; Bokser, A. D.; Grimes, G. J.; Czerski, D.; Cantin, A. M.; Crystal, R. G.

    1993-01-01

    BACKGROUND--Concentrations of glutathione, a ubiquitous tripeptide with immune enhancing and antioxidant properties, are decreased in the blood and lung epithelial lining fluid of human immunodeficiency virus (HIV) seropositive individuals. Since the lung is the most common site of infection in those who progress to AIDS it is rational to consider whether it is possible to safely augment glutathione levels in the epithelial lining fluid of HIV seropositive individuals, thus potentially improving local host defence. METHODS--Purified reduced glutathione was delivered by aerosol to HIV seropositive individuals (n = 14) and the glutathione levels in lung epithelial lining fluid were compared before and at one, two, and three hours after aerosol administration. RESULTS--Before treatment total glutathione concentrations in the epithelial lining fluid were approximately 60% of controls. After three days of twice daily doses each of 600 mg reduced glutathione, total glutathione levels in the epithelial lining fluid increased and remained in the normal range for at least three hours after treatment. Strikingly, even though > 95% of the glutathione in the aerosol was in its reduced form, the percentage of oxidised glutathione in epithelial lining fluid increased from 5% before treatment to about 40% three hours after treatment, probably reflecting the use of glutathione as an antioxidant in vivo. No adverse effects were observed. CONCLUSIONS--It is feasible and safe to use aerosolised reduced glutathione to augment the deficient glutathione levels of the lower respiratory tract of HIV seropositive individuals. It is rational to evaluate further the efficacy of this tripeptide in improving host defence in HIV seropositive individuals. PMID:8256245

  19. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells

    PubMed Central

    Stanton, Bruce A.; Coutermarsh, Bonita; Barnaby, Roxanna; Hogan, Deborah

    2015-01-01

    Background P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770. Methods and Results F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del) were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid) significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR. Conclusion The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials. PMID:26018799

  20. Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells.

    PubMed

    Stanton, Bruce A; Coutermarsh, Bonita; Barnaby, Roxanna; Hogan, Deborah

    2015-01-01

    P. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770. F508del-CFBE cells and primary cultures of CF-HBE cells (F508del/F508del) were exposed to VX-809 alone or a combination of VX-809 + VX-770 for 48 hours and the effect of P. aeruginosa on F508del-CFTR Cl secretion was measured in Ussing chambers. The effect of VX-809 on F508del-CFTR abundance was measured by cell surface biotinylation and western blot analysis. PAO1, PA14, PAK and 6 clinical isolates of P. aeruginosa (3 mucoid and 3 non-mucoid) significantly reduced drug stimulated F508del-CFTR Cl secretion, and plasma membrane F508del-CFTR. The observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.

  1. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands.

    PubMed

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto

    2018-06-01

    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  2. GTP-Binding Proteins Inhibit cAMP Activation of Chloride Channels in Cystic Fibrosis Airway Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Schwiebert, Erik M.; Kizer, Neil; Gruenert, Dieter C.; Stanton, Bruce A.

    1992-11-01

    Cystic fibrosis (CF) is a genetic disease characterized, in part, by defective regulation of Cl^- secretion by airway epithelial cells. In CF, cAMP does not activate Cl^- channels in the apical membrane of airway epithelial cells. We report here whole-cell patch-clamp studies demonstrating that pertussis toxin, which uncouples heterotrimeric GTP-binding proteins (G proteins) from their receptors, and guanosine 5'-[β-thio]diphosphate, which prevents G proteins from interacting with their effectors, increase Cl^- currents and restore cAMP-activated Cl^- currents in airway epithelial cells isolated from CF patients. In contrast, the G protein activators guanosine 5'-[γ-thio]triphosphate and AlF^-_4 reduce Cl^- currents and inhibit cAMP from activating Cl^- currents in normal airway epithelial cells. In CF cells treated with pertussis toxin or guanosine 5'-[β-thio]diphosphate and in normal cells, cAMP activates a Cl^- conductance that has properties similar to CF transmembrane-conductance regulator Cl^- channels. We conclude that heterotrimeric G proteins inhibit cAMP-activated Cl^- currents in airway epithelial cells and that modulation of the inhibitory G protein signaling pathway may have the therapeutic potential for improving cAMP-activated Cl^- secretion in CF.

  3. Why Does the Healthy Cornea Resist Pseudomonas aeruginosa Infection?

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2013-01-01

    Purpose To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas aeruginosa. Perspective We focus on our current understanding of the interplay between bacteria, tear fluid and the corneal epithelium that determine health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P. aeruginosa infection. Methods Use of “null-infection” in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P. aeruginosa survive at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense. Results and Discussion Tear fluid and the corneal epithelium combine to make a formidable defense against P. aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P. aeruginosa adaptation, expression of the type three secretion system, proteases, and P. aeruginosa biofilm formation on contact lenses. Conclusion After more than two decades of research focused on understanding how contact lens wear predisposes to P. aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens. PMID:23601656

  4. Secretion of the endoplasmic reticulum stress protein, GRP78, into the BALF is increased in cigarette smokers.

    PubMed

    Aksoy, Mark O; Kim, Victor; Cornwell, William D; Rogers, Thomas J; Kosmider, Beata; Bahmed, Karim; Barrero, Carlos; Merali, Salim; Shetty, Neena; Kelsen, Steven G

    2017-05-02

    Identification of biomarkers of cigarette smoke -induced lung damage and early COPD is an area of intense interest. Glucose regulated protein of 78 kD (i.e., GRP78), a multi-functional protein which mediates cell responses to oxidant stress, is increased in the lungs of cigarette smokers and in the serum of subjects with COPD. We have suggested that secretion of GRP78 by lung cells may explain the increase in serum GRP78 in COPD. To assess GRP78 secretion by the lung, we assayed GRP78 in bronchoalveolar lavage fluid (BALF) in chronic smokers and non-smokers. We also directly assessed the acute effect of cigarette smoke material on GRP78 secretion in isolated human airway epithelial cells (HAEC). GRP78 was measured in BALF of smokers (S; n = 13) and non-smokers (NS; n = 11) by Western blotting. GRP78 secretion by HAEC was assessed by comparing its concentration in cell culture medium and cell lysates. Cells were treated for 24 h with either the volatile phase of cigarette smoke (cigarette smoke extract (CSE) or the particulate phase (cigarette smoke condensate (CSC)). GRP78 was present in the BALF of both NS and S but levels were significantly greater in S (p = 0.04). GRP78 was secreted constitutively in HAEC. CSE 15% X 24 h increased GRP78 in cell-conditioned medium without affecting its intracellular concentration. In contrast, CSC X 24 h increased intracellular GRP78 expression but did not affect GRP78 secretion. Brefeldin A, an inhibitor of classical Golgi secretion pathways, did not inhibit GRP78 secretion indicating that non-classical pathways were involved. The present study indicates that GRP78 is increased in BALF in cigarette smokers; that HAEC secrete GRP78; and that GRP78 secretion by HAEC is augmented by cigarette smoke particulates. Enhanced secretion of GRP78 by lung cells makes it a potential biomarker of cigarette smoke-induced lung injury.

  5. Tachykinin-induced nasal fluid secretion and plasma exudation in the rat: effects of peptidase inhibition.

    PubMed

    Lindell, E; Svensjö, M E; Malm, L; Petersson, G

    1995-05-01

    Substance P (SP) evokes fluid secretion and plasma extravasation when applied to the nasal mucosa of rats. SP and another tachykinin, neurokinin A (NKA), are degraded in vitro by neutral endopeptidase (NEP) and angiotensin-1-converting enzyme (ACE). In this study, NKA or SP were applied locally to the nasal mucosa of rats. Subsequent fluid secretion was measured by a filter paper technique. Plasma exudation was derived as the recovery of intravenous (i.v.) administered 125I-albumin from the fluid-containing filter papers. In order to inhibit enzymatic degradation of the tachykinins by NEP and ACE, the rats were treated with i.v. administered phosphoramidon or captopril respectively or their combination. SP evoked fluid secretion that was augmented by phosphoramidon and further enhanced by adding captopril. NKA evoked nasal fluid secretion less effectively than SP and the effect was unaffected by peptidase inhibition. SP, but not NKA, evoked increased plasma exudation but only after pre-treatment with phosphoramidon.

  6. Ca2+-driven intestinal HCO3− secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport

    PubMed Central

    Cooper, Christopher A.; Whittamore, Jonathan M.

    2010-01-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO3−) secretion and Cl− absorption via Cl−/HCO3− exchange fueled by metabolic CO2; and 3) alkaline precipitation of Ca2+ as insoluble CaCO3, which aids H2O absorption). The latter two processes involve high rates of epithelial HCO3− secretion stimulated by intestinal Ca2+ and can drive a major portion of water absorption. At higher salinities and ambient Ca2+ concentrations the osmoregulatory role of intestinal HCO3− secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO2) and acid-base regulation (as intestinal cells must export H+ into the blood to balance apical HCO3− secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca2+. Increasing the luminal Ca2+ concentration caused a large elevation in intestinal HCO3− production and excretion. Additionally, blood pH decreased (−0.13 pH units) and plasma partial pressure of CO2 (Pco2) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca2+] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO3− production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca2+ independent of any other ion or overall osmolality in marine teleost fish. PMID:20130227

  7. Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport.

    PubMed

    Cooper, Christopher A; Whittamore, Jonathan M; Wilson, Rod W

    2010-04-01

    Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O absorption). The latter two processes involve high rates of epithelial HCO(3)(-) secretion stimulated by intestinal Ca(2+) and can drive a major portion of water absorption. At higher salinities and ambient Ca(2+) concentrations the osmoregulatory role of intestinal HCO(3)(-) secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO(2)) and acid-base regulation (as intestinal cells must export H(+) into the blood to balance apical HCO(3)(-) secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca(2+). Increasing the luminal Ca(2+) concentration caused a large elevation in intestinal HCO(3)(-) production and excretion. Additionally, blood pH decreased (-0.13 pH units) and plasma partial pressure of CO(2) (Pco(2)) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca(2+)] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO(3)(-) production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca(2+) independent of any other ion or overall osmolality in marine teleost fish.

  8. Cot kinase plays a critical role in Helicobacter pylori-induced IL-8 expression.

    PubMed

    Jang, Sungil; Kim, Jinmoon; Cha, Jeong-Heon

    2017-04-01

    Helicobacter pylori is a major pathogen causing various gastric diseases including gastric cancer. Infection of H. pylori induces pro-inflammatory cytokine IL-8 expression in gastric epithelial cells in the initial inflammatory process. It has been known that H. pylori can modulate Ras-Raf-Mek-Erk signal pathway for IL-8 induction. Recently, it has been shown that another signal molecule, cancer Osaka thyroid oncogene/tumor progression locus 2 (Cot/Tpl2) kinase, activates Mek and Erk and plays a role in the Erk pathway, similar to MAP3K signal molecule Raf kinase. Therefore, the objective of this study was to determine whether Cot kinase might be involved in IL-8 induction caused by H. pylori infection. AGS gastric epithelial cells were infected by H. pylori strain G27 or its isogenic mutants lacking cagA or type IV secretion system followed by treatment with Cot kinase inhibitor (KI) or siRNA specific for Cot kinase. Activation of Erk was assessed by Western blot analysis and expression of IL-8 was measured by ELISA. Treatment with Cot KI reduced both transient and sustained Erk activation. It also reduced early and late IL-8 secretion in the gastric epithelial cell line. Furthermore, siRNA knockdown of Cot inhibited early and late IL-8 secretion induced by H. pylori infection. Taken together, these results suggest that Cot kinase might play a critical role in H. pylori type IV secretion apparatus-dependent early IL-8 secretion and CagA-dependent late IL-8 secretion as an alternative signaling molecule in the Erk pathway.

  9. The surface of the eye – a superficial entity with deep repercussions

    PubMed Central

    Potop, Vasile; Dumitrache, Marieta; Ciocalteu, Alina

    2009-01-01

    The surface of the eye is an anatomical and functional entity with a relatively recent delimitation but with significant therapeutic and diagnostic consequences. The pathology of the conjunctive and cornea must be approached by looking at the interrelations between the two tissues that are so different anatomically and functionally but in the same time form a unit in structuring the eye’s surface. There are two major categories of relations between the two tissues: one of them is mediated by lachrymal secretion, a process whose complexity is not yet fully understood, and the other is germinal, referring to the stem cells located at the limbus which become epithelial cornea cells that can fixate lachrymal fluid. Imbalances in the quantity and quality of lachrymal secretion can be compensated, up to a certain point, by artificial products, but in severe cases only specially prepared autologous serum can compensate the deficit. The limbic deficits that affect stem cells require complex therapeutic procedures like limbic cell transplant, using an amniotic membrane or autologous serum. PMID:20108493

  10. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    PubMed Central

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  11. Gefarnate stimulates mucin-like glycoprotein secretion in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models

    PubMed Central

    Dota, Atsuyoshi; Takaoka-Shichijo, Yuko; Nakamura, Masatsugu

    2013-01-01

    Purpose The aim of this study was to evaluate the effect of gefarnate on mucin-like glycoprotein secretion in isolated rabbit conjunctival tissue, and on corneal epithelial damage in rabbit and cat dry-eye models. Methods Conjunctival tissue isolated from rabbits was treated with gefarnate. Mucin-like glycoprotein was detected in the culture supernatant by an enzyme-linked lectin assay. Gefarnate ointment was topically applied to eyes once daily for 7 days in the rabbit dry-eye model, in which the lacrimal glands, Harderian gland, and nictitating membrane were removed, or for 4 weeks in the cat dry-eye model, in which the lacrimal gland and nictitating membrane were removed. Corneal epithelial damage was evaluated by measurement of corneal permeability by rose bengal in the rabbit model or by fluorescein staining in the cat model. Results Gefarnate stimulated mucin-like glycoprotein secretion in conjunctival tissue in a dose-dependent manner. In the rabbit dry-eye model, application of gefarnate ointment to the eyes resulted in a dose-dependent decrease in rose bengal permeability in the cornea, with the effect being significant at concentrations of ≥0.3%. In the cat dry-eye model, application of gefarnate ointment resulted in a significant decrease in the corneal fluorescein staining score. Conclusion These results suggest that gefarnate stimulates in vitro secretion of mucin-like glycoprotein in conjunctival tissue and ameliorates corneal epithelial damage in animal dry-eye models. Gefarnate may therefore be effective for treating dry eye. PMID:23386781

  12. [Effect of resveratrol on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment].

    PubMed

    Lv, Jia-Shu; Jiang, Xue-Wei; Zhang, Yan; Zhen, Lei

    2017-02-01

    Through a study of the molecular mechanism of the effect of resveratrol(RSV) on expression of TLR4 and inflammatory factors in gingival epithelial cells under high glucose environment, the therapeutic effect and molecular mechanism of resveratrol on periodontitis in patients with diabetes mellitus was investigated. Gingival epithelial cells were cultured in vitro; according to the way of action, the cultured cells were divided into control group, high glucose group(HG) and HG+RSV group. The mRNA expression of TLR4 was detected by PCR; The third generation of gingival epithelial cells were pre-treated with or without RSV for 24 h under high glucose conditions, and subsequently treated with LPS at 100 ng/mL for 2 h. ELISA was used to detect the secretion of IL-1 beta, IL-6, IL-8 and TNF- alpha; the activation of TLR4 downstream signaling molecules NF-κB p65, p38 MAPK, and STAT3 was determined by Western blot. SPSS17.0 software package was used for statistical analysis. RSV could reverse the increase of TLR4 level in gingival epithelial cells in high glucose medium.LPS markedly increased the expression and secretion of IL-1β, IL-6, IL-8, and TNF-α in GECs cultured in high glucose medium, which was partly blocked in the presence of RSV. Furthermore, Western blot results showed that RSV significantly suppressed the phosphorylation of TLR4 downstream factors NF-κB p65, p38MAPK, and STAT3. RSV reduces inflammatory cytokine secretion in gingival epithelial cells, through negative regulation of TLR4 signaling pathway.

  13. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells.

    PubMed

    Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J

    2017-09-01

    Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.

  14. Bradykinin-stimulated cyclooxygenase activity stimulates vas deferens epithelial anion secretion in vitro in swine and humans.

    PubMed

    Pierucci-Alves, Fernando; Schultz, Bruce D

    2008-09-01

    Epithelia lining the male reproductive duct modulate fertility by altering the luminal environment to which sperm are exposed. Although vas deferens epithelial cells reportedly express high levels of cyclooxygenases (Ptgs), and activation of bradykinin (BK) receptors can lead to upregulation of PTGS activity in epididymal epithelia, it remains unknown whether BKs and/or PTGSs have any role in modulating epithelial ion transport across vas deferens epithelia. Porcine and human vas deferens epithelial cell primary cultures and the PVD9902 cell line responded to lysylbradykinin with an increase in short circuit current (I SC; indicating net anion secretion), an effect that was 60%-93% reduced by indomethacin. The BK effect was inhibited by the B2 receptor subtype (BDKRB2) antagonist HOE140, whereas the B1 receptor subtype agonist des-Arg9-BK had no effect. BDKRB2 immunoreactivity was documented in most epithelial cells composing the native epithelium and on Western blots derived from cultured cells. Gene expression analysis revealed that the PTGS2 transcript is 20 times more abundant than its PTGS1 counterpart in cultured porcine vas deferens epithelia and that BDKRB2 mRNA is likewise highly expressed. Subsequent experiments revealed that prostaglandin E2, 1-OH prostaglandin E1 (prostaglandin E receptor 4 [PTGER4] agonist) and butaprost (PTGER2 agonist) increase I SC in a concentration-dependent manner, whereas sulprostone (mixed PTGER1 and PTGER3 agonist) produced no change in I SC. These results demonstrate that autacoids can affect epithelial cells to acutely modulate the luminal environment to which sperm are exposed in the vas deferens by enhancing PTGS activity, leading to the production of prostaglandins that act at PTGER4 and/or PTGER2 to induce or enhance anion secretion.

  15. Bradykinin-Stimulated Cyclooxygenase Activity Stimulates Vas Deferens Epithelial Anion Secretion In Vitro in Swine and Humans1

    PubMed Central

    Pierucci-Alves, Fernando; Schultz, Bruce D.

    2008-01-01

    Epithelia lining the male reproductive duct modulate fertility by altering the luminal environment to which sperm are exposed. Although vas deferens epithelial cells reportedly express high levels of cyclooxygenases (Ptgs), and activation of bradykinin (BK) receptors can lead to upregulation of PTGS activity in epididymal epithelia, it remains unknown whether BKs and/or PTGSs have any role in modulating epithelial ion transport across vas deferens epithelia. Porcine and human vas deferens epithelial cell primary cultures and the PVD9902 cell line responded to lysylbradykinin with an increase in short circuit current (ISC; indicating net anion secretion), an effect that was 60%–93% reduced by indomethacin. The BK effect was inhibited by the B2 receptor subtype (BDKRB2) antagonist HOE140, whereas the B1 receptor subtype agonist des-Arg9-BK had no effect. BDKRB2 immunoreactivity was documented in most epithelial cells composing the native epithelium and on Western blots derived from cultured cells. Gene expression analysis revealed that the PTGS2 transcript is 20 times more abundant than its PTGS1 counterpart in cultured porcine vas deferens epithelia and that BDKRB2 mRNA is likewise highly expressed. Subsequent experiments revealed that prostaglandin E2, 1-OH prostaglandin E1 (prostaglandin E receptor 4 [PTGER4] agonist) and butaprost (PTGER2 agonist) increase ISC in a concentration-dependent manner, whereas sulprostone (mixed PTGER1 and PTGER3 agonist) produced no change in ISC. These results demonstrate that autacoids can affect epithelial cells to acutely modulate the luminal environment to which sperm are exposed in the vas deferens by enhancing PTGS activity, leading to the production of prostaglandins that act at PTGER4 and/or PTGER2 to induce or enhance anion secretion. PMID:18480467

  16. Construction of a plasmid for human brain-derived neurotrophic factor and its effect on retinal pigment epithelial cell viability

    PubMed Central

    Yan, Bo-jing; Wu, Zhi-zhong; Chong, Wei-hua; Li, Gen-lin

    2016-01-01

    Several studies have investigated the protective functions of brain-derived neurotrophic factor (BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19 (ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases. PMID:28197196

  17. Transcriptional PROFILING OF MUCOCILIARY DIFFERENTIATION IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    When cultured at an air-liquid interface (ALI) in the appropriate medium, primary human airway epithelial cells form a polarized, pseudostratified epithelium composed of ciliated and mucus-secreting cells. This culture system provides a useful tool for the in vitro study of...

  18. Malnutrition causes a reduction in alveolar epithelial sodium and chloride transport which predisposes to death from lung injury.

    PubMed

    Eisenhut, Michael

    2007-01-01

    All forms of malnutrition have been associated with increased severity of pneumonia, an increased pneumonia associated mortality and an increased risk of pulmonary fluid overload. Malnutrition was found to be associated with increased sweat sodium and chloride concentrations. A reduction of systemic sodium and chloride transport reflected in sweat sodium and chloride levels has been linked to increased severity of pulmonary edema in children with septicemia. Malnutrition causes a reduction in alveolar epithelial sodium and chloride transport which predisposes to death from lung injury. SUPPORTING EVIDENCE FOR THE HYPOTHESIS: Malnutrition caused reduced pulmonary fluid clearance in the rat model. Amiloride insensitive pulmonary fluid clearance in malnourished rats was reduced. The reduction in fluid clearance was reversible by beta agonists which increases epithelial sodium and chloride transport. Reduction of alveolar ion and fluid transport capacity explains the predisposition to death from pulmonary edema associated with intravenous fluids and blood transfusions in inpatients with malnutrition. Reduced alveolar epithelial ion transport impairs absorption of intra-alveolar inflammatory exudate in pneumonia leading to a increased severity of respiratory compromise and increased mortality. MEANS TO TEST THE HYPOTHESIS: Nasal potential difference measurements could compare airway epithelial sodium and chloride transport in patients with and without malnutrition and malnutrition associated lung disease. Sweat sodium and chloride concentrations could be compared in patients with and without respiratory disease associated with malnutrition and correlated with the severity of respiratory compromise.

  19. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis

    PubMed Central

    Hohwieler, Meike; Perkhofer, Lukas; Liebau, Stefan; Seufferlein, Thomas; Müller, Martin

    2016-01-01

    Cystic fibrosis (CF) is one of the most frequently occurring inherited human diseases caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which lead to ample defects in anion transport and epithelial fluid secretion. Existing models lack both access to early stages of CF development and a coeval focus on the gastrointestinal CF phenotypes, which become increasingly important due increased life span of the affected individuals. Here, we provide a comprehensive overview of gastrointestinal facets of CF and the opportunity to model these in various systems in an attempt to understand and treat CF. A particular focus is given on forward-leading organoid cultures, which may circumvent current limitations of existing models and thereby provide a platform for drug testing and understanding of disease pathophysiology in gastrointestinal organs. PMID:28815024

  20. Aquaporins: important but elusive drug targets

    PubMed Central

    Verkman, Alan S.; Anderson, Marc O.; Papadopoulos, Marios C.

    2014-01-01

    The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators. PMID:24625825

  1. A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction.

    PubMed

    Zumoffen, C M; Gil, R; Caille, A M; Morente, C; Munuce, M J; Ghersevich, S A

    2013-05-01

    Is lactoferrin (LF) (detected in oviductal secretion) able to bind to oocytes and sperm and modulate gamete interaction? LF binds to zona pellucida (ZP) and spermatozoa (depending upon the capacitation stage and acrosome status) and inhibits gamete interaction in vitro. Proteins from human oviductal tissue secretion modulate gamete interaction and parameters of sperm function in vitro and some of them bind to sperm, but they remain to be isolated and identified. Proteins were isolated from human oviductal tissue secretion using their sperm membrane binding ability. One of the isolated proteins was identified as human LF and immunolocalized in tubal tissues. LF expression was analyzed in native oviductal fluid and oviduct epithelial cells (at different phases of the menstrual cycle: proliferative, periovulatory and secretory). In addition, the LF binding sites on spermatozoa (at different capacitation and acrosome reaction stages) and on ZP and the dose-dependent effect of LF on gamete interaction were investigated. All experiments were performed at least three times. Tubal tissues obtained from premenopausal patients (scheduled for hysterectomy, n = 23) were cultured in DMEM/Ham's F12 medium and conditioned media (CM) were collected. Motile spermatozoa were obtained by swim-up from normozoospermic semen samples from healthy donors (n = 4). An affinity chromatography with sperm membrane extracts was used to isolate proteins from CM. Isolated proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophresis and further identified by nano liquid chromatography tandem mass spectrometry peptide sequencing. The presence of LF in oviductal tissue was investigated by immunohistochemistry and immunofluorescence and was detected in native oviductal fluid and oviduct epithelial cells homogenates by western blot. LF binding sites on gametes were investigated by incubating gametes with the protein coupled to fluorescein isothiocyanate (FITC). The acrosome reaction was assessed with Pisum sativum agglutinin conjugated with rhodamine. The effect of increasing concentrations of LF (0.1-100 µg/ml) on gamete interaction was evaluated by a sperm-ZP binding assay, using human oocytes donated by women undergoing IVF procedures. A protein isolated by the affinity column was identified as human LF. LF was immunolocalized in human oviductal tissue and detected in oviductal fluid and oviduct epithelial cell homogenates. In the latter case, LF expression was highest at the periovulatory phase of the menstrual cycle (P < 0.01). Different LF binding patterns were observed on spermatozoa depending upon capacitation stage and if the acrosome reaction had occurred. Unstained sperm were most prevalent before capacitation, but after incubation for 6 h under capacitating conditions and in acrosome-reacted sperm LF binding was observed, mainly localized in the equatorial segment and post-acrosomal region of the sperm head. LF binding studies on ZP showed homogenous staining. LF caused a dose-dependent significant inhibition of sperm-ZP interaction, and the effect was already significant (P < 0.01) with the lowest LF concentration used. This study has investigated the effect of LF only on human gamete interaction in vitro and thus has some limitations. Further investigations of the potential mechanisms involved in LF action both on gamete function in vitro and in vivo in animal models are needed to confirm the role of this protein in the reproductive process. The present data indicate that human oviductal LF expression is cycle dependent and inhibited gamete interaction in vitro. No previous data were available about potential direct effects of LF on gamete interaction. It could be thought that the protein is involved in the regulation of the reproductive process, perhaps contributing to prevent polyspermy. Thus, further research is needed to clarify the potential role of LF in the regulation of the fertilization process. This study was supported by grants from FONCYT (PICT 01095, S.A.G., M.J.M) and SECyT UNR (PIDBIO238, S.A.G). The authors have no conflict of interest to declare.

  2. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues.

    PubMed

    Lee, In-Seung; Cho, Dong-Hyuk; Kim, Ki-Suk; Kim, Kang-Hoon; Park, Jiyoung; Kim, Yumi; Jung, Ji Hoon; Kim, Kwanil; Jung, Hee-Jae; Jang, Hyeung-Jin

    2018-02-01

    Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1β (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. Emb significantly blocked NF-κB activity in IL-1β-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1β-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.

  3. A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland

    PubMed Central

    Catalán, Marcelo A.; Kondo, Yusuke; Peña-Munzenmayer, Gaspar; Jaramillo, Yasna; Liu, Frances; Choi, Sooji; Crandall, Edward; Borok, Zea; Flodby, Per; Shull, Gary E.; Melvin, James E.

    2015-01-01

    Activation of an apical Ca2+-activated Cl− channel (CaCC) triggers the secretion of saliva. It was previously demonstrated that CaCC-mediated Cl− current and Cl− efflux are absent in the acinar cells of systemic Tmem16A (Tmem16A Cl− channel) null mice, but salivation was not assessed in fully developed glands because Tmem16A null mice die within a few days after birth. To test the role of Tmem16A in adult salivary glands, we generated conditional knockout mice lacking Tmem16A in acinar cells (Tmem16A−/−). Ca2+-dependent salivation was abolished in Tmem16A−/− mice, demonstrating that Tmem16A is obligatory for Ca2+-mediated fluid secretion. However, the amount of saliva secreted by Tmem16A−/− mice in response to the β-adrenergic receptor agonist isoproterenol (IPR) was comparable to that seen in controls, indicating that Tmem16A does not significantly contribute to cAMP-induced secretion. Furthermore, IPR-stimulated secretion was unaffected in mice lacking Cftr (Cftr∆F508/∆F508) or ClC-2 (Clcn2−/−) Cl− channels. The time course for activation of IPR-stimulated fluid secretion closely correlated with that of the IPR-induced cell volume increase, suggesting that acinar swelling may activate a volume-sensitive Cl− channel. Indeed, Cl− channel blockers abolished fluid secretion, indicating that Cl− channel activity is critical for IPR-stimulated secretion. These data suggest that β-adrenergic–induced, cAMP-dependent fluid secretion involves a volume-regulated anion channel. In summary, our results using acinar-specific Tmem16A−/− mice identify Tmem16A as the Cl− channel essential for muscarinic, Ca2+-dependent fluid secretion in adult mouse salivary glands. PMID:25646474

  4. Mechanism involved in Danshen-induced fluid secretion in salivary glands

    PubMed Central

    Wei, Fei; Wei, Mu-Xin; Murakami, Masataka

    2015-01-01

    AIM: Danshen’s capability to induce salivary fluid secretion and its mechanisms were studied to determine if it could improve xerostomia. METHODS: Submandibular glands were isolated from male Wistar rats under systemic anesthesia with pentobarbital sodium. The artery was cannulated and vascularly perfused at a constant rate. The excretory duct was also cannulated and the secreted saliva was weighed in a cup on an electronic balance. The weight of the accumulated saliva was measured every 3 s and the salivary flow rate was calculated. In addition, the arterio-venous difference in the partial oxygen pressure was measured as an indicator of oxygen consumption. In order to assess the mechanism involved in Danshen-induced fluid secretion, either ouabain (an inhibitor of Na+/K+ ATPase) or bumetanide (an inhibitor of NKCC1) was additionally applied during the Danshen stimulation. In order to examine the involvement of the main membrane receptors, atropine was added to block the M3 muscarinic receptors, or phentolamine was added to block the α1 adrenergic receptors. In order to examine the requirement for extracellular Ca2+, Danshen was applied during the perfusion with nominal Ca2+ free solution. RESULTS: Although Danshen induced salivary fluid secretion, 88.7 ± 12.8 μL/g-min, n = 9, (the highest value around 20 min from start of DS perfusion was significantly high vs 32.5 ± 5.3 μL/g-min by carbamylcholine, P = 0.00093 by t-test) in the submandibular glands, the time course of that secretion differed from that induced by carbamylcholine. There was a latency associated with the fluid secretion induced by Danshen, followed by a gradual increase in the secretion to its highest value, which was in turn followed by a slow decline to a near zero level. The application of either ouabain or bumetanide inhibited the fluid secretion by 85% or 93%, and suppressed the oxygen consumption by 49% or 66%, respectively. These results indicated that Danshen activates Na+/K+ ATPase and NKCC1 to maintain Cl- release and K+ release for fluid secretion. Neither atropine or phentolamine inhibited the fluid secretion induced by Danshen (263% ± 63% vs 309% ± 45%, 227% ± 63% vs 309% ± 45%, P = 0.899, 0.626 > 0.05 respectively, by ANOVA). Accordingly, Danshen does not bind with M3 or α1 receptors. These characteristics suggested that the mechanism involved in DS-induced salivary fluid secretion could be different from that induced by carbamylcholine. Carbamylcholine activates the M3 receptor to release inositol trisphosphate (IP3) and quickly releases Ca2+ from the calcium stores. The elevation of [Ca2+]i induces chloride release and quick osmosis, resulting in an onset of fluid secretion. An increase in [Ca2+]i is essential for the activation of the luminal Cl- and basolateral K+ channels. The nominal removal of extracellular Ca2+ totally abolished the fluid secretion induced by Danshen (1.8 ± 0.8 μL/g-min vs 101.9 ± 17.2 μL/g-min, P = 0.00023 < 0.01, by t-test), suggesting the involvement of Ca2+ in the activation of these channels. Therefore, IP3-store Ca2+ release signalling may not be involved in the secretion induced by Danshen, but rather, there may be a distinct signalling process. CONCLUSION: The present findings suggest that Danshen can be used in the treatment of xerostomia, to avoid the systemic side effects associated with muscarinic drugs. PMID:25663764

  5. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.

    PubMed

    Kabiri, Zahra; Greicius, Gediminas; Madan, Babita; Biechele, Steffen; Zhong, Zhendong; Zaribafzadeh, Hamed; Edison; Aliyev, Jamal; Wu, Yonghui; Bunte, Ralph; Williams, Bart O; Rossant, Janet; Virshup, David M

    2014-06-01

    Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.

  6. Enteroaggregative Escherichia coli flagellin-induced interleukin-8 secretion requires Toll-like receptor 5-dependent p38 MAP kinase activation

    PubMed Central

    Khan, Mohammed A S; Kang, Jian; Steiner, Theodore S

    2004-01-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen that causes acute and chronic diarrhoea in a number of clinical settings. EAEC diarrhoea involves bacterial aggregation, adherence to intestinal epithelial cells and elaboration of several toxigenic bacterial mediators. Flagellin (FliC-EAEC), a major bacterial surface protein of EAEC, causes interleukin (IL)-8 release from several epithelial cell lines. The host response to flagellins from E. coli and several other bacteria is mediated by Toll-like receptor 5 (TLR5), which signals through nuclear factor kappa B (NF-κB) to induce transcription of pro-inflammatory cytokines. p38 mitogen-activating protein (MAP) kinase (MAPK) is a member of a family of stress-related kinases that influences a diverse range of cellular functions including host inflammatory responses to microbial products. We studied the role of p38 MAPK in FliC-EAEC-induced IL-8 secretion from Caco-2 human intestinal epithelial cells and THP-1 human monocytic cells. We found that IL-8 secretion from both cell types is dependent on p38 MAPK, which is phospho-activated in response to FliC-EAEC. The role of TLR5 in p38 MAPK-dependent IL-8 secretion was verified in HEp-2 cells transiently transfected with a TLR5 expression construct. Activation of interleukin-1 receptor-associated kinase (IRAK) was also observed in Caco-2 and TLR5-transfected HEp-2 cells after exposure to FliC-EAEC. Finally, we demonstrated that pharmacological inhibition of p38 MAPK reduced IL-8 transcription and mRNA levels, but did not affect NF-κB activation. Collectively, our results suggest that TLR5 mediates p38 MAPK-dependent IL-8 secretion from epithelial and monocytic cells incubated with FliC-EAEC, and that this effect requires IL-8 promoter activation independent of NF-κB nuclear migration. PMID:15270737

  7. Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells

    PubMed Central

    Cavet, M E; West, M; Simmons, N L

    1997-01-01

    Human intestinal epithelial Caco-2 cells were used to investigate the mechanistic basis of transepithelial secretion of the fluoroquinolone antibiotic ciprofloxacin. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to competitive inhibition by sulphate, thiosulphate, oxalate, succinate and para-amino hippurate, probenecid (10 mM), taurocholate (100 μM) or bromosulphophthalein (100 μM). Similarly tetraethylammonium and N-′methylnicotinamide (10 mM) were without effect. Net secretion of ciprofloxacin was inhibited by the organic exchange inhibitor 4,4′-diisothiocyanostilbene-2-2′-disulphonic acid (DIDS, 400 μM). Net secretion of ciprofloxacin was partially inhibited by 100 μM verapamil, whilst net secretion of the P-glycoprotein substrate vinblastine was totally abolished under these conditions. Ciprofloxacin secretion was unaltered after preincubation of cells with two anti-P-glycoprotein antibodies (UIC2 and MRK16), which both significantly reduced secretory vinblastine flux (measured in the same cell batch). Ciprofloxacin (3 mM) failed to inhibit vinblastine net secretion in Caco-2 epithelia, and was not itself secreted by the P-glycoprotein expressing and vinblastine secreting dog kidney cell line, MDCK. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to alterations of either cytosolic or medium pH, or dependent on the presence of medium Na+, Cl− or K+ in the bathing media. The substrate specificity of the ciprofloxacin secretory transport in Caco-2 epithelia is distinct from both the renal organic anion and cation transport. A role for P-glycoprotein in ciprofloxacin secretion may also be excluded. A novel transport mechanism, sensitive to both DIDS and verapamil mediates secretion of ciprofloxacin by human intestinal Caco-2 epithelia. PMID:9283689

  8. Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies

    PubMed Central

    McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.

    2008-01-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID:18483420

  9. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.

    PubMed

    McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M

    2008-11-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation.

  10. Human esophageal myofibroblasts secrete proinflammatory cytokines in response to acid and Toll-like receptor 4 ligands

    PubMed Central

    Gargus, Matthew; Niu, Chao; Vallone, John G.; Binkley, Jana; Rubin, Deborah C.

    2015-01-01

    The pathophysiology of esophageal injury, repair, and inflammation in gastroesophageal reflux-disease (GERD) is complex. Whereas most studies have focused on the epithelial response to GERD injury, we are interested in the stromal response. We hypothesized that subepithelial esophageal myofibroblasts in GERD secrete proinflammatory cytokines in response to injurious agents encountered via epithelial barrier breaches or through dilated epithelial intercellular spaces. We determined the percentage of myofibroblasts [α-smooth muscle actin (α-SMA)+vimentin+CD31−] in the subepithelial GERD and normal esophageal stroma by immunomorphologic analysis. We performed α-SMA coimmunostaining with IL-6 and p65. We established and characterized primary cultures of α-SMA+vimentin+CD31−CD45− human esophageal myofibroblasts (HuEso MFs). We modeled GERD by treatment with pH 4.5-acidified media and Toll-like receptor 4 (TLR4) ligands, LPS and high-mobility group box 1 protein (HMGB1), and determined myofibroblast cytokine secretion in response to GERD injury. We demonstrate that spindle-shaped cell myofibroblasts are located near the basement membrane of stratified squamous epithelium in normal esophagus. We identify an increase in subepithelial myofibroblasts and activation of proinflammatory pathways in patients with GERD. Primary cultures of stromal cells obtained from normal esophagus retain myofibroblast morphology and express the acid receptor transient receptor potential channel vanilloid subfamily 1 (TRPV1) and TLR4. HuEso MFs stimulated with acid and TLR4 agonists LPS and HMGB1 increase IL-6 and IL-8 secretion via TRPV1 and NF-κB activation. Our work implicates a role for human subepithelial stromal cells in the pathogenesis of GERD-related esophageal injury. Findings of this study can be extended to the investigation of epithelial-stromal interactions in inflammatory esophageal mucosal disorders. PMID:25882613

  11. Gastroduodenal mucosal defence mechanisms and the action of non-steroidal anti-inflammatory agents.

    PubMed

    Garner, A; Allen, A; Rowe, P H

    1987-01-01

    This review summarises gastroduodenal protective mechanisms, the actions of non-steroidal anti-inflammatory (NSAI) agents on mucus and HCO3 secretions, and the basis of gastric mucosal injury induced by acetylsalicylic and salicylic acids (ASA and SA). Resistance to autodigestion by acid and pepsin present in gastric juice is multifactorial involving pre-epithelial (mucus-bicarbonate barrier) and post-epithelial (blood flow, acid-base balance) factors in addition to properties of the surface cell layer per se. The latter includes mucosal re-epithelialisation, a property which appears particularly important with respect to recovery from acute injury. A range of NSAI agents (ASA, fenclofenac, ibuprofen and indomethacin) inhibit gastric HCO3 transport in isolated mucosal preparations. Inhibition of duodenal HCO3 transport has been demonstrated in response to indomethacin in vitro and in vivo. These effects on secretion can be antagonised by exogenous prostaglandins of the E series. The layer of secreted mucus gel overlying the epithelial surface is not affected by NSAI drugs in the short term. However a number of these agents have been shown to inhibit glycoprotein biosynthesis by the epithelial cells. Thus loss of this protective coat could be anticipated during chronic drug exposure since erosion of adherent mucus by luminal shear and proteolysis would not be compensated by continued secretion. Detailed analysis of the gastric mucosal injury induced by salicylates both in vitro and in vivo reveals that much of the damage previously attributed to ASA is in fact due to the metabolic product SA. In this respect it is concluded that mucosal injury caused by ASA is due to a combination of two factors.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Studying Mucin Secretion from Human Bronchial Epithelial Cell Primary Cultures

    PubMed Central

    Abdullah, Lubna H.; Wolber, Cédric; Kesimer, Mehmet; Sheehan, John K.; Davis, C. William

    2016-01-01

    Mucin secretion is regulated by extracellular signaling molecules emanating from local, neuronal, or endocrine sources. Quantifying the rate of this secretion is important to understanding how the exocytic process is regulated, and also how goblet/mucous cells synthesize and release mucins under control and pathological conditions. Consequently, measuring mucins in a quantitatively accurate manner is the key to many experiments addressing these issues. This paper describes procedures used to determine agonist-induced mucin secretion from goblet cells in human bronchial epithelial (HBE) cell cultures. It begins with primary epithelial cell culture, offers methods for purifying MUC5AC and MUC5B mucins for standards, and describes five different microtiter plate binding assays which use various probes for mucins. A polymeric mucin-specific antibody is used in standard and sandwich ELISA formats for two assays while the others target the extensive glycosylated domains of mucins with lectin, periodate oxidation, and antibody-based probes. Comparing the data derived from the different assays applied to the same set of samples of HBE cell cultures indicates a qualitative agreement between baseline and agonist stimulated mucin release; however, the polymeric mucin-specific assays yield substantially lower values than the assays using nonspecific molecular reporters. These results indicate that the more non-specific assays are suitable to assess overall secretory responses by goblet cells, but are likely unsuited for specific measurements of polymeric mucins, per se. PMID:22259142

  13. In vitro exposure of cultured porcine choroid plexus epithelial cells to immunosuppressant, anti-inflammatory, and psychoactive drugs.

    PubMed

    Emerich, Dwaine F; Schneider, Patricia; Bintz, Briannan; Hudak, Jebecka; Thanos, Christopher G

    2007-01-01

    Delivery of neurotrophic molecules to the CNS is a potential treatment for preventing the neuronal loss in neurological disorders such as Huntington's disease (HD). Choroid plexus (CP) epithelial cell transplants secrete several neurotrophic factors and are neuroprotective in rat and monkey animal models of HD. HD patients receiving CP transplants would likely receive a course of immunosuppressant/anti-inflammatory treatment postsurgery and would remain on psychoactive medications to treat their motor, psychiatric, and emotional symptoms. Therefore, we examined whether CP epithelial cells are impacted by incubation with cyclosporine A (CsA), dexmethasone, haloperidol, fluoxetine, and carbamezapine. In each case, DNA was quantified to determine cell number, a formazen dye-based assay was used to quantify cell metabolism, and vascular endothelial growth factor (VEGF) levels were measured as a marker of protein secretion. Except for the highest dose of fluoxetine, none of the drugs tested exerted any detrimental effect on cell number. Incubation with CsA or dexamethasone did not have any consistent significant effect on VEGF secretion or cell metabolism. Carbamazepine was without effect while only the highest dose of haloperidol tested modestly lowered cell metabolism. VEGF secretion and cell metabolism was not measurable from CP cells exposed to 100 microM fluoxetine. These data continue to support the potential use of CP transplants in HD.

  14. Monomethylarsonous Acid (MMAIII) Has an Adverse Effect on the Innate Immune Response of Human Bronchial Epithelial Cells to Pseudomonas aeruginosa.

    PubMed

    Notch, Emily G; Goodale, Britton C; Barnaby, Roxanna; Coutermarsh, Bonita; Berwin, Brent; Taylor, Vivien F; Jackson, Brian P; Stanton, Bruce A

    2015-01-01

    Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa) induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa.

  15. SALSA-A dance on a slippery floor with changing partners.

    PubMed

    Reichhardt, M P; Holmskov, U; Meri, S

    2017-09-01

    It is becoming increasingly clear that the connections between our immune system and the microbiota colonizing us have a tremendous impact on human health. A number of innate molecular defence mechanisms cooperate to selectively target unwanted microorganisms at the mucosal surfaces. Amongst others these include the complement system, IgA and the SALSA molecule. The salivary scavenger and agglutinin (SALSA), also known as deleted in malignant brain tumors 1 (DMBT1), salivary agglutinin (SAG) or gp340 is a multifunctional molecule with important functions in innate immunity, inflammation and epithelial homeostasis. The SALSA protein is expressed at most mucosal surfaces, where it is one of the most abundant proteins. In the fetal meconium and infant intestine it may constitute even up to 10% of the total protein amount. SALSA is found either directly associated with the epithelial surface or secreted into the lining fluids. In the fluid-phase SALSA interacts with a number of bacterial and viral organisms, as well as with endogenous ligands, including IgA, lactoferrin, surfactant proteins and complement components. While complement has been shown to impact the mucosal environment, this remains an area of limited research. The multiple interactions of the SALSA molecule provide a scaffold, where this potent defence system may engage in cooperative microbial clearance together with corresponding mucosal host ligands. With its high abundance, and multiple effects on both host and microbes, the SALSA molecule is a key player in maintaining the immunological balance at the mucosal surfaces. This is further supported by observations linking the expression of different SALSA isoforms to the development of chronic inflammatory conditions, such as Crohn's disease and ulcerative colitis. This review describes the latest advances in understanding functions of SALSA and its different isoforms. Recently recognized functions are related to complement activation and regulation, endothelial development and epithelial homeostasis. In addition, we suggest mechanisms how SALSA regulates inflammation at the mucosal surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. CFTR, bicarbonate, and the pathophysiology of cystic fibrosis.

    PubMed

    Borowitz, Drucy

    2015-10-01

    The gene that encodes for the cystic fibrosis transmembrane regulator protein (CFTR) was identified in 1989, yet major pathophysiologic questions remain unanswered. There is emerging evidence that CFTR is a bicarbonate channel, a driver of chloride-bicarbonate exchange and through its action on local pH, a regulator of other ion channels and of proteins that function optimally in a neutral environment. In both the respiratory and gastrointestinal (GI) tracts, bicarbonate drives ionic content and fluid on epithelial surfaces, allows mucins to unfold and become slippery, and contributes to innate immunity. In the GI tract bicarbonate neutralizes gastric acid to support digestion and absorption. When CFTR is dysfunctional, lack of bicarbonate secretion disrupts these normal processes and thus leads directly to the clinical symptoms and signs of CF. This article synthesizes evidence from cell, animal, and human investigations that support these concepts. Bicarbonate secretion does not seem to be the same in all tissues and varies with physiologic demand. Thus, tissue type and whether conditions are baseline or stimulated needs to be taken into account when evaluating the evidence concerning the role of bicarbonate in the pathophysiology of CF as a regulator of local pH. Basic and applied research that focuses on the role of CFTR-mediated bicarbonate secretion helps explain many of the diverse clinical manifestations that are CF. © 2015 Wiley Periodicals, Inc.

  17. Caffeine Inhibits Fluid Secretion by Interlobular Ducts From Guinea Pig Pancreas.

    PubMed

    Mochimaru, Yuka; Yamamoto, Akiko; Nakakuki, Miyuki; Yamaguchi, Makoto; Taniguchi, Ituka; Ishiguro, Hiroshi

    2017-04-01

    Caffeine is contained in coffee, tea, and numerous beverages and foods. We examined the direct effects of caffeine on the physiological function of pancreatic duct cells by using interlobular duct segments isolated from guinea pig pancreas. The rate of fluid secretion was continuously measured by monitoring the luminal volume of isolated duct segments. Changes in intracellular Ca concentration ([Ca]i) were estimated by microfluorometry in ducts loaded with Fura-2. Both secretin-stimulated and acetylcholine (ACh)-stimulated fluid secretions were substantially and reversibly inhibited by relatively low concentrations of caffeine as low as 0.03 mM relevant to blood levels after ingestion of caffeine-containing beverages. Caffeine inhibited ACh-induced elevation of [Ca]i and secretin-induced fluctuation of [Ca]i. Caffeine abolished thapsigargin-induced intracellular Ca release but did not affect the entry of extracellular Ca. Caffeine (0.05 mM) abolished ethanol (1 mM)-induced fluid hypersecretion in secretin-stimulated pancreatic duct. Low concentrations of caffeine directly inhibit pancreatic ductal fluid secretion stimulated by secretin or ACh and also ethanol-induced fluid hypersecretion. The inhibition by caffeine seems to be mediated by the blockade of intracellular Ca mobilization. Daily intake of caffeine may reduce the volume of pancreatic juice secretion.

  18. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin

    PubMed Central

    Foster, Derek M.; Martin, Luke G.; Papich, Mark G.

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900% penetration to the airways. Despite high diffusion into the bronchi, the tulathromycin concentrations achieved were lower than the MIC of susceptible bacteria at most time points. PMID:26872361

  19. Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    PubMed Central

    Marunaka, Yoshinori; Niisato, Naomi; Taruno, Akiyuki; Ohta, Mariko; Miyazaki, Hiroaki; Hosogi, Shigekuni; Nakajima, Ken-ichi; Kusuzaki, Katsuyuki; Ashihara, Eishi; Nishio, Kyosuke; Iwasaki, Yoshinobu; Nakahari, Takashi; Kubota, Takahiro

    2011-01-01

    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane. PMID:22028593

  20. Dry eye symptoms are increased in mice deficient in phospholipid transfer protein (PLTP).

    PubMed

    Setälä, Niko L; Metso, Jari; Jauhiainen, Matti; Sajantila, Antti; Holopainen, Juha M

    2011-05-01

    In the tear fluid the outermost part facing the tear-air interface is composed of lipids preventing evaporation of the tears. Phospholipid transfer protein (PLTP) mediates phospholipid transfer processes between serum lipoproteins and is also a normal component of human tears. To study whether PLTP plays any functional role in tear fluid we investigated PLTP-deficient mice, applying functional and morphologic analyses under normal housing and experimentally induced dry eye conditions. Aqueous tear fluid production, corneal epithelial morphology, barrier function, and occludin expression were assessed. In mice with a full deficiency of functional PLTP enhanced corneal epithelial damage, increased corneal permeability to carboxyfluorescein, and decreased corneal epithelial occludin expression were shown. These pathologic signs were worsened by experimentally induced dry eye both in wild-type and PLTP knock-out mice. Deficiency in the production of tear PLTP in mice is accompanied by corneal epithelial damage, a feature that is typical in human dry eye syndrome (DES). To complement animal experiments we collected tear fluid from human dry eye patients as well as healthy control subjects. Increased tear fluid PLTP activity was observed among DES patients. In conclusion, the presence of PLTP in tear fluid appears to be essential for maintaining a healthy and functional ocular surface. Increased PLTP activity in human tear fluid in DES patients suggests an ocular surface protective role for this lipid transfer protein. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. PERP, a host tetraspanning membrane protein, is required for S almonella‐induced inflammation

    PubMed Central

    Hallstrom, Kelly N.; Srikanth, C. V.; Agbor, Terence A.; Dumont, Christopher M.; Peters, Kristen N.; Paraoan, Luminita; Casanova, James E.; Boll, Erik J.

    2015-01-01

    Summary S almonella enterica  Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from S almonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface. PMID:25486861

  2. Fungal Allergen β-Glucans Trigger p38 Mitogen-Activated Protein Kinase–Mediated IL-6 Translation in Lung Epithelial Cells

    PubMed Central

    Neveu, Wendy A.; Bernardo, Edgar; Allard, Jenna L.; Nagaleekar, Viswas; Wargo, Matthew J.; Davis, Roger J.; Iwakura, Yoichiro; Whittaker, Laurie A.

    2011-01-01

    In addition to immune cells, airway epithelial cells can contribute to and shape the immune response in the lung by secreting specific cytokines. IL-6 is a key factor in determining the effector fate of CD4+ T cells. Here we show that under basal conditions, the IL-6 gene is already highly expressed in lung epithelial cells, but not in immune cells resident in the lung. However, upon exposure of the lungs to fungal allergens, the direct contact of β-glucans present in the fungus cell wall with lung epithelial cells is sufficient to trigger the rapid synthesis and secretion of IL-6 protein. This posttranscriptional regulation of IL-6 in response to fungal extracts is mediated by the p38 mitogen-activated protein kinase pathway. The inhalation of β-glucans with a nonallergenic antigen is sufficient to provide an adjuvant effect that leads to mucous hyperplasia in the airways. Thus, β-glucans may constitute a common determinant of the fungal and plant-derived allergens responsible for some of the pathological features in allergic asthma. PMID:21642586

  3. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease

    PubMed Central

    Teos, LY; Zheng, C-Y; Liu, X; Swaim, WD; Goldsmith, CM; Cotrim, AP; Baum, BJ; Ambudkar, IS

    2017-01-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands functionally compromised post IR. PMID:26966862

  4. The ultrastructure of the sweat glands of the ox, sheep and goat during sweating and recovery.

    PubMed Central

    Jenkinson, D M; Montgomery, I; Elder, H Y

    1979-01-01

    The ultrastructure of the sweat glands of cattle, sheep and goats was studied before, during, and after, exposure of the animals to controlled warm environments. In cattle, sweating induced little ultrastructural change in the gland, although fluid-filled spaces appeared between the myo- and secretory epithelial layers. The mechanism appears to be one of fluid transport and exocytosis of secretory vesicles, which in this species seem to be derived from the Golgi apparatus and/or mitochondria. The glands of the sheep and goat also displayed signs of vesicle exocytosis and of fluid transport during sweating. The sweating 'fatigue' in these species was apparently due to failure of the secretory cells, some of which ruptured and were extruded into the lumen. The evidence during subsequent recovery indicates that neighbouring cells spread to make contact, encase remnants of atretic cells between them and the underlying myoepithelium, and engulf them. Sweat in these species appears to be formed (a) by secretion and (b) from cells which can no longer meet the demands of stimulation. The role in sweating of cell replacement, and of undifferentiated cells found between the myo- and secretory epithelia, is discussed. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:511758

  5. Cystic Fibrosis Heterozygote Resistance to Cholera Toxin in the Cystic Fibrosis Mouse Model

    NASA Astrophysics Data System (ADS)

    Gabriel, Sherif E.; Brigman, Kristen N.; Koller, Beverly H.; Boucher, Richard C.; Stutts, M. Jackson

    1994-10-01

    The effect of the number of cystic fibrosis (CF) alleles on cholera toxin (CT)-induced intestinal secretion was examined in the CF mouse model. CF mice that expressed no CF transmembrane conductance regulator (CFTR) protein did not secrete fluid in response to CT. Heterozygotes expressed 50 percent of the normal amount of CFTR protein in the intestinal epithelium and secreted 50 percent of the normal fluid and chloride ion in response to CT. This correlation between CFTR protein and CT-induced chloride ion and fluid secretion suggests that CF heterozygotes might possess a selective advantage of resistance to cholera.

  6. Functional morphology of femoral glands in the Tegu lizard, Tupinambis merianae.

    PubMed

    Chamut, Silvia; Valdez, Valeria García; Manes, Mario E

    2009-04-01

    Several lizards have femoral glands, which have an influence in various reproductive behaviors. In this paper we describe the morphological organization of the femoral glands in the Tegu, Tupinambis merianae, by means of light and electron microscopy. Even though these glands are present in both genders, secretions during the reproductive period can only be found in males. The glandular parenchyma, which is organized in numerous secretory units, consists of keratinocyte-like cells and granular cells. The holocrine secretion is constituted from both cells, which lose their integrity and become a semi-amorphous material, reinforced by keratin sheets. The discharges of each unit merge together into a solid cylinder of secretion, surrounded by epithelial cells, that is extruded to the exterior. The keratin sheets and epithelial layers that surround both the complete and partial secretions form a sort of structural support suitable for the type of territorial demarcation characteristic of the species. The granular cells, supposedly the producers of pheromones, are characterized by the presence of electron-dense granules and multilaminar membranous bodies that show ultrastructural changes of unknown function. The free granules in the secretion cylinder may act as pheromone deposits.

  7. ROCK activity affects IL-1-induced signaling possibly through MKK4 and p38 MAPK in Caco-2 cells.

    PubMed

    Banerjee, Sayantan; McGee, Dennis W

    2016-09-01

    Elevated levels of interleukin-1 (IL-1) accompany inflammatory bowel disease. IL-1-stimulated intestinal epithelial cells can secrete potent chemokines like CXCL8 to exacerbate inflammation. Previously, we found that inhibiting the Rho-associated kinase (ROCK) could inhibit IL-1- or TNF-α-induced CXCL8 secretion by the Caco-2 colonic epithelial cell line. This ROCK inhibition did not affect IκBα phosphorylation and degradation, but suppressed the phosphorylation of c-Jun N-terminal kinase (JNK). Therefore, ROCK must play an important role in epithelial cell CXCL8 responses through an effect on the JNK signaling pathway. Here, we extend these studies by showing that inhibiting ROCK suppressed the IL-1-induced phosphorylation of MKK4, a known activator of JNK, but not MKK7. Yet, ROCK inhibition had no significant effect on the IL-1-induced phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2. Inhibiting ROCK also suppressed the phosphorylation of p38 MAPK after IL-1 stimulation, but this inhibition had no significant effect on the stability of CXCL8 messenger RNA (mRNA) after IL-1 stimulation. These results suggest that ROCK may be important in IL-1-induced signaling through MKK4 to JNK and the activation of p38 MAPK. Finally, inhibiting ROCK in IL-1 and TNF-α co-stimulated Caco-2 cells also resulted in a significant suppression of CXCL8 secretion and mRNA levels suggesting that inhibiting ROCK may be a mechanism to inhibit the overall response of epithelial cells to both cytokines. These studies indicate a novel signaling event, which could provide a target for suppressing intestinal epithelial cells (IEC) chemokine responses involved in mucosal inflammation.

  8. Aging reduces the neuroprotective capacity, VEGF secretion, and metabolic activity of rat choroid plexus epithelial cells.

    PubMed

    Emerich, Dwaine F; Schneider, Patricia; Bintz, Briannan; Hudak, Jebecka; Thanos, Christopher G

    2007-01-01

    Delivery of neurotrophic molecules to the brain has potential for preventing neuronal loss in neurodegenerative disorders. Choroid plexus (CP) epithelial cells secrete numerous neurotrophic factors, and encapsulated CP transplants are neuroprotective in models of stroke and Huntington's disease (HD). To date, all studies examining the neuroprotective potential of CP transplants have used cells isolated from young donor animals. Because the aging process significantly impacts the cytoarchitecture and function of the CP the following studies determined whether age-related impairments occur in its neuroprotective capacity. CP was isolated from either young (3-4 months) or aged (24 months) rats. In vitro, young CP epithelial cells secreted more VEGF and were metabolically more active than aged CP epithelial cells. Additionally, conditioned medium from cultured aged CP was less potent than young CP at enhancing the survival of serum-deprived neurons. Finally, encapsulated CP was tested in an animal model of HD. Cell-loaded or empty alginate capsules (control group) were transplanted unilaterally into the rat striatum. Seven days later, the animals received an injection of quinolinic acid (QA; 225 nmol) adjacent to the implant site. Animals were tested for motor function 28 days later. In the control group, QA lesions severely impaired function of the contralateral forelimb. Implants of young CP were potently neuroprotective as rats receiving CP transplants were not significantly impaired when tested for motor function. In contrast, implants of CP from aged rats were only modestly effective and were much less potent than young CP transplants. These data are the first to directly link aging with diminished neuroprotective capacity of CP epithelial cells.

  9. Angiopoietin-like protein 2 regulates Porphyromonas gingivalis lipopolysaccharide-induced inflammatory response in human gingival epithelial cells.

    PubMed

    Ohno, Tasuku; Yamamoto, Genta; Hayashi, Jun-Ichiro; Nishida, Eisaku; Goto, Hisashi; Sasaki, Yasuyuki; Kikuchi, Takeshi; Fukuda, Mitsuo; Hasegawa, Yoshiaki; Mogi, Makio; Mitani, Akio

    2017-01-01

    Angiopoietin-like protein 2 (ANGPTL2) maintains tissue homeostasis by inducing inflammation and angiogenesis. It is produced in infiltrating immune cells or resident cells, such as adipocytes, vascular endothelial cells, and tumor cells. We hypothesized that ANGPTL2 might play an important role as a unique mediator in both systemic and periodontal disease. We demonstrated an increased ANGPTL2 concentration in gingival crevicular fluid from chronic periodontitis patients. Porphyromonas gingivalis lipopolysaccharide (LPS) treatment strongly induced ANGPTL2 mRNA and protein levels in Ca9-22 human gingival epithelial cells. Recombinant human ANGPTL2 increased interleukin 1β (IL-1β), IL-8, and tumor necrosis factor-α (TNF-α) mRNA and protein levels in Ca9-22 cells. Small-interfering (si)RNA-mediated ANGPTL2 knockdown in Ca9-22 cells reduced IL-1β, IL-8 and TNF-α mRNA and protein levels compared with control siRNA (p<0.01) in P. gingivalis LPS-stimulated Ca9-22 cells. Antibodies against integrin α5β1, an ANGPTL receptor, blocked induction of these inflammatory cytokines in P. gingivalis LPS-treated Ca9-22 cells, suggesting that secreted ANGPTL induces inflammatory cytokines in gingival epithelial cells via an autocrine loop. The classic sequential cascade of P. gingivalis LPS → inflammatory cytokine induction is well established. However, in the current study, we reveal a novel cascade comprising sequential P. gingivalis LPS → ANGPTL2 → integrin α5β1 → inflammatory cytokine induction, which might be responsible for inducing potent periodontal disorganization activity in gingival epithelial cells. Via this pathway, ANGPTL2 functions in the pathogenesis of periodontitis and contributes to prolonging chronic inflammation in patients with systemic disease.

  10. Angiopoietin-like protein 2 regulates Porphyromonas gingivalis lipopolysaccharide-induced inflammatory response in human gingival epithelial cells

    PubMed Central

    Ohno, Tasuku; Hayashi, Jun-ichiro; Nishida, Eisaku; Goto, Hisashi; Sasaki, Yasuyuki; Kikuchi, Takeshi; Fukuda, Mitsuo; Hasegawa, Yoshiaki; Mogi, Makio; Mitani, Akio

    2017-01-01

    Angiopoietin-like protein 2 (ANGPTL2) maintains tissue homeostasis by inducing inflammation and angiogenesis. It is produced in infiltrating immune cells or resident cells, such as adipocytes, vascular endothelial cells, and tumor cells. We hypothesized that ANGPTL2 might play an important role as a unique mediator in both systemic and periodontal disease. We demonstrated an increased ANGPTL2 concentration in gingival crevicular fluid from chronic periodontitis patients. Porphyromonas gingivalis lipopolysaccharide (LPS) treatment strongly induced ANGPTL2 mRNA and protein levels in Ca9-22 human gingival epithelial cells. Recombinant human ANGPTL2 increased interleukin 1β (IL-1β), IL-8, and tumor necrosis factor-α (TNF-α) mRNA and protein levels in Ca9-22 cells. Small-interfering (si)RNA-mediated ANGPTL2 knockdown in Ca9-22 cells reduced IL-1β, IL-8 and TNF-α mRNA and protein levels compared with control siRNA (p<0.01) in P. gingivalis LPS-stimulated Ca9-22 cells. Antibodies against integrin α5β1, an ANGPTL receptor, blocked induction of these inflammatory cytokines in P. gingivalis LPS-treated Ca9-22 cells, suggesting that secreted ANGPTL induces inflammatory cytokines in gingival epithelial cells via an autocrine loop. The classic sequential cascade of P. gingivalis LPS → inflammatory cytokine induction is well established. However, in the current study, we reveal a novel cascade comprising sequential P. gingivalis LPS → ANGPTL2 → integrin α5β1 → inflammatory cytokine induction, which might be responsible for inducing potent periodontal disorganization activity in gingival epithelial cells. Via this pathway, ANGPTL2 functions in the pathogenesis of periodontitis and contributes to prolonging chronic inflammation in patients with systemic disease. PMID:28934245

  11. Inflammatory and Repair Pathways Induced in Human Bronchoalveolar Lavage Cells with Ozone Inhalation

    PubMed Central

    Wong, Hofer; Tenney, Rachel; Chen, Chun; Stiner, Rachel; Balmes, John R.; Paquet, Agnès C.; Arjomandi, Mehrdad

    2015-01-01

    Background Inhalation of ambient levels of ozone causes airway inflammation and epithelial injury. Methods To examine the responses of airway cells to ozone-induced oxidative injury, 19 subjects (7 with asthma) were exposed to clean air (0ppb), medium (100ppb), and high (200ppb) ambient levels of ozone for 4h on three separate occasions in a climate-controlled chamber followed by bronchoscopy with bronchoalveolar lavage (BAL) 24h later. BAL cell mRNA expression was examined using Affymetrix GeneChip Microarray. The role of a differentially expressed gene (DEG) in epithelial injury was evaluated in an in vitro model of injury [16HBE14o- cell line scratch assay]. Results Ozone exposure caused a dose-dependent up-regulation of several biologic pathways involved in inflammation and repair including chemokine and cytokine secretion, activity, and receptor binding; metalloproteinase and endopeptidase activity; adhesion, locomotion, and migration; and cell growth and tumorigenesis regulation. Asthmatic subjects had 1.7- to 3.8-fold higher expression of many DEGs suggestive of increased proinflammatory and matrix degradation and remodeling signals. The most highly up-regulated gene was osteopontin, the protein level of which in BAL fluid increased in a dose-dependent manner after ozone exposure. Asthmatic subjects had a disproportionate increase in non-polymerized osteopontin with increasing exposure to ozone. Treatment with polymeric, but not monomeric, osteopontin enhanced the migration of epithelial cells and wound closure in an α9β1 integrin-dependent manner. Conclusions Expression profiling of BAL cells after ozone exposure reveals potential regulatory genes and pathways activated by oxidative stress. One DEG, osteopontin, promotes epithelial wound healing in an in vitro model of injury. PMID:26035830

  12. Inhibition of Na+ transport in lung epithelial cells by respiratory syncytial virus infection.

    PubMed

    Chen, Lan; Song, Weifeng; Davis, Ian C; Shrestha, Kedar; Schwiebert, Erik; Sullender, Wayne M; Matalon, Sadis

    2009-05-01

    We investigated the mechanisms by which respiratory syncytial virus (RSV) infection decreases vectorial Na+ transport across respiratory epithelial cells. Mouse tracheal epithelial (MTE) cells from either BALB/c or C57BL/6 mice and human airway H441 cells were grown on semipermeable supports under an air-liquid interface. Cells were infected with RSV-A2 and mounted in Ussing chambers for measurements of short-circuit currents (I(sc)). Infection with RSV for 24 hours (multiplicity of infection = 1) resulted in positive immunofluorescence for RSV antigen in less than 10% of MTE or H441 cells. In spite of the limited number of cells infected, RSV reduced both basal and amiloride-sensitive I(sc) in both MTE and H441 cells by approximately 50%, without causing a concomitant reduction in transepithelial resistance. Agents that increased intracellular cAMP (forskolin, cpt-CAMP, and IBMX) increased mainly Cl(-) secretion in MTE cells and Na+ absorption in H441 cells. RSV infection for 24 hours blunted both variables. In contrast, ouabain sensitive I(sc), measured across apically permeabilized H441 monolayers, remained unchanged. Western blot analysis of H441 cell lysates demonstrated reductions in alpha- but not gamma-ENaC subunit protein levels at 24 hours after RSV infection. The reduction in amiloride-sensitive I(sc) in H441 cells was prevented by pretreatment with inhibitors of de novo pyrimidine or purine synthesis (A77-1726 and 6-MP, respectively, 50 microM). Our results suggest that infection of both murine and human respiratory epithelial cells with RSV inhibits vectorial Na+ transport via nucleotide release. These findings are consistent with our previous studies showing reduced alveolar fluid clearance after RSV infection of BALB/c mice.

  13. Dual activation of CFTR and CLCN2 by lubiprostone in murine nasal epithelia.

    PubMed

    Schiffhauer, Eric S; Vij, Neeraj; Kovbasnjuk, Olga; Kang, Po Wei; Walker, Doug; Lee, Seakwoo; Zeitlin, Pamela L

    2013-03-01

    Multiple sodium and chloride channels on the apical surface of nasal epithelial cells contribute to periciliary fluid homeostasis, a function that is disrupted in patients with cystic fibrosis (CF). Among these channels is the chloride channel CLCN2, which has been studied as a potential alternative chloride efflux pathway in the absence of CFTR. The object of the present study was to use the nasal potential difference test (NPD) to quantify CLCN2 function in an epithelial-directed TetOn CLCN2 transgenic mouse model (TGN-K18rtTA-hCLCN2) by using the putative CLCN2 pharmacological agonist lubiprostone and peptide inhibitor GaTx2. Lubiprostone significantly increased chloride transport in the CLCN2-overexpressing mice following activation of the transgene by doxycycline. This response to lubiprostone was significantly inhibited by GaTx2 after CLCN2 activation in TGN-CLCN2 mice. Cftr(-/-) and Clc2(-/-) mice showed hyperpolarization indicative of chloride efflux in response to lubiprostone, which was fully inhibited by GaTx2 and CFTR inhibitor 172 + GlyH-101, respectively. Our study reveals lubiprostone as a pharmacological activator of both CFTR and CLCN2. Overexpression and activation of CLCN2 leads to improved mouse NPD readings, suggesting it is available as an alternative pathway for epithelial chloride secretion in murine airways. The utilization of CLCN2 as an alternative chloride efflux channel could provide clinical benefit to patients with CF, especially if the pharmacological activator is administered as an aerosol.

  14. Morphological and histochemical characterization of the mucosa of the digestive tract in Engraulis anchoita.

    PubMed

    Díaz, A O; García, A M; Devincenti, C V; Goldemberg, A L

    2003-12-01

    The histomorphological aspects as well as the histochemical content and distribution of glycoproteins (GPs) in the mucosa of the digestive tract of the anchovy Engraulis anchoita were studied. The buccopharyngeal cavity is lined by a squamous stratified epithelium with mucous superficial cells; the oesophagus shows two zones, cranial with a squamous stratified epithelium with mucous superficial cells and caudal with a columnar secretory epithelium. Finally, the stomach presents both the cranial and pyloric portion lined with a simple columnar epithelium. Tubular branched glands, formed by a single type of glandular cell, located along the stomach, are more numerous in the cranial portion. The GPs were identified with (1) oxidizable vicinal diols; (2) sialic acids and some of their chain variants, C7 or C9; (3) sialic acid residues with O-acyl substitution at C7 or C8; (4) carboxyl groups and (5) sulphate groups. Histochemical tests showed that the buccopharyngeal cavity presented the largest amount of the different types of mucosubstances. Epithelial secretory cells were found in the oesophagus, which synthesized a large quantity of sialosulphoglycoproteins likely to be related to a protective role. The surface epithelium of the stomach synthesizes and secretes acid and neutral GPs, probably related to the movement of fluids and to the absorption of easily digested substrates, respectively. Although great differences exist between different species, in E. anchoita as in other fish species, the wall of the digestive tract is composed of the four layers classically described for vertebrates. The GPs secreted by the epithelial cells are suggested to be important for the protection and inhibition of microorganisms. In addition, they are involved in enzymatic digestion of food, absorptive functions and lubrication of the alimentary tract.

  15. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection

    USDA-ARS?s Scientific Manuscript database

    Two major functions of the intestinal epithelium are to act as a physical barrier and to regulate the movement of nutrients, ions and fluid. Nematode infection induces alterations in smooth and epithelial cell function, including increased fluid in the intestinal lumen, which are attributed to a ST...

  16. Rebamipide suppresses TNF-α production and macrophage infiltration in the conjunctiva.

    PubMed

    Tajima, Kazuki; Hattori, Takaaki; Takahashi, Hiroki; Katahira, Haruki; Narimatsu, Akitomo; Kumakura, Shigeto; Goto, Hiroshi

    2017-12-18

    To evaluate the anti-inflammatory effect of rebamipide during corneal epithelial wound healing using a mouse wound repair model. A 2-mm circular disc of the central cornea was demarcated in the right eye of C57BL/6 mice and the epithelium removed. Rebamipide 2% eyedrop was instilled onto the wounded eye 5 times a day (n = 26). Phosphate-buffered saline (PBS) was used in the control group (n = 26). Corneal and conjunctival IL-1β and TNF-α levels were measured at 6 h and 24 h postinjury by ELISA. The wounded area was evaluated by fluorescein staining at 24 h postinjury. Macrophage infiltration was assessed immunohistochemically, and TNF-α secretion from macrophages was examined in vitro. Conjunctival IL-1β and corneal IL-1β levels were not significantly different between PBS-treated and rebamipide-treated groups. However, conjunctival TNF-α level was significantly lower in the rebamipide-treated group compared with the PBS-treated group. Macrophage migration into the conjunctiva, but not into the cornea, was suppressed by rebamipide treatment. In addition, TNF-α secretion from cultured macrophages was suppressed by rebamipide in a concentration-dependent manner. Rebamipide treatment significantly accelerated corneal epithelial wound healing at 24 h postinjury. In a mouse corneal epithelial wound model, rebamipide suppressed TNF-α secretion and macrophage infiltration in the conjunctiva, which might have contributed to accelerated corneal epithelial wound healing in the first 24 h following injury. © 2017 American College of Veterinary Ophthalmologists.

  17. Secreted Oral Epithelial Cell Membrane Vesicles Induce Epstein-Barr Virus Reactivation in Latently Infected B Cells

    PubMed Central

    Lin, Zhen; Swan, Kenneth; Zhang, Xin; Cao, Subing; Brett, Zoe; Drury, Stacy; Fewell, Claire; Puetter, Adriane; Wang, Xia; Ferris, MaryBeth; Sullivan, Deborah E.; Li, Li

    2016-01-01

    ABSTRACT In the oral epithelium, peripheral stores of Epstein-Barr virus (EBV) are transmitted from infiltrating B cells to epithelial cells. Once the virus is transmitted to epithelial cells, the highly permissive nature of this cell type for lytic replication allows virus amplification and exchange to other hosts. Since the initial transfer of EBV from B cells to epithelial cells requires transitioning of the B-cell to a state that induces virus reactivation, we hypothesized that there might be epithelium-specific signals that allow the infiltrating B cells to sense the appropriate environment to initiate reactivation and begin this exchange process. We previously found that the epithelium-specific miR-200 family of microRNAs promotes EBV lytic replication. Here we show that there are high levels of miR-200 family members in oral and tonsillar epithelia and in saliva. Analysis of cultured oral epithelial cells (OKF6) showed that they actively secrete membrane vesicles (exosomes) that are enriched with miR-200 family members. Coculturing of EBV-positive B cells with OKF6 cells induced viral reactivation. Further, treatment of EBV-positive B cells with OKF6 cell-derived membrane vesicles promoted reactivation. Using a cell system that does not naturally express miR-200 family members, we found that enforced expression of a miR-200 family member produced membrane vesicles that were able to induce the lytic cascade in EBV-positive B cells. We propose that membrane vesicles secreted by oral and tonsillar epithelial cells may serve as a tissue-specific environmental cue that initiates reactivation in B cells, promoting the transfer of virus from peripheral B-cell stores to the oral epithelium to facilitate virus amplification and exchange to other hosts. IMPORTANCE Epstein-Barr virus (EBV) is an important human pathogen that is causally associated with several lymphomas and carcinomas. The switch from latency to the lytic cycle is critical for successful host infection and for EBV pathogenesis. Although the EBV lytic cycle can be triggered by certain agents in vitro, the mechanisms that signal reactivation in vivo are poorly understood. We previously reported that endogenously expressed miR-200 family members likely play a role in facilitating the lytic tendencies of EBV in epithelial cells. Here we show that membrane vesicles secreted from oral epithelial cells contain miR-200 family members and that they can be transmitted to proximal EBV-positive B cells, where they trigger reactivation. We propose that this intercellular communication pathway may serve as a sensor mechanism for infiltrating B cells to recognize an appropriate environment to initiate reactivation, thereby allowing the exchange of virus to the oral epithelium. PMID:26764001

  18. Granulocyte-macrophage colony-stimulating factor responses of oral epithelial cells to Candida albicans.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-06-01

    Candida albicans is the principal fungal species responsible for oropharyngeal candidiasis, the most frequent opportunistic infection associated with immune deficiencies. Cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), are important in the generation of effective immunity to C. albicans. The purposes of this investigation were to determine whether C. albicans triggers secretion of GM-CSF by oral epithelial cells in vitro and to investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines as well as primary oral mucosal epithelial cells were challenged with stationary phase viable C. albicans, added to human cell cultures at varying yeast:oral cell ratios. Yeast were allowed to germinate for up to 48 h and supernatants were analyzed for GM-CSF by ELISA. Fixed organisms, germination-deficient mutants and separation of yeast from epithelial cells using cell culture inserts were used to assess the effects of viability, germination and physical contact, respectively, on the GM-CSF responses of these cells. Two out of three cell lines and three out of six primary cultures responded to C. albicans with an increase in GM-CSF secretion. GM-CSF responses were contact-dependent, strain-dependent, required yeast viability and were optimal when the yeast germinated into hyphae.

  19. Control of the proinflammatory state in cystic fibrosis lung epithelial cells by genes from the TNF-alphaR/NFkappaB pathway.

    PubMed Central

    Eidelman, O.; Srivastava, M.; Zhang, J.; Leighton, X.; Murtie, J.; Jozwik, C.; Jacobson, K.; Weinstein, D. L.; Metcalf, E. L.; Pollard, H. B.

    2001-01-01

    BACKGROUND: Cystic fibrosis (CF) is the most common, lethal autosomal recessive disease affecting children in the United States and Europe. Extensive work is being performed to develop both gene and drug therapies. The principal mutation causing CF is in the CFTR gene ([Delta F508]CFTR). This mutation causes the mutant protein to traffic poorly to the plasma membrane, and degrades CFTR chloride channel activity. CPX, a candidate drug for CF, binds to mutant CFTR and corrects the trafficking deficit. CPX also activates mutant CFTR chloride channel activity. CF airways are phenotypically inundated by inflammatory signals, primarily contributed by sustained secretion of the proinflammatory cytokine interleukin 8 (IL-8) from mutant CFTR airway epithelial cells. IL-8 production is controlled by genes from the TNF-alphaR/NFkappaB pathway, and it is possible that the CF phenotype is due to dysfunction of genes from this pathway. In addition, because drug therapy with CPX and gene therapy with CFTR have the same common endpoint of raising the levels of CFTR, we have hypothesized that either approach should have a common genomic endpoint. MATERIALS AND METHODS: To test this hypothesis, we studied IL-8 secretion and global gene expression in IB-3 CF lung epithelial cells. The cells were treated by either gene therapy with wild-type CFTR, or by pharmacotherapy with the CFTR-surrogate drug CPX. CF cells, treated with either CFTR or CPX, were also exposed to Pseudomonas aeruginosa, a common chronic pathogen in CF patients. cDNA microarrays were used to assess global gene expression under the different conditions. A novel bioinformatic algorithm (GENESAVER) was developed to identify genes whose expression paralleled secretion of IL-8. RESULTS: We report here that IB3 CF cells secrete massive levels of IL-8. However, both gene therapy with CFTR and drug therapy with CPX substantially suppress IL-8 secretion. Nonetheless, both gene and drug therapy allow the CF cells to respond with physiologic secretion of IL-8 when the cells are exposed to P. aeruginosa. Thus, neither CFTR nor CPX acts as a nonspecific suppressor of IL-8 secretion from CF cells. Consistently, pharmacogenomic analysis indicates that CF cells treated with CPX greatly resemble CF cells treated with CFTR by gene therapy. Additionally, the same result obtains in the presence of P. aeruginosa. Classical hierarchical cluster analysis, based on similarity of global gene expression, also supports this conclusion. The GENESAVER algorithm, using the IL-8 secretion level as a physiologic variable, identifies a subset of genes from the TNF-alphaR/NFkappaB pathway that is expressed in phase with IL-8 secretion from CF epithelial cells. Certain other genes, previously known to be positively associated with CF, also fall into this category. Identified genes known to code for known inhibitors are expressed inversely, out of phase with IL-8 secretion. CONCLUSIONS: Wild-type CFTR and CPX both suppress proinflammatory IL-8 secretion from CF epithelial cells. The mechanism, as defined by pharmacogenomic analysis, involves identified genes from the TNF-alphaR/NFkappaB pathway. The close relationship between IL-8 secretion and genes from the TNF-alphaR/NFkappaB pathway suggests that molecular or pharmaceutical targeting of these novel genes may have strategic use in the development of new therapies for CF. From the perspective of global gene expression, both gene and drug therapy have similar genomic consequences. This is the first example showing equivalence of gene and drug therapy in CF, and suggests that a gene therapy-defined endpoint may prove to be a powerful paradigm for CF drug discovery. Finally, because the GENESAVER algorithm is capable of isolating disease-relevant genes in a hypothesis-driven manner without recourse to any a priori knowledge about the system, this new algorithm may also prove useful in applications to other genetic diseases. PMID:11591888

  20. Zinc attenuates forskolin-stimulated electrolyte secretion without involvement of the enteric nervous system in small intestinal epithelium from weaned piglets.

    PubMed

    Feng, Zike; Carlson, Dorthe; Poulsen, Hanne Damgaard

    2006-11-01

    In a previous study, we found that secretagogue-stimulated electrolyte secretion was attenuated by dietary and serosal zinc in piglet small intestinal epithelium in Ussing chambers. Several studies show that the enteric nervous system (ENS) is involved in regulation of electrolyte and/or fluid transport in intestinal epithelium from many species. The aim of the present study is to examine the mechanisms behind the attenuating effect of zinc on electrolyte secretion and to study whether the ENS is involved in this effect of zinc in vitro. Twenty-four piglets (six litters of four piglets) were allocated randomly to one of two dietary treatments consisting of a basic diet supplemented with 100 mg zinc/kg (Zn(100)) or 2500 mg zinc/kg (Zn(2500)), as ZnO. All the piglets were killed at 5-6 days after weaning and in vitro experiments with small intestinal epithelium in Ussing chambers were carried out. Furthermore, zinc, copper, alkaline phosphatase (AP) and metallothionein (MT) in mucosa, liver, and plasma were measured. These measurements showed that zinc status was increased in the Zn(2500) compared to the Zn(100) fed piglets. The in vitro studies did not confirm previous findings of attenuating effects of dietary zinc and zinc in vitro on the 5-HT induced secretion. But it showed that the addition of zinc at the serosal side attenuated the forskolin (FSK) (cAMP-dependent) induced ion secretion in epithelium from piglets fed with Zn(100) diet. Blocking the ENS with lidocaine or hexamethonium apparently slightly reduced this effect of zinc in vitro, but did not remove the effect of zinc. Consequently, it is suggested that zinc attenuates the cAMP dependent ion secretion mainly due to an effect on epithelial cells rather than affecting the mucosal neuronal pathway.

  1. Identification of Epithelial Phospholipase A2 Receptor 1 as a Potential Target in Asthma

    PubMed Central

    Nolin, James D.; Ogden, H. Luke; Lai, Ying; Altemeier, William A.; Frevert, Charles W.; Bollinger, James G.; Naika, Gajendra S.; Kicic, Anthony; Stick, Stephen M.; Lambeau, Gerard; Henderson, William R.; Gelb, Michael H.

    2016-01-01

    Secreted phospholipase A2s (sPLA2s) regulate eicosanoid formation and have been implicated in asthma. Although sPLA2s function as enzymes, some of the sPLA2s bind with high affinity to a C-type lectin receptor, called PLA2R1, which has functions in both cellular signaling and clearance of sPLA2s. We sought to examine the expression of PLA2R1 in the airway epithelium of human subjects with asthma and the function of the murine Pla2r1 gene in a model of asthma. Expression of PLA2R1 in epithelial brushings was assessed in two distinct cohorts of children with asthma by microarray and quantitative PCR, and immunostaining for PLA2R1 was conducted on endobronchial tissue and epithelial brushings from adults with asthma. C57BL/129 mice deficient in Pla2r1 (Pla2r1−/−) were characterized in an ovalbumin (OVA) model of allergic asthma. PLA2R1 was differentially overexpressed in epithelial brushings of children with atopic asthma in both cohorts. Immunostaining for PLA2R1 in endobronchial tissue localized to submucosal glandular epithelium and columnar epithelial cells. After OVA sensitization and challenge, Pla2r1−/− mice had increased airway hyperresponsiveness, as well as an increase in cellular trafficking of eosinophils to the peribronchial space and bronchoalveolar lavage fluid, and an increase in airway permeability. In addition, Pla2r1−/− mice had more dendritic cells in the lung, higher levels of OVA-specific IgG, and increased production of both type-1 and type-2 cytokines by lung leukocytes. PLA2R1 is increased in the airway epithelium in asthma, and serves as a regulator of airway hyperresponsiveness, airway permeability, antigen sensitization, and airway inflammation. PMID:27448109

  2. Identification of Epithelial Phospholipase A2 Receptor 1 as a Potential Target in Asthma.

    PubMed

    Nolin, James D; Ogden, H Luke; Lai, Ying; Altemeier, William A; Frevert, Charles W; Bollinger, James G; Naika, Gajendra S; Kicic, Anthony; Stick, Stephen M; Lambeau, Gerard; Henderson, William R; Gelb, Michael H; Hallstrand, Teal S

    2016-12-01

    Secreted phospholipase A 2 s (sPLA 2 s) regulate eicosanoid formation and have been implicated in asthma. Although sPLA 2 s function as enzymes, some of the sPLA 2 s bind with high affinity to a C-type lectin receptor, called PLA2R1, which has functions in both cellular signaling and clearance of sPLA 2 s. We sought to examine the expression of PLA2R1 in the airway epithelium of human subjects with asthma and the function of the murine Pla2r1 gene in a model of asthma. Expression of PLA2R1 in epithelial brushings was assessed in two distinct cohorts of children with asthma by microarray and quantitative PCR, and immunostaining for PLA2R1 was conducted on endobronchial tissue and epithelial brushings from adults with asthma. C57BL/129 mice deficient in Pla2r1 (Pla2r1 -/- ) were characterized in an ovalbumin (OVA) model of allergic asthma. PLA2R1 was differentially overexpressed in epithelial brushings of children with atopic asthma in both cohorts. Immunostaining for PLA2R1 in endobronchial tissue localized to submucosal glandular epithelium and columnar epithelial cells. After OVA sensitization and challenge, Pla2r1 -/- mice had increased airway hyperresponsiveness, as well as an increase in cellular trafficking of eosinophils to the peribronchial space and bronchoalveolar lavage fluid, and an increase in airway permeability. In addition, Pla2r1 -/- mice had more dendritic cells in the lung, higher levels of OVA-specific IgG, and increased production of both type-1 and type-2 cytokines by lung leukocytes. PLA2R1 is increased in the airway epithelium in asthma, and serves as a regulator of airway hyperresponsiveness, airway permeability, antigen sensitization, and airway inflammation.

  3. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research.

    PubMed

    Hahn, Anne; Salomon, Johanna J; Leitz, Dominik; Feigenbutz, Dennis; Korsch, Lisa; Lisewski, Ina; Schrimpf, Katrin; Millar-Büchner, Pamela; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2018-06-02

    Physiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca 2+ -dependent Cl - secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl - secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca 2+ -gated Cl - channels are known to contribute to calcium-dependent Cl - secretion in tracheal and bronchial epithelia. In the present study, two mouse models of CF were examined to assess a potential protective function of Ca 2+ -dependent Cl - secretion, a CFTR deletion model (cftr -/- ), and a CF pathology model that overexpresses the epithelial Na + channel β-subunit (βENaC), which is encoded by the Scnn1b gene, specifically in airway epithelia (Scnn1b-Tg). The expression levels of ANO1 were examined by mRNA and protein content, and the channel protein distribution between ciliated and non-ciliated epithelial cells was analyzed. Moreover, Ussing chamber experiments were conducted to compare Ca 2+ -dependent Cl - secretion between wild-type animals and the two mouse models. Our results demonstrate that CFTR and ANO1 channels were co-expressed with ENaC in non-ciliated cells of mouse tracheal and bronchial epithelia. Ciliated cells did not express these proteins. Despite co-localization of CFTR and ANO1 in the same cell type, cells in cftr -/- mice displayed no altered expression of ANO1. Similarly, ANO1 expression was unaffected by βENaC overexpression in the Scnn1b-Tg line. These results suggest that the CF-related environment in the two mouse models did not induce ANO1 overexpression as a compensatory system.

  4. Translocation of botulinum neurotoxins and associated proteins across intestinal epithelial cells(Abstract)

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins(BoNTs)secreted by Clostridium botulinum are some of the most poisonous toxins in nature and considered to be major bioterrorism threats. To date, seven BoNT subtypes (A to G) have been identified. When secreted from bacteria, some BoNTs associate with a non-toxic, non hemagglu...

  5. The inhibition of cholera toxin-induced 5-HT release by the 5-HT3 receptor antagonist, granisetron, in the rat

    PubMed Central

    Turvill, J L; Connor, P; Farthing, M J G

    2000-01-01

    The secretagogue 5-hydroxytryptamine (5-HT) is implicated in the pathophysiology of cholera. 5-HT released from enterochromaffin cells after cholera toxin exposure is thought to activate non-neuronally (5-HT2 dependent) and neuronally (5-HT3 dependent) mediated water and electrolyte secretion. CT-secretion can be reduced by preventing the release of 5-HT. Enterochromaffin cells possess numerous receptors that, under basal conditions, modulate 5-HT release. These include basolateral 5-HT3 receptors, the activation of which is known to enhance 5-HT release. Until now, 5-HT3 receptor antagonists (e.g. granisetron) have been thought to inhibit cholera toxin-induced fluid secretion by blockading 5-HT3 receptors on secretory enteric neurones. Instead we postulated that they act by inhibiting cholera toxin-induced enterochromaffin cell degranulation. Isolated intestinal segments in anaesthetized male Wistar rats, pre-treated with granisetron 75 μg kg−1, lidoocaine 6 mg kg−1 or saline, were instilled with a supramaximal dose of cholera toxin or saline. Net fluid movement was determined by small intestinal perfusion or gravimetry and small intestinal and luminal fluid 5-HT levels were determined by HPLC with fluorimetric detection. Intraluminal 5-HT release was proportional to the reduction in tissue 5-HT levels and to the onset of water and electrolyte secretion, suggesting that luminal 5-HT levels reflect enterochromaffin cell activity. Both lidocaine and granisetron inhibited fluid secretion. However, granisetron alone, and proportionately, reduced 5-HT release. The simultaneous inhibition of 5-HT release and fluid secretion by granisetron suggests that 5-HT release from enterochromaffin cells is potentiated by endogenous 5-HT3 receptors. The accentuated 5-HT release promotes cholera toxin-induced fluid secretion. PMID:10882387

  6. Key role of regulated upon activation normal T-cell expressed and secreted, nonstructural protein1 and myeloperoxidase in cytokine storm induced by influenza virus PR-8 (A/H1N1) infection in A549 bronchial epithelial cells.

    PubMed

    Phung, Thuy Thi Bich; Sugamata, Ryuichi; Uno, Kazuko; Aratani, Yasuaki; Ozato, Keiko; Kawachi, Shoji; Thanh Nguyen, Liem; Nakayama, Toshinori; Suzuki, Kazuo

    2011-12-01

    Influenza virus infection causes severe respiratory disease such as that due to avian influenza (H5N1). Influenza A viruses proliferate in human epithelial cells, which produce inflammatory cytokines/chemokines as a "cytokine storm" attenuated with the viral nonstructural protein 1 (NS1). Cytokine/chemokine production in A549 epithelial cells infected with influenza A/H1N1 virus (PR-8) or nonstructural protein 1 (NS1) plasmid was examined in vitro. Because tumor necrosis factor-α (TNF-α) and regulated upon activation normal T-cell expressed and secreted (RANTES) are predominantly produced from cells infected with PR-8 virus, the effects of mRNA knockdown of these cytokines were investigated. Small interfering (si)TNF-α down-regulated RANTES expression and secretion of RANTES, interleukin (IL)-8, and monocyte chemotactic protein-1 (MCP-1). In addition, siRANTES suppressed interferon (IFN)-γ expression and secretion of RANTES, IL-8, and MCP-1, suggesting that TNF-α stimulates production of RANTES, IL-8, MCP-1, and IFN-γ, and RANTES also increased IL-8, MCP-1, and IFN-γ. Furthermore, administration of TNF-α promoted increased secretion of RANTES, IL-8, and MCP-1. Administration of RANTES enhanced IL-6, IL-8, and MCP-1 production without PR-8 infection. These results strongly suggest that, as an initial step, TNF-α regulates RANTES production, followed by increase of IL-6, IL-8, and MCP-1 and IFNs concentrations. At a later stage, cells transfected with viral NS1 plasmid showed production of a large amount of IL-8 and MCP-1 in the presence of the H(2)O(2)-myeloperoxidse (MPO) system, suggesting that NS1 of PR-8 may induce a "cytokine storm" from epithelial cells in the presence of an H(2)O(2)-MPO system. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  7. Translocation of Helicobacter pylori CagA into Gastric Epithelial Cells by Type IV Secretion

    NASA Astrophysics Data System (ADS)

    Odenbreit, Stefan; Püls, Jürgen; Sedlmaier, Bettina; Gerland, Elke; Fischer, Wolfgang; Haas, Rainer

    2000-02-01

    The Gram-negative bacterium Helicobacter pylori is a causative agent of gastritis and peptic ulcer disease in humans. Strains producing the CagA antigen (cagA+) induce strong gastric inflammation and are strongly associated with gastric adenocarcinoma and MALT lymphoma. We show here that such strains translocate the bacterial protein CagA into gastric epithelial cells by a type IV secretion system, encoded by the cag pathogenicity island. CagA is tyrosine-phosphorylated and induces changes in the tyrosine phosphorylation state of distinct cellular proteins. Modulation of host cells by bacterial protein translocation adds a new dimension to the chronic Helicobacter infection with yet unknown consequences.

  8. The potent activation of Ca(2+)-activated K(+) current by NVP-AUY922 in the human pancreatic duct cell line (PANC-1) possibly independent of heat shock protein 90 inhibition.

    PubMed

    Chiang, Nai-Jung; Wu, Sheng-Nan; Chen, Li-Tzong

    2015-04-01

    NVP-AUY922 (AUY) is a potent inhibitor of heat shock protein 90 (HSP90). Whether this compound can exert additional effects on membrane ion channels remains elusive. We investigated the effect of AUY on ion currents in human pancreatic duct epithelial cells (PDECs), including PANC-1 and MIA PaCa-2. AUY increased the amplitude of the K(+) current (IK) in PANC-1 cells shown by whole-cell configuration. Single-channel recordings revealed a large-conductance Ca(2+)-activated K(+) (BKCa) channel in PANC-1, but not in MIA PaCa-2. In cell-attached mode, AUY increased the probability of BKCa channel opening and also potentiated the activity of stretch-induced channels. However, other HSP inhibitors, 17-AAG or BIIB021 only slightly increased the activity of BKCa channels. In inside-out recordings, sodium hydrosulphide or caffeic acid phenethyl ester increased the activity of BKCa channels, but AUY did not. We further evaluated whether conductance of Ca(2+)-activated K(+) channels (IK(Ca)) influenced secretion of HCO3(-) and fluid in PDECs by using a modified Whitcomb-Ermentrout model. Simulation studies showed that an increase in IK(Ca) resulted in additional secretion of HCO3(-) and fluid by mimicking the effect of AUY in PDECs. Collectively, AUY can interact with the BKCa channel to largely increase IK(Ca) in PDECs. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function

    PubMed Central

    Resnick, Andrew

    2011-01-01

    Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression. PMID:22046444

  10. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    PubMed

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair. © FASEB.

  11. Acute Lung Injury Edema Fluid Decreases Net Fluid Transport across Human Alveolar Epithelial Type II Cells*

    PubMed Central

    Lee, Jae W.; Fang, Xiaohui; Dolganov, Gregory; Fremont, Richard D.; Bastarache, Julie A.; Ware, Lorraine B.; Matthay, Michael A.

    2009-01-01

    Most patients with acute lung injury (ALI) have reduced alveolar fluid clearance that has been associated with higher mortality. Several mechanisms may contribute to the decrease in alveolar fluid clearance. In this study, we tested the hypothesis that pulmonary edema fluid from patients with ALI might reduce the expression of ion transport genes responsible for vectorial fluid transport in primary cultures of human alveolar epithelial type II cells. Following exposure to ALI pulmonary edema fluid, the gene copy number for the major sodium and chloride transport genes decreased. By Western blot analyses, protein levels of αENaC, α1Na,K-ATPase, and cystic fibrosis transmembrane conductance regulator decreased as well. In contrast, the gene copy number for several inflammatory cytokines increased markedly. Functional studies demonstrated that net vectorial fluid transport was reduced for human alveolar type II cells exposed to ALI pulmonary edema fluid compared with plasma (0.02±0.05 versus 1.31±0.56 μl/cm2/h, p<0.02). An inhibitor of p38 MAPK phosphorylation (SB202190) partially reversed the effects of the edema fluid on net fluid transport as well as gene and protein expression of the main ion transporters. In summary, alveolar edema fluid from patients with ALI induced a significant reduction in sodium and chloride transport genes and proteins in human alveolar epithelial type II cells, effects that were associated with a decrease in net vectorial fluid transport across human alveolar type II cell monolayers. PMID:17580309

  12. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells

    PubMed Central

    Majumdar, Arnab; Arold, Stephen P.; Bartolák-Suki, Erzsébet; Parameswaran, Harikrishnan

    2012-01-01

    Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes. PMID:22033531

  13. Culture of prostate epithelial cells of the rhesus monkey on extracellular matrix substrate: influence of steroids and insulin-like growth factors.

    PubMed

    Udayakumar, T S; Jeyaraj, D A; Rajalakshmi, M; Sharma, R S

    1999-09-01

    Rhesus monkey prostate epithelial cells from the cranial lobe were isolated and cultured in flasks coated either with collagen IV or laminin. The effects of stromal cell medium, androgens and growth factors on cell number, thymidine incorporation and secretory activity were assessed. The results indicate that dihydrotestosterone (DHT) and androstenedione have stimulatory influences on cell proliferation and secretion in coated flasks. DHT was more effective in increasing cell number but the induction of secretory activity was similar with both steroids. The combination of IGF-I and -II resulted in inducing better cell proliferation and secretory activity than the individual IGFs but, of the two IGFs, IGF-I was more effective than IGF-II. DHT with IGFs was more potent in inducing proliferation, differentiation and secretion than androstenedione. Even in the absence of steroids or growth factors, colony formation and confluence occurred in coated flasks but cell differentiation and secretion only to a limited extent. In conclusion, we were able to establish an in vitro primary culture of prostate epithelial cells from rhesus monkey using extracellular matrix proteins, steroids and growth factors as additional supplements. This culture system may be useful to study prostate cell physiology and to identify drugs that can inhibit cell proliferation.

  14. Expression of membrane-associated mucins MUC1 and MUC4 in major human salivary glands.

    PubMed

    Liu, Bing; Lague, Jessica R; Nunes, David P; Toselli, Paul; Oppenheim, Frank G; Soares, Rodrigo V; Troxler, Robert F; Offner, Gwynneth D

    2002-06-01

    Mucins are high molecular weight glycoproteins secreted by salivary glands and epithelial cells lining the digestive, respiratory, and reproductive tracts. These glycoproteins, encoded in at least 13 distinct human genes, can be subdivided into gel-forming and membrane-associated forms. The gel-forming mucin MUC5B is secreted by mucous acinar cells in major and minor salivary glands, but little is known about the expression pattern of membrane-associated mucins. In this study, RT-PCR and Northern blotting demonstrated the presence of transcripts for MUC1 and MUC4 in both parotid and submandibular glands, and in situ hybridization localized these transcripts to epithelial cells lining striated and excretory ducts and in some serous acinar cells. The same cellular distribution was observed by immunohistochemistry. Soluble forms of both mucins were detected in parotid secretion after immunoprecipitation with mucin-specific antibodies. These studies have shown that membrane-associated mucins are produced in both parotid and submandibular glands and that they are expressed in different cell types than gel-forming mucins. Although the function of these mucins in the oral cavity remains to be elucidated, it is possible that they both contribute to the epithelial protective mucin layer and act as receptors initiating one or more intracellular signal transduction pathways.

  15. Commensal Bacteria Modulate Innate Immune Responses of Vaginal Epithelial Cell Multilayer Cultures

    PubMed Central

    Rose, William A.; McGowin, Chris L.; Spagnuolo, Rae Ann; Eaves-Pyles, Tonyia D.; Popov, Vsevolod L.; Pyles, Richard B.

    2012-01-01

    The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives. PMID:22412914

  16. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells.

    PubMed

    Pothlichet, Julien; Meunier, Isabelle; Davis, Beckley K; Ting, Jenny P-Y; Skamene, Emil; von Messling, Veronika; Vidal, Silvia M

    2013-01-01

    Influenza A virus (IAV) triggers a contagious and potentially lethal respiratory disease. A protective IL-1β response is mediated by innate receptors in macrophages and lung epithelial cells. NLRP3 is crucial in macrophages; however, which sensors elicit IL-1β secretion in lung epithelial cells remains undetermined. Here, we describe for the first time the relative roles of the host innate receptors RIG-I (DDX58), TLR3, and NLRP3 in the IL-1β response to IAV in primary lung epithelial cells. To activate IL-1β secretion, these cells employ partially redundant recognition mechanisms that differ from those described in macrophages. RIG-I had the strongest effect through a MAVS/TRIM25/Riplet-dependent type I IFN signaling pathway upstream of TLR3 and NLRP3. Notably, RIG-I also activated the inflammasome through interaction with caspase 1 and ASC in primary lung epithelial cells. Thus, NS1, an influenza virulence factor that inhibits the RIG-I/type I IFN pathway, strongly modulated the IL-1β response in lung epithelial cells and in ferrets. The NS1 protein derived from a highly pathogenic strain resulted in increased interaction with RIG-I and inhibited type I IFN and IL-1β responses compared to the least pathogenic virus strains. These findings demonstrate that in IAV-infected lung epithelial cells RIG-I activates the inflammasome both directly and through a type I IFN positive feedback loop.

  17. A new role for bicarbonate secretion in cervico-uterine mucus release.

    PubMed

    Muchekehu, Ruth W; Quinton, Paul M

    2010-07-01

    Cervical mucus thinning and release during the female reproductive cycle is thought to rely mainly on fluid secretion. However, we now find that mucus released from the murine reproductive tract critically depends upon concurrent bicarbonate (HCO(3)(-)) secretion. Prostaglandin E(2) (PGE(2))- and carbachol-stimulated mucus release was severely inhibited in the absence of serosal HCO(3)(-), HCO(3)(-) transport, or functional cystic fibrosis transmembrane conductance regulator (CFTR). In contrast to mucus release, PGE(2)- and carbachol-stimulated fluid secretion was not dependent on bicarbonate or on CFTR, but was completely blocked by niflumic acid. We found stimulated mucus release was severely impaired in the cystic fibrosis F508 reproductive tract, even though stimulated fluid secretion was preserved. Thus, CFTR mutations and/or poor bicarbonate secretion may be associated with reduced female fertility associated with abnormal mucus and specifically, may account for the increased viscosity and lack of cyclical changes in cervical mucus long noted in women with cystic fibrosis.

  18. A new role for bicarbonate secretion in cervico-uterine mucus release

    PubMed Central

    Muchekehu, Ruth W; Quinton, Paul M

    2010-01-01

    Cervical mucus thinning and release during the female reproductive cycle is thought to rely mainly on fluid secretion. However, we now find that mucus released from the murine reproductive tract critically depends upon concurrent bicarbonate (HCO3−) secretion. Prostaglandin E2 (PGE2)- and carbachol-stimulated mucus release was severely inhibited in the absence of serosal HCO3−, HCO3− transport, or functional cystic fibrosis transmembrane conductance regulator (CFTR). In contrast to mucus release, PGE2- and carbachol-stimulated fluid secretion was not dependent on bicarbonate or on CFTR, but was completely blocked by niflumic acid. We found stimulated mucus release was severely impaired in the cystic fibrosis ΔF508 reproductive tract, even though stimulated fluid secretion was preserved. Thus, CFTR mutations and/or poor bicarbonate secretion may be associated with reduced female fertility associated with abnormal mucus and specifically, may account for the increased viscosity and lack of cyclical changes in cervical mucus long noted in women with cystic fibrosis. PMID:20478977

  19. IL-13 induces a bronchial epithelial phenotype that is profibrotic

    PubMed Central

    Malavia, Nikita K; Mih, Justin D; Raub, Christopher B; Dinh, Bao T; George, Steven C

    2008-01-01

    Background Inflammatory cytokines (e.g. IL-13) and mechanical perturbations (e.g. scrape injury) to the epithelium release profibrotic factors such as TGF-β2, which may, in turn, stimulate subepithelial fibrosis in asthma. We hypothesized that prolonged IL-13 exposure creates a plastic epithelial phenotype that is profibrotic through continuous secretion of soluble mediators at levels that stimulate subepithelial fibrosis. Methods Normal human bronchial epithelial cells (NHBE) were treated with IL-13 (0, 0.1, 1, or 10 ng/ml) for 14 days (day 7 to day 21 following seeding) at an air-liquid interface during differentiation, and then withdrawn for 1 or 7 days. Pre-treated and untreated NHBE were co-cultured for 3 days with normal human lung fibroblasts (NHLF) embedded in rat-tail collagen gels during days 22–25 or days 28–31. Results IL-13 induced increasing levels of MUC5AC protein, and TGF-β2, while decreasing β-Tubulin IV at day 22 and 28 in the NHBE. TGF-β2, soluble collagen in the media, salt soluble collagen in the matrix, and second harmonic generation (SHG) signal from fibrillar collagen in the matrix were elevated in the IL-13 pre-treated NHBE co-cultures at day 25, but not at day 31. A TGF-β2 neutralizing antibody reversed the increase in collagen content and SHG signal. Conclusion Prolonged IL-13 exposure followed by withdrawal creates an epithelial phenotype, which continuously secretes TGF-β2 at levels that increase collagen secretion and alters the bulk optical properties of an underlying fibroblast-embedded collagen matrix. Extended withdrawal of IL-13 from the epithelium followed by co-culture does not stimulate fibrosis, indicating plasticity of the cultured airway epithelium and an ability to return to a baseline. Hence, IL-13 may contribute to subepithelial fibrosis in asthma by stimulating biologically significant TGF-β2 secretion from the airway epithelium. PMID:18348727

  20. Proteomic analysis of secreted proteins by human bronchial epithelial cells in response to cadmium toxicity.

    PubMed

    Chen, De-Ju; Xu, Yan-Ming; Zheng, Wei; Huang, Dong-Yang; Wong, Wing-Yan; Tai, William Chi-Shing; Cho, Yong-Yeon; Lau, Andy T Y

    2015-09-01

    For years, many studies have been conducted to investigate the intracellular response of cells challenged with toxic metal(s), yet, the corresponding secretome responses, especially in human lung cells, are largely unexplored. Here, we provide a secretome analysis of human bronchial epithelial cells (BEAS-2B) treated with cadmium chloride (CdCl2 ), with the aim of identifying secreted proteins in response to Cd toxicity. Proteins from control and spent media were separated by two-dimensional electrophoresis and visualized by silver staining. Differentially-secreted proteins were identified by MALDI-TOF-MS analysis and database searching. We characterized, for the first time, the extracellular proteome changes of BEAS-2B dosed with Cd. Our results unveiled that Cd treatment led to the marked upregulation of molecular chaperones, antioxidant enzymes, enzymes associated with glutathione metabolic process, proteins involved in cellular energy metabolism, as well as tumor-suppressors. Pretreatment of cells with the thiol antioxidant glutathione before Cd treatment effectively abrogated the secretion of these proteins and prevented cell death. Taken together, our results demonstrate that Cd causes oxidative stress-induced cytotoxicity; and the differentially-secreted protein signatures could be considered as targets for potential use as extracellular biomarkers upon Cd exposure. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Shigella gets captured to gain entry.

    PubMed

    McCormick, Beth A

    2011-06-16

    The type III secretion system-dependent epithelial invasion and dissemination of Shigella is stimulated by ATP released through hemichannels. Romero et al. (2011) show that prior to epithelial contact, Shigella is captured by nanometer-thin micropodial extensions at a distance from the cell surface, in a process involving ATP and connexin-mediated signaling. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Postentry Processing of Recombinant Adeno-Associated Virus Type 1 and Transduction of the Ferret Lung Are Altered by a Factor in Airway Secretions

    PubMed Central

    Yan, Ziying; Sun, Xingshen; Evans, Idil A.; Tyler, Scott R.; Song, Yi; Liu, Xiaoming; Sui, Hongshu

    2013-01-01

    Abstract We recently created a cystic fibrosis ferret model that acquires neonatal lung infection. To develop lung gene therapies for this model, we evaluated recombinant adeno-associated virus (rAAV)-mediated gene transfer to the neonatal ferret lung. Unlike in vitro ferret airway epithelial (FAE) cells, in vivo infection of the ferret lung with rAAV1 required proteasome inhibitors to achieve efficient airway transduction. We hypothesized that differences in transduction between these two systems were because of an in vivo secreted factor that alter the transduction biology of rAAV1. Indeed, treatment of rAAV1 with ferret airway secretory fluid (ASF) strongly inhibited rAAV1, but not rAAV2, transduction of primary FAE and HeLa cells. Properties of the ASF inhibitory factor included a strong affinity for the AAV1 capsid, heat-stability, negative charge, and sensitivity to endoproteinase Glu-C. ASF-treated rAAV1 dramatically inhibited apical transduction of FAE ALI cultures (512-fold), while only reducing viral entry by 55-fold, suggesting that postentry processing of virus was influenced by the inhibitor factor. Proteasome inhibitors rescued transduction in the presence of ASF (∼1600-fold) without effecting virus internalization, while proteasome inhibitors only enhanced transduction 45-fold in the absence of ASF. These findings demonstrate that a factor in lung secretions can influence intracellular processing of rAAV1 in a proteasome-dependent fashion. PMID:23948055

  3. Postentry processing of recombinant adeno-associated virus type 1 and transduction of the ferret lung are altered by a factor in airway secretions.

    PubMed

    Yan, Ziying; Sun, Xingshen; Evans, Idil A; Tyler, Scott R; Song, Yi; Liu, Xiaoming; Sui, Hongshu; Engelhardt, John F

    2013-09-01

    We recently created a cystic fibrosis ferret model that acquires neonatal lung infection. To develop lung gene therapies for this model, we evaluated recombinant adeno-associated virus (rAAV)-mediated gene transfer to the neonatal ferret lung. Unlike in vitro ferret airway epithelial (FAE) cells, in vivo infection of the ferret lung with rAAV1 required proteasome inhibitors to achieve efficient airway transduction. We hypothesized that differences in transduction between these two systems were because of an in vivo secreted factor that alter the transduction biology of rAAV1. Indeed, treatment of rAAV1 with ferret airway secretory fluid (ASF) strongly inhibited rAAV1, but not rAAV2, transduction of primary FAE and HeLa cells. Properties of the ASF inhibitory factor included a strong affinity for the AAV1 capsid, heat-stability, negative charge, and sensitivity to endoproteinase Glu-C. ASF-treated rAAV1 dramatically inhibited apical transduction of FAE ALI cultures (512-fold), while only reducing viral entry by 55-fold, suggesting that postentry processing of virus was influenced by the inhibitor factor. Proteasome inhibitors rescued transduction in the presence of ASF (~1600-fold) without effecting virus internalization, while proteasome inhibitors only enhanced transduction 45-fold in the absence of ASF. These findings demonstrate that a factor in lung secretions can influence intracellular processing of rAAV1 in a proteasome-dependent fashion.

  4. Human rhinovirus-induced ISG15 selectively modulates epithelial antiviral immunity

    PubMed Central

    Zaheer, R S; Wiehler, S; Hudy, M H; Traves, S L; Pelikan, J B; Leigh, R; Proud, D

    2014-01-01

    Human rhinovirus (HRV) infections trigger exacerbations of lower airway diseases. HRV infects human airway epithelial cells and induces proinflammatory and antiviral molecules that regulate the response to HRV infection. Interferon (IFN)-stimulated gene of 15 kDa (ISG15) has been shown to regulate other viruses. We now show that HRV-16 infection induces both intracellular epithelial ISG15 expression and ISG15 secretion in vitro. Moreover, ISG15 protein levels increased in nasal secretions of subjects with symptomatic HRV infections. HRV-16-induced ISG15 expression is transcriptionally regulated via an IFN regulatory factor pathway. ISG15 does not directly alter HRV replication but does modulate immune signaling via the viral sensor protein RIG-I to impact production of CXCL10, which has been linked to innate immunity to viruses. Extracellular ISG15 also alters CXCL10 production. We conclude that ISG15 has a complex role in host defense against HRV infection, and that additional studies are needed to clarify the role of this molecule. PMID:24448099

  5. Soluble CD14 in human breast milk and its role in innate immune responses.

    PubMed

    Vidal, K; Labéta, M O; Schiffrin, E J; Donnet-Hughes, A

    2001-10-01

    Immune factors secreted in milk are important for health in the neonatal gut. We have detected the bacterial pattern recognition receptor, soluble CD14 (sCD14) in human breast milk at different times during lactation. The molecule occurs in a single form in milk, in contrast to human serum, in which there are two isoforms. Produced by mammary epithelial cells, milk sCD14 mediates secretion of innate immune response molecules such as interleukin-8, tumor necrosis factor-alpha, and epithelial neutrophil activator-78 by CD14-negative intestinal epithelial cells exposed to lipopolysaccharide (LPS) or bacteria. Although present at low concentrations in milk, LPS-binding protein may be implicated in the biological effects observed. Our findings support the premise that milk sCD14 acts as a 'sentinel' molecule and immune modulator in homeostasis and in the defense of the neonatal intestine. In so doing, it may prevent the immune and inflammatory conditions of the gut to which non-breastfed infants are predisposed.

  6. Chloride channels as drug targets

    PubMed Central

    Verkman, Alan S.; Galietta, Luis J. V.

    2013-01-01

    Chloride channels represent a relatively under-explored target class for drug discovery as elucidation of their identity and physiological roles has lagged behind that of many other drug targets. Chloride channels are involved in a wide range of biological functions, including epithelial fluid secretion, cell-volume regulation, neuroexcitation, smooth-muscle contraction and acidification of intracellular organelles. Mutations in several chloride channels cause human diseases, including cystic fibrosis, macular degeneration, myotonia, kidney stones, renal salt wasting and hyperekplexia. Chloride-channel modulators have potential applications in the treatment of some of these disorders, as well as in secretory diarrhoeas, polycystic kidney disease, osteoporosis and hypertension. Modulators of GABAA (γ-aminobutyric acid A) receptor chloride channels are in clinical use and several small-molecule chloride-channel modulators are in preclinical development and clinical trials. Here, we discuss the broad opportunities that remain in chloride-channel-based drug discovery. PMID:19153558

  7. The biology, function and clinical implications of exosomes in lung cancer.

    PubMed

    Zhou, Li; Lv, Tangfeng; Zhang, Qun; Zhu, Qingqing; Zhan, Ping; Zhu, Suhua; Zhang, Jianya; Song, Yong

    2017-10-28

    Exosomes are 30-100 nm small membrane vesicles of endocytic origin that are secreted by all types of cells, and can also be found in various body fluids. Increasing evidence implicates that exosomes confer stability and can deliver their cargos such as proteins and nucleic acids to specific cell types, which subsequently serve as important messengers and carriers in lung carcinogenesis. Here, we describe the biogenesis and components of exosomes mainly in lung cancer, we summarize their function in lung carcinogenesis (epithelial mesenchymal transition, oncogenic cell transformation, angiogenesis, metastasis and immune response in tumor microenvironment), and importantly we focus on the clinical potential of exosomes as biomarkers and therapeutics in lung cancer. In addition, we also discuss current challenges that might impede the clinical use of exosomes. Further studies on the functional roles of exosomes in lung cancer requires thorough research. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. β-Liddle mutation of the epithelial sodium channel increases alveolar fluid clearance and reduces the severity of hydrostatic pulmonary oedema in mice

    PubMed Central

    Randrianarison, Nadia; Escoubet, Brigitte; Ferreira, Chrystophe; Fontayne, Alexandre; Fowler-Jaeger, Nicole; Clerici, Christine; Hummler, Edith; Rossier, Bernard C; Planès, Carole

    2007-01-01

    Transepithelial sodium transport via alveolar epithelial Na+ channels and Na+,K+-ATPase constitutes the driving force for removal of alveolar oedema fluid. Decreased activity of the amiloride-sensitive epithelial Na+ channel (ENaC) in the apical membrane of alveolar epithelial cells impairs sodium-driven alveolar fluid clearance (AFC) and predisposes to pulmonary oedema. We hypothesized that hyperactivity of ENaC in the distal lung could improve AFC and facilitate the resolution of pulmonary oedema. AFC and lung fluid balance were studied at baseline and under conditions of hydrostatic pulmonary oedema in the β-Liddle (L) mouse strain harbouring a gain-of-function mutation (R566stop) within the Scnn1b gene. As compared with wild-type (+/+), baseline AFC was increased by 2- and 3-fold in heterozygous (+/L) and homozygous mutated (L/L) mice, respectively, mainly due to increased amiloride-sensitive AFC. The β2-agonist terbutaline stimulated AFC in +/+ and +/L mice, but not in L/L mice. Acute volume overload induced by saline infusion (40% of body weight over 2 h) significantly increased extravascular (i.e. interstitial and alveolar) lung water as assessed by the bloodless wet-to-dry lung weight ratio in +/+ and L/L mice, as compared with baseline. However, the increase was significantly larger in +/+ than in L/L groups (P= 0.01). Volume overload also increased the volume of the alveolar epithelial lining fluid in +/+ mice, indicating the presence of alveolar oedema, but not in L/L mice. Cardiac function as evaluated by echocardiography was comparable in both groups. These data show that constitutive ENaC activation improved sodium-driven AFC in the mouse lung, and attenuated the severity of hydrostatic pulmonary oedema. PMID:17430990

  9. Effect of guaifenesin on mucin production, rheology, and mucociliary transport in differentiated human airway epithelial cells.

    PubMed

    Seagrave, JeanClare; Albrecht, Helmut; Park, Yong Sung; Rubin, Bruce; Solomon, Gail; Kim, K Chul

    2011-12-01

    Guaifenesin is widely used to alleviate symptoms of excessive mucus accumulation in the respiratory tract. However, its mechanism of action is poorly understood. The authors hypothesized that guaifenesin improves mucociliary clearance in humans by reducing mucin release, by decreasing mucus viscoelasticity, and by increasing mucociliary transport. To test these hypotheses, human differentiated airway epithelial cells, cultured at an air-liquid interface, were treated with clinically relevant concentrations of guaifenesin by addition to the basolateral medium. To evaluate the effect on mucin secretion, the authors used an anzyme-linked immunosorbent assay (ELISA) to measure the amounts of MUC5AC protein in apical surface fluid and cell lysates. To measure mucociliary transportability, additional cultures were treated for 1 or 6 hours with guaifenesin, and the movement of cell debris was measured from video data. Further, the authors measured mucus dynamic viscoelasticity using a micro cone and plate rheometer with nondestructive creep transformation. Guaifenesin suppressed mucin production in a dose-dependent manner at clinically relevant concentrations. The reduced mucin production was associated with increased mucociliary transport and decreased viscoelasticity of the mucus. Viability of the cultures was not significantly affected. These results suggest that guaifenesin could improve mucociliary clearance in humans by reducing the release and/or production of mucins, thereby altering mucus rheology.

  10. Evidence of shared Epstein-Barr viral isolates between sexual partners, and low level EBV in genital secretions.

    PubMed

    Thomas, Ranjit; Macsween, Karen F; McAulay, Karen; Clutterbuck, Daniel; Anderson, Richard; Reid, Stuart; Higgins, Craig D; Swerdlow, Anthony J; Harrison, Nadine; Williams, Hilary; Crawford, Dorothy H

    2006-09-01

    Epstein-Barr virus is present in the saliva of most persistently infected individuals and is generally thought to be spread by close oral contact. However, there are now several reports of EBV in genital secretions, suggesting the possibility of sexual transmission between adults. The present study was undertaken to investigate the risk of sexual transmission of EBV. PCR analysis was used to examined the degree to which a group (n = 11) of patients with infectious mononucleosis (IM) shared the same viral isolates as their sexual partners, and compare this to the extent of isolate sharing among a different group (n = 18) of IM patients and their non-sexual contacts. There was significantly more sharing of EBV isolates among the IM/sexual-contact pairs than among the IM/non-sexual-contact pairs (P = 0.0012). Female cervical (n = 84), male urethral (n = 55), and semen (n = 30) samples from asymptomatic, unselected volunteers were analyzed for the presence of EBV DNA, revealing 7%, 5%, and 3% to be EBV positive, respectively. Fractionation of cervical and urethral samples into cellular and supernatant fluid components showed EBV to be mainly cell-associated. Quantitation of EBV in these samples gave levels of below 10 EBV genomes per microg of DNA. Overall the findings support the possibility that EBV could on occasions be transmitted sexually, however, the low levels detected in genital secretions compared to saliva suggest that this is not a major transmission route. The finding of small quantities of cell-associated virus suggests a latent infection; thus EBV is probably in the B lymphocyte rather than in the epithelial cell component of the secretions.

  11. Porphyromonas gingivalis-mediated shedding of extracellular matrix metalloproteinase inducer (EMMPRIN) by oral epithelial cells: a potential role in inflammatory periodontal disease.

    PubMed

    Feldman, Mark; La, Vu Dang; Lombardo Bedran, Telma Blanca; Palomari Spolidorio, Denise Madalena; Grenier, Daniel

    2011-12-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport

    PubMed Central

    Köttgen, Michael; Löffler, Thomas; Jacobi, Christoph; Nitschke, Roland; Pavenstädt, Hermann; Schreiber, Rainer; Frische, Sebastian; Nielsen, Søren; Leipziger, Jens

    2003-01-01

    Extracellular nucleotides are important regulators of epithelial ion transport. Here we investigated nucleotide-mediated effects on colonic NaCl secretion and the signal transduction mechanisms involved. Basolateral UDP induced a sustained activation of Cl– secretion, which was completely inhibited by 293B, a specific inhibitor of cAMP-stimulated basolateral KCNQ1/KCNE3 K+ channels. We therefore speculated that a basolateral P2Y6 receptor could increase cAMP. Indeed UDP elevated cAMP in isolated crypts. We identified an epithelial P2Y6 receptor using crypt [Ca2+]i measurements, RT-PCR, and immunohistochemistry. To investigate whether the rat P2Y6elevates cAMP, we coexpressed the P2Y1 or P2Y6 receptor together with the cAMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel in Xenopus oocytes. A two-electrode voltage clamp was used to monitor nucleotide-induced Cl– currents. In oocytes expressing the P2Y1 receptor, ATP transiently activated the endogenous Ca2+-activated Cl– current, but not CFTR. In contrast, in oocytes expressing the P2Y6receptor, UDP transiently activated the Ca2+-activated Cl– current and subsequently CFTR. CFTR Cl– currents were identified by their halide conductance sequence. In summary we find a basolateral P2Y6 receptor in colonic epithelial cells stimulating sustained NaCl secretion by way of a synergistic increase of [Ca2+]i and cAMP. In support of these data P2Y6 receptor stimulation differentially activates CFTR in Xenopus oocytes. PMID:12569163

  13. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner

    PubMed Central

    Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert

    2016-01-01

    Background The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Methods Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. Results Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. Conclusions Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use. PMID:27558745

  14. Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach

    PubMed Central

    Liddelow, Shane A.; Temple, Sally; Møllgård, Kjeld; Gehwolf, Renate; Wagner, Andrea; Bauer, Hannelore; Bauer, Hans-Christian; Phoenix, Timothy N.; Dziegielewska, Katarzyna M.; Saunders, Norman R.

    2012-01-01

    Exchange mechanisms across the blood–cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about their molecular or developmental characteristics. We examined the transcriptome of lateral ventricular choroid plexus in embryonic day 15 (E15) and adult mice. Numerous genes identified in the adult were expressed at similar levels at E15, indicating substantial plexus maturity early in development. Some genes coding for key functions (intercellular/tight junctions, influx/efflux transporters) changed expression during development and their expression patterns are discussed in the context of available physiological/permeability results in the developing brain. Three genes: Secreted protein acidic and rich in cysteine (Sparc), Glycophorin A (Gypa) and C (Gypc), were identified as those whose gene products are candidates to target plasma proteins to choroid plexus cells. These were investigated using quantitative- and single-cell-PCR on plexus epithelial cells that were albumin- or total plasma protein-immunopositive. Results showed a significant degree of concordance between plasma protein/albumin immunoreactivity and expression of the putative transporters. Immunohistochemistry identified SPARC and GYPA in choroid plexus epithelial cells in the embryo with a subcellular distribution that was consistent with transport of albumin from blood to cerebrospinal fluid. In adult plexus this pattern of immunostaining was absent. We propose a model of the cellular mechanism in which SPARC and GYPA, together with identified vesicle-associated membrane proteins (VAMPs) may act as receptors/transporters in developmentally regulated transfer of plasma proteins at the blood–CSF interface. PMID:22457777

  15. A Single Injection of Interleukin-1 Induces Reversible Aqueous-tear Deficiency, Lacrimal Gland Inflammation, and Acinar and Ductal Cell Proliferation

    PubMed Central

    Zoukhri, Driss; Macari, Elizabeth; Kublin, Claire L.

    2011-01-01

    Emerging studies from our laboratory demonstrate that interleukin-1 (IL-1) family members play a major role in impairing lacrimal gland functions. Here we have extended our investigations to observe the effects of IL-1 on aqueous tear production, lacrimal gland secretion, lacrimal gland histology, and acinar and ductal cell proliferation. We demonstrate that a single injection of IL-1 into the lacrimal glands inhibited neurally- as well as agonist-induced protein secretion resulting in decreased tear output. Meanwhile, IL-1 injection induced a severe, but reversible (7–13 days), inflammatory response that led to destruction of lacrimal gland acinar epithelial cells. Finally, we demonstrate that as the inflammatory response subsided and lacrimal gland secretion and tear production returned to normal levels, there was increased proliferation of acinar and ductal epithelial cells. Our work uncovers novel effects of IL-1 on lacrimal gland functions and the potential regenerative capacity of the mouse lacrimal gland. PMID:17362931

  16. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity

    PubMed Central

    Lee, Catherine S.; Perreault, Nathalie; Brestelli, John E.; Kaestner, Klaus H.

    2002-01-01

    The notch signaling pathway is essential for the endocrine cell fate in various tissues including the enteroendocrine system of the gastrointestinal tract. Enteroendocrine cells are one of the four major cell types found in the gastric epithelium of the glandular stomach. To understand the molecular basis of enteroendocrine cell development, we have used gene targeting in mouse embryonic stem cells to derive an EGFP-marked null allele of the bHLH transcription factor, neurogenin 3 (ngn3). In ngn3−/− mice, glucagon secreting A-cells, somatostatin secreting D-cells, and gastrin secreting G-cells are absent from the epithelium of the glandular stomach, whereas the number of serotonin-expressing enterochromaffin (EC) cells is decreased dramatically. In addition, ngn3−/− mice display intestinal metaplasia of the gastric epithelium. Thus, ngn3 is required for the differentiation of enteroendocrine cells in the stomach and the maintenance of gastric epithelial cell identity. PMID:12080087

  17. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    PubMed

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Dual activation of CFTR and CLCN2 by lubiprostone in murine nasal epithelia

    PubMed Central

    Schiffhauer, Eric S.; Vij, Neeraj; Kovbasnjuk, Olga; Kang, Po Wei; Walker, Doug; Lee, Seakwoo

    2013-01-01

    Multiple sodium and chloride channels on the apical surface of nasal epithelial cells contribute to periciliary fluid homeostasis, a function that is disrupted in patients with cystic fibrosis (CF). Among these channels is the chloride channel CLCN2, which has been studied as a potential alternative chloride efflux pathway in the absence of CFTR. The object of the present study was to use the nasal potential difference test (NPD) to quantify CLCN2 function in an epithelial-directed TetOn CLCN2 transgenic mouse model (TGN-K18rtTA-hCLCN2) by using the putative CLCN2 pharmacological agonist lubiprostone and peptide inhibitor GaTx2. Lubiprostone significantly increased chloride transport in the CLCN2-overexpressing mice following activation of the transgene by doxycycline. This response to lubiprostone was significantly inhibited by GaTx2 after CLCN2 activation in TGN-CLCN2 mice. Cftr−/− and Clc2−/− mice showed hyperpolarization indicative of chloride efflux in response to lubiprostone, which was fully inhibited by GaTx2 and CFTR inhibitor 172 + GlyH-101, respectively. Our study reveals lubiprostone as a pharmacological activator of both CFTR and CLCN2. Overexpression and activation of CLCN2 leads to improved mouse NPD readings, suggesting it is available as an alternative pathway for epithelial chloride secretion in murine airways. The utilization of CLCN2 as an alternative chloride efflux channel could provide clinical benefit to patients with CF, especially if the pharmacological activator is administered as an aerosol. PMID:23316067

  20. The role of substance P in inflammatory disease.

    PubMed

    O'Connor, Terence M; O'Connell, Joseph; O'Brien, Darren I; Goode, Triona; Bredin, Charles P; Shanahan, Fergus

    2004-11-01

    The diffuse neuroendocrine system consists of specialised endocrine cells and peptidergic nerves and is present in all organs of the body. Substance P (SP) is secreted by nerves and inflammatory cells such as macrophages, eosinophils, lymphocytes, and dendritic cells and acts by binding to the neurokinin-1 receptor (NK-1R). SP has proinflammatory effects in immune and epithelial cells and participates in inflammatory diseases of the respiratory, gastrointestinal, and musculoskeletal systems. Many substances induce neuropeptide release from sensory nerves in the lung, including allergen, histamine, prostaglandins, and leukotrienes. Patients with asthma are hyperresponsive to SP and NK-1R expression is increased in their bronchi. Neurogenic inflammation also participates in virus-associated respiratory infection, non-productive cough, allergic rhinitis, and sarcoidosis. SP regulates smooth muscle contractility, epithelial ion transport, vascular permeability, and immune function in the gastrointestinal tract. Elevated levels of SP and upregulated NK-1R expression have been reported in the rectum and colon of patients with inflammatory bowel disease (IBD), and correlate with disease activity. Increased levels of SP are found in the synovial fluid and serum of patients with rheumatoid arthritis (RA) and NK-1R mRNA is upregulated in RA synoviocytes. Glucocorticoids may attenuate neurogenic inflammation by decreasing NK-1R expression in epithelial and inflammatory cells and increasing production of neutral endopeptidase (NEP), an enzyme that degrades SP. Preventing the proinflammatory effects of SP using tachykinin receptor antagonists may have therapeutic potential in inflammatory diseases such as asthma, sarcoidosis, chronic bronchitis, IBD, and RA. In this paper, we review the role that SP plays in inflammatory disease. Copyright 2004 Wiley-Liss, Inc.

  1. Autocrine IL-10 activation of the STAT3 pathway is required for pathological macrophage differentiation in polycystic kidney disease

    PubMed Central

    Peda, Jacqueline D.; Salah, Sally M.; Wallace, Darren P.; Fields, Patrick E.; Grantham, Connor J.; Fields, Timothy A.

    2016-01-01

    ABSTRACT Polycystic kidney disease (PKD) is characterized by slow expansion of fluid-filled cysts derived from tubules within the kidney. Cystic expansion results in injury to surrounding parenchyma and leads to inflammation, scarring and ultimately loss of renal function. Macrophages are a key element in this process, promoting cyst epithelial cell proliferation, cyst expansion and disease progression. Previously, we have shown that the microenvironment established by cystic epithelial cells can ‘program’ macrophages, inducing M2-like macrophage polarization that is characterized by expression of markers that include Arg1 and Il10. Here, we functionally characterize these macrophages, demonstrating that their differentiation enhances their ability to promote cyst cell proliferation. This observation indicates a model of reciprocal pathological interactions between cysts and the innate immune system: cyst epithelial cells promote macrophage polarization to a phenotype that, in turn, is especially efficient in promoting cyst cell proliferation and cyst growth. To better understand the genesis of this macrophage phenotype, we examined the role of IL-10, a regulatory cytokine shown to be important for macrophage-stimulated tissue repair in other settings. Herein, we show that the acquisition of the pathological macrophage phenotype requires IL-10 secretion by the macrophages. Further, we demonstrate a requirement for IL-10-dependent autocrine activation of the STAT3 pathway. These data suggest that the IL-10 pathway in macrophages plays an essential role in the pathological relationship between cysts and the innate immune system in PKD, and thus could be a potential therapeutic target. PMID:27491076

  2. High CO2 levels impair alveolar epithelial function independently of pH.

    PubMed

    Briva, Arturo; Vadász, István; Lecuona, Emilia; Welch, Lynn C; Chen, Jiwang; Dada, Laura A; Trejo, Humberto E; Dumasius, Vidas; Azzam, Zaher S; Myrianthefs, Pavlos M; Batlle, Daniel; Gruenbaum, Yosef; Sznajder, Jacob I

    2007-11-28

    In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2) is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes approximately 40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function. We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCzeta which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools. Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.

  3. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells

    PubMed Central

    Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807

  4. Leptin expression in human mammary epithelial cells and breast milk.

    PubMed

    Smith-Kirwin, S M; O'Connor, D M; De Johnston, J; Lancey, E D; Hassink, S G; Funanage, V L

    1998-05-01

    Leptin has recently been shown to be produced by the human placenta and potentially plays a role in fetal and neonatal growth. Many functions of the placenta are replaced by the mammary gland in terms of providing critical growth factors for the newborn. In this study, we show that leptin is produced by human mammary epithelial cells as revealed by RT/PCR analysis of total RNA from mammary gland and immunohistochemical staining of breast tissue, cultured mammary epithelial cells, and secretory epithelial cells present in human milk. We also verify that immunoreactive leptin is present in whole milk at 30- to 150-fold higher concentrations than skim milk. We propose that leptin is secreted by mammary epithelial cells in milk fat globules, which partition into the lipid portion of breast milk.

  5. Epithelial Fluid Transport is Due to Electro-osmosis (80%), Plus Osmosis (20%).

    PubMed

    Fischbarg, Jorge; Hernandez, Julio A; Rubashkin, Andrey A; Iserovich, Pavel; Cacace, Veronica I; Kusnier, Carlos F

    2017-06-01

    Epithelial fluid transport, an important physiological process shrouded in a long-standing enigma, may finally be moving closer to a solution. We propose that, for the corneal endothelium, relative proportions for the driving forces for fluid transport are 80% of paracellular electro-osmosis, and 20% classical transcellular osmosis. These operate in a cyclical process with a period of 9.2 s, which is dictated by the decrease and exhaustion of cellular Na + . Paracellular electro-osmosis is sketched here, and partially discussed as much as the subject still allows; transcellular osmosis is presented at length.

  6. The effect of DDT and its metabolite (DDE) on prostaglandin secretion from epithelial cells and on contractions of the smooth muscle of the bovine oviduct in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wrobel, Michal H.; Mlynarczuk, Jaroslaw; Kotwica, Jan, E-mail: janko@pan.olsztyn.pl

    2012-03-01

    The insecticide DDT and its metabolite (DDE), due to their lipolytic nature and resistance to biodegradation, are accumulated in the living tissues. In cows, DDT and DDE were found to affect prostaglandin (PG) secretion from the endometrium and contractions of the myometrium. In this study, the impact of both xenobiotics (0.1, 1, 10 or 100 ng/ml) on the function of epithelial cells and muscle strips of bovine oviducts from 1 to 5 day of the oestrous cycle was examined. Therefore the concentration of PGE2 and PGFM (a metabolite of PGF2α) in culture media, mRNA expression of genes involved in PGsmore » synthesis in epithelial cells and the force and amplitude of strips contractions were measured after 2 and 24 or 48 h of incubation. Neither DDT nor DDE affected the viability of cells after 48 h (P > 0.05). Both DDT and DDE increased the concentrations of PGFM in culture medium and secretion of PGE2 after only 2 h of cell culture (P < 0.05). Similar effects were seen for the influence of DDE on amount of PGFM after 48 h, while DDT decreased secretion of PGE2 (P < 0.05). DDT after 2 h increased (P < 0.05) mRNA expression of PGF2α synthase (PGFS), while both xenobiotics decreased (P < 0.05) mRNA expression of cyclooxygenase-2 (COX-2) after 24 h. DTT also increased the force of isthmus contractions after 2 h, as did both xenobiotics after 48 h (P < 0.05). Moreover, after 2 and 48 h, DDE stimulated the amplitude of contractions of the isthmus as well as the ampulla, (P < 0.05). The effect of both compounds on oviduct contractions was diminished by indomethacin, which blocks PG synthesis. We conclude that oviductal secretion of prostaglandins is affected, by DDT and DDE. The influence of these xenobiotics on PGF2α and PGE2 secretion and ratio may be part of the mechanism by which both DDT and its metabolite disturb the contractions of oviductal muscle. -- Highlights: ► DDT and its metabolite – DDE are accumulated in the living tissues. ► The insecticides affected PGF2α and PGE2 release from epithelial cells of oviduct. ► They also stimulated markedly the contractions of oviductal strips. ► Prostaglandins were involved in the effect of insecticides on oviduct function.« less

  7. Defective Fluid Secretion from Submucosal Glands of Nasal Turbinates from CFTR-/- and CFTRΔF508/ΔF508 Pigs

    PubMed Central

    Cho, Hyung-Ju; Joo, Nam Soo; Wine, Jeffrey J.

    2011-01-01

    Background Cystic fibrosis (CF), caused by reduced CFTR function, includes severe sinonasal disease which may predispose to lung disease. Newly developed CF pigs provide models to study the onset of CF pathophysiology. We asked if glands from pig nasal turbinates have secretory responses similar to those of tracheal glands and if CF nasal glands show reduced fluid secretion. Methodology/Principal Findings Unexpectedly, we found that nasal glands differed from tracheal glands in five ways, being smaller, more numerous (density per airway surface area), more sensitive to carbachol, more sensitive to forskolin, and nonresponsive to Substance P (a potent agonist for pig tracheal glands). Nasal gland fluid secretion from newborn piglets (12 CF and 12 controls) in response to agonists was measured using digital imaging of mucus bubbles formed under oil. Secretion rates were significantly reduced in all conditions tested. Fluid secretory rates (Controls vs. CF, in pl/min/gland) were as follows: 3 µM forskolin: 9.2±2.2 vs. 0.6±0.3; 1 µM carbachol: 143.5±35.5 vs. 52.2±10.3; 3 µM forskolin + 0.1 µM carbachol: 25.8±5.8 vs. CF 4.5±0.9. We also compared CFΔF508/ΔF508 with CFTR-/- piglets and found significantly greater forskolin-stimulated secretion rates in the ΔF508 vs. the null piglets (1.4±0.8, n = 4 vs. 0.2±0.1, n = 7). An unexpected age effect was also discovered: the ratio of secretion to 3 µM forskolin vs. 1 µM carbachol was ∼4 times greater in adult than in neonatal nasal glands. Conclusions/Significance These findings reveal differences between nasal and tracheal glands, show defective fluid secretion in nasal glands of CF pigs, reveal some spared function in the ΔF508 vs. null piglets, and show unexpected age-dependent differences. Reduced nasal gland fluid secretion may predispose to sinonasal and lung infections. PMID:21935358

  8. Carbachol-induced fluid movement through methazolamide-sensitive bicarbonate production in rat parotid intralobular ducts: quantitative analysis of fluorescence images using fluorescent dye sulforhodamine under a confocal laser scanning microscope.

    PubMed

    Nakamoto, Tetsuji; Shiba, Yoshiki; Hirono, Chikara; Sugita, Makoto; Takemoto, Kazuhisa; Iwasa, Yoshiko; Akagawa, Yasumasa

    2002-09-01

    Fluid secretion is observed at the openings of ducts in the exocrine gland. It remains unclear whether the ducts are involved in fluid secretion in the salivary glands. In the present study, we investigated the exclusion of fluorescent dye from the duct lumen by carbachol (CCh) in isolated parotid intralobular duct segments to clarify the ability of the ducts for the fluid secretion. When the membrane-impermeable fluorescent dye, sulforhodamine, was added to the superfused extracellular solution, quantitative fluorescence images of the duct lumen were obtained under the optical sectioning at the level of the duct lumen using a confocal laser scanning microscope. CCh decreased the fluorescent intensity in the duct lumen during the superfusion of the fluorescent dye, and CCh flushed out small viscous substances stained with the fluorescent dye from isolated duct lumen, suggesting that CCh might induce fluid secretion in the duct, leading to the clearance of the dye and small stained clumps from the duct lumen. CCh-induced clearance of the fluorescent dye was divided into two phases by the sensitivity to external Ca2+ and methazolamide, an inhibitor for carbonic anhydrase. The initial phase was insensitive to these, and the subsequent late phase was sensitive to these. A major portion in the late phase was inhibited by removal of bicarbonate in the superfusion solution and DPC, but not low concentration of external Cl-, bumetanide or DIDS, suggesting that methazolamide-sensitive production of HCO3-, but not the Cl- uptake mechanism, might contribute to the CCh-induced clearance of the dye from the duct lumen. These results represent the first measurements of fluid movement in isolated duct segments, and suggest that carbachol might evoke fluid secretion possibly through Ca2+-activated, DPC-sensitive anion channels with HCO3- secretion in the rat parotid intralobular ducts.

  9. Zebrafish Pronephros Development.

    PubMed

    Naylor, Richard W; Qubisi, Sarah S; Davidson, Alan J

    The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water-processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.

  10. The effect of organotin compounds on chloride secretion by the in vitro perfused rectal gland of Squalus acanthias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, R.; Lear, S.; Cohen, R.

    1989-09-01

    The effects of various organotins on membrane function and electrolyte transport were studied in the marine elasmobranch, Squalus acanthias. The isolated perfused rectal gland was used as a model of electrolyte transport. This gland can be stimulated to secrete chloride by atrial natriuretic peptide, veratrine, and vasoactive intestinal polypeptide although the mechanism of action of each secretagogue is different. By analysis of the inhibitory effect of an organotin in the presence of each secretagogue, the mechanism of inhibition can be inferred. Tributyltin (TBT) produced a reversible inhibition of epithelial transport at 10(-8) to 10(-7) M which resulted from inhibition ofmore » stimulus-secretion coupling in VIP-containing neurons within the gland. The transporting epithelial cells were unaffected at these concentrations. Trimethytin (TMT) produced inhibition at 10(-7) M which was not reversible and which affected primarily the transporting epithelial cells. Triethyltin and triphenyltin were without effect. The inhibitory effect of TBT and TMT was not affected by simultaneous administration of dithiothreitol. TBT also produced inhibition of oxygen consumption, Na+,K-ATPase, and proton ATPase in dispersed rectal gland cells. These results indicate that organotins are toxic to cell membrane functions which are intimately involved in the movement of electrolytes. This is the first evidence of toxicity to membrane transport functions in a marine species which is at risk from environmental exposure.« less

  11. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    PubMed

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  12. Effects of DA-6034, a flavonoid derivative, on mucin-like glycoprotein and ocular surface integrity in a rabbit model.

    PubMed

    Choi, Seul Min; Seo, Mi Jeong; Lee, Yeong Geon; Lee, Min Jung; Jeon, Hyung Jun; Kang, Kyung Koo; Ahn, Byoung Ok; Yoo, Moohi

    2009-01-01

    This study was designed to assess whether DA-6034 (7-carboxymethyloxy-3',4',5-trimethoxy flavone monohydrate), a new synthetic derivative of eupatilin, increases secretion of mucin-like glycoprotein and some mucins species in conjunctiva and cornea, and contributes to the preservation of ocular surface integrity. Human conjunctival and corneal epithelial cells were incubated with DA-6034 (1-250 microM). To investigate mucin secreting activity more directly, isolated rat conjunctival goblet cells were also used. Corneal protection was investigated using a desiccation-induced rabbit model of dry eye syndrome. It was found that DA-6034 increased mucin-like glycoprotein levels of both conjunctival and corneal epithelial cells at concentrations above 100 microM. Using human conjunctival epithelial cells, it was demonstrated that treatment with DA-6034 (200 microM) significantly increased production of some mucins species including MUC1, MUC2, MUC4, MUC5AC, MUC5B, and MUC16. DA-6034 also significantly increased MUC5AC production from conjunctival goblet cells isolated from rats. In the rabbit desiccation model, an ophthalmic suspension containing 3% DA-6034 significantly reduced corneal damage induced by desiccation. These results suggest that DA-6034 is a good candidate for treatment of dry eye through maintaining ocular surface integrity, which might be related to mucin secretion.

  13. Fusion-activated cation entry (FACE) via P2X₄ couples surfactant secretion and alveolar fluid transport.

    PubMed

    Thompson, Kristin E; Korbmacher, Jonas P; Hecht, Elena; Hobi, Nina; Wittekindt, Oliver H; Dietl, Paul; Kranz, Christine; Frick, Manfred

    2013-04-01

    Two fundamental mechanisms within alveoli are essential for lung function: regulated fluid transport and secretion of surfactant. Surfactant is secreted via exocytosis of lamellar bodies (LBs) in alveolar type II (ATII) cells. We recently reported that LB exocytosis results in fusion-activated cation entry (FACE) via P2X₄ receptors on LBs. We propose that FACE, in addition to facilitating surfactant secretion, modulates alveolar fluid transport. Correlative fluorescence and atomic force microscopy revealed that FACE-dependent water influx correlated with individual fusion events in rat primary ATII cells. Moreover, ATII cell monolayers grown at air-liquid interface exhibited increases in short-circuit current (Isc) on stimulation with ATP or UTP. Both are potent agonists for LB exocytosis, but only ATP activates FACE. ATP, not UTP, elicited additional fusion-dependent increases in Isc. Overexpressing dominant-negative P2X₄ abrogated this effect by ∼50%, whereas potentiating P2X4 lead to ∼80% increase in Isc. Finally, we monitored changes in alveolar surface liquid (ASL) on ATII monolayers by confocal microscopy. Only stimulation with ATP, not UTP, led to a significant, fusion-dependent, 20% decrease in ASL, indicating apical-to-basolateral fluid transport across ATII monolayers. Our data support the first direct link between LB exocytosis, regulation of surfactant secretion, and transalveolar fluid resorption via FACE.

  14. Gastric mucosal defence mechanism during stress of pyloric obstruction in albino rats.

    PubMed

    Somasundaram, K; Ganguly, A K

    1987-04-01

    1. The integrity of the gastric mucosa and its ability to secrete mucus are believed to be essential for protection of gastric mucosa against ulceration induced by aggressive factors active in any stress situation. This study involves a three-compartmental analysis of gastric mucosal barrier in pylorus-ligated albino rats. 2. Quantitative analyses of histologically identifiable gastric mucosal epithelial neutral glycoproteins and gastric adherent mucus from oxyntic and pyloric gland areas, and components of non-dialysable mucosubstances in gastric secretion were made under stress of pyloric obstruction for 4, 8, and 16 h durations. Epithelial mucin was identified by periodic acid-Schiff (PAS) staining technique and assessed from the ratio of gastric mucosal thickness to the depth of PAS positive materials in it. The remaining visible mucus adhered to the gastric mucosa was estimated by Alcian blue binding technique. The results were compared with that of identical control groups. 3. A significant reduction in mucosal epithelial PAS positive materials after 8 or 16 h of pylorus ligation was observed. 4. The Alcian blue binding capacity of the pyloric gland area was increased significantly after 4 h of pylorus ligation, while after 8 or 16 h it was reduced in both oxyntic and pyloric gland areas. 5. Significant reductions in the rate of gastric secretion and volume, as well as concentration of the components of non-dialysable mucosubstances, were observed, indicating decreased synthesis of mucus glycoproteins. 6. Disruption of the mucosal barrier may have occurred due to decreased mucus synthesis and acid-pepsin accumulation; both could be due to stress associated with gastric distension. 7. The present findings confirm the role of mucus in protecting the underlying gastric epithelium during stress. The adherent mucus offers a first line of defence and epithelial mucus a second line of defence.

  15. Gastric mucosal protective mechanisms: roles of epithelial bicarbonate and mucus secretions.

    PubMed

    Garner, A; Flemström, G; Allen, A; Heylings, J R; McQueen, S

    1984-01-01

    Secretion of HCO3 (amounting to 2-10% of maximum H+ secretion) in conjunction with the adherent mucus gel layer (functioning as a mixing barrier) protects gastric mucosa from luminal acid by a process of surface neutralization. Gastric HCO3 secretion is augmented by cholinergic agonists, prostaglandins and low luminal pH. Ulcerogens attenuate HCO3 secretion although passive diffusion of alkali consequent upon an increase in mucosal permeability may mask these inhibitory actions. Studies in vitro indicate that HCO3 transport in the stomach is dependent on oxidative metabolism, carbonic anhydrase activity and involves a CL exchange mechanism. Mucus, synthesized and released from epithelial cells, adheres to the mucosal surface as a thin (less than 80 microns in rat) but continuous gel layer. Prostaglandins and carbachol induced release of preformed mucus and thereby increase thickness, whereas acute exposure to ulcerogens has little effect on overall dimensions of the surface mucus layer. Measurements of pH gradients adjacent to gastric mucosa indicate that the disposal of luminal H+ occurs by extracellular neutralization. However, the fall in pH at the apical cell membrane when luminal pH is low (pH 1.5) suggests that while a mucus-bicarbonate barrier comprises the first line of mucosal defence, other factors are involved in the overall process of mucosal protection in the stomach.

  16. LPS-Challenged TNFα Production, Prostaglandin Secretion, and TNFα/TNFRs Expression in the Endometrium of Domestic Cats in Estrus or Diestrus, and in Cats with Pyometra or Receiving Medroxyprogesterone Acetate

    PubMed Central

    Jursza, Ewelina; Szóstek, Anna Z.; Kowalewski, Mariusz P.; Boos, Alois; Okuda, Kiyoshi; Siemieniuch, Marta J.

    2014-01-01

    Progesterone (P4) derivatives which are commonly used to block the cyclicity of domestic cats disturb the endocrine balance in the endometrium. The aims of this study were (i) to examine whether lipopolysaccharide (LPS) is responsible for enhancement of tumor necrosis factor-α (TNFα) secretion by the feline endometrial epithelial and stromal cells in vitro, (ii) to know whether immunolocalization of TNFα/TNFR1 and TNFR2 differs in cats at estrus or diestrus, receiving medroxyprogesterone acetate and suffering from pyometra, and (iii) to determine if TNFα-challenged prostaglandin secretion is stopped by prostaglandin synthases inhibitors. A total of 37 domestic adult cats in estrus or diestrus, receiving octane medroxyprogesterone or having clinical symptoms of pyometra, were enrolled in this study. The results obtained showed a distinct increase in LPS-challenged TNFα secretion in endometrial epithelial, but not stromal cells. TNFα augmented PG secretion was blocked by phospholipase A2 (PLA2) and cyclooxygeanase-2 (COX-2), but not by mitogen-activated protein kinase (MAPK) inhibitor. TNFα/TNFR1 and 2 protein expressions were limited mostly to the surface and glandular epithelium. TNFα/TNFRs protein was upregulated in the inflammatory uterus and hence may be involved in development of pathologic changes in the endometrial glands in cats receiving exogenous P4 as a hormonal contraceptive. PMID:25028529

  17. Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment.

    PubMed

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Moon, Keun-Ai; Park, So Young; Park, Sunjoo; Lee, Kyoung Young; Ha, Eun Hee; Kim, Tae-Bum; Moon, Hee-Bom; Lee, Heung Kyu; Cho, You Sook

    2016-03-01

    Recruitment and activation of dendritic cells (DCs) in the lungs are critical for Th2 responses in asthma, and CCL20 secreted from bronchial epithelial cells (BECs) is known to influence the recruitment of DCs. Because asthma is a disease that is closely associated with oxidative stress, we hypothesized that clusterin, an oxidative stress regulatory molecule, may have a role in the development of allergic airway inflammation. The aim of this study was to examine whether clusterin regulates CCL20 production from the BECs and the subsequent DC recruitment in the lungs. To verify the idea, clusterin knockout (Clu(-/-)), clusterin heterogeneous (Clu(+/-)), and wild-type mice were exposed intranasally to house dust mite (HDM) extract to induce allergic airway inflammation. We found that the total number of immune cells in bronchoalveolar lavage fluid and the lung was increased in Clu(-/-) and Clu(+/-) mice. Of these immune cells, inflammatory DCs (CD11b(+)CD11c(+)) and Ly6C(high) monocyte populations in the lung were significantly increased, which was accompanied by increased levels of various chemokines, including CCL20 in bronchoalveolar lavage fluid, and increased oxidative stress markers in the lung. Moreover, HDM-stimulated human BECs with either up- or downregulated clusterin expression showed that CCL20 secretion was negatively associated with clusterin expression. Interestingly, clusterin also reduced the level of intracellular reactive oxygen species, which is related to induction of CCL20 expression after HDM stimulation. Thus, the antioxidant property of clusterin is suggested to regulate the expression of CCL20 in BECs and the subsequent recruitment of inflammatory DCs in the airway. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice

    PubMed Central

    Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R.; Verkman, A. S.

    2014-01-01

    Background Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. Objective To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Design Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Results Screening of ~150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ~1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Conclusions Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. PMID:24052273

  19. Hypoxia induces mucin expression and secretion in human bronchial epithelial cells.

    PubMed

    Zhou, Xiangdong; Tu, Jing; Li, Qi; Kolosov, Victor P; Perelman, Juliy M

    2012-12-01

    The study objective was to investigate the role of hypoxia-inducible factor 1 (HIF-1) in the transcriptional activation of MUC5AC in human bronchial epithelial (HBE) 16 cells under hypoxia conditions and the effect of hypoxia on expression and secretion of MUC5AC. Cells were incubated in hypoxia medium. Serial deletions or mutations of the MUC5AC promoter were cloned in the reporter pGL3-basic plasmid (Promega Biotech Co, Ltd, Beijing, China). These reporter plasmids were cotransfected with HIF-1α small interfering RNA. Hypoxia markedly increased the level of MUC5AC secretion and the transcriptional activity of MUC5AC promoters. Western blot analysis showed that HIF-1α and MUC5AC proteins were strongly increased after HBE16 cells were exposed to hypoxic conditions. Treatment of HBE16 cells with HIF-1α inhibitor (YC-1) or HIF-1α small interfering RNA significantly inhibited the expression of HIF-1α and MUC5AC, and the secretion of MUC5AC. Depletion of the promoter sequence did not reduce the MUC5AC promoter activity to hypoxia. Luciferase assay indicated that HRE in the MUC5AC promoter was in the region from -120 to +54. Promoter sequence analysis showed that 1 HRE site at -65 plays an important role in hypoxia activation of the MUC5AC. The inactivation of the HRE site using site-directed mutagenesis led to the complete loss of induction by hypoxia, which further confirmed the key role of the HRE site. MUC5AC expression and secretion are upregulated in response to hypoxia. The HRE site at -65 in the MUC5AC promoter and the HIF-1α are the major regulators for the cellular response against hypoxia in human bronchial epithelial cells. Copyright © 2012 Mosby, Inc. All rights reserved.

  20. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    PubMed

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  1. Identification of body fluid-specific DNA methylation markers for use in forensic science.

    PubMed

    Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung

    2014-11-01

    DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury.

    PubMed

    Peters, Dorothea M; Vadász, István; Wujak, Lukasz; Wygrecka, Malgorzata; Olschewski, Andrea; Becker, Christin; Herold, Susanne; Papp, Rita; Mayer, Konstantin; Rummel, Sebastian; Brandes, Ralph P; Günther, Andreas; Waldegger, Siegfried; Eickelberg, Oliver; Seeger, Werner; Morty, Rory E

    2014-01-21

    TGF-β is a pathogenic factor in patients with acute respiratory distress syndrome (ARDS), a condition characterized by alveolar edema. A unique TGF-β pathway is described, which rapidly promoted internalization of the αβγ epithelial sodium channel (ENaC) complex from the alveolar epithelial cell surface, leading to persistence of pulmonary edema. TGF-β applied to the alveolar airspaces of live rabbits or isolated rabbit lungs blocked sodium transport and caused fluid retention, which--together with patch-clamp and flow cytometry studies--identified ENaC as the target of TGF-β. TGF-β rapidly and sequentially activated phospholipase D1, phosphatidylinositol-4-phosphate 5-kinase 1α, and NADPH oxidase 4 (NOX4) to produce reactive oxygen species, driving internalization of βENaC, the subunit responsible for cell-surface stability of the αβγENaC complex. ENaC internalization was dependent on oxidation of βENaC Cys(43). Treatment of alveolar epithelial cells with bronchoalveolar lavage fluids from ARDS patients drove βENaC internalization, which was inhibited by a TGF-β neutralizing antibody and a Tgfbr1 inhibitor. Pharmacological inhibition of TGF-β signaling in vivo in mice, and genetic ablation of the nox4 gene in mice, protected against perturbed lung fluid balance in a bleomycin model of lung injury, highlighting a role for both proximal and distal components of this unique ENaC regulatory pathway in lung fluid balance. These data describe a unique TGF-β-dependent mechanism that regulates ion and fluid transport in the lung, which is not only relevant to the pathological mechanisms of ARDS, but might also represent a physiological means of acutely regulating ENaC activity in the lung and other organs.

  3. Regulation of vascular endothelial growth factor-C by tumor necrosis factor-α in the conjunctiva and pterygium.

    PubMed

    Dong, Yoko; Kase, Satoru; Dong, Zhenyu; Fukuhara, Junichi; Tagawa, Yoshiaki; Ishizuka, Erdal Tan; Murata, Miyuki; Shinmei, Yasuhiro; Ohguchi, Takeshi; Kanda, Atsuhiro; Noda, Kousuke; Ishida, Susumu

    2016-08-01

    Vascular endothelial growth factor C (VEGF-C) plays an important role in the development of a pterygium through lymphangiogenesis. We examined the association between VEGF-C and tumor necrosis factor-α (TNF-α) in the pathogenesis of pterygia. Cultured conjunctival epithelial cells were treated with TNF-α, and the gene expression levels of VEGFC were evaluated by quantitative polymerase chain reaction (qPCR) and VEGF-C protein expression levels were measured using an enzyme-linked immunosorbent assay (ELISA). In addition, using ELISA, we evaluated the VEGF-C protein expression in the supernatants of cultured conjunctival epithelial cells, in which we neutralized TNF-α using anti‑TNF-α antibody. The gene expression of tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A), known as TNF receptor 1 (TNFR1), was confirmed using reverse transcription PCR in cultured conjunctival epithelial cells. Immunofluorescence microscopy was used to examine the localization of VEGF-C and TNFR1 in pterygium tissues and TNFR1 expression in cultured conjunctival epithelial cells. Immunohistochemistry was used to examine the localization of TNFR1 in pterygia and normal conjunctival tissues. VEGFC gene expression increased in cultured conjunctival epithelial cells 24 h after the addition of TNF-α. The secretion of VEGF-C protein was significantly increased 48 h after the stimulation of cultured conjunctival epithelial cells with TNF-α. Increased VEGF-C protein secretion stimulated by TNF-α was significantly reduced by anti-TNF-α neutralizing antibody treatment. In cultured conjunctival epithelial cells, TNFRSF1A and TNFR1 were expressed. TNFR1 was immunolocalized in normal conjunctival tissues and in human pterygium tissues as well as in VEGF‑C‑positive epithelial cells from human pterygia. Our data demonstrate that TNF-α mediates VEGF-C expression, which plays a critical role in the pathogenesis of pterygia.

  4. FUNCTIONS EXERTED BY THE VIRULENCE ASSOCIATED TYPE THREE SECRETION SYSTEMS DURING SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION OF CHICKEN OVIDUCT EPITHELIAL CELLS AND MACROPHAGES

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar, Enteritidis (SE) infection of chicken is a major contributing factor to non-typhoidal salmonellosis. The roles of the type three secretion systems (T3SS-1 and T3SS-2) in the pathogenesis of SE infection of chickens are poorly understood. In this study, the functions exer...

  5. Effect of beta-antagonists on isoprenaline-induced secretion of fluid, amylase and protein by the parotid gland of the red kangaroo, Macropus rufus.

    PubMed

    Beal, A M

    2000-02-01

    Selective and non-selective beta-adrenoceptor antagonists were used to block the increases in fluid, protein and amylase secretion caused by sympathomimetic stimulation of the parotid gland of red kangaroos during intracarotid infusion of isoprenaline. ICI118551 at antagonist/agonist ratios up to 300:1 caused increasing but incomplete blockade of fluid secretion, and protein/amylase release. Atenolol at antagonist/agonist ratios up to 300:1 was only marginally more potent than ICI118551 at blocking the fluid, protein and amylase responses. Propranolol at antagonist/agonist ratios of 30:1 was as effective at blocking fluid and protein secretion as the highest ratios of either atenolol or ICI118551. Simultaneous administration of atenolol (30:1) with ICI118551 (30:1) was not as potent as propranolol (30:1). Thus, the beta-adrenoceptor/s in the acini of the kangaroo parotid gland appear to have antagonist-binding affinities atypical of those found for eutherian tissues. The data are consistent with the gland possessing either a single anomalous beta-adrenoceptor or functional beta(2)-receptors in addition to the beta(1)-receptors which are characteristic of eutherian salivary glands.

  6. How great white sharks nourish their embryos to a large size: evidence of lipid histotrophy in lamnoid shark reproduction.

    PubMed

    Sato, Keiichi; Nakamura, Masaru; Tomita, Taketeru; Toda, Minoru; Miyamoto, Kei; Nozu, Ryo

    2016-09-15

    The great white shark (Carcharodon carcharias) exhibits viviparous and oophagous reproduction. A 4950 mm total length (TL) gravid female accidentally caught by fishermen in the Okinawa Prefecture, Southern Japan carried six embryos (543-624 mm TL, three in each uterus). Both uteri contained copious amounts of yellowish viscous uterine fluid (over 79.2 litres in the left uterus), nutrient eggs and broken egg cases. The embryos had yolk stomachs that had ruptured, the mean volume of which was approximately 197.9 ml. Embryos had about 20 rows of potentially functional teeth in the upper and lower jaws. Periodic acid Schiff (PAS)-positive substances were observed on the surface and in the cytoplasm of the epithelial cells, and large, secretory, OsO4-oxidized lipid droplets of various sizes were distributed on the surface of the villous string epithelium on the uterine wall. Histological examination of the uterine wall showed it to consist of villi, similar to the trophonemata of Dasyatidae rays, suggesting that the large amount of fluid found in the uterus of the white shark was likely required for embryo nutrition. We conclude that: (1) the lipid-rich fluid is secreted from the uterine epithelium only in early gestation before the onset of oophagy, (2) the embryos probably use the abundant uterine fluid and encased nutrient eggs for nutrition at this stage of their development, and (3) the uterine fluid is the major source of embryonic nutrition before oophagy onset. This is the first record of the lipid histotrophy of reproduction among all shark species. © 2016. Published by The Company of Biologists Ltd.

  7. Distinct Defensin Profiles in Neisseria gonorrhoeae and Chlamydia trachomatis Urethritis Reveal Novel Epithelial Cell-Neutrophil Interactions

    PubMed Central

    Porter, Edith; Yang, Huixia; Yavagal, Sujata; Preza, Gloria C.; Murillo, Omar; Lima, Heriberto; Greene, Sheila; Mahoozi, Laily; Klein-Patel, Marcia; Diamond, Gill; Gulati, Sunita; Ganz, Tomas; Rice, Peter A.; Quayle, Alison J.

    2005-01-01

    Defensins are key participants in mucosal innate defense. The varied antimicrobial activity and differential distribution of defensins at mucosal sites indicate that peptide repertoires are tailored to site-specific innate defense requirements. Nonetheless, few studies have investigated changes in peptide profiles and function after in vivo pathogen challenge. Here, we determined defensin profiles in urethral secretions of healthy men and men with Chlamydia trachomatis- and Neisseria gonorrhoeae-mediated urethritis by immunoblotting for the epithelial defensins HBD1, HBD2, and HD5 and the neutrophil defensins HNP1 to -3 (HNP1-3). HBD1 was not detectable in secretions, and HBD2 was only induced in a small proportion of the urethritis patients; however, HD5 and HNP1-3 were increased in C. trachomatis infection and significantly elevated in N. gonorrhoeae infection. When HNP1-3 levels were low, HD5 appeared mostly as the propeptide; however, when HNP1-3 levels were >10 μg/ml, HD5 was proteolytically processed, suggesting neutrophil proteases might contribute to HD5 processing. HD5 and HNP1-3 were bactericidal against C. trachomatis and N. gonorrhoeae, but HD5 activity was dependent upon N-terminal processing of the peptide. In vitro proteolysis of proHD5 by neutrophil proteases and analysis of urethral secretions by surface-enhanced laser desorption ionization substantiated that neutrophils contribute the key convertases for proHD5 in the urethra during these infections. This contrasts with the small intestine, where Paneth cells secrete both proHD5 and its processing enzyme, trypsin. In conclusion, we describe a unique defensin expression repertoire in response to inflammatory sexually transmitted infections and a novel host defense mechanism wherein epithelial cells collaborate with neutrophils to establish an antimicrobial barrier during infection. PMID:16040996

  8. Luminal-Applied Flagellin Is Internalized by Polarized Intestinal Epithelial Cells and Elicits Immune Responses via the TLR5 Dependent Mechanism

    PubMed Central

    Eaves-Pyles, Tonyia; Bu, Heng-Fu; Tan, Xiao-di; Cong, Yingzi; Patel, Jignesh; Davey, Robert A.; Strasser, Jane E.

    2011-01-01

    Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn’s lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures. PMID:21949773

  9. Piperine treatment suppresses Helicobacter pylori toxin entry in to gastric epithelium and minimizes β-catenin mediated oncogenesis and IL-8 secretion in vitro

    PubMed Central

    Tharmalingam, Nagendran; Park, Min; Lee, Min Ho; Woo, Hyun Jun; Kim, Hyun Woo; Yang, Ji Yeong; Rhee, Ki-Jong; Kim, Jong-Bae

    2016-01-01

    Helicobacter pylori related gastric cancer initiation has been studied widely. The objective of our present study was to evaluate the effect of a single compound piperine on H. pylori infection and its anti-inflammatory and anti-cancer effects in vitro. Cytotoxicity was tested by Ez-cytox cell viability assay kit. Effects of piperine on H. pylori toxin gene expression and IL-8 expression in mammalian cells during infection were assessed by RT-PCR. Effects of piperine on toxin entry into host cells, E-cadherin cleavage by H. pylori, and the changes in H. pylori mediated β-catenin expression and IL-8 secretion were determined by immunoblotting. Piperine treatment restrained the entry of CagA and VacA into AGS cells. Piperine administration in H. pylori infection reduced E-cadherin cleavage in stomach epithelium. In addition, H. pylori induced β-catenin up-regulation was reduced. Piperine administration impaired IL-8 secretion in H. pylori-infected gastric epithelial cells. As we reported previously piperine restrained H. pylori motility. The possible reason behind the H. pylori inhibition mechanism of piperine could be the dwindled motility, which weakened H. pylori adhesion to gastric epithelial cells. The reduced adhesion decreased the toxin entry thereby secreting less amount of IL-8. In addition, piperine treatment suppressed H. pylori protease led to reduction of E-cadherin cleavage and β-catenin expression resulting in diminished β-catenin translocation into the nucleus thus decreasing the risk of oncogenesis. To our knowledge, this is the preliminary report of piperine mediated H. pylori infection control on gastric epithelial cells in-vitro. PMID:27158376

  10. The Effect of Coumestrol on Progesterone and Prostaglandin Production in the Mare: In Vitro and In Vivo Studies.

    PubMed

    Szóstek, Anna Z; Sadowska, Agnieszka; Piotrowska-Tomala, Katarzyna K; Botelho, Marta; Fradinho, Maria João; Rebordão, Maria Rosa; Ferreira-Dias, Graça M; Skarzynski, Dariusz J

    2016-09-01

    Coumestrol (Cou) is a plant-derived phytoestrogen that induces various pathologies in the female reproductive tract. Although effects of phytoestrogens on reproductive function in other species are well documented, their influence on progesterone (P 4 ) and prostaglandin (PG) secretion in the mare is unknown. The aim of this study was to determine if Cou directly affects P 4 and PG concentrations (in vivo) and endometrial PG secretion (in vitro) in the mare. In experiment 1, the mares (n = 4) were fed for 14 days on a diet containing increasing proportions of alfalfa pellets (250 g-1 kg/day). An additional 4 mares were fed a standard diet (control group). Sequential blood samples were obtained for 8 h after feeding on Days 13 and 14 (1 kg/day alfalfa pellets). Feeding the mares alfalfa pellets up-regulated PGE 2 and 13,14-dihydro-15-ketoprostaglandin F 2alpha (PGFM) and down-regulated P 4 in the blood plasma compared to those in the control group (P < 0.05). In experiment 2, epithelial and stromal cells were exposed to E 2 (10 -9 M) or Cou (10 -8 M) for 24 h. In the in vitro study, Cou increased PG secretion in epithelial and stromal cells (P < 0.05). In both types of endometrial cells, Cou up-regulated PTGS-2 protein expression (P < 0.05). Moreover, PGES and PGFS proteins were up-regulated by Cou in epithelial cells (P < 0.01). These results indicate that Cou can disturb reproductive function by affecting reproductive hormone secretion and altering the endometrial milieu through PG stimulation. Coumestrol therefore may impair physiologic regulation of the estrous cycle and early pregnancy. © 2016 by the Society for the Study of Reproduction, Inc.

  11. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppé, Jean-Philippe; Patil, Christopher; Rodier, Francis

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cellsmore » in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.« less

  12. Activation of VPAC1 receptors by VIP and PACAP-27 in human bronchial epithelial cells induces CFTR-dependent chloride secretion

    PubMed Central

    Dérand, Renaud; Montoni, Alicia; Bulteau-Pignoux, Laurence; Janet, Thierry; Moreau, Bertrand; Muller, Jean-Marc; Becq, Frédéric

    2004-01-01

    In the human airway epithelium, VIP/PACAP receptors are distributed in nerve fibers and in epithelial cells but their role in transepithelial ion transport have not been reported. Here, we show that human bronchial epithelial Calu-3 cells expressed the VPAC1 receptor subtype which shares similar high affinity for VIP and PACAP-27. The stoichiometric binding parameters characterizing the 125I-VIP and 125I-PACAP-27 binding to these receptors were determined. We found that VIP (EC50≈7.6 nM) and PACAP-27 (EC50≈10 nM) stimulated glibenclamide-sensitive and DIDS-insensitive iodide efflux in Calu-3 cells. The protein kinase A (PKA) inhibitor, H-89 and the protein kinase C (PKC) inhibitor, chelerythrine chloride prevented activation by both peptides demonstrating that PKA and PKC are part of the signaling pathway. This profile corresponds to the pharmacological signature of CFTR. In the cystic fibrosis airway epithelial IB3-1 cell lacking functional CFTR but expressing VPAC1 receptors, neither VIP, PACAP-27 nor forskolin stimulated chloride transport. Ussing chamber experiments demonstrated stimulation of CFTR-dependent short-circuit currents by VIP or PACAP-27 applied to the basolateral but not to the apical side of Calu-3 cells monolayers. This study shows the stimulation in human bronchial epithelial cells of CFTR-dependent chloride secretion following activation by VIP and PACAP-27 of basolateral VPAC1 receptors. PMID:14744818

  13. The In Vitro Differentiation of GDNF Gene-Engineered Amniotic Fluid-Derived Stem Cells into Renal Tubular Epithelial-Like Cells.

    PubMed

    Lu, Ying; Wang, Zhuojun; Chen, Lu; Wang, Jia; Li, Shulin; Liu, Caixia; Sun, Dong

    2018-05-01

    Amniotic fluid is an alternative source of stem cells, and human amniotic fluid-derived stem cells (AFSCs) obtained from a small amount of amniotic fluid collected during the second trimester represent a novel source for use in regenerative medicine. These AFSCs are characterized by lower diversity, a higher proliferation rate, and a wider differentiation capability than adult mesenchymal stem cells. AFSCs are selected based on the cell surface marker c-kit receptor (CD117) using immunomagnetic sorting. Glial cell line-derived neurotrophic factor (GDNF) is expressed during early kidney development and regulates the proliferation and differentiation of stem cells in vitro. In this study, c-kit-sorted AFSCs were induced toward osteogenic or adipogenic differentiation. AFSCs engineered via the insertion of GDNF were cocultured with mouse renal tubular epithelial cells (mRTECs), which were preconditioned by hypoxia-reoxygenation in vitro. After coculture for 8 days, AFSCs differentiation into epithelial-like cells was evaluated by performing immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction to identify cells expressing the renal epithelial markers, cytokeratin 18 (CK18), E-cadherin, aquaporin-1 (AQP1), and paired box 2 gene (Pax2). The GDNF gene enhanced AFSCs differentiation into RTECs. AFSCs possess self-renewal ability and multiple differentiation potential and thus represent a new source of stem cells.

  14. Innate immunity in the vagina (part I): estradiol inhibits HBD2 and elafin secretion by human vaginal epithelial cells.

    PubMed

    Patel, Mickey V; Fahey, John V; Rossoll, Richard M; Wira, Charles R

    2013-05-01

    Vaginal epithelial cells (VEC) are the first line of defense against incoming pathogens in the female reproductive tract. Their ability to produce the anti-HIV molecules elafin and HBD2 under hormonal stimulation is unknown. Vaginal epithelial cells were recovered using a menstrual cup and cultured overnight prior to treatment with estradiol (E₂), progesterone (P₄) or a panel of selective estrogen response modulators (SERMs). Conditioned media were recovered and analyzed for protein concentration and anti-HIV activity. E₂ significantly decreased the secretion of HBD2 and elafin by VEC over 48 hrs, while P4 and the SERMs (tamoxifen, PHTTP, ICI or Y134) had no effect. VEC conditioned media from E₂ -treated cells had no anti-HIV activity, while that from E₂ /P₄ -treated cells significantly inhibited HIV-BaL infection. The menstrual cup allows for effective recovery of primary VEC. Their production of HBD2 and elafin is sensitive to E₂, suggesting that innate immune protection varies in the vagina across the menstrual cycle. © 2013 John Wiley & Sons A/S.

  15. Structural changes of oviduct of freshwater shrimp, Macrobrachium nipponense (Decapoda, Palaemonidae), during spawning*

    PubMed Central

    Lu, Jian-ping; Zhang, Xiao-hui; Yu, Xiao-yun

    2006-01-01

    The structural change of the oviduct of freshwater shrimp (Macrobrachium nipponense) during spawning was examined by electron microscopy. The oviduct wall structural characteristics seem to be influenced significantly by the spawning process. Before the parturition and ovulation, two types of epithelial cells (types I and II) are found in the epithelium. The free surfaces of type I and type II cells have very dense long microvilli. Under the type I and type II cells, are a relatively thick layer of secreting material and a layer of mostly dead cells. After ovulation, two other types of epithelial cells (types III and IV) are found in the oviduct wall epithelium. The free surface of type III cells only has short microvilli scattered on the surface. The thick layer with secreting material and the dead cell layer disappeared at this stage. In some type III cells, the leaking out of cytoplasm from broken cell membrane led to the death of these type III cells. The transformation of all four types of epithelial cells was in the order: IV→I→II→III. PMID:16365928

  16. Germline Mutations of Inhibins in Early-Onset Ovarian Epithelial Tumors

    PubMed Central

    Tournier, Isabelle; Marlin, Régine; Walton, Kelly; Charbonnier, Françoise; Coutant, Sophie; Théry, Jean-Christophe; Charbonnier, Camille; Spurrell, Cailyn; Vezain, Myriam; Ippolito, Lorena; Bougeard, Gaëlle; Roman, Horace; Tinat, Julie; Sabourin, Jean-Christophe; Stoppa-Lyonnet, Dominique; Caron, Olivier; Bressac-de Paillerets, Brigitte; Vaur, Dominique; King, Mary-Claire; Harrison, Craig; Frebourg, Thierry

    2014-01-01

    To identify novel genetic bases of early-onset epithelial ovarian tumors, we used the trio exome sequencing strategy in a patient without familial history of cancer who presented metastatic serous ovarian adenocarcinomas at 21 years of age. We identified a single de novo mutation (c.1157A>G/p.Asn386Ser) within the INHBA gene encoding the βA-subunit of inhibins/activins, which play a key role in ovarian development. In vitro, this mutation alters the ratio of secreted activins and inhibins. In a second patient with early-onset serous borderline papillary cystadenoma, we identified an unreported germline mutation (c.179G>T/p.Arg60Leu) of the INHA gene encoding the α-subunit, the partner of the βA-subunit. This mutation also alters the secreted activin/inhibin ratio, by disrupting both inhibin A and inhibin B biosynthesis. In a cohort of 62 cases, we detected an additional unreported germline mutation of the INHBA gene (c.839G>A/p.Gly280Glu). Our results strongly suggest that inhibin mutations contribute to the genetic determinism of epithelial ovarian tumors. PMID:24302632

  17. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways?

    PubMed Central

    Kesimer, Mehmet; Kirkham, Sara; Pickles, Raymond J.; Henderson, Ashley G.; Alexis, Neil E.; DeMaria, Genevieve; Knight, David; Thornton, David J.; Sheehan, John K.

    2009-01-01

    Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces “mucus” with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products. PMID:18931053

  18. Defining Postpartum Uterine Disease and the Mechanisms of Infection and Immunity in the Female Reproductive Tract in Cattle 1

    PubMed Central

    Sheldon, I Martin; Cronin, James; Goetze, Leopold; Donofrio, Gaetano; Schuberth, Hans-Joachim

    2009-01-01

    Uterine microbial disease affects half of all dairy cattle after parturition, causing infertility by disrupting uterine and ovarian function. Infection with Escherichia coli, Arcanobacterium pyogenes and bovine herpesvirus 4 causes endometrial tissue damage. Toll-like receptors (TLRs) on endometrial cells detect pathogen-associated molecules such as bacterial DNA, lipids and lipopolysaccharide (LPS), leading to secretion of cytokines, chemokines and anti-microbial peptides. Chemokines attract neutrophils and macrophages to eliminate the bacteria, although persistence of neutrophils is associated with subclinical endometritis and infertility. Cows with uterine infections are less likely to ovulate because they have slower growth of the postpartum dominant follicle in the ovary, lower peripheral plasma estradiol concentrations, and perturbation of hypothalamic and pituitary function. The follicular fluid of animals with endometritis contains LPS, which is detected by the TLR4/CD14/LY96 (MD2) receptor complex on granulosa cells leading to lower aromatase expression and reduced estradiol secretion. If cows with uterine disease ovulate, the peripheral plasma concentrations of progesterone are lower than in normal animals. However luteal phases are often extended in animals with uterine disease, probably because infection switches the endometrial epithelial secretion of prostaglandins from the F to the E series, by a phospholipase A2 mediated mechanism, which would disrupt luteolysis. The regulation of endometrial immunity depends on steroid hormones, somatotrophins and local regulatory proteins. Advances in knowledge about infection and immunity in the female genital tract should be exploited to develop new therapeutics for uterine disease. PMID:19439727

  19. Endogenous acetylcholine increases alveolar epithelial fluid transport via activation of alveolar epithelial Na,K-ATPase in mice.

    PubMed

    Li, Xia; Yan, Xi Xin; Li, Hong Lin; Li, Rong Qin

    2015-10-01

    The contribution of endogenous acetylcholine to alveolar fluid clearance (AFC) and related molecular mechanisms were explored. AFC was measured in Balb/c mice after vagotomy and vagus nerve stimulation. Effects of acetylcholine chloride on AFC in Kunming mice and Na,K-ATPase function in A549 alveolar epithelial cells also were determined. AFC significantly decreased in mice with left cervical vagus nerve transection compared with controls (48.69 ± 2.57 vs. 66.88 ± 2.64, P ≤ 0.01), which was reversed by stimulation of the peripheral (60.81 ± 1.96, P ≤ 0.01). Compared with control, acetylcholine chloride dose-dependently increased AFC and elevated Na,K-ATPase activity, and these increases were blocked or reversed by atropine. These effects were accompanied by recruitment of Na,K-ATPase α1 to the cell membrane. Thus, vagus nerves participate in alveolar epithelial fluid transport by releasing endogenous acetylcholine in the infusion-induced pulmonary edema mouse model. Effects of endogenous acetylcholine on AFC are likely mediated by Na,K-ATPase function through activation of muscarinic acetylcholine receptors on alveolar epithelia. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Ion Transport by Pulmonary Epithelia

    PubMed Central

    Hollenhorst, Monika I.; Richter, Katrin; Fronius, Martin

    2011-01-01

    The lung surface of air-breathing vertebrates is formed by a continuous epithelium that is covered by a fluid layer. In the airways, this epithelium is largely pseudostratified consisting of diverse cell types such as ciliated cells, goblet cells, and undifferentiated basal cells, whereas the alveolar epithelium consists of alveolar type I and alveolar type II cells. Regulation and maintenance of the volume and viscosity of the fluid layer covering the epithelium is one of the most important functions of the epithelial barrier that forms the outer surface area of the lungs. Therefore, the epithelial cells are equipped with a wide variety of ion transport proteins, among which Na+, Cl−, and K+ channels have been identified to play a role in the regulation of the fluid layer. Malfunctions of pulmonary epithelial ion transport processes and, thus, impairment of the liquid balance in our lungs is associated with severe diseases, such as cystic fibrosis and pulmonary oedema. Due to the important role of pulmonary epithelial ion transport processes for proper lung function, the present paper summarizes the recent findings about composition, function, and ion transport properties of the airway epithelium as well as of the alveolar epithelium. PMID:22131798

  1. Role for ion transport in porcine vocal fold epithelial defense to acid challenge.

    PubMed

    Erickson-Levendoski, Elizabeth; Sivasankar, M Preeti

    2012-02-01

    The vocal fold epithelium is routinely exposed to gastric contents, including acid and pepsin, during laryngopharyngeal reflux events. The epithelium may possess intrinsic defenses to reflux. The first objective of the current study was to examine whether vocal fold epithelial ion transport is one potential mechanism of defense to gastric contents. The second objective was to determine whether ion transport in response to gastric contents is associated with the secretion of bicarbonate. Prospective design in excised porcine larynges. Laboratory. Porcine vocal folds (N = 56) were exposed on the luminal surface to acid, pepsin, or sham challenges. Ion transport at baseline and following challenge exposure was measured using electrophysiological techniques. To examine specific ion transport mechanisms, vocal folds were pretreated with either a sodium channel blocker or bicarbonate channel blocker. Within 60 seconds of acid but not pepsin exposure, there was a significant increase in ion transport. This rapid increase in ion transport was transient and related to bicarbonate secretion. The current data suggest that porcine vocal folds immediately increase bicarbonate secretion following exposure to acid. Bicarbonate secretion may act to neutralize acid. These findings contribute to the identification of the mechanisms underlying vocal fold defense to reflux and offer implications for the development of treatments for reflux-induced vocal fold injury.

  2. Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus*

    PubMed Central

    Tsuboi, Koichiro; Nishitani, Mayo; Takakura, Atsushi; Imai, Yasuyuki; Komatsu, Masaaki; Kawashima, Hiroto

    2015-01-01

    Genome-wide association studies of inflammatory bowel diseases identified susceptible loci containing an autophagy-related gene. However, the role of autophagy in the colon, a major affected area in inflammatory bowel diseases, is not clear. Here, we show that colonic epithelial cell-specific autophagy-related gene 7 (Atg7) conditional knock-out (cKO) mice showed exacerbation of experimental colitis with more abundant bacterial invasion into the colonic epithelium. Quantitative PCR analysis revealed that cKO mice had abnormal microflora with an increase of some genera. Consistently, expression of antimicrobial or antiparasitic peptides such as angiogenin-4, Relmβ, intelectin-1, and intelectin-2 as well as that of their inducer cytokines was significantly reduced in the cKO mice. Furthermore, secretion of colonic mucins that function as a mucosal barrier against bacterial invasion was also significantly diminished in cKO mice. Taken together, our results indicate that autophagy in colonic epithelial cells protects against colitis by the maintenance of normal gut microflora and secretion of mucus. PMID:26149685

  3. EMMPRIN Is Secreted by Human Uterine Epithelial Cells in Microvesicles and Stimulates Metalloproteinase Production by Human Uterine Fibroblast Cells

    PubMed Central

    Dayger, C. A.; Mehrotra, P.; Belton, R. J.; Nowak, R. A.

    2012-01-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C. PMID:22729071

  4. EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells.

    PubMed

    Braundmeier, A G; Dayger, C A; Mehrotra, P; Belton, R J; Nowak, R A

    2012-12-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P < .05). Treatment of HUF cells with low concentrations of IL-1β/α stimulated MMP production (P < .05). These results indicate that HES cells regulate MMP production by HUF cells by secretion of EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C.

  5. HCO3(-) secretion by murine nasal submucosal gland serous acinar cells during Ca2+-stimulated fluid secretion.

    PubMed

    Lee, Robert J; Harlow, Janice M; Limberis, Maria P; Wilson, James M; Foskett, J Kevin

    2008-07-01

    Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca(2+)-activated Cl(-) secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca(2+)-activated Cl(-) secretion was accompanied by secretion of HCO(3)(-), possibly a critical ASL component, by simultaneous measurements of intracellular pH (pH(i)) and cell volume. Resting pH(i) was 7.17 +/- 0.01 in physiological medium (5% CO(2)-25 mM HCO(3)(-)). During carbachol (CCh) stimulation, pH(i) fell transiently by 0.08 +/- 0.01 U concomitantly with a fall in Cl(-) content revealed by cell shrinkage, reflecting Cl(-) secretion. A subsequent alkalinization elevated pH(i) to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO(2)-HCO(3)(-)-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO(3)(-) efflux by ion substitution or exposure to the Cl(-) channel inhibitor niflumic acid (100 microM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na(+)/H(+) exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1-4 and 6-9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pH(i) recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO(3)(-) during Ca(2+)-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl(-) channel, with HCO(3)(-) secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na(+)-dependent pH(i) regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na(+)-free media.

  6. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.

    PubMed

    Cannell, Elizabeth; Dornan, Anthony J; Halberg, Kenneth A; Terhzaz, Selim; Dow, Julian A T; Davies, Shireen-A

    2016-06-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Assessment of conjunctival epithelium after severe burns and surgical reconstruction with Tenon plasty by means of a modified impression cytology procedure.

    PubMed

    Reim, M; Becker, J; Genser, C; Salla, S

    1998-07-01

    Tenon plasty has been used to reconstruct the conjunctival surface in severe burns in which ischemic sclera was exposed or undergoing ulceration. A modified impression cytology procedure was applied to investigate the conjunctival epithelium. The quality of the regenerated epithelium on the advanced Tenon sheets was assessed. The 63 conjunctival samples of eye-burn patients were investigated. Among these, 41 patients had very severe bums. Conjunctival samples were collected from 6 weeks after surgery to 5 years after the accident. They were compared with conjunctival epithelia obtained from 53 normal eyes of healthy volunteers. A 25-mm2 Biopore membrane (Millipore Catalogue PICM 01250) was placed on the bulbar conjunctiva surface in the lower temporal quadrant, at a distance of 3-5 mm from the limbus, till it was soaked with fluid. The ablated cell sheets were stained with periodic acid-Schiff (PAS). In all cases, an intact conjunctival epithelium was observed. In healthy eyes, 2,338 epithelial cells/mm2 and 155 goblet cells/ mm2 were found. Eyes after a surgical reconstruction with Tenon plasty resulted only in 1,575 epithelial cells/mm2 and 72 goblet cells/mm2. The differences were highly significant. The ratio of epithelial to goblet cell counts revealed an increase of goblet cells during the postoperative period. Conjunctival epithelium as well as goblet cell densities were reduced after heat, lime, alkali, and acid burns. However, after concrete burns, cell densities were increased. Tenon plasty provided the regeneration of the fully intact conjunctival epithelium. Goblet cells were present from 6 weeks after the surgery on; their number increased gradually. The stimulation of the goblet cell mucous secretion is discussed.

  8. CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes

    PubMed Central

    Nagel, G; Barbry, P; Chabot, H; Brochiero, E; Hartung, K; Grygorczyk, R

    2005-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) plays a crucial role in regulating fluid secretion by the airways, intestines, sweat glands and other epithelial tissues. It is well established that the CFTR is a cAMP-activated, nucleotide-dependent anion channel, but additional functions are often attributed to it, including regulation of the epithelial sodium channel (ENaC). The absence of CFTR-dependent ENaC inhibition and the resulting sodium hyperabsorption were postulated to be a major electrolyte transport abnormality in cystic fibrosis (CF)-affected epithelia. Several ex vivo studies, including those that used the Xenopus oocyte expression system, have reported ENaC inhibition by activated CFTR, but contradictory results have also been obtained. Because CFTR–ENaC interactions have important implications in the pathogenesis of CF, the present investigation was undertaken by our three independent laboratories to resolve whether CFTR regulates ENaC in oocytes and to clarify potential sources of previously reported dissimilar observations. Using different experimental protocols and a wide range of channel expression levels, we found no evidence that activated CFTR regulates ENaC when oocyte membrane potential was carefully clamped. We determined that an apparent CFTR-dependent ENaC inhibition could be observed when resistance in series with the oocyte membrane was not low enough or the feedback voltage gain was not high enough. We suggest that the inhibitory effect of CFTR on ENaC reported in some earlier oocyte studies could be attributed to problems arising from high levels of channel expression and suboptimal recording conditions, that is, large series resistance and/or insufficient feedback voltage gain. PMID:15746174

  9. Apical Plasma Membrane Mispolarization of NaK-ATPase in Polycystic Kidney Disease Epithelia Is Associated with Aberrant Expression of the β2 Isoform

    PubMed Central

    Wilson, Patricia D.; Devuyst, Olivier; Li, Xiaohong; Gatti, Laura; Falkenstein, Doris; Robinson, Shawn; Fambrough, Douglas; Burrow, Christopher R.

    2000-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disease of the kidney, characterized by cystic enlargement of renal tubules, aberrant epithelial proliferation, and ion and fluid secretion into the lumen. Previous studies have shown abnormalities in polarization of membrane proteins, including mislocalization of the NaK-ATPase to the apical plasma membranes of cystic epithelia. Apically located NaK-ATPase has previously been shown to be fully functional in vivo and in membrane-grown ADPKD epithelial cells in vitro, where basal-to-apical 22Na transport was inhibited by application of ouabain to the apical membrane compartment. Studies were conducted with polymerase chain reaction-generated specific riboprobes and polyclonal peptide antibodies against human sequences of α1, α3, β1, and β2 subunits of NaK-ATPase. High levels of expression of α1 and β1 messenger RNA were detected in ADPKD and age-matched normal adult kidneys in vivo, whereas β2 messenger RNA was detected only in ADPKD kidneys. Western blot analysis and immunocytochemical studies showed that, in normal adult kidneys, peptide subunit-specific antibodies against α1 and β1 localized to the basolateral membranes of normal renal tubules, predominantly thick ascending limbs of Henle’s loop. In ADPKD kidneys, α1 and β2 subunits were localized to the apical epithelial cell membranes, whereas β1 was distributed throughout the cytoplasm and predominantly in the endoplasmic reticulum, but was not seen associated with cystic epithelial cell membranes or in cell membrane fractions. Polarizing, renal-derived epithelial Madin Darby canine kidney cells, stably expressing normal or N-terminally truncated chicken β1 subunits, showed selective accumulation in the basolateral Madin Darby canine kidney cell surface, whereas c-myc epitope-tagged chicken β2 or human β2 subunits accumulated selectively in the apical cell surface. Similarly, human ADPKD epithelial cell lines, which endogenously expressed α1 and β2 NaK-ATPase subunits, showed colocalization at the apical cell surface and coassociation by immunoprecipitation analysis. These results are consistent with a model in which the additional transcription and translation of the β2 subunit of NaK-ATPase may result in the apical mislocalization of NaK-ATPase in ADPKD cystic epithelia. PMID:10623674

  10. A Study of Intercellular Spaces in the Rabbit Jejunum during Acute Volume Expansion and after Treatment with Cholera Toxin

    PubMed Central

    DiBona, Donald R.; Chen, Lincoln C.; Sharp, Geoffrey W. G.

    1974-01-01

    The effects of acute volume expansion and of intraluminal administration of cholera toxin have been examined in rabbit jejunum. Acute volume expansion was shown to reverse the normal reabsorptive flux of water and cause significant fluid secretion. Phase and electronmicroscopic examination of the jejunal epithelium showed that marked distension of the intercellular spaces had occurred. Examination of the jejunal epithelium after treatment with cholera toxin showed that, in association with high rates of fluid secretion, the intercellular spaces were extremely small and lateral membranes of adjacent cells were in close apposition to one another. Thus the mechanisms of fluid secretion in these two situations would appear to be quite different. The secretion associated with volume expansion, and accompanied by a rise in venous pressure and bullous deformations of terminal junctions, could well be due to hydrostatic pressure applied through intercellular channels. The secretion of cholera appears to be unrelated to hydrostatic pressure and is more likely due to body-to-lumen active ion transport. Images PMID:4596506

  11. Mammary Adipose Tissue-derived Lysophospholipids Promote Estrogen Receptor-negative Mammary Epithelial Cell Proliferation

    PubMed Central

    Volden, Paul A.; Skor, Maxwell N.; Johnson, Marianna B.; Singh, Puneet; Patel, Feenalie N.; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.

    2016-01-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiological and pathological processes including cancer. LPA is converted to lysophosphatidylcholine (LPC) by the secreted phospholipase, autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA-axis) signaling to breast cancer is poorly understood. Using mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA-axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA-axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA-axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. PMID:26862086

  12. HCO3− secretion and CaCO3 precipitation play major roles in intestinal water absorption in marine teleost fish in vivo

    PubMed Central

    Cooper, Christopher A.; Wilson, Rod W.

    2010-01-01

    The intestine of marine teleosts must effectively absorb fluid from ingested seawater to avoid dehydration. This fluid transport has been almost exclusively characterized as driven by NaCl absorption. However, an additional feature of the osmoregulatory role of the intestine is substantial net HCO3− secretion. This is suggested to drive additional fluid absorption directly (via Cl−/HCO3− exchange) and indirectly by precipitating ingested Ca2+ as CaCO3, thus creating the osmotic gradient for additional fluid absorption. The present study tested this hypothesis by perfusing the intestine of the European flounder in vivo with varying [Ca2+]: 10 (control), 40, and 90 mM. Fractional fluid absorption increased from 47% (control) to 73% (90 mM Ca2+), where almost all secreted HCO3− was excreted as CaCO3. This additional fluid absorption could not be explained by NaCl cotransport. Instead, a significant positive relationship between Na+-independent fluid absorption and total HCO3− secretion was consistent with the predicted roles for anion exchange and CaCO3 precipitation. Further analysis suggested that Na+-independent fluid absorption could be accounted for by net Cl− and H+ absorption (from Cl−/HCO3− exchange and CO2 hydration, respectively). There was no evidence to suggest that CaCO3 alone was responsible for driving fluid absorption. However, by preventing the accumulation of luminal Ca2+ it played a vital role by dynamically maintaining a favorable osmotic gradient all along the intestine, which permits substantially higher rates of solute-linked fluid absorption. To overcome the resulting hyperosmotic and highly acidic absorbate, it is proposed that plasma HCO3− buffers the absorbed H+ (from HCO3− production), and consequently reduces the osmolarity of the absorbed fluid entering the body. PMID:20130226

  13. [Dual role for prostaglandin D2 in intestinal epithelial homeostasis].

    PubMed

    Le Loupp, Anne-Gaelle; Bach-Ngohou, Kalyane; Bettan, Armel; Denis, Marc; Masson, Damien

    2015-01-01

    Prostaglandin D2 (PGD2) and derivatives are lipid mediators involved in the control of the intestinal epithelial barrier homeostasis. Their involvement in the pathophysiology of chronic inflammatory bowel disease (IBD) is still debated. Several results highlight the duality of PGD2 as an anti- or pro-inflammatory mediator. This duality seems to be related to a differential expression of its receptors by intestinal epithelial cells and the surrounding immunocompetent cells. The enteric glial cells from the enteric nervous system (ENS) express the lipocalin-type-prostaglandin D synthase and secrete PGD2 and 15d-PGJ2. The protective role of the ENS in the homeostatic control of the epithelial intestinal barrier and its involvement in the pathogenesis of IBD have already been demonstrated. Thus, these lipid mediators seem to be new actors of the neuro-glio-epithelial unit and could play a crucial role maintaining gut barrier integrity. © 2015 médecine/sciences – Inserm.

  14. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.

    PubMed

    Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L

    2005-06-01

    Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCrECL cultured from pigmented rabbits, while 85+/-0.7%, 36+/-1.6%, 38+/-1.8% and 15+/-3.5% decreases are observed for RCrECL from albino rabbits, respectively. Air-interface cultured RCrECL from either pigmented or albino rabbits exhibited active ion transport properties similar to those present in excised tissues. This primary culture system may be a reliable in-vitro model for mechanistic characterization of corneal epithelial function and regulation of transport properties.

  15. Nitric oxide-dependent neutrophil recruitment: role in nasal secretion.

    PubMed

    Cardell, L O; Agustí, C; Nadel, J A

    2000-12-01

    Leukotriene B4 (LTB4), an inflammatory mediator, is a potent chemoattractant for neutrophils that plays an important role in nasal secretion via release of elastase. Nitric oxide (NO) is an important modulator of leucocyte-endothelial cell interactions, endogenously produced in large quantities in the paranasal sinuses. To examine the role of NO in LTB4-stimulated nasal secretion. A newly-developed method for isolating and superfusing a nasal segment in dogs was used. Instillation of LTB4 into the nasal segment caused a time-dependent increase in the volume of airway fluid and in the recruitment of neutrophils. N(G)-nitro-L-arginine-methylester (L-NAME), an inhibitor of NO synthase, prevented LTB4-induced neutrophil recruitment and nasal secretion. These studies show that NO modulates LTB4-induced neutrophil recruitment and subsequent fluid secretion in the nose, and they suggest a therapeutic role for NO inhibitors in modulating neutrophil-dependent nasal secretion.

  16. IL-23 secreted by bronchial epithelial cells contributes to allergic sensitization in asthma model: role of IL-23 secreted by bronchial epithelial cells.

    PubMed

    Lee, Hyun Seung; Park, Da-Eun; Lee, Ji-Won; Chang, Yuna; Kim, Hye Young; Song, Woo-Jung; Kang, Hye-Ryun; Park, Heung-Woo; Chang, Yoon-Seok; Cho, Sang-Heon

    2017-01-01

    IL-23 has been postulated to be a critical mediator contributing to various inflammatory diseases. Dermatophagoides pteronyssinus (Der p) is one of the most common inhalant allergens. However, the role of IL-23 in Der p-induced mouse asthma model is not well understood, particularly with regard to the development of allergic sensitization in the airways. The objective of this study was to evaluate roles of IL-23 in Der p sensitization and asthma development. BALB/c mice were repeatedly administered Der p intranasally to develop Der p allergic sensitization and asthma. After Der p local administration, changes in IL-23 expression were examined in lung tissues and primary epithelial cells. Anti-IL-23p19 antibody was given during the Der p sensitization period, and its effects were examined. Effects of anti-IL-23p19 antibody at bronchial epithelial levels were also examined in vitro. The expression of IL-23 at bronchial epithelial layers was increased after Der p local administration in mouse. In Der p-induced mouse models, anti-IL-23p19 antibody treatment during allergen sensitization significantly diminished Der p allergic sensitization and several features of allergic asthma including the production of Th2 cytokines and the population of type 2 innate lymphoid cells in lungs. The activation of dendritic cells in lung-draining lymph nodes was also reduced by anti-IL-23 treatment. In murine lung alveolar type II-like epithelial cell line (MLE-12) cells, IL-23 blockade prevented cytokine responses to Der p stimulation, such as IL-1α, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-33, and also bone marrow-derived dendritic cell activation. In conclusion, IL-23 is another important bronchial epithelial cell-driven cytokine which may contribute to the development of house dust mite allergic sensitization and asthma. Copyright © 2017 the American Physiological Society.

  17. RAPAMYCIN INCREASES LENGTH AND MECHANOSENSORY FUNCTION OF PRIMARY CILIA IN RENAL EPITHELIAL AND VASCULAR ENDOTHELIAL CELLS.

    PubMed

    Sherpa, Rinzhin T; Atkinson, Kimberly F; Ferreira, Viviana P; Nauli, Surya M

    2016-12-01

    Primary cilia arebiophysically-sensitive organelles responsible for sensing fluid-flow and transducing this stimulus into intracellular responses. Previous studies have shown that the primary cilia mediate flow-induced calcium influx, and sensitivity of cilia function to flow is correlated to cilia length. Cells with abnormal cilia length or function can lead to a host of diseases that are collectively termed as ciliopathies. Rapamycin, a potent inhibitor of mTOR (mammalian target of rapamycin), has been demonstrated to be a potential pharmacological agent against the aberrant mTOR signaling seen in ciliopathies such as polycystic kidney disease (PKD) and tuberous sclerosis complex (TSC). Here we look at the effects of rapamycin on ciliary length and function for the first time. Compared to controls, primary cilia in rapamycin-treated porcine renal epithelial and mouse vascular endothelial cells showed a significant increase in length. Graded increases in fluid-shear stress further indicates that rapamycin enhances cilia sensitivity to fluid flow. Treatment with rapamycin led to G0 arrest in porcine epithelial cells while no significant change in cell cycle were observed in rapamycin-treated mouse epithelial or endothelial cells, indicating a species-specific effect of rapamycin. Given the previousin vitro and in vivo studies establishing rapamycin as a potential therapeutic agent for ciliopathies, such as PKD and TSC, our studies show that rapamycin enhances ciliary function and sensitivity to fluid flow. The results of our studies suggest a potential ciliotherapeutic effect of rapamycin.

  18. Multi-Drug Resistance Transporter 2 Regulates Mucosal Inflammation by Facilitating the Synthesis of Hepoxilin A3

    PubMed Central

    Pazos, Michael; Siccardi, Dario; Mumy, Karen L.; Bien, Jeffrey D.; Louie, Steve; Shi, Hai Ning; Gronert, Karsten; Mrsny, Randall J.; McCormick, Beth A.

    2008-01-01

    Neutrophil transmigration across mucosal surfaces contributes to dysfunction of epithelial barrier properties, a characteristic underlying many mucosal inflammatory diseases. Thus, insight into the directional movement of neutrophils across epithelial barriers will provide important information relating to the mechanisms of such inflammatory disorders. The eicosanoid hepoxilin A3, an endogenous product of 12-lipoxygenase activity, is secreted from the apical surface of the epithelial barrier and establishes a chemotatic gradient to guide neutrophils from the submucosa, across epithelia to the luminal site of an inflammatory stimulus - the final step in neutrophil recruitment. Currently, little is known regarding how hepoxilin A3 is secreted from the intestinal epithelium during an inflammatory insult. In this study we reveal that hepoxilin A3 is a substrate for the apical efflux ABC transporter, multi-drug resistance protein 2 (MRP2). Moreover, using multiple in vitro and in vivo models we show that induction of intestinal inflammation profoundly up-regulates apical expression of MRP2, and that interfering with hepoxilin A3 synthesis and/or inhibition of MRP2 function results in a marked reduction in inflammation and severity of disease. Lastly, examination of inflamed intestinal epithelia in human biopsies revealed up-regulation of MRP2. Thus, blocking hepoxilin A3 synthesis and/or inhibiting MRP2 may lead to the development of new therapeutic strategies for the treatment of epithelial-associated inflammatory conditions. PMID:19017997

  19. Inflammatory signaling pathways induced by Helicobacter pylori in primary human gastric epithelial cells.

    PubMed

    Tran, Cong Tri; Garcia, Magali; Garnier, Martine; Burucoa, Christophe; Bodet, Charles

    2017-02-01

    Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.

  20. Microbiota-host interplay at the gut epithelial level, health and nutrition.

    PubMed

    Lallès, Jean-Paul

    2016-01-01

    Growing evidence suggests the implication of the gut microbiota in various facets of health and disease. In this review, the focus is put on microbiota-host molecular cross-talk at the gut epithelial level with special emphasis on two defense systems: intestinal alkaline phosphatase (IAP) and inducible heat shock proteins (iHSPs). Both IAP and iHSPs are induced by various microbial structural components (e.g. lipopolysaccharide, flagellin, CpG DNA motifs), metabolites (e.g. n-butyrate) or secreted signal molecules (e.g., toxins, various peptides, polyphosphate). IAP is produced in the small intestine and secreted into the lumen and in the interior milieu. It detoxifies microbial components by dephosphorylation and, therefore, down-regulates microbe-induced inflammation mainly by inhibiting NF-κB pro-inflammatory pathway in enterocytes. IAP gene expression and enzyme activity are influenced by the gut microbiota. Conversely, IAP controls gut microbiota composition both directly, and indirectly though the detoxification of pro-inflammatory free luminal adenosine triphosphate and inflammation inhibition. Inducible HSPs are expressed by gut epithelial cells in proportion to the microbial load along the gastro-intestinal tract. They are also induced by various microbial components, metabolites and secreted molecules. Whether iHSPs contribute to shape the gut microbiota is presently unknown. Both systems display strong anti-inflammatory and anti-oxidant properties that are protective to the gut and the host. Importantly, epithelial gene expressions and protein concentrations of IAP and iHSPs can be stimulated by probiotics, prebiotics and a large variety of dietary components, including macronutrients (protein and amino acids, especially L-glutamine, fat, fiber), and specific minerals (e.g. calcium) and vitamins (e.g. vitamins K1 and K2). Some food components (e.g. lectins, soybean proteins, various polyphenols) may inhibit or disturb these systems. The general cellular and molecular mechanisms involved in the microbiota-host epithelial crosstalk and subsequent gut protection through IAP and iHSPs are reviewed along with their nutritional modulation. Special emphasis is also given to the pig, an economically important species and valuable biomedical model.

  1. Altered morphology and function of the lacrimal functional unit in protein kinase C{alpha} knockout mice.

    PubMed

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J; Pflugfelder, Stephen C

    2010-11-01

    Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout ((-/-)) mice have impaired ocular surface-lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα(-/-) mice. In PKCα(+/+) control mice and PKCα(-/-) mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Compared with the PKCα(+/+) mice, the PKCα(-/-) mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα(-/-) mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα(+/+) mice. The PKCα(-/-) mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα(-/-) mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration.

  2. Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release.

    PubMed

    Gorrieri, Giulia; Scudieri, Paolo; Caci, Emanuela; Schiavon, Marco; Tomati, Valeria; Sirci, Francesco; Napolitano, Francesco; Carrella, Diego; Gianotti, Ambra; Musante, Ilaria; Favia, Maria; Casavola, Valeria; Guerra, Lorenzo; Rea, Federico; Ravazzolo, Roberto; Di Bernardo, Diego; Galietta, Luis J V

    2016-10-27

    Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus.

  3. Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release

    PubMed Central

    Gorrieri, Giulia; Scudieri, Paolo; Caci, Emanuela; Schiavon, Marco; Tomati, Valeria; Sirci, Francesco; Napolitano, Francesco; Carrella, Diego; Gianotti, Ambra; Musante, Ilaria; Favia, Maria; Casavola, Valeria; Guerra, Lorenzo; Rea, Federico; Ravazzolo, Roberto; Di Bernardo, Diego; Galietta, Luis J. V.

    2016-01-01

    Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus. PMID:27786259

  4. Effects of Repeated Administration of Pilocarpine and Isoproterenol on Aquaporin-5 Expression in Rat Salivary Glands

    PubMed Central

    Susa, Taketo; Sawai, Nobuhiko; Aoki, Takeo; Iizuka-Kogo, Akiko; Kogo, Hiroshi; Negishi, Akihide; Yokoo, Satoshi; Takata, Kuniaki; Matsuzaki, Toshiyuki

    2013-01-01

    Aquaporins are water channel proteins which enable rapid water movement across the plasma membrane. Aquaporin-5 (AQP5) is the major aquaporin and is expressed on the apical membrane of salivary gland acinar cells. We examined the effects of repeated administration of pilocarpine, a clinically useful stimulant for salivary fluid secretion, and isoproterenol (IPR), a stimulant for salivary protein secretion, on the abundance of AQP5 protein in rat salivary glands by immunofluorescence microscopy and semi-quantitative immunoblotting. Unexpectedly AQP5 was decreased in pilocarpine-administered salivary glands, in which fluid secretion must be highly stimulated, implying that AQP5 might not be required for fluid secretion at least in pilocarpine-administered state. The abundance of AQP5, on the other hand, was found to be significantly increased in IPR-administered submandibular and parotid glands. To address the possible mechanism of the elevation of AQP5 abundance in IPR-administered animals, changes of AQP5 level in fasting animals, in which the exocytotic events are reduced, were examined. AQP5 was found to be decreased in fasting animals as expected. These results suggested that the elevation of cAMP and/or frequent exocytotic events could increase AQP5 protein. AQP5 expression seems to be easily changed by salivary stimulants, although these changes do not always reflect the ability in salivary fluid secretion. PMID:24610966

  5. Tissue Specificity of Human Angiotensin I-Converting Enzyme

    PubMed Central

    Kryukova, Olga V.; Tikhomirova, Victoria E.; Golukhova, Elena Z.; Evdokimov, Valery V.; Kalantarov, Gavreel F.; Trakht, Ilya N.; Schwartz, David E.; Dull, Randal O.; Gusakov, Alexander V.; Uporov, Igor V.; Kost, Olga A.; Danilov, Sergei M.

    2015-01-01

    Background Angiotensin-converting enzyme (ACE), which metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling, as well as in reproductive functions, is expressed as a type-1 membrane glycoprotein on the surface of endothelial and epithelial cells. ACE also presents as a soluble form in biological fluids, among which seminal fluid being the richest in ACE content - 50-fold more than that in blood. Methods/Principal Findings We performed conformational fingerprinting of lung and seminal fluid ACEs using a set of monoclonal antibodies (mAbs) to 17 epitopes of human ACE and determined the effects of potential ACE-binding partners on mAbs binding to these two different ACEs. Patterns of mAbs binding to ACEs from lung and from seminal fluid dramatically differed, which reflects difference in the local conformations of these ACEs, likely due to different patterns of ACE glycosylation in the lung endothelial cells and epithelial cells of epididymis/prostate (source of seminal fluid ACE), confirmed by mass-spectrometry of ACEs tryptic digests. Conclusions Dramatic differences in the local conformations of seminal fluid and lung ACEs, as well as the effects of ACE-binding partners on mAbs binding to these ACEs, suggest different regulation of ACE functions and shedding from epithelial cells in epididymis and prostate and endothelial cells of lung capillaries. The differences in local conformation of ACE could be the base for the generation of mAbs distingushing tissue-specific ACEs. PMID:26600189

  6. Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells

    PubMed Central

    Longphre, M.; Li, D.; Gallup, M.; Drori, E.; Ordoñez, C.L.; Redman, T.; Wenzel, S.; Bice, D. E.; Fahy, J.V.; Basbaum, C.

    1999-01-01

    A hallmark of asthma is mucin overproduction, a condition that contributes to airway obstruction. The events responsible for mucin overproduction are not known but are thought to be associated with mediators of chronic inflammation. Others have shown that T-helper 2 (Th2) lymphocytes are required for mucous cell metaplasia, which then leads to mucin overproduction in animal models of allergy. We hypothesized that Th2 cell mediators are present in asthmatic airway fluid and directly stimulate mucin synthesis in airway epithelial cells. Results in cultured airway epithelial cells showed that samples of asthmatic fluid stimulated mucin (MUC5AC) synthesis severalfold more potently than non-asthmatic fluid. Consistent with this, lavage fluid from the airways of allergen-challenged dogs stimulated mucin synthesis severalfold more potently than that from non–allergen-challenged dogs. Fractionation of dog samples revealed 2 active fractions at <10 kDa and 30–100 kDa. Th2 cytokines in these molecular weight ranges are IL-9 (36 kDa), IL-5 (56 kDa), and IL-13 (10 kDa). Antibody blockade of ligand-receptor interaction for IL-9 (but not IL-5 or IL-13) inhibited mucin stimulation by dog airway fluid. Furthermore, recombinant IL-9, but not IL-5 or IL-13, stimulated mucin synthesis. These results indicate that IL-9 may account for as much as 50–60% of the mucin-stimulating activity of lung fluids in allergic airway disease. J. Clin. Invest. 104:1375–1382 (1999). PMID:10562299

  7. Actions of cholera toxin and the prevention and treatment of cholera

    NASA Astrophysics Data System (ADS)

    Holmgren, Jan

    1981-07-01

    The drastic intestinal secretion of fluid and electrolytes that is characteristic of cholera is the result of reasonably well understood cellular and biochemical actions of the toxin secreted by Vibrio cholerae. Based on this understanding it is possible to devise new techniques for the treatment and prophylaxis of cholera to complement those based on fluid replacement therapy and sanitation.

  8. Oxygen in the regulation of intestinal epithelial transport

    PubMed Central

    Ward, Joseph B J; Keely, Simon J; Keely, Stephen J

    2014-01-01

    The transport of fluid, nutrients and electrolytes to and from the intestinal lumen is a primary function of epithelial cells. Normally, the intestine absorbs approximately 9 l of fluid and 1 kg of nutrients daily, driven by epithelial transport processes that consume large amounts of cellular energy and O2. The epithelium exists at the interface of the richly vascularised mucosa, and the anoxic luminal environment and this steep O2 gradient play a key role in determining the expression pattern of proteins involved in fluid, nutrient and electrolyte transport. However, the dynamic nature of the splanchnic circulation necessitates that the epithelium can evoke co-ordinated responses to fluctuations in O2 availability, which occur either as a part of the normal digestive process or as a consequence of several pathophysiological conditions. While it is known that hypoxia-responsive signals, such as reactive oxygen species, AMP-activated kinase, hypoxia-inducible factors, and prolyl hydroxylases are all important in regulating epithelial responses to altered O2 supply, our understanding of the molecular mechanisms involved is still limited. Here, we aim to review the current literature regarding the role that O2 plays in regulating intestinal transport processes and to highlight areas of research that still need to be addressed. PMID:24710059

  9. Resveratrol Ameliorates Abnormalities of Fluid and Electrolyte Secretion in a Hypoxia-Induced Model of Acquired CFTR Deficiency

    PubMed Central

    Woodworth, Bradford A.

    2015-01-01

    Objective/Hypothesis Ineffective mucociliary clearance (MCC) is a common pathophysiologic process that underlies airway inflammation and infection. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR). Decreased transepithelial Cl− transport secondary to an acquired CFTR deficiency may exacerbate respiratory epithelial dysfunction by diminishing MCC and increasing mucus viscosity. The objectives of the present study are to 1) develop a model of acquired CFTR deficiency in sinonasal epithelium using hypoxia, 2) investigate whether the polyphenol resveratrol promotes CFTR-mediated anion transport, 3) explore resveratrol mechanism of action and determine therapeutic suitability for overcoming acquired CFTR defects, and 4) test the drug in the hypoxic model of acquired CFTR deficiency in preparation for a clinical trial in human sinus disease. We hypothesize that hypoxia will induce depletion of airway surface liquid (ASL) secondary to acquired CFTR deficiency and that resveratrol will restore transepithelial Cl− secretion and recover ASL hydration. Study Design Basic science Methods Murine nasal septal (MNSE) and human sinonasal epithelial (HSNE) cultures were incubated under hypoxic conditions (1% O2,5% CO2) and transepithelial ion transport (change in short-circuit current=ΔISC) evaluated in Ussing chambers. Resveratrol was tested using primary cells and HEK293 cells expressing human CFTR by Ussing chamber and patch clamp techniques under both phosphorylating and non-phosphorylating conditions. CFTR activation was evaluated in human explants and by murine in vivo (nasal potential difference) assessment. Cellular cAMP (ELISA) and subsequent CFTR regulatory domain (R-D) phosphorylation (gel-shift assay) were also evaluated. Effects of hypoxia and resveratrol on ASL were tested using confocal laser scanning microscopy (CLSM) and micro-optical coherence tomography (μOCT). Results Hypoxia significantly decreased ΔISC (in μA/cm2) attributable to CFTR at 12 and 24 hours of exposure in both MNSE [13.55+/− 0.46 (12 hours);12.75+/−0.07(24 hours) vs. 19.23+/−0.18(control);p<0.05] and HSNE [19.55+/−0.56(12 hours);17.67+/− 1.13(24 hours) vs. 25.49+/−1.48(control);p<0.05]. We have shown that resveratrol (100μM) enhanced CFTR-dependent Cl− secretion in HSNE to an extent comparable to the recently FDA-approved CFTR potentiator, ivacaftor. Cl− transport across human sinonasal explants [78.42+/−1.75 vs. 1.75+/−1.5(control);p<0.05] and in vivo murine nasal epithelium [−4+/−1.8 vs. −0.8+/−1.7 mV(control);p<0.05] was also significantly increased by the drug. No increase in cellular cAMP or CFTR R-domain phosphorylation was detected. Inside out patches showed increased CFTR open probability [(NPo/N(N=channel number)] compared to controls in both MNSE [(0.329+/−0.116 vs. 0.119+/−0.059(control);p<0.05)] and HEK293 cells [(0.22+/−0.048 vs. 0.125+/−0.07(control);p<0.05). ASL thickness was decreased under hypoxic conditions when measured by CLSM [4.19+/−0.44 vs. 6.88+/−0.67(control);p<0.05]. A 30 minute apical application of resveratrol increased ASL depth in normal epithelium [8.08+/−1.68 vs. 6.11+/−0.47(control);p<0.05]. Furthermore, hypoxia-induced abnormalities of fluid and electrolyte secretion in sinonasal epithelium were restored with resveratrol treatment [5.55+/−0.74 vs. 3.13+/−0.17(control);p<0.05]. Conclusions CFTR activation with a leading edge Cl− secretagogue such as resveratrol represents an innovative approach to overcoming acquired CFTR defects in sinus and nasal airway disease. This exciting new strategy bears further testing in non-CF individuals with CRS. PMID:25946147

  10. TGF-β directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury

    PubMed Central

    Peters, Dorothea M.; Vadász, István; Wujak, Łukasz; Wygrecka, Małgorzata; Olschewski, Andrea; Becker, Christin; Herold, Susanne; Papp, Rita; Mayer, Konstantin; Rummel, Sebastian; Brandes, Ralph P.; Günther, Andreas; Waldegger, Siegfried; Eickelberg, Oliver; Seeger, Werner; Morty, Rory E.

    2014-01-01

    TGF-β is a pathogenic factor in patients with acute respiratory distress syndrome (ARDS), a condition characterized by alveolar edema. A unique TGF-β pathway is described, which rapidly promoted internalization of the αβγ epithelial sodium channel (ENaC) complex from the alveolar epithelial cell surface, leading to persistence of pulmonary edema. TGF-β applied to the alveolar airspaces of live rabbits or isolated rabbit lungs blocked sodium transport and caused fluid retention, which—together with patch-clamp and flow cytometry studies—identified ENaC as the target of TGF-β. TGF-β rapidly and sequentially activated phospholipase D1, phosphatidylinositol-4-phosphate 5-kinase 1α, and NADPH oxidase 4 (NOX4) to produce reactive oxygen species, driving internalization of βENaC, the subunit responsible for cell-surface stability of the αβγENaC complex. ENaC internalization was dependent on oxidation of βENaC Cys43. Treatment of alveolar epithelial cells with bronchoalveolar lavage fluids from ARDS patients drove βENaC internalization, which was inhibited by a TGF-β neutralizing antibody and a Tgfbr1 inhibitor. Pharmacological inhibition of TGF-β signaling in vivo in mice, and genetic ablation of the nox4 gene in mice, protected against perturbed lung fluid balance in a bleomycin model of lung injury, highlighting a role for both proximal and distal components of this unique ENaC regulatory pathway in lung fluid balance. These data describe a unique TGF-β–dependent mechanism that regulates ion and fluid transport in the lung, which is not only relevant to the pathological mechanisms of ARDS, but might also represent a physiological means of acutely regulating ENaC activity in the lung and other organs. PMID:24324142

  11. Macrophage Control of Phagocytosed Mycobacteria Is Increased by Factors Secreted by Alveolar Epithelial Cells through Nitric Oxide Independent Mechanisms

    PubMed Central

    Freidl, Raphaela; Fernández, Carmen

    2014-01-01

    Tissue-resident macrophages are heterogeneous with tissue-specific and niche-specific functions. Thus, simplified models of macrophage activation do not explain the extent of heterogeneity seen in vivo. We focus here on the respiratory tract and ask whether factors secreted by alveolar epithelial cells (AEC) can influence the functionality of resident pulmonary macrophages (PuM). We have previously reported that factors secreted by AEC increase control of intracellular growth of BCG in macrophages. In the current study, we also aimed to investigate possible mechanisms by which AEC-derived factors increase intracellular control of BCG in both primary murine interstitial macrophages, and bone marrow-derived macrophages and characterize further the effect of these factors on macrophage differentiation. We show that; a) in contrast to other macrophage types, IFN-γ did not increase intracellular growth control of Mycobacterium bovis, Bacillus Calmette-Guérin (BCG) by interstitial pulmonary macrophages although the same macrophages could be activated by factors secreted by AEC; b) the lack of response of pulmonary macrophages to IFN-γ was apparently regulated by suppressor of cytokine signaling (SOCS)1; c) AEC-derived factors did not induce pro-inflammatory pathways induced by IFN-γ e.g. expression of inducible nitric oxide synthase (iNOS), secretion of nitric oxide (NO), or IL-12, d) in contrast to IFN-γ, intracellular bacterial destruction induced by AEC-derived factors was not dependent on iNOS transcription and NO production. Collectively, our data show that PuM were restricted in inflammatory responses mediated by IFN-γ through SOCS1 and that factors secreted by AEC- enhanced the microbicidal capacities of macrophages by iNOS independent mechanisms. PMID:25089618

  12. A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of Epithelial Cells.

    PubMed

    Piotrowski-Daspit, Alexandra S; Simi, Allison K; Pang, Mei-Fong; Tien, Joe; Nelson, Celeste M

    2017-01-01

    Cells are surrounded by mechanical stimuli in their microenvironment. It is important to determine how cells respond to the mechanical information that surrounds them in order to understand both development and disease progression, as well as to be able to predict cell behavior in response to physical stimuli. Here we describe a protocol to determine the effects of interstitial fluid flow on the migratory behavior of an aggregate of epithelial cells in a three-dimensional (3D) culture model. This protocol includes detailed methods for the fabrication of a 3D cell culture chamber with hydrostatic pressure control, the culture of epithelial cells as an aggregate in a collagen gel, and the analysis of collective cell behavior in response to pressure-driven flow.

  13. Serpin Facilitates Tumor-Suppressive Cell Competition by Blocking Toll-Mediated Yki Activation in Drosophila.

    PubMed

    Katsukawa, Mitsuko; Ohsawa, Shizue; Zhang, Lina; Yan, Yan; Igaki, Tatsushi

    2018-06-04

    Normal epithelial tissue exerts an intrinsic tumor-suppressive effect against oncogenically transformed cells. In Drosophila imaginal epithelium, clones of oncogenic polarity-deficient cells mutant for scribble (scrib) or discs large (dlg) are eliminated by cell competition when surrounded by wild-type cells. Here, through a genetic screen in Drosophila, we identify Serpin5 (Spn5), a secreted negative regulator of Toll signaling, as a crucial factor for epithelial cells to eliminate scrib mutant clones from epithelium. Downregulation of Spn5 in wild-type cells leads to elevation of Toll signaling in neighboring scrib cells. Strikingly, forced activation of Toll signaling or Toll-related receptor (TRR) signaling in scrib clones transforms scrib cells from losers to supercompetitors, resulting in tumorous overgrowth of mutant clones. Mechanistically, Toll activation in scrib clones leads to c-Jun N-terminal kinase (JNK) activation and F-actin accumulation, which cause strong activation of the Hippo pathway effector Yorkie that blocks cell death and promotes cell proliferation. Our data suggest that Spn5 secreted from normal epithelial cells acts as a component of the extracellular surveillance system that facilitates elimination of pre-malignant cells from epithelium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Innate Immunity in the Vagina (Part I): Estradiol Inhibits HBD2 and Elafin Secretion by Human Vaginal Epithelial Cells

    PubMed Central

    Patel, Mickey V.; Fahey, John V.; Rossoll, Richard M.; Wira, Charles R.

    2013-01-01

    Problem Vaginal epithelial cells (VEC) are the first line of defense against incoming pathogens in the female reproductive tract. Their ability to produce the anti-HIV molecules elafin and HBD2 under hormonal stimulation is unknown. Method of study Vaginal epithelial cells were recovered using a menstrual cup and cultured overnight prior to treatment with estradiol (E2), progesterone (P4) or a panel of selective estrogen response modulators (SERMs). Conditioned media were recovered and analyzed for protein concentration and anti-HIV activity. Results E2 significantly decreased the secretion of HBD2 and elafin by VEC over 48 hrs, while P4 and the SERMs (tamoxifen, PHTTP, ICI or Y134) had no effect. VEC conditioned media from E2-treated cells had no anti-HIV activity, while that from E2/P4-treated cells significantly inhibited HIV-BaL infection. Conclusion The menstrual cup allows for effective recovery of primary VEC. Their production of HBD2 and elafin is sensitive to E2, suggesting that innate immune protection varies in the vagina across the menstrual cycle. PMID:23398087

  15. Identifying Mechanisms by Which Escherichia coli O157:H7 Subverts Interferon-γ Mediated Signal Transducer and Activator of Transcription-1 Activation

    PubMed Central

    Ho, Nathan K.; Crandall, Ian; Sherman, Philip M.

    2012-01-01

    Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein. PMID:22253910

  16. Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

    PubMed Central

    Jayakumar, Calpurnia; Mohamed, Riyaz; Ranganathan, Punithavathi Vilapakkam; Ramesh, Ganesan

    2011-01-01

    Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells. PMID:22046354

  17. Bacillus megaterium SF185 induces stress pathways and affects the cell cycle distribution of human intestinal epithelial cells.

    PubMed

    Di Luccia, B; D'Apuzzo, E; Varriale, F; Baccigalupi, L; Ricca, E; Pollice, A

    2016-09-01

    The interaction between the enteric microbiota and intestinal cells often involves signal molecules that affect both microbial behaviour and host responses. Examples of such signal molecules are the molecules secreted by bacteria that induce quorum sensing mechanisms in the producing microorganism and signal transduction pathways in the host cells. The pentapeptide competence and sporulation factor (CSF) of Bacillus subtilis is a well characterized quorum sensing factor that controls competence and spore formation in the producing bacterium and induces cytoprotective heat shock proteins in intestinal epithelial cells. We analysed several Bacillus strains isolated from human ileal biopsies of healthy volunteers and observed that some of them were unable to produce CSF but still able to act in a CSF-like fashion on model intestinal epithelial cells. One of those strains belonging to the Bacillus megaterium species secreted at least two factors with effects on intestinal HT29 cells: a peptide smaller than 3 kDa able to induce heat shock protein 27 (hsp27) and p38-MAPK, and a larger molecule able to induce protein kinase B (PKB/Akt) with a pro-proliferative effect.

  18. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    PubMed

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  19. Regulation of Lipid Droplet Size in Mammary Epithelial Cells by Remodeling of Membrane Lipid Composition—A Potential Mechanism

    PubMed Central

    Cohen, Bat-Chen; Shamay, Avi; Argov-Argaman, Nurit

    2015-01-01

    Milk fat globule size is determined by the size of its precursors—intracellular lipid droplets—and is tightly associated with its composition. We examined the relationship between phospholipid composition of mammary epithelial cells and the size of both intracellular and secreted milk fat globules. Primary culture of mammary epithelial cells was cultured in medium without free fatty acids (control) or with 0.1 mM free capric, palmitic or oleic acid for 24 h. The amount and composition of the cellular lipids and the size of the lipid droplets were determined in the cells and medium. Mitochondrial quantity and expression levels of genes associated with mitochondrial biogenesis and polar lipid composition were determined. Cells cultured with oleic and palmitic acids contained similar quantities of triglycerides, 3.1- and 3.8-fold higher than in controls, respectively (P < 0.0001). When cultured with oleic acid, 22% of the cells contained large lipid droplets (>3 μm) and phosphatidylethanolamine concentration was higher by 23 and 63% compared with that in the control and palmitic acid treatments, respectively (P < 0.0001). In the presence of palmitic acid, only 4% of the cells contained large lipid droplets and the membrane phosphatidylcholine concentration was 22% and 16% higher than that in the control and oleic acid treatments, respectively (P < 0.0001). In the oleic acid treatment, approximately 40% of the lipid droplets were larger than 5 μm whereas in that of the palmitic acid treatment, only 16% of the droplets were in this size range. Triglyceride secretion in the oleic acid treatment was 2- and 12-fold higher compared with that in the palmitic acid and control treatments, respectively. Results imply that membrane composition of bovine mammary epithelial cells plays a role in controlling intracellular and secreted lipid droplets size, and that this process is not associated with cellular triglyceride content. PMID:25756421

  20. Role for Ion Transport in Porcine Vocal Fold Epithelial Defense to Acid Challenge

    PubMed Central

    Erickson-Levendoski, Elizabeth; Sivasankar, M. Preeti

    2012-01-01

    Objective The vocal fold epithelium is routinely exposed to gastric contents, including acid and pepsin, during laryngopharyngeal reflux events. The epithelium may possess intrinsic defenses to reflux. The first objective of the current study was to examine whether vocal fold epithelial ion transport is one potential mechanism of defense to gastric contents. The second objective was to determine whether ion transport in response to gastric contents is associated with the secretion of bicarbonate. Study Design Prospective design in excised porcine larynges. Setting Laboratory. Subjects and Methods Porcine vocal folds (N = 56) were exposed on the luminal surface to acid, pepsin, or sham challenges. Ion transport at baseline and following challenge exposure was measured using electrophysiological techniques. To examine specific ion transport mechanisms, vocal folds were pretreated with either a sodium channel blocker or bicarbonate channel blocker. Results Within 60 seconds of acid but not pepsin exposure, there was a significant increase in ion transport. This rapid increase in ion transport was transient and related to bicarbonate secretion. Conclusion The current data suggest that porcine vocal folds immediately increase bicarbonate secretion following exposure to acid. Bicarbonate secretion may act to neutralize acid. These findings contribute to the identification of the mechanisms underlying vocal fold defense to reflux and offer implications for the development of treatments for reflux-induced vocal fold injury. PMID:22086905

  1. HCO3− Secretion by Murine Nasal Submucosal Gland Serous Acinar Cells during Ca2+-stimulated Fluid Secretion

    PubMed Central

    Lee, Robert J.; Harlow, Janice M.; Limberis, Maria P.; Wilson, James M.; Foskett, J. Kevin

    2008-01-01

    Airway submucosal glands contribute to airway surface liquid (ASL) composition and volume, both important for lung mucociliary clearance. Serous acini generate most of the fluid secreted by glands, but the molecular mechanisms remain poorly characterized. We previously described cholinergic-regulated fluid secretion driven by Ca2+-activated Cl− secretion in primary murine serous acinar cells revealed by simultaneous differential interference contrast (DIC) and fluorescence microscopy. Here, we evaluated whether Ca2+-activated Cl− secretion was accompanied by secretion of HCO3−, possibly a critical ASL component, by simultaneous measurements of intracellular pH (pHi) and cell volume. Resting pHi was 7.17 ± 0.01 in physiological medium (5% CO2–25 mM HCO3−). During carbachol (CCh) stimulation, pHi fell transiently by 0.08 ± 0.01 U concomitantly with a fall in Cl− content revealed by cell shrinkage, reflecting Cl− secretion. A subsequent alkalinization elevated pHi to above resting levels until agonist removal, whereupon it returned to prestimulation values. In nominally CO2–HCO3−-free media, the CCh-induced acidification was reduced, whereas the alkalinization remained intact. Elimination of driving forces for conductive HCO3− efflux by ion substitution or exposure to the Cl− channel inhibitor niflumic acid (100 μM) strongly inhibited agonist-induced acidification by >80% and >70%, respectively. The Na+/H+ exchanger (NHE) inhibitor dimethylamiloride (DMA) increased the magnitude (greater than twofold) and duration of the CCh-induced acidification. Gene expression profiling suggested that serous cells express NHE isoforms 1–4 and 6–9, but pharmacological sensitivities demonstrated that alkalinization observed during both CCh stimulation and pHi recovery from agonist-induced acidification was primarily due to NHE1, localized to the basolateral membrane. These results suggest that serous acinar cells secrete HCO3− during Ca2+-evoked fluid secretion by a mechanism that involves the apical membrane secretory Cl− channel, with HCO3− secretion sustained by activation of NHE1 in the basolateral membrane. In addition, other Na+-dependent pHi regulatory mechanisms exist, as evidenced by stronger inhibition of alkalinization in Na+-free media. PMID:18591422

  2. The secretory IgA system of lung secretions in chronic obstructive bronchitis: comparison of sputum with secretions obtained during fibreoptic bronchoscopy.

    PubMed Central

    Wiggins, J; Hill, S L; Stockley, R A

    1984-01-01

    The constituents of the secretory immunoglobulin A system (dimeric IgA, total secretory component and free secretory component) were measured in sputum sol phase, tracheal aspirates, and bronchoalveolar lavage fluids from 15 patients undergoing fibreoptic bronchoscopy. All of the proteins showed a progressive decrease in concentration from sputum to the bronchoalveolar lavage fluids (2p less than 0.001). Standardisation of samples by means of protein concentration ratios showed that all secretions were generally similar in respect of their secretory IgA profiles, although major differences remained in some individual patients. The between patient variability of the results was generally reduced by the use of protein concentration ratios, allowing closer comparison between subjects. When the secretion albumin concentration was used as a standard, however, it increased the variability of the sputum sol phase IgA components (2p less than 0.01), whereas it decreased the variability of the IgA components in the bronchoalveolar lavage fluid (2p less than 0.05). The role of albumin as a standard protein for assessing the secretory IgA system in lung secretions remains uncertain. PMID:6463931

  3. The versatile role of exosomes in cancer progression: diagnostic and therapeutic implications.

    PubMed

    Sundararajan, Vignesh; Sarkar, Fazlul H; Ramasamy, Thamil Selvee

    2018-06-01

    Recent advances in cancer biology have highlighted the relevance of exosomes and nanovesicles as carriers of genetic and biological messages between cancer cells and their immediate and/or distant environments. It has been found that these molecular cues may play significant roles in cancer progression and metastasis. Cancer cells secrete exosomes containing diverse molecules that can be transferred to recipient cells and/or vice versa to induce a plethora of biological processes, including angiogenesis, metastasis formation, therapeutic resistance, epithelial-mesenchymal transition and epigenetic/stemness (re)programming. While exosomes interact with cells within the tumour microenvironment to promote tumour growth, these vesicles can also facilitate the process of distant metastasis by mediating the formation of pre-metastatic niches. Next to their tumour promoting effects, exosomes have been found to serve as potential tools for cancer diagnosis and therapy. The ease of isolating exosomes and their content from different body fluids has led to the identification of diagnostic and prognostic biomarker signatures, as well as to predictive biomarker signatures for therapeutic responses. Exosomes can also be used as cargos to deliver therapeutic anti-cancer drugs, and they can be engineered to serve as vaccines for immunotherapy. Additionally, it has been found that inhibition of exosome secretion, and thus the transfer of oncogenic molecules, holds promise for inhibiting tumour growth. Here we provide recent information on the diverse roles of exosomes in various cellular and systemic processes governing cancer progression, and discuss novel strategies to halt this progression using exosome-based targeted therapies and methods to inhibit exosome secretion and the transfer of pro-tumorigenic molecules. This review highlights the important role of exosomes in cancer progression and its implications for (non-invasive) diagnostics and the development of novel therapeutic strategies, as well as its current and future applications in clinical trials.

  4. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta

    PubMed Central

    Gerlach, Gary F.; Wingert, Rebecca A.

    2014-01-01

    The zebrafish pronephros provides an excellent in vivo system to study the mechanisms of vertebrate nephron development. When and how renal progenitors in the zebrafish embryo undergo tubulogenesis to form nephrons is poorly understood, but is known to involve a mesenchymal to epithelial transition (MET) and the acquisition of polarity. Here, we determined the precise timing of these events in pronephros tubulogenesis. As the ternary polarity complex is an essential regulator of epithelial cell polarity across tissues, we performed gene knockdown studies to assess the roles of the related factors atypical protein kinase C iota and zeta (prkcι, prkcζ). We found that prkcι and prkcζ serve partially redundant functions to establish pronephros tubule epithelium polarity. Further, the loss of prkcι or the combined knockdown of prkcι/ζ disrupted proximal tubule morphogenesis and podocyte migration due to cardiac defects that prevented normal fluid flow to the kidney. Surprisingly, tubule cells in prkcι/ζ morphants displayed ectopic expression of the transcription factor pax2a and the podocyte-associated genes wt1a, wt1b, and podxl, suggesting that prkcι/ζ are needed to maintain renal epithelial identity. Knockdown of genes essential for cardiac contractility and vascular flow to the kidney, such as tnnt2a, or elimination of pronephros fluid output through knockdown of the intraflagellar transport gene ift88, was not associated with ectopic pronephros gene expression, thus suggesting a unique role for prkcι/ζ in maintaining tubule epithelial identity separate from the consequence of disruptions to renal fluid flow. Interestingly, knockdown of pax2a, but not wt1a, was sufficient to rescue ectopic tubule gene expression in prkcι/ζ morphants. These data suggest a model in which the redundant activities of prkcι and prkcζ are essential to establish tubule epithelial polarity and also serve to maintain proper epithelial cell type identity in the tubule by inhibiting pax2a expression. These studies provide a valuable foundation for further analysis of MET during nephrogenesis, and have implications for understanding the pathways that affect nephron epithelial cells during kidney disease and regeneration. PMID:25446529

  5. Lamellar projections in the endolymphatic sac act as a relief valve to regulate inner ear pressure

    PubMed Central

    Swinburne, Ian A; Mosaliganti, Kishore R; Upadhyayula, Srigokul; Liu, Tsung-Li; Hildebrand, David G C; Tsai, Tony Y -C; Chen, Anzhi; Al-Obeidi, Ebaa; Fass, Anna K; Malhotra, Samir; Engert, Florian; Lichtman, Jeff W; Kirchausen, Tomas; Betzig, Eric

    2018-01-01

    The inner ear is a fluid-filled closed-epithelial structure whose function requires maintenance of an internal hydrostatic pressure and fluid composition. The endolymphatic sac (ES) is a dead-end epithelial tube connected to the inner ear whose function is unclear. ES defects can cause distended ear tissue, a pathology often seen in hearing and balance disorders. Using live imaging of zebrafish larvae, we reveal that the ES undergoes cycles of slow pressure-driven inflation followed by rapid deflation. Absence of these cycles in lmx1bb mutants leads to distended ear tissue. Using serial-section electron microscopy and adaptive optics lattice light-sheet microscopy, we find a pressure relief valve in the ES comprised of partially separated apical junctions and dynamic overlapping basal lamellae that separate under pressure to release fluid. We propose that this lmx1-dependent pressure relief valve is required to maintain fluid homeostasis in the inner ear and other fluid-filled cavities. PMID:29916365

  6. Repeated whole cigarette smoke exposure alters cell differentiation and augments secretion of inflammatory mediators in air-liquid interface three-dimensional co-culture model of human bronchial tissue.

    PubMed

    Ishikawa, Shinkichi; Ito, Shigeaki

    2017-02-01

    In vitro models of human bronchial epithelium are useful for toxicological testing because of their resemblance to in vivo tissue. We constructed a model of human bronchial tissue which has a fibroblast layer embedded in a collagen matrix directly below a fully-differentiated epithelial cell layer. The model was applied to whole cigarette smoke (CS) exposure repeatedly from an air-liquid interface culture while bronchial epithelial cells were differentiating. The effects of CS exposure on differentiation were determined by histological and gene expression analyses on culture day 21. We found a decrease in ciliated cells and perturbation of goblet cell differentiation. We also analyzed the effects of CS exposure on the inflammatory response, and observed a significant increase in secretion of IL-8, GRO-α, IL-1β, and GM-CSF. Interestingly, secretion of these mediators was augmented with repetition of whole CS exposure. Our data demonstrate the usefulness of our bronchial tissue model for in vitro testing and the importance of exposure repetition in perturbing the differentiation and inflammation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The secretion and biological function of tumor suppressor maspin as an exosome cargo protein.

    PubMed

    Dean, Ivory; Dzinic, Sijana H; Bernardo, M Margarida; Zou, Yi; Kimler, Vickie; Li, Xiaohua; Kaplun, Alexander; Granneman, James; Mao, Guangzhao; Sheng, Shijie

    2017-01-31

    Maspin is an epithelial-specific tumor suppressor shown to exert its biological effects as an intracellular, cell membrane-associated, and secreted free molecule. A recent study suggests that upon DNA-damaging g-irradiation, tumor cells can secrete maspin as an exosome-associated protein. To date, the biological significance of exosomal secretion of maspin is unknown. The current study aims at addressing whether maspin is spontaneously secreted as an exosomal protein to regulate tumor/stromal interactions. We prepared exosomes along with cell extracts and vesicle-depleted conditioned media (VDCM) from normal epithelial (CRL2221, MCF-10A and BEAS-2B) and cancer (LNCaP, PC3 and SUM149) cell lines. Atomic force microscopy and dynamic light scattering analysis revealed similar size distribution patterns and surface zeta potentials between the normal cells-derived and tumor cells-derived exosomes. Electron microscopy revealed that maspin was encapsulated by the exosomal membrane as a cargo protein. While western blotting revealed that the level of exosomal maspin from tumor cell lines was disproportionally lower relative to the levels of corresponding intracellular and VDCM maspin, as compared to that from normal cell lines, maspin knockdown in MCF-10A cells led to maspin-devoid exosomes, which exhibited significantly reduced suppressive effects on the chemotaxis activity of recipient NIH3T3 fibroblast cells. These data are the first to demonstrate the potential of maspin delivered by exosomes to block tumor-induced stromal response, and support the clinical application of exosomal maspin in cancer diagnosis and treatment.

  8. Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.

    PubMed

    Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A

    2016-06-15

    Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice. Copyright © 2016. Published by Elsevier B.V.

  9. Colonic epithelial cell activation and the paradoxical effects of butyrate.

    PubMed

    Gibson, P R; Rosella, O; Wilson, A J; Mariadason, J M; Rickard, K; Byron, K; Barkla, D H

    1999-04-01

    Butyrate may have paradoxical effects on epithelial cells of similar origin. This study aimed to examine the hypothesis that one mechanism that dictates a cell's response to butyrate is its state of activation. First, the responses to 24 h exposure to butyrate (1-2 mM) of normal and neoplastic human colonic epithelial cells activated by their isolation and primary culture, and of colon cancer cell lines, LIM1215 and Caco-2, were examined. In primary cultures of normal and cancer cells, butyrate had no effect on alkaline phosphatase activities but significantly suppressed urokinase receptor expression by a mean +/- SEM of 30 +/- 12% and 36 +/- 9%, respectively. Interleukin-8 secretion was suppressed by 44 +/- 7% in normal cells (P < 0.05) but was unchanged in cancer cells. In contrast, the cell lines significantly increased alkaline phosphatase activities by >50%, urokinase receptor expression >2-fold and interleukin-8 secretion >3-fold in response to butyrate. Secondly, the effect of butyrate on Caco-2 cells was examined with or without prior exposure to a specific activating stimulus [tumour necrosis factor alpha (TNF alpha)]. Interleukin-8 secretion increased by 145 +/- 23% and 132 +/- 17% on 24 h exposure to 2 mM butyrate or 0.1 microM TNF alpha alone, respectively. However, in cells pre-treated with TNF alpha, butyrate significantly inhibited secretion by 34 +/- 7% below unstimulated levels. The response to butyrate of urokinase receptor, whose expression was not stimulated by TNF alpha, was unchanged. These effects were mimicked by trichostatin A, an inhibitor of histone deacetylase, suggesting that butyrate's paradoxical effects may have been operating by the same mechanism. In conclusion, some of the paradoxical effects of butyrate do not appear to represent inherent differences between normal and transformed cells. Rather, the response may be determined by the state of activation of the cells.

  10. Blue-light filtering alters angiogenic signaling in human retinal pigmented epithelial cells culture model.

    PubMed

    Vila, Natalia; Siblini, Aya; Esposito, Evangelina; Bravo-Filho, Vasco; Zoroquiain, Pablo; Aldrees, Sultan; Logan, Patrick; Arias, Lluis; Burnier, Miguel N

    2017-11-02

    Light exposure and more specifically the spectrum of blue light contribute to the oxidative stress in Age-related macular degeneration (AMD). The purpose of the study was to establish whether blue light filtering could modify proangiogenic signaling produced by retinal pigmented epithelial (RPE) cells under different conditions simulating risk factors for AMD. Three experiments were carried out in order to expose ARPE-19 cells to white light for 48 h with and without blue light-blocking filters (BLF) in different conditions. In each experiment one group was exposed to light with no BLF protection, a second group was exposed to light with BLF protection, and a control group was not exposed to light. The ARPE-19 cells used in each experiment prior to light exposure were cultured for 24 h as follows: Experiment 1) Normoxia, Experiment 2) Hypoxia, and Experiment 3) Lutein supplemented media in normoxia. The media of all groups was harvested after light exposure for sandwich ELISA-based assays to quantify 10 pro-angiogenic cytokines. A significant decrease in angiogenin secretion levels and a significant increase in bFGF were observed following light exposure, compared to dark conditions, in both normoxia and hypoxia conditions. With the addition of a blue light-blocking filter in normoxia, a significant increase in angiogenin levels was observed. Although statistical significance was not achieved, blue light filters reduce light-induced secretion of bFGF and VEGF to near normal levels. This trend is also observed when ARPE-19 cells are grown under hypoxic conditions and when pre-treated with lutein prior to exposure to experimental conditions. Following light exposure, there is a decrease in angiogenin secretion by ARPE-19 cells, which was abrogated with a blue light - blocking filter. Our findings support the position that blue light filtering affects the secretion of angiogenic factors by retinal pigmented epithelial cells under normoxic, hypoxic, and lutein-pretreated conditions in a similar manner.

  11. The Balance of HCO3- Secretion vs. Reabsorption in the Endometrial Epithelium Regulates Uterine Fluid pH

    PubMed Central

    Xie, Zhang-Dong; Guo, Yi-Min; Ren, Mei-Juan; Yang, Jichun; Wang, Shao-Fang; Xu, Tong-Hui; Chen, Li-Ming; Liu, Ying

    2018-01-01

    Uterine fluid contains a high concentration of HCO3- which plays an essential role in sperm capacitation and fertilization. In addition, the HCO3- concentration in uterine fluid changes periodically during the estrous cycle. It is well-known that the endometrial epithelium contains machineries involving the apical SLC26 family anion exchangers for secreting HCO3- into the uterine fluid. In the present study, we find for the first time that the electroneutral Na+/HCO3- cotransporter NBCn1 is expressed at the apical membrane of the endometrial epithelium. The protein abundance of the apical NBCn1 and that of the apical SLC26A4 and SLC26A6 are reciprocally regulated during the estrous cycle in the uterus. NBCn1 is most abundant at diestrus, whereas SLC26A4/A6 are most abundant at proestrus/estrus. In the ovariectomized mice, the expression of uterine NBCn1 is inhibited by β-estradiol, but stimulated by progesterone, whereas that of uterine SLC26A4/A6 is stimulated by β-estradiol. In vivo perfusion studies show that the endometrial epithelium is capable of both secreting and reabsorbing HCO3-. Moreover, the activity for HCO3- secretion by the endometrial epithelium is significantly higher at estrus than it is at diestrus. The opposite is true for HCO3- reabsorption. We conclude that the endometrial epithelium simultaneously contains the activity for HCO3- secretion involving the apical SLC26A4/A6 and the activity for HCO3- reabsorption involving the apical NBCn1, and that the acid-base homeostasis in the uterine fluid is regulated by the finely-tuned balance of the two activities. PMID:29422866

  12. Effect of mitomycin C on IL-1R expression, IL-1-related hepatocyte growth factor secretion and corneal epithelial cell migration.

    PubMed

    Chen, Tsan-Chi; Chang, Shu-Wen

    2010-03-01

    To investigate how mitomycin C (MMC) modulates hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) secretions in human corneal fibroblasts and regulates human corneal epithelial (HCE) cell migration. Primary human corneal fibroblasts were treated with MMC (0.05, 0.1, or 0.2 mg/mL for 5 minutes) and were cultivated with or without interleukin (IL)-1beta. Transcript and secretion of HGF and KGF were determined by quantitative real-time RT-PCR and Western blot analysis, respectively. The effect of MMC-treated fibroblasts on HCE cell migration was evaluated using a transwell migration assay. The influence of MMC on HGF expression/secretion and HCE cell migration was further confirmed by RNA interference. The number of IL-1 receptors (IL-1R) on the fibroblast surface was analyzed by flow cytometry. MMC alone did not affect endogenous HGF expression, whereas IL-1beta alone significantly upregulated HGF transcripts and secretion. By modifying IL-1R numbers, MMC further upregulated IL-1beta-related HGF expression at a concentration of 0.05 mg/mL but to a lesser extent at 0.1 and 0.2 mg/mL. KGF transcripts and intracellular expression were suppressed by MMC dose dependently in the presence or absence of IL-1beta, whereas KGF secretion was not affected. Conditioned medium from MMC-treated fibroblasts exerted a similar concentration-dependent effect on HCE cell migration, enhancing migration most significantly at 0.05 mg/mL MMC in the presence of IL-1beta. The MMC dose-dependent modulation of HCE cell migration was abolished in HGF-silenced fibroblasts. MMC differentially modulated IL-1R expression at various concentrations and regulated HGF and KGF differently. MMC alone did not alter HGF expression. In the presence of IL-1beta, MMC-treated corneal fibroblasts modified HCE cell migration through IL-1beta-induced HGF secretion.

  13. Neisseria meningitidis elicits a pro-inflammatory response involving IκBζ in a human blood-cerebrospinal fluid barrier model.

    PubMed

    Borkowski, Julia; Li, Li; Steinmann, Ulrike; Quednau, Natascha; Stump-Guthier, Carolin; Weiss, Christel; Findeisen, Peter; Gretz, Norbert; Ishikawa, Hiroshi; Tenenbaum, Tobias; Schroten, Horst; Schwerk, Christian

    2014-09-13

    The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6 signaling and the transcriptional regulator IκBζ.

  14. Obese asthmatic patients have decreased surfactant protein A levels: Mechanisms and implications.

    PubMed

    Lugogo, Njira; Francisco, Dave; Addison, Kenneth J; Manne, Akarsh; Pederson, William; Ingram, Jennifer L; Green, Cynthia L; Suratt, Benjamin T; Lee, James J; Sunday, Mary E; Kraft, Monica; Ledford, Julie G

    2018-03-01

    Eosinophils are prominent in some patients with asthma and are increased in the submucosa in a subgroup of obese patients with asthma (OAs). Surfactant protein A (SP-A) modulates host responses to infectious and environmental insults. We sought to determine whether SP-A levels are altered in OAs compared with a control group and to determine the implications of these alterations in SP-A levels in asthmatic patients. Bronchoalveolar lavage fluid from 23 lean, 12 overweight, and 20 obese subjects were examined for SP-A. Mouse tracheal epithelial cells grown at an air-liquid interface were used for mechanistic studies. SP-A -/- mice were challenged in allergen models, and exogenous SP-A therapy was given after the last challenge. Eosinophils were visualized and quantitated in lung parenchyma by means of immunostaining. Significantly less SP-A (P = .002) was detected in samples from OAs compared with those from control subjects. A univariable regression model found SP-A levels were significantly negatively correlated with body mass index (r = -0.33, P = .014), whereas multivariable modeling demonstrated that the correlation depended both on asthma status (P = .017) and the interaction of asthma and body mass index (P = .008). Addition of exogenous TNF-α to mouse tracheal epithelial cells was sufficient to attenuate SP-A and eotaxin secretion. Allergen-challenged SP-A -/- mice that received SP-A therapy had significantly less tissue eosinophilia compared with mice receiving vehicle. SP-A functions as an important mediator in resolving tissue and lavage fluid eosinophilia in allergic mouse models. Decreased levels of SP-A in OAs, which could be due to increased local TNF-α levels, might lead to impaired eosinophil resolution and could contribute to the eosinophilic asthma phenotype. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. The blood-cerebrospinal fluid barrier: structure and functional significance.

    PubMed

    Johanson, Conrad E; Stopa, Edward G; McMillan, Paul N

    2011-01-01

    The choroid plexus (CP) of the blood-CSF barrier (BCSFB) displays fundamentally different properties than blood-brain barrier (BBB). With brisk blood flow (10 × brain) and highly permeable capillaries, the human CP provides the CNS with a high turnover rate of fluid (∼400,000 μL/day) containing micronutrients, peptides, and hormones for neuronal networks. Renal-like basement membranes in microvessel walls and underneath the epithelium filter large proteins such as ferritin and immunoglobulins. Type IV collagen (α3, α4, and α5) in the subepithelial basement membrane confers kidney-like permselectivity. As in the glomerulus, so also in CP, the basolateral membrane utrophin A and colocalized dystrophin impart structural stability, transmembrane signaling, and ion/water homeostasis. Extensive infoldings of the plasma-facing basal labyrinth together with lush microvilli at the CSF-facing membrane afford surface area, as great as that at BBB, for epithelial solute and water exchange. CSF formation occurs by basolateral carrier-mediated uptake of Na+, Cl-, and HCO3-, followed by apical release via ion channel conductance and osmotic flow of water through AQP1 channels. Transcellular epithelial active transport and secretion are energized and channeled via a highly dense organelle network of mitochondria, endoplasmic reticulum, and Golgi; bleb formation occurs at the CSF surface. Claudin-2 in tight junctions helps to modulate the lower electrical resistance and greater permeability in CP than at BBB. Still, ratio analyses of influx coefficients (Kin) for radiolabeled solutes indicate that paracellular diffusion of small nonelectrolytes (e.g., urea and mannitol) through tight junctions is restricted; molecular sieving is proportional to solute size. Protein/peptide movement across BCSFB is greatly limited, occurring by paracellular leaks through incomplete tight junctions and low-capacity transcellular pinocytosis/exocytosis. Steady-state concentration ratios, CSF/plasma, ranging from 0.003 for IgG to 0.80 for urea, provide insight on plasma solute penetrability, barrier permeability, and CSF sink action to clear substances from CNS.

  16. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner.

    PubMed

    Garcia-Arcos, Itsaso; Geraghty, Patrick; Baumlin, Nathalie; Campos, Michael; Dabo, Abdoulaye Jules; Jundi, Bakr; Cummins, Neville; Eden, Edward; Grosche, Astrid; Salathe, Matthias; Foronjy, Robert

    2016-12-01

    The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Combinatorial effects of quercetin and sex-steroids on fluid and electrolytes’ (Na+, Cl-, HCO3-) secretory mechanisms in the uterus of ovariectomised female Sprague-Dawley rats

    PubMed Central

    Shahzad, Huma; Giribabu, Nelli; Karim, Kamarulzaman; Kassim, Normadiah M.; Muniandy, Sekaran

    2017-01-01

    Dysregulation of uterine fluid environment could impair successful reproduction and this could be due to the effect of environmental estrogens. Therefore, in this study, effect of quercetin, an environmental estrogen on uterine fluid and electrolytes concentrations were investigated under sex-steroid influence. Ovariectomised adult female Sprague-Dawley rats were given 10, 50 or 100mg/kg/day quercetin subcutaneously with 17-β estradiol (E) for seven days or three days E, then three days E plus progesterone (P) (E+P) treatment. Uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations were determined by in-vivo perfusion. Following sacrifice, uteri were harvested and levels of the proteins of interest were identified by Western blotting and Realtime PCR. Distribution of these proteins in the uterus was observed by immunofluorescence. Levels of uterine cAMP were measured by enzyme-linked immunoassay (EIA). Administration of quercetin at increasing doses increased uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations, but to the levels lesser than that of E. In concordant, levels of CFTR, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP in the uterus increased following increased in the doses of quercetin. Co-administration of quercetin with E caused uterine fluid secretion rate, Na+, Cl- and HCO3- concentrations to decrease. In concordant, uterine CFTR, SLC26A6, SLC4A4, ENaC (α, β and γ), Na+/K+-ATPase, GPα/β, AC and cAMP decreased. Greatest effects were observed following co-administration of 10mg/kg/day quercetin with E. Co-administration of quercetin with E+P caused uterine fluid Na+ and HCO3- concentrations to increase but no changes in fluid secretion rate and Cl- concentration were observed. Co-administration of high dose quercetin (100 mg/kg/day) with E+P caused uterine CFTR, SLC26A6, AC, GPα/β and ENaC (α, β and γ) to increase. Quercetin-induced changes in the uterine fluid secretion rate and electrolytes concentrations could potentially affect the uterine reproductive functions under female sex-steroid influence. PMID:28253299

  18. Urban particulate matter increases human airway epithelial cell IL-1β secretion following scratch wounding and H1N1 influenza A exposure in vitro.

    PubMed

    Hirota, Jeremy A; Marchant, David J; Singhera, Gurpreet K; Moheimani, Fatemeh; Dorscheid, Delbert R; Carlsten, Christopher; Sin, Don; Knight, Darryl

    2015-01-01

    The airway epithelium represents the first line of defense against inhaled environmental insults including air pollution, allergens, and viruses. Epidemiological and experimental evidence has suggested a link between air pollution exposure and the symptoms associated with respiratory viral infections. We hypothesized that multiple insults integrated by the airway epithelium NLRP3 inflammasome would result in augmented IL-1β release and downstream cytokine production following respiratory virus exposure. We performed in vitro experiments with a human airway epithelial cell line (HBEC-6KT) that involved isolated or combination exposure to mechanical wounding, PM10, house dust mite, influenza A virus, and respiratory syncytial virus. We performed confocal microscopy to image the localization of PM10 within HBEC-6KT and ELISAs to measure soluble mediator production. Airway epithelial cells secrete IL-1β in a time-dependent fashion that is associated with internalization of PM10 particles. PM10 exposure primes human airway epithelial cells to subsequent models of cell damage and influenza A virus exposure. Prior PM10 exposure had no effect on IL-1β responses to RSV exposure. Finally we demonstrate that PM10-priming of human airway epithelial cell IL-1β and GM-CSF responses to influenza A exposure are sensitive to NLRP3 inflammasome inhibition. Our results suggest the NLRP3 inflammasome may contribute to exaggerated immune responses to influenza A virus following periods of poor air quality. Intervention strategies targeting the NLRP3 inflammasome in at risk individuals may restrict poor air quality priming of mucosal immune responses that result from subsequent viral exposures.

  19. Altered Morphology and Function of the Lacrimal Functional Unit in Protein Kinase Cα Knockout Mice

    PubMed Central

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J.

    2010-01-01

    Purpose. Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout (−/−) mice have impaired ocular surface–lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα−/− mice. Methods. In PKCα+/+ control mice and PKCα−/− mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Results. Compared with the PKCα+/+ mice, the PKCα−/− mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα−/− mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα+/+ mice. Conclusions. The PKCα−/− mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα−/− mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration. PMID:20505191

  20. Systematic Analysis of Cell-Type Differences in the Epithelial Secretome Reveals Insights into the Pathogenesis of RSV-Induced Lower Respiratory Tract Infections

    PubMed Central

    Zhao, Yingxin; Jamaluddin, Mohammad; Zhang, Yueqing; Sun, Hong; Ivanciuc, Teodora; Garofalo, Roberto P.; Brasier, Allan R.

    2017-01-01

    Lower respiratory tract infections (LRTIs) from Respiratory Syncytial Virus (RSV) are due, in part, to secreted signals from lower airway cells that modify immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea (hBECs) vs small airway bronchiolar cells (hSAECs). A workflow was established using telomerase- immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in both secreted proteins and nanoparticles (exosomes). Approximately one-third of secretome proteins are exosomal, with the remainder from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea (phBECs) vs bronchioles (phSAECs). 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate (FDR). Fifteen proteins unique to RSV-infected phBECs were regulated by epithelial-specific ets homology factor (EHF). 106 proteins unique to RSV-infected hSAECs were regulated by the transcription factor NFκB. In this latter group, we validated the differential expression of Chemokine (C-C Motif) Ligand 20 (CCL20)/macrophage-inducible protein (MIP)3α, thymic stromal lymphopoietin (TSLP) and chemokine (CC) ligand 3-like 1(CCL3-L1) because of their roles in Th2 polarization. CCL20/MIP3α was the most active mucin-inducing factor in the RSV-infected hSAEC secretome, and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses, and regional differences in epithelial secretome participating in RSV LRTI-induced airway remodeling. PMID:28258195

  1. Cholinergic regulation of epithelial ion transport in the mammalian intestine

    PubMed Central

    Hirota, C L; McKay, D M

    2006-01-01

    Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004

  2. Mucosal fluid glycoprotein DMBT1 suppresses twitching motility and virulence of the opportunistic pathogen Pseudomonas aeruginosa

    PubMed Central

    Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosa chemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect against P. aeruginosa infection. This study also advances our understanding of how mucosal fluids protect against infection, and suggests directions for novel biocompatible strategies to protect our surface epithelia against a major opportunistic pathogen. PMID:28489917

  3. Airway epithelial cell response to human metapneumovirus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, X.; Liu, T.; Spetch, L.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and typemore » I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.« less

  4. Adrenomedullin increases the short-circuit current in the rat prostate: Receptors, chloride channels, the effects of cAMP and calcium ions and implications on fluid secretion.

    PubMed

    Liao, S B; Cheung, K H; Cheung, M P L; Wong, P F; O, W S; Tang, F

    2014-05-01

    In this study, we have investigated the effects of adrenomedullin on chloride and fluid secretion in the rat prostate. The presence of adrenomedullin (ADM) in rat prostate was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with an enzyme-linked assay for ADM. The effects of ADM on fluid secretion were studied by short-circuit current technique in a whole mount preparation of the prostate in an Ussing chamber. The results indicated that the ADM level was higher in the ventral than the dorso-lateral prostate and the major molecular species was the active peptide. ADM increased the short-circuit current through both the cAMP- and calcium-activated chloride channels in the ventral lobe, but only through the calcium-activated channels in the dorso-lateral lobe. These stimulatory effects were blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37. We conclude that ADM may regulate prostatic fluid secretion through the chloride channels, which may affect the composition of the seminal plasma bathing the spermatozoa and hence fertility. © 2014 American Society of Andrology and European Academy of Andrology.

  5. Bioactive interleukin-1alpha is cytolytically released from Candida albicans-infected oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H; Villar, C Cunha

    2004-12-01

    Oral epithelial cells are primary targets of Candida albicans in the oropharynx and may regulate the inflammatory host response to this pathogen. This investigation studied the mechanisms underlying interleukin-1alpha (IL-1alpha) release by oral epithelial cells and the role of IL-1alpha in regulating the mucosal inflammatory response to C. albicans. Infected oral epithelial cells released processed IL-1alpha protein in culture supernatants. The IL-1alpha generated was stored intracellularly and was released upon cell lysis. This was further supported by the fact that different C. albicans strains induced variable IL-1alpha release, depending on their cytolytic activity. IL-1alpha from C. albicans-infected oral epithelial cells upregulated proinflammatory cytokine secretion (IL-8 and GM-CSF) in uninfected oral epithelial or stromal cells. Our studies suggest that production of IL-1alpha, IL-8 and GM-CSF may take place in the oral mucosa in response to lytic infection of epithelial cells with C. albicans. This process can act as an early innate immune surveillance system and may contribute to the clinicopathologic signs of infection in the oral mucosa.

  6. Ion pump sorting in polarized renal epithelial cells.

    PubMed

    Caplan, M J

    2001-08-01

    The plasma membranes of renal epithelial cells are divided into distinct apical and basolateral domains, which contain different inventories of ion transport proteins. Without this polarity vectorial ion and fluid transport would not be possible. Little is known of the signals and mechanisms that renal epithelial cells use to establish and maintain polarized distributions of their ion transport proteins. Analysis of ion pump sorting reveals that multiple complex signals participate in determining and regulating these proteins' subcellular localizations.

  7. Role of the Enteric Nervous System in the Fluid and Electrolyte Secretion of Rotavirus Diarrhea

    NASA Astrophysics Data System (ADS)

    Lundgren, Ove; Peregrin, Attila Timar; Persson, Kjell; Kordasti, Shirin; Uhnoo, Ingrid; Svensson, Lennart

    2000-01-01

    The mechanism underlying the intestinal fluid loss in rotavirus diarrhea, which often afflicts children in developing countries, is not known. One hypothesis is that the rotavirus evokes intestinal fluid and electrolyte secretion by activation of the nervous system in the intestinal wall, the enteric nervous system (ENS). Four different drugs that inhibit ENS functions were used to obtain experimental evidence for this hypothesis in mice in vitro and in vivo. The involvement of the ENS in rotavirus diarrhea indicates potential sites of action for drugs in the treatment of the disease.

  8. Development, validation and implementation of an in vitro model for the study of metabolic and immune function in normal and inflamed human colonic epithelium.

    PubMed

    Pedersen, Gitte

    2015-01-01

    Ulcerative colitis (UC) and Crohn's disease (CD), collectively referred to as inflammatory bowel disease (IBD), are chronic immune disorders affecting the gastrointestinal tract. The aetiology of IBD remains an enigma, but increasing evidence suggests that the development of IBD may be triggered by a disturbance in the balance between gut commensal bacteria and host response in the intestinal mucosa. It is now known that epithelial cells have the capacity to secrete and respond to a range of immunological mediators and this suggests that these cells play a prominent role in the pathogenesis of IBD. Current knowledge about the intestinal epithelium has mainly been obtained using models based on animal cells, transformed human intestinal cell lines and isolated cells from resected colonic bowel segments. Species difference, malignant origin and confounders related to surgery, obviously make these cell models however less applicable for patophysiological studies. Consequently, there was a clear need for models of representative intestinal epithelial cells that would allow functional and dynamic studies of the differentiated human colonic epithelium in vitro. The primary purpose of this thesis was to explore and validate the optimal conditions for establishing a model based on short-term cultures of human colonic epithelial cells obtained from endoscopical biopsies. The cell cultures were accordingly used to describe the interplay between proinflammatory cytokines and colonic epithelium, with focus on alterations in viability, butyrate metabolism and secretion of a chemokine and metalloproteinases (MMP). Finally, the model was used to characterize expression and activation of receptors like toll like receptor (TLR)9 and peroxisome activated proliferators (PPAR)- known to be important players in regulation of innate and adaptive immune responses in human colonic epithelium. The results showed that it is possible to establish short-term cultures of representative, viable human colonic epithelial cells from endoscopic mucosal biopsies of patients with IBD. Short-time isolation by EGTA/EDTA from colonic biopsies allowed establishment of small scale cultures of epithelial cells which were viable and metabolic active for up to 48 hours in vitro. The cell model preserved important cellular metabolic and immunological functions of the human colonic epithelium, including the ability to oxidate butyrate, detoxificate phenolic compounds and secrete the chemokine interleukin (IL)-8 in vitro. Tumour necrosis factor (TNF)-α and interferon (IFN)-γ are pro-inflammatory cytokines, which are present in increased amounts in inflamed colonic mucosa. The precise mechanisms of cytokine-mediated mucosal injury are unknown, but one might be that TNF-α and IFN-γ directly impair epithelial cell function similar to effects seen on distinct target cells in other autoimmune diseases. Using the model, both cytokines were found directly to impair the viability of colonic epithelial cells and to induce secretion of IL-8 in vitro. Interestingly, the cells from inflamed IBD mucosa were less sensitive to cytokine-induced damage, which suggests that an intrinsic defense mechanism is triggered in these cells, perhaps as a result of exposure to toxic luminal factors or high local cytokine levels in vivo. TNF-α and IFN-γ may also be involved in regulation of intestinal inflammation through stimulation of MMP expression and proteolytic activity. We found that colonic epithelial cells express a range of MMPs and moreover that expression of distinct MMPs is increased in cells from inflamed IBD mucosa. Using a functional peptide cleavage assay it was shown that epithelial cells secreted proteolytic active enzymes and that the functional MMP activity was increased in inflamed IBD mucosa. This suggests that colonic epithelial cells, like myofibroblasts and immune cells, may contribute to local intestinal mucosal damage, through secretion of active MMPs. Disturbance of recognition and discrimination of potentially harmful pathogens from commensals in the intestinal mucosa have increasingly been implicated in the pathogenesis of IBD. Our results revealed that colonic epithelial cells express TLR9, a key pattern recognition receptor. Interestingly, the differentiated epithelial cells, which have been exposed to the luminal bacterial flora in vivo, were unresponsive to TLR9 ligand stimulation, contrasting findings in the epithelial cell line HT-29 that is cultured continuously in bacteria free environment. These findings suggest, theoretically, that colonic epithelium may regulate immune responses to microbial antigens including commensal bacterial DNA through modulation of the TLR9 pathway. Currently, the results are in line with the emerging view, that the epithelium represents an important frontline cellular component of the innate immune system in the gut. PPARγ is a nuclear receptor involved in the regulation of lipid and carbonhydrate metabolism. Recent studies in rodent colitis models suggest that PPARγ also is involved in modulation of inflammatory processes in the colon. Using the model, we characterise expression and activity of PPARs in human colonic epithelium and, additionally, evaluated the functional significance of a possible imbalanced PPARγ regulation in relation to inflammation. Our experiments showed that colonic epithelial cells express PPARγ and furthermore that PPARγ signalling was impaired in inflamed UC epithelium. It was possible to restore PPARγ signalling in the cell cultures by stimulation with rosiglitazone (a synthetic PPARγ ligand) in vitro. Hence, these experiments prompted us to design a small controlled, clinical study exploring the possible stimulatory effects of rosiglitazone (a PPAR ligand) in vivo. Interestingly, it was found that topical application of rosiglitazone in patients with active distal UC reduced clinical activity and mucosal inflammation similar to the effects measured in patients treated with mesalazine enemas. Moreover, rectal application of rosiglitazone induced PPARγ signalling in the epithelium in vivo, supporting the view that activation of PPARγ may be a new potential therapeutic target in the treatment of UC. Overall, the in vitro model of representative human colonic epithelial cells has shown to be a useful technique for detailed studies of metabolic and immunological functions that are important for homeostasis of the colonic epithelium. Currently, the findings support the view that intestinal epithelial cells actively participate in immunological processes in the colonic mucosa. Additionally, the model seems to be applicable for generating and evaluating new therapeutic approaches from laboratory bench to bed line as illustrated by the PPARγ study. It is therefore probable, that studies in models of representative colonic epithelial cells, as the one described here, could contribute with important knowledge about the pathogenesis of human inflammatory colonic diseases also in the future.

  9. Green tea polyphenol epigallocatechin-3-gallate and cranberry proanthocyanidins act in synergy with cathelicidin (LL-37) to reduce the LPS-induced inflammatory response in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts.

    PubMed

    Lombardo Bedran, Telma Blanca; Palomari Spolidorio, Denise; Grenier, Daniel

    2015-06-01

    The human antimicrobial peptide cathelicidin (LL-37) possesses anti-inflammatory properties that may contribute to attenuating the inflammatory process associated with chronic periodontitis. Plant polyphenols, including those from cranberry and green tea, have been reported to reduce inflammatory cytokine secretion by host cells. In the present study, we hypothesized that A-type cranberry proanthocyanidins (AC-PACs) and green tea epigallocatechin-3-gallate (EGCG) act in synergy with LL-37 to reduce the secretion of inflammatory mediators by oral mucosal cells. A three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts treated with non-cytotoxic concentrations of AC-PACs (25 and 50 μg/ml), EGCG (1 and 5 μg/ml), and LL-37 (0.1 and 0.2 μM) individually and in combination (AC-PACs+LL-37 and EGCG+LL-37) were stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS). Multiplex ELISA assays were used to quantify the secretion of 54 host factors, including chemokines, cytokines, growth factors, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). LL-37, AC-PACs, and EGCG, individually or in combination, had no effect on the regulation of MMP and TIMP secretion but inhibited the secretion of several cytokines. AC-PACs and LL-37 acted in synergy to reduce the secretion of CXC-chemokine ligand 1 (GRO-α), granulocyte colony-stimulating factor (G-CSF), and interleukin-6 (IL-6), and had an additive effect on reducing the secretion of interleukin-8 (IL-8), interferon-γ inducible protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) in response to LPS stimulation. EGCG and LL-37 acted in synergy to reduce the secretion of GRO-α, G-CSF, IL-6, IL-8, and IP-10, and had an additive effect on MCP-1 secretion. The combination of LL-37 and natural polyphenols from cranberry and green tea acted in synergy to reduce the secretion of several cytokines by an LPS-stimulated 3D co-culture model of oral mucosal cells. Such combinations show promising results as potential adjunctive therapies for treating inflammatory periodontitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A mathematical model of the pancreatic duct cell generating high bicarbonate concentrations in pancreatic juice.

    PubMed

    Whitcomb, David C; Ermentrout, G Bard

    2004-08-01

    To develop a simple, physiologically based mathematical model of pancreatic duct cell secretion using experimentally derived parameters that generates pancreatic fluid bicarbonate concentrations of >140 mM after CFTR activation. A new mathematical model was developed simulating a duct cell within a proximal pancreatic duct and included a sodium-2-bicarbonate cotransporter (NBC) and sodium-potassium pump (NaK pump) on a chloride-impermeable basolateral membrane, CFTR on the luminal membrane with 0.2 to 1 bicarbonate to chloride permeability ratio. Chloride-bicarbonate antiporters (Cl/HCO3 AP) were added or subtracted from the basolateral (APb) and luminal (APl) membranes. The model was integrated over time using XPPAUT. This model predicts robust, NaK pump-dependent bicarbonate secretion with opening of the CFTR, generates and maintains pancreatic fluid secretion with bicarbonate concentrations >140 mM, and returns to basal levels with CFTR closure. Limiting CFTR permeability to bicarbonate, as seen in some CFTR mutations, markedly inhibited pancreatic bicarbonate and fluid secretion. A simple CFTR-dependent duct cell model can explain active, high-volume, high-concentration bicarbonate secretion in pancreatic juice that reproduces the experimental findings. This model may also provide insight into why CFTR mutations that predominantly affect bicarbonate permeability predispose to pancreatic dysfunction in humans.

  11. Residual oil fly ash induces cytotoxicity and mucin secretion by guinea pig tracheal epithelial cells via an oxidant-mediated mechanism.

    PubMed

    Jiang, N; Dreher, K L; Dye, J A; Li, Y; Richards, J H; Martin, L D; Adler, K B

    2000-03-15

    Inhalation of ambient air particulate matter (PM) is associated with pulmonary injury and inflammation. Using primary cultures of guinea pig tracheal epithelial (GPTE) cells as an in vitro model of airway epithelium, we examined effects of exposure to suspensions of six different emission and ambient air PM samples: residual oil fly ash (ROFA) from an electrical power plant; fly ash from a domestic oil burning furnace (DOFA); ambient air dust from St. Louis (STL), Ottawa (OT), and Washington, DC (WDC); and volcanic ash from the eruption of Mount Saint Helens (MSH) in 1980. Effects of these particulates on cell viability (assessed via LDH assay), secretion of mucin (measured by a monoclonal antibody-based ELISA), and steady-state mRNA levels of the mucin gene MUC2 were determined. ROFA was the most toxic of the dusts tested, as it significantly increased LDH release following a 24-h incubation with 50 microg/cm(2) ROFA. ROFA also enhanced MUC2 mRNA after 4-h exposure, and mucin secretion after 8 h. ROFA-induced mucin secretion and cytotoxicity were attenuated by the oxidant scavenger, dimethylthiourea (DMTU). ROFA exposure also depleted cells of glutathione (GSH). Relatedly, depletion of intracellular GSH by treatment of the cells with buthionine sulfoxamine (BSO) also provoked mucin secretion, as well as enhancing the secretory effect of ROFA when the two agents were added together. L-NMA, the nitric oxide synthase (NOS) inhibitor, did not affect ROFA-induced mucin secretion. Of the soluble transition metals in ROFA (nickel, iron, vanadium), only vanadium individually, or combinations of the metals containing vanadium, provoked secretion. The results suggest ROFA enhances mucin secretion and generates toxicity in vitro to airway epithelium via a mechanism(s) involving generation of oxidant stress, perhaps related to depletion of cellular antioxidant capacity. Deleterious effects of inhalation of ROFA in the respiratory tract in vivo may relate to these cellular responses. Vanadium, a component of ROFA, may be important in generating these reactions. Copyright 2000 Academic Press.

  12. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae.

    PubMed

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-03-26

    Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses.

  13. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice.

    PubMed

    Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R; Verkman, A S

    2014-07-01

    Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Screening of ∼150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ∼1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Sweating and Body Odor

    MedlinePlus

    ... This fluid is composed mainly of water and salt. Apocrine glands produce a milky fluid that most commonly is secreted when you're under emotional stress. This fluid is odorless until it combines with bacteria found normally on your skin. By Mayo Clinic ...

  15. Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold.

    PubMed

    Niknejad, Hassan; Deihim, Tina; Peirovi, Habibollah; Abolghasemi, Hassan

    2013-08-01

    Amniotic epithelial cells are a promising source for stem cell-based therapy through their potential capacity to differentiate into the cell lineages of all three germ layers. Long-term preservation is necessary to have a ready-to-use source of stem cells, when required. Reduced differentiation capability, decrease of viability and use of fetal bovine serum (FBS) are three drawbacks of clinical application of cryopreserved stem cells. In this study, we used human amniotic fluid instead of animal serum, and evaluated viability and multipotency of amniotic epithelial cells after cryopreservation in suspension and compared with those cryopreserved on their natural scaffold (in situ cryopreservation). There was no significant difference in viability of the cells cryopreserved in amniotic fluid and FBS. Also, the same results were achieved for expression of pluripotency marker OCT-4 when FBS was replaced by amniotic fluid in the samples with the same cryoprotectant. The cells cryopreserved in presence of scaffold had a higher level of viability compared to the cells cryopreserved in suspension. Although, the number of the cells expressed OCT-4 significantly decreased within cryopreservation in suspension, no decrease in expression of OCT-4 was observed when the cells cryopreserved with their natural scaffold. Upon culturing of post-thawed cells in specific lineage differentiating mediums, the markers of neuronal, hepatic, cardiomyocytic and pancreatic were found in differentiated cells. These results show that replacement of FBS by amniotic fluid and in situ cryopreservation of amniotic epithelial cells is an effective approach to overcome limitations related to long-term preservation including differentiation during cryopreservation and decrease of viability. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The calcium-sensing receptor regulates mammary gland parathyroid hormone–related protein production and calcium transport

    PubMed Central

    VanHouten, Joshua; Dann, Pamela; McGeoch, Grace; Brown, Edward M.; Krapcho, Karen; Neville, Margaret; Wysolmerski, John J.

    2004-01-01

    The transfer of calcium from mother to milk during lactation is poorly understood. In this report, we demonstrate that parathyroid hormone–related protein (PTHrP) production and calcium transport in mammary epithelial cells are regulated by extracellular calcium acting through the calcium-sensing receptor (CaR). The CaR becomes expressed on mammary epithelial cells at the transition from pregnancy to lactation. Increasing concentrations of calcium, neomycin, and a calcimimetic compound suppress PTHrP secretion by mammary epithelial cells in vitro, whereas in vivo, systemic hypocalcemia increases PTHrP production, an effect that can be prevented by treatment with a calcimimetic. Hypocalcemia also reduces overall milk production and calcium content, while increasing milk osmolality and protein concentrations. The changes in milk calcium content, milk osmolality, and milk protein concentration were mitigated by calcimimetic infusions. Finally, in a three-dimensional culture system that recapitulates the lactating alveolus, activation of the basolateral CaR increases transcellular calcium transport independent of its effect on PTHrP. We conclude that the lactating mammary gland can sense calcium and adjusts its secretion of calcium, PTHrP, and perhaps water in response to changes in extracellular calcium concentration. We believe this defines a homeostatic system that helps to match milk production to the availability of calcium. PMID:14966569

  17. Tubule-Derived Wnts Are Required for Fibroblast Activation and Kidney Fibrosis.

    PubMed

    Zhou, Dong; Fu, Haiyan; Zhang, Lu; Zhang, Ke; Min, Yali; Xiao, Liangxiang; Lin, Lin; Bastacky, Sheldon I; Liu, Youhua

    2017-08-01

    Cell-cell communication via Wnt ligands is necessary in regulating embryonic development and has been implicated in CKD. Because Wnt ligands are ubiquitously expressed, the exact cellular source of the Wnts involved in CKD remains undefined. To address this issue, we generated two conditional knockout mouse lines in which Wntless (Wls), a dedicated cargo receptor that is obligatory for Wnt secretion, was selectively ablated in tubular epithelial cells or interstitial fibroblasts. Blockade of Wnt secretion by genetic deletion of Wls in renal tubules markedly inhibited myofibroblast activation and reduced renal fibrosis after unilateral ureteral obstruction. This effect associated with decreased activation of β -catenin and downstream gene expression and preserved tubular epithelial integrity. In contrast, fibroblast-specific deletion of Wls exhibited little effect on the severity of renal fibrosis after obstructive or ischemia-reperfusion injury. In vitro , incubation of normal rat kidney fibroblasts with tubule-derived Wnts promoted fibroblast proliferation and activation. Furthermore, compared with kidney specimens from patients without CKD, biopsy specimens from patients with CKD also displayed increased expression of multiple Wnt proteins, predominantly in renal tubular epithelium. These results illustrate that tubule-derived Wnts have an essential role in promoting fibroblast activation and kidney fibrosis via epithelial-mesenchymal communication. Copyright © 2017 by the American Society of Nephrology.

  18. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    PubMed Central

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708

  19. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    PubMed Central

    Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia

    2013-01-01

    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714

  20. Per a 10 activates human derived epithelial cell line in a protease dependent manner via PAR-2.

    PubMed

    Kale, Sagar L; Arora, Naveen

    2015-04-01

    Protease activity of Per a 10 has been shown to modulate dendritic cells toward Th-2 polarization and to induce airway inflammation. To elucidate the role of serine protease activity of Per a 10 in inducing biochemical responses in epithelial cells. Per a 10 was inactivated by heat treatment (ΔPer a 10) or AEBSF (iPer a 10). A549 cells were exposed to either enzymatically active/inactive Per a 10. The supernatant was analyzed for the secretion of proinflammatory cytokines by ELISA. Ca(2+) mobilization was analyzed by flow cytometry. A PAR-2 derived synthetic peptide 28GTNRSSKGRSLIGKVDGTSHVTGKGVTC54 was incubated with Per a 10 and the resultant cleaved products were analyzed by LC-MS. PAR-2 activation was inhibited by PAR-2 cleavage inhibiting antibody. ΔPer a 10 was completely inactivated whereas iPer a 10 showed some residual activity. nPer a 10 having protease activity increased the secretion of IL-6, IL-8 and GMCSF from A549 in a dose and time dependent manner whereas iPer a 10 has reduced cytokine secretion. ΔPer a 10 and rPer a 10 were unable to activate the cells. nPer a 10 mobilized intracellular Ca(2+). nPer a 10 cleaved the PAR-2 derived peptide between arginine and serine residues (36R-S37) to expose PAR-2 ligand SLIGKV, as determined by LC-MS. Incubating with anti-PAR-2 cleavage antibody showed diminished cytokine secretion when treated with nPer a 10. Serine protease activity of Per a 10 activates A549 cells to secrete proinflammatory cytokines by PAR-2 activation and Ca(2+)mobilization and can be exploited therapeutically. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Reactive Oxygen Species Induce Antiviral Innate Immune Response through IFN-λ Regulation in Human Nasal Epithelial Cells

    PubMed Central

    Kim, Hyun Jik; Kim, Chang-Hoon; Ryu, Ji-Hwan; Kim, Min-Ji; Park, Chong Yoon; Lee, Jae Myun; Holtzman, Michael J.

    2013-01-01

    This study sought to explore the role of the IFN-related innate immune responses (IFN-β and IFN-λ) and of reactive oxygen species (ROS) after influenza A virus (IAV) infection for antiviral innate immune activity in normal human nasal epithelial (NHNE) cells that are highly exposed to IAV. Passage-2 NHNE cells were inoculated with the IAV WSN/33 for 1, 2, and 3 days to assess the capacity of IFN and the relationship between ROS generation and IFN-λ secretion for controlling IAV infection. Viral titers and IAV mRNA levels increased after infection. In concert with viral titers, we found that the generation of IFNs, such as IFN-β, IFN-λ1, and IFN-λ2/3, was induced after IAV infection until 3 days after infection. The induction of IFN-λ gene expression and protein secretion may be predominant after IAV infection. Similarly, we observed that intracellular ROS generation increased 60 minutes after IAV infection. Viral titers and mRNA levels of IAV were significantly higher in cases with scavenging ROS, in cases with an induced IFN-λ mRNA level, or where the secreted protein concentration of IFN-λ was attenuated after the suppression of ROS generation. Both mitochondrial and dual oxidase (Doux)2-generated ROS were correlated with IAV mRNA and viral titers. The inhibition of mitochondrial ROS generation and the knockdown of Duox2 gene expression highly increased IAV viral titers and decreased IFN-λ secretion. Our findings suggest that the production of ROS may be responsible for IFN-λ secretion to control IAV infection. Both mitochondria and Duox2 are possible sources of ROS generation, which is required to initiate an innate immune response in NHNE cells. PMID:23786562

  2. Acid-base relations in epithelium of turtle bladder: site of active step in acidification and role of metabolic CO2.

    PubMed

    Steinmetz, P R

    1969-07-01

    The acid-base relations across the two surfaces of the epithelium of the turtle bladder were examined. By means of the 5,5-dimethyl-2,4-oxazolidinedione (DMO) technique the intracellular OH(-) concentration was measured in the presence and absence of a transepithelial pH gradient. When both sides of the bladder were bathed with solutions free of exogenous CO(2) and bicarbonate at pH 7.41 ([OH(-)] = 239 nmoles/liter), the epithelial cells were alkaline, the mean intracellular [OH(-)] being 347nmoles/liter. This alkalinity of the cells was preserved in bladders that secreted H(+) against a gradient of over 2 pH units. In bathing solutions stirred with 4.85% CO(2) and buffered with 25 mM HCO(3) (-) at pH 7.41 the intracellular [OH(-)] was lower than in CO(2)-free solutions and close to the extracellular [OH(-)]. In the CO(2)-free system anaerobiosis caused increased alkalinity of the cells and inhibition of H(+) secretion presumably by decreased metabolic CO(2) production. Carbonic acid inhibitors reduced H(+) secretion, but had no significant effect on the alkalinity of the cells. An inactive analogue of acetazolamide had no effect on H(+) secretion. The results indicate that the active step in acidification is located near the mucosal surface of the epithelium and that the alkali formed within the epithelial cells moves passively into the serosal solution along an electro-chemical gradient. The inhibitory effect of certain sulfonamides on H(+) secretion by the bladder is directly correlated with their known carbonic anhydrase inhibitory activity, but not associated with a measurable change in the mean intracellular [OH(-)].

  3. Reduced IL-10 Production in Fetal Type II Epithelial Cells Exposed to Mechanical Stretch Is Mediated via Activation of IL-6-SOCS3 Signaling Pathway

    PubMed Central

    Hawwa, Renda L.; Huang, Zheping; Sharma, Surendra; Sanchez-Esteban, Juan

    2013-01-01

    An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury. PMID:23527226

  4. Reduced IL-10 production in fetal type II epithelial cells exposed to mechanical stretch is mediated via activation of IL-6-SOCS3 signaling pathway.

    PubMed

    Hokenson, Michael A; Wang, Yulian; Hawwa, Renda L; Huang, Zheping; Sharma, Surendra; Sanchez-Esteban, Juan

    2013-01-01

    An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.

  5. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    PubMed Central

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  6. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia

    PubMed Central

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-01-01

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na+-channel-mediated Na+ absorption and stimulation of Cl− secretion through CFTR and the Ca2+-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  7. EG-VEGF, BV8, and their receptor expression in human bronchi and their modification in cystic fibrosis: Impact of CFTR mutation (delF508).

    PubMed

    Chauvet, Sylvain; Traboulsi, Wael; Thevenon, Laura; Kouadri, Amal; Feige, Jean-Jacques; Camara, Boubou; Alfaidy, Nadia; Benharouga, Mohamed

    2015-08-01

    Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion. Copyright © 2015 the American Physiological Society.

  8. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction

    PubMed Central

    Namkung, Wan; Yao, Zhen; Finkbeiner, Walter E.; Verkman, A. S.

    2011-01-01

    TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca2+. By patch-clamp, N-aroylaminothiazole “activators” (Eact) strongly increased Cl− current at 0 Ca2+, whereas tetrazolylbenzamide “potentiators” (Fact) were not active at 0 Ca2+ but reduced the EC50 for Ca2+-dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (Eact) and potentiator (Fact) produced large and more sustained CaCC Cl− currents than general agonists of Ca2+ signaling, with EC50 3–6 μM and Cl− conductance comparable to that induced transiently by Ca2+-elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl− conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.—Namkung, W., Yao, Z., Finkbeiner, W. E., Verkman, A. S. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. PMID:21836025

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auger, Floriane; Gendron, Marie-Claude; Chamot, Christophe

    Numerous epidemiological studies support the contention that ambient air pollution particles can adversely affect human health. To explain the acute inflammatory process in airways exposed to particles, a number of in vitro studies have been performed on cells grown submerged on plastic and poorly differentiated, and on cell lines, the physiology of which is somewhat different from that of well-differentiated cells. In order to obtain results using a model system in which epithelial cells are similar to those of the human airway in vivo, apical membranes of well-differentiated human nasal epithelial (HNE) cells cultured in an air-liquid interface (ALI) weremore » exposed for 24 h to diesel exhaust particles (DEP) and Paris urban air particles (PM{sub 2.5}). DEP and PM{sub 2.5} (10-80 {mu}g/cm{sup 2}) stimulated both IL-8 and amphiregulin (ligand of EGFR) secretion exclusively towards the basal compartment. In contrast, there was no IL-1{beta} secretion and only weak non-reproducible secretion of TNF-{alpha}. IL-6 and GM-CSF were consistently stimulated towards the apical compartment and only when cells were exposed to PM{sub 2.5}. ICAM-1 protein expression on cell surfaces remained low after particle exposure, although it increased after TNF-{alpha} treatment. Internalization of particles, which is believed to initiate oxidative stress and proinflammatory cytokine expression, was restricted to small nanoparticles ({<=} 40 nm). Production of reactive oxygen species (ROS) was detected, and DEP were more efficient than PM{sub 2.5}. Collectively, our results suggest that airway epithelial cells exposed to particles augment the local inflammatory response in the lung but cannot alone initiate a systemic inflammatory response.« less

  10. Interleukin-1 stimulates zinc uptake by human thymic epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coto, J.A.; Hadden, J.W.

    1991-03-15

    Thymic epithelial cells (TEC) are known to secrete peptides which influence the differentiation and maturation of T-lymphocytes. These peptides include the thymic hormones thymulin, thymosin-{alpha}1, and thymopoietin. The biological activity of thymulin is dependent on the presence of zinc in an equimolar ratio. The authors have shown that both interleukin-1{alpha}(IL-1{alpha}) and interleukin-1{beta}(IL-1{beta}), which stimulate proliferation of TEC, stimulate the uptake of Zn-65 in-vitro independent of this proliferation. Mitomycin-C was used to inhibit the proliferation of TEC. Two other stimulators of proliferation of TEC, bovine pituitary extract (BPE) and epidermal growth factor (EGF), did not stimulate zinc uptake by the TECmore » independent of proliferation. They have also shown, utilizing in-situ hybridization, that IL-1 and zinc induce metallothionein(MT) mRNA expression in human thymic epithelial cells. The exact role of metallothionein is not clear, but it is thought to be involved in regulation of trace metal metabolism, especially in maintenance of zinc homeostasis. Their current hypothesis is that IL-1 stimulates uptake of zinc into the TEC, followed by its complexing with metallothionein. Zinc is then thought to be transferred from metallothionein to thymulin. Immunostaining, utilizing an antithymulin antibody and a fluoresceinated goat anti-rabbit second antibody, confirms the presence of thymulin in TEC and its dependence on zinc. Upon stimulation, thymulin is then secreted. Known stimulants for thymulin include progesterone, dexamethasone, estradiol, testosterone, and prolactin. None of these secretagogues increase zinc uptake, suggesting the priming of the zinc-thymulin complex is unrelated to the regulation of its secretion.« less

  11. Intestinal Enteroids Model Guanylate Cyclase C-Dependent Secretion Induced by Heat-Stable Enterotoxins.

    PubMed

    Pattison, Amanda M; Blomain, Erik S; Merlino, Dante J; Wang, Fang; Crissey, Mary Ann S; Kraft, Crystal L; Rappaport, Jeff A; Snook, Adam E; Lynch, John P; Waldman, Scott A

    2016-10-01

    Enterotoxigenic Escherichia coli (ETEC) causes ∼20% of the acute infectious diarrhea (AID) episodes worldwide, often by producing heat-stable enterotoxins (STs), which are peptides structurally homologous to paracrine hormones of the intestinal guanylate cyclase C (GUCY2C) receptor. While molecular mechanisms mediating ST-induced intestinal secretion have been defined, advancements in therapeutics have been hampered for decades by the paucity of disease models that integrate molecular and functional endpoints amenable to high-throughput screening. Here, we reveal that mouse and human intestinal enteroids in three-dimensional ex vivo cultures express the components of the GUCY2C secretory signaling axis. ST and its structural analog, linaclotide, an FDA-approved oral secretagog, induced fluid accumulation quantified simultaneously in scores of enteroid lumens, recapitulating ETEC-induced intestinal secretion. Enteroid secretion depended on canonical molecular signaling events responsible for ETEC-induced diarrhea, including cyclic GMP (cGMP) produced by GUCY2C, activation of cGMP-dependent protein kinase (PKG), and opening of the cystic fibrosis transmembrane conductance regulator (CFTR). Importantly, pharmacological inhibition of CFTR abrogated enteroid fluid secretion, providing proof of concept for the utility of this model to screen antidiarrheal agents. Intestinal enteroids offer a unique model, integrating the GUCY2C signaling axis and luminal fluid secretion, to explore the pathophysiology of, and develop platforms for, high-throughput drug screening to identify novel compounds to prevent and treat ETEC diarrheal disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Specialized Pro-resolving Mediators Regulate Alveolar Fluid Clearance during Acute Respiratory Distress Syndrome

    PubMed Central

    Wang, Qian; Yan, Song-Fan; Hao, Yu; Jin, Sheng-Wei

    2018-01-01

    Objective: Acute respiratory distress syndrome (ARDS) is an acute and lethal clinical syndrome that is characterized by the injury of alveolar epithelium, which impairs active fluid transport in the lung, and impedes the reabsorption of edema fluid from the alveolar space. This review aimed to discuss the role of pro-resolving mediators on the regulation of alveolar fluid clearance (AFC) in ARDS. Data Sources: Articles published up to September 2017 were selected from the PubMed, with the keywords of “alveolar fluid clearance” or “lung edema” or “acute lung injury” or “acute respiratory distress syndrome”, and “specialized pro-resolving mediators” or “lipoxin” or “resolvin” or “protectin” or “maresin” or “alveolar epithelial cells” or “aspirin-triggered lipid mediators” or “carbon monoxide and heme oxygenase” or “annexin A1”. Study Selection: We included all relevant articles published up to September 2017, with no limitation of study design. Results: Specialized pro-resolving mediators (SPMs), as the proinflammatory mediators, not only upregulated epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporins levels, but also improved Na,K-ATPase activity to promote AFC in ARDS. In addition to the direct effects on ion channels and pumps of the alveolar epithelium, the SPMs also inhibited the inflammatory cytokine expression and improved the alveolar epithelial cell repair to enhance the AFC in ARDS. Conclusions: The present review discusses a novel mechanism for pulmonary edema fluid reabsorption. SPMs might provide new opportunities to design “reabsorption-targeted” therapies with high degrees of precision in controlling ALI/ARDS. PMID:29664060

  13. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation.

    PubMed Central

    Bahrani, F K; Sansonetti, P J; Parsot, C

    1997-01-01

    The type III Mxi-Spa secretion machinery of Shigella flexneri is responsible for secretion of Ipa proteins, which are involved in the entry of bacteria into epithelial cells. Ipa proteins accumulate within bacteria growing in laboratory media, and their secretion is activated upon contact of bacteria with eukaryotic cells. In this study, we have identified a group of chemical compounds, including Congo red, Evans blue, and direct orange, which are able to induce secretion of Ipa proteins by bacteria suspended in phosphate-buffered saline. Parameters of kinetics of activation of Ipa secretion by Congo red were determined by measuring by enzyme-linked immunosorbent assay the amount of IpaC secreted and by investigating the increase in susceptibility of Ipa proteins to proteinase K degradation. Ipa secretion occurred at 37 degrees C, was obtained with 5 to 10 microM Congo red, and was complete within 30 min. In addition, activation of Ipa secretion by Congo red was observed with bacteria harvested throughout the exponential phase of growth but not with bacteria in the stationary phase. The interactions of Congo red and Congo red-related compounds with the Mxi-Spa secretion apparatus might be specific hydrophobic interactions similar to those involved in binding of Congo red to amyloid proteins. PMID:9316999

  14. Mayolenes: Labile defensive lipids from the glandular hairs of a caterpillar (Pieris rapae)

    PubMed Central

    Smedley, Scott R.; Schroeder, Frank C.; Weibel, Douglas B.; Meinwald, Jerrold; Lafleur, Katie A.; Renwick, J. Alan; Rutowski, Ronald; Eisner, Thomas

    2002-01-01

    Larvae of the European cabbage butterfly, Pieris rapae (Pieridae), are beset with glandular hairs, bearing droplets of a clear oily secretion at their tip. The fluid consists primarily of a series of chemically labile, unsaturated lipids, the mayolenes, which are derived from 11-hydroxylinolenic acid. In bioassays with the ant Crematogaster lineolata, the secretion was shown to be potently deterrent, indicating that the fluid plays a defensive role in nature. PMID:11997469

  15. Ultrastructure of the Intramandibular Gland of Workers and Queens of the Stingless Bee, Melipona quadrifasciata

    PubMed Central

    Da Cruz-Landim, Carminda; Gracioli-Vitti, Luciana F.; Abdalla, Fábio C.

    2011-01-01

    The intramandibular glands of workers and queens of Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae), at different ages and from different functional groups, were studied using light and transmission electron microscopy. The results demonstrated that these glands are composed of two types of secretory structures: 1.A hypertrophied epidermis on the dorsal side of the mandible that is an epithelial gland. 2. Free secretory cells filling the inner spaces of the appendices that constitute a unicellular gland. The epithelial gland is larger in the young (1-2-day-old workers), and the gland becomes involuted during the nurse worker stage. The unicellular glands of the workers posses some secretion during all of the studied phases, but secretory activity is more intensive in the foraging workers. Vesicles of secretion are absent in the unicellular glands of queens. These results demonstrate that these glands show functional adaptations in different castes corresponding to the functions of each caste. PMID:22220493

  16. Ultrastructure of the intramandibular gland of workers and queens of the stingless bee, Melipona quadrifasciata.

    PubMed

    Da Cruz-Landim, Carminda; Gracioli-Vitti, Luciana F; Abdalla, Fábio C

    2011-01-01

    The intramandibular glands of workers and queens of Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae), at different ages and from different functional groups, were studied using light and transmission electron microscopy. The results demonstrated that these glands are composed of two types of secretory structures: 1.A hypertrophied epidermis on the dorsal side of the mandible that is an epithelial gland. 2. Free secretory cells filling the inner spaces of the appendices that constitute a unicellular gland. The epithelial gland is larger in the young (1-2-day-old workers), and the gland becomes involuted during the nurse worker stage. The unicellular glands of the workers posses some secretion during all of the studied phases, but secretory activity is more intensive in the foraging workers. Vesicles of secretion are absent in the unicellular glands of queens. These results demonstrate that these glands show functional adaptations in different castes corresponding to the functions of each caste.

  17. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins.

    PubMed

    Montalbetti, Nicolas; Dalghi, Marianela G; Albrecht, Christiane; Hediger, Matthias A

    2014-03-01

    Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.

  18. Clonal populations of amniotic cells by dilution and direct plating: evidence for hidden diversity.

    PubMed

    Wilson, Patricia G; Devkota, Lorna; Payne, Tiffany; Crisp, Laddie; Winter, Allison; Wang, Zhan

    2012-01-01

    Fetal cells are widely considered a superior cell source for regenerative medicine; fetal cells show higher proliferative capacity and have undergone fewer replicative cycles that could generate spontaneous mutations. Fetal cells in amniotic fluid were among the first normal primary cells to be cultured ex vivo, but the undefined composition of amniotic fluid has hindered advance for regenerative applications. We first developed a highly efficient method to generate clonal populations by dilution of amniocentesis samples in media and direct plating without intervening refrigeration, centrifugation, or exposure of cells to the paracrine effects in mixed cell cultures. More than 40 clonal populations were recovered from 4 amniocentesis samples and representative clones were characterized by flow cytometry, conventional assays for differentiation potential, immunofluorescence imaging, and transcript analysis. The results revealed previously unreported diversity among stromal and epithelial cell types and identified unique cell types that could be lost or undetected in mixed cell populations. The differentiation potential of amniotic cells proved to be uncoupled from expression of definitive cell surface or cytoplasmic markers for stromal and epithelial cells. Evidence for diversity among stromal and epithelial cells in amniotic fluid bears on interpretations applied to molecular and functional tests of amniotic cell populations.

  19. An innate defense peptide BPIFA1/SPLUNC1 restricts influenza A virus infection.

    PubMed

    Akram, K M; Moyo, N A; Leeming, G H; Bingle, L; Jasim, S; Hussain, S; Schorlemmer, A; Kipar, A; Digard, P; Tripp, R A; Shohet, R V; Bingle, C D; Stewart, J P

    2018-01-01

    The airway epithelium secretes proteins that function in innate defense against infection. Bactericidal/permeability-increasing fold-containing family member A1 (BPIFA1) is secreted into airways and has a protective role during bacterial infections, but it is not known whether it also has an antiviral role. To determine a role in host defense against influenza A virus (IAV) infection and to find the underlying defense mechanism, we developed transgenic mouse models that are deficient in BPIFA1 and used these, in combination with in vitro three-dimensional mouse tracheal epithelial cell (mTEC) cultures, to investigate its antiviral properties. We show that BPIFA1 has a significant role in mucosal defense against IAV infection. BPIFA1 secretion was highly modulated after IAV infection. Mice deficient in BPIFA1 lost more weight after infection, supported a higher viral load and virus reached the peripheral lung earlier, indicative of a defect in the control of infection. Further analysis using mTEC cultures showed that BPIFA1-deficient cells bound more virus particles, displayed increased nuclear import of IAV ribonucleoprotein complexes, and supported higher levels of viral replication. Our results identify a critical role of BPIFA1 in the initial phase of infection by inhibiting the binding and entry of IAV into airway epithelial cells.

  20. Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta.

    PubMed

    Gerlach, Gary F; Wingert, Rebecca A

    2014-12-15

    The zebrafish pronephros provides an excellent in vivo system to study the mechanisms of vertebrate nephron development. When and how renal progenitors in the zebrafish embryo undergo tubulogenesis to form nephrons is poorly understood, but is known to involve a mesenchymal to epithelial transition (MET) and the acquisition of polarity. Here, we determined the precise timing of these events in pronephros tubulogenesis. As the ternary polarity complex is an essential regulator of epithelial cell polarity across tissues, we performed gene knockdown studies to assess the roles of the related factors atypical protein kinase C iota and zeta (prkcι, prkcζ). We found that prkcι and prkcζ serve partially redundant functions to establish pronephros tubule epithelium polarity. Further, the loss of prkcι or the combined knockdown of prkcι/ζ disrupted proximal tubule morphogenesis and podocyte migration due to cardiac defects that prevented normal fluid flow to the kidney. Surprisingly, tubule cells in prkcι/ζ morphants displayed ectopic expression of the transcription factor pax2a and the podocyte-associated genes wt1a, wt1b, and podxl, suggesting that prkcι/ζ are needed to maintain renal epithelial identity. Knockdown of genes essential for cardiac contractility and vascular flow to the kidney, such as tnnt2a, or elimination of pronephros fluid output through knockdown of the intraflagellar transport gene ift88, was not associated with ectopic pronephros gene expression, thus suggesting a unique role for prkcι/ζ in maintaining tubule epithelial identity separate from the consequence of disruptions to renal fluid flow. Interestingly, knockdown of pax2a, but not wt1a, was sufficient to rescue ectopic tubule gene expression in prkcι/ζ morphants. These data suggest a model in which the redundant activities of prkcι and prkcζ are essential to establish tubule epithelial polarity and also serve to maintain proper epithelial cell type identity in the tubule by inhibiting pax2a expression. These studies provide a valuable foundation for further analysis of MET during nephrogenesis, and have implications for understanding the pathways that affect nephron epithelial cells during kidney disease and regeneration. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Enhancing the Biological Relevance of Secretome-Based Proteomics by Linking Tumor Cell Proliferation and Protein Secretion.

    PubMed

    Gregori, Josep; Méndez, Olga; Katsila, Theodora; Pujals, Mireia; Salvans, Cándida; Villarreal, Laura; Arribas, Joaquin; Tabernero, Josep; Sánchez, Alex; Villanueva, Josep

    2014-07-15

    Secretome profiling has become a methodology of choice for the identification of tumor biomarkers. We hypothesized that due to the dynamic nature of secretomes cellular perturbations could affect their composition but also change the global amount of protein secreted per cell. We confirmed our hypothesis by measuring the levels of secreted proteins taking into account the amount of proteome produced per cell. Then, we established a correlation between cell proliferation and protein secretion that explained the observed changes in global protein secretion. Next, we implemented a normalization correcting the statistical results of secretome studies by the global protein secretion of cells into a generalized linear model (GLM). The application of the normalization to two biological perturbations on tumor cells resulted in drastic changes in the list of statistically significant proteins. Furthermore, we found that known epithelial-to-mesenchymal transition (EMT) effectors were only statistically significant when the normalization was applied. Therefore, the normalization proposed here increases the sensitivity of statistical tests by increasing the number of true-positives. From an oncology perspective, the correlation between protein secretion and cellular proliferation suggests that slow-growing tumors could have high-protein secretion rates and consequently contribute strongly to tumor paracrine signaling.

  2. Application of FTA technology to extraction of sperm DNA from mixed body fluids containing semen.

    PubMed

    Fujita, Yoshihiko; Kubo, Shin-ichi

    2006-01-01

    FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. In this study, we report a rapid and simple method of extracting DNA from sperm when body fluids mixed with semen were collected using FTA cards. After proteinase K digestion of the sperm and body fluid mixture, the washed pellet suspension as the sperm fraction and the concentrated supernatant as the epithelial cell fraction were respectively applied to FTA cards containing DTT. The FTA cards were dried, then directly added to a polymerase chain reaction (PCR) mix and processed by PCR. The time required from separation of the mixed fluid into sperm and epithelial origin DNA extractions was only about 2.5-3h. Furthermore, the procedure was extremely simple. It is considered that our designed DNA extraction procedure using an FTA card is available for application to routine work.

  3. Epithelial propionyl‐ and butyrylcholine as novel regulators of colonic ion transport

    PubMed Central

    Moreno, Sarah; Gerbig, Stefanie; Schulz, Sabine; Spengler, Bernhard; Bader, Sandra

    2016-01-01

    Abstract Background and Purpose The colonic surface epithelium produces acetylcholine, released after the binding of propionate to GPCRs for this short‐chain fatty acid (SCFA). This epithelial acetylcholine then induces anion secretion via stimulation of acetylcholine receptors. The key enzyme responsible for acetylcholine synthesis, choline acetyltransferase, is known to be unselective as regards the fatty acid used for esterification of choline. As the colonic epithelium is permanently exposed to high concentrations of different SCFAs produced by bacterial fermentation, we investigated whether choline esters other than acetylcholine, propionylcholine and butyrylcholine, are produced by the colonic epithelium, too, and whether these ‘atypical’ esters are able to stimulate the acetylcholine receptors involved in the regulation of colonic ion transport. Experimental Approach Desorption electrospray ionization mass spectroscopy (DESI‐MS), Ussing chamber and Ca2+‐imaging experiments were performed on rat distal colon. Key Results DESI‐MS analyses revealed the production of acetylcholine, propionylcholine and butyrylcholine in the surface epithelium. Relative expression rates were 2–3% in comparison with acetylcholine. In Ussing chamber experiments, both atypical choline esters caused a concentration‐dependent increase in short‐circuit current, that is, stimulated anion secretion. Inhibitor experiments in the absence and presence of the submucosal plexus revealed the involvement of neuronal and epithelial acetylcholine receptors. While butyrylcholine obviously stimulated both nicotinic and muscarinic receptors, propionylcholine predominantly acted on muscarinic receptors. Conclusions and Implications These results suggest a novel pathway for communication between intestinal microbes producing SCFA and the host via modification of epithelial production of choline esters involved in the paracrine regulation of the colonic epithelium. PMID:27423041

  4. Arsenic alters transcriptional responses to Pseudomonas aeruginosa infection and decreases antimicrobial defense of human airway epithelial cells.

    PubMed

    Goodale, Britton C; Rayack, Erica J; Stanton, Bruce A

    2017-09-15

    Arsenic contamination of drinking water and food threatens the health of hundreds of millions of people worldwide by increasing the risk of numerous diseases. Arsenic exposure has been associated with infectious lung disease in epidemiological studies, but it is not yet understood how ingestion of low levels of arsenic increases susceptibility to bacterial infection. Accordingly, the goal of this study was to examine the effect of arsenic on gene expression in primary human bronchial epithelial (HBE) cells and to determine if arsenic altered epithelial cell responses to Pseudomonas aeruginosa, an opportunistic pathogen. Bronchial epithelial cells line the airway surface, providing a physical barrier and serving critical roles in antimicrobial defense and signaling to professional immune cells. We used RNA-seq to define the transcriptional response of HBE cells to Pseudomonas aeruginosa, and investigated how arsenic affected HBE gene networks in the presence and absence of the bacterial challenge. Environmentally relevant levels of arsenic significantly changed the expression of genes involved in cellular redox homeostasis and host defense to bacterial infection, and decreased genes that code for secreted antimicrobial factors such as lysozyme. Using pathway analysis, we identified Sox4 and Nrf2-regulated gene networks that are predicted to mediate the arsenic-induced decrease in lysozyme secretion. In addition, we demonstrated that arsenic decreased lysozyme in the airway surface liquid, resulting in reduced lysis of Microccocus luteus. Thus, arsenic alters the expression of genes and proteins in innate host defense pathways, thereby decreasing the ability of the lung epithelium to fight bacterial infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture.

    PubMed

    Gangalum, Rajendra K; Bhat, Ankur M; Kohan, Sirus A; Bhat, Suraj P

    2016-06-17

    Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. INVESTIGATIONS ON THE OCCURRENCE OF Rh SUBSTANCES IN AMNIOTIC FLUID

    PubMed Central

    Witebsky, Ernest; Mohn, James F.

    1945-01-01

    1. Rh substances are found in amniotic fluid. Not all anti-Rh sera seem to be suitable for the detection of Rh substances in amniotic fluid. Careful selection of Rh antisera, as well as quantitative considerations, determine success or failure of their demonstration. 2. The baby's Rh type and not the mother's determines the occurrence of Rh substances in amniotic fluid. 3. There are Rh secretors and Rh non-secretors. At least four out of five individuals are secretors. 4. The secretion of Rh substance into the amniotic fluid would seem to be entirely independent of the secretion of the blood group specific substances. 5. The majority of Rh-positive amniotic fluids seem to contain both Rh1 and Rh2 substances. However, in certain instances fluids belonging to the pure Rh1 type or pure Rh2 type were found. 6. Three cases of erythroblastosis were described. All three came from Rh-negative mothers with Rh-positive babies. The amniotic fluids of all three failed to reveal the presence of Rh substances. PMID:19871489

  7. Markers of Oxidative Stress and Inflammation in Ascites and Plasma in Patients with Platinum-Sensitive, Platinum-Resistant, and Platinum-Refractory Epithelial Ovarian Cancer.

    PubMed

    Cantón-Romero, Juan Carlos; Miranda-Díaz, Alejandra Guillermina; Bañuelos-Ramírez, Jose Luis; Carrillo-Ibarra, Sandra; Sifuentes-Franco, Sonia; Castellanos-González, José Alberto; Rodríguez-Carrizalez, Adolfo Daniel

    2017-01-01

    Diverse proinflammatory biomarkers and oxidative stress are strongly associated with advanced epithelial ovarian cancer (EOC). Objective . To determine the behavior of markers of oxidative stress and inflammation in plasma and ascites fluid in patients with platinum-sensitive, platinum-resistant, and platinum-refractory EOC. Methods . A prospective cohort study. The colorimetric method was used to determine levels of the markers 8-isoprostanes (8-IP), lipid peroxidation products (LPO), and total antioxidant capacity (TAC) in plasma and ascites fluid; and with ELISA, the levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF- α ) were determined in patients with EOC. Results . In ascites fluid, a significant increase in 8-IP versus baseline plasma levels was found ( p = 0.002). There was an important leakage of the TAC levels in ascites fluid versus baseline plasma levels ( p < 0.001). The IL-6 was elevated in ascites fluid versus baseline plasma levels ( p = 0.003), and there were diminished levels of TNF- α in ascites fluid versus baseline plasma levels ( p = 0.001). Discussion . We hypothesize that the ascites fluid influences the behavior and dissemination of the tumor. Deregulation between oxidants, antioxidants, and the proinflammatory cytokines was found to vary among platinum-sensitive, platinum-resistant, and platinum-refractory patients.

  8. Putting on the brakes: Bacterial impediment of wound healing

    PubMed Central

    Brothers, Kimberly M.; Stella, Nicholas A.; Hunt, Kristin M.; Romanowski, Eric G.; Liu, Xinyu; Klarlund, Jes K.; Shanks, Robert M. Q.

    2015-01-01

    The epithelium provides a crucial barrier to infection, and its integrity requires efficient wound healing. Bacterial cells and secretomes from a subset of tested species of bacteria inhibited human and porcine corneal epithelial cell migration in vitro and ex vivo. Secretomes from 95% of Serratia marcescens, 71% of Pseudomonas aeruginosa, 29% of Staphylococcus aureus strains, and other bacterial species inhibited epithelial cell migration. Migration of human foreskin fibroblasts was also inhibited by S. marcescens secretomes indicating that the effect is not cornea specific. Transposon mutagenesis implicated lipopolysaccharide (LPS) core biosynthetic genes as being required to inhibit corneal epithelial cell migration. LPS depletion of S. marcescens secretomes with polymyxin B agarose rendered secretomes unable to inhibit epithelial cell migration. Purified LPS from S. marcescens, but not from Escherichia coli or S. marcescens strains with mutations in the waaG and waaC genes, inhibited epithelial cell migration in vitro and wound healing ex vivo. Together these data suggest that S. marcescens LPS is sufficient for inhibition of epithelial wound healing. This study presents a novel host-pathogen interaction with implications for infections where bacteria impact wound healing and provides evidence that secreted LPS is a key factor in the inhibitory mechanism. PMID:26365869

  9. Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development

    PubMed Central

    Yin, Yongjun; Wang, Fen; Ornitz, David M.

    2011-01-01

    Fibroblast growth factor (FGF) 9 is a secreted signaling molecule that is expressed in lung mesothelium and epithelium and is required for lung development. Embryos lacking FGF9 show mesenchymal hypoplasia, decreased epithelial branching and, by the end of gestation, hypoplastic lungs that cannot support life. Mesenchymal FGF signaling interacts with β-catenin-mediated WNT signaling in a feed-forward loop that functions to sustain mesenchymal FGF responsiveness and mesenchymal WNT/β-catenin signaling. During pseudoglandular stages of lung development, Wnt2a and Wnt7b are the canonical WNT ligands that activate mesenchymal WNT/β-catenin signaling, whereas FGF9 is the only known ligand that signals to mesenchymal FGF receptors (FGFRs). Here, we demonstrate that mesothelial- and epithelial-derived FGF9, mesenchymal Wnt2a and epithelial Wnt7b have unique functions in lung development in mouse. Mesothelial FGF9 and mesenchymal WNT2A are principally responsible for maintaining mesenchymal FGF-WNT/β-catenin signaling, whereas epithelial FGF9 primarily affects epithelial branching. We show that FGF signaling is primarily responsible for regulating mesenchymal proliferation, whereas β-catenin signaling is a required permissive factor for mesenchymal FGF signaling. PMID:21750028

  10. Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kalabis, Jiri; Rustgi, Anil K.; Cucinotta, Francis A.; Huff, Janice L.

    2010-01-01

    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using low LET radiation showed a dose-dependent increase in migration of epithelial cells when exposed to conditioned media from irradiated vs. non-irradiated fibroblasts. We also observed enhanced invasion through a basement membrane simulant. To identify chemotactic proteins secreted by irradiated stromal fibroblasts, we used antibody capture cytokine arrays and have identified several proteins as candidates. Increased secretion of these factors by irradiated fibroblasts was confirmed using ELISA. We are currently analyzing the contribution of these individual factors on epithelial migration and invasion, as well as their influence on cell survival and DNA repair. Studies using high-LET radiation will help determine radiation quality effects on these processes. These results should further our understanding of the mechanisms by which radiation impacts the tissue microenvironment and how it influences cancer development processes.

  11. Arachnids Secrete a Fluid over Their Adhesive Pads

    PubMed Central

    Peattie, Anne M.; Dirks, Jan-Henning; Henriques, Sérgio; Federle, Walter

    2011-01-01

    Background Many arachnids possess adhesive pads on their feet that help them climb smooth surfaces and capture prey. Spider and gecko adhesives have converged on a branched, hairy structure, which theoretically allows them to adhere solely by dry (solid-solid) intermolecular interactions. Indeed, the consensus in the literature is that spiders and their smooth-padded relatives, the solifugids, adhere without the aid of a secretion. Methodology and Principal Findings We investigated the adhesive contact zone of living spiders, solifugids and mites using interference reflection microscopy, which allows the detection of thin liquid films. Like insects, all the arachnids we studied left behind hydrophobic fluid footprints on glass (mean refractive index: 1.48–1.50; contact angle: 3.7–11.2°). Fluid was not always secreted continuously, suggesting that pads can function in both wet and dry modes. We measured the attachment forces of single adhesive setae from tarantulas (Grammostola rosea) by attaching them to a bending beam with a known spring constant and filming the resulting deflection. Individual spider setae showed a lower static friction at rest (26%±2.8 SE of the peak friction) than single gecko setae (Thecadactylus rapicauda; 96%±1.7 SE). This may be explained by the fact that spider setae continued to release fluid after isolation from the animal, lubricating the contact zone. Significance This finding implies that tarsal secretions occur within all major groups of terrestrial arthropods with adhesive pads. The presence of liquid in an adhesive contact zone has important consequences for attachment performance, improving adhesion to rough surfaces and introducing rate-dependent effects. Our results leave geckos and anoles as the only known representatives of truly dry adhesive pads in nature. Engineers seeking biological inspiration for synthetic adhesives should consider whether model species with fluid secretions are appropriate to their design goals. PMID:21637774

  12. Resealable, optically accessible, PDMS-free fluidic platform for ex vivo interrogation of pancreatic islets.

    PubMed

    Lenguito, Giovanni; Chaimov, Deborah; Weitz, Jonathan R; Rodriguez-Diaz, Rayner; Rawal, Siddarth A K; Tamayo-Garcia, Alejandro; Caicedo, Alejandro; Stabler, Cherie L; Buchwald, Peter; Agarwal, Ashutosh

    2017-02-28

    We report the design and fabrication of a robust fluidic platform built out of inert plastic materials and micromachined features that promote optimized convective fluid transport. The platform is tested for perfusion interrogation of rodent and human pancreatic islets, dynamic secretion of hormones, concomitant live-cell imaging, and optogenetic stimulation of genetically engineered islets. A coupled quantitative fluid dynamics computational model of glucose stimulated insulin secretion and fluid dynamics was first utilized to design device geometries that are optimal for complete perfusion of three-dimensional islets, effective collection of secreted insulin, and minimization of system volumes and associated delays. Fluidic devices were then fabricated through rapid prototyping techniques, such as micromilling and laser engraving, as two interlocking parts from materials that are non-absorbent and inert. Finally, the assembly was tested for performance using both rodent and human islets with multiple assays conducted in parallel, such as dynamic perfusion, staining and optogenetics on standard microscopes, as well as for integration with commercial perfusion machines. The optimized design of convective fluid flows, use of bio-inert and non-absorbent materials, reversible assembly, manual access for loading and unloading of islets, and straightforward integration with commercial imaging and fluid handling systems proved to be critical for perfusion assay, and particularly suited for time-resolved optogenetics studies.

  13. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    PubMed Central

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Martina; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-01-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit. PMID:25996248

  14. Evaluation of intra- and extra-epithelial secretory IgA in chlamydial infections

    PubMed Central

    Armitage, Charles W; O’Meara, Connor P; Harvie, Marina C G; Timms, Peter; Wijburg, Odilia L; Beagley, Kenneth W

    2014-01-01

    Immunoglobulin A is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intra-epithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant secretory IgA (SIgA) we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra- and intra-epithelial stages of infection. We developed an in vitro model using polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model using pIgR−/− mice. Secretory IgA targeting the extra-epithelial chlamydial antigen, the major outer membrane protein, significantly reduced infection in vitro by 24% and in vivo by 44%. Conversely, pIgR-mediated delivery of IgA targeting the intra-epithelial inclusion membrane protein A bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intra-epithelial IgA targeting the secreted protease Chlamydia protease-like activity factor also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra-epithelial, but not intra-epithelial, chlamydial antigens for protection against a genital tract infection. PMID:24827556

  15. Virus present in the reproductive tract of asymptomatic drones of honey bee (Apis mellifera l.), and possible infection of queen during mating.

    PubMed

    Da Cruz-Landim, Carminda; Roat, Thaisa C; Fernadez, Fernanda C

    2012-07-01

    Virus particles and viral inclusions were detected by transmission electron microscopy examination of sections of the seminal vesicles and mucus gland of asymptomatic young drones from colonies of Apis mellifera lightly infested by Varroa mite. In the mucus gland the infection was found in the muscular sheath and epithelium, while in the seminal vesicle in cells of the outer serosa. Isolated viral particles were also observed in the hemolymph occupying the intercellular spaces of the muscular sheath fibers. In the muscle the virus appeared as polygonal crystalloid inclusions, while in the epithelium mainly inside cytoplasmic vesicles. The infected cells apparently are not damaged. The virus particles are present in the hemolymph and forming more mature structures, as crystalloids, in the muscle. This suggests that the virus is liberated in the body fluid and infects the tissues penetrating the cells through endocytosis. The presence of virus in mucus gland epithelial vesicles raise the possibility of its transference to the gland secretion and therefore, to the semen. Copyright © 2012 Wiley Periodicals, Inc.

  16. Lubiprostone for chronic idiopathic constipation and irritable bowel syndrome with constipation.

    PubMed

    Saad, Richard; Chey, William D

    2008-08-01

    Lubiprostone, a locally acting highly selective type-2 chloride channel activator, has been US FDA approved since January 2006 for the treatment of adults with chronic idiopathic constipation and FDA approved since April 2008 for the treatment of woman aged 18 years or older suffering from irritable bowel syndrome (IBS) with constipation. Through activation of the type-2 chloride channels located on the luminal side of intestinal epithelial cells, it promotes fluid secretion, increasing the liquid content of stool and accelerating small bowel as well as colonic transit. Lubiprostone has demonstrated efficacy with respect to increasing weekly spontaneous bowel movements and improving stool consistency, straining and constipation severity, both in short- and long-term studies. It has also demonstrated efficacy in the treatment of IBS with constipation, with beneficial effects on global symptoms, abdominal pain, constipation-related symptoms and overall quality of life. There is no evidence of a rebound in constipation or IBS symptoms following cessation of lubiprostone. In general, lubiprostone is well tolerated, with the most common side effects including nausea, headache and diarrhea.

  17. Droplet-based microfluidics platform for measurement of rapid erythrocyte water transport

    PubMed Central

    Jin, Byung-Ju; Esteva-Font, Cristina; Verkman, A.S.

    2015-01-01

    Cell membrane water permeability is an important determinant of epithelial fluid secretion, tissue swelling, angiogenesis, tumor spread and other biological processes. Cellular water channels, the aquaporins, are important drug targets. Water permeability is generally measured from the kinetics of cell volume change in response to an osmotic gradient. Here, we developed a microfluidics platform in which cells expressing a cytoplasmic, volume-sensing fluorescent dye are rapidly subjected to an osmotic gradient by solution mixing inside a ~ 0.1 nL droplet surrounded by oil. Solution mixing time was < 10 ms. Osmotic water permeability was deduced from a single, time-integrated fluorescence image of an observation area in which time after mixing is determined by spatial position. Water permeability was accurately measured in aquaporin-expressing erythrocytes with half-times for osmotic equilibration down to < 50 ms. Compared with conventional water permeability measurements using costly stopped-flow instrumentation, the microfluidics platform here utilizes sub-microliter blood sample volume, does not suffer from mixing artifact, and replaces challenging kinetic measurements by a single image capture using a standard laboratory fluorescence microscope. PMID:26159099

  18. Friend or foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer

    PubMed Central

    Chen, Shaohua; Zhang, Daohai

    2015-01-01

    The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer. PMID:25709888

  19. Natural history of JSRV in sheep.

    PubMed

    Sharp, J M; DeMartini, J C

    2003-01-01

    Ovine pulmonary adenocarcinoma (OPA) is a contagious lung tumour of sheep and, rarely, goats that arises from two types of secretory epithelial cell that retain their luxury function of surfactant synthesis and secretion. It is classified as a low-grade adenocarcinoma and is viewed as a good model for epithelial neoplasia because of its morphological resemblance to the human lung tumour, bronchioloalveolar adenocarcinoma. OPA is present in most of the sheep rearing areas of the globe and, in affected flocks, tumours are present in a high proportion of sheep. OPA is associated with the ovine retrovirus, jaagsiekte sheep retrovirus (JSRV), and is transmissible only with inocula that contain JSRV. All sheep contain JSRV-related endogenous viruses, but JSRV is an exogenous virus that is associated exclusively with OPA. JSRV is detected consistently in the lung fluid, tumour and lymphoid tissues of sheep affected by both natural and experimental OPA or unaffected in-contact flockmates and never in sheep from unaffected flocks with no history of the tumour. JSRV replicates principally in the epithelial tumour cells, but also establishes a disseminated infection of several lymphoid cell types, including peripheral blood leukocytes (PBLs). Longitudinal studies in flocks with endemic OPA have revealed JSRV in PBLs before the onset of clinical OPA and even in the absence of discernible lung tumour. The prevalence of JSRV infection is 40%-80%, although only 30% of sheep appear to develop OPA lesions. A unique feature of OPA is the absence of a specific humoral immune response to JSRV, despite the highly productive infection in the lungs and the disseminated lymphoid infection. This feature is associated with reduced responsiveness to some mitogens, although the phenotypic profile of the peripheral blood remains unaltered. The reduced response is an early and sustained event during infection and may indicate that the failure of infected sheep to produce specific antibodies to JSRV is a direct consequence of infection.

  20. The enteric nervous system modulates mammalian duodenal mucosal bicarbonate secretion.

    PubMed

    Hogan, D L; Yao, B; Steinbach, J H; Isenberg, J I

    1993-08-01

    Interaction of the enteric nerves in regulating mammalian duodenal mucosal bicarbonate secretion is not well understood. The purpose of the present experiments was to evaluate the role of the enteric nervous system on bicarbonate secretion from rabbit duodenal mucosa in vitro. Proximal duodenum from male New Zealand White rabbits was stripped of seromuscular layers, mounted in Ussing chambers, and studied under short-circuited conditions. Effects of electrical field stimulation, vasoactive intestinal polypeptide (VIP), carbachol, prostaglandin E2 (PGE2), dibutyryl-cyclic adenosine monophosphate (db-cAMP), and the neurotoxin tetrodotoxin (TTX) and muscarinic blockade by atropine were studied. Electrical field stimulation significantly (P < 0.01) stimulated bicarbonate secretion, short-circuit current (Isc), and electrical potential difference (PD) that was sensitive to both TTX and atropine. VIP-stimulated bicarbonate secretion was significantly inhibited by TTX (-73%), yet Isc and PD remained unchanged. Atropine decreased VIP-induced bicarbonate secretion (-69%) and Isc (-43%). Carbachol-stimulated bicarbonate secretion, Isc, and PD were abolished by atropine, whereas TTX was without affect. Neither TTX nor atropine had a significant effect on PGE2 or db-cAMP-stimulated bicarbonate secretion. These results suggest that (1) enteric nerve stimulation activates an acetylcholine receptor that in turn stimulates duodenal epithelial bicarbonate secretion; (2) VIP stimulates bicarbonate secretion, in large part, via the enteric nervous system; and (3) PGE2 and cAMP stimulate bicarbonate secretion independent of the enteric nervous system.

  1. Inflammation in dry eye.

    PubMed

    Stern, Michael E; Pflugfelder, Stephen C

    2004-04-01

    Dry eye is a condition of altered tear composition that results from a diseased or dysfunctional lacrimal functional unit. Evidence suggests that inflammation causes structural alterations and/or functional paralysis of the tear-secreting glands. Changes in tear composition resulting from lacrimal dysfunction, increased evaporation and/or poor clearance have pro-inflammatory effects on the ocular surface. This inflammation is responsible in part for the irritation symptoms, ocular surface epithelial disease, and altered corneal epithelial barrier function in dry eye. Anti-inflammatory therapies for dry eye target one or more of the inflammatory mediators/pathways that have been identified in dry eye.

  2. Unicuspid and bicuspid tooth crown formation in squamates.

    PubMed

    Handrigan, Gregory R; Richman, Joy M

    2011-12-15

    The molecular and developmental factors that regulate tooth morphogenesis in nonmammalian species, such as snakes and lizards, have received relatively little attention compared to mammals. Here we describe the development of unicuspid and bicuspid teeth in squamate species. The simple, cone-shaped tooth crown of the bearded dragon and ball python is established at cap stage and fixed in shape by the differentiation of cells and the secretion of dental matrices. Enamel production, as demonstrated by amelogenin expression, occurs relatively earlier in squamate teeth than in mouse molars. We suggest that the early differentiation in squamate unicuspid teeth at cap stage correlates with a more rudimentary tooth crown shape. The leopard gecko can form a bicuspid tooth crown despite the early onset of differentiation. Cusp formation in the gecko does not occur by the folding of the inner enamel epithelium, as in the mouse molar, but by the differential secretion of enamel. Ameloblasts forming the enamel epithelial bulge, a central swelling of cells in the inner enamel epithelium, secrete amelogenin at cap stage, but cease to do so by bell stage. Meanwhile, other ameloblasts in the inner enamel epithelium continue to secrete enamel, forming cusp tips on either side of the bulge. Bulge cells specifically express the gene Bmp2, which we suggest serves as a pro-differentiation signal for cells of the gecko enamel organ. In this regard, the enamel epithelial bulge of the gecko may be more functionally analogous to the secondary enamel knot of mammals than the primary enamel knot. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  3. Stimulation of secretion by the T84 colonic epithelial cell line with dietary flavonols.

    PubMed

    Nguyen, T D; Canada, A T; Heintz, G G; Gettys, T W; Cohn, J A

    1991-06-15

    Flavonols are dietary compounds widely distributed in plants and characterized by a 2-phenyl-benzo(alpha)pyrane nucleus possessing hydroxyl and ketone groups at positions 3 and 4, respectively. Kaempferol, quercetin, and myricetin are flavonols that are further mono-, di-, or trihydroxylated on the phenyl ring, respectively. To test whether these ingested flavonols might exert a direct secretory effect on intestinal epithelial cells, monolayers of the T84 colonocyte cell line were mounted in Ussing chambers and examined for ion transport response. Twenty minutes after addition of 100 microM quercetin to either the serosal or mucosal side, the short-circuit current change was maximal at 16.6 microA/cm2. Kaempferol was less potent than quercetin, while myricetin and glycosylated quercetin (rutin) did not induce secretion. The secretion induced by quercetin did not seem to be mediated by the reactive oxygen species generated by quercetin through auto-oxidation and/or redox cycling (superoxide, hydrogen peroxide, and the hydroxyl radical) because it was neither enhanced by iron, nor inhibited by desferroxamine B or catalase (alone or in combination with superoxide dismutase). Like vasoactive intestinal peptide, quercetin induced a secretory response that was inhibited by barium chloride and bumetanide, and which exhibited synergism with carbachol. Quercetin also stimulated a modest increase in intracellular cAMP levels and the phosphorylation of endogenous protein substrates for cAMP-dependent protein kinase. Thus, quercetin is a potent stimulus of colonocyte secretion that resembles secretagogues which act via a cAMP-mediated signaling pathway.

  4. Nucleoside-Diphosphate-Kinase of P. gingivalis is Secreted from Epithelial Cells In the Absence of a Leader Sequence Through a Pannexin-1 Interactome

    PubMed Central

    Atanasova, Kalina; Lee, Jungnam; Roberts, JoAnn; Lee, Kyulim; Ojcius, David M; Yilmaz, Özlem

    2016-01-01

    Nucleoside-diphosphate-kinases (NDKs) are leaderless, multifunctional enzymes. The mode(s) of NDK secretion is currently undefined, while extracellular translocation of bacterial NDKs is critical for avoidance of host pathogen clearance by opportunistic pathogens such as Porphyromonas gingivalis. P. gingivalis-NDK during infection inhibits extracellular-ATP (eATP)/P2X7-receptor mediated cell death in gingival epithelial cells (GECs) via eATP hydrolysis. Furthermore, depletion of pannexin-1-hemichannel (PNX1) coupled with P2X7-receptor blocks the infection-induced eATP release in GECs, and P. gingivalis-NDK impacts this pathway. Ultrastructural and confocal microscopy of P. gingivalis-co-cultured GECs or green-fluorescent-protein (GFP)-P. gingivalis-NDK transfected GECs revealed a perinuclear/cytoplasmic localization of NDK. eATP stimulation induced NDK recruitment to the cell periphery. Depletion of PNX1 by siRNA or inhibition by probenecid resulted in significant blocking of extracellular NDK activity and secretion using ATPase and ELISA assays. Co-immunoprecipitation-coupled Mass-spectrometry method revealed association of P. gingivalis-NDK to the myosin-9 motor molecule. Interestingly, inhibition of myosin-9, actin, and lipid-rafts, shown to be involved in PNX1-hemichannel function, resulted in marked intracellular accumulation of NDK and decreased NDK secretion from infected GECs. These results elucidate for the first time PNX1-hemichannels as potentially main extracellular translocation pathway for NDKs from an intracellular pathogen, suggesting that PNX1-hemichannels may represent a therapeutic target for chronic opportunistic infections. PMID:27883084

  5. Aphid Gel Saliva: Sheath Structure, Protein Composition and Secretory Dependence on Stylet-Tip Milieu

    PubMed Central

    Will, Torsten; Steckbauer, Kathrin; Hardt, Martin; van Bel, Aart J. E.

    2012-01-01

    In order to separate and analyze saliva types secreted during stylet propagation and feeding, aphids were fed on artificial diets. Gel saliva was deposited as chains of droplets onto Parafilm membranes covering the diets into which watery saliva was secreted. Saliva compounds collected from the diet fluid were separated by SDS-PAGE, while non-soluble gel saliva deposits were processed in a novel manner prior to protein separation by SDS-PAGE. Soluble (watery saliva) and non-soluble (gel saliva) protein fractions were significantly different. To test the effect of the stylet milieu on saliva secretion, aphids were fed on various diets. Hardening of gel saliva is strongly oxygen-dependent, probably owing to formation of sulfide bridges by oxidation of sulphydryl groups. Surface texture of gel saliva deposits is less pronounced under low-oxygen conditions and disappears in dithiothreitol containing diet. Using diets mimicking sieve-element sap and cell-wall fluid respectively showed that the soluble protein fraction was almost exclusively secreted in sieve elements while non-soluble fraction was preferentially secreted at cell wall conditions. This indicates that aphids are able to adapt salivary secretion in dependence of the stylet milieu. PMID:23056521

  6. Supplemental invasion of Salmonella from the perspective of Salmonella enterica serovars Kentucky and Typhimurium

    USDA-ARS?s Scientific Manuscript database

    Background: Critical to the development of Salmonellosis in humans is the interaction of the bacterium with the epithelial lining of the gastrointestinal tract. Traditional scientific reasoning held type III secretion system (T3SS) as the virulence factor responsible for bacterial invasion. In this ...

  7. Probiotic lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans.

    PubMed

    Wagner, R Doug; Johnson, Shemedia J

    2012-06-20

    Vaginal epithelial cells have receptors, signal transduction mechanisms, and cytokine secretion capabilities to recruit host defenses against Candida albicans infections. This research evaluates how probiotic lactobacilli affect the defensive epithelial response. This study used quantitative reverse transcription-polymerase chain reaction assay (qRT-PCR), flow cytometry, and a multiplex immunoassay to observe changes in the regulation of gene expression related to cytokine responses in the VK2 (E6/E7) vaginal epithelial cell line treated with 17β-estradiol, exposed to probiotic Lactobacillus rhamnosus GR-1® and Lactobacillus reuteri RC-14® and challenged with C. albicans. Data were statistically evaluated by repeated measures analysis of variance and paired t-tests where appropriate. C. albicans induced mRNA expression of genes related to inflammatory cytokine responses associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signal transduction pathways. 17β-estradiol suppressed expression of interleukin-1α (IL-1α), IL-6, IL-8, and tumor necrosis factor alpha (TNFα) mRNA. Probiotic lactobacilli suppressed C. albicans-induced nuclear factor-kappa B inhibitor kinase kinase alpha (Iκκα), Toll-like receptor-2 (TLR2), TLR6, IL-8, and TNFα, also suggesting inhibition of NF-κB signaling. The lactobacilli induced expression of IL-1α, and IL-1β mRNA, which was not inhibited by curcumin, suggesting that they induce an alternate inflammatory signal transduction pathway to NF-κB, such as the mitogen activated protein kinase and activator protein-1 (MAPK/AP-1) signal transduction pathway. Curcumin inhibited IL-13 secretion, suggesting that expression of this cytokine is mainly regulated by NF-κB signaling in VK2 cells. The results suggest that C. albicans infection induces pro-inflammatory responses in vaginal epithelial cells, and estrogen and lactobacilli suppress expression of NF-κB-related inflammatory genes. Probiotic lactobacilli may induce IL-1α and IL-1β expression by an alternate signal transduction pathway, such as MAPK/AP-1. Activation of alternate signaling mechanisms by lactobacilli to modify epithelial cell cytokine production may be a mechanism for probiotic modulation of morbidity in vulvovaginal candidiasis.

  8. Colleters in Rubiaceae from forest and savanna: the link between secretion and environment

    NASA Astrophysics Data System (ADS)

    Tresmondi, Fernanda; Canaveze, Yve; Guimarães, Elza; Machado, Silvia Rodrigues

    2017-04-01

    This study aims to investigate colleters' secretory function, on cellular level, in Rubiaceae species from contrasting environments looking to explore the association between secretion and environment. We collected samples from eight species of Rubiaceae growing in forest and savanna having standard-type colleters with diverse histochemistry (hydrophilic, lipophilic and mixed secretions) and processed for both conventional and cytochemical study under transmission electron microscopy (TEM). The standard colleters, although similar in morphology and anatomy, exhibited marked differences on cellular level, especially in the abundance and topology of Golgi bodies, endoplasmic reticulum and plastids when comparing forest and savanna species. These differences were clearly aligned with the chemical nature of the secretions they produce, with predominance of hydrophilic secretions in forest species and lipophilic or mixed secretions in savanna species. The combination of methods in electron microscopy revealed the sites of synthesis and intracellular compartmentation of substances, the mechanisms of their secretion from the protoplast and confirmed the involvement of the outer walls of the epithelial cells in the elimination of exudates to the gland surface. Our study suggests a potential environment-associated plasticity of the secretory cells of standard-type colleters in modulating their secretory function performance.

  9. The Bimodal Lifestyle of Intracellular Salmonella in Epithelial Cells: Replication in the Cytosol Obscures Defects in Vacuolar Replication

    PubMed Central

    Steele-Mortimer, Olivia

    2012-01-01

    Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying intracellular pathogens. PMID:22719929

  10. Cellular lining of the sheep pineal recess studied by light-, transmission-, and scanning electron microscopy: morphologic indications for a direct secretion of melatonin from the pineal gland to the cerebrospinal fluid.

    PubMed

    Tricoire, Hélène; Malpaux, Benoit; Møller, Morten

    2003-01-27

    In the sheep, the pineal hormone melatonin displays nocturnal levels 20 times as high in the cerebrospinal fluid of the third ventricle as in the jugular blood. Moreover, in the pineal recess, the evagination of the third ventricle into the pineal stalk, the levels of melatonin in the cerebrospinal fluid are even higher than in the ventral part of the third ventricle. This finding suggests melatonin to be secreted directly from the pineal gland to the ventricular lumen of the pineal recess of this species. We have, therefore, studied the interface between the sheep pineal gland and the cerebrospinal fluid by light-, scanning-, and electron microscopy of the pineal recess, as well as the permeability of the interface by tracer injections into the third ventricle. First, we show that the classic ependymal lining of the third ventricle disappears in the superior part of the recess. In this area, bulging pinealocytes, displaying immunoreactivity for serotonin, directly appose the cerebrospinal fluid. This pineal-cerebrospinal fluid interface of the sheep is large compared with other species, especially rodent species. Intraventricular injections of horseradish peroxidase and fluorescein isothiocyanate showed that both these tracers could permeate from the pineal recess into the sheep pineal parenchyma. This permeation was due to the presence of gap and intermediate junctions connecting the pinealocytes apposing the ventricular lumen. Thus, our results show that endocrine cells in this specialized area of the ventricular system are in direct contact with the cerebrospinal fluid. This finding supports the physiological concept of a direct secretion of melatonin into the cerebrospinal fluid of the sheep pineal recess. Copyright 2002 Wiley-Liss, Inc.

  11. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    PubMed

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. NOD1 is required for Helicobacter pylori induction of IL-33 responses in gastric epithelial cells.

    PubMed

    Tran, Le Son; Tran, Darren; De Paoli, Amanda; D'Costa, Kimberley; Creed, Sarah J; Ng, Garrett Z; Le, Lena; Sutton, Philip; Silke, J; Nachbur, U; Ferrero, Richard L

    2018-05-01

    Helicobacter pylori (H. pylori) causes chronic inflammation which is a key precursor to gastric carcinogenesis. It has been suggested that H. pylori may limit this immunopathology by inducing the production of interleukin 33 (IL-33) in gastric epithelial cells, thus promoting T helper 2 immune responses. The molecular mechanism underlying IL-33 production in response to H. pylori infection, however, remains unknown. In this study, we demonstrate that H. pylori activates signalling via the pathogen recognition molecule Nucleotide-Binding Oligomerisation Domain-Containing Protein 1 (NOD1) and its adaptor protein receptor-interacting serine-threonine Kinase 2, to promote production of both full-length and processed IL-33 in gastric epithelial cells. Furthermore, IL-33 responses were dependent on the actions of the H. pylori Type IV secretion system, required for activation of the NOD1 pathway, as well as on the Type IV secretion system effector protein, CagA. Importantly, Nod1 +/+ mice with chronic H. pylori infection exhibited significantly increased gastric IL-33 and splenic IL-13 responses, but decreased IFN-γ responses, when compared with Nod1 -/- animals. Collectively, our data identify NOD1 as an important regulator of mucosal IL-33 responses in H. pylori infection. We suggest that NOD1 may play a role in protection against excessive inflammation. © 2018 John Wiley & Sons Ltd.

  13. Acid and alkaline phosphatase localization in the digestive tract mucosa of the Hemisorubim platyrhynchos.

    PubMed

    Faccioli, Claudemir Kuhn; Chedid, Renata Alari; Mori, Ricardo Hideo; Amaral, Antônio Carlos do; Franceschini-Vicentini, Irene Bastos; Vicentini, Carlos Alberto

    2016-09-01

    This cytochemical study investigated the acid and alkaline phosphatase of the digestive tract of Hemisorubim platyrhynchos. Acid phosphatase was detected in the lining epithelium throughout the digestive tract, whereas alkaline phosphatase was only observed in the intestine. In the esophagus, an acid phosphatase reaction occurred in the apical cytoplasm of the epithelial cells and was related to epithelial protection and freeing of superficial cells for sloughing. Similar results were also observed in epithelial cells of gastric epithelium. In the gastric glands, acid phosphatase occurred in lysosomes of the oxynticopeptic cells acting in the macromolecule degradation for use as an energy source, whereas in the vesiculotubular system, its presence could be related to secretion processes. Furthermore, acid phosphatase in the intestine occurred in microvilli and lysosomes of the enterocytes and was correlated to absorption and intracellular digestion. However, no difference was reported among the regions of the intestine. However, alkaline phosphatase reaction revealed a large number of reaction dots in the anterior intestine, with the number decreasing toward the posterior intestine. This enzyme has been related to several functions, highlighting its role in the nutrient absorption primarily in the anterior intestine but also being essential in pH regulation because this is a carnivorous species with many gastric glands with secretions that could damage the intestine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    PubMed

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development of Highly Sensitive and Specific mRNA Multiplex System (XCYR1) for Forensic Human Body Fluids and Tissues Identification

    PubMed Central

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples. PMID:24991806

  16. Development of highly sensitive and specific mRNA multiplex system (XCYR1) for forensic human body fluids and tissues identification.

    PubMed

    Xu, Yan; Xie, Jianhui; Cao, Yu; Zhou, Huaigu; Ping, Yuan; Chen, Liankang; Gu, Lihua; Hu, Wei; Bi, Gang; Ge, Jianye; Chen, Xin; Zhao, Ziqin

    2014-01-01

    The identification of human body fluids or tissues through mRNA-based profiling is very useful for forensic investigations. Previous studies have shown mRNA biomarkers are effective to identify the origin of biological samples. In this study, we selected 16 tissue specific biomarkers to evaluate their specificities and sensitivities for human body fluids and tissues identification, including porphobilinogen deaminase (PBGD), hemoglobin beta (HBB) and Glycophorin A (GLY) for circulatory blood, protamine 2 (PRM2) and transglutaminase 4 (TGM4) for semen, mucin 4 (MUC4) and human beta defensin 1(HBD1) for vaginal secretion, matrix metalloproteinases 7 and 11 (MMP7 and MMP11) for menstrual blood, keratin 4(KRT4) for oral mucosa, loricrin (LOR) and cystatin 6 (CST6) for skin, histatin 3(HTN3) for saliva, statherin (STATH) for nasal secretion, dermcidin (DCD) for sweat and uromodulin (UMOD) for urine. The above mentioned ten common forensic body fluids or tissues were used in the evaluation. Based on the evaluation, a reverse transcription (RT) PCR multiplex assay, XCYR1, which includes 12 biomarkers (i.e., HBB, GLY, HTN3, PRM2, KRT4, MMP11, MUC4, DCD, UMOD, MMP7, TGM4, and STATH) and 2 housekeeping genes [i.e., glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18SrRNA], was developed. This assay was further validated with real casework samples and mock samples (with both single source and mixture) and it was approved that XCYR1 is effective to identify common body fluids or tissues (i.e., circulatory blood, saliva, semen, vaginal secretion, menstrual blood, oral mucosa, nasal secretion, sweat and urine) in forensic casework samples.

  17. Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives.

    PubMed

    Leclercq, Bérénice; Alleman, Laurent Yves; Perdrix, Esperanza; Riffault, Véronique; Happillon, Mélanie; Strecker, Alain; Lo-Guidice, Jean-Marc; Garçon, Guillaume; Coddeville, Patrice

    2017-07-01

    According to the literature, tiny amounts of transition metals in airborne fine particles (PM 2.5 ) may induce proinflammatory cell response through reactive oxygen species production. The solubility of particle-bound metals in physiological fluids, i.e. the metal bioaccessibility is driven by factors such as the solution chemical composition, the contact time with the particles, and the solid-to-liquid phase ratio (S/L). In this work, PM 2.5 -bound metal bioaccessibility was assessed in various physiological-like solutions including cell culture media in order to evidence the potential impact on normal human bronchial epithelial cells (NHBE) when studying the cytotoxicity and inflammatory responses of PM 2.5 towards the target bronchial compartment. Different fluids (H 2 O, PBS, LHC-9 culture medium, Gamble and human respiratory mucus collected from COPD patients), various S/L conditions (from 1/6000 to 1/100,000) and exposure times (6, 24 and 72h) were tested on urban PM 2.5 samples. In addition, metals' total, soluble and insoluble fractions from PM 2.5 in LHC-9 were deposited on NHBE cells (BEAS-2B) to measure their cytotoxicity and inflammatory potential (i.e., G6PDH activity, secretion of IL-6 and IL-8). The bioaccessibility is solution-dependent. A higher salinity or organic content may increase or inhibit the bioaccessibiliy according to the element, as observed in the complex mucus matrix. Decreasing the S/L ratio also affect the bioaccessibility depending on the solution tested while the exposure time appears less critical. The LHC-9 culture medium appears to be a good physiological proxy as it induces metal bioaccessibilities close to the mucus values and is little affected by S/L ratios or exposure time. Only the insoluble fraction can be linked to the PM 2.5 -induced cytotoxicity. By contrast, both soluble and insoluble fractions can be related to the secretion of cytokines. The metal bioaccessibility in LHC-9 of the total, soluble, and insoluble fractions of the PM 2.5 under study did not explain alone, the cytotoxicity nor the inflammatory response observed in BEAS-2B cells. These findings confirm the urgent need to perform further toxicological studies to better evaluate the synergistic effect of both bioaccessible particle-bound metals and organic species. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Soluble Proteins Produced by Probiotic Bacteria Regulate Intestinal Epithelial Cell Survival and Growth

    PubMed Central

    YAN, FANG; CAO, HANWEI; COVER, TIMOTHY L.; WHITEHEAD, ROBERT; WASHINGTON, M. KAY; POLK, D. BRENT

    2011-01-01

    Background & Aims Increased inflammatory cytokine levels and intestinal epithelial cell apoptosis leading to disruption of epithelial integrity are major pathologic factors in inflammatory bowel diseases. The probiotic bacterium Lactobacillus rhamnosus GG (LGG) and factors recovered from LGG broth culture supernatant (LGG-s) prevent cytokine-induced apoptosis in human and mouse intestinal epithelial cells by regulating signaling pathways. Here, we purify and characterize 2 secreted LGG proteins that regulate intestinal epithelial cell antiapoptotic and proliferation responses. Methods LGG proteins were purified from LGG-s, analyzed, and used to generate polyclonal antibodies for immunodepletion of respective proteins from LGG-conditioned cell culture media (CM). Mouse colon epithelial cells and cultured colon explants were treated with purified proteins in the absence or presence of tumor necrosis factor (TNF). Akt activation, proliferation, tissue injury, apoptosis, and caspase-3 activation were determined. Results We purified 2 novel proteins, p75 (75 kilodaltons) and p40 (40 kilodaltons), from LGG-s. Each of these purified protein preparations activated Akt, inhibited cytokine-induced epithelial cell apoptosis, and promoted cell growth in human and mouse colon epithelial cells and cultured mouse colon explants. TNF-induced colon epithelial damage was significantly reduced by p75 and p40. Immunodepletion of p75 and p40 from LGG-CM reversed LGG-CM activation of Akt and its inhibitory effects on cytokine-induced apoptosis and loss of intestinal epithelial cells. Conclusions p75 and p40 are the first probiotic bacterial proteins demonstrated to promote intestinal epithelial homeostasis through specific signaling pathways. These findings suggest that probiotic bacterial components may be useful for preventing cytokine-mediated gastrointestinal diseases. PMID:17258729

  19. The Contribution of the Airway Epithelial Cell to Host Defense.

    PubMed

    Stanke, Frauke

    2015-01-01

    In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.

  20. Protein Secretion Is Required for Pregnancy-Associated Plasma Protein-A to Promote Lung Cancer Growth In Vivo

    PubMed Central

    Pan, Hong; Hanada, Sayaka; Zhao, Jun; Mao, Li; Ma, Mark Zhi-Qing

    2012-01-01

    Pregnancy-associated plasma protein-A (PAPPA) has been reported to regulate the activity of insulin-like growth factor (IGF) signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs) thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE) tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression. PMID:23152806

  1. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts

    PubMed Central

    Iskandar, Anita R.; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    Organotypic 3D cultures of epithelial cells are grown at the air–liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. PMID:26085348

  2. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts.

    PubMed

    Iskandar, Anita R; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2015-09-01

    Organotypic 3D cultures of epithelial cells are grown at the air-liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.

  3. Multiple functions of the SNARE protein Snap29 in autophagy, endocytic, and exocytic trafficking during epithelial formation in Drosophila.

    PubMed

    Morelli, Elena; Ginefra, Pierpaolo; Mastrodonato, Valeria; Beznoussenko, Galina V; Rusten, Tor Erik; Bilder, David; Stenmark, Harald; Mironov, Alexandre A; Vaccari, Thomas

    2014-01-01

    How autophagic degradation is linked to endosomal trafficking routes is little known. Here we screened a collection of uncharacterized Drosophila mutants affecting membrane transport to identify new genes that also have a role in autophagy. We isolated a loss of function mutant in Snap29 (Synaptosomal-associated protein 29 kDa), the gene encoding the Drosophila homolog of the human protein SNAP29 and have characterized its function in vivo. Snap29 contains 2 soluble NSF attachment protein receptor (SNARE) domains and a asparagine-proline-phenylalanine (NPF motif) at its N terminus and rescue experiments indicate that both SNARE domains are required for function, whereas the NPF motif is in part dispensable. We find that Snap29 interacts with SNARE proteins, localizes to multiple trafficking organelles, and is required for protein trafficking and for proper Golgi apparatus morphology. Developing tissue lacking Snap29 displays distinctive epithelial architecture defects and accumulates large amounts of autophagosomes, highlighting a major role of Snap29 in autophagy and secretion. Mutants for autophagy genes do not display epithelial architecture or secretion defects, suggesting that the these alterations of the Snap29 mutant are unlikely to be caused by the impairment of autophagy. In contrast, we find evidence of elevated levels of hop-Stat92E (hopscotch-signal transducer and activator of transcription protein at 92E) ligand, receptor, and associated signaling, which might underlie the epithelial defects. In summary, our findings support a role of Snap29 at key steps of membrane trafficking, and predict that signaling defects may contribute to the pathogenesis of cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma (CEDNIK), a human congenital syndrome due to loss of Snap29.

  4. TNF-alpha sensitizes HT-29 colonic epithelial cells to intestinal lactobacilli.

    PubMed

    McCracken, Vance J; Chun, Taehoon; Baldeón, Manuel E; Ahrné, Siv; Molin, Göran; Mackie, Roderick I; Gaskins, H Rex

    2002-09-01

    The ability of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) to influence epithelial interleukin (IL)-8 responses to the intestinal bacterium Lactobacillus plantarum 299v was analyzed in the human HT-29 colonic epithelial cell line. In the absence of TNF-alpha, IL-8 mRNA expression was not detectable by Northern blot analysis in HT-29 cells alone or in HT-29 cells co-cultured with L. plantarum 299v. However, TNF-alpha induced IL-8 mRNA expression, and co-culture of TNF-alpha-treated HT-29 cells with L. plantarum 299v significantly increased IL-8 mRNA expression above levels induced by TNF-alpha alone in an adhesion-dependent manner. The increase in IL-8 mRNA expression was not observed in TNF-alpha-treated HT-29/L. plantarum 299v co-cultures using heat-killed lactobacilli or when L. plantarum adhesion was prevented using mannoside or a trans-well membrane. Paradoxically, IL-8 secretion was decreased in TNF-alpha-treated HT-29 cells with L. plantarum 299v relative to cells treated with TNF-alpha alone. TNF-alpha-mediated responsiveness to L. plantarum 299v was further investigated by analyzing expression of a coreceptor for bacterial cell wall products CD14. HT-29 cells expressed CD14 mRNA and cell-surface CD14; however, TNF-alpha did not alter CD14 mRNA or cell-surface expression, and blockade of CD14 with monoclonal antibody MY4 did not alter the IL-8 response to L. plantarum 299v in TNF-alpha-treated HT-29 cells. These results indicate that although TNF-alpha sensitizes HT-29 epithelial cells to intestinal lactobacilli, the bacteria exert a protective effect by downregulating IL-8 secretion.

  5. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model

    PubMed Central

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-01-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914

  6. Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.

    PubMed

    Kim, Jeong-Gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon; Kim, Kyu-Won

    2017-01-01

    Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer's vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.

  7. Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality

    PubMed Central

    Kim, Jeong-gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon

    2017-01-01

    Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer’s vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development. PMID:28771527

  8. Clonal Populations of Amniotic Cells by Dilution and Direct Plating: Evidence for Hidden Diversity

    PubMed Central

    Wilson, Patricia G.; Devkota, Lorna; Payne, Tiffany; Crisp, Laddie; Winter, Allison; Wang, Zhan

    2012-01-01

    Fetal cells are widely considered a superior cell source for regenerative medicine; fetal cells show higher proliferative capacity and have undergone fewer replicative cycles that could generate spontaneous mutations. Fetal cells in amniotic fluid were among the first normal primary cells to be cultured ex vivo, but the undefined composition of amniotic fluid has hindered advance for regenerative applications. We first developed a highly efficient method to generate clonal populations by dilution of amniocentesis samples in media and direct plating without intervening refrigeration, centrifugation, or exposure of cells to the paracrine effects in mixed cell cultures. More than 40 clonal populations were recovered from 4 amniocentesis samples and representative clones were characterized by flow cytometry, conventional assays for differentiation potential, immunofluorescence imaging, and transcript analysis. The results revealed previously unreported diversity among stromal and epithelial cell types and identified unique cell types that could be lost or undetected in mixed cell populations. The differentiation potential of amniotic cells proved to be uncoupled from expression of definitive cell surface or cytoplasmic markers for stromal and epithelial cells. Evidence for diversity among stromal and epithelial cells in amniotic fluid bears on interpretations applied to molecular and functional tests of amniotic cell populations. PMID:23024659

  9. Markers of Oxidative Stress and Inflammation in Ascites and Plasma in Patients with Platinum-Sensitive, Platinum-Resistant, and Platinum-Refractory Epithelial Ovarian Cancer

    PubMed Central

    Cantón-Romero, Juan Carlos; Bañuelos-Ramírez, Jose Luis; Sifuentes-Franco, Sonia; Castellanos-González, José Alberto

    2017-01-01

    Diverse proinflammatory biomarkers and oxidative stress are strongly associated with advanced epithelial ovarian cancer (EOC). Objective. To determine the behavior of markers of oxidative stress and inflammation in plasma and ascites fluid in patients with platinum-sensitive, platinum-resistant, and platinum-refractory EOC. Methods. A prospective cohort study. The colorimetric method was used to determine levels of the markers 8-isoprostanes (8-IP), lipid peroxidation products (LPO), and total antioxidant capacity (TAC) in plasma and ascites fluid; and with ELISA, the levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were determined in patients with EOC. Results. In ascites fluid, a significant increase in 8-IP versus baseline plasma levels was found (p = 0.002). There was an important leakage of the TAC levels in ascites fluid versus baseline plasma levels (p < 0.001). The IL-6 was elevated in ascites fluid versus baseline plasma levels (p = 0.003), and there were diminished levels of TNF-α in ascites fluid versus baseline plasma levels (p = 0.001). Discussion. We hypothesize that the ascites fluid influences the behavior and dissemination of the tumor. Deregulation between oxidants, antioxidants, and the proinflammatory cytokines was found to vary among platinum-sensitive, platinum-resistant, and platinum-refractory patients. PMID:28848618

  10. Altered Regulation of Airway Epithelial Cell Chloride Channels in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Frizzell, Raymond A.; Rechkemmer, Gerhard; Shoemaker, Richard L.

    1986-08-01

    In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that β -adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis (CF). However, when membrane patches were excised from CF cells into media containing sufficient free calcium (approximately 180 nanomolar), chloride channels were activated. The chloride channels of CF cells were similar to those of normal cells as judged by their current-voltage relations, ion selectivity, and kinetic behavior. These findings demonstrate the presence of chloride channels in the apical membranes of CF airway cells. Their regulation by calcium appears to be intact, but cyclic adenosine monophosphate (cAMP)-dependent control of their activity is defective.

  11. Integrin-Mediated Transforming Growth Factor-β Activation Regulates Homeostasis of the Pulmonary Epithelial-Mesenchymal Trophic Unit

    PubMed Central

    Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L.

    2006-01-01

    Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-β is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, αvβ6 and αvβ8, are responsible for almost all of the TGF-β activation in the EMTU. Both αvβ8 and αvβ6 contribute to fetal tracheal epithelial activation of TGF-β, whereas only αvβ8 contributes to fetal tracheal fibroblast activation of TGF-β. Interestingly, fetal tracheal epithelial αvβ8-mediated TGF-β activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in αvβ8-mediated activation of TGF-β. Autocrine αvβ8-mediated TGF-β activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-β within the EMTU. PMID:16877343

  12. Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit.

    PubMed

    Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L

    2006-08-01

    Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.

  13. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets

    PubMed Central

    Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  14. Infection of human intestinal epithelial cells with invasive bacteria upregulates apical intercellular adhesion molecule-1 (ICAM)-1) expression and neutrophil adhesion.

    PubMed Central

    Huang, G T; Eckmann, L; Savidge, T C; Kagnoff, M F

    1996-01-01

    The acute host response to gastrointestinal infection with invasive bacteria is characterized by an accumulation of neutrophils in the lamina propria, and neutrophil transmigration to the luminal side of the crypts. Intestinal epithelial cells play an important role in the recruitment of inflammatory cells to the site of infection through the secretion of chemokines. However, little is known regarding the expression, by epithelial cells, of molecules that are involved in interactions between the epithelium and neutrophils following bacterial invasion. We report herein that expression of ICAM-1 on human colon epithelial cell lines, and on human enterocytes in an in vivo model system, is upregulated following infection with invasive bacteria. Increased ICAM-1 expression in the early period (4-9 h) after infection appeared to result mainly from a direct interaction between invaded bacteria and host epithelial cells since it co-localized to cells invaded by bacteria, and the release of soluble factors by epithelial cells played only a minor role in mediating increased ICAM-1 expression. Furthermore, ICAM-1 was expressed on the apical side of polarized intestinal epithelial cells, and increased expression was accompanied by increased neutrophil adhesion to these cells. ICAM-1 expression by intestinal epithelial cells following infection with invasive bacteria may function to maintain neutrophils that have transmigrated through the epithelium in close contact with the intestinal epithelium, thereby reducing further invasion of the mucosa by invading pathogens. PMID:8755670

  15. A gastric acid secretion model.

    PubMed Central

    de Beus, A M; Fabry, T L; Lacker, H M

    1993-01-01

    A theory of gastric acid production and self-protection is formulated mathematically and examined for clinical and experimental correlations, implications, and predictions using analytic and numerical techniques. In our model, gastric acid secretion in the stomach, as represented by an archetypal gastron, consists of two chambers, circulatory and luminal, connected by two different regions of ion exchange. The capillary circulation of the gastric mucosa is arranged in arterial-venous arcades which pass from the gastric glands up to the surface epithelial lining of the lumen; therefore the upstream region of the capillary chamber communicates with oxyntic cells, while the downstream region communicates with epithelial cells. Both cell types abut the gastric lumen. Ion currents across the upstream region are calculated from a steady-state oxyntic cell model with active ion transport, while the downstream ion fluxes are (facilitated) diffusion driven or secondarily active. Water transport is considered iso-osmotic. The steady-state model is solved in closed form for low gastric lumen pH. A wide variety of previously performed static and dynamic experiments on ion and CO2 transport in the gastric lumen and gastric blood supply are for the first time correlated with each other for an (at least) semiquantitative test of current concepts of gastric acid secretion and for the purpose of model verification. Agreement with the data is reported with a few outstanding and instructive exceptions. Model predictions and implications are also discussed. Images FIGURE 1 PMID:8396457

  16. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Fei; Xu, Yuan; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3more » signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.« less

  17. Vocal Fold Epithelial Response to Luminal Osmotic Perturbation

    ERIC Educational Resources Information Center

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2007-01-01

    Purpose: Dry-air challenges increase the osmolarity of fluid lining the luminal surface of the proximal airway. The homeostasis of surface fluid is thought to be essential for voice production and laryngeal defense. Therefore, the authors hypothesized that viable vocal fold epithelium would generate a water flux to reduce an osmotic challenge (150…

  18. MDCK cells are capable of water secretion and reabsorption in response to changes in the ionic environment.

    PubMed

    Capra, Janne P; Eskelinen, Sinikka M

    2017-01-01

    A prerequisite for tissue electrolyte homeostasis is highly regulated ion and water transport through kidney or intestinal epithelia. In the present work, we monitored changes in the cell and luminal volumes of type II Madin-Darby canine kidney (MDCK) cells grown in a 3D environment in response to drugs, or to changes in the composition of the basal extracellular fluid. Using fluorescent markers and high-resolution spinning disc confocal microscopy, we could show that lack of sodium and potassium ions in the basal fluid (tetramethylammonium chloride (TMACl) buffer) induces a rapid increase in the cell and luminal volumes. This transepithelial water flow could be regulated by inhibitors and agonists of chloride channels. Hence, the driving force for the transepithelial water flow is chloride secretion, stimulated by hyperpolarization. Chloride ion depletion of the basal fluid (using sodium gluconate buffer) induces a strong reduction in the lumen size, indicating reabsorption of water from the lumen to the basal side. Lumen size also decreased following depolarization of the cell interior by rendering the membrane permeable to potassium. Hence, MDCK cells are capable of both absorption and secretion of chloride ions and water; negative potential within the lumen supports secretion, while depolarizing conditions promote reabsorption.

  19. Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease.

    PubMed

    Tao, Shixin; Kakade, Vijayakumar R; Woodgett, James R; Pandey, Pankaj; Suderman, Erin D; Rajagopal, Madhumitha; Rao, Reena

    2015-06-01

    Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end-stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein kinases consists of GSK3α and GSK3β isoforms and has a crucial role in multiple cellular signaling pathways. We previously found that GSK3β, a regulator of cell proliferation, is also crucial for cAMP generation and vasopressin-mediated urine concentration by the kidneys. However, the role of GSK3β in the pathogenesis of PKDs is not known. Here we found that GSK3β expression and activity were markedly upregulated and associated with cyst-lining epithelia in the kidneys of mice and humans with PKD. Renal collecting duct-specific gene knockout of GSK3β or pharmacological inhibition of GSK3 effectively slowed down the progression of PKD in mouse models of autosomal recessive or autosomal dominant PKD. GSK3 inactivation inhibited cAMP generation and cell proliferation resulting in reduced cyst expansion, improved renal function, and extended life span. GSK3β inhibition also reduced pERK, c-Myc, and cyclin-D1, known mitogens in proliferation of cystic epithelial cells. Thus, GSK3β has a novel functional role in PKD pathophysiology, and its inhibition may be therapeutically useful to slow down cyst expansion and progression of PKD.

  20. Development of a multi-matrix LC-MS/MS method for urea quantitation and its application in human respiratory disease studies.

    PubMed

    Wang, Jianshuang; Gao, Yang; Dorshorst, Drew W; Cai, Fang; Bremer, Meire; Milanowski, Dennis; Staton, Tracy L; Cape, Stephanie S; Dean, Brian; Ding, Xiao

    2017-01-30

    In human respiratory disease studies, liquid samples such as nasal secretion (NS), lung epithelial lining fluid (ELF), or upper airway mucosal lining fluid (MLF) are frequently collected, but their volumes often remain unknown. The lack of volume information makes it hard to estimate the actual concentration of recovered active pharmaceutical ingredient or biomarkers. Urea has been proposed to serve as a sample volume marker because it can freely diffuse through most body compartments and is less affected by disease states. Here, we report an easy and reliable LC-MS/MS method for cross-matrix measurement of urea in serum, plasma, universal transfer medium (UTM), synthetic absorptive matrix elution buffer 1 (SAMe1) and synthetic absorptive matrix elution buffer 2 (SAMe2) which are commonly sampled in human respiratory disease studies. The method uses two stable-isotope-labeled urea isotopologues, [ 15 N 2 ]-urea and [ 13 C, 15 N 2 ]-urea, as the surrogate analyte and the internal standard, respectively. This approach provides the best measurement consistency across different matrices. The analyte extraction was individually optimized in each matrix. Specifically in UTM, SAMe1 and SAMe2, the unique salting-out assisted liquid-liquid extraction (SALLE) not only dramatically reduces the matrix interferences but also improves the assay recovery. The use of an HILIC column largely increases the analyte retention. The typical run time is 3.6min which allows for high throughput analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function.

    PubMed

    Holmstrom, Sam R; Deering, Tye; Swift, Galvin H; Poelwijk, Frank J; Mangelsdorf, David J; Kliewer, Steven A; MacDonald, Raymond J

    2011-08-15

    We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.

  2. TNFα-induced IKKβ complex activation influences epithelial, but not stromal cell survival in endometriosis.

    PubMed

    Kocbek, Vida; Grandi, Giovanni; Blank, Fabian; Wotzkow, Carlos; Bersinger, Nick A; Mueller, Michael D; Kyo, Satoru; McKinnon, Brett D

    2016-11-01

    Can the activity of the IκB kinase (IKKβ) complex in endometriotic cells contribute to endometriotic lesion survival? There is a constitutive activity of the IKKβ catalytic complex in peritoneal and deeply infiltrating lesions that can influence epithelial, but not stromal cell viability. Endometriotic lesions exist in an inflammatory microenvironment with higher local concentrations of cytokines, such as tumour necrosis factor α (TNFα). TNFα stimulates the activation of the IKKβ complex, an important nodal point in multiple signalling pathways that influence gene transcription, proliferation and apoptosis. However, few data on the regulation of IKKβ in endometriotic tissue are currently available. A retrospective analysis of endometriotic tissue from peritoneal, ovarian and deeply infiltrating lesions from 37 women. Basal and activated (phosphorylated) IKKβ concentrations were analysed by western blotting and immunohistochemistry. The relationship between the expression and activation of these proteins and peritoneal fluid (TNFα) concentrations, measured via ELISA, was examined. A subsequent in vitro analysis of TNFα treatment on the activation of IKKβ and the effect on epithelial and stromal cell viability by its inhibition with PS1145 was also performed. Levels of the phosphorylated IKKβ complex in endometriotic lesions had a significant positive correlation with peritoneal fluid TNFα concentrations. Phosphorylated IKKβ complex was more prevalent in peritoneal and deeply infiltrating endometriosis lesions compared with ovarian lesions. IKKβ was present in both epithelial and stromal cells in all lesions but active IKKβ was limited to epithelial cells. TNFα stimulated an increased expression of phosphorylated IKKβ and the inhibition of this kinase with PS1145 significantly influenced ectopic epithelial cells viability but not eutopic epithelial cells, or endometrial stromal cells. In vitro analysis on epithelial cells was performed with immortalized cell lines and not primary cell cultures and only low sample numbers were available for the study. The regulation of aberrant signalling pathways represents a promising yet relatively unexplored area of endometriosis progression. The IKKβ complex is activated by inflammation and is critical nodal point of numerous downstream kinase-signalling pathways, including NFκB (nuclear factor κB), mTOR (mammalian target of rapamycin) and BAD (Bcl2-antagonist of cell death). This study shows a significant relationship between peritoneal fluid TNFα and IKKβ activation in epithelial cells that will have significant consequences for the continued survival of these cells at ectopic locations through the regulation of downstream pathways. None. The study was funded by the Swiss National Science Foundation (Grant Number 320030_140774). The authors have no conflict of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1α Stabilization during Pneumonia.

    PubMed

    Holden, Victoria I; Breen, Paul; Houle, Sébastien; Dozois, Charles M; Bachman, Michael A

    2016-09-13

    Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals iron from its host by secreting siderophores, small iron-chelating molecules. Classically, siderophores are thought to worsen infections by promoting bacterial growth. In this study, we determined that siderophore-secreting K. pneumoniae causes lung inflammation and bacterial dissemination to the bloodstream independently of bacterial growth. Furthermore, we determined that siderophore-secreting K. pneumoniae activates a host protein, hypoxia inducible factor (HIF)-1α, and requires it for siderophore-dependent bacterial dissemination. Although HIF-1α can protect against some infections, it appears to worsen infection with K. pneumoniae Together, these results indicate that bacterial siderophores directly alter the host response to pneumonia in addition to providing iron for bacterial growth. Therapies that disrupt production of siderophores could provide a two-pronged attack against K. pneumoniae infection by preventing bacterial growth and preventing bacterial dissemination to the blood. Copyright © 2016 Holden et al.

  4. Urea for long-term treatment of syndrome of inappropriate secretion of antidiuretic hormone.

    PubMed Central

    Decaux, G; Genette, F

    1981-01-01

    The efficacy of oral urea in producing a sufficiently high osmotic diuresis was tested in seven patients with the syndrome of inappropriate secretion of antidiuretic hormone. In all patients urea corrected the hyponatraemia despite a normal fluid intake. Five patients were controlled (serum sodium concentration greater than 128 mmol(mEq)/1) with a dose of 30 g urea daily, and two with 60 g daily. The patients who needed 30 g drank 1-2 1 of fluid daily, while those who needed 60 g drank up to 3.1 per day. No major side effects were noted, even after treatment periods of up to 270 days. These findings suggest that urea is a safe and efficacious treatment of the syndrome of inappropriate secretion of antidiuretic hormone. PMID:6794768

  5. Urea for long-term treatment of syndrome of inappropriate secretion of antidiuretic hormone.

    PubMed

    Decaux, G; Genette, F

    1981-10-24

    The efficacy of oral urea in producing a sufficiently high osmotic diuresis was tested in seven patients with the syndrome of inappropriate secretion of antidiuretic hormone. In all patients urea corrected the hyponatraemia despite a normal fluid intake. Five patients were controlled (serum sodium concentration greater than 128 mmol(mEq)/1) with a dose of 30 g urea daily, and two with 60 g daily. The patients who needed 30 g drank 1-2 1 of fluid daily, while those who needed 60 g drank up to 3.1 per day. No major side effects were noted, even after treatment periods of up to 270 days. These findings suggest that urea is a safe and efficacious treatment of the syndrome of inappropriate secretion of antidiuretic hormone.

  6. PAROTID FLUID TOTAL PROTEIN IN PATIENTS WITH UREMIA AND PROTEINURIA.

    DTIC Science & Technology

    Stimulated parotid fluid samples (238) were collected from 32 patients to determine if altered renal function was associated with deviations in...tubular necrosis, and 15 had normal renal function. There were no significant differences in parotid fluid protein concentration or minute secretion associated with the state of renal function. (Author)

  7. Maxillary bone epithelial cyst in an adult miniature schnauzer.

    PubMed

    Lin, Chung-Tien; Tasi, Wen-Chih; Hu, Chun-Kun; Lin, Nien-Ting; Huang, Pei-Yun; Yeh, Lih-Seng

    2008-09-01

    Maxillary bone epithelial cyst is rare in dogs. A 5-year-old, spayed female miniature schnauzer developed a swelling below the nasal canthus of left eye. Plain radiograph demonstrated a 1.5 cm diameter of radiolucent lesion on the maxillary bone anteroventral to the eye, and contrast dacryocystorhinography confirmed an obstructed nasolarcrimal duct. The swelling showed poor response to antibiotic treatment but responded well to oral prednisolone. Exploratory surgery revealed a cyst-like structure filled with brown serous fluid. Histopathological examination of the removed cyst revealed a double cuboidal epithelial cyst. The dog recovered rapidly after surgery, and the swelling had not recurred for a 36-month follow-up. It is the first case of periorbital bone epithelial cyst reported in an adult miniature schnauzer.

  8. Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis

    PubMed Central

    Hansmann, Jan; Winter, Dominic; Schramm, Guido; Erttmann, Klaus D.; Liebau, Eva

    2016-01-01

    The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S) products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx) and Trx-like protein (Trx-lp) were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite's mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa. PMID:27872753

  9. Separate Cl^- Conductances Activated by cAMP and Ca2+ in Cl^--Secreting Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Cliff, William H.; Frizzell, Raymond A.

    1990-07-01

    We studied the cAMP- and Ca2+-activated secretory Cl^- conductances in the Cl^--secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl^- and K^+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl^- current 2-15 times with no change in K^+ current. The current-voltage relation for cAMP-activated Cl^- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl^- and K^+ currents 2-30 times. The Ca2+-activated Cl^- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl^- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl^- conductances with different properties, implying that these second messengers activate different Cl^- channels or that they induce different conductive and kinetic states in the same Cl^- channel.

  10. Molecular basis of potassium channels in pancreatic duct epithelial cells

    PubMed Central

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance. PMID:23962792

  11. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung.

    PubMed

    Abdullah, Mahdi; Goldmann, Torsten

    2012-11-20

    Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with surfactant protein-B in lamellar bodies of alveolar epithelial cells type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912.

  12. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro.

    PubMed

    Begley, Lesa; Monteleon, Christine; Shah, Rajal B; Macdonald, James W; Macoska, Jill A

    2005-12-01

    The direct relationship between the aging process and the incidence and prevalence of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) implies that certain risk factors associated with the development of both diseases increase with the aging process. In particular, both diseases share an overly proliferative phenotype, suggesting that mechanisms that normally act to suppress cellular proliferation are disrupted or rendered dysfunctional as a consequence of the aging process. We propose that one such mechanism involves changes in the prostate microenvironment, which 'evolves' during the aging process and disrupts paracrine interactions between epithelial and associated stromal fibroblasts. We show that stromal fibroblasts isolated from the prostates of men 63-81 years of age at the time of surgery express and secrete higher levels of the CXCL12 chemokine compared with those isolated from younger men, and stimulate CXCR4-mediated signaling pathways that induce cellular proliferation. These studies represent an important first step towards a mechanistic elucidation of the role of aging in the etiology of benign and malignant prostatic diseases.

  13. Isotretinoin in lacrimal gland fluid and tears.

    PubMed

    Rismondo, V; Ubels, J L

    1987-03-01

    Isotretinoin (13-cis-retinoic acid) is used in the treatment of severe cystic acne. Adverse ocular reactions, including blepharoconjunctivitis and dry eye symptoms, are frequent side effects of this drug. Our previous observation that retinol is present in tears and lacrimal gland fluid suggests that isotretinoin may also be secreted by the lacrimal gland. Rabbits were treated with isotretinoin, and lacrimal gland fluid was collected from the cannulated lacrimal gland duct. Tears were collected from patients who were being treated with isotretinoin. Lacrimal gland fluid and tears were analyzed by reverse-phase high-pressure liquid chromatography and a peak eluted from each sample, which was identified as isotretinoin. We conclude that the lacrimal gland is able to secrete isotretinoin in addition to retinol and that, in animals and patients treated systemically with isotretinoin, the ocular surface is exposed to the drug via the tear film.

  14. MicroRNA Signaling in Embryo Development

    PubMed Central

    Gross, Nicole; Khatib, Hasan

    2017-01-01

    Expression of microRNAs (miRNAs) is essential for embryonic development and serves important roles in gametogenesis. miRNAs are secreted into the extracellular environment by the embryo during the preimplantation stage of development. Several cell types secrete miRNAs into biological fluids in the extracellular environment. These fluid-derived miRNAs have been shown to circulate the body. Stable transport is dependent on proper packaging of the miRNAs into extracellular vesicles (EVs), including exosomes. These vesicles, which also contain RNA, DNA and proteins, are on the forefront of research on cell-to-cell communication. Interestingly, EVs have been identified in many reproductive fluids, such as uterine fluid, where their miRNA content is proposed to serve as a mechanism of crosstalk between the mother and conceptus. Here, we review the role of miRNAs in molecular signaling and discuss their transport during early embryo development and implantation. PMID:28906477

  15. Modified wick method using Weck-Cel sponges for collection of human rectal secretions and analysis of mucosal HIV antibody.

    PubMed

    Kozlowski, P A; Lynch, R M; Patterson, R R; Cu-Uvin, S; Flanigan, T P; Neutra, M R

    2000-08-01

    Weck-Cel sponges were examined for suitability as an absorbent material for nontraumatic collection of rectal secretions in humans. Sponges were tested in vitro and determined by quantitative enzyme-linked immunosorbent assay (ELISA) to be capable of releasing 100% of absorbed albumin and all immunoglobulin subtypes after treatment with detergent-supplemented buffer. Protein composition in rectal secretions collected from normal women with dry sponges (DS) or with sponges previously softened by moistening with saline (MS) was subsequently compared. DS secretions showed evidence of contamination with blood and interstitial fluid-derived albumin, immunoglobulin G (IgG), and monomeric IgA. MS secretions appeared to represent local mucosal secretions more accurately because they contained negligible blood, a greater percentage of secretory IgA within the total IgA, and both lower albumin/IgG ratios and more dramatic alterations in IgG subclass distribution compared with corresponding serum. Anti-HIV IgG, IgM, IgA, and antibodies with secretory component could be demonstrated by ELISA in rectal secretions collected with moist sponges from 8 of 8, 1 of 8, 5 of 8, and 3 of 8 HIV-infected women, respectively. The data show that Weck-Cel sponges, if premoistened, can be used to collect rectal fluids nontraumatically and to obtain quantitative information about concentrations of immunoglobulins and specific antibodies on rectal mucosal surfaces.

  16. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    PubMed

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  17. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG-6-Dependent Stem Cell Activation and Macrophage Switch.

    PubMed

    Di, Guohu; Du, Xianli; Qi, Xia; Zhao, Xiaowen; Duan, Haoyun; Li, Suxia; Xie, Lixin; Zhou, Qingjun

    2017-08-01

    To explore the role and mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in corneal epithelial wound healing in type 1 diabetic mice. Diabetic mice were treated with subconjunctival injections of BM-MSCs or recombinant tumor necrosis factor-α-stimulated gene/protein-6 (TSG-6). The corneal epithelial wound healing rate was examined by fluorescein staining. The mRNA and protein expression levels of TSG-6 were measured by quantitative RT-PCR and Western blot. The infiltrations of leukocytes and macrophages were analyzed by flow cytometry and immunofluoresence staining. The effect of TSG-6 was further evaluated in cultured limbal epithelial stem/progenitor cells, macrophages, and diabetic mice by short hairpin RNA (shRNA) knockdown. Local MSC transplantation significantly promoted diabetic corneal epithelial wound healing, accompanied by elevated corneal TSG-6 expression, increased corneal epithelial cell proliferation, and attenuated inflammatory response. Moreover, in cultured human limbal epithelial stem/progenitor cells, TSG-6 enhanced the colony-forming efficiency, stimulated mitogenic proliferation, and upregulated the expression level of ΔNp63. Furthermore, in diabetic mouse cornea and in vitro macrophage culture, TSG-6 alleviated leukocyte infiltration and promoted the polarization of recruited macrophages to anti-inflammatory M2 phenotypes with increased phagocytotic capacity. In addition, the promotion of epithelial stem/progenitor cell activation and macrophage polarization by MSC transplantation was largely abrogated by shRNA knockdown of TSG-6. This study provided the first evidence of TSG-6 secreted by MSCs promoting corneal epithelial wound healing in diabetic mice through activating corneal epithelial stem/progenitor cells and accelerating M2 macrophage polarization.

  18. Evaluation of nasal IgA secretion in normal subjects by nasal spray and aspiration.

    PubMed

    Fujimoto, Chisa; Kido, Hiroshi; Sawabuchi, Takako; Mizuno, Dai; Hayama, Masaki; Yanagawa, Hiroaki; Takeda, Noriaki

    2009-06-01

    Nasal washing (NW) is a popular method for collecting human nasal lavage fluid. However, for NW the subject must be trained, and the method is unsuitable for field studies on untrained subjects. To overcome this problem, we have developed an easy and painless method, a nasal spray and aspiration (NSA) method. This method is different from NW in that the nasal cavity is misted over with saline, and the nasal lavage fluid is aspirated from the nostrils through a silicon tube. First, nasal lavage fluid was obtained twice by NSA with an interval of a week between lavages to evaluate intraindividual variability, and the IgA and protein levels in the nasal lavage fluid were measured by enzyme-linked immunosorbent assay and bicinchoninic acid assay, respectively. Next, the IgA value determined by NSA was compared with that by NW in another 12 normal subjects 2 days after NSA. In 10 normal subjects, mean volume of saline sprayed into the nose was 0.46+/-0.15 ml (mean+/-S.D.). Mean volume of aspirated nasal lavage fluid containing both sprayed saline and nasal secretion was 0.44+/-0.37 ml. The mean IgA level/mg protein in the nasal lavage fluid determined by NSA was 112+/-18 microg/mg protein at the first and 99+/-20 at the second times of measurement, being highly reproducible. The mean value by NSA was 114+/-19 microg/mg protein, being almost the same as that by NW of 99+/-27. These findings suggest that the IgA level/mg protein in nasal lavage fluid determined by NSA instead of NW might be useful for assessing the variability of nasal IgA secretion.

  19. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma

    PubMed Central

    Hong, Gyong Hwa; Kwon, Hyouk-Soo; Lee, Kyoung Young; Ha, Eun Hee; Moon, Keun-Ai; Kim, Seong Who; Oh, Wonil; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2017-01-01

    Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses. PMID:28127050

  20. The FhaB/FhaC two-partner secretion system is involved in adhesion of Acinetobacter baumannii AbH12O-A2 strain

    PubMed Central

    Pérez, A.; Merino, M.; Rumbo-Feal, S.; Álvarez-Fraga, L.; Vallejo, J. A.; Beceiro, A.; Ohneck, E. J.; Mateos, J.; Fernández-Puente, P.; Actis, L. A.; Poza, M.; Bou, G.

    2017-01-01

    ABSTRACT Acinetobacter baumannii is a hospital-acquired pathogen that shows an extraordinary capacity to stay in the hospital environment. Adherence of the bacteria to eukaryotic cells or to abiotic surfaces is the first step for establishing an infection. The A. baumannii strain AbH12O-A2 showed an exceptional ability to adhere to A549 epithelial cells. The AbFhaB/FhaC 2-partner secretion (TPS) system involved in adhesion was discovered after the screening of the recently determined A. baumannii AbH12O-A2 strain genome (CP009534.1). The AbFhaB is a large exoprotein which transport to the bacterial surface is mediated by the AbFhaC protein. In the present study, the role of this TPS system in the AbH12O-A2 adherence phenotype was investigated. The functional inactivation of this 2-partner secretion system was addressed by analyzing the outer membrane vesicles (OMV) proteomic profile from the wild-type strain and its derivative mutant AbH12O-A2ΔfhaC demonstrating that AbFhaB is no longer detected in the absence of AbFhaC. Scanning electron microscopy (SEM) and adhesion experiments demonstrated that inactivation of the AbFhaB/FhaC system significantly decreases bacterial attachment to A549 alveolar epithelial cells. Moreover, it has been demonstrated that this 2-partner secretion system is involved in fibronectin-mediated adherence of the A. baumannii AbH12O-A2 isolate. Finally, we report that the AbFhaB/FhaC system is involved in virulence when tested using invertebrate and vertebrate hosts. These data suggest the potential role that this AbFhaB/FhaC secretion system could play in the pathobiology of A. baumannii. PMID:27858524

  1. The FhaB/FhaC two-partner secretion system is involved in adhesion of Acinetobacter baumannii AbH12O-A2 strain.

    PubMed

    Pérez, A; Merino, M; Rumbo-Feal, S; Álvarez-Fraga, L; Vallejo, J A; Beceiro, A; Ohneck, E J; Mateos, J; Fernández-Puente, P; Actis, L A; Poza, M; Bou, G

    2017-08-18

    Acinetobacter baumannii is a hospital-acquired pathogen that shows an extraordinary capacity to stay in the hospital environment. Adherence of the bacteria to eukaryotic cells or to abiotic surfaces is the first step for establishing an infection. The A. baumannii strain AbH12O-A2 showed an exceptional ability to adhere to A549 epithelial cells. The AbFhaB/FhaC 2-partner secretion (TPS) system involved in adhesion was discovered after the screening of the recently determined A. baumannii AbH12O-A2 strain genome (CP009534.1). The AbFhaB is a large exoprotein which transport to the bacterial surface is mediated by the AbFhaC protein. In the present study, the role of this TPS system in the AbH12O-A2 adherence phenotype was investigated. The functional inactivation of this 2-partner secretion system was addressed by analyzing the outer membrane vesicles (OMV) proteomic profile from the wild-type strain and its derivative mutant AbH12O-A2ΔfhaC demonstrating that AbFhaB is no longer detected in the absence of AbFhaC. Scanning electron microscopy (SEM) and adhesion experiments demonstrated that inactivation of the AbFhaB/FhaC system significantly decreases bacterial attachment to A549 alveolar epithelial cells. Moreover, it has been demonstrated that this 2-partner secretion system is involved in fibronectin-mediated adherence of the A. baumannii AbH12O-A2 isolate. Finally, we report that the AbFhaB/FhaC system is involved in virulence when tested using invertebrate and vertebrate hosts. These data suggest the potential role that this AbFhaB/FhaC secretion system could play in the pathobiology of A. baumannii.

  2. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

    PubMed

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2017-06-01

    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. HK2 Proximal Tubule Epithelial Cells Synthesize and Secrete Plasma Proteins Predominantly Through the Apical Surface.

    PubMed

    Zhao, Ke-Wei; Murray, Elsa J Brochmann; Murray, Samuel S

    2017-04-01

    Renal proximal tubule epithelial cells (PTECs) are known to reabsorb salts and small plasma proteins filtered through Bowman's capsule. Following acute kidney injury, PTECs assume some characteristics of hepatocytes in producing various plasma proteins. We now demonstrate that even at a resting state, a PTEC cell line, HK2 expresses mRNAs for and synthesizes and secretes plasma proteins in a complex with complement C3, an α 2 -macroglobulin family chaperone, including albumin, transferrin, α 1 -antitrypsin, α 1 -antichymotrypsin, α 2 -HS-glycoprotein, ceruloplasmin, haptoglobin, C1-inhibitor, secreted phosphoprotein-24, and insulin-like growth factor-1. When grown on transwell inserts, HK2 cells predominantly secrete (∼90%) plasma proteins into the apical side and a smaller fraction into the basolateral side as determined by ELISA assays. When cultured in the presence of exogenous cytokines such as IL1β, IL6, TNFα, BMP2, or TGFβ1, HK2 cell mRNA expressions for plasma proteins were variably affected whereas basolateral secretions were elevated to or in excess of those of the apical level. In addition, HK2 cells produce proTGFβ1 with its intact N-terminal latency associated peptide and latent-TGF-β-binding proteins. The complex cannot be dissociated under conditions of SDS, heating, and electrophoresis. Moreover, HK2 cells maintain their ability to quickly uptake exogenously added serum proteins from the culture medium, as if they are recognized differently by the endocytic receptors. These results provide new insight into the hepatization of PTECs. In addition to their unique uptake of plasma proteins and salts from the filtrate, they are a source of urinary proteins under normal conditions as wells as in chronic and acute kidney diseases. J. Cell. Biochem. 118: 924-933, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. cGMP inhibition of type 3 phosphodiesterase is the major mechanism by which C-type natriuretic peptide activates CFTR in the shark rectal gland

    PubMed Central

    De Jonge, Hugo R.; Tilly, Ben C.; Hogema, Boris M.; Pfau, Daniel J.; Kelley, Catherine A.; Kelley, Megan H.; Melita, August M.; Morris, Montana T.; Viola, Ryan M.

    2013-01-01

    The in vitro perfused rectal gland of the dogfish shark (Squalus acanthias) and filter-grown monolayers of primary cultures of shark rectal gland (SRG) epithelial cells were used to analyze the signal transduction pathway by which C-type natriuretic peptide (CNP) stimulates chloride secretion. CNP binds to natriuretic receptors in the basolateral membrane, elevates cellular cGMP, and opens cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in the apical membrane. CNP-provoked chloride secretion was completely inhibitable by the nonspecific protein kinase inhibitor staurosporine and the PKA inhibitor H89 but insensitive to H8, an inhibitor of type I and II isoforms of cGMP-dependent protein kinase (cGKI and cGKII). CNP-induced secretion could not be mimicked by nonhydrolyzable cGMP analogs added alone or in combination with the protein kinase C activator phorbolester, arguing against a role for cGK or for cGMP-induced PKC signaling. We failed to detect a dogfish ortholog of cGKII by molecular cloning and affinity chromatography. However, inhibitors of the cGMP-inhibitable isoform of phosphodiesterase (PDE3) including milrinone, amrinone, and cilostamide but not inhibitors of other PDE isoenzymes mimicked the effect of CNP on chloride secretion in perfused glands and monolayers. CNP raised cGMP and cAMP levels in the SRG epithelial cells. This rise in cAMP as well as the CNP and amrinone-provoked chloride secretion, but not the rise in cGMP, was almost completely blocked by the Gαi-coupled adenylyl cyclase inhibitor somatostatin, arguing against a role for cGMP cross-activation of PKA in CNP action. These data provide molecular, functional, and pharmacological evidence for a CNP/cGMP/PDE3/cAMP/PKA signaling cascade coupled to CFTR in the SRG. PMID:24259420

  5. Oxytocin and tumor necrosis factor alpha stimulate expression of prostaglandin E2 synthase and secretion of prostaglandin E2 by luminal epithelial cells of the porcine endometrium during early pregnancy.

    PubMed

    Waclawik, Agnieszka; Blitek, Agnieszka; Ziecik, Adam J

    2010-10-01

    Oxytocin (OXT) and tumor necrosis factor α (TNF) have been implicated in the control of luteolysis by stimulating endometrial secretion of luteolytic prostaglandin F(2α) (PGF(2α)). Nevertheless, OXT concentration in porcine uterine lumen increases markedly on days 11-12 of pregnancy, and TNF is expressed in endometrium during pregnancy. The objective of the study was to determine the effect of OXT and TNF on expression of the enzymes involved in PG synthesis: PG-endoperoxide synthase 2 (PTGS2), PGE(2) synthase (mPGES-1) and PGF synthase, and PGE(2) receptor (PTGER2), as well as on PG secretion by endometrial luminal epithelial cells (LECs) on days 11-12 of the estrous cycle and pregnancy. LECs isolated from gilts on days 11-12 of the estrous cycle (n=8) and pregnancy (n=7) were treated with OXT (100  nmol/l) and TNF (0.6  nmol/l) for 24  h. OXT increased PTGS2 mRNA and mPGES-1 protein contents, as well as PGE(2) secretion but only on days 11-12 of pregnancy. TNF stimulated PTGS2 and mPGES-1 mRNA, as well as mPGES-1 protein expression and PGE(2) release on days 11-12 of pregnancy and the estrous cycle. In addition, expressions of PTGER2 and PTGER4 were determined in corpus luteum (CL). Abundance of PTGER2 mRNA and PTGER4 protein in CL was upregulated on day 14 of pregnancy versus day 14 of the estrous cycle. This study indicates that TNF and OXT regulate PGE(2) synthesis in LECs during early pregnancy. PGE(2) secreted by LECs, after reaching ovaries, could have a luteoprotective effect through luteal PTGER2 and PTGER4, or may directly promote uterine function and conceptus development.

  6. Pancreatic bicarbonate secretion involves two proton pumps.

    PubMed

    Novak, Ivana; Wang, Jing; Henriksen, Katrine L; Haanes, Kristian A; Krabbe, Simon; Nitschke, Roland; Hede, Susanne E

    2011-01-07

    Pancreas secretes fluid rich in digestive enzymes and bicarbonate. The alkaline secretion is important in buffering of acid chyme entering duodenum and for activation of enzymes. This secretion is formed in pancreatic ducts, and studies to date show that plasma membranes of duct epithelium express H(+)/HCO(3)(-) transporters, which depend on gradients created by the Na(+)/K(+)-ATPase. However, the model cannot fully account for high-bicarbonate concentrations, and other active transporters, i.e. pumps, have not been explored. Here we show that pancreatic ducts express functional gastric and non-gastric H(+)-K(+)-ATPases. We measured intracellular pH and secretion in small ducts isolated from rat pancreas and showed their sensitivity to H(+)-K(+) pump inhibitors and ion substitutions. Gastric and non-gastric H(+)-K(+) pumps were demonstrated on RNA and protein levels, and pumps were localized to the plasma membranes of pancreatic ducts. Quantitative analysis of H(+)/HCO(3)(-) and fluid transport shows that the H(+)-K(+) pumps can contribute to pancreatic secretion in several species. Our results call for revision of the bicarbonate transport physiology in pancreas, and most likely other epithelia. Furthermore, because pancreatic ducts play a central role in several pancreatic diseases, it is of high relevance to understand the role of H(+)-K(+) pumps in pathophysiology.

  7. Novel aspects of cholinergic regulation of colonic ion transport

    PubMed Central

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  8. The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR

    PubMed Central

    Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela

    2016-01-01

    Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344

  9. [Role of phosphorylation of MARCKS-PSD in the secretion of MUC5AC induced by cold temperatures in human airway epithelial cells].

    PubMed

    Li, Minchao; Perelman, Juliy M; Zhou, Xiangdong

    2012-05-01

    To construct phosphorylation sites domain (PSD) mutant of myristoylated alaninerich C kinase substrate (MARCKS) and explore the role of transient receptor potential melastatin 8 cation channels (TRPM8) and MARCKS in cold-induced synthesis and exocytosis of mucin (MUC) 5AC. Human placental cDNA was used as a template to amplify the full coding region of MARCKS cDNA by PCR. Ser159, Ser 163, Ser 167, Ser 170 in the PSD were mutated to aspartic acids by an overlap PCR method. The resultant PSD mutant cDNA and the wild-type MARCKS cDNA were each subcloned into a mammalian expression vector pcDNA3.0. Recombinant constructs were confirmed by restriction enzyme digestion analysis and DNA sequencing. In intervention experiments, cells were pretreated with the TRPM8 channel antagonist BCTC and transfected with MARCKS-PSD mutant cDNA, and thereafter cold stimulation was applied. The levels of MUC5AC were measured by immunofluorescence and ELISA to clarify the roles of TRPM8 and PSD mutant on the synthesis and secretion of MUC5AC induced by cold, respectively. Restriction enzyme digestion analysis and DNA sequencing revealed that the pcDNA3.0- MARCKS and pcDNA3.0-MARCKS-PSD mutants were successfully constructed. The levels of intracellular and secreted MUC5AC of cold treated group were significantly higher than those of control group (P<0.05). BCTC attenuated the cold-induced synthesis and secretion of MUC5AC when compared with cold treated group (P<0.05). Transfection of 16HBE cells with the MARCKS-PSD mutant cDNA resulted in significant inhibition of mucin secretion in response to cold, and significantly higher level of intracellular MUC5AC than that of control group (P<0.01), whereas transfection with the vector DNA or the wild-type MARCKS cDNA had no effect on the mucin synthesis and secretion in response to cold (P>0.05). TRPM8 and phosphorylation of MARCKS-PSD mediates the cold-induced exocytosis of MUC5AC by airway epithelial cells.

  10. Physical stress and bacterial colonization

    PubMed Central

    Otto, Michael

    2014-01-01

    Bacterial surface colonizers are subject to a variety of physical stresses. During the colonization of human epithelia such as on the skin or the intestinal mucosa, bacteria mainly have to withstand the mechanical stress of being removed by fluid flow, scraping, or epithelial turnover. To that end, they express a series of molecules to establish firm attachment to the epithelial surface, such as fibrillar protrusions (pili) and surface-anchored proteins that bind to human matrix proteins. In addition, some bacteria – in particular gut and urinary tract pathogens – use internalization by epithelial cells and other methods such as directed inhibition of epithelial turnover to ascertain continued association with the epithelial layer. Furthermore, many bacteria produce multi-layered agglomerations called biofilms with a sticky extracellular matrix, providing additional protection from removal. This review will give an overview over the mechanisms human bacterial colonizers have to withstand physical stresses with a focus on bacterial adhesion. PMID:25212723

  11. Forces and dynamics in epithelial domes of controlled size and shape

    NASA Astrophysics Data System (ADS)

    Latorre-Ibars, Ernest; Casares, Laura; Gomez-Gonzalez, Manuel; Uroz, Marina; Arroyo, Marino; Trepat, Xavier

    Mechanobiology of epithelia plays a central role in morphogenesis, wound healing, and tumor progression. Its current understanding relies on mechanical measurements on flat epithelial layers. However, most epithelia in vivo exhibit a curved 3D shape enclosing a pressurized lumen. Using soft micropatterned substrates we produce massive parallel arrays of epithelial domes with controlled size and basal shape. We measure epithelial traction, tension, and luminal pressure in epithelial domes. The local stress tensor on the freestanding epithelial membrane is then mapped by combining measured luminal pressure and local curvature. We show that tension and cell shape are highly anisotropic and vary along the meridional position of the domes. Finally, we establish constitutive relations between shape, tension, and pressure during perturbations of the contractile machinery, osmotic shocks, and spontaneous fluctuations of dome volume. Our findings contradict a description of the epithelium as a fluid capillary surface. Cells in the dome are unable to relax into a uniform and isotropic tensional state through sub- and supra-cellular rearrangements. Mapping epithelial shape, tension, and pressure will enable quantitative studies of mechanobiology in 3D epithelia of controlled size and shape.

  12. Multiple joint metastasis of a transitional cell carcinoma in a dog.

    PubMed

    Colledge, Sarah L; Raskin, Rose E; Messick, Joanne B; Tiffany Reed, L; Wigle, William L; Balog, Kelley A

    2013-06-01

    An 8-year-old castrated male hound mix was referred to the Purdue University Veterinary Teaching Hospital for severe lameness, pollakiuria, and dyschezia. On presentation, the dog was nonweight bearing on the right rear limb and the right carpus was diffusely swollen. Synovial fluid analysis from the right carpus revealed a population of epithelial cells displaying marked anisocytosis, anisokaryosis, multinucleation, and prominent, variably sized nucleoli. A metastatic carcinoma with presumed prostatic or urothelial origin was diagnosed based on cytomorphology. Subsequent cytologic evaluation of peripheral lymph nodes revealed the presence of a similar neoplastic population. The dog was euthanized and synovial fluid from both stifle joints, as well as impression smears of the prostate gland, were collected. Carcinoma cells were identified in each stifle joint and in the prostate gland. Immunocytochemistry was performed on synovial fluid smears from 2 of the joints (right stifle and right carpus) and on impression smears of the prostate gland. The neoplastic population in the joints and prostate gland showed strong immunoreactivity to uroplakin III, a urothelial marker, indicating metastasis of a transitional cell carcinoma to multiple joints. In addition, evidence for epithelial to mesenchymal transition was identified using cytokeratin, an epithelial marker, and vimentin, a mesenchymal marker. A necropsy was performed and histopathology confirmed the presence of metastatic transitional cell carcinoma in various tissues. This case illustrates the importance of considering metastatic disease when a patient is presented with severe lameness and joint pain, and the clinical utility of synovial fluid cytology for diagnosis of metastasis in these cases. © 2013 American Society for Veterinary Clinical Pathology.

  13. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes.

    PubMed

    Lee, Linda; Zhang, Ye; Ozar, Brittany; Sensen, Christoph W; Schriemer, David C

    2016-09-02

    Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.

  14. The ultrastructure of imaginal disc cells in primary cultures and during cell aggregation in continuous cell lines.

    PubMed

    Peel, D J; Johnson, S A; Milner, M J

    1990-01-01

    We have examined the ultrastructure of cellular vesicles in primary cultures of wing imaginal disc cells of Drosophila melanogaster. These cells maintain the apico-basal polarity characteristic of epithelial cells. The apical surfaces secrete extracellular material into the lumen of the vesicle from plasma membrane plaques at the tip of microvilli. During the course of one passage, cells from the established cell lines grow to confluence and then aggregate into discrete condensations joined by aligned bridges of cells. Cells in these aggregates are tightly packed, and there appears to be a loss of the epithelial polarity characteristic of the vesicle cells. Elongated cell extensions containing numerous microtubules are found in aggregates, and we suggest that these may be epithelial feet involved in the aggregation process. Virus particles are commonly found both within the nucleus and the cytoplasm of cells in the aggregates.

  15. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio.

    PubMed

    Wang, Yanbo; Yan, Xuxia; Fu, Linglin

    2013-01-01

    Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp.

  16. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio

    PubMed Central

    Wang, Yanbo; Yan, Xuxia; Fu, Linglin

    2013-01-01

    Nano-selenium (Se), with its high bioavailability and low toxicity, has attracted wide attention for its potential application in the prevention of oxidative damage in animal tissues. However, the effect of nano-Se of different sizes on the intestinal epithelial cells of the crucian carp (Carassius auratus gibelio) is poorly understood. Our study showed that different sizes and doses of nano-Se have varied effects on the cellular protein contents and the enzyme activities of secreted lactate dehydrogenase, intracellular sodium potassium adenosine triphosphatase, glutathione peroxidase, and superoxide dismutase. It was also indicated that nano-Se had a size-dependent effect on the primary intestinal epithelial cells of the crucian carp. Thus, these findings may bring us a step closer to understanding the size effect and the bioavailability of nano-Se on the intestinal tract of the crucian carp. PMID:24204137

  17. Studies of the kallikrein-kinin system and prostaglandins in epithelial ion transport.

    PubMed

    Margolius, H S; Halushka, P V; Chao, J; Miller, D H; Cuthbert, A W; Spayne, J A

    1985-01-01

    Tissue kallikrein of colon mucosa is synthesized rapidly, and this synthetic process can now be examined in relation to hormonal or dietary manipulations or pathological circumstances that affect intestinal ion transport. Although the identical renal tissue enzyme is known to be enriched in membranes of distal convoluted tubular epithelial cells, the precise localization of the intestinal enzyme is uncertain. An understanding of the intestinal cellular locale of kallikrein will help in defining its local role. That tissue kallikreins can be inhibited by monovalent cations and some drugs (e.g., amiloride) and that kallikrein inhibitors affect cation transport across epithelial surfaces containing such enzymes must be reconciled with the new observations of kinin-induced chloride secretion. Extracellular calcium, eicosanoid synthesis, and cyclic nucleotide production are involved in the secretory response to kinins, although an absolute requirement for intact eicosanoid synthesis may not exist.

  18. A single-cell survey of the small intestinal epithelium

    PubMed Central

    Haber, Adam L.; Biton, Moshe; Rogel, Noga; Herbst, Rebecca H.; Shekhar, Karthik; Smillie, Christopher; Burgin, Grace; Delorey, Toni M.; Howitt, Michael R.; Katz, Yarden; Tirosh, Itay; Beyaz, Semir; Dionne, Danielle; Zhang, Mei; Raychowdhury, Raktima; Garrett, Wendy S.; Rozenblatt-Rosen, Orit; Shi, Hai Ning; Yilmaz, Omer; Xavier, Ramnik J.; Regev, Aviv

    2018-01-01

    Intestinal epithelial cells (IECs) absorb nutrients, respond to microbes, provide barrier function and help coordinate immune responses. We profiled 53,193 individual epithelial cells from mouse small intestine and organoids, and characterized novel subtypes and their gene signatures. We showed unexpected diversity of hormone-secreting enteroendocrine cells and constructed their novel taxonomy. We distinguished between two tuft cell subtypes, one of which expresses the epithelial cytokine TSLP and CD45 (Ptprc), the pan-immune marker not previously associated with non-hematopoietic cells. We also characterized how cell-intrinsic states and cell proportions respond to bacterial and helminth infections. Salmonella infection caused an increase in Paneth cells and enterocytes abundance, and broad activation of an antimicrobial program. In contrast, Heligmosomoides polygyrus caused an expansion of goblet and tuft cell populations. Our survey highlights new markers and programs, associates sensory molecules to cell types, and uncovers principles of gut homeostasis and response to pathogens. PMID:29144463

  19. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy.

    PubMed

    Orphanou, Charlotte-Maria; Walton-Williams, Laura; Mountain, Harry; Cassella, John

    2015-07-01

    Blood, saliva, semen and vaginal secretions are the main human body fluids encountered at crime scenes. Currently presumptive tests are routinely utilised to indicate the presence of body fluids, although these are often subject to false positives and limited to particular body fluids. Over the last decade more sensitive and specific body fluid identification methods have been explored, such as mRNA analysis and proteomics, although these are not yet appropriate for routine application. This research investigated the application of ATR FT-IR spectroscopy for the detection and discrimination of human blood, saliva, semen and vaginal secretions. The results demonstrated that ATR FT-IR spectroscopy can detect and distinguish between these body fluids based on the unique spectral pattern, combination of peaks and peak frequencies corresponding to the macromolecule groups common within biological material. Comparisons with known abundant proteins relevant to each body fluid were also analysed to enable specific peaks to be attributed to the relevant protein components, which further reinforced the discrimination and identification of each body fluid. Overall, this preliminary research has demonstrated the potential for ATR FT-IR spectroscopy to be utilised in the routine confirmatory screening of biological evidence due to its quick and robust application within forensic science. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Oxytocin and vasopressin secretion from the rat hypothalamo-neurohypophysial system is stimulated by triptorelin.

    PubMed

    Juszczak, Marlena; Roszczyk, Magdalena

    2012-01-01

    Several observations have suggested that the secretion of neurohypophysial hormones could be modified by gonadotropin- releasing hormone (GnRH). Since, in medical practice, more often than GnRH itself, its analogues are used, the present study was undertaken to investigate the influence of the GnRH agonist - triptorelin on oxytocin (OT) and vasopressin (AVP) release from the rat hypothalamo-neurohypophysial (H-N) system both in vitro and in vivo. Male rats served as donors of the H-N explants, which were placed in 1 mL of Krebs-Ringer fluid (nKRF) and incubated successively in: 1 - nKRF (B1); 2 - incubation fluid as B1 enriched with an excess amount (56 mM) of K(+) (S1); 3 - incubation fluid as B1 enriched with an appropriate concentration of triptorelin, i.e., 10(-11) - 10(-5) M (B2); and 4 - incubation fluid as S1 enriched with the same concentrations of triptorelin (S2). After 20 minutes of incubation, each medium (B1, S1, B2, S2) was collected and frozen before OT and AVP estimation by the RIA. During in vivo experiment, animals were infused intracerebroventricularly (icv) with triptorelin, at a concentration of 10(-7) M, and 20 minutes later they were decapitated. The neurohypophysis was dissected from the brain and blood plasma samples were collected and frozen for further OT and AVP RIA assays. The GnRH agonist - triptorelin stimulates both OT and AVP release from isolated H-N system at concentrations of 10(-9)-10(-5) M. The strongest effect was displayed by triptorelin at a concentration of 10(-7) M. Under the conditions of K(+) stimulation, triptorelin affects neither OT, nor AVP secretion in vitro. When infused icv, triptorelin, at a concentration of 10(-7) M, significantly stimulated both OT and AVP secretion into the blood. Triptorelin may play a role as a neuromodulator contributing to the functional regulation of OT and AVP secretion in the rat.

Top