Science.gov

Sample records for epithelial gene expression

  1. Transcriptional Regulation of Tlr11 Gene Expression in Epithelial Cells*

    PubMed Central

    Cai, Zhenyu; Shi, Zhongcheng; Sanchez, Amir; Zhang, Tingting; Liu, Mingyao; Yang, Jianghua; Wang, Fen; Zhang, Dekai

    2009-01-01

    As sensors of invading microorganisms, Toll-like receptors (TLRs) are expressed not only on macrophages and dendritic cells (DCs) but also on epithelial cells. In the TLR family, Tlr11 appears to have the unique feature in that it is expressed primarily on epithelial cells, although it is also expressed on DCs and macrophages. Here, we demonstrate that transcription of the Tlr11 gene is regulated through two cis-acting elements, one Ets-binding site and one interferon regulatory factor (IRF)-binding site. The Ets element interacts with the epithelium-specific transcription factors, ESE-1 and ESE-3, and the IRF motif interacts with IRF-8. Thus, Tlr11 expression on epithelial cells is regulated by the transcription factors that are presumably distinct from transcription factors that regulate the expression of TLRs in innate immune cells such as macrophages and DCs. Our results imply that the distinctive transcription regulatory machinery for TLRs on epithelium may represent a promising new avenue for the development of epithelia-specific therapeutic interventions. PMID:19801549

  2. Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma

    PubMed Central

    Singhania, Akul; Rupani, Hitasha; Jayasekera, Nivenka; Lumb, Simon; Hales, Paul; Gozzard, Neil; Davies, Donna E.

    2017-01-01

    Management of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study. Differences between central and peripheral airways were evaluated using transcriptomic analysis (Affymetrix HG U133 plus 2.0 GeneChips) of epithelial brushings obtained from severe asthma patients (N = 17) and healthy volunteers (N = 23). Results were validated in an independent cohort (N = 10) by real-time quantitative PCR. The IL-13 disease signature that is associated with an asthmatic phenotype was upregulated in severe asthmatics compared to healthy controls but was predominantly evident within the peripheral airways, as were genes related to mast cell presence. The gene expression response associated with glucocorticosteroid therapy (i.e. FKBP5) was also upregulated in severe asthmatics compared to healthy controls but, in contrast, was more pronounced in central airways. Moreover, an altered epithelial repair response (e.g. FGFBP1) was evident across both airway sites reflecting a significant aspect of disease in severe asthma unadressed by current therapies. A transcriptomic approach to understand epithelial activation in severe asthma has thus highlighted the need for better-targeted therapy to the peripheral airways in severe asthma, where the IL-13 disease signature persists despite treatment with currently available therapy. PMID:28045928

  3. Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma.

    PubMed

    Singhania, Akul; Rupani, Hitasha; Jayasekera, Nivenka; Lumb, Simon; Hales, Paul; Gozzard, Neil; Davies, Donna E; Woelk, Christopher H; Howarth, Peter H

    2017-01-01

    Management of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study. Differences between central and peripheral airways were evaluated using transcriptomic analysis (Affymetrix HG U133 plus 2.0 GeneChips) of epithelial brushings obtained from severe asthma patients (N = 17) and healthy volunteers (N = 23). Results were validated in an independent cohort (N = 10) by real-time quantitative PCR. The IL-13 disease signature that is associated with an asthmatic phenotype was upregulated in severe asthmatics compared to healthy controls but was predominantly evident within the peripheral airways, as were genes related to mast cell presence. The gene expression response associated with glucocorticosteroid therapy (i.e. FKBP5) was also upregulated in severe asthmatics compared to healthy controls but, in contrast, was more pronounced in central airways. Moreover, an altered epithelial repair response (e.g. FGFBP1) was evident across both airway sites reflecting a significant aspect of disease in severe asthma unadressed by current therapies. A transcriptomic approach to understand epithelial activation in severe asthma has thus highlighted the need for better-targeted therapy to the peripheral airways in severe asthma, where the IL-13 disease signature persists despite treatment with currently available therapy.

  4. Mucin gene expression in intestinal epithelial cells in Crohn's disease

    PubMed Central

    Buisine, M; Desreumaux, P; Leteurtre, E; Copin, M; Colombel, J; Porchet, N; Aubert, J

    2001-01-01

    BACKGROUND—Crohn's disease (CD) is a chronic relapsing inflammatory bowel disease of unknown origin. It is characterised by chronic mucosal ulcerations which affect any part of the intestine but most commonly are found in the ileum and proximal colon.
AIMS—Studies were undertaken to provide information regarding cell specific expression of mucin genes in the ileum of patients with CD.
PATIENTS AND METHODS—Expression of mucin genes was analysed in the ileal mucosa of patients with CD and controls by in situ hybridisation and immunohistochemistry.
RESULTS—In healthy ileal mucosa, patients with CD showed a pattern identical to normal controls with main expression of MUC2 and MUC3, lesser expression of MUC1 and MUC4, and no expression of MUC5AC, MUC5B, MUC6, or MUC7. In the involved mucosa, the pattern was somewhat comparable although heterogeneous to that observed in healthy ileal mucosa. Importantly, a particular mucin gene expression pattern was observed in ileal mucosa close to the ulcer margins in ulcer associated cell lineage, with the appearance of MUC5AC and MUC6 mRNAs and peptides, which are normally restricted to the stomach (MUC5AC and MUC6) and duodenum (MUC6), and disappearance of MUC2.
CONCLUSIONS—Our results suggest that gel forming mucins (more particularly MUC5AC and MUC6) may have a role in epithelial wound healing after mucosal injury in inflammatory bowel diseases in addition to mucosal protection.


Keywords: mucins; MUC genes; Crohn's disease; ulcer associated cell lineage PMID:11559653

  5. Epithelial expression and chromosomal location of human TLE genes: Implications for notch signaling and neoplasia

    SciTech Connect

    Liu, Yanling; Dehni, Ghassan; Stifani, S.

    1996-01-01

    The TLE genes are the human homologues of Drosophila groucho, a member of the Notch signaling pathway. This pathway controls a number of different cell-fate choices in invertebrates and vertebrates. We are interested in investigating the functions of the TLE gene family during epithelial determination and carcinogenesis. We show that expression of individual TLE genes correlates with immature epithelial cells that are progressing toward their terminally differentiated state, suggesting a role during epithelial differentiation. In both normal tissues and conditions resulting from incorrect or incomplete maturation events, such as metaplastic and neoplastic transformations, TLE expression is elevated and coincides with Notch expression, implicating these molecules in the maintenance of the undifferentiated state in epithelial cells. We also show that TLE1 and TLE2 are organized in a tandem array at chromosomal location 19p13.3, while TLE3 maps to 15q22. 26 refs., 4 figs.

  6. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    PubMed Central

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  7. Influence of sex on gene expression in human corneal epithelial cells

    PubMed Central

    Suzuki, Tomo; Richards, Stephen M.; Liu, Shaohui; Jensen, Roderick V.

    2009-01-01

    Purpose Sex-associated differences have been identified in the anatomy, physiology and pathophysiology of the human cornea. We hypothesize that many of these differences are due to fundamental variations in gene expression. Our objective in this study was to determine whether such differences exist in human corneal epithelial cells both in vivo and in vitro. Methods Human corneal epithelial cells were isolated from the corneoscleral rims of male and female donors. Cells were processed either directly for RNA extraction, or first cultured in phenol red-free keratinocyte serum-free media. The RNA samples were examined for differentially expressed mRNAs by using of CodeLink Bioarrays and Affymetrix GeneChips. Data were analyzed with GeneSifter.Net software. Results Our results demonstrate that sex significantly influences the expression of over 600 genes in human corneal epithelial cells in vivo. These genes are involved in a broad spectrum of biologic processes, molecular functions and cellular components, such as metabolic processes, DNA replication, cell migration, RNA binding, oxidoreductase activity and nucleoli. We also identified significant, sex-related effects on gene expression in human corneal epithelial cells in vitro. However, with few exceptions (e.g., X- and Y-linked genes), these sex-related differences in gene expression in vitro were typically different than those in vivo. Conclusions Our findings support our hypothesis that sex-related differences exist in the gene expression of human corneal epithelial cells. Variations in gene expression may contribute to sex-related differences in the prevalence of certain corneal diseases. PMID:20011627

  8. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  9. Gene expression profiling of epithelial ovarian cancer reveals key genes and pathways associated with chemotherapy resistance.

    PubMed

    Zhang, M; Luo, S C

    2016-01-22

    The aim of this study is to analyze gene expression data to identify key genes and pathways associated with resistance to platinum-based chemotherapy in epithelial ovarian cancer (EOC) and to improve clinical treatment strategies. The gene expression data set was downloaded from Gene Expression Omnibus and included 12 chemotherapy-resistant EOC samples and 16 chemotherapy-sensitive EOC samples. A differential analysis was performed to screen out differentially expressed genes (DEGs). A functional enrichment analysis was conducted for the DEGs using the database for annotation, visualization, and integration discovery. A protein-protein interaction (PPI) network was constructed with information from the human protein reference database. Pathway-pathway interactions were determined with a test based on the hypergeometric distribution. A total of 1564 DEGs were identified in chemotherapy-sensitive EOC, including 654 upregulated genes and 910 downregulated genes. The top three upregulated genes were HIST1H3G, AKT3, and RTN3, while the top three downregulated genes were NBLA00301, TRIM62, and EPHA5. A Gene Ontology enrichment analysis showed that cell adhesion, biological adhesion, and intracellular signaling cascades were significantly enriched in the DEGs. A KEGG pathway enrichment analysis revealed that the calcium, mitogen-activated protein kinase, and B cell receptor signaling pathways were significantly over-represented in the DEGs. A PPI network containing 101 interactions was acquired. The top three hub genes were RAC1, CAV1, and BCL2. Five modules were identified from the PPI network. Taken together, these findings could advance the understanding of the molecular mechanisms underlying intrinsic chemotherapy resistance in EOC.

  10. The global effect of heat on gene expression in cultured bovine mammary epithelial cells.

    PubMed

    Li, Lian; Sun, Yu; Wu, Jie; Li, Xiaojuan; Luo, Man; Wang, Genlin

    2015-03-01

    Heat stress (HS) in hot climates is a major cause that strongly negatively affects milk yield in dairy cattle, leading to immeasurable economic loss. The heat stress response of bovine mammary epithelial cells (BMECs) is one component of the acute systemic response to HS. Gene networks of BMECs respond to environmental heat loads with both intra- and extracellular signals that coordinate cellular and whole-animal metabolism. Our experimental objective was to characterize the direct effects of heat stress on the cultured bovine mammary epithelial cells by microarray analyses. The data identified 2716 differentially expressed genes in 43,000 transcripts which were changed significantly between heat-stressed and normal bovine mammary epithelial cells (fold change ≥2, P ≤ 0.001). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these differentially expressed genes are involved in different pathways that regulate cytoskeleton, cell cycle, and stress response processes. Our study provides an overview of gene expression profile and the interaction between gene expression and heat stress, which will lead to further understanding of the potential effects of heat stress on bovine mammary glands.

  11. Adiponectin differentially affects gene expression in human mammary epithelial and breast cancer cells.

    PubMed

    Treeck, O; Lattrich, C; Juhasz-Boess, I; Buchholz, S; Pfeiler, G; Ortmann, O

    2008-10-21

    Serum levels of adiponectin are inversely associated with breast cancer risk. In this study, its effect on growth and gene expression of MCF-7 breast cancer cells and MCF-10A human mammary epithelial cells was compared. The antiproliferative effect of adiponectin on MCF-10A cells was more pronounced and was accompanied by elevated transcript levels of caspase 1, ERbeta2, ERbeta5, TR2 and USP2. Our data suggest that upregulation of genes with known growth inhibitory or apoptotic functions in mammary epithelial cells might contribute to the protective action of this adipocytokine.

  12. Influence of fatty acid diets on gene expression in rat mammary epithelial cells.

    PubMed

    Medvedovic, M; Gear, R; Freudenberg, J M; Schneider, J; Bornschein, R; Yan, M; Mistry, M J; Hendrix, H; Karyala, S; Halbleib, D; Heffelfinger, S; Clegg, D J; Anderson, M W

    2009-06-10

    This study examines the impact of dietary fatty acids on regulation of gene expression in mammary epithelial cells before and during puberty. Diets primarily consisted of n-9 monounsaturated fatty acids (olive oil), n-6 polyunsaturated fatty acids (safflower), saturated acids (butter), and the reference AIN-93G diet (soy oil). The dietary regimen mimics the repetitive nature of fatty acid exposure in Western diets. Diet-induced changes in gene expression were examined in laser capture microdissected mammary ductal epithelial cells at day of weaning and end of puberty. PCNA immunohistochemistry analysis compared proliferation rates between diets. Genes differentially expressed between each test diets and the reference diet were significantly enriched by cell cycle genes. Some of these genes were involved in activation of the cell cycle pathway or the G2/M check point pathway. Although there were some differences in the level of differential expression, all diets showed qualitatively the same pattern of differential expression compared to the reference diet. Cluster analysis identified an expanded set of cell cycle as well as immunity and sterol metabolism related clusters of differentially expressed genes. Fatty acid-enriched diets significantly upregulated proliferation above normal physiological levels during puberty. Higher cellular proliferation during puberty caused by enriched fatty acid diets poses a potential increase risk of mammary cancer in later life. The human homologs of 27 of 62 cell cycle rat genes are included in a human breast cancer cluster of 45 cell cycle genes, further emphasizing the importance of our findings in the rat model.

  13. BAX gene over-expression via nucleofection to induce apoptosis in human lens epithelial cells.

    PubMed

    Fang, Yanwen; Mo, Xiaofen; Luo, Yi; Lu, Yi

    2012-09-01

    Despite significant advances in cataract surgery techniques, posterior capsule opacification (PCO) remains a common complication. In PCO, remaining epithelial cells cloud the lens capsule and impair postoperative vision. This in vitro study was designed to investigate the potential of a gene-based approach, specifically over-expression of the proapoptotic BAX gene, to prevent PCO. Human lens epithelial cells (HLECs) were transfected by nucleofection with a plasmid encoding a fusion protein of green fluorescent protein and human BAX. The expression levels of BAX and its antiapoptotic counterpart BCL2 were determined by realtime reverse transcription polymerase chain reaction, Western blotting and immunofluorescence. BAX over-expression-induced cell death was analyzed by fluorescence-activated cell sorting using the Annexin V antibody. Fluorescence microscopy and transmission electron microscopy were used to assess changes in morphology and ultrastructure. Differential expression of the downstream apoptosis-related factor, caspase 3, was detected by Western blotting. Nucleofection efficiency was high (nearly 80%). BAX-transfected HLECs showed remarkably enhanced BAX gene expression and BAX:BCL2 ratio, but relatively little change in endogenous BCL2 expression. BAX over-expression also led to significant cytotoxicity, induction of apoptosis-related characteristics and activation of caspase 3. In conclusion, our results indicate that BAX gene over-expression can trigger cell death in HLECs via an apoptotic pathway. Thus, BAX may be a promising candidate for human gene therapy to treat PCO.

  14. Macrophages regulate expression of α1,2-fucosyltransferase genes in human endometrial epithelial cells.

    PubMed

    Nakamura, Hitomi; Jasper, Melinda J; Hull, M Louise; Aplin, John D; Robertson, Sarah A

    2012-04-01

    The epithelial cell surface of the endometrium undergoes substantial biochemical changes to allow embryo attachment and implantation in early pregnancy. We hypothesized that tissue macrophages influence these events to promote uterine receptivity. To investigate the role of macrophages in regulating epithelial cell expression of genes linked to glycan-mediated embryo adhesion, Ishikawa, RL95-2 and HEC1A endometrial epithelial cells were cultured alone or with unactivated or lipopolysaccharide-activated monocytic U937 cells, separated using transwell inserts. Expression of mRNAs encoding two α1,2-fucosyltransferases (FUT1, FUT2) was increased in all three epithelial cell lines following co-culture with U937 cells, and was associated with increased fucosylation of cell surface glycoproteins detected using lectins from Ulex europaeus (UEA-1) and Dolichos biflorus (DBA). FUT1 induction by U937 cells also occurred in primary endometrial epithelial cells collected in luteal but not proliferative phase. Activation of the interleukin-6 (IL6)/leukemia inhibitory factor (LIF) cytokine signaling pathway with phosphorylation of STAT3 and elevated SOCS3 mRNA expression was evident in epithelial cells stimulated by U937 co-culture. Several recombinant macrophage-secreted cytokines exerted stimulatory or inhibitory effects on FUT1 and FUT2 mRNA expression, and the macrophage-derived cytokine LIF partially replicated the effects of U937 cells on both FUT1 and FUT2 expression and UEA-1 and DBA lectin reactivity in Ishikawa cells. These results suggest that macrophage-derived factors including LIF might facilitate development of an implantation-receptive endometrium by regulating surface glycan structures in epithelial cells. Abnormal phenotypes or altered abundance of uterine macrophages could contribute to the pathophysiology of primary unexplained infertility in women.

  15. Differential gene expression in normal and transformed human mammary epithelial cells in response to oxidative stress

    PubMed Central

    Cortes, Diego F; Sha, Wei; Hower, Valerie; Blekherman, Greg; Laubenbacher, Reinhard; Akman, Steven; Torti, Suzy V; Shulaev, Vladimir

    2011-01-01

    Oxidative stress plays a key role in breast carcinogenesis. To investigate whether normal and malignant breast epithelial cells differ in their responses to oxidative stress, we examined the global gene expression profiles of three cell types, representing cancer progression from a normal to a malignant stage, under oxidative stress. Normal human mammary epithelial cells (HMEC), an immortalized cell line (HMLER-1), and a tumorigenic cell line (HMLER-5), were exposed to increased levels of reactive oxygen species (ROS) by treatment with glucose oxidase. Functional analysis of the metabolic pathways enriched with differentially expressed genes demonstrates that normal and malignant breast epithelial cells diverge substantially in their response to oxidative stress. While normal cells exhibit the up-regulation of antioxidant mechanisms, cancer cells are unresponsive to the ROS insult. However, the gene expression response of normal HMEC cells under oxidative stress is comparable to that of the malignant cells under normal conditions, indicating that altered redox status is persistent in breast cancer cells, which makes them resistant to increased generation of ROS. This study discusses some of the possible adaptation mechanisms of breast cancer cells under persistent oxidative stress that differentiate them from the response to acute oxidative stress in normal mammary epithelial cells. PMID:21397008

  16. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  17. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    PubMed

    Huff, Ryan D; Hsu, Alan C-Y; Nichol, Kristy S; Jones, Bernadette; Knight, Darryl A; Wark, Peter A B; Hansbro, Philip M; Hirota, Jeremy A

    2017-01-01

    The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  18. Keratin gene expression in non-epithelial tissues. Detection with polymerase chain reaction.

    PubMed Central

    Traweek, S. T.; Liu, J.; Battifora, H.

    1993-01-01

    Keratin filament are characteristically present in epithelial cells and tumors, but have also been detected in many normal and neoplastic non-epithelial cell types using immunohistochemical techniques. To investigate the validity of this seemingly aberrant protein expression, we applied the highly sensitive polymerase chain reaction (PCR) technique to study keratin gene expression in a variety of non-epithelial tissues. Total RNA was extracted from nine samples of leiomyosarcoma, four non-Hodgkin's lymphoma, seven normal bone marrows, normal lymph node, normal peripheral blood cells, freshly isolated and cultured endothelial cells, cultured skin fibroblasts, and the myeloid leukemia cell line HL-60. Amplification primers and probes for the three most primitive keratin types (8, 18, and 19) were synthesized using published gene sequences. RNA from the breast carcinoma cell line MCF-7, known to be rich in all three keratins, was used as positive control. Concurrently run actin primers were used to confirm RNA integrity. After an initial cycle with reverse transcriptase, PCR amplification was performed for 30 cycles. Southern blots of the PCR products showed variably intense bands corresponding to keratin 8 and 18 gene products in all samples, offering conclusive evidence of keratin gene expression in cells of both stromal and hematopoietic derivation. However, keratin 19 gene transcription was not nearly so ubiquitous, being detected in normal fibroblasts and endothelial cells, two of four non-Hodgkin's lymphoma and four of nine leiomyosarcoma, but not in normal lymph node, peripheral blood cells, HL-60 cells, or any of the seven normal bone marrows examined. Dilutional experiments showed PCR to be highly sensitive in the detection of keratin 19 gene expression, capable of registering one MCF-7 cell in 10(6) HL-60 cells. These studies show that variable levels of keratin 8 and 18 gene expression may be detected by PCR in a wide variety of non-epithelial tissues

  19. Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells.

    PubMed Central

    Diamond, G; Russell, J P; Bevins, C L

    1996-01-01

    Mammals continually confront microbes at mucosal surfaces. A current model suggests that epithelial cells contribute to defense at these sites, in part through the production of broad-spectrum antibiotic peptides. Previous studies have shown that invertebrates can mount a host defense response characterized by the induction in epithelia] cells of a variety of antibiotic proteins and peptides when they are challenged with microorganisms, bacterial cell wall/membrane components, or traumatic injury [Boman, H.G. & Hultmark, D. (1987) Annu. Rev. Microbiol. 41, 103-126J. However, factors that govern the expression of similar defense molecules in mammalian epithelial cells are poorly understood. Here, a 13-fold induction of the endogenous gene encoding tracheal antimicrobial peptide was found to characterize a host response of tracheal epithelia] cells (TECs) exposed to bacterial lipopolysaccharide (LPS). Northern blot data indicated that TECs express CD14, a well-characterized LPS-binding protein known to mediate many LPS responses. A monoclonal antibody to CD14 blocked the observed tracheal antimicrobial peptide induction by LPS under serum-free conditions. Together the data support that CD14 of epithelial cell origin mediates the LPS induction of an antibiotic peptide gene in TECs, providing evidence for the active participation of epithelial cells in the host's local defense response to bacteria. Furthermore, the data allude to a conservation of this host response in evolution and suggest that a similar inducible pathway of host defense is prevalent at mucosal surfaces of mammals. Images Fig. 1 Fig. 2 Fig. 3 PMID:8643545

  20. Profiling of differentially expressed genes in human gingival epithelial cells and fibroblasts by DNA microarray.

    PubMed

    Abiko, Yoshimitsu; Hiratsuka, Koichi; Kiyama-Kishikawa, Michiko; Tsushima, Katsumasa; Ohta, Mitsuhiro; Sasahara, Hiroshige

    2004-03-01

    Gingival epithelial cells and fibroblasts play important roles and have a harmonious relationship under normal and disease conditions, but the precise differences between theses cells remain unknown. To study the differences in gene expression between human gingival epithelial cells (HGE) and human gingival fibroblasts (HGF), mRNA was recovered from primary cultured cells and analyzed using cDNA microarray technology. The cDNA retro-transcribed from equal quantities of mRNA was labeled with the fluorescent dyes Cy5 and Cy3. The mixed probes were then hybridized with 7276 genes on the DNA microarray, after which fluorescence signals were scanned and further analyzed using GeneSpring software. Of the 7276 genes screened, 469 showed expression levels that were more than 2-fold greater in HGE than in HGF, while 293 showed expression levels that were more than 2-fold greater in HGF than in HGE. To confirm the reliability of the microarray results, keratin K5 and desmocolin, and vimentin and gp130, which showed higher mRNA levels in HGE and HGF, respectively, were selected and their mRNA levels were further analyzed by RT-PCR. The results of RT-PCR correlated well with those of microarray analysis. The present findings using a DNA microarray to detect differences in the gene expression profiles of HGE and HGF may be beneficial for genetic diagnosis of periodontal tissue metabolism and periodontal diseases.

  1. Enhanced gene expression in epithelial cells transfected with amino acid-substituted gemini nanoparticles.

    PubMed

    Yang, Peng; Singh, Jagbir; Wettig, Shawn; Foldvari, Marianna; Verrall, Ronald E; Badea, Ildiko

    2010-08-01

    Gemini surfactants are versatile gene delivery agents because of their ability to bind and compact DNA and their low cellular toxicity. Through modification of the alkyl tail length and the chemical nature of the spacer, new compounds can be generated with the potential to improve the efficiency of gene delivery. Amino acid (glycine and lysine) and dipeptide (glycyl-lysine and lysyl-lysine) substituted spacers of gemini surfactants were synthesized, and their efficiency of gene delivery was assessed in epithelial cells for topical cutaneous and mucosal applications. Three different epithelial cell lines, COS-7, PAM212 and Sf 1Ep cells, were transfected with plasmid DNA encoding for interferon gamma and green fluorescent protein complexed with the amino acid-substituted gemini compounds in the presence of 1,2 dioleyl-sn-glycero-phosphatidyl-ethanolamine as a helper lipid. Gene expression was quantified by ELISA. Size, zeta potential and circular dichroism measurements were used to characterize the plasmid-gemini (PG) and plasmid-gemini surfactant-helper lipid (PGL) complexes. Gene expression was found to increase up to 72h and then declined by the 7th day. In general, the glycine-substituted surfactant showed consistently high gene expression in all three cell lines. Results of physicochemical and spectroscopic studies of the complexes indicate that substitution of the gemini spacer does not interfere with compaction of the DNA. The superior performance of these spacer-substituted gemini surfactants might be attributed to their better biocompatibility compared to the surfactants possessing unsubstituted spacers.

  2. Influence of fatty acid diets on gene expression in rat mammary epithelial cells

    PubMed Central

    Medvedovic, M.; Gear, R.; Freudenberg, J. M.; Schneider, J.; Bornschein, R.; Yan, M.; Mistry, M. J.; Hendrix, H.; Karyala, S.; Halbleib, D.; Heffelfinger, S.; Clegg, D. J.; Anderson, M. W.

    2009-01-01

    Background: This study examines the impact of dietary fatty acids on regulation of gene expression in mammary epithelial cells before and during puberty. Methods: Diets primarily consisted of n-9 monounsaturated fatty acids (olive oil), n-6 polyunsaturated fatty acids (safflower), saturated acids (butter), and the reference AIN-93G diet (soy oil). The dietary regimen mimics the repetitive nature of fatty acid exposure in Western diets. Diet-induced changes in gene expression were examined in laser capture microdissected mammary ductal epithelial cells at day of weaning and end of puberty. PCNA immunohistochemistry analysis compared proliferation rates between diets. Results: Genes differentially expressed between each test diets and the reference diet were significantly enriched by cell cycle genes. Some of these genes were involved in activation of the cell cycle pathway or the G2/M check point pathway. Although there were some differences in the level of differential expression, all diets showed qualitatively the same pattern of differential expression compared to the reference diet. Cluster analysis identified an expanded set of cell cycle as well as immunity and sterol metabolism related clusters of differentially expressed genes. Conclusion: Fatty acid-enriched diets significantly upregulated proliferation above normal physiological levels during puberty. Higher cellular proliferation during puberty caused by enriched fatty acid diets poses a potential increase risk of mammary cancer in later life. The human homologs of 27 of 62 cell cycle rat genes are included in a human breast cancer cluster of 45 cell cycle genes, further emphasizing the importance of our findings in the rat model. PMID:19351911

  3. β-Sitosterol Reduces the Expression of Chemotactic Cytokine Genes in Cystic Fibrosis Bronchial Epithelial Cells

    PubMed Central

    Lampronti, Ilaria; Dechecchi, Maria C.; Rimessi, Alessandro; Bezzerri, Valentino; Nicolis, Elena; Guerrini, Alessandra; Tacchini, Massimo; Tamanini, Anna; Munari, Silvia; D’Aversa, Elisabetta; Santangelo, Alessandra; Lippi, Giuseppe; Sacchetti, Gianni; Pinton, Paolo; Gambari, Roberto; Agostini, Maddalena; Cabrini, Giulio

    2017-01-01

    Extracts from Nigella arvensis L. seeds, which are widely used as anti-inflammatory remedies in traditional medicine of Northern Africa, were able to inhibit the expression of the pro-inflammatory neutrophil chemokine Interleukin (IL)-8 in Cystic Fibrosis (CF) bronchial epithelial IB3-1 cells exposed to the Gram-negative bacterium Pseudomonas aeruginosa. The chemical composition of the extracts led to the identification of three major components, β-sitosterol, stigmasterol, and campesterol, which are the most abundant phytosterols, cholesterol-like molecules, usually found in plants. β-sitosterol (BSS) was the only compound that significantly reproduced the inhibition of the P. aeruginosa-dependent expression of IL-8 at nanomolar concentrations. BSS was tested in CF airway epithelial CuFi-1 cells infected with P. aeruginosa. BSS (100 nM), showed a significant and consistent inhibitory activity on expression of the P. aeruginosa-stimulated expression chemokines IL-8, GRO-α GRO-β, which play a pivotal role in the recruitment of neutrophils in CF inflamed lungs. Preliminary mechanistic analysis showed that BSS partially inhibits the P. aeruginosa-dependent activation of Protein Kinase C isoform alpha, which is known to be involved in the transmembrane signaling activating IL-8 gene expression in bronchial epithelial cells. These data indicate BSS as a promising molecule to control excessive lung inflammation in CF patients. PMID:28553226

  4. Hormonal regulation of H19 gene expression in prostate epithelial cells.

    PubMed

    Berteaux, N; Lottin, S; Adriaenssens, E; Van Coppenolle, F; Van Coppennolle, F; Leroy, X; Coll, J; Dugimont, T; Curgy, J-J

    2004-10-01

    The H19 gene is transcribed in an mRNA-like noncoding RNA. When tumors of various organs or cell types are considered, H19 oncogene or tumor-suppressor status remains controversial. To address the potential regulation of H19 gene expression by an androgen steroid hormone (DHT: dihydrotestosterone) or by a peptidic hormone (PRL: prolactin), we performed experiments in rats systemically treated with chemical mediators. This range of in vivo experiments demonstrated that chronic hyperprolactinemia upregulated the H19 expression in epithelial and stromal cells whereas DHT downregulated the gene. PRL and DHT appeared to be opposite mediators in the H19 RNA synthesis. We investigated these hormonal effects in three human prostate epithelial cell lines. In LNCaP cancer cells, the opposite effect of PRL and DHT was corroborated. However, in normal cells (PNT1A), H19 remained insensitive to the hormones in fetal calf serum (FCS) medium but became responsive in a serum-stripped medium. In the DU-145 cancer cell line, tested for its androgen-independence and aggressiveness, the hormones had no effect on H19 expression whatever the culture conditions. Finally, we demonstrated that PRL upregulated the H19 expression in LNCaP cells by the JAK2-STAT5 transduction pathway. We conclude that H19 expression is regulated by both a peptidic and a male steroid hormone.

  5. Proteases and oxidant stress control organic dust induction of inflammatory gene expression in lung epithelial cells.

    PubMed

    Natarajan, Kartiga; Gottipati, Koteswara R; Berhane, Kiflu; Samten, Buka; Pendurthi, Usha; Boggaram, Vijay

    2016-10-22

    Persistant inflammatory responses to infectious agents and other components in organic dust underlie lung injury and development of respiratory diseases. Organic dust components responsible for eliciting inflammation and the mechanisms by which they cause lung inflammation are not fully understood. We studied the mechanisms by which protease activities in poultry dust extracts and intracellular oxidant stress induce inflammatory gene expression in A549 and Beas2B lung epithelial cells. The effects of dust extracts on inflammatory gene expression were analyzed by quantitative polymerase chain reaction (qPCR), enzyme linked immunosorbent (ELISA) and western blot assays. Oxidant stress was probed by dihydroethidium (DHE) labeling, and immunostaining for 4-hydroxynonenal (4-HNE). Effects on interleukin-8 (IL-8) promoter regulation were determined by transient transfection assay. Dust extracts contained trypsin and elastase activities, and activated protease activated receptor (PAR)-1 and -2. Serine protease inhibitors and PAR-1 or PAR-2 knockdown suppressed inflammatory gene induction. Dust extract induction of IL-8 gene expression was associated with increased DHE-fluorescence and 4-HNE staining, and antioxidants suppressed inflammatory gene induction. Protease inhibitors and antioxidants suppressed protein kinase C and NF-κB activation and induction of IL-8 promoter activity in cells exposed to dust extract. Our studies demonstrate that proteases and intracellular oxidants control organic dust induction of inflammatory gene expression in lung epithelial cells. Targeting proteases and oxidant stress may serve as novel approaches for the treatment of organic dust induced lung diseases. This is the first report on the involvement of oxidant stress in the induction of inflammatory gene expression by organic dust.

  6. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer.

    PubMed

    Spira, Avrum; Beane, Jennifer E; Shah, Vishal; Steiling, Katrina; Liu, Gang; Schembri, Frank; Gilman, Sean; Dumas, Yves-Martine; Calner, Paul; Sebastiani, Paola; Sridhar, Sriram; Beamis, John; Lamb, Carla; Anderson, Timothy; Gerry, Norman; Keane, Joseph; Lenburg, Marc E; Brody, Jerome S

    2007-03-01

    Lung cancer is the leading cause of death from cancer in the US and the world. The high mortality rate (80-85% within 5 years) results, in part, from a lack of effective tools to diagnose the disease at an early stage. Given that cigarette smoke creates a field of injury throughout the airway, we sought to determine if gene expression in histologically normal large-airway epithelial cells obtained at bronchoscopy from smokers with suspicion of lung cancer could be used as a lung cancer biomarker. Using a training set (n = 77) and gene-expression profiles from Affymetrix HG-U133A microarrays, we identified an 80-gene biomarker that distinguishes smokers with and without lung cancer. We tested the biomarker on an independent test set (n = 52), with an accuracy of 83% (80% sensitive, 84% specific), and on an additional validation set independently obtained from five medical centers (n = 35). Our biomarker had approximately 90% sensitivity for stage 1 cancer across all subjects. Combining cytopathology of lower airway cells obtained at bronchoscopy with the biomarker yielded 95% sensitivity and a 95% negative predictive value. These findings indicate that gene expression in cytologically normal large-airway epithelial cells can serve as a lung cancer biomarker, potentially owing to a cancer-specific airway-wide response to cigarette smoke.

  7. Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells

    PubMed Central

    Kucknoor, Ashwini; Mundodi, Vasanthakrishna; Alderete, John F.

    2007-01-01

    Summary Trichomonas vaginalis, an ancient protist, colonizes the vaginal mucosa causing trichomonosis, a vaginitis that sometimes leads to severe health complications. Preparatory to colonization of the vagina is the adhesion to vaginal epithelial cells (VECs) by trichomonads. We hypothesized that VECs alter the gene expression to form a complex signalling cascade in response to trichomonal adherence. In order to identify the genes that are upregulated, we constructed a subtraction cDNA library after contact with parasites that is enriched for differentially expressed genes from the immortalized MS-74 VECs. Sixty cDNA clones were sequenced and to our knowledge for the first time, differentially regulated genes were identified in response to early trichomonal infection. The identified genes were found to encode functional proteins with specific functions associated with cell structure maintenance and extracellular matrix components, proinflammatory molecules and apoptosis. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) confirmed expression of selected genes. Further, cyclooxygenase 2 (COX-2) protein expression was analysed using Western blot and immunofluorescence assays. Data suggest that p38 mitogen-activated protein (MAP) kinase and tyrosine kinases play a role in COX-2 induction. Finally, T. vaginalis and Tritrichomonas foetus but not Pentatrichomonas hominis induce expression of COX-2. This is a first attempt at elucidating the basis of interaction of trichomonads with host cells and the corresponding host responses triggered by the parasites. PMID:15888089

  8. Molecular cloning, expression, and regulation of the ovalbumin gene in pigeon oviduct epithelial cells.

    PubMed

    Zhang, H; Lu, L Z; Chen, L; Tao, Z R; Chen, F; Zhong, S L; Liu, Y L; Tian, Y; Yan, P S

    2014-01-10

    The full-length pigeon ovalbumin (OVA) gene cDNA was cloned and sequenced by reverse transcription-polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends. A 386-amino acid protein was predicted for the obtained sequence, which had 67% identity with the chicken protein. Similar to chicken OVA, the pigeon OVA gene is a non-inhibitory serine protease inhibitor. Quantitative PCR analysis revealed that pigeon OVA mRNA was highly expressed in the oviduct, and trace amounts were detected in other tissues. During the reproductive cycle, pigeon oviduct OVA mRNA expression reached its peak during the egg-laying stage, decreased with brooding, and then increased again during the squab-feeding period. Moreover, the relative OVA expression level in pigeon oviduct epithelial cells could be upregulated by a constant concentration of steroid hormones.

  9. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha.

    PubMed

    Davison, James M; Lickwar, Colin R; Song, Lingyun; Breton, Ghislain; Crawford, Gregory E; Rawls, John F

    2017-04-06

    Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.

  10. Meta-Analysis of Gene Expression Signatures Defining the Epithelial to Mesenchymal Transition during Cancer Progression

    PubMed Central

    Gröger, Christian J.; Grubinger, Markus; Waldhör, Thomas; Vierlinger, Klemens; Mikulits, Wolfgang

    2012-01-01

    The epithelial to mesenchymal transition (EMT) represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis. Numerous gene expression studies (GES) have been conducted to obtain transcriptome signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type. GES of EMT induced via transforming growth factor-β and tumor necrosis factor-α treatment yielded uniformly defined clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into the mechanisms that are governing carcinoma progression. PMID:23251436

  11. Gene expression profiles of human proximal tubular epithelial cells in proteinuric nephropathies.

    PubMed

    Rudnicki, M; Eder, S; Perco, P; Enrich, J; Scheiber, K; Koppelstätter, C; Schratzberger, G; Mayer, B; Oberbauer, R; Meyer, T W; Mayer, G

    2007-02-01

    In kidney disease renal proximal tubular epithelial cells (RPTEC) actively contribute to the progression of tubulointerstitial fibrosis by mediating both an inflammatory response and via epithelial-to-mesenchymal transition. Using laser capture microdissection we specifically isolated RPTEC from cryosections of the healthy parts of kidneys removed owing to renal cell carcinoma and from kidney biopsies from patients with proteinuric nephropathies. RNA was extracted and hybridized to complementary DNA microarrays after linear RNA amplification. Statistical analysis identified 168 unique genes with known gene ontology association, which separated patients from controls. Besides distinct alterations in signal-transduction pathways (e.g. Wnt signalling), functional annotation revealed a significant upregulation of genes involved in cell proliferation and cell cycle control (like insulin-like growth factor 1 or cell division cycle 34), cell differentiation (e.g. bone morphogenetic protein 7), immune response, intracellular transport and metabolism in RPTEC from patients. On the contrary we found differential expression of a number of genes responsible for cell adhesion (like BH-protocadherin) with a marked downregulation of most of these transcripts. In summary, our results obtained from RPTEC revealed a differential regulation of genes, which are likely to be involved in either pro-fibrotic or tubulo-protective mechanisms in proteinuric patients at an early stage of kidney disease.

  12. Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells.

    PubMed

    Wilson, Sylvia M; Shen, Pamela; Rider, Christopher F; Traves, Suzanne L; Proud, David; Newton, Robert; Giembycz, Mark A

    2009-11-15

    Prostacyclin receptor (IP-receptor) agonists display anti-inflammatory and antiviral activity in cell-based assays and in preclinical models of asthma and chronic obstructive pulmonary disease. In this study, we have extended these observations by demonstrating that IP-receptor activation also can enhance the ability of glucocorticoids to induce genes with anti-inflammatory activity. BEAS-2B bronchial epithelial cells stably transfected with a glucocorticoid response element (GRE) luciferase reporter were activated in a concentration-dependent manner by the glucocorticoid dexamethasone. An IP-receptor agonist, taprostene, increased cAMP in these cells and augmented luciferase expression at all concentrations of dexamethasone examined. Analysis of the concentration-response relationship that described this effect showed that taprostene increased the magnitude of transcription without affecting the potency of dexamethasone and was, thus, steroid-sparing in this simple system. RO3244794, an IP-receptor antagonist, and oligonucleotides that selectively silenced the IP-receptor gene, PTGIR, abolished these effects of taprostene. Infection of BEAS-2B GRE reporter cells with an adenovirus vector encoding a highly selective inhibitor of cAMP-dependent protein kinase (PKA) also prevented taprostene from enhancing GRE-dependent transcription. In BEAS-2B cells and primary cultures of human airway epithelial cells, taprostene and dexamethasone interacted either additively or cooperatively in the expression of three glucocorticoid-inducible genes (GILZ, MKP-1, and p57(kip2)) that have anti-inflammatory potential. Collectively, these data show that IP-receptor agonists can augment the ability of glucocorticoids to induce anti-inflammatory genes in human airway epithelial cells by activating a cAMP/PKA-dependent mechanism. This observation may have clinical relevance in the treatment of airway inflammatory diseases that are either refractory or respond suboptimally to

  13. Modulation of mitochondrial gene expression in pulmonary epithelial cells exposed to oxidants.

    PubMed Central

    Janssen, Y M; Driscoll, K E; Timblin, C R; Hassenbein, D; Mossman, B T

    1998-01-01

    Oxidants are important in the regulation of signal transduction and gene expression. Multiple classes of genes are transcriptionally activated by oxidants and are implicated in different phenotypic responses. In the present study, we performed differential mRNA display to elucidate genes that are induced or repressed after exposure of rat lung epithelial (RLE) cells to H2O2 or crocidolite asbestos, a pathogenic mineral that generates oxidants. After 8 or 24 hr of exposure, RNA was extracted, reverse transcribed, and amplified by polymerase chain reaction with degenerate primers to visualize alterations in gene expression. The seven clones obtained were sequenced and encoded the mitochondrial genes, NADH dehydrogenase subunits ND5 and ND6, and 16S ribosomal RNA. Evaluation of their expression by Northern blot analysis revealed increased expression of 16S rRNA after 1 or 2 hr of exposure to H2O2. At later time periods (4 and 24 hr), mRNA levels of 16S rRNA and NADH dehydrogenase were decreased in H2O2-treated RLE cells when compared to sham controls. Crocidolite asbestos caused increases in 16S rRNA levels after 8 hr of exposure, whereas after 24 hr of exposure to asbestos, 16S rRNA levels were decreased in comparison to sham controls. In addition to these oxidants, the nitric oxide generator spermine NONOate caused similar decreases in NADH dehydrogenase mRNA levels after 4 hr of exposure. The present data and previous studies demonstrated that all oxidants examined resulted in apoptosis in RLE cells during the time frame where alterations of mitochondrial gene expression were observed. As the mitochondrion is a major organelle that controls apoptosis, alterations in expression of mitochondrial genes may be involved in the regulation of apoptosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9788897

  14. In vitro cadmium effects on ECM gene expression in human bronchial epithelial cells.

    PubMed

    Baroni, Tiziano; Lilli, Cinzia; Bellucci, Catia; Luca, Giovanni; Mancuso, Francesca; Fallarino, Francesca; Falabella, Giulia; Arato, Iva; Calvitti, Mario; Marinucci, Lorella; Muzi, Giacomo; Dell'Omo, Marco; Gambelunghe, Angela; Bodo, Maria

    2015-03-01

    Occupational and environmental exposure to the heavy metal cadmium (Cd) and its inhalation from cigarette smoke are associated with emphysema. Many growth factors and extracellular matrix (ECM) cell signaling molecules are directly involved in the epithelial bronchial cell pathway. This study investigated the direct effects of Cd on the production of several ECM components in human bronchial epithelial cells (BEAS-2B) that were exposed in vitro for 48 h to sub-toxic and toxic concentrations of Cd. Gene expression of collagens, metalloproteases (MMPs), integrins, tenascin and vitronectin were quantified by RT-PCR. To study apoptosis cascade, annexin assay and cellular cytotoxicity by MTT assay were performed. We also investigated whether an imbalance in the TGFβ/TGFβ receptor (TGFβR) expression mediated Cd effects. The results showed the sub-toxic Cd dose significantly increased tenascin, vitronectin, β1 and β5 integrin gene expression. The toxic Cd dose decreased type IV and V collagen, α1, α2 and β3 integrins. Both Cd doses down-regulated type I collagen and up-regulated metalloproteases. Each Cd dose caused a different imbalance in the complex pattern of TGFβ and its receptors. No alteration in classic apoptotic marker protein expression was observed in presence of the sub-toxic dose of Cd, suggesting this metal alters ECM production without apoptotic activation. In conclusion, all these data show even sub-toxic Cd dose exposure alters the specific gene expression of several ECM components that are crucially implicated in the mechanical properties of lung parenchyma supporting the hypothesis that the mechanism underlying Cd-induced lung disease may involve downstream changes in TGFβ/TGFβR signaling.

  15. Gene expression profiling reveals epithelial mesenchymal transition (EMT) genes can selectively differentiate eribulin sensitive breast cancer cells.

    PubMed

    Dezső, Zoltán; Oestreicher, Judith; Weaver, Amy; Santiago, Stephanie; Agoulnik, Sergei; Chow, Jesse; Oda, Yoshiya; Funahashi, Yasuhiro

    2014-01-01

    Eribulin mesylate is a synthetic macrocyclic ketone analog of the marine sponge natural product halichondrin B. Eribulin is a mechanistically unique inhibitor of microtubule dynamics. In this study, we investigated whether selective signal pathways were associated with eribulin activity compared to paclitaxel, which stabilizes microtubules, based on gene expression profiling of cell line panels of breast, endometrial, and ovarian cancer in vitro. We determined the sets of genes that were differentially altered between eribulin and paclitaxel treatment in breast, endometrial, and ovarian cancer cell line panels. Our unsupervised clustering analyses revealed that expression profiles of gene sets altered with treatments were correlated with the in vitro antiproliferative activities of the drugs. Several tubulin isotypes had significantly lower expression in cell lines treated with eribulin compared to paclitaxel. Pathway enrichment analyses of gene sets revealed that the common pathways altered between treatments in the 3 cancer panels were related to cytoskeleton remodeling and cell cycle regulation. The epithelial-mesenchymal transition (EMT) pathway was enriched in genes with significantly altered expression between the two drugs for breast and endometrial cancers, but not for ovarian cancer. Expression of genes from the EMT pathway correlated with eribulin sensitivity in breast cancer and with paclitaxel sensitivity in endometrial cancer. Alteration of expression profiles of EMT genes between sensitive and resistant cell lines allowed us to predict drug sensitivity for breast and endometrial cancers. Gene expression analysis showed that gene sets that were altered between eribulin and paclitaxel correlated with drug in vitro antiproliferative activities in breast and endometrial cancer cell line panels. Among the panels, breast cancer provided the strongest differentiation between eribulin and paclitaxel sensitivities based on gene expression. In addition, EMT

  16. Epithelial-mesenchymal transdifferentiation and extracellular matrix gene expression in pleomorphic adenomas of the parotid salivary gland.

    PubMed

    Aigner, T; Neureiter, D; Völker, U; Belke, J; Kirchner, T

    1998-10-01

    Mesenchymal and epithelial cell differentiation are assumed to be dichotomic primary events in embryonic development. In this study, pleomorphic adenomas of the parotid gland were analysed as a model which shows morphological features of both epithelial and mesenchymal tissue types. Using matrix gene expression profiles as a supplementary criterion for the identification of cellular phenotypes, areas with unequivocal epithelial and mesenchymal differentiation could be demonstrated. Many areas displayed a transitional phenotype with cells showing both epithelial and mesenchymal features. The data provide evidence that epithelial-mesenchymal transitions represent the basic principle of the tisuse heterogeneity in pleomorphic adenomas. Thus, pleomorphic adenomas demonstrate the potential of adult (neoplastic) epithelial cells to transdifferentiate into mesenchymal cells in vivo.

  17. Gene-expression profiles of epithelial cells treated with EMD in vitro: analysis using complementary DNA arrays.

    PubMed

    Kapferer, I; Schmidt, S; Gstir, R; Durstberger, G; Huber, L A; Vietor, I

    2011-02-01

    During surgical periodontal treatment, EMD is topically applied in order to facilitate regeneration of the periodontal ligament, acellular cementum and alveolar bone. Suppresion of epithelial down-growth is essential for successful periodontal regeneration; however, the underlying mechanisms of how EMD influences epithelial wound healing are poorly understood. In the present study, the effects of EMD on gene-expression profiling in an epithelial cell line (HSC-2) model were investigated. Gene-expression modifications, determined using a comparative genome-wide expression-profiling strategy, were independently validated by quantitative real-time RT-PCR. Additionally, cell cycle, cell growth and in vitro wound-healing assays were conducted. A set of 43 EMD-regulated genes was defined, which may be responsible for the reduced epithelial down-growth upon EMD application. Gene ontology analysis revealed genes that could be attributed to pathways of locomotion, developmental processes and associated processes such as regulation of cell size and cell growth. Additionally, eight regulated genes have previously been reported to take part in the process of epithelial-to-mesenchymal transition. Several independent experimental assays revealed significant inhibition of cell migration, growth and cell cycle by EMD. The set of EMD-regulated genes identified in this study offers the opportunity to clarify mechanisms underlying the effects of EMD on epithelial cells. Reduced epithelial repopulation of the dental root upon periodontal surgery may be the consequence of reduced migration and cell growth, as well as epithelial-to-mesenchymal transition. © 2010 John Wiley & Sons A/S.

  18. Arsenic Exposure Perturbs Epithelial-Mesenchymal Cell Transition and Gene Expression In a Collagen Gel Assay

    PubMed Central

    Lencinas, Alejandro; Broka, Derrick M.; Konieczka, Jay H.; Klewer, Scott E.; Antin, Parker B.; Camenisch, Todd D.; Runyan, Raymond B.

    2010-01-01

    Arsenic is a naturally occurring metalloid and environmental contaminant. Arsenic exposure in drinking water is reported to cause cancer of the liver, kidneys, lung, bladder, and skin as well as birth defects, including neural tube, facial, and vasculogenic defects. The early embryonic period most sensitive to arsenic includes a variety of cellular processes. One key cellular process is epithelial-mesenchymal transition (EMT) where epithelial sheets develop into three-dimensional structures. An embryonic prototype of EMT is found in the atrioventricular (AV) canal of the developing heart, where endothelia differentiate to form heart valves. Effects of arsenic on this cellular process were examined by collagen gel invasion assay (EMT assay) using explanted AV canals from chicken embryo hearts. AV canals treated with 12.5–500 ppb arsenic showed a loss of mesenchyme at 12.5 ppb, and mesenchyme formation was completely inhibited at 500 ppb. Altered gene expression in arsenic-treated explants was investigated by microarray analysis. Genes whose expression was altered consistently at exposure levels of 10, 25, and 100 ppb were identified, and results showed that 25 ppb in vitro was particularly effective. Three hundred and eighty two genes were significantly altered at this exposure level. Cytoscape analysis of the microarray data using the chicken interactome identified four clusters of altered genes based on published relationships and pathways. This analysis identified cytoskeleton and cell adhesion–related genes whose disruption is consistent with an altered ability to undergo EMT. These studies show that EMT is sensitive to arsenic and that an interactome-based approach can be useful in identifying targets. PMID:20308225

  19. Multifactorial Patterns of Gene Expression in Colonic Epithelial Cells Predict Disease Phenotypes in Experimental Colitis

    PubMed Central

    Frantz, Aubrey L.; Bruno, Maria E.C.; Rogier, Eric W.; Tuna, Halide; Cohen, Donald A.; Bondada, Subbarao; Chelvarajan, R. Lakshman; Brandon, J. Anthony; Jennings, C. Darrell; Kaetzel, Charlotte S.

    2012-01-01

    Background The pathogenesis of inflammatory bowel disease (IBD) is complex and the need to identify molecular biomarkers is critical. Epithelial cells play a central role in maintaining intestinal homeostasis. We previously identified 5 “signature” biomarkers in colonic epithelial cells (CEC) that are predictive of disease phenotype in Crohn’s disease. Here we investigate the ability of CEC biomarkers to define the mechanism and severity of intestinal inflammation. Methods We analyzed expression of RelA, A20, pIgR, TNF and MIP-2 in CEC of mice with DSS acute colitis or T cell-mediated chronic colitis. Factor analysis was used to combine the 5 biomarkers into 2 multifactorial principal components (PCs). PC scores for individual mice were correlated with disease severity. Results For both colitis models, PC1 was strongly weighted toward RelA, A20 and pIgR, and PC2 was strongly weighted toward TNF and MIP-2, while the contributions of other biomarkers varied depending on the etiology of inflammation. Disease severity was correlated with elevated PC2 scores in DSS colitis and reduced PC1 scores in T cell transfer colitis. Down-regulation of pIgR was a common feature observed in both colitis models and was associated with altered cellular localization of pIgR and failure to transport IgA. Conclusions A multifactorial analysis of epithelial gene expression may be more informative than examining single gene responses in IBD. These results provide insight into the homeostatic and pro-inflammatory functions of CEC in IBD pathogenesis and suggest that biomarker analysis could be useful for evaluating therapeutic options for IBD patients. PMID:23070952

  20. Expression of epithelial-mesenchymal transition-related genes increases with copy number in multiple cancer types

    PubMed Central

    Qu, Hong

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a cellular process through which epithelial cells transform into mesenchymal cells. EMT-implicated genes initiate and promote cancer metastasis because mesenchymal cells have greater invasive and migration capacities than epithelial cells. In this pan-cancer analysis, we explored the relationship between gene expression changes and copy number variations (CNVs) for EMT-implicated genes. Based on curated 377 EMT-implicated genes from the literature, we identified 212 EMT-implicated genes associated with more frequent copy number gains (CNGs) than copy number losses (CNLs) using data from The Cancer Genome Atlas (TCGA). Then by correlating these CNV data with TCGA gene expression data, we identified 71 EMT-implicated genes with concordant CNGs and gene up-regulation in 20 or more tumor samples. Of those, 14 exhibited such concordance in over 110 tumor samples. These 14 genes were predominantly apoptosis regulators, which may implies that apoptosis is critical during EMT. Moreover, the 71 genes with concordant CNG and up-regulation were largely involved in cellular functions such as phosphorylation cascade signaling. This is the first observation of concordance between CNG and up-regulation of specific genes in hundreds of samples, which may indicate that somatic CNGs activate gene expression by increasing the gene dosage. PMID:27029057

  1. SMARCA4 regulates gene expression and higher-order chromatin structure in proliferating mammary epithelial cells

    PubMed Central

    Barutcu, A. Rasim; Lajoie, Bryan R.; Fritz, Andrew J.; McCord, Rachel P.; Nickerson, Jeffrey A.; van Wijnen, Andre J.; Lian, Jane B.; Stein, Janet L.; Dekker, Job; Stein, Gary S.; Imbalzano, Anthony N.

    2016-01-01

    The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization. PMID:27435934

  2. Exposure to probiotic Lactobacillus acidophilus L-92 modulates gene expression profiles of epithelial Caco-2 cells.

    PubMed

    Yanagihara, Sae; Fukuda, Shinji; Ohno, Hiroshi; Yamamoto, Naoyuki

    2012-06-01

    To understand host gastrointestinal response after exposure to probiotic Lactobacillus acidophilus L-92, microarray analysis of cultured epithelial Caco-2 cells was performed. Of the 187 genes down-regulated after 4 h treatment with L-92, 25 were involved in RNA splicing; 12, in cell cycle; 8 were transcriptional regulators; 2 were involved in ubiquitin proteolysis; 2, in adhesion; 2, in meiosis; 2, in splicing; and 2 encoding cytokines. In the RNA splicing group, genes encoding small nuclear RNAs, nuclear pore complex interacting proteins, RNA binding motif proteins, and SMG1 homologs (phosphatidylinositol 3-kinase-related kinase) were identified. Among the only 13 genes up-regulated by the treatment, 5 were involved in histone structure, and 2 were involved in metabolism. Genes belonging to cell adhesion, transmembrane proteins, mitogen-activated protein kinase, immune response, DNA binding, inflammation, and protein synthesis groups were mainly up-regulated after 20 h of treatment, whereas no significantly down-regulated genes were observed. In the present transcriptome analysis, during the early stage of treatment (four hours of treatment) with L-92, genes involved in cell growth and cell meiosis were mainly repressed. During the late phase of treatment (20 h of treatment), the expression of the genes linked to cell adhesion activity and metabolism for cell growth was enhanced. From the present transcriptome analysis, we suggest that Caco-2 cells slow down cell death and turnover of RNA synthesis as an early response to L-92 treatment; at the late stage of treatment, the genes involved in cell proliferation, transcriptional activity, and apoptosis are activated.

  3. Airway Epithelial Expression Quantitative Trait Loci Reveal Genes Underlying Asthma and Other Airway Diseases

    PubMed Central

    Luo, Wei; Obeidat, Ma’en; Di Narzo, Antonio Fabio; Chen, Rong; Sin, Don D.; Paré, Peter D.

    2016-01-01

    Genome-wide association studies (GWASs) have identified loci that are robustly associated with asthma and related phenotypes; however, the molecular mechanisms underlying these associations need to be explored. The most relevant tissues to study the functional consequences of asthma are the airways. We used publically available data to derive expression quantitative trait loci (eQTLs) for human epithelial cells from small and large airways and applied the eQTLs in the interpretation of GWAS results of asthma and related phenotypes. For the small airways (n = 105), we discovered 660 eQTLs at a 10% false discovery rate (FDR), among which 315 eQTLs were not previously reported in a large-scale eQTL study of whole lung tissue. A large fraction of the identified eQTLs is supported by data from Encyclopedia of DNA Elements (ENCODE) showing that the eQTLs reside in regulatory elements (57.5 and 67.6% of cis- and trans-eQTLs, respectively). Published pulmonary GWAS hits were enriched as airway epithelial eQTLs (9.2-fold). Further, genes regulated by asthma GWAS loci in epithelium are significantly enriched in immune response pathways, such as IL-4 signaling (FDR, 5.2 × 10−4). The airway epithelial eQTLs described in this study are complementary to previously reported lung eQTLs and represent a powerful resource to link GWAS-associated variants to their regulatory function and thus elucidate the molecular mechanisms underlying asthma and airway-related conditions. PMID:26102239

  4. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer

    PubMed Central

    Hedditch, Ellen L.; Gao, Bo; Russell, Amanda J.; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E.; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T.; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W.; Ekici, Arif B.; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K.; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P.; Berchuck, Andrew; Goode, Ellen; Bowtell, David D.; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D.; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J.

    2014-01-01

    Background ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. Methods The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA–mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan–Meier analysis and log-rank tests. All statistical tests were two-sided. Results Associations with outcome were observed with ABC transporters of the “A” subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e−6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Conclusions Expression of ABCA transporters was associated with poor

  5. ABCA transporter gene expression and poor outcome in epithelial ovarian cancer.

    PubMed

    Hedditch, Ellen L; Gao, Bo; Russell, Amanda J; Lu, Yi; Emmanuel, Catherine; Beesley, Jonathan; Johnatty, Sharon E; Chen, Xiaoqing; Harnett, Paul; George, Joshy; Williams, Rebekka T; Flemming, Claudia; Lambrechts, Diether; Despierre, Evelyn; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter; Beckmann, Matthias W; Ekici, Arif B; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Nakanishi, Toru; Yatabe, Yasushi; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susan K; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen; Iversen, Ed; Weber, Rachel P; Berchuck, Andrew; Goode, Ellen; Bowtell, David D; Chenevix-Trench, Georgia; deFazio, Anna; Norris, Murray D; MacGregor, Stuart; Haber, Michelle; Henderson, Michelle J

    2014-07-01

    ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA-mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan-Meier analysis and log-rank tests. All statistical tests were two-sided. Associations with outcome were observed with ABC transporters of the "A" subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e-6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P = .001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid

  6. Chronic cholesterol depletion by lovastatin suppresses MUC5AC gene expression in human airway epithelial cells.

    PubMed

    Lee, Eun Jung; Song, Kee Jae; Kwon, Jin Ho; Park, Ah Young; Jo, Kwang-Hee; Kim, Kyung-Su

    2014-01-01

    We recently showed that acute cholesterol depletion in the plasma membrane of NCI-H292 cells by methyl-β-cyclodextrin suppressed IL-1beta-induced MUC5AC gene expression. Because cholesterol depletion is clinically used as an antihypersecretory method, chronic cholesterol depletion by lovastatin is more rational and safe than acute depletion. Therefore, we sought to investigate whether chronic cholesterol depletion by lovastatin is feasible and, if so, suppresses the expression of GMUC5AC in NCI-H292 cells. We also considered whether this alteration of MUC5AC expression is related to IL-1 receptor and mitogen-activated protein kinase (MAPK) activity. After NCI-H292 cells were pretreated with 10 μM of lovastatin for 1 hour, 10 ng/mL of IL-1β was added and cotreated with lovastatin for 24 hours. MUC5AC mRNA expression was then determined by real-time polymerase chain reaction. Cholesterol depletion by lovastatin was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK, and p38 MAPK was analyzed by Western blot. Cholesterol in the plasma membrane was significantly depleted by lovastatin treatment for 24 hours. IL-1beta0-induced MUC5AC mRNA expression was decreased by lovastatin and this decrease occurred IL-1 receptor specifically. Lovastatin suppressed the activation of p38 MAPK but not ERK1/2 in cells activated with IL-1beta. This result suggests that lovastatin-mediated suppression of IL-1beta-induced MUC5AC mRNA operated only viathe p38 MAPK-dependent pathway. Chronic cholesterol depletion in the plasma membrane of NCI-H292 cells may be considered an antihypersecretory method, because it effectively inhibits mucin gene expression of human airway epithelial cells.

  7. Expression of simple epithelial cytokeratins in mouse epidermal keratinocytes harboring Harvey ras gene alterations.

    PubMed

    Diaz-Guerra, M; Haddow, S; Bauluz, C; Jorcano, J L; Cano, A; Balmain, A; Quintanilla, M

    1992-02-01

    Activation of a Harvey ras (H-ras) protooncogene is a frequent event associated with mouse epidermal carcinogenesis. We report that the transfection of a human H-ras oncogene into an immortalized mouse epidermal cell line (MCA3D) induces the anomalous expression of cytokeratins (CKs) 8 and 18 characteristic of simple epithelia. The comparison of various transfectant cell clones indicated a direct correlation between the levels of CK8 expression and the mutated H-ras p21s. The expression of simple epithelial CKs is also described in cell lines derived from mouse skin carcinomas (HaCa4, CarC) and in keratinocytes transformed in vitro by a chemical carcinogen (PDV, PDVC57), all of which contain altered H-ras genes. The induction of CK8 and CK18 occurs at the mRNA level and, although both CK8 and CK18 mRNAs are expressed, CK18 protein does not accumulate whereas CK8 is incorporated into intermediate filaments. Immunofluorescence studies show that the pattern of CK8 protein expression is heterogeneous; some cells express very low amounts of CK8, whereas others synthesize relatively high levels of this protein. However, selection of strongly CK8-positive cells was found in one case where a more malignant population of cells (PDVC57) was derived by tumor transplantation of PDV. Our results suggest that activation of a H-ras gene can alter the normal differentiation program of epidermal cells and that the ability to synthesize CK8 and CK18 could be related to tumor progression.

  8. Ephrin-B reverse signaling induces expression of wound healing associated genes in IEC-6 intestinal epithelial cells

    PubMed Central

    Hafner, Christian; Meyer, Stefanie; Hagen, Ilja; Becker, Bernd; Roesch, Alexander; Landthaler, Michael; Vogt, Thomas

    2005-01-01

    AIM: Eph receptors and ephrin ligands play a pivotal role in development and tissue maintenance. Since previous data have indicated an involvement of ephrin-B2 in epithelial healing, we investigated the gene expression and downstream signaling pathways induced by ephrin-B mediated cell-cell signaling in intestinal epithelial cells. METHODS: Upon stimulation of ephrin-B pathways in IEC-6 cells with recombinant rat EphB1-Fc, gene expression was analyzed by Affymetrix’ rat genome 230 high density arrays at different time points. Differentially expressed genes were confirmed by real-time RT-PCR. In addition, MAP kinase pathways and focal adhesion kinase (FAK) activation downstream of ephrin-B were investigated by immunoblotting and fluorescence microscopy. RESULTS: Stimulation of the ephrin-B reverse signaling pathway in IEC-6 cells induces predominant expression of genes known to be involved into wound healing/cell migration, antiapoptotic pathways, host defense and inflammation. Cox-2, c-Fos, Egr-1, Egr-2, and MCP-1 were found among the most significantly regulated genes. Furthermore, we show that the expression of repair-related genes is also accompanied by activation of the ERK1/2 MAP kinase pathway and FAK, two key regulators of epithelial restitution. CONCLUSION: Stimulation of the ephrin-B reverse signaling pathway induces a phenotype characterized by upregulation of repair-related genes, which may partially be mediated by ERK1/2 pathways. PMID:16052680

  9. Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Dongquan; Stueckle, Todd A.; Luanpitpong, Sudjit; Rojanasakul, Yon; Lu, Yongju; Wang, Liying

    2015-01-01

    A rapid increase in utility of engineered nanomaterials, including carbon nanotubes (CNTs), has raised a concern over their safety. Based on recent evidence from animal studies, pulmonary exposure of CNTs may lead to nanoparticle accumulation in the deep lung without effective clearance which could interact with local lung cells for a long period of time. Physicochemical similarities of CNTs to asbestos fibers may contribute to their asbestos-like carcinogenic potential after long-term exposure, which has not been well addressed. More studies are needed to identify and predict the carcinogenic potential and mechanisms for promoting their safe use. Our previous study reported a long-term in vitro exposure model for CNT carcinogenicity and showed that 6-month sub-chronic exposure of single-walled carbon nanotubes (SWCNT) causes malignant transformation of human lung epithelial cells. In addition, the transformed cells induced tumor formation in mice and exhibited an apoptosis resistant phenotype, a key characteristic of cancer cells. Although the potential role of p53 in the transformation process was identified, the underlying mechanisms of oncogenesis remain largely undefined. Here, we further examined the gene expression profile by using genome microarrays to profile molecular mechanisms of SWCNT oncogenesis. Based on differentially expressed genes, possible mechanisms of SWCNT-associated apoptosis resistance and oncogenesis were identified, which included activation of pAkt/p53/Bcl-2 signaling axis, increased gene expression of Ras family for cell cycle control, Dsh-mediated Notch 1, and downregulation of apoptotic genes BAX and Noxa. Activated immune responses were among the major changes of biological function. Our findings shed light on potential molecular mechanisms and signaling pathways involved in SWCNT oncogenic potential.

  10. Linking polymorphic p53 response elements with gene expression in airway epithelial cells of smokers and cancer risk.

    PubMed

    Wang, Xuting; Pittman, Gary S; Bandele, Omari J; Bischof, Jason J; Liu, Gang; Brothers, John F; Spira, Avrum; Bell, Douglas A

    2014-12-01

    Chronic cigarette smoking exposes airway epithelial cells to thousands of carcinogens, oxidants and DNA-damaging agents, creating a field of molecular injury in the airway and altering gene expression. Studies of cytologically normal bronchial epithelial cells from smokers have identified transcription-based biomarkers that may prove useful in early diagnosis of lung cancer, including a number of p53-regulated genes. The ability of p53 to regulate transcription is critical for tumor suppression, and this suggests that single-nucleotide polymorphisms (SNPs) in functional p53 binding sites (p53 response elements, or p53REs) that affect gene expression could influence susceptibility to cancer. To connect p53RE SNP genotype with gene expression and cancer risk, we identified a set of 204 SNPs in putative p53REs, and performed cis expression quantitative trait loci (eQTL) analysis, assessing associations between SNP genotypes and mRNA levels of adjacent genes in bronchial epithelial cells obtained from 44 cigarette smokers. To further test and validate these genotype-expression associations, we searched published eQTL studies from independent populations and determined that 53% (39/74) of the bronchial epithelial eQTLs were observed in at least one of other studies. SNPs in p53REs were also evaluated for effects on p53-DNA binding using a quantitative in vitro protein-DNA binding assay. Last, based on linkage disequilibrium, we found 6 p53RE SNPs associated with gene expression were identified as cancer risk SNPs by either genome-wide association studies or candidate gene studies. We provide an approach for identifying and evaluating potentially functional SNPs that may modulate the airway gene expression response to smoking and may influence susceptibility to cancers.

  11. The role of reactive oxygen and nitrogen species in airway epithelial gene expression.

    PubMed Central

    Martin, L D; Krunkosky, T M; Voynow, J A; Adler, K B

    1998-01-01

    The body first encounters deleterious inhaled substances, such as allergens, industrial particles, pollutants, and infectious agents, at the airway epithelium. When this occurs, the epithelium and its resident inflammatory cells respond defensively by increasing production of cytokines, mucus, and reactive oxygen and nitrogen species (ROS/RNS). As inflammation in the airway increases, additional infiltrating cells increase the level of these products. Recent interest has focused on ROS/RNS as potential modulators of the expression of inflammation-associated genes important to the pathogenesis of various respiratory diseases. ROS/RNS appear to play a variety of roles that lead to changes in expression of genes such as interleukin-6 and intercellular adhesion molecule 1. By controlling this regulation, the reactive species can serve as exogenous stimuli, as intercellular signaling molecules, and as modulators of the redox state in epithelial cells. Unraveling the molecular mechanisms affected by ROS/RNS acting in these capacities should aid in the understanding of how stimulated defense mechanisms within the airway can lead to disease. Images Figure 1 PMID:9788898

  12. Effect of Growth Factors on the Proliferation and Gene Expression of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Liu, Shaohui; Kam, Wendy R.; Ding, Juan; Hatton, Mark P.; Sullivan, David A.

    2013-01-01

    Purpose. We hypothesize that growth factors, including epidermal growth factor (EGF) and bovine pituitary extract (BPE), induce proliferation, but not differentiation (e.g., lipid accumulation), of human meibomian gland epithelial cells. We also hypothesize that these actions involve a significant upregulation of genes linked to cell cycle processes, and a significant downregulation of genes associated with differentiation. Our objective was to test these hypotheses. Methods. Immortalized human meibomian gland and conjunctival epithelial cells were cultured for varying time periods in the presence or absence of EGF, BPE, EGF + BPE, or serum, followed by cell counting, neutral lipid staining, or RNA isolation for molecular biological procedures. Results. Our studies show that growth factors stimulate a significant, time-dependent proliferation of human meibomian gland epithelial cells. These effects are associated with a significant upregulation of genes linked to cell cycle, DNA replication, ribosomes, and translation, and a significant decrease in those related to cell differentiation, tissue development, lipid metabolic processes, and peroxisome proliferator-activated receptor signaling. Serum-induced differentiation, but not growth factor-related proliferation, elicits a pronounced lipid accumulation in human meibomian gland epithelial cells. This lipogenic response is unique, and is not duplicated by human conjunctival epithelial cells. Conclusions. Our results demonstrate that EGF and BPE stimulate human meibomian gland epithelial cells to proliferate. Further, our findings show that action is associated with an upregulation of cell cycle and translation ontologies, and a downregulation of genetic pathways linked to differentiation and lipid biosynthesis. PMID:23493293

  13. Effects of fescue toxicosis induced by endophyte-infected tall fescue seed on forestomach epithelial gene expression in Angus steers

    USDA-ARS?s Scientific Manuscript database

    A previous report demonstrated that steers exposed to an endophyte-infected tall fescue seed extract had altered rumen epithelial blood flow and decreased ruminal flux of VFA. Thus, this study was conducted to determine whether there are differences in gene expression related to VFA absorption betwe...

  14. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells.

    PubMed

    Giraud, Matthieu; Yoshida, Hideyuki; Abramson, Jakub; Rahl, Peter B; Young, Richard A; Mathis, Diane; Benoist, Christophe

    2012-01-10

    Aire is a transcriptional regulator that induces expression of peripheral tissue antigens (PTA) in thymic medullary epithelial cells (MECs), driving immunological self-tolerance in differentiating T cells. To elucidate its mechanistic pathways, we examined its transcriptional impact in MECs in vivo by microarray analysis with mRNA-spanning probes. This analysis revealed initiation of Aire-activated genes to be comparable in Aire-deficient and wild-type MECs, but with a block to elongation after 50-100 bp in the absence of Aire, suggesting activation by release of stalled polymerases by Aire. In contrast, patterns of activation by transcription factors such as Klf4 were consistent with regulation of initiation. Mapping of Aire and RNA polymerase-II (Pol-II) by ChIP and high-throughput sequencing (ChIP-seq) revealed that Aire bound all Pol-II-rich transcriptional start sites (TSS), irrespective of its eventual effect. However, the genes it preferentially activated were characterized by a relative surfeit of stalled polymerases at the TSS, which resolved once Aire was introduced into cells. Thus, transcript mapping and ChIP-seq data indicate that Aire activates ectopic transcription not through specific recognition of PTA gene promoters but by releasing stalled polymerases.

  15. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5.

    PubMed

    Sano, Rie; Nakajima, Tamiko; Takahashi, Yoichiro; Kubo, Rieko; Kobayashi, Momoko; Takahashi, Keiko; Takeshita, Haruo; Ogasawara, Kenichi; Kominato, Yoshihiko

    2016-10-21

    The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.

  16. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression

    PubMed Central

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D.; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong

    2016-01-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori. In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA. Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity. PMID:26930708

  17. Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression.

    PubMed

    de Klerk, Nele; Maudsdotter, Lisa; Gebreegziabher, Hanna; Saroj, Sunil D; Eriksson, Beatrice; Eriksson, Olaspers Sara; Roos, Stefan; Lindén, Sara; Sjölinder, Hong; Jonsson, Ann-Beth

    2016-05-01

    The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity.

  18. Epithelial cells captured from ductal carcinoma in situ reveal a gene expression signature associated with progression to invasive breast cancer

    PubMed Central

    Abuázar, Carolina Sens; de Toledo Osorio, Cynthia Aparecida Bueno; Pinilla, Mabel Gigliola; da Silva, Sabrina Daniela; Camargo, Anamaria Aranha; Silva, Wilson Araujo; e Ferreira, Elisa Napolitano; Brentani, Helena Paula; Carraro, Dirce Maria

    2016-01-01

    Breast cancer biomarkers that can precisely predict the risk of progression of non-invasive ductal carcinoma in situ (DCIS) lesions to invasive disease are lacking. The identification of molecular alterations that occur during the invasion process is crucial for the discovery of drivers of transition to invasive disease and, consequently, biomarkers with clinical utility. In this study, we explored differences in gene expression in mammary epithelial cells before and after the morphological manifestation of invasion, i.e., early and late stages, respectively. In the early stage, epithelial cells were captured from both pre-invasive lesions with distinct malignant potential [pure DCIS as well as the in situ component that co-exists with invasive breast carcinoma lesions (DCIS-IBC)]; in the late stage, epithelial cells were captured from the two distinct morphological components of the same sample (in situ and invasive components). Candidate genes were identified using cDNA microarray and rapid subtractive hybridization (RaSH) cDNA libraries and validated by RT-qPCR assay using new samples from each group. These analyses revealed 26 genes, including 20 from the early and 6 from the late stage. The expression profile based on the 20 genes, marked by a preferential decrease in expression level towards invasive phenotype, discriminated the majority of DCIS samples. Thus, this study revealed a gene expression signature with the potential to predict DCIS progression and, consequently, provides opportunities to tailor treatments for DCIS patients. PMID:27708222

  19. Concurrence between the gene expression pattern of Actinobacillus actinomycetemcomitans in localized aggressive periodontitis and in human epithelial cells.

    PubMed

    Richardson, Joseph; Craighead, Justin Corey; Cao, Sam Linsen; Handfield, Martin

    2005-05-01

    Actinobacillus actinomycetemcomitans is a facultatively intracellular pathogen and the aetiological agent of localized aggressive periodontitis. Screening of the genome of A. actinomycetemcomitans for in vivo-induced antigen determinants previously demonstrated that the proteome of this organism differs in laboratory culture compared with conditions found during active infection. The aim of the present study was to determine whether the bacterial gene expression pattern inferred with in vivo-induced antigen technology (IVIAT) in human infections was consistent with the gene expression pattern occurring upon epithelial cell association. To this end, a real-time PCR method was developed and used to quantify absolute and relative bacterial gene expression of A. actinomycetemcomitans grown extra- and intracellularly in two human epithelial cell lines (HeLa and IHGK). The amount of template used in the assay was normalized using the total count of viable bacteria (c.f.u.) as a reference point and performed in duplicate in at least two independent experiments. Controls for this experiment included 16S rRNA and gapdh. Transcription of all eight ORFs tested increased significantly (P < 0.05) in HeLa and IHGK cells compared with bacteria grown extracellularly. The concurrence of gene expression patterns found in the two models suggests that these epithelial cells are valid in vitro models of infection for the genes tested. IVIAT is an experimental platform that can be used as a validation tool to assess the reliability of animal and other models of infection and is applicable to most pathogens.

  20. Lung epithelial cells have virus-specific and shared gene expression responses to infection by diverse respiratory viruses.

    PubMed

    VanLeuven, James T; Ridenhour, Benjamin J; Gonzalez, Andres J; Miller, Craig R; Miura, Tanya A

    2017-01-01

    The severity of respiratory viral infections is partially determined by the cellular response mounted by infected lung epithelial cells. Disease prevention and treatment is dependent on our understanding of the shared and unique responses elicited by diverse viruses, yet few studies compare host responses to viruses from different families while controlling other experimental parameters. Murine models are commonly used to study the pathogenesis of respiratory viral infections, and in vitro studies using murine cells provide mechanistic insight into the pathogenesis observed in vivo. We used microarray analysis to compare changes in gene expression of murine lung epithelial cells infected individually by three respiratory viruses causing mild (rhinovirus, RV1B), moderate (coronavirus, MHV-1), and severe (influenza A virus, PR8) disease in mice. RV1B infection caused numerous gene expression changes, but the differential effect peaked at 12 hours post-infection. PR8 altered an intermediate number of genes whose expression continued to change through 24 hours. MHV-1 had comparatively few effects on host gene expression. The viruses elicited highly overlapping responses in antiviral genes, though MHV-1 induced a lower type I interferon response than the other two viruses. Signature genes were identified for each virus and included host defense genes for PR8, tissue remodeling genes for RV1B, and transcription factors for MHV-1. Our comparative approach identified universal and specific transcriptional signatures of virus infection that can be used to distinguish shared and virus-specific mechanisms of pathogenesis in the respiratory tract.

  1. Multifocal Epithelial Hyperplasia of Oral Cavity Expressing HPV 16 Gene: A Rare Entity.

    PubMed

    Prabhat, M P V; Raja Lakshmi, Chintamaneni; Sai Madhavi, N; Bhavana, Sujana Mulk; Sarat, Gummadapu; Ramamohan, Kodali

    2013-01-01

    Focal epithelial hyperplasia is a rare contagious disease caused by human papilloma virus. Usually HPV involves either cutaneous or mucosal surfaces, whereas concomitant mucocutaneous involvement is extremely rare. We report such a unique case of multifocal epithelial hyperplasia involving multiple sites of oral cavity along with skin lesions in a 65-year-old female. We also discuss the probable multifactorial etiology and variable clinical presentations of the lesions, including evidence of HPV 16 expression, as detected by polymerase chain reaction. The present report illustrates the need for careful examination and prompt diagnosis of the disease, as it might be associated with high risk genotypes such as HPV 16 and 18.

  2. Multifocal Epithelial Hyperplasia of Oral Cavity Expressing HPV 16 Gene: A Rare Entity

    PubMed Central

    Prabhat, M. P. V.; Raja Lakshmi, Chintamaneni; Sai Madhavi, N.; Bhavana, Sujana Mulk; Sarat, Gummadapu; Ramamohan, Kodali

    2013-01-01

    Focal epithelial hyperplasia is a rare contagious disease caused by human papilloma virus. Usually HPV involves either cutaneous or mucosal surfaces, whereas concomitant mucocutaneous involvement is extremely rare. We report such a unique case of multifocal epithelial hyperplasia involving multiple sites of oral cavity along with skin lesions in a 65-year-old female. We also discuss the probable multifactorial etiology and variable clinical presentations of the lesions, including evidence of HPV 16 expression, as detected by polymerase chain reaction. The present report illustrates the need for careful examination and prompt diagnosis of the disease, as it might be associated with high risk genotypes such as HPV 16 and 18. PMID:24455323

  3. Development of an in vitro test to identify respiratory sensitizers in bronchial epithelial cells using gene expression profiling.

    PubMed

    Dik, Sander; Pennings, Jeroen L A; van Loveren, Henk; Ezendam, Janine

    2015-12-25

    Chemicals that induce asthma at the workplace are substances of concern. At present, there are no widely accepted methods to identify respiratory sensitizers, and classification of these substances is based on human occupational data. Several studies have contributed to understanding the mechanisms involved in respiratory sensitization, although uncertainties remain. One point of interest for respiratory sensitization is the reaction of the epithelial lung barrier to respiratory sensitizers. To elucidate potential molecular effects of exposure of the epithelial lung barrier, a gene expression profile was created based on a DNA microarray experiment using the bronchial epithelial cell line 16 HBE14o(-). The cells were exposed to 12 respiratory sensitizers and 10 non-sensitizers. For statistical analysis, we used a class prediction approach that combined three machine learning algorithms, leave-one-compound-out cross validation, and majority voting per tested compound. This approach allowed for a prediction accuracy of 95%. Identified predictive genes were mainly associated with the cytoskeleton and barrier function of the epithelial cell. Several of these genes were reported to be associated with asthma as well. Taken together, this indicates that pulmonary barrier function is an important target for respiratory sensitizers and associated genes can be used to predict the respiratory sensitization potential of chemicals.

  4. Transcriptome analysis of mammary epithelial cell gene expression reveals novel roles of the extracellular matrix.

    PubMed

    Wanyonyi, Stephen S; Kumar, Amit; Du Preez, Ryan; Lefevre, Christophe; Nicholas, Kevin R

    2017-12-01

    The unique lactation strategy of the tammar wallaby (Macropus eugeni) has been invaluable in evaluating the role of lactogenic hormones and the extracellular matrix (ECM) in the local control of mammary gland function. However molecular pathways through which hormones and ECM exert their effect on wallaby mammary gland function remain unclear. This study undertakes transcriptome analysis of wallaby mammary epithelial cells (WallMEC) following treatment with mammary ECM from two distinct stages of lactation. WallMEC from MID lactation mammary glands were cultured on ECM from MID or LATE lactation and treated for 5 days with 1 μg/ml cortisol, 1 μg/ml insulin, 0.2 µg/ml prolactin, 650 pg/ml triodothyronine and 1 pg/ml estradiol to induce lactation. WallMEC RNA from triplicate ECM treatments was used to perform RNAseq. ECM from MID and LATE lactation differentially regulated key genes in sugar and lipid metabolism. Seven pathways including galactose metabolism, lysosome, cell adhesion molecules (CAM), p53 signaling, the complement and coagulation and Nod-like receptor signaling pathways were only significantly responsive to ECM in the presence of hormones. The raw RNA-seq data for this project are available on the NCBI Gene Expression Omnibus (GEO) browser (accession number GSE81210). A potential role of ECM in regulation of the caloric content of milk, among other functions including apoptosis, cell proliferation and differentiation has been identified. This study has used a non-eutherian lactation model to demonstrate the synergy between ECM and hormones in the local regulation of mammary function.

  5. Zebrafish keratocyte explant cultures as a wound healing model system: differential gene expression & morphological changes support epithelial-mesenchymal transition.

    PubMed

    McDonald, Timothy M; Pascual, Agnes S; Uppalapati, Chandana K; Cooper, Kimbal E; Leyva, Kathryn J; Hull, Elizabeth E

    2013-07-15

    The control of collective cell migration of zebrafish keratocyte sheets in explant culture is of interest for cell migration and epithelial wound healing and depends on the gene expression profile. In a zebrafish genome array, ∼17.5% of the probe sets were differentially expressed greater than two-fold (p≤0.003) between 1 and 7 days of explant culture. Among the differentially expressed genes were a variety of wound healing-related genes and many of the biomarkers for epithelial-mesenchymal transition (EMT), including a switch from keratin and E-cadherin to vimentin and N-cadherin expression and several EMT-related transcription factors were found to be differentially expressed. Supporting evidence for EMT is seen in both morphological change and rearrangement of the actin cytoskeleton and in expression of cadherins during explant culture with a visible disassembly of the cell sheet. TGFβ1 and TNFα expression were analyzed by qPCR at various time points and peak differential expression of both cytokines occurred at 3 days, indicating that the EMT process is ongoing under conditions routinely used in the study of fish keratocyte motility. These data establish that an EMT process is occurring during zebrafish keratocyte explant culture and support the use of this system as a wound healing model. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Oxidative Stress Regulates CFTR Gene Expression in Human Airway Epithelial Cells through a Distal Antioxidant Response Element

    PubMed Central

    Zhang, Zhaolin; Leir, Shih-Hsing

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator gene (CFTR) expression in human airway epithelial cells involves the recruitment of distal cis-regulatory elements, which are associated with airway-selective DNase hypersensitive sites at −44 kb and −35 kb from the gene. The −35-kb site encompasses an enhancer that is regulated by the immune mediators interferon regulatory factor 1 and 2 and by nuclear factor Y. Here we investigate the −44-kb element, which also has enhancer activity in vitro in airway epithelial cells but is inactive in intestinal epithelial cells. This site contains an antioxidant response element (ARE) that plays a critical role in its function in airway cell lines and primary human bronchial epithelial cells. The natural antioxidant sulforaphane (SFN) induces nuclear translocation of nuclear factor, erythroid 2-like 2 (Nrf2), a transcription factor that regulates genes with AREs in their promoters, many of which are involved in response to injury. Under normal conditions, the −44-kb ARE is occupied by the repressor BTB and CNC homology 1, basic leucine zipper transcription factor (Bach1), and v-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) heterodimers. After 2 hours of SFN treatment, Nrf2 displaces these repressive factors and activates CFTR expression. Site-directed mutagenesis shows that both the ARE and an adjacent NF-κB binding site are required for activation of the –44-kb element in airway epithelial cells. Moreover, this element is functionally linked to the −35-kb enhancer in modulating CFTR expression in response to environmental stresses in the airway. PMID:25259561

  7. The epithelial sodium channel γ-subunit gene and blood pressure: family based association, renal gene expression, and physiological analyses.

    PubMed

    Büsst, Cara J; Bloomer, Lisa D S; Scurrah, Katrina J; Ellis, Justine A; Barnes, Timothy A; Charchar, Fadi J; Braund, Peter; Hopkins, Paul N; Samani, Nilesh J; Hunt, Steven C; Tomaszewski, Maciej; Harrap, Stephen B

    2011-12-01

    Variants in the gene encoding the γ-subunit of the epithelial sodium channel (SCNN1G) are associated with both Mendelian and quantitative effects on blood pressure. Here, in 4 cohorts of 1611 white European families composed of a total of 8199 individuals, we undertook staged testing of candidate single-nucleotide polymorphisms for SCNN1G (supplemented with imputation based on data from the 1000 Genomes Project) followed by a meta-analysis in all of the families of the strongest candidate. We also examined relationships between the genotypes and relevant intermediate renal phenotypes, as well as expression of SCNN1G in human kidneys. We found that an intronic single-nucleotide polymorphism of SCNN1G (rs13331086) was significantly associated with age-, sex-, and body mass index-adjusted blood pressure in each of the 4 populations (P<0.05). In an inverse variance-weighted meta-analysis of this single-nucleotide polymorphism in all 4 of the populations, each additional minor allele copy was associated with a 1-mm Hg increase in systolic blood pressure and 0.52-mm Hg increase in diastolic blood pressure (SE=0.33, P=0.002 for systolic blood pressure; SE=0.21, P=0.011 for diastolic blood pressure). The same allele was also associated with higher 12-hour overnight urinary potassium excretion (P=0.04), consistent with increased epithelial sodium channel activity. Renal samples from hypertensive subjects showed a nonsignificant (P=0.07) 1.7-fold higher expression of SCNN1G compared with normotensive controls. These data provide genetic and phenotypic evidence in support of a role for a common genetic variant of SCNN1G in blood pressure determination.

  8. A gene expression programme induced by bovine colostrum whey promotes growth and wound-healing processes in intestinal epithelial cells.

    PubMed

    Blais, M; Pouliot, Y; Gauthier, S; Boutin, Y; Lessard, M

    2014-01-01

    Bovine colostrum is well known for its beneficial properties on health and development. It contains a wide variety of bioactive ingredients that are known to promote a number of cellular processes. Therefore the use of colostrum whey as a feed additive to promote intestinal health has been proposed, yet little is known about mechanisms implicated in its beneficial properties on intestinal epithelial cells. In the present paper, casein were removed from bovine colostrum and the remaining liquid, rich in bioactive compounds, was evaluated for its capacity to modulate cellular processes in porcine intestinal epithelial cell line IPEC-J2 and human colon adenocarcinoma cell line Caco-2/15. First, we verified the effect of colostrum whey and cheese whey on processes involved in intestinal wound healing, including cell proliferation, attachment, morphology and migration. Our results showed that colostrum whey promoted proliferation and migration, and decreased specifically the attachment of Caco-2/15 cells on the culture dish. On the other hand, cheese whey induced proliferation and morphological changes in IPEC-J2 cells, but failed to induce migration. The gene expression profile of IPEC-J2 cells following colostrum whey treatment was evaluated by microarray analysis. Results revealed that the expression of a significant number of genes involved in cell migration, adhesion and proliferation was indeed affected in colostrum whey-treated cells. In conclusion, colostrum specific bioactive content could be beneficial for intestinal epithelial cell homoeostasis by controlling biological processes implicated in wound healing through a precise gene expression programme.

  9. Age-related gene expression in luminal epithelial cells is driven by a microenvironment made from myoepithelial cells.

    PubMed

    Miyano, Masaru; Sayaman, Rosalyn W; Stoiber, Marcus H; Lin, Chun-Han; Stampfer, Martha R; Brown, James B; LaBarge, Mark A

    2017-10-09

    Luminal epithelial cells in the breast gradually alter gene and protein expression with age, appearing to lose lineage-specificity by acquiring myoepithelial-like characteristics. We hypothesize that the luminal lineage is particularly sensitive to microenvironment changes, and age-related microenvironment changes cause altered luminal cell phenotypes. To evaluate the effects of different microenvironments on the fidelity of epigenetically regulated luminal and myoepithelial gene expression, we generated a set of lineage-specific probes for genes that are controlled through DNA methylation. Culturing primary luminal cells under conditions that favor myoepithelial propogation led to their reprogramming at the level of gene methylation, and to a more myoepithelial-like expression profile. Primary luminal cells' lineage-specific gene expression could be maintained when they were cultured as bilayers with primary myoepithelial cells. Isogenic stromal fibroblast co-cultures were unable to maintain the luminal phenotype. Mixed-age luminal-myoepithelial bilayers revealed that luminal cells adopt transcription and methylation patterns consistent with the chronological age of the myoepithelial cells. We provide evidence that the luminal epithelial phenotype is exquisitely sensitive to microenvironment conditions, and that states of aging are cell non-autonomously communicated through microenvironment cues over at least one cell diameter.

  10. Hypoxia Induces Mesenchymal Gene Expression in Renal Tubular Epithelial Cells: An in vitro Model of Kidney Transplant Fibrosis.

    PubMed

    Zell, Stephanie; Schmitt, Roland; Witting, Sandra; Kreipe, Hans H; Hussein, Kais; Becker, Jan U

    2013-01-01

    The development of interstitial fibrosis and tubular atrophy is a common complication after kidney transplantation and is associated with reduced long-term outcome. The hallmark of tubulointerstitial fibrosis is an increase in extracellular matrix resulting from exaggerated activation of fibroblasts/myofibroblasts, and tubular atrophy is characterized by a decrease in tubular diameter and loss of function. Atrophic epithelial cells may undergo epithelial-to-mesenchymal transition (EMT) with potential differentiation into interstitial fibroblasts. One potential driver of EMT in developing interstitial fibrosis and tubular atrophy is chronic hypoxia. The expression of 46 EMT-related genes was analyzed in an in vitro hypoxia model in renal proximal tubular epithelial cells (RPTEC). Furthermore, the expression of 342 microRNAs (miR) was evaluated in hypoxic culture conditions. Hypoxic RPTEC expressed markers of a more mesenchymal phenotype and showed an increased expression of matrix metalloproteinase-2 (MMP2). MMP2 expression in RPTEC correlated inversely with a decreased expression of miR-124, which was found to have a putative binding site for the MMP2 transcript. Overexpression of miR-124 inhibited MMP2 protein translation. Hypoxia was associated with increased migration/proliferation of RPTEC which was reversed by miR-124. These results indicate that hypoxia promotes a mesenchymal and migratory phenotype in renal epithelial cells, which is associated with increased MMP2 expression. Hypoxia-dependent MMP2 expression is regulated via a reduced transcription of miR-124. Overexpression of miR-124 antagonizes hypoxia-induced cell migration. Further research is needed to elucidate the functional role of miR-124 and MMP2 in the development of fibrosis in renal transplant degeneration.

  11. Hypoxia Induces Mesenchymal Gene Expression in Renal Tubular Epithelial Cells: An in vitro Model of Kidney Transplant Fibrosis

    PubMed Central

    Zell, Stephanie; Schmitt, Roland; Witting, Sandra; Kreipe, Hans H.; Hussein, Kais; Becker, Jan U.

    2013-01-01

    Background The development of interstitial fibrosis and tubular atrophy is a common complication after kidney transplantation and is associated with reduced long-term outcome. The hallmark of tubulointerstitial fibrosis is an increase in extracellular matrix resulting from exaggerated activation of fibroblasts/myofibroblasts, and tubular atrophy is characterized by a decrease in tubular diameter and loss of function. Atrophic epithelial cells may undergo epithelial-to-mesenchymal transition (EMT) with potential differentiation into interstitial fibroblasts. One potential driver of EMT in developing interstitial fibrosis and tubular atrophy is chronic hypoxia. Methods The expression of 46 EMT-related genes was analyzed in an in vitro hypoxia model in renal proximal tubular epithelial cells (RPTEC). Furthermore, the expression of 342 microRNAs (miR) was evaluated in hypoxic culture conditions. Results Hypoxic RPTEC expressed markers of a more mesenchymal phenotype and showed an increased expression of matrix metalloproteinase-2 (MMP2). MMP2 expression in RPTEC correlated inversely with a decreased expression of miR-124, which was found to have a putative binding site for the MMP2 transcript. Overexpression of miR-124 inhibited MMP2 protein translation. Hypoxia was associated with increased migration/proliferation of RPTEC which was reversed by miR-124. Conclusions These results indicate that hypoxia promotes a mesenchymal and migratory phenotype in renal epithelial cells, which is associated with increased MMP2 expression. Hypoxia-dependent MMP2 expression is regulated via a reduced transcription of miR-124. Overexpression of miR-124 antagonizes hypoxia-induced cell migration. Further research is needed to elucidate the functional role of miR-124 and MMP2 in the development of fibrosis in renal transplant degeneration. PMID:23898346

  12. Effect of Hyperosmolality on β-Defensin Gene Expression by Human Corneal Epithelial Cells

    PubMed Central

    Narayanan, Srihari; Manning, Jennifer; Proske, Rita; McDermott, Alison M.

    2008-01-01

    Purpose As human β-defensins (hBD) are important antimicrobial peptides at epithelial surfaces, including the ocular surface, we tested the effect of hyperosmolar conditions on the expression of these peptides by human corneal epithelial cells (HCECs). Methods Simian virus 40–transformed HCECs (n = 5) or primary cultured HCECs (n = 5) were treated with serum-free media or serum-free hyperosmolar (400–500 mOsm/kg) media for 24 hours or serum-free 500 mOsm/kg media for 12 to 48 hours. The effect of hyperosmolality on interleukin-1β (IL-1β)–induced hBD-2 expression was also tested. IL-6 expression was studied as a marker of IL-1β function. Expression of hBD-1, -2, and -3 and IL-6 mRNA was detected by reverse transcription–polymerase chain reaction (RT-PCR). The levels of active IL-1β (culture supernatants and cell lysates) and pro–IL-1β (cell lysates) were detected by enzyme-linked immunosorbent assay. Results HCECs constitutively expressed hBD-1 and -3 but not hBD-2. Hyperosmolar media had no effect on the basal expression of hBD-1 or -3 and did not induce the expression of hBD-2. Treatment with 500 mOsm/kg media for 24 hours decreased the ability of IL-1β to upregulate hBD-2 and IL-6 expression. Active or pro–IL-1β was not detected in any cell culture sample. Conclusion Our results suggest that the hyperosmolar environment observed in diseases such as dry eye does not alter defensin expression. However, a hyperosmolar environment may influence cytokine function in ocular surface cells and thus affect their response to injury and inflammation. PMID:17133055

  13. Integrated signaling pathway and gene expression regulatory model to dissect dynamics of Escherichia coli challenged mammary epithelial cells.

    PubMed

    den Breems, Nicoline Y; Nguyen, Lan K; Kulasiri, Don

    2014-12-01

    Cells transform external stimuli, through the activation of signaling pathways, which in turn activate gene regulatory networks, in gene expression. As more omics data are generated from experiments, eliciting the integrated relationship between the external stimuli, the signaling process in the cell and the subsequent gene expression is a major challenge in systems biology. The complex system of non-linear dynamic protein interactions in signaling pathways and gene networks regulates gene expression. The complexity and non-linear aspects have resulted in the study of the signaling pathway or the gene network regulation in isolation. However, this limits the analysis of the interaction between the two components and the identification of the source of the mechanism differentiating the gene expression profiles. Here, we present a study of a model of the combined signaling pathway and gene network to highlight the importance of integrated modeling. Based on the experimental findings we developed a compartmental model and conducted several simulation experiments. The model simulates the mRNA expression of three different cytokines (RANTES, IL8 and TNFα) regulated by the transcription factor NFκB in mammary epithelial cells challenged with E. coli. The analysis of the gene network regulation identifies a lack of robustness and therefore sensitivity for the transcription factor regulation. However, analysis of the integrated signaling and gene network regulation model reveals distinctly different underlying mechanisms in the signaling pathway responsible for the variation between the three cytokine's mRNA expression levels. Our key findings reveal the importance of integrating the signaling pathway and gene expression dynamics in modeling. Modeling infers valid research questions which need to be verified experimentally and can assist in the design of future biological experiments.

  14. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 12-Hours Post-Exposure to 532 nm, 120 ps Pulsed Laser Light

    DTIC Science & Technology

    2004-04-01

    years or younger, either sex, with no mitigating ocular or retinal pathology such as glaucoma, diabetic retinopathy, retinitis pigmentosa , etc. Donor: The...USAFA TR 2004-01 Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 12-hours Post-Exposure to 532 nm, 120 ps Pulsed...TR 2004-01 This article, "Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 12-hours Post-Exposure to 532 nm, 120 ps

  15. The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition

    PubMed Central

    2012-01-01

    Introduction Gene expression data derived from clinical cancer specimens provide an opportunity to characterize cancer-specific transcriptional programs. Here, we present an analysis delineating a correlation-based gene expression landscape of breast cancer that identifies modules with strong associations to breast cancer-specific and general tumor biology. Methods Modules of highly connected genes were extracted from a gene co-expression network that was constructed based on Pearson correlation, and module activities were then calculated using a pathway activity score. Functional annotations of modules were experimentally validated with an siRNA cell spot microarray system using the KPL-4 breast cancer cell line, and by using gene expression data from functional studies. Modules were derived using gene expression data representing 1,608 breast cancer samples and validated in data sets representing 971 independent breast cancer samples as well as 1,231 samples from other cancer forms. Results The initial co-expression network analysis resulted in the characterization of eight tightly regulated gene modules. Cell cycle genes were divided into two transcriptional programs, and experimental validation using an siRNA screen showed different functional roles for these programs during proliferation. The division of the two programs was found to act as a marker for tumor protein p53 (TP53) gene status in luminal breast cancer, with the two programs being separated only in luminal tumors with functional p53 (encoded by TP53). Moreover, a module containing fibroblast and stroma-related genes was highly expressed in fibroblasts, but was also up-regulated by overexpression of epithelial-mesenchymal transition factors such as transforming growth factor beta 1 (TGF-beta1) and Snail in immortalized human mammary epithelial cells. Strikingly, the stroma transcriptional program related to less malignant tumors for luminal disease and aggressive lymph node positive disease among

  16. Cholesterol depletion in cell membranes of human airway epithelial cells suppresses MUC5AC gene expression.

    PubMed

    Song, Kee Jae; Kim, Na Hyun; Lee, Gi Bong; Kim, Ji Hoon; Kwon, Jin Ho; Kim, Kyung-Su

    2013-05-01

    If cholesterol in the cell membrane is depleted by treating cells with methyl-β-cyclodextrin (MβCD), the activities of transmembrane receptors are altered in a cell-specific and/or receptor-specific manner. The proinflammatory cytokines, IL-1β is potent inducers of MUC5AC mRNA and protein synthesis in human airway epithelial cells. Cells activated by IL-1β showed increased phosphorylation of extracellular signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Thus, we investigated the effects of cholesterol depletion on the expression of MUC5AC in human airway epithelial cells and whether these alterations to MUC5AC expression were related to MAPK activity. After NCI-H292 cells were pretreated with 1% MβCD before adding IL-1β for 24 hours, MUC5AC mRNA expression was determined by reverse transcription- polymerase chain reaction (RT-PCR) and real time-PCR. Cholesterol depletion by MβCD was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK and p38 MAPK, was analyzed by western blot. Cholesterol in the cell membrane was significantly depleted by treatment with MβCD on cells. IL-1β-induced MUC5AC mRNA expression was decreased by MβCD and this decrease occurred IL-1-receptor- specifically. Moreover, we have shown that MβCD suppressed the activation of ERK1/2 and p38 MAPK in cells activated with IL-1β. This result suggests that MβCD-mediated suppression of IL-1β-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathway. Cholesterol depletion in NCI-H292 cell membrane may be considered an anti-hypersecretory method since it effectively inhibits mucus secretion of respiratory epithelial cells.

  17. Preimplantation human blastocysts release factors that differentially alter human endometrial epithelial cell adhesion and gene expression relative to IVF success.

    PubMed

    Cuman, C; Menkhorst, E M; Rombauts, L J; Holden, S; Webster, D; Bilandzic, M; Osianlis, T; Dimitriadis, E

    2013-05-01

    Do human blastocysts which subsequently implant release factors that regulate endometrial epithelial cell gene expression and adhesion to facilitate endometrial receptivity? Blastocysts which subsequently implanted released factors that altered endometrial epithelial gene expression and facilitated endometrial adhesion while blastocysts that failed to implant did not. Human preimplantation blastocysts are thought to interact with the endometrium to facilitate implantation. Very little is known of the mechanisms by which this occurs and to our knowledge there is no information on whether human blastocysts facilitate blastocyst attachment to the endometrium. We used blastocyst-conditioned medium (BCM) from blastocysts that implanted (n = 28) and blastocysts that did not implant (n = 28) following IVF. Primary human endometrial epithelial cells (HEECs) (n = 3 experiments) were treated with BCM and the effect on gene expression and adhesion to trophoblast cells determined. We compared the protein production of selected genes in the endometrium of women with normal fertility (n = 40) and infertility (n = 6) during the receptive phase. We used real-time RT-PCR arrays containing 84 genes associated with the epithelial to mesenchymal transition. We validated selected genes by real-time RT-PCR (n = 3) and immunohistochemistry in the human endometrium (n = 46). Adhesion assays were performed using HEECs and a trophoblast cell line (n = 3). Blastocysts that implanted released factors that differentially altered mRNA levels for six genes (>1.5 fold) compared with blastocysts that did not implant. A cohort of genes was validated at the protein level: SPARC and Jagged1 were down-regulated (P < 0.01), while SNAI2 and TGF-B1 were up-regulated (P < 0.05) by implanted compared with non-implanted BCM. Jagged-1 (P < 0.05) and Snai-2 protein (P < 0.01) showed cyclical changes in the endometrium across the cycle, and Jagged-1 staining differed in women with normal fertility versus

  18. Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis

    PubMed Central

    Zucchi, I.; Mento, E.; Kuznetsov, V. A.; Scotti, M.; Valsecchi, V.; Simionati, B.; Vicinanza, E.; Valle, G.; Pilotti, S.; Reinbold, R.; Vezzoni, P.; Albertini, A.; Dulbecco, R.

    2004-01-01

    Expression profiles of breast carcinomas are difficult to interpret when they are obtained from tissue in toto, which may contain a large proportion of non-cancer cells. To avoid this problem, we microscopically isolated cells from a primary invasive ductal carcinoma of the breast and from an axillary node harboring a metastatic breast carcinoma, to obtain pure populations of carcinoma cells (≈500) and used them for serial analysis of gene expression. The expression profiles generated from both populations of cells were compared with the profile of a disease-free mammary epithelium. We showed that the expression profiles obtained are exclusive of carcinoma cells with no contribution of non-epithelial cells. From a total of 16,939 unique tags analyzed, we detected 559 statistically significant changes in gene expression; some of these genes have not been previously associated with breast cancer. We observed that many of the down-regulated genes are the same in both cancers, whereas the up-regulated genes are completely different, suggesting that the down-regulation of a set of genes may be the basic mechanism of cancer formation, while the up-regulation may characterize and possibly control the state of evolution of individual cancers. The results obtained may help in characterizing the neoplastic process of breast cancer. PMID:15608061

  19. Indications for distinct pathogenic mechanisms of asbestos and silica through gene expression profiling of the response of lung epithelial cells

    PubMed Central

    Perkins, Timothy N.; Peeters, Paul M.; Shukla, Arti; Arijs, Ingrid; Dragon, Julie; Wouters, Emiel F.M.; Reynaert, Niki L.; Mossman, Brooke T.

    2015-01-01

    Occupational and environmental exposures to airborne asbestos and silica are associated with the development of lung fibrosis in the forms of asbestosis and silicosis, respectively. However, both diseases display distinct pathologic presentations, likely associated with differences in gene expression induced by different mineral structures, composition and bio-persistent properties. We hypothesized that effects of mineral exposure in the airway epithelium may dictate deviating molecular events that may explain the different pathologies of asbestosis versus silicosis. Using robust gene expression-profiling in conjunction with in-depth pathway analysis, we assessed early (24 h) alterations in gene expression associated with crocidolite asbestos or cristobalite silica exposures in primary human bronchial epithelial cells (NHBEs). Observations were confirmed in an immortalized line (BEAS-2B) by QRT-PCR and protein assays. Utilization of overall gene expression, unsupervised hierarchical cluster analysis and integrated pathway analysis revealed gene alterations that were common to both minerals or unique to either mineral. Our findings reveal that both minerals had potent effects on genes governing cell adhesion/migration, inflammation, and cellular stress, key features of fibrosis. Asbestos exposure was most specifically associated with aberrant cell proliferation and carcinogenesis, whereas silica exposure was highly associated with additional inflammatory responses, as well as pattern recognition, and fibrogenesis. These findings illustrate the use of gene-profiling as a means to determine early molecular events that may dictate pathological processes induced by exogenous cellular insults. In addition, it is a useful approach for predicting the pathogenicity of potentially harmful materials. PMID:25351596

  20. Coculturing human endometrial epithelial cells and stromal fibroblasts alters cell-specific gene expression and cytokine production

    PubMed Central

    Chen, Joseph C.; Erikson, David W.; Piltonen, Terhi T.; Meyer, Michelle R.; Barragan, Fatima; McIntire, Ramsey H.; Tamaresis, John S.; Vo, Kim Chi; Giudice, Linda C.; Irwin, Juan C.

    2013-01-01

    Objective To determine the effects of coculturing endometrial epithelial cells (eEC) with paired endometrial stromal fibroblasts (eSF) on cell-specific gene expression and cytokine secretion patterns. Design In vitro study. Setting University research laboratory. Patient(s) Endometrial biopsies were obtained from premenopausal women. Intervention(s) Polarized eEC and subject-paired eSF were cultured for 12.5 hours alone (monoculture) or combined in a two-chamber coculture system without cell-cell contact. Cells and conditioned media were analyzed for global gene expression and cytokine secretion, respectively. Purified, endometrial tissue-derived eEC and eSF isolated by fluorescent activated cell sorting (FACS) were used as noncultured controls. Main Outcome Measure(s) Cell-specific global gene expression profiling and analysis of secreted cytokines in eEC/eSF cocultures and respective monocultures. Result(s) Transepithelial resistance, diffusible tracer exclusion, expression of tight junction proteins, and apical/basolateral vectorial secretion confirmed eEC structural and functional polarization. Distinct transcriptomes of eEC and eSF were consistent with their respective lineages and their endometrial origin. Coculture of eEC with eSF resulted in altered cell-specific gene expression and cytokine secretion. Conclusion(s) This coculture model provides evidence that interactions between endometrial functionally polarized epithelium and stromal fibroblasts affect cell-specific gene expression and cytokine secretion underscoring their relevance when modeling endometrium in vitro. PMID:23849844

  1. Gene Expression in Wilms’ Tumor Mimics the Earliest Committed Stage in the Metanephric Mesenchymal-Epithelial Transition

    PubMed Central

    Li, Chi-Ming; Guo, Meirong; Borczuk, Alain; Powell, Charles A.; Wei, Michelle; Thaker, Harshwardhan M.; Friedman, Richard; Klein, Ulf; Tycko, Benjamin

    2002-01-01

    Wilms’ tumor (WT) has been considered a prototype for arrested cellular differentiation in cancer, but previous studies have relied on selected markers. We have now performed an unbiased survey of gene expression in WTs using oligonucleotide microarrays. Statistical criteria identified 357 genes as differentially expressed between WTs and fetal kidneys. This set contained 124 matches to genes on a microarray used by Stuart and colleagues (Stuart RO, Bush KT, Nigam SK: Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci USA 2001, 98:5649–5654) to establish genes with stage-specific expression in the developing rat kidney. Mapping between the two data sets showed that WTs systematically overexpressed genes corresponding to the earliest stage of metanephric development, and underexpressed genes corresponding to later stages. Automated clustering identified a smaller group of 27 genes that were highly expressed in WTs compared to fetal kidney and heterologous tumor and normal tissues. This signature set was enriched in genes encoding transcription factors. Four of these, PAX2, EYA1, HBF2, and HOXA11, are essential for cell survival and proliferation in early metanephric development, whereas others, including SIX1, MOX1, and SALL2, are predicted to act at this stage. SIX1 and SALL2 proteins were expressed in the condensing mesenchyme in normal human fetal kidneys, but were absent (SIX1) or reduced (SALL2) in cells at other developmental stages. These data imply that the blastema in WTs has progressed to the committed stage in the mesenchymal-epithelial transition, where it is partially arrested in differentiation. The WT-signature set also contained the Wnt receptor FZD7, the tumor antigen PRAME, the imprinted gene NNAT and the metastasis-associated transcription factor E1AF. PMID:12057921

  2. Melanoma Proteoglycan Modifies Gene Expression to Stimulate Tumor Cell Motility, Growth and Epithelial to Mesenchymal Transition

    PubMed Central

    Yang, Jianbo; Price, Matthew A.; Li, GuiYuan; Bar-Eli, Menashe; Salgia, Ravi; Jagedeeswaran, Ramasamy; Carlson, Jennifer H.; Ferrone, Soldano; Turley, Eva A.; McCarthy, James B.

    2009-01-01

    Melanoma chondroitin sulfate proteoglycan (MCSP) is a plasma membrane-associated proteoglycan that facilitates the growth, motility and invasion of tumor cells. MCSP expression in melanoma cells enhances integrin function and constitutive activation of Erk 1,2. The current studies were performed to determine the mechanism by which MCSP expression promotes tumor growth and motility. The results demonstrate that MCSP expression in radial growth phase (RGP), vertical growth phase (VGP) or metastatic cell lines causes sustained activation of Erk 1,2, enhanced growth and motility which all require the cytoplasmic domain of the MCSP core protein. MCSP expression in an RGP cell line also promotes an epithelial to mesenchymal transition (EMT) based on changes in cell morphology and the expression of several EMT markers. Finally MCSP enhances the expression of c-Met and HGF, and inhibiting c-Met expression or activation limits the increased growth and motility of multiple melanoma cell lines. The studies collectively demonstrate an importance for MCSP in promoting progression by an epigenetic mechanism and they indicate that MCSP could be targeted to delay or inhibit tumor progression in patients. PMID:19738072

  3. Evolutionary conserved gene co-expression drives generation of self-antigen diversity in medullary thymic epithelial cells.

    PubMed

    Rattay, Kristin; Meyer, Hannah Verena; Herrmann, Carl; Brors, Benedikt; Kyewski, Bruno

    2016-02-01

    Promiscuous expression of a plethora of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for central tolerance. This promiscuous gene expression (pGE) is characterized by inclusion of a broad range of TRAs and by its mosaic expression patterns, i.e. each antigen is only expressed in 1-3% of mTECs. It is currently unclear to which extent random and/or deterministic mechanisms are involved in the regulation of pGE. In order to address this issue, we deconstructed the transcriptional heterogeneity in mTEC to minor subsets expressing a particular TRA. We identified six delineable co-expression groups in mouse mTECs. These co-expression groups displayed a variable degree of mutual overlap and mapped to different stages of mTEC development. Co-expressed genes showed chromosomal preference and clustered within delimited genomic regions. Moreover, co-expression groups in mice and humans selected by a pair of orthologous genes preferentially co-expressed sets of orthologous genes attesting to the species conservation of pGE between mouse and human. Furthermore, co-expressed genes were enriched for specific transcription factor binding motifs concomitant with up-regulation of the corresponding transcription factors, implicating additional factors in the regulation of pGE besides the Autoimmune Regulator (Aire). Thus promiscuous transcription of self-antigens in mTECs entails a highly coordinated process, which is evolutionary strictly conserved between species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  5. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  6. Screening of crucial long non-coding RNAs in oral epithelial dysplasia by serial analysis of gene expression.

    PubMed

    Han, X; Wei, Y B; Tian, G; Tang, Z; Gao, J Y; Xu, X G

    2015-10-02

    Oral epithelial dysplasia (OED) is a premalignant lesion of the oral mucosa. Considering the poor 5-year survival rate of oral cancer, further investigation is needed in order to determine the pathogenesis of OED. In the present study, serial analysis of gene expression (SAGE) data from patients with OED were compared to normal controls to identify differentially expressed genes (DEGs). SAGE data were obtained from the Gene Expression Omnibus, and included samples from patients with mild, moderate, or severe dysplasia. The DEGs were identified using the edgeR software package and functional-enrichment analysis was performed with the DAVID (https://david.ncifcrf.gov/) software program. The co-expression network was constructed using the CoExpress software and target genes of long non-coding RNAs (lncRNAs) were predicted according to the proximity between the lncRNAs and mRNAs in the genome. A total of 517 DEGs were identified, including 409 mRNAs and 108 lncRNAs. Functional-enrichment analysis showed that mRNAs and lncRNAs involved in epithelial cell differentiation, epithelium development, and epidermal cell differentiation were significantly enriched in the DEGs. Thirty-eight potential regulatory relationships were unveiled between lncRNAs and mRNAs, and two subnetworks were discovered by analyzing the topological properties of the co-expression network. In conclusion, we have identified key mRNAs and lncRNAs in OED, and these findings may aid in understanding the pathogenesis of OED and advance potential future treatments.

  7. CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype.

    PubMed

    Tan, Tuan Zea; Yang, He; Ye, Jieru; Low, Jeffrey; Choolani, Mahesh; Tan, David Shao Peng; Thiery, Jean-Paul; Huang, Ruby Yun-Ju

    2015-12-22

    Databases pertaining to various diseases provide valuable resources on particular genes of interest but lack the molecular subtype and epithelial-mesenchymal transition status. CSIOVDB is a transcriptomic microarray database of 3,431 human ovarian cancers, including carcinoma of the ovary, fallopian tube, and peritoneum, and metastasis to the ovary. The database also comprises stroma and ovarian surface epithelium from normal ovary tissue, as well as over 400 early-stage ovarian cancers. This unique database presents the molecular subtype and epithelial-mesenchymal transition status for each ovarian cancer sample, with major ovarian cancer histologies (clear cell, endometrioid, mucinous, low-grade serous, serous) represented. Clinico-pathological parameters available include tumor grade, surgical debulking status, clinical response and age. The database has 1,868 and 1,516 samples with information pertaining to overall and disease-free survival rates, respectively. The database also provides integration with the copy number, DNA methylation and mutation data from TCGA. CSIOVDB seeks to provide a resource for biomarker and therapeutic target exploration for ovarian cancer research.

  8. The Effect of Estradiol and Progesterone on Toll Like Receptor Gene Expression in A Human Fallopian Tube Epithelial Cell Line

    PubMed Central

    Zandieh, Zahra; Amjadi, Fatemehsadat; Ashrafi, Mahnaz; Aflatoonian, Abbas; Fazeli, Alireza; Aflatoonian, Reza

    2016-01-01

    Objective Toll like receptors (TLRs) are one of the main components of the innate im- mune system. It has been reported that expression of these receptors are altered in the female reproductive tract (FRT) during menstrual cycle. Here we used a fallopian tube epithelial cell line (OE-E6/E7) to evaluate the effect of two sex hormones in modulating TLR expression. Materials and Methods In this experimental study, initially TLR gene expression in OE- E6/E7 cells was evaluated and compared with that of fallopian tube tissue using quanti- tative real time-polymerase chain reaction (qRT-PCR) and immunostaining. Thereafter, OE-E6/E7 cells were cultured with different concentrations of estradiol and progesterone, and combination of both. qRT-PCR was performed to reveal any changes in expression of TLR genes as a result of hormonal treatment. Results TLR1-10 genes were expressed in human fallopian tube tissue. TLR1-6 genes and their respective proteins were expressed in the OE-E6/E7 cell line. Although estradiol and progesterone separately had no significant effect on TLR expression, their combined treatment altered the expression of TLRs in this cell line. Also, the pattern of TLR expres- sion in preovulation (P), mensturation (M) and window of implantation (W) were the same for all TLRs with no significant differences between P, M and W groups. Conclusion These data show the significant involvement of the combination of es- tradiol and progesterone in modulation of TLR gene expression in this human fal- lopian tube cell line. Further experiments may reveal the regulatory mechanism and signalling pathway behind the effect of sex hormones in modulating TLRs in the hu- man FRT. PMID:26862527

  9. Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells.

    PubMed

    Pereyra, Elizabet A L; Picech, Florencia; Renna, María S; Baravalle, Celina; Andreotti, Carolina S; Russi, Romina; Calvinho, Luis F; Diez, Cristina; Dallard, Bibiana E

    2016-02-01

    Staphylococcus aureus is one of the most prevalent pathogens isolated from bovine mastitis, causing chronic intramammary infections (IMI) that limit profitable dairying. The course of infection is often associated with factors both related to the host and the bacterium. Aims of this study were to select S. aureus isolates from bovine IMI with different genotypic profiles harboring genes involved in adherence and biofilm production, to determine the behavior of these strains in contact with bovine mammary epithelial cells (MAC-T) and the expression of those genes during bacterial-cell early interactions. The genetic diversity of 20 S. aureus strains that were isolated from milk samples taken from cows with persistent-P and non-persistent-NP IMI was high, discriminated into 13 fingerprint groups. The occurrence of genes coding for S. aureus surface proteins (clfA, clfB, fnbA, fnbB, fib, cna) and biofilm formation (icaA, icaD, icaC, bap) and in vitro biofilm-forming ability was not related to strain clinical origin (NP or P). Internalization of S. aureus into MAC-T cells was strain-dependent and internalized bacteria overexpressed adherence and biofilm-forming genes compared with those that remained in the supernatant of co-cultures; particularly those genes encoding FnBPs and IcaD. Strains yielding highest invasion percentages were those able to overexpress fnBP, irrespectively of the presence of other evaluated genes. Strains from NP IMI showed a greater multiplication capacity in vitro compared with strains from P IMI. These results provide new insights about S. aureus differential gene expression of adhesion-internalization factors during early interaction with mammary epithelial cells. Copyright © 2015. Published by Elsevier B.V.

  10. Lipoprotein Lipase, Tissue Expression and Effects on Genes Related to Fatty Acid Synthesis in Goat Mammary Epithelial Cells

    PubMed Central

    Zhao, Wang-Sheng; Hu, Shi-Liang; Yu, Kang; Wang, Hui; Wang, Wei; Loor, Juan; Luo, Jun

    2014-01-01

    Lipoprotein lipase (LPL) serves as a central factor in hydrolysis of triacylglycerol and uptake of free fatty acids from the plasma. However, there are limited data concerning the action of LPL on the regulation of milk fat synthesis in goat mammary gland. In this investigation, we describe the cloning and sequencing of the LPL gene from Xinong Saanen dairy goat mammary gland, along with a study of its phylogenetic relationships. Sequence analysis showed that goat LPL shares similarities with other species including sheep, bovine, human and mouse. LPL mRNA expression in various tissues determined by RT-qPCR revealed the highest expression in white adipose tissue, with lower expression in heart, lung, spleen, rumen, small intestine, mammary gland, and kidney. Expression was almost undetectable in liver and muscle. The expression profiles of LPL gene in mammary gland at early, peak, mid, late lactation, and the dry period were also measured. Compared with the dry period, LPL mRNA expression was markedly greater at early lactation. However, compared with early lactation, the expression was lower at peak lactation and mid lactation. Despite those differences, LPL mRNA expression was still greater at peak, mid, and late lactation compared with the dry period. Using goat mammary epithelial cells (GMEC), the in vitro knockdown of LPL via shRNA or with Orlistat resulted in a similar degree of down-regulation of LPL (respectively). Furthermore, knockdown of LPL was associated with reduced mRNA expression of SREBF1, FASN, LIPE and PPARG but greater expression of FFAR3. There was no effect on ACACA expression. Orlistat decreased expression of LIPE, FASN, ACACA, and PPARG, and increased FFAR3 and SREBF1 expression. The pattern of LPL expression was similar to the changes in milk fat percentage in lactating goats. Taken together, results suggest that LPL may play a crucial role in fatty acid synthesis. PMID:25501331

  11. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    SciTech Connect

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  12. Characterization of the dopamine transporter gene expression and binding sites in cultured human amniotic epithelial cells.

    PubMed

    Elwan, Mohamed A; Ishii, Takashi; Sakuragawa, Norio

    2003-05-15

    In this study we sought to investigate whether the dopamine transporter, DAT, and its binding sites are expressed in the human amniotic epithelial cells (HAEC) using reverse transcription-polymerase chain reaction (RT-PCR) and radioligand binding studies, respectively. The RT-PCR findings showed that HAEC expressed DAT mRNA with 100% homology to the human brain DAT. Saturation binding studies using [3H]mazindol showed a high affinity DAT binding site with K(D) and B(max) values of 12.32+/-1.67 nM and 82.7+/-9.74 fmol/mg protein, respectively. Competition experiments showed that selective DAT blockers are potent displacers of [3H]mazindol binding. The rank order of potency of the competing drugs is consistent with the pharmacology of the DAT. The present results provide compelling evidence that HAEC natively express the DAT mRNA and binding sites. More importantly, these results may suggest that HAEC is an appropriate human cell model for studying dopamine release and uptake processes and potential ligands at these sites.

  13. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells

    PubMed Central

    2012-01-01

    Background Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis), and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B) exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106μm2/cm2). Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE) were used to comparatively assess silica particle-induced alterations in gene expression. Results Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75) and high (150 × 106μm2/cm2) amounts, respectively (p < 0.05/cut off ≥ 2.0-fold change). Exposure to amorphous silica micro-particles at high amounts (150 × 106μm2/cm2) induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p < 0.05) induced by crystalline silica, but none were induced by amorphous silica. QRT-PCR revealed that cristobalite selectively up-regulated stress-related genes and cytokines (FOS, ATF3, IL6 and IL8) early and over time (2, 4, 8, and 24 h). Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106μm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106μm2/cm2) revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. Conclusions Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells

  14. Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis.

    PubMed

    Takahashi, Kyoko; Sugi, Yutaka; Hosono, Akira; Kaminogawa, Shuichi

    2009-11-15

    Intestinal epithelial cells (IECs) are continuously exposed to large numbers of commensal bacteria but are relatively insensitive to them, thereby averting an excessive inflammatory reaction. In this study, we show that the low responsiveness of human IEC lines to LPS was mainly brought about by a down-regulation of TLR4 gene transcription. Additionally, the presence of an IEC-specific repressor element in the 5' region of the TLR4 gene and binding of a NF to the element was shown. The transcription factor ZNF160, which was expressed more abundantly in a LPS-low responder IEC line than in a LPS-high responder IEC line, repressed TLR4 gene transcription. ZNF160 is known to interact with the scaffold protein KAP1 via its N terminus to recruit histone deacetylase. Histone deacetylation, as well as DNA methylation, at the 5' region of the TLR4 gene was significantly higher in LPS-low responder IEC lines than in a monocyte line or a LPS-high responder IEC line. It was demonstrated that TLR4 gene transcription was repressed by these epigenetic regulations, which were, at least in part, dependent on ZNF160. Down-regulaton of TLR4 gene expression by these mechanisms in IECs possibly contributes to the maintainance of homeostasis in the intestinal commensal system.

  15. Epithelial and endothelial expression of the green fluorescent protein reporter gene under the control of bovine prion protein (PrP) gene regulatory sequences in transgenic mice

    NASA Astrophysics Data System (ADS)

    Lemaire-Vieille, Catherine; Schulze, Tobias; Podevin-Dimster, Valérie; Follet, Jérome; Bailly, Yannick; Blanquet-Grossard, Françoise; Decavel, Jean-Pierre; Heinen, Ernst; Cesbron, Jean-Yves

    2000-05-01

    The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5' untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.

  16. Modulation of expression of IL-8 gene in bronchial epithelial cells by 5-methoxypsoralen.

    PubMed

    Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria Cristina; Borgatti, Monica; Tamanini, Anna; Bezzerri, Valentino; Bianchi, Nicoletta; Mazzon, Martina; Mancini, Irene; Giri, Maria Grazia; Rizzotti, Paolo; Gambari, Roberto; Cabrini, Giulio

    2009-11-01

    Persistent recruitment of neutrophils in the bronchi of cystic fibrosis patients contributes to airway tissue damage, suggesting the importance of intervening on the expression of the neutrophil chemokine IL-8. Extracts from plants have been investigated to select components able to reduce IL-8 expression in bronchial epithelial cells challenged with Pseudomonas aeruginosa. Extracts and purified components have been added to cells 24 h before pro-inflammatory challenge with P. aeruginosa and IL-8 transcription was quantified in the IB3-1 CF cells in vitro. P. aeruginosa-dependent IL-8 mRNA induction was increased by Argemone mexicana and Vernonia anthelmintica whereas no significant modification of transcription was observed with Aphanamixis polystachya, Lagerstroemia speciosa and Hemidesmus indicus. Finally, inhibition of IL-8 was observed with Polyalthia longifolia (IC50=200 microg/ml) and Aegle marmelos (IC50=20 microg/ml). Compounds from A. marmelos were isolated and identified by GC-MS. No significant effect was observed with butyl-p-tolyl sulphate, whereas the inhibition obtained with 6-methyl-4-chromanone concentration was accompanied by an anti-proliferative effect. On the contrary, 5-methoxypsoralen resulted in IL-8 inhibition at 10 microM concentration, without effects on cell proliferation. In synthesis, 5-methoxypsoralen can be taken into consideration to investigate mechanisms of neutrophil chemotactic signalling and for its potential application in modulating the excessive CF lung inflammation.

  17. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes.

    PubMed

    Boggaram, Vijay; Loose, David S; Gottipati, Koteswara R; Natarajan, Kartiga; Mitchell, Courtney T

    2016-04-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells.

  18. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes

    PubMed Central

    Loose, David S.; Gottipati, Koteswara R.; Natarajan, Kartiga; Mitchell, Courtney T.

    2016-01-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells. PMID:26884459

  19. Transgenic Expression of miR-222 Disrupts Intestinal Epithelial Regeneration by Targeting Multiple Genes Including Frizzled-7.

    PubMed

    Chung, Hee Kyoung; Chen, Yu; Rao, Jaladanki N; Liu, Lan; Xiao, Lan; Turner, Douglas J; Yang, Peixin; Gorospe, Myriam; Wang, Jian-Ying

    2015-08-03

    Defects in intestinal epithelial integrity occur commonly in various pathologies. miR-222 is implicated in many aspects of cellular function and plays an important role in several diseases, but its exact biological function in the intestinal epithelium is underexplored. We generated mice with intestinal epithelial tissue-specific overexpression of miR-222 to investigate the function of miR-222 in intestinal physiology and diseases in vivo. Transgenic expression of miR-222 inhibited mucosal growth and increased susceptibility to apoptosis in the small intestine, thus leading to mucosal atrophy. The miR-222-elevated intestinal epithelium was vulnerable to pathological stress, since local overexpression of miR-222 not only delayed mucosal repair after ischemia/reperfusion-induced injury but also exacerbated gut barrier dysfunction induced by exposure to cecal ligation and puncture. miR-222 overexpression also decreased expression of the Wnt receptor Frizzled-7 (FZD7), cyclin-dependent kinase 4, and tight junctions in the mucosal tissue. Mechanistically, we identified the Fzd7 mRNA as a novel target of miR-222 and found that [miR-222/Fzd7 mRNA] association repressed Fzd7 mRNA translation. These results implicate miR-222 as a negative regulator of normal intestinal epithelial regeneration and protection by down-regulating expression of multiple genes including the Fzd7. Our findings also suggest a novel role of increased miR-222 in the pathogenesis of mucosal growth inhibition, delayed healing, and barrier dysfunction.

  20. C-erbB-2 gene product, a membrane protein commonly expressed on human fetal epithelial cells.

    PubMed

    Mori, S; Akiyama, T; Yamada, Y; Morishita, Y; Sugawara, I; Toyoshima, K; Yamamoto, T

    1989-07-01

    C-erbB-2 is a human proto-oncogene which has homologies with the well known proto-oncogene c-erbB. The c-erbB-2 gene is amplified and overexpressed in some human adenocarcinomas. Its expression, in terms of RNA levels in normal human fetal kidney, lung and liver, has also been reported. In the present study, various fetal tissues from three human abortuses obtained at 9, 14 and 24 weeks of gestation, were studied immunohistologically by the ABC method and immunochemically by Western blot analysis for the distribution of c-erbB-2 gene product at the protein level. A polyclonal antibody raised in rabbit by immunization with a synthetic polypeptide corresponding to part of the predicted intracytoplasmic domain was used. Strong immunoreactivity was observed on the membrane of most of the epithelial cells examined, including transitional cells of the renal pelvis and ureter, glandular cells of the gastrointestinal tract, renal tubuli, bronchi and pancreas, and stratified epithelium of the oral cavity, trachea and esophagus in this gestational period. A much more intense reaction was observed on the basolateral sides than on the apical side of these cells. No immunoreactivity was found in the liver, adrenal gland, striated and smooth muscles, brain, endothelium or fibroblasts. Western blot analysis confirmed increased expression of the c-erbB-2 gene product in fetal kidney and intestine but not in the brain. As the protein seems to be poorly expressed in normal adult epithelial cells except for renal tubuli, the present results suggest that the protein is a membrane-associated receptor protein which controls some specific reaction of fetal epithelium.

  1. Noninvasive stool-based detection of infant gastrointestinal development using gene expression profiles from exfoliated epithelial cells

    PubMed Central

    Zhao, Chen; Ivanov, Ivan; Davidson, Laurie A.; Goldsby, Jennifer S.; Lupton, Joanne R.; Mathai, Rose Ann; Monaco, Marcia H.; Rai, Deshanie; Russell, W. Michael; Donovan, Sharon M.; Dougherty, Edward R.

    2010-01-01

    We have developed a novel molecular methodology that utilizes stool samples containing intact sloughed epithelial cells to quantify intestinal gene expression profiles in the developing human neonate. Since nutrition exerts a major role in regulating neonatal intestinal development and function, our goal was to identify gene sets (combinations) that are differentially regulated in response to infant feeding. For this purpose, fecal mRNA was isolated from exclusively breast-fed (n = 12) and formula-fed (n = 10) infants at 3 mo of age. Linear discriminant analysis was successfully used to identify the single genes and the two- to three-gene combinations that best distinguish the feeding groups. In addition, putative “master” regulatory genes were identified using coefficient of determination analysis. These results support our premise that mRNA isolated from stool has value in terms of characterizing the epigenetic mechanisms underlying the developmentally regulated transcriptional activation/repression of genes known to modulate gastrointestinal function. As larger data sets become available, this methodology can be extended to validation and, ultimately, identification of the main nutritional components that modulate intestinal maturation and function. PMID:20203060

  2. Expression of the Gene for Autotransporter AutB of Neisseria meningitidis Affects Biofilm Formation and Epithelial Transmigration

    PubMed Central

    Arenas, Jesús; Paganelli, Fernanda L.; Rodríguez-Castaño, Patricia; Cano-Crespo, Sara; van der Ende, Arie; van Putten, Jos P. M.; Tommassen, Jan

    2016-01-01

    Neisseria meningitidis is a Gram-negative bacterium that resides as a commensal in the upper respiratory tract of humans, but occasionally, it invades the host and causes sepsis and/or meningitis. The bacterium can produce eight autotransporters, seven of which have been studied to some detail. The remaining one, AutB, has not been characterized yet. Here, we show that the autB gene is broadly distributed among pathogenic Neisseria spp. The gene is intact in most meningococcal strains. However, its expression is prone to phase variation due to slipped-strand mispairing at AAGC repeats located within the DNA encoding the signal sequence and is switched off in the vast majority of these strains. Moreover, various genetic disruptions prevent autB expression in most of the strains in which the gene is in phase indicating a strong selection against AutB synthesis. We observed that autB is expressed in two of the strains examined and that AutB is secreted and exposed at the cell surface. Functionality assays revealed that AutB synthesis promotes biofilm formation and delays the passage of epithelial cell layers in vitro. We hypothesize that this autotransporter is produced during the colonization process only in specific niches to facilitate microcolony formation, but its synthesis is switched off probably to evade the immune system and facilitate human tissue invasion. PMID:27921012

  3. Differential Features of AIRE-Induced and AIRE-Independent Promiscuous Gene Expression in Thymic Epithelial Cells.

    PubMed

    St-Pierre, Charles; Trofimov, Assya; Brochu, Sylvie; Lemieux, Sébastien; Perreault, Claude

    2015-07-15

    Establishment of self-tolerance in the thymus depends on promiscuous expression of tissue-restricted Ags (TRA) by thymic epithelial cells (TEC). This promiscuous gene expression (pGE) is regulated in part by the autoimmune regulator (AIRE). To evaluate the commonalities and discrepancies between AIRE-dependent and -independent pGE, we analyzed the transcriptome of the three main TEC subsets in wild-type and Aire knockout mice. We found that the impact of AIRE-dependent pGE is not limited to generation of TRA. AIRE decreases, via non-cell autonomous mechanisms, the expression of genes coding for positive regulators of cell proliferation, and it thereby reduces the number of cortical TEC. In mature medullary TEC, AIRE-driven pGE upregulates non-TRA coding genes that enhance cell-cell interactions (e.g., claudins, integrins, and selectins) and are probably of prime relevance to tolerance induction. We also found that AIRE-dependent and -independent TRA present several distinctive features. In particular, relative to AIRE-induced TRA, AIRE-independent TRA are more numerous and show greater splicing complexity. Furthermore, we report that AIRE-dependent versus -independent TRA project nonredundant representations of peripheral tissues in the thymus. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Proteomic analysis to unravel the effect of heat stress on gene expression and milk synthesis in bovine mammary epithelial cells.

    PubMed

    Li, Lian; Wang, Yiru; Li, Chengmin; Wang, Genlin

    2017-08-14

    Heat stress can play a negative effect on milk yield and composition of dairy cattle, leading to immeasurable economic loss. The basic components of the mammary gland are the alveoli; these alveolar mammary epithelial cells reflect the milk producing ability of dairy cows. In this study, we exposed bovine mammary epithelial cells to heat stress and compared them to a control group using isobaric tags for relative and absolute quantitation combined with liquid chromatography coupled with tandem mass spectrometry. Compared with a control group, 104 differentially elevated proteins (>1.3-fold) and 167 decreased proteins (<0.77-fold) were identified in the heat treatment group. Gene Ontology analysis identified a majority of the differentially expressed proteins are associated in cell-substrate junction assembly, catabolic processes and metabolic processes. Some of these significantly regulated proteins were related to the synthesis and secretion of milk, such as milk protein and fat. This finding was further supported by the results obtained from the reduced β-casein expression through the system of plasminogen activator - plasminogen - plasmin and decreased fatty acid synthase could partly explain why milk fat synthesis ability of dairy cows decreased under heat stress. Our results highlight the effects of heat stress on synthesis of milk protein and fat, thus providing additional clues for further studies of heat stress on dairy milk production. © 2017 Japanese Society of Animal Science.

  5. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction

    SciTech Connect

    Roskelley, C.D.; Desprez, P.Y.; Bissell, M.J. )

    1994-12-20

    Extracellular matrix (ECM) profoundly influences the growth and differentiation of the mammary gland epithelium, both in culture and in vivo. Utilizing a clonal population of mouse mammary epithelial cells that absolutely requires an exogenous ECM for function, we developed a rapid assay to study signal transduction by ECM. Two components of the cellular response to a basement membrane overlay that result in the expression of the milk protein [beta]-casein were defined. The first component of this response involves a rounding and clustering of the cells that can be physically mimicked by plating the cells on a nonadhesive substratum. The second component is biochemical in nature, and it is associated with [beta][sub 1] integrin clustering and increased tyrosine phosphorylation. The second component is initiated in a morphology-independent manner, but the proper translation of this biochemical signal into a functional response requires cell rounding and cell clustering. Thus, physical and biochemical signal transduction events contribute to the ECM-dependent regulation of tissue-specific gene expression in mouse mammary epithelial cells. 44 refs., 6 figs.

  6. Overexpression of RGPR-p117 enhances regucalcin gene expression in cloned normal rat kidney proximal tubular epithelial cells.

    PubMed

    Sawada, Natsumi; Yamaguchi, Masayoshi

    2005-12-01

    A novel protein RGPR-p117 was discovered as a regucalcin gene promoter region-related protein that binds to the TTGGC motif using a yeast one-hybrid system. Whether overexpression of RGPR-p117 can modulate gene expression in the cloned normal rat kidney proximal tubular epithelial NRK52E cells was investigated. NRK52E cells (wild-type) or HA-RGPR-p117/phCMV2-transfected NRK52E cells were cultured in Dulbecco's minimum essential medium (DMEM) containing 5% bovine serum (BS). Proliferation of NRK52E cells (wild-type) was not significantly altered by overexpression of HA-RGPR-p117. The expression of rat regucalcin, alpha-fetoprotein, albumin, glucokinase, 11beta-hydroxy-steroid dehydrogenase, phosphoenolpyruvate carboxykinase, which contains TTGGC motif in the promoter region of their genes, was seen in NRK52E cells (wild-type) by using reverse transcription-polymerase chain reaction (RT-PCR). Of these genes, regucalcin mRNA levels were significantly enhanced in transfectants. The expression of p21 or glycero-aldehyde-3-phosphate dehydrogenase mRNA was not significantly changed in transfectants. The results of Western blot analysis showed that regucalcin protein was significantly increased in transfectants. The enhancement of regucalcin mRNA expression in transfectants was significantly suppressed in the presence of staurosporine (10(-10) M), an inhibitor of protein kinase C. This enhancement was not significantly changed in the presence of dibucaine (10(-8) M), PD98059 (10(-8) M) or vanadate (10(-6) M). This study demonstrates that overexpression of RGPR-p117 enhances the expression of regucalcin mRNA and its protein level in NRK52E cells. RGPR-p117 may play a role as a transcriptional factor.

  7. Genome Wide Analysis of Differentially Expressed Genes in HK-2 Cells, a Line of Human Kidney Epithelial Cells in Response to Oxalate

    PubMed Central

    Koul, Sweaty; Khandrika, Lakshmipathi; Meacham, Randall B.; Koul, Hari K.

    2012-01-01

    Nephrolithiasis is a multi-factorial disease which, in the majority of cases, involves the renal deposition of calcium oxalate. Oxalate is a metabolic end product excreted primarily by the kidney. Previous studies have shown that elevated levels of oxalate are detrimental to the renal epithelial cells; however, oxalate renal epithelial cell interactions are not completely understood. In this study, we utilized an unbiased approach of gene expression profiling using Affymetrix HG_U133_plus2 gene chips to understand the global gene expression changes in human renal epithelial cells [HK-2] after exposure to oxalate. We analyzed the expression of 47,000 transcripts and variants, including 38,500 well characterized human genes, in the HK2 cells after 4 hours and 24 hours of oxalate exposure. Gene expression was compared among replicates as per the Affymetrix statistical program. Gene expression among various groups was compared using various analytical tools, and differentially expressed genes were classified according to the Gene Ontology Functional Category. The results from this study show that oxalate exposure induces significant expression changes in many genes. We show for the first time that oxalate exposure induces as well as shuts off genes differentially. We found 750 up-regulated and 2276 down-regulated genes which have not been reported before. Our results also show that renal cells exposed to oxalate results in the regulation of genes that are associated with specific molecular function, biological processes, and other cellular components. In addition we have identified a set of 20 genes that is differentially regulated by oxalate irrespective of duration of exposure and may be useful in monitoring oxalate nephrotoxicity. Taken together our studies profile global gene expression changes and provide a unique insight into oxalate renal cell interactions and oxalate nephrotoxicity. PMID:23028475

  8. Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes

    DTIC Science & Technology

    2005-02-01

    later by injection with 5 U of human chorionic gonadotropin (hormones purchased from Sigma, St. Louis, MO). 1.5 days following the last hormone...AD Award Number: W81XWH-04-1-0063 TITLE: Modeling Human Epithelial Ovarian Cancer in Mice by Alteration of Expression of the BRCA1 and/or P53 Genes...FUNDING NUMBERS Modeling Human Epithelial Ovarian Cancer in Mice by W81XWH-04-1-0063 Alteration of Expression of the BRCAI and/or P53 Genes 6. AUTHOR(S

  9. Expression of Innate Immunity Genes in Epithelial Cells of Hypertrophic Adenoids with and without Pediatric Chronic Rhinosinusitis: A Preliminary Report

    PubMed Central

    Qu, Xiao-Peng; Huang, Zhen-Xiao; Sun, Yan; Ye, Ting; Cui, Shun-Jiu; Huang, Qian; Ma, Li-Jing; Yang, Qing-Wen; Wang, Hong; Fan, Er-Zhong; Li, Ying; Zhang, Liang; Zhou, Bing

    2015-01-01

    Background: Adenoid hypertrophy (AH) is associated with pediatric chronic rhinosinusitis (pCRS), but its role in the inflammatory process of pCRS is unclear. It is thought that innate immunity gene expression is disrupted in the epithelium of patients with chronic rhinosinusitis (CRS), including antimicrobial peptides and pattern recognition receptors (PRRs). The aim of this preliminary study was to detect the expression of innate immunity genes in epithelial cells of hypertrophic adenoids with and without pCRS to better understand their role in pCRS. Methods: Nine pCRS patients and nine simple AH patients undergoing adenoidectomy were recruited for the study. Adenoidal epithelium was isolated, and real-time quantitative polymerase chain reaction (RT-qPCR) was employed to measure relative expression levels of the following messenger RNAs in hypertrophic adenoid epithelial cells of pediatric patients with and without CRS: Human β-defensin (HBD) 2 and 3, surfactant protein (SP)-A and D, toll-like receptors 1–10, nucleotide-binding oligomerization domain (NOD)-like receptors NOD 1, NOD 2, and NACHT, LRR and PYD domains-containing protein 3, retinoic acid-induced gene 1, melanoma differentiation-associated gene 5, and nuclear factor-κB (NF-κB). RT-qPCR data from two groups were analyzed by independent sample t-tests and Mann-Whitney U-tests. Results: The relative expression of SP-D in adenoidal epithelium of pCRS group was significantly lower than that in AH group (pCRS 0.73 ± 0.10 vs. AH 1.21 ± 0.15; P = 0.0173, t = 2.654). The relative expression levels of all tested PRRs and NF-κB, as well as HBD-2, HBD-3, and SP-A, showed no statistically significant differences in isolated adenoidal epithelium between pCRS group and AH group. Conclusions: Down-regulated SP-D levels in adenoidal epithelium may contribute to the development of pCRS. PRRs, however, are unlikely to play a significant role in the inflammatory process of pCRS. PMID:26521790

  10. Expression of Innate Immunity Genes in Epithelial Cells of Hypertrophic Adenoids with and without Pediatric Chronic Rhinosinusitis: A Preliminary Report.

    PubMed

    Qu, Xiao-Peng; Huang, Zhen-Xiao; Sun, Yan; Ye, Ting; Cui, Shun-Jiu; Huang, Qian; Ma, Li-Jing; Yang, Qing-Wen; Wang, Hong; Fan, Er-Zhong; Li, Ying; Zhang, Liang; Zhou, Bing

    2015-11-05

    Adenoid hypertrophy (AH) is associated with pediatric chronic rhinosinusitis (pCRS), but its role in the inflammatory process of pCRS is unclear. It is thought that innate immunity gene expression is disrupted in the epithelium of patients with chronic rhinosinusitis (CRS), including antimicrobial peptides and pattern recognition receptors (PRRs). The aim of this preliminary study was to detect the expression of innate immunity genes in epithelial cells of hypertrophic adenoids with and without pCRS to better understand their role in pCRS. Nine pCRS patients and nine simple AH patients undergoing adenoidectomy were recruited for the study. Adenoidal epithelium was isolated, and real-time quantitative polymerase chain reaction (RT-qPCR) was employed to measure relative expression levels of the following messenger RNAs in hypertrophic adenoid epithelial cells of pediatric patients with and without CRS: Human β-defensin (HBD) 2 and 3, surfactant protein (SP)-A and D, toll-like receptors 1-10, nucleotide-binding oligomerization domain (NOD)-like receptors NOD 1, NOD 2, and NACHT, LRR and PYD domains-containing protein 3, retinoic acid-induced gene 1, melanoma differentiation-associated gene 5, and nuclear factor-κB (NF-κB). RT-qPCR data from two groups were analyzed by independent sample t-tests and Mann-Whitney U-tests. The relative expression of SP-D in adenoidal epithelium of pCRS group was significantly lower than that in AH group (pCRS 0.73 ± 0.10 vs. AH 1.21 ± 0.15; P = 0.0173, t = 2.654). The relative expression levels of all tested PRRs and NF-κB, as well as HBD-2, HBD-3, and SP-A, showed no statistically significant differences in isolated adenoidal epithelium between pCRS group and AH group. Down-regulated SP-D levels in adenoidal epithelium may contribute to the development of pCRS. PRRs, however, are unlikely to play a significant role in the inflammatory process of pCRS.

  11. Identification of the MUC2 Promoter as a Strong Promoter for Intestinal Gene Expression through Generation of Transgenic Quail Expressing GFP in Gut Epithelial Cells

    PubMed Central

    Woodfint, Rachel M.; Chen, Paula R.; Ahn, Jinsoo; Suh, Yeunsu; Hwang, Seongsoo; Lee, Sang Suk; Lee, Kichoon

    2017-01-01

    Identification of tissue- and stage-specific gene promoters is valuable for delineating the functional roles of specific genes in genetically engineered animals. Here, through the comparison of gene expression in different tissues by analysis of a microarray database, the intestinal specificity of mucin 2 (MUC2) expression was identified in mice and humans, and further confirmed in chickens by RT-PCR (reverse transcription-PCR) analysis. An analysis of cis-acting elements in avian MUC2 gene promoters revealed conservation of binding sites, within a 2.9 kb proximal promoter region, for transcription factors such as caudal type homeobox 2 (CDX2), GATA binding protein 4 (GATA4), hepatocyte nuclear factor 4 α (HNF4A), and transcription factor 4 (TCF4) that are important for maintaining intestinal homeostasis and functional integrity. By generating transgenic quail, we demonstrated that the 2.9 kb chicken MUC2 promoter could drive green fluorescent protein (GFP) reporter expression exclusively in the small intestine, large intestine, and ceca. Fluorescence image analysis further revealed GFP expression in intestine epithelial cells. The GFP expression was barely detectable in the embryonic intestine, but increased during post-hatch development. The spatiotemporal expression pattern of the reporter gene confirmed that the 2.9 kb MUC2 promoter could retain the regulatory element to drive expression of target genes in intestinal tissues after hatching. This new transgene expression system, using the MUC2 promoter, will provide a new method of overexpressing target genes to study gene function in the avian intestine. PMID:28106824

  12. Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells.

    PubMed

    van der Burght, Barbro W; Hansen, Morten; Olsen, Jørgen; Zhou, Jilin; Wu, Yalin; Nissen, Mogens H; Sparrow, Janet R

    2013-11-01

    Accumulation of bisretinoids as lipofuscin in retinal pigment epithelial (RPE) cells is implicated in the pathogenesis of some blinding diseases including age-related macular degeneration (AMD). To identify genes whose expression may change under conditions of bisretinoid accumulation, we investigated the differential gene expression in RPE cells that had accumulated the lipofuscin fluorophore A2E and were exposed to blue light (430 nm). A2E-laden RPE cells were exposed to blue light (A2E/430 nm) at various time intervals. Cell death was quantified using Dead Red staining, and RNA levels for the entire genome was determined using DNA microarrays (Affymetrix GeneChip Human Genome 2.0 Plus). Array results for selected genes were confirmed by real-time reverse-transcriptase polymerase chain reaction. Principal component analysis revealed that the A2E-laden RPE cells irradiated with blue light were clearly distinguishable from the control samples. We found differential regulation of genes belonging to the following functional groups: transcription factors, stress response, apoptosis and immune response. Among the last mentioned were downregulation of four genes that coded for proteins that have an inhibitory effect on the complement cascade: (complement factor H, complement factor H-related 1, complement factor I and vitronectin) and of two belonging to the classical pathway (complement component 1, s subcomponent and complement component 1, r subcomponent). This study demonstrates that blue light irradiation of A2E-laden RPE cells can alter the transcription of genes belonging to different functional pathways including stress response, apoptosis and the immune response. We suggest that these molecules may be associated to the pathogenesis of AMD and can potentially serve as future therapeutic targets. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Apoptosis, proliferation and p53 gene expression of H. pylori associated gastric epithelial lesions

    PubMed Central

    Zhang, Zhong; Yuan, Yuan; Gao, Hua; Dong, Ming; Wang, Lan; Gong, Yue-Hua

    2001-01-01

    AIM: To study the relationship between Helicobacter pylori (H. pylori) and gastric carcinoma and its possible pathogenesis by H. pylori. METHODS: DNEL technique and immunohistochemical technique were used to study the state of apoptosis, proliferation and p53 gene expression. A total of 100 gastric mucosal biopsy specimens, including 20 normal mucosa, 30 H. pylori-negative and 30 H. pylori-positive gastric precancerous lesions along with 20 gastric carcinomas were studied. RESULTS: There were several apoptotic cells in the superficial epithelium and a few proliferative cells within the neck of gastric glands, and no p53 protein expression in normal mucosa. In gastric carcinoma, there were few apoptotic cells, while there were a large number of proliferative cells, and expression of p53 protein significantly was increased. In the phase of metaplasia, the apoptotic index (AI, 4.36% ± 1.95%), proliferative index (PI, 19.11% ± 6. 79%) and positivity of p53 expression (46.7%) in H. pylori-positive group were higher than those in normal mucosa (P < 0.01). AI in H. pylori-positive group was higher than that in H. pylori-negative group (3.81% ± 1.76%), PI in H. pylori-positive group was higher than that in H. pylori-negative group (12.25% ± 5.63%, P < 0.01). In the phase of dysplasia, AI (2.31% ± 1.10%) in H. pylori-positive group was lower (3.05% ± 1.29%) than that in H. pylori-negative group, but PI (33.89% ± 11.65%) was significantly higher (22.09% ± 80.18%, P < 0.01). In phases of metaplasia, dysplasia and gastric cancer in the H. pylori-positive group, AIs had an evidently graduall decreasing trend (P < 0.01), while PIs had an evidently gradual increasing trend (P < 0.05 or P < 0.01), and there was also a trend of gradual increase in the expression of p53 gene. CONCLUSION: In the course of the formation of gastric carcinoma, proliferation of gastric mucosa can be greatly increased by H. pylori, and H. pylori can induce apoptosis in the phase of metaplasia, but

  14. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity.

    PubMed

    Kikuchi, Kentaro; Noguchi, Yoshihiro; de Rivera, Michelle Wendoline Garcia-Niño; Hoshino, Miyako; Sakashita, Hideaki; Yamada, Tsutomu; Inoue, Harumi; Miyazaki, Yuji; Nozaki, Tadashige; González-López, Blanca Silvia; Ide, Fumio; Kusama, Kaoru

    2016-03-01

    A relationship between Epstein-Barr virus (EBV) infection and cancer of lymphoid and epithelial tissues such as Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma (NPC), gastric carcinoma, and oral cancer has been reported. EBV is transmitted orally and infects B cells and epithelial cells. However, it has remained uncertain whether EBV plays a role in carcinogenesis of oral mucosal tissue. In the present study, we detected the EBV genome and latent EBV gene expression in normal mucosal epithelia, epithelial dysplasia, and oral squamous cell carcinoma (OSCC) to clarify whether EBV is involved in carcinogenesis of the oral cavity. We examined 333 formalin-fixed, paraffin-embedded tissue samples (morphologically normal oral mucosa 30 samples, gingivitis 32, tonsillitis 17, oral epithelial dysplasia 83, OSCC 150, and NPC 21). EBV latent infection genes (EBNA-2, LMP-1) were detected not only in OSCC (50.2 %, 10.7 %) but also in severe epithelial dysplasia (66.7 %, 44.4 %), mild to moderate epithelial dysplasia (43.1 %, 18.5 %), gingivitis (78.1 %, 21.9 %), and normal mucosa (83.3 %, 23.3 %). Furthermore, the intensity of EBV latent infection gene expression (EBER, LMP-1) was significantly higher in severe epithelial dysplasia (94.4 %, 72.2 %) than in OSCC (34.7 %, 38.7 %). These results suggest that EBV latent infection genes and their increased expression in severe epithelial dysplasia might play an important role in the dysplasia-carcinoma sequence in the oral cavity.

  15. ABCG2/BCRP gene expression is related to epithelial-mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1).

    PubMed

    Mato, E; González, C; Moral, A; Pérez, J I; Bell, O; Lerma, E; de Leiva, A

    2014-06-01

    Tumor malignancy is associated with the epithelial-mesenchymal transition (EMT) process and resistance to chemotherapy. However, little is known about the relationship between the EMT and the multidrug-resistance gene in thyroid tumor progression. We investigated whether the expression of the ABCG2/BCRP gene is associated with ZEB1 and other EMT inducer genes involved in tumor dedifferentiation. We established a subpopulation of cells that express the ABCG2/BCRP gene derived from the thyroid papillary carcinoma cell line (TPC-1), the so-called TPC-1 MITO-resistant subline. The most relevant findings in these TPC-1 selected cells were a statistically significant upregulation of ZEB1 and TWIST1 (35- and 15-fold change respectively), no changes in the relative expression of vimentin and SNAIL1, and no expression of E-cadherin. The TPC-1 MITO-resistant subline displayed a faster migration and greater invasive ability than parental cells in correlation with a significant upregulation of the survivin (BIRC5) gene (twofold change, P<0.05). The knockdown of ZEB1 promoted nuclear re-expression of E-cadherin, reduced expression of vimentin, N-cadherin, and BIRC5 genes, and reduced cell migration (P<0.05). Analysis of human thyroid carcinoma showed a slight overexpression of the ABCG2/BCRP at stages I and II (P<0.01), and a higher overexpression at stages III and IV (P<0.01). SNAIL1, TWIST1, and ZEB1 genes showed higher expression at stages III and IV than at stages I and II. E- and N-cadherin genes were upregulated at stages I and II of the disease (ninefold and tenfold change, respectively, P<0.01) but downregulated at stages III and IV (fourfold lower, P<0.01). These results could be a promising starting point for further study of the role of the ABCG2/BCRP gene in the progression of thyroid tumor.

  16. Gene expression regulation in retinal pigment epithelial cells induced by viral RNA and viral/bacterial DNA

    PubMed Central

    Brosig, Anton; Kuhrt, Heidrun; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2015-01-01

    Purpose The pathogenesis of age-related macular degeneration (AMD) is associated with systemic and local inflammation. Various studies suggested that viral or bacterial infection may aggravate retinal inflammation in the aged retina. We compared the effects of synthetic viral RNA (poly(I:C)) and viral/bacterial DNA (CpG-ODN) on the expression of genes known to be involved in the development of AMD in retinal pigment epithelial (RPE) cells. Methods Cultured human RPE cells were stimulated with poly(I:C; 500 µg/ml) or CpG-ODN (500 nM). Alterations in gene expression and protein secretion were determined with real-time RT–PCR and ELISA, respectively. Phosphorylation of signal transduction molecules was revealed by western blotting. Results Poly(I:C) induced gene expression of the pattern recognition receptor TLR3, transcription factors (HIF-1α, p65/NF-κB), the angiogenic factor bFGF, inflammatory factors (IL-1β, IL-6, TNFα, MCP-1, MIP-2), and complement factors (C5, C9, CFB). Poly(I:C) also induced phosphorylation of ERK1/2 and p38 MAPK proteins, and the secretion of bFGF and TNFα from the cells. CpG-ODN induced moderate gene expression of transcription factors (p65/NF-κB, NFAT5) and complement factors (C5, C9), while it had no effect on the expression of various TLR, angiogenic factor, and inflammatory factor genes. The activities of various signal transduction pathways and transcription factors were differentially involved in mediating the poly(I:C)-induced transcriptional activation of distinct genes. Conclusions The widespread effects of viral RNA, and the restricted effects of viral/bacterial DNA, on the gene expression pattern of RPE cells may suggest that viral RNA rather than viral/bacterial DNA induces physiologic alterations of RPE cells, which may aggravate inflammation in the aged retina. The data also suggest that selective inhibition of distinct signal transduction pathways or individual transcription factors may not be effective to inhibit

  17. Trefoil peptide gene expression in gastrointestinal epithelial cells in inflammatory bowel disease.

    PubMed

    Wright, N A; Poulsom, R; Stamp, G; Van Norden, S; Sarraf, C; Elia, G; Ahnen, D; Jeffery, R; Longcroft, J; Pike, C

    1992-01-01

    Trefoil peptides are a growing group of proteins with interesting structural and functional properties. We have defined the pattern of trefoil peptide gene expression in the ulceration-associated cell lineage (UACL) and in the nearby mucosa in Crohn's disease. In the UACL, human spasmolytic polypeptide (hSP) mRNA is expressed in the acinar and proximal duct cells, while pS2 mRNA and peptide are found in the distal duct cells and in the surface cells. In adjacent mucosa, pS2 mRNA and protein are expressed by goblet cells, with the pS2 peptide concentrated in the area of the Golgi and also in the theca. Ultrastructural immunolocalisation showed the pS2 to be co-packaged in the mucous cell granules before being secreted into the intestinal lumen. In addition, pS2 peptide was demonstrated in local neuroendocrine cells and was also co-packaged with the neuroendocrine granules. The crypts associated with the UACL also showed marked neuroendocrine cell hyperplasia. We conclude that pS2 peptide is secreted locally into the viscoelastic coat covering the intestinal mucosa which surrounds Crohn's disease ulcers. In addition, it is clear that intestinal goblet cells, in addition to producing mucins, are a rich source of regulatory peptides. Moreover, pS2 is clearly co-packaged with neurosecretory granules, which are released through basal and lateral membranes so that the contained peptides can act in a paracrine manner. These findings are interpreted in terms of the epidermal growth factor/urogastrone released by the UACL, stimulating pS2 gene expression in surrounding cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Effects of 10 cigarette smoke condensates on primary human airway epithelial cells by comparative gene and cytokine expression studies.

    PubMed

    Pickett, Gavin; Seagrave, Jeanclare; Boggs, Susan; Polzin, Gregory; Richter, Patricia; Tesfaigzi, Yohannes

    2010-03-01

    Cigarettes vary in tobacco blend, filter ventilation, additives, and other physical and chemical properties, but little is known regarding potential differences in toxicity to a smoker's airway epithelia. We compared changes in gene expression and cytokine production in primary normal human bronchial epithelial cells following treatment for 18 h with cigarette smoke condensates (CSCs) prepared from five commercial and four research cigarettes, at doses of approximately 4 microg/ml nicotine. Nine of the CSCs were produced under a standard International Organization for Standardization smoking machine regimen and one was produced by a more intense smoking machine regimen. Isolated messenger RNA (mRNA) was analyzed by microarray hybridization, and media was analyzed for secreted cytokines and chemokines. Twenty-one genes were differentially expressed by at least 9 of the 10 CSCs by more than twofold, including genes encoding detoxifying and antioxidant proteins. Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and NAD(P)H dehydrogenase, quinone 1 (NQO-1) were selected for validation with quantitative real-time PCR (qRT-PCR) and Western blot analyses. NQO-1 expression determined with microarrays, qRT-PCR, and Western blotting differed among the CSC types, with good correlation among the different assays. CYP1A1 mRNA levels varied substantially, but there was little correlation with the protein levels. For each CSC, the three most induced and three most repressed genes were identified. These genes may be useful as markers of exposure to that particular cigarette type. Furthermore, differences in interleukin-8 secretion were observed. These studies lay the foundation for future investigations to analyze differences in the responses of in vivo systems to tobacco products marketed with claims of reduced exposure or reduced harm.

  19. CONVERGENCE OF P53 AND TGFβ SIGNALING ON ACTIVATING EXPRESSION OF THE TUMOR SUPPRESSOR GENE MASPIN IN MAMMARY EPITHELIAL CELLS

    PubMed Central

    Wang, Shizhen Emily; Narasanna, Archana; Whitell, Corbin W.; Wu, Frederick Y.; Friedman, David B.; Arteaga, Carlos L.

    2014-01-01

    Using two-dimensional difference gel electrophoresis, we identified the tumor suppressor gene maspin as a TGFβ target gene in human mammary epithelial cells. TGFβ upregulates maspin expression both at the RNA and protein levels. This upregulation required Smad2/3 function and intact p53 binding elements in the maspin promoter. DNA affinity immunoblot and chromatin immunoprecipitation (ChIP) revealed the presence of both Smads and p53 at the maspin promoter in TGFβ-treated cells, suggesting that both transcription factors cooperate to induce maspin transcription. TGFβ did not activate maspin-luciferase reporter in p53-mutant MDA-MB-231 breast cancer cells, which exhibit methylation of the endogenous maspin promoter. Expression of ectopic p53, however, restored ligand-induced association of Smad2/3 with a transfected maspin promoter. Stable transfection of maspin inhibited basal and TGFβ-stimulated MDA-MB-231 cell motility. Finally, knockdown of endogenous maspin in p53 wild-type MCF10A/HER2 cells enhanced basal and TGFβ-stimulated motility. Taken together, these data support cooperation between the p53 and TGFβ tumor suppressor pathways in the induction of maspin expression, thus leading to inhibition of cell migration. PMID:17204482

  20. Molecular sub-classification of renal epithelial tumors using meta-analysis of gene expression microarrays.

    PubMed

    Sanford, Thomas; Chung, Paul H; Reinish, Ariel; Valera, Vladimir; Srinivasan, Ramaprasad; Linehan, W Marston; Bratslavsky, Gennady

    2011-01-01

    To evaluate the accuracy of the sub-classification of renal cortical neoplasms using molecular signatures. A search of publicly available databases was performed to identify microarray datasets with multiple histologic sub-types of renal cortical neoplasms. Meta-analytic techniques were utilized to identify differentially expressed genes for each histologic subtype. The lists of genes obtained from the meta-analysis were used to create predictive signatures through the use of a pair-based method. These signatures were organized into an algorithm to sub-classify renal neoplasms. The use of these signatures according to our algorithm was validated on several independent datasets. We identified three Gene Expression Omnibus datasets that fit our criteria to develop a training set. All of the datasets in our study utilized the Affymetrix platform. The final training dataset included 149 samples represented by the four most common histologic subtypes of renal cortical neoplasms: 69 clear cell, 41 papillary, 16 chromophobe, and 23 oncocytomas. When validation of our signatures was performed on external datasets, we were able to correctly classify 68 of the 72 samples (94%). The correct classification by subtype was 19/20 (95%) for clear cell, 14/14 (100%) for papillary, 17/19 (89%) for chromophobe, 18/19 (95%) for oncocytomas. Through the use of meta-analytic techniques, we were able to create an algorithm that sub-classified renal neoplasms on a molecular level with 94% accuracy across multiple independent datasets. This algorithm may aid in selecting molecular therapies and may improve the accuracy of subtyping of renal cortical tumors.

  1. Gene expression study of two widely used pig intestinal epithelial cell lines: IPEC-J2 and IPI-2I.

    PubMed

    Mariani, Valentina; Palermo, Simona; Fiorentini, Silvia; Lanubile, Alessandra; Giuffra, Elisabetta

    2009-10-15

    The intestinal epithelial cells (IEC) play an important role in the immune system of swine, protecting against infectious and non-infectious environmental insults. The IEC participate in the innate immune response of the intestine through different mechanisms such as barrier function, mucus secretion, antibacterial peptide synthesis and participation in the cytokine/chemokine networks. Most of the current knowledge of intestinal cell functions has come from studies conducted on cell cultures generated from human cancers or from classical animal models. However, because the molecular and cellular elements of the immune system have been selected over evolutionary time in response to the species-specific environment, models of immune function based on mouse and human need to be applied cautiously in pig. Few models of swine small intestine epithelium exist and these are poorly characterised. In the present study we characterised the basal expression of epithelial and immune-related genes of two pig small intestine cell lines, IPEC-J2 and IPI-2I, under different culture conditions. These data represent essential background information for future studies on pig-intestinal pathogen interactions.

  2. Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression.

    PubMed

    Yori, Jennifer L; Johnson, Emhonta; Zhou, Guangjin; Jain, Mukesh K; Keri, Ruth A

    2010-05-28

    The Krüppel-like factor 4 (KLF4) is a transcriptional regulator of proliferation and differentiation in epithelial cells, both during development and tumorigenesis. Although KLF4 functions as a tumor suppressor in several tissues, including the colon, the role of KLF4 in breast cancer is less clear. Here, we show that KLF4 is necessary for maintenance of the epithelial phenotype in non-transformed MCF-10A mammary epithelial cells. KLF4 silencing led to alterations in epithelial cell morphology and migration, indicative of an epithelial-to-mesenchymal transition. Consistent with these changes, decreased levels of KLF4 also resulted in the loss of E-cadherin protein and mRNA. Promoter/reporter analyses revealed decreased E-cadherin promoter activity with KLF4 silencing, while chromatin immunoprecipitation identified endogenous KLF4 binding to the GC-rich/E-box region of this promoter. Furthermore, forced expression of KLF4 in the highly metastatic MDA-MB-231 breast tumor cell line was sufficient to restore E-cadherin expression and suppress migration and invasion. These findings identify E-cadherin as a novel transcriptional target of KLF4. The clear requirement for KLF4 to maintain E-cadherin expression and prevent epithelial-to-mesenchymal transition in mammary epithelial cells supports a metastasis suppressive role for KLF4 in breast cancer.

  3. Molecular mechanisms of epithelial cell-specific expression and regulation of the human anion exchanger (pendrin) gene.

    PubMed

    Adler, Lior; Efrati, Edna; Zelikovic, Israel

    2008-05-01

    Pendrin, a Cl(-)/anion exchanger encoded by the gene PDS, is highly expressed in the kidney, thyroid, and inner ear epithelia and is essential for bicarbonate secretion, iodide accumulation, and endolymph ion balance, respectively. This study aimed to define promoter regulatory elements essential for renal, thyroid, and inner ear epithelial cell-specific expression of human PDS (hPDS) and to explore the effect of ambient pH and aldosterone on hPDS promoter activity. Endogenous pendrin mRNA and protein were detected in renal HEK293, thyroid LA2, and inner ear VOT36 epithelial cell lines, but not in the fibroblast cell line, NIH3T3. A 4.2-kb hPDS 5'-flanking DNA sequence and consecutive 5'-deletion products were cloned into luciferase reporter vectors and transiently transfected into the above cell lines. Distinct differences in expression/activity of deduced positive/negative regulatory elements within the hPDS promoter between HEK293, LA2, and VOT36 cells were demonstrated, with only basal activity in NIH3T3 cells. Acidic pH (7.0-7.1) decreased and alkaline pH (7.6-7.7) increased hPDS promoter activity in transfected HEK293 and VOT36, but not in LA2 cells. Aldosterone (10(-8) M) reduced hPDS promoter activity in HEK293 but had no effect in LA2 and VOT36 cells. These pH and aldosterone-induced effects on the hPDS promoter occurred within 96-bp and 89-bp regions, respectively, which likely contain distinct response elements to these modulators. Acidic pH and aldosterone decreased, and alkaline pH increased, endogenous pendrin mRNA level in HEK293 cells. In conclusion, pendrin-mediated HCO3(-) secretion in the renal tubule and anion transport in the endolymph may be regulated transcriptionally by systemic pH and aldosterone.

  4. [Inductive effect of zinc oxide nanoparticles on interleukin 8 gene expression in human bronchial epithelial cells and its regulatory mechanism].

    PubMed

    Lu, Yang; Xu, Lei; Yan, Zhen; Wu, Yi-ming; Wu, Wei-dong

    2013-02-01

    To clarify the effect of zinc oxide nanoparticles (ZnO-NPs) (30 nm in diameter) on the interleukin 8 (IL-8) gene expression in human bronchial epithelial cells (BEAS-2B) and its regulatory mechanism. BEAS-2B cells were used in the study. The MTT assay was employed to evaluate the damage to BEAS-2B cells by ZnO-NPs. RT-PCR and ELISA were used to measure the mRNA and protein expression levels of IL-8 in the BEAS-2B cells exposed to ZnO-NPs. The IL-8 mRNA decay assay was used to determine the effect of ZnO-NPs on IL-8 mRNA stability. Exposure to ZnO-NPs significantly increased the level of IL-8 mRNA in BEAS-2B cells and the level of IL-8 protein in supernatant medium. The transcription inhibitor significantly reduced the mRNA expression of IL-8 induced by ZnO-NPs. ZnO-NPs significantly delayed IL-8 mRNA degradation in the BEAS-2B cells that were pretreated with actinomycin D for terminating IL-8 mRNA synthesis. ZnO-NPs can increase the mRNA and protein expression levels of IL-8 and IL-8 mRNA stability in BEAS-2B cells.

  5. CHANGES IN GENE EXPRESSION DURING DIFFERENTIATION OF CULTURED HUMAN PRIMARY BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Primary airway epithelial cell cultures are a useful tool for the in vitro study of normal bronchial cell differentiation and function, airway disease mechanisms, and pathogens and toxin response. Growth of these cells at an air-liquid interface for several days results in the f...

  6. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  7. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  8. CHANGES IN GENE EXPRESSION DURING DIFFERENTIATION OF CULTURED HUMAN PRIMARY BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    Primary airway epithelial cell cultures are a useful tool for the in vitro study of normal bronchial cell differentiation and function, airway disease mechanisms, and pathogens and toxin response. Growth of these cells at an air-liquid interface for several days results in the f...

  9. Differential gene expression in intestinal epithelial cells induced by single and mixtures of potato glycoalkaloids.

    PubMed

    Mandimika, Tafadzwa; Baykus, Hakan; Vissers, Yvonne; Jeurink, Prescilla; Poortman, Jenneke; Garza, Cutberto; Kuiper, Harry; Peijnenburg, Ad

    2007-11-28

    Alpha-chaconine and alpha-solanine are naturally occurring toxins. They account for 95% of the total glycoalkaloids in potatoes ( Solanum tuberosum L.). At high levels, these glycoalkaloids may be toxic to humans, mainly by disrupting cell membranes of the gastrointestinal tract. Gene-profiling experiments were performed, whereby Caco-2 cells were exposed to equivalent concentrations (10 microM) of pure alpha-chaconine or alpha-solanine or glycoalkaloid mixtures of varying alpha-chaconine/alpha-solanine ratios for 6 h. In addition, lactate dehydrogenase, cell cycle, and apoptosis analyses experiments were also conducted to further elucidate the effects of glycoalkaloids. The main aims of the study were to determine the transcriptional effects of these glycoalkaloid treatments on Caco-2 cells and to investigate DNA microarray utility in conjunction with conventional toxicology in screening for potential toxicities and their severity. Gene expression and pathway analyses identified changes related to cholesterol biosynthesis, growth signaling, lipid and amino acid metabolism, mitogen-activated protein kinase (MAPK) and NF-kappaB cascades, cell cycle, and cell death/apoptosis. To varying extents, DNA microarrays discriminated the severity of the effect among the different glycoalkaloid treatments.

  10. DIFFERENTIAL GENE EXPRESSION PROFILES IN RAT TRACHAEL EPITHELIAL (RTE) CELLS IN RESPONSE TO COMBUSTION-SOURCE PARTICULATE MATTER (PM) AND VANADIUM (V) A PRIMARY METAL CONSTITUENT

    EPA Science Inventory

    Differential gene expression profiles in rat tracheal epithelial (RTE) cells in response to combustion-source particulate matter (PM) and vanadium (V) a primary metal constituent
    Srikanth S. Nadadur, Janice A. Dye and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxico...

  11. DIFFERENTIAL GENE EXPRESSION PROFILES IN RAT TRACHAEL EPITHELIAL (RTE) CELLS IN RESPONSE TO COMBUSTION-SOURCE PARTICULATE MATTER (PM) AND VANADIUM (V) A PRIMARY METAL CONSTITUENT

    EPA Science Inventory

    Differential gene expression profiles in rat tracheal epithelial (RTE) cells in response to combustion-source particulate matter (PM) and vanadium (V) a primary metal constituent
    Srikanth S. Nadadur, Janice A. Dye and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxico...

  12. Unilateral once daily milking locally induces differential gene expression in both mammary tissue and milk epithelial cells revealing mammary remodeling.

    PubMed

    Boutinaud, Marion; Galio, Laurent; Lollivier, Vanessa; Finot, Laurence; Wiart, Sandra; Esquerré, Diane; Devinoy, Eve

    2013-10-16

    Once daily milking reduces milk yield, but the underlying mechanisms are not yet fully understood. Local regulation due to milk stasis in the tissue may contribute to this effect, but such mechanisms have not yet been fully described. To challenge this hypothesis, one udder half of six Holstein dairy cows was milked once a day (ODM), and the other twice a day (TDM). On the 8th day of unilateral ODM, mammary epithelial cells (MEC) were purified from the milk using immunomagnetic separation. Mammary biopsies were harvested from both udder halves. The differences in transcript profiles between biopsies from ODM and TDM udder halves were analyzed by a 22k bovine oligonucleotide array, revealing 490 transcripts that were differentially expressed. The principal category of upregulated transcripts concerned mechanisms involved in cell proliferation and death. We further confirmed remodeling of the mammary tissue by immunohistochemistry, which showed less cell proliferation and more apoptosis in ODM udder halves. Gene expression analyzed by RT-qPCR in MEC purified from milk and mammary biopsies showed a common downregulation of six transcripts (ABCG2, FABP3, NUCB2, RNASE1 and 5, and SLC34A2) but also some discrepancies. First, none of the upregulated transcripts in biopsies varied in milk-purified MEC. Second, only milk-purified MEC showed significant LALBA downregulation, which suggests therefore that they correspond to a mammary epithelial cell subpopulation. Our results, obtained after unilateral milking, suggest that cell remodeling during ODM is due to a local effect, which may be triggered by milk accumulation.

  13. Constitutive expression of vascular endothelial cell growth factor (VEGF) gene family ligand and receptors on human upper and lower airway epithelial cells.

    PubMed

    Lee, Hyun Sil; Kim, Jean

    2014-01-01

    We previously reported that vascular endothelial cell growth factor (VEGF) is abundantly expressed by primary human nasal epithelial cells (PNECs) and functions to promote cell hyperplasia in polyposis. Therefore, we aimed to examine the full expression profile of other members of the VEGF gene family of ligands and receptors, which may play a role in cell growth and the development of chronic rhinosinusitis with nasal polyposis (CRSwNP). Messenger RNA (mRNA) and protein expression of VEGF genes, receptors, and co-receptors was examined from cultured PNECs (n = 4) and compared to that from primary human bronchial epithelial cells (PBECs; n = 4) and the BEAS2B cell line (n = 4) by real-time polymerase chain reaction (PCR) and flow cytometry. We report abundant expression of VEGFA, VEGFB, and VEGFC, detected by mRNA and flow cytometric analysis on PNECs. We herein report the novel finding that there is significant expression of VEGFR1, VEGFR2, VEGFR3, and both neuropilin co-receptors, NP1 and NP2, at baseline conditions on PNECs. Lower airway PBECs and BEAS2B cells displayed similar patterns of expression. PNECs express high constitutive levels of the VEGF gene family homolog of ligands and receptors. Expression of multiple VEGF ligand-receptor combinations may function as redundant pathways to promote upper and lower airway epithelial cell growth during inflammation.

  14. Viable and morphologically normal boar spermatozoa alter the expression of heat-shock protein genes in oviductal epithelial cells during co-culture in vitro.

    PubMed

    Yeste, Marc; Holt, William V; Bonet, Sergi; Rodríguez-Gil, Joan E; Lloyd, Rhiannon E

    2014-09-01

    The principal aim of this study was to determine if boar spermatozoa influence the expression of four selected chaperone and heat-shock protein (HSP) genes-namely clusterin (CLU), HSP90AA1, HSPA5, and HSPA8-in oviductal epithelial cells (OECs) during in vitro co-culture. All corresponding proteins of these genes were previously identified in a sperm-interacting, 70-kDa soluble fraction derived from apical plasma membranes of OECs. The present study also sought to determine whether or not: (i) spermatozoa must directly bind to OEC for an effect on gene expression to be elicited and (ii) reproductive and nonreproductive epithelial cell types (LLC-PK1, pig kidney) respond equivalently, in terms of alterations in chaperone and HSP gene expression, during co-culture with sperm. Spermatozoa induced a significant upregulation (P < 0.05) in HSP90AA1 and HSPA5 in OECs after 3 hr, and in HSPA8 after 6 hr of co-culture when they were in direct contact with epithelial cells. Conversely, no upregulation of HSP transcription was observed when spermatozoa did not directly bind to OECs. Spermatozoa also induced a significant upregulation (P < 0.05) of the same three genes when in direct contact with LLC-PK1 cells, but the timing occurred later than with OECs. Interestingly, the extent of HSP gene upregulation induced by direct contact of spermatozoa with epithelial cells was dependent on sperm-binding index and on the viability and morphological quality of the bound sperm population. In conclusion, the upregulation of HSP genes caused by direct contact between spermatozoa and OECs, rather than nonreproductive epithelial cells, suggests HSPs could play an integral role in the modulation of sperm function in the oviductal reservoir.

  15. CD24 regulated gene expression and distribution of tight junction proteins is associated with altered barrier function in oral epithelial monolayers

    PubMed Central

    Ye, Ping; Nadkarni, Mangala A; Simonian, Mary; Hunter, Neil

    2009-01-01

    Background Control of intercellular penetration of microbial products is critical for the barrier function of oral epithelia. We demonstrated that CD24 is selectively and strongly expressed in the cells of the epithelial attachment to the tooth and the epithelial lining of the diseased periodontal pocket and studies in vitro showed that CD24 regulated expression of the epithelial intercellular adhesion protein E-cadherin. Results In the present study, the barrier function of oral epithelial cell monolayers to low molecular weight dextran was assayed as a model for the normal physiological function of the epithelial attachment to limit ingress of microbial products from oral microbial biofilms. Paracellular transfer of low molecular weight dextran across monolayers of oral epithelial cells was specifically decreased following incubation with anti-CD24 peptide antibody whereas passage of dextran across the monolayer was increased following silencing of mRNA for CD24. Changes in barrier function were related to the selective regulation of the genes encoding zonula occludens-1, zonula occludens-2 and occludin, proteins implicated in tight junctions. More particularly, enhanced barrier function was related to relocation of these proteins to the cell periphery, compatible with tight junctions. Conclusion CD24 has the constitutive function of maintaining expression of selected genes encoding tight junction components associated with a marginal barrier function of epithelial monolayers. Activation by binding of an external ligand to CD24 enhances this expression but is also effective in re-deployment of tight junction proteins that is aligned with enhanced intercellular barrier function. These results establish the potential of CD24 to act as a potent regulator of the intercellular barrier function of epithelia in response to local microbial ecology. PMID:19138432

  16. Gene expression profiling of porcine mammary epithelial cells after challenge with Escherichia coli and Staphylococcus aureus in vitro.

    PubMed

    Jaeger, Alexandra; Bardehle, Danilo; Oster, Michael; Günther, Juliane; Muráni, Eduard; Ponsuksili, Siriluck; Wimmers, Klaus; Kemper, Nicole

    2015-05-06

    Postpartum Dysgalactia Syndrome (PDS) represents a considerable health problem of postpartum sows, primarily indicated by mastitis and lactation failure. The poorly understood etiology of this multifactorial disease necessitates the use of the porcine mammary epithelial cell (PMEC) model to identify how and to what extent molecular pathogen defense mechanisms prevent bacterial infections at the first cellular barrier of the gland. PMEC were isolated from three lactating sows and challenged with heat-inactivated potential mastitis-causing pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for 3 h and 24 h, in vitro. We focused on differential gene expression patterns of PMEC after pathogen challenge in comparison with the untreated control by performing microarray analysis. Our results show that a core innate immune response of PMEC is partly shared by E. coli and S. aureus. But E. coli infection induces much faster and stronger inflammatory response than S. aureus infection. An immediate and strong up-regulation of genes encoding cytokines (IL1A and IL8), chemokines (CCL2, CXCL1, CXCL2, CXCL3, and CXCL6) and cell adhesion molecules (VCAM1, ICAM1, and ITGB3) was explicitly obvious post-challenge with E. coli inducing a rapid recruitment and activation of cells of host defense mediated by IL1B and TNF signaling. In contrast, S. aureus infection rather induces the expression of genes encoding monooxygenases (CYP1A1, CYP3A4, and CYP1B1) initiating processes of detoxification and pathogen elimination. The results indicate that the course of PDS depends on the host recognition of different structural and pathogenic profiles first, which critically determines the extent and effectiveness of cellular immune defense after infection.

  17. 3D Organotypic Co-culture Model Supporting Medullary Thymic Epithelial Cell Proliferation, Differentiation and Promiscuous Gene Expression.

    PubMed

    Pinto, Sheena; Stark, Hans-Jürgen; Martin, Iris; Boukamp, Petra; Kyewski, Bruno

    2015-07-30

    Intra-thymic T cell development requires an intricate three-dimensional meshwork composed of various stromal cells, i.e., non-T cells. Thymocytes traverse this scaffold in a highly coordinated temporal and spatial order while sequentially passing obligatory check points, i.e., T cell lineage commitment, followed by T cell receptor repertoire generation and selection prior to their export into the periphery. The two major resident cell types forming this scaffold are cortical (cTECs) and medullary thymic epithelial cells (mTECs). A key feature of mTECs is the so-called promiscuous expression of numerous tissue-restricted antigens. These tissue-restricted antigens are presented to immature thymocytes directly or indirectly by mTECs or thymic dendritic cells, respectively resulting in self-tolerance. Suitable in vitro models emulating the developmental pathways and functions of cTECs and mTECs are currently lacking. This lack of adequate experimental models has for instance hampered the analysis of promiscuous gene expression, which is still poorly understood at the cellular and molecular level. We adapted a 3D organotypic co-culture model to culture ex vivo isolated mTECs. This model was originally devised to cultivate keratinocytes in such a way as to generate a skin equivalent in vitro. The 3D model preserved key functional features of mTEC biology: (i) proliferation and terminal differentiation of CD80(lo), Aire-negative into CD80(hi), Aire-positive mTECs, (ii) responsiveness to RANKL, and (iii) sustained expression of FoxN1, Aire and tissue-restricted genes in CD80(hi) mTECs.

  18. Different Zinc Sources Have Diverse Impacts on Gene Expression of Zinc Absorption Related Transporters in Intestinal Porcine Epithelial Cells.

    PubMed

    Huang, Danping; Zhuo, Zhao; Fang, Shenglin; Yue, Min; Feng, Jie

    2016-10-01

    This study was conducted to investigate the effects of zinc sources on gene expression of zinc-related transporters in intestinal porcine epithelial cells (IPEC-1). IPEC-1 cells were treated with zinc glycine chelate (Zn-Gly), zinc methionine (Zn-Met), and zinc sulfate (ZnSO4), respectively, for measurement of cell viability. Then, the relative expression of zinc-related transporters in IPEC-1 in response to different zinc sources (50 μmol/L zinc) was measured. Zinc transporter SLC39A4 (ZIP4) expression was selectively silenced to assess the function of ZIP4 in inorganic and organic zinc absorption. The result showed that Zn-Gly and Zn-Met had lower cell damage compared with ZnSO4 on the same zinc levels. Different zinc sources improved the expression of metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) messenger RNA (mRNA) compared with the control (P < 0.05), while ZIP4 decreased (P < 0.05) in response to zinc addition. MT1 and ZnT1 mRNA expressions in Zn-Gly and Zn-Met were higher than those in ZnSO4, and ZIP4 mRNA expression in Zn-Met was the lowest among three kinds of zinc sources (P < 0.05). Expression of divalent metal transporter 1 (DMT1) mRNA in control was significantly higher (P < 0.05) than added different zinc sources groups. Silencing of ZIP4 significantly decreased MT1 mRNA expression in ZnSO4 and Zn-Gly treatments, reduced zinc absorption rate, and increased DMT1 mRNA expression in ZnSO4 compared with negative control. In summary, different zinc sources could improve zinc status on IPEC-1 cells and organic zinc had lower cell damage compared with ZnSO4. Moreover, Zn-Gly and Zn-Met are more efficient on zinc absorption according to the expression of various zinc-related transporters MT1, ZIP4, ZnT1, and DMT1. ZIP4 played a direct role in inorganic zinc uptake, and the absorption of zinc in Zn-Gly depends on ZIP4 partly, while absorption of Zn-Met is less dependent on ZIP4.

  19. Effects of dietary neutral detergent fiber and starch ratio on rumen epithelial cell morphological structure and gene expression in dairy cows.

    PubMed

    Ma, L; Zhao, M; Zhao, L S; Xu, J C; Loor, J J; Bu, D P

    2017-05-01

    This study was designed to investigate the effect of dietary neutral detergent fiber to starch ratio on rumen epithelial morphological structure and gene expression. Eight primiparous dairy cows including 4 ruminally fistulated cows were assigned to 4 total mixed rations with neutral detergent fiber to starch ratios of 0.86, 1.18, 1.63, and 2.34 in a replicated 4 × 4 Latin square design. The duration of each period was 21 d including 14 d for adaptation and 7 d for sampling. Rumen epithelial papillae were collected from the ruminally fistulated cows for morphological structure examination and mRNA expression analysis using quantitative real-time PCR of several genes related to volatile fatty acid absorption and metabolism, and cellular growth. Increasing dietary neutral detergent fiber to starch ratio resulted in a linear increase in the thickness of the stratum spinosum and basale. In contrast, expression of HMGCS2 (encoding the rate-limiting enzyme in the synthesis of ketone bodies) decreased linearly, whereas the expression of MCT2 (encoding a transporter of volatile fatty acid) increased linearly with increasing dietary neutral detergent fiber to starch ratio. As dietary neutral detergent fiber to starch ratio increased, expression of IGFBP5 (a gene related to the growth of rumen epithelial papillae) decreased, whereas IGFBP6 expression increased. Both of these IGFBP genes are regulated by short-chain fatty acids. Overall, the data indicate that dietary neutral detergent fiber to starch ratio can alter the thickness of the rumen epithelial papillae partly through changes in expression of genes associated with regulating volatile fatty acid absorption, metabolism, and cell growth. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    PubMed Central

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on

  1. A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate

    PubMed Central

    Kok, Dieuwertje E.G.; Kiemeney, Lambertus A.L.M.; Verhaegh, Gerald W.; Schalken, Jack A.; van Lin, Emile N.J.T.; Michiel Sedelaar, J.P.; Alfred Witjes, J.; Hulsbergen - van de Kaa, Christina A.; van't Veer, Pieter; Kampman, Ellen; Afman, Lydia A.

    2017-01-01

    In parallel with the inconsistency in observational studies and chemoprevention trials, the mechanisms by which selenium affects prostate cancer risk have not been elucidated. We conducted a randomized, placebo-controlled trial to examine the effects of a short-term intervention with selenium on gene expression in non-malignant prostate tissue. Twenty-three men received 300 μg selenium per day in the form of selenized yeast (n=12) or a placebo (n=11) during 5 weeks. Prostate biopsies collected from the transition zone before and after intervention were analysed for 15 participants (n=8 selenium, n=7 placebo). Pathway analyses revealed that the intervention with selenium was associated with down-regulated expression of genes involved in cellular migration, invasion, remodeling and immune responses. Specifically, expression of well-established epithelial markers, such as E-cadherin and epithelial cell adhesion molecule EPCAM, was up-regulated, while the mesenchymal markers vimentin and fibronectin were down-regulated after intervention with selenium. This implies an inhibitory effect of selenium on the epithelial-to-mesenchymal transition (EMT). Moreover, selenium was associated with down-regulated expression of genes involved in wound healing and inflammation; processes which are both related to EMT. In conclusion, our explorative data showed that selenium affected expression of genes implicated in EMT in the transition zone of the prostate. PMID:28076331

  2. A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate.

    PubMed

    Kok, Dieuwertje E G; Kiemeney, Lambertus A L M; Verhaegh, Gerald W; Schalken, Jack A; van Lin, Emile N J T; Sedelaar, J P Michiel; Witjes, J Alfred; Hulsbergen-van de Kaa, Christina A; van 't Veer, Pieter; Kampman, Ellen; Afman, Lydia A

    2017-02-07

    In parallel with the inconsistency in observational studies and chemoprevention trials, the mechanisms by which selenium affects prostate cancer risk have not been elucidated. We conducted a randomized, placebo-controlled trial to examine the effects of a short-term intervention with selenium on gene expression in non-malignant prostate tissue. Twenty-three men received 300 µg selenium per day in the form of selenized yeast (n=12) or a placebo (n=11) during 5 weeks. Prostate biopsies collected from the transition zone before and after intervention were analysed for 15 participants (n=8 selenium, n=7 placebo). Pathway analyses revealed that the intervention with selenium was associated with down-regulated expression of genes involved in cellular migration, invasion, remodeling and immune responses. Specifically, expression of well-established epithelial markers, such as E-cadherin and epithelial cell adhesion molecule EPCAM, was up-regulated, while the mesenchymal markers vimentin and fibronectin were down-regulated after intervention with selenium. This implies an inhibitory effect of selenium on the epithelial-to-mesenchymal transition (EMT). Moreover, selenium was associated with down-regulated expression of genes involved in wound healing and inflammation; processes which are both related to EMT. In conclusion, our explorative data showed that selenium affected expression of genes implicated in EMT in the transition zone of the prostate.

  3. Parallels between Global Transcriptional Programs of Polarizing Caco-2 Intestinal Epithelial Cells In Vitro and Gene Expression Programs in Normal Colon and Colon Cancer

    PubMed Central

    Sääf, Annika M.; Halbleib, Jennifer M.; Chen, Xin; Yuen, Siu Tsan; Leung, Suet Yi

    2007-01-01

    Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell–cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2. PMID:17699589

  4. Interaction of mouse mammary epithelial cells with collagen substrata: regulation of casein gene expression and secretion

    SciTech Connect

    Lee, E.Y.H.P.; Lee, W.H.; Kaetzel, C.S.; Parry, G.; Bissell, M.J.

    1985-03-01

    Mouse mammary epithelial cells (MMEC) secrete certain milk proteins only when cultured on floating collagen gels. The authors demonstrate that modulation of milk proteins by substrata is manifested at several regulatory levels; (i) cells cultured on floating collagen gels have 3- to 10-fold more casein mRNA than cells cultured on plastic or attached collagen gels. (ii) Cells on the latter two flat substrata, nevertheless, synthesize a significant amount of caseins, indicating that the remaining mRNA is functional. (iii) Cells on all substrata are inducible for casein mRNA and casein proteins by prolactin, but the extent of induction is greater on collagen than that on plastic - i.e., the substratum confers an altered degree of inducibility. (iv) Cells on all substrata synthesize casein proteins at rates proportional to the amount of casein mRNA, but the newly synthesized caseins in cells on plastic are degraded intracellularly, whereas those synthesized by cells on floating gels are secreted into the medium. (v) Cells on all substrata examined lose virtually all mRNA for whey acidic protein despite the fact that this mRNA is abundant in the mammary gland itself; the authors conclude that additional, as-yet-unknown, factors are necessary for synthesis and secretion of whey acidic protein in culture.

  5. Diesel Exhaust Influences Carcinogenic PAH-Induced Genotoxicity and Gene Expression in Human Breast Epithelial Cells in Culture

    PubMed Central

    Courter, Lauren A.; Pereira, Cliff; Baird, William M.

    2009-01-01

    The carcinogenic polycyclic aromatic hydrocarbon ns (PAHs) benzo[a]pyrene (B[a]P) and dibenzo[a,l]pyrene (DB[a,l]P) are widespread environmental pollutants, however their toxicological effects within a mixture is not established. We investigated the influence of diesel exhaust (DE) on B[a]P and DB[a,l]P-induced PAH-DNA adduct formation, metabolic activation, gene expression and 8-oxo-dG adduct levels in human breast epithelial cells (MCF-10A) in culture. Following 24 and 48 h, cells co-exposed to DE plus B[a]P exhibited a significant decrease in PAH-DNA adduct levels, compared with B[a]P alone, as determined by 33P-postlabeling combined with reversed-phase high performance liquid chromatography (HPLC). Cytochrome P450 (CYP) enzyme activity, as measured by the ethoxyresorufin O-deethylase (EROD) assay and CYP1B1 expression, significantly increased with co-exposure of DE plus DB[a,l]P, compared with DB[a,l]P alone. Aldo keto-reductase (AKR)1C1, AKR1C2,and AKR1C3 expression also significantly increased in cells exposed to DE plus PAH, compared with PAH exposure alone. Cell populations exhibiting 8-oxo-dG adducts significantly increased in response to exposure to B[a]P or DE plus B[a]P for 24 h, compared with vehicle control, as quantified by flow cytometry. These results suggest that complex mixtures may modify the carcinogenic potency of PAH by shifting the metabolic activation pathway from the production of PAH diol-epoxides to AKR pathway-derived metabolites. PMID:17612574

  6. Association and virulence gene expression vary among serotype III group B streptococcus isolates following exposure to decidual and lung epithelial cells.

    PubMed

    Korir, Michelle L; Knupp, David; LeMerise, Kathryn; Boldenow, Erica; Loch-Caruso, Rita; Aronoff, David M; Manning, Shannon D

    2014-11-01

    Group B Streptococcus (GBS) causes severe disease in neonates, the elderly, and immunocompromised individuals. GBS species are highly diverse and can be classified by serotype and multilocus sequence typing. Sequence type 17 (ST-17) strains cause invasive neonatal disease more frequently than strains of other STs. Attachment and invasion of host cells are key steps in GBS pathogenesis. We investigated whether four serotype III strains representing ST-17 (two strains), ST-19, and ST-23 differ in their abilities to attach to and invade both decidual cells and lung epithelial cells. Virulence gene expression following host cell association and exposure to amnion cells was also tested. The ST-17 strains differed in their abilities to attach to and invade decidual cells, whereas there were no differences with lung epithelial cells. The ST-19 and ST-23 strains, however, attached to and invaded decidual cells less than both ST-17 strains. Although the ST-23 strain attached to lung epithelial cells better than ST-17 and -19 strains, none of the strains effectively invaded the lung epithelial cells. Notably, the association with host cells resulted in the differential expression of several virulence genes relative to basal expression levels. Similar expression patterns of some genes were observed regardless of cell type used. Collectively, these results show that GBS strains differ in their abilities to attach to distinct host cell types and express key virulence genes that are relevant to the disease process. Enhancing our understanding of pathogenic mechanisms could aid in the identification of novel therapeutic targets or vaccine candidates that could potentially decrease morbidity and mortality associated with neonatal infections.

  7. Neutrophil chemotactic factor (IL-8) gene expression by cytokine-treated retinal pigment epithelial cells.

    PubMed Central

    Elner, V. M.; Strieter, R. M.; Elner, S. G.; Baggiolini, M.; Lindley, I.; Kunkel, S. L.

    1990-01-01

    The neural-derived retinal pigment epithelium (RPE) underlies the sensory retina and is central to both retinal homeostasis and many common retinal diseases. Retinal pigment epithelium cells are actively phagocytic and share several features with macrophages that have recently been shown to produce a neutrophil chemotactic factor (NCF), also known as interleukin-8, after cytokine stimulation. Because RPE cell responses to cytokines are largely unknown, human RPE cell NCF production was monitored after interleukin-1-beta (IL-1 beta), tumor necrosis factor-alpha, or lipopolysaccharide stimulation. RPE NCF mRNA expression and RPE production of biologically active NCF was time and concentration dependent. Maximal NCF mRNA expression occurred at 20 ng/ml for IL-1 beta. Messenger RNA expression in RPE cells and biologically active NCF in RPE cell supernatants were found 1 hour after stimulation and were maintained for 24 hours. These findings demonstrate that cytokine-stimulated RPE cells may evoke or augment neutrophil-mediated inflammation by synthesizing NCF, a cytokine that may be important in ocular disease mechanisms. Images Figure 1 Figure 3 PMID:2183623

  8. Genes involved in epithelial differentiation and development are differentially expressed in oral and genital lichen planus epithelium compared to normal epithelium.

    PubMed

    Danielsson, Karin; Coates, Philip J; Ebrahimi, Majid; Nylander, Elisabet; Wahlin, Ylva Britt; Nylander, Karin

    2014-09-01

    Lichen planus (LP) is a chronic mucocutaneous disease with unknown cause. Patients with LP often have both oral and genital lesions, but these conditions are often considered as separate diseases and treated accordingly. To find out which genes are differently expressed in mucosal LP compared to normal mucosa and establish whether oral and genital LP are in fact the same disease, whole genome expression analysis was performed on epithelium from 13 patients diagnosed with oral and/or genital LP and normal controls. For confirmation of keratin 4 and corneodesmosin expression, quantitative reverse-transcription PCR and immunohistochemistry were used. Many genes involved in epithelial development and differentiation are differently expressed in epithelium from LP compared to normal epithelium. Several of the differentially expressed genes are common for oral and genital LP and the same biological processes are altered which supports the fact that oral and genital LP are manifestations of the same disease. The change in gene expression indicates that differentiation is altered leading to changes in the epithelial barrier.

  9. Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs.

    PubMed

    Vlasova, Anastasia N; Paim, Francine C; Kandasamy, Sukumar; Alhamo, Moyasar A; Fischer, David D; Langel, Stephanie N; Deblais, Loic; Kumar, Anand; Chepngeno, Juliet; Shao, Lulu; Huang, Huang-Chi; Candelero-Rueda, Rosario A; Rajashekara, Gireesh; Saif, Linda J

    2017-01-01

    Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103(+) and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing the rates

  10. Protein Malnutrition Modifies Innate Immunity and Gene Expression by Intestinal Epithelial Cells and Human Rotavirus Infection in Neonatal Gnotobiotic Pigs

    PubMed Central

    Paim, Francine C.; Kandasamy, Sukumar; Alhamo, Moyasar A.; Fischer, David D.; Langel, Stephanie N.; Deblais, Loic; Kumar, Anand; Chepngeno, Juliet; Shao, Lulu; Huang, Huang-Chi; Candelero-Rueda, Rosario A.; Rajashekara, Gireesh

    2017-01-01

    ABSTRACT Malnutrition affects millions of children in developing countries, compromising immunity and contributing to increased rates of death from infectious diseases. Rotavirus is a major etiological agent of childhood diarrhea in developing countries, where malnutrition is prevalent. However, the interactions between the two and their combined effects on immune and intestinal functions are poorly understood. In this study, we used neonatal gnotobiotic (Gn) pigs transplanted with the fecal microbiota of a healthy 2-month-old infant (HIFM) and fed protein-deficient or -sufficient bovine milk diets. Protein deficiency induced hypoproteinemia, hypoalbuminemia, hypoglycemia, stunting, and generalized edema in Gn pigs, as observed in protein-malnourished children. Irrespective of the diet, human rotavirus (HRV) infection early, at HIFM posttransplantation day 3 (PTD3), resulted in adverse health effects and higher mortality rates (45 to 75%) than later HRV infection (PTD10). Protein malnutrition exacerbated HRV infection and affected the morphology and function of the small intestinal epithelial barrier. In pigs infected with HRV at PTD10, there was a uniform decrease in the function and/or frequencies of natural killer cells, plasmacytoid dendritic cells, and CD103+ and apoptotic mononuclear cells and altered gene expression profiles of intestinal epithelial cells (chromogranin A, mucin 2, proliferating cell nuclear antigen, SRY-Box 9, and villin). Thus, we have established the first HIFM-transplanted neonatal pig model that recapitulates major aspects of protein malnutrition in children and can be used to evaluate physiologically relevant interventions. Our findings provide an explanation of why nutrient-rich diets alone may lack efficacy in malnourished children. IMPORTANCE Malnutrition and rotavirus infection, prevalent in developing countries, individually and in combination, affect the health of millions of children, compromising their immunity and increasing

  11. Adenoviral Gene Therapy for Diabetic Keratopathy: Effects on Wound Healing and Stem Cell Marker Expression in Human Organ-cultured Corneas and Limbal Epithelial Cells.

    PubMed

    Kramerov, Andrei A; Saghizadeh, Mehrnoosh; Ljubimov, Alexander V

    2016-04-07

    The goal of this protocol is to describe molecular alterations in human diabetic corneas and demonstrate how they can be alleviated by adenoviral gene therapy in organ-cultured corneas. The diabetic corneal disease is a complication of diabetes with frequent abnormalities of corneal nerves and epithelial wound healing. We have also documented significantly altered expression of several putative epithelial stem cell markers in human diabetic corneas. To alleviate these changes, adenoviral gene therapy was successfully implemented using the upregulation of c-met proto-oncogene expression and/or the downregulation of proteinases matrix metalloproteinase-10 (MMP-10) and cathepsin F. This therapy accelerated wound healing in diabetic corneas even when only the limbal stem cell compartment was transduced. The best results were obtained with combined treatment. For possible patient transplantation of normalized stem cells, an example is also presented of the optimization of gene transduction in stem cell-enriched cultures using polycationic enhancers. This approach may be useful not only for the selected genes but also for the other mediators of corneal epithelial wound healing and stem cell function.

  12. Activation of Wnt11 by Transforming Growth Factor-β Drives Mesenchymal Gene Expression through Non-canonical Wnt Protein Signaling in Renal Epithelial Cells*

    PubMed Central

    Zhang, Peng; Cai, Yi; Soofi, Abdul; Dressler, Gregory R.

    2012-01-01

    Transforming growth factor β1 (TGF-β) promotes renal interstitial fibrosis in vivo and the expression of mesenchymal genes in vitro; however, most of its direct targets in epithelial cells are still elusive. In a screen for genes directly activated by TGF-β, we found that components of the Wnt signaling pathway, especially Wnt11, were targets of activation by TGF-β and Smad3 in primary renal epithelial cells. In gain and loss of function experiments, Wnt11 mediated the actions of TGF-β through enhanced activation of mesenchymal marker genes, such as Zeb1, Snail1, Pai1, and αSMA, without affecting Smad3 phosphorylation. Inhibition of Wnt11 by receptor knockdown or treatment with Wnt inhibitors limited the effects of TGF-β on gene expression. We found no evidence that Wnt11 activated the canonical Wnt signaling pathway in renal epithelial cells; rather, the function of Wnt11 was mediated by the c-Jun N-terminal kinase (JNK) pathway. Consistent with the in vitro results, all the TGF-β, Wnt11, and JNK targets were activated in a unilateral ureteral obstruction (UUO) model of renal fibrosis in vivo. Our findings demonstrated cooperativity among the TGF-β, Wnt11, and JNK signaling pathways and suggest new targets for anti-fibrotic therapy in renal tissue. PMID:22556418

  13. Activation of Wnt11 by transforming growth factor-β drives mesenchymal gene expression through non-canonical Wnt protein signaling in renal epithelial cells.

    PubMed

    Zhang, Peng; Cai, Yi; Soofi, Abdul; Dressler, Gregory R

    2012-06-15

    Transforming growth factor β1 (TGF-β) promotes renal interstitial fibrosis in vivo and the expression of mesenchymal genes in vitro; however, most of its direct targets in epithelial cells are still elusive. In a screen for genes directly activated by TGF-β, we found that components of the Wnt signaling pathway, especially Wnt11, were targets of activation by TGF-β and Smad3 in primary renal epithelial cells. In gain and loss of function experiments, Wnt11 mediated the actions of TGF-β through enhanced activation of mesenchymal marker genes, such as Zeb1, Snail1, Pai1, and αSMA, without affecting Smad3 phosphorylation. Inhibition of Wnt11 by receptor knockdown or treatment with Wnt inhibitors limited the effects of TGF-β on gene expression. We found no evidence that Wnt11 activated the canonical Wnt signaling pathway in renal epithelial cells; rather, the function of Wnt11 was mediated by the c-Jun N-terminal kinase (JNK) pathway. Consistent with the in vitro results, all the TGF-β, Wnt11, and JNK targets were activated in a unilateral ureteral obstruction (UUO) model of renal fibrosis in vivo. Our findings demonstrated cooperativity among the TGF-β, Wnt11, and JNK signaling pathways and suggest new targets for anti-fibrotic therapy in renal tissue.

  14. Single-cell RNA sequencing reveals an altered gene expression pattern as a result of CRISPR/cas9-mediated deletion of Gene 33/Mig6 and chronic exposure to hexavalent chromium in human lung epithelial cells.

    PubMed

    Park, Soyoung; Zhang, Xiaowen; Li, Cen; Yin, Changhong; Li, Jiangwei; Fallon, John T; Huang, Weihua; Xu, Dazhong

    2017-09-01

    Gene 33 (Mig6, ERRFI1) is an adaptor protein with multiple cellular functions. We recently reported that depletion of this protein promotes lung epithelial cell transformation induced by hexavalent chromium [Cr(VI)]. However, the early molecular events that mediate this process are not clear. In the present study, we used single-cell RNA sequencing to compare gene expression profiles between BEAS-2B lung epithelial cells chronically exposed to a sublethal dose of Cr(VI) with or without CRISPR/cas9-mediated deletion of Gene 33. Our data reveal 83 differentially expressed genes. The most notable changes are genes associated with cell adhesion, oxidative stresses, protein ubiquitination, epithelial-mesenchymal transition/metastasis, and WNT signaling. Up-regulation of some neuro-specific genes is also evident, particularly ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), a deubiquitinase and potential biomarker for lung cancer. Gene 33 deletion and/or Cr(VI) exposure did not cause discernable changes in cell morphology. However, Gene 33 deletion led to a modest but significant reduction of cells in the G2/M phase of the cell cycle regardless of Cr(VI) exposure. Gene 33 deletion also significantly reduced cell proliferation. Interestingly, Cr(VI) exposure eliminated the difference in cell proliferation between the two genotypes. Gene 33 deletion also significantly elevated cell migration. Our data indicate that combined Gene 33 deletion and chronic Cr(VI) exposure produces a gene expression pattern and a phenotype resemble those of the transformed lung epithelial cells. Given the known association of UCHL1 with lung cancer, we propose that UCHL1 is an important player in the early stage of lung epithelial cell transformation and tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Expression of epithelial cell-derived cytokine genes in the duodenal and colonic mucosae of dogs with chronic enteropathy

    PubMed Central

    OSADA, Hironari; OGAWA, Misato; HASEGAWA, Ayana; NAGAI, Makoto; SHIRAI, Junsuke; SASAKI, Kazuaki; SHIMODA, Minoru; ITOH, Hiroshi; KONDO, Hirotaka; OHMORI, Keitaro

    2016-01-01

    It remains unclear whether epithelial cell-derived cytokines, including interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), contribute to development of canine chronic enteropathy (CE), which includes antibiotic-responsive enteropathy (ARE), food-responsive enteropathy (FRE) and inflammatory bowel disease (IBD). In the present study, we examined mRNA expression of il-25, il-33 and tslp in the duodenal and colonic mucosae of dogs with ARE, FRE and IBD. Real-time PCR analysis revealed that mRNA expression of il-33 was significantly lower in the duodenum in dogs with FRE than in healthy dogs. The results suggest that epithelial cell-derived cytokines may not be an inducer of Th2-type immunity in the gut of dogs with CE, and decreased expression of IL-33 may be involved in induction of FRE. Further studies are required to clarify roles of epithelial cell-derived cytokines, especially IL-33, in the pathogenesis of canine CE. PMID:28049868

  16. Expression of epithelial cell-derived cytokine genes in the duodenal and colonic mucosae of dogs with chronic enteropathy.

    PubMed

    Osada, Hironari; Ogawa, Misato; Hasegawa, Ayana; Nagai, Makoto; Shirai, Junsuke; Sasaki, Kazuaki; Shimoda, Minoru; Itoh, Hiroshi; Kondo, Hirotaka; Ohmori, Keitaro

    2017-02-28

    It remains unclear whether epithelial cell-derived cytokines, including interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), contribute to development of canine chronic enteropathy (CE), which includes antibiotic-responsive enteropathy (ARE), food-responsive enteropathy (FRE) and inflammatory bowel disease (IBD). In the present study, we examined mRNA expression of il-25, il-33 and tslp in the duodenal and colonic mucosae of dogs with ARE, FRE and IBD. Real-time PCR analysis revealed that mRNA expression of il-33 was significantly lower in the duodenum in dogs with FRE than in healthy dogs. The results suggest that epithelial cell-derived cytokines may not be an inducer of Th2-type immunity in the gut of dogs with CE, and decreased expression of IL-33 may be involved in induction of FRE. Further studies are required to clarify roles of epithelial cell-derived cytokines, especially IL-33, in the pathogenesis of canine CE.

  17. Effects of the nanotopographic surface structure of commercially pure titanium following anodization-hydrothermal treatment on gene expression and adhesion in gingival epithelial cells.

    PubMed

    Takebe, J; Miyata, K; Miura, S; Ito, S

    2014-09-01

    The long-term stability and maintenance of endosseous implants with anodized-hydrothermally treated commercially pure titanium surfaces and a nanotopographic structure (SA-treated c.p.Ti) depend on the barrier function provided by the interface between the transmucosal portion of the implant surface and the peri-implant epithelium. This study investigated the effects of extracellular and intracellular gene expression in adherent gingival epithelial cells cultured for 1-7 days on SA-treated c.p.Ti implant surfaces compared to anodic oxide (AO) c.p.Ti and c.p.Ti disks. Scanning electron microscopy (SEM) showed filopodium-like extensions bound closely to the nanotopographic structure of SA-treated c.p.Ti at day 7 of culture. Gene expressions of focal adhesion kinase, integrin-α6β4, and laminin-5 (α3, β3, γ2) were significantly higher on SA-treated c.p.Ti than on c.p.Ti or AO c.p.Ti after 7 days (P<0.05). Our results confirmed that gingival epithelial cells adhere to SA-treated c.p.Ti as the transmucosal portion of an implant, and that this interaction markedly improves expression of focal adhesion molecules and enhances the epithelial cell phenotype. The cellular gene expression responses driving extracellular and intracellular molecular interactions thus play an important role in maintenance at the interface between SA-treated c.p.Ti implant surfaces and the gingival epithelial cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Differentiation expression during proliferative activity induced through different pathways: in situ hybridization study of thyroglobulin gene expression in thyroid epithelial cells

    PubMed Central

    1990-01-01

    In canine thyrocytes in primary culture, our previous studies have identified three mitogenic agents and pathways: thyrotropin (TSH) acting through cyclic AMP (cAMP), EGF and its receptor tyrosine protein kinase, and the phorbol esters that stimulate protein kinase C. TSH enhances, while EGF and phorbol esters inhibit, the expression of differentiation. Given that growth and differentiation expression are often considered as mutually exclusive activities of the cells, it was conceivable that the differentiating action of TSH was restricted to noncycling (Go) cells, while the inhibition of the differentiation expression by EGF and phorbol esters only concerned proliferating cells. Therefore, the capacity to express the thyroglobulin (Tg) gene, the most prominent marker of differentiation in thyrocytes, was studied in proliferative cells (with insulin) and in quiescent cells (without insulin). Using cRNA in situ hybridization, we observed that TSH (and, to a lesser extent, insulin and insulin-like growth factor I) restored or maintained the expression of the Tg gene. Without these hormones, the Tg mRNA content became undetectable in most of the cells. EGF and 12-0-tetradecanoyl phorbol-13-acetate (TPA) inhibited the Tg mRNA accumulation induced by TSH (and/or insulin). Most of the cells (up to 90%) responded to both TSH and EGF. Nevertheless, the range of individual response was quite variable. The effects of TSH and EGF on differentiation expression were not dependent on insulin and can therefore be dissociated from their mitogenic effects. Cell cycling did not affect the induction of Tg gene. Indeed, the same cell distribution of Tg mRNA content was observed in quiescent cells stimulated by TSH alone, or in cells approximately 50% of which had performed one mitotic cycle in response to TSH + insulin. Moreover, after proliferation in "dedifferentiating" conditions (EGF + serum + insulin), thyrocytes had acquired a fusiform fibroblast-like morphology, and responded

  19. Reactive oxygen species and nuclear factor-kappa B pathway mediate high glucose-induced Pax-2 gene expression in mouse embryonic mesenchymal epithelial cells and kidney explants.

    PubMed

    Chen, Y-W; Liu, F; Tran, S; Zhu, Y; Hébert, M-J; Ingelfinger, J R; Zhang, S-L

    2006-11-01

    Diabetic mellitus confers a major risk of congenital malformations, and is associated with diabetic embryopathy, affecting multiple organs including the kidney. The DNA paired box-2 (Pax-2) gene is essential in nephrogenesis. We investigated whether high glucose alters Pax-2 gene expression and aimed to delineate its underlying mechanism(s) of action using both in vitro (mouse embryonic mesenchymal epithelial cells (MK4) and ex vivo (kidney explant from Hoxb7-green florescent protein (GFP) mice) approaches. Pax-2 gene expression was determined by reverse transcriptase-polymerase chain reaction, Western blotting, and immunofluorescent staining. A fusion gene containing the full-length 5'-flanking region of the human Pax-2 promoter linked to a luciferase reporter gene, pGL-2/hPax-2, was transfected into MK4 cells with or without dominant negative IkappaBalpha (DN IkappaBalpha) cotransfection. Fusion gene expression level was quantified by cellular luciferase activity. Reactive oxygen species (ROS) generation was measured by lucigenin assay. Embryonic kidneys from Hoxb7-GFP mice were cultured ex vivo. High D(+) glucose (25 mM), compared to normal glucose (5 mM), specifically induced Pax-2 gene expression in MK4 cells and kidney explants. High glucose-induced Pax-2 gene expression is mediated, at least in part, via ROS generation and activation of the nuclear factor kappa B signaling pathway, but not via protein kinase C, p38 mitogen-activated protein kinase (MAPK), and p44/42 MAPK signaling.

  20. Transforming growth factors beta 1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells.

    PubMed Central

    Woodworth, C D; Notario, V; DiPaolo, J A

    1990-01-01

    Human papillomavirus type 16 (HPV16) early proteins E6 and E7 have been implicated in maintenance of the malignant phenotype in cervical cancer. Transforming growth factors beta one and two (TGF betas 1 and 2), polypeptides that regulate cellular growth and differentiation, reversibly inhibited expression of the HPV16 E6 and E7 genes in several immortal genital epithelial cell lines. Loss of E6 and E7 protein expression followed a dramatic time- and dose-dependent decrease in E6 and E7 RNA levels and was accompanied by cessation of cell proliferation. TGF betas 1 and 2 inhibited HPV16 RNA expression at the transcriptional level; inhibition was dependent upon ongoing protein synthesis. TGF betas 1 and 2 also induced a six- to sevenfold increase in TGF beta 1 RNA. Cells became partially resistant to the inhibitory effects of TGF beta 1 on cell growth and HPV early gene expression after prolonged cultivation in vitro or after malignant transformation. Thus, TGF beta 1 may function as an autocrine regulator of HPV gene expression in infected genital epithelial cells. Images PMID:2168964

  1. The urologic epithelial stem cell database (UESC) – a web tool for cell type-specific gene expression and immunohistochemistry images of the prostate and bladder

    PubMed Central

    Pascal, Laura E; Deutsch, Eric W; Campbell, David S; Korb, Martin; True, Lawrence D; Liu, Alvin Y

    2007-01-01

    Background Public databases are crucial for analysis of high-dimensional gene and protein expression data. The Urologic Epithelial Stem Cells (UESC) database is a public database that contains gene and protein information for the major cell types of the prostate, prostate cancer cell lines, and a cancer cell type isolated from a primary tumor. Similarly, such information is available for urinary bladder cell types. Description Two major data types were archived in the database, protein abundance localization data from immunohistochemistry images, and transcript abundance data principally from DNA microarray analysis. Data results were organized in modules that were made to operate independently but built upon a core functionality. Gene array data and immunostaining images for human and mouse prostate and bladder were made available for interrogation. Data analysis capabilities include: (1) CD (cluster designation) cell surface protein data. For each cluster designation molecule, a data summary allows easy retrieval of images (at multiple magnifications). (2) Microarray data. Single gene or batch search can be initiated with Affymetrix Probeset ID, Gene Name, or Accession Number together with options of coalescing probesets and/or replicates. Conclusion Databases are invaluable for biomedical research, and their utility depends on data quality and user friendliness. UESC provides for database queries and tools to examine cell type-specific gene expression (normal vs. cancer), whereas most other databases contain only whole tissue expression datasets. The UESC database provides a valuable tool in the analysis of differential gene expression in prostate cancer genes in cancer progression. PMID:18072977

  2. HNF-1alpha participates in glucose regulation of sucrase-isomaltase gene expression in epithelial intestinal cells.

    PubMed

    Gu, Ning; Adachi, Tetsuya; Matsunaga, Tetsuro; Tsujimoto, Gozoh; Ishihara, Akihiko; Yasuda, Koichiro; Tsuda, Kinsuke

    2007-02-16

    Sucrase-isomaltase (SI) gene expression is negatively regulated by glucose, but its molecular mechanism is not completely clear. The purpose of this study is to investigate whether HNF-1alpha and HNF-1beta contribute to glucose regulation of SI gene expression. To explore this question, we examined the association of gene expressions between SI and HNF-1alpha and HNF-1beta in Caco-2 cells cultured in medium containing 2.0 and 16.7 mM glucose. We found that gene expression of HNF-1alpha but not HNF-1beta exhibits a positive correlation with that of SI regulated by glucose. Moreover, to elucidate whether glucose regulation of SI gene expression is changed when HNF-1alpha and HNF-1beta are inhibited, we produced three stable cell lines, in which dominant-negative mutant HNF-1alphaT539fsdelC, mutant HNF-1betaR177X, and empty vector (as a control), respectively, were stably expressed. We found that the glucose regulation of SI gene expression was significantly attenuated in HNF-1alphaT539fsdelC cells, but it was well maintained in empty vector and HNF-1betaR177X cells. These results suggest that HNF-1alpha participates in glucose regulation of SI gene expression.

  3. Regulations of Gene Expression in Medullary Thymic Epithelial Cells Required for Preventing the Onset of Autoimmune Diseases

    PubMed Central

    Akiyama, Taishin; Shinzawa, Miho; Qin, Junwen; Akiyama, Nobuko

    2013-01-01

    Elimination of potential self-reactive T cells in the thymus is crucial for preventing the onset of autoimmune diseases. Epithelial cell subsets localized in thymic medulla [medullary thymic epithelial cells (mTECs)] contribute to this process by supplying a wide range of self-antigens that are otherwise expressed in a tissue-specific manner (TSAs). Expression of some TSAs in mTECs is controlled by the autoimmune regulator (AIRE) protein, of which dysfunctional mutations are the causative factor of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). In addition to the elimination of self-reactive T cells, recent studies indicated roles of mTECs in the development of Foxp3-positive regulatory T cells, which suppress autoimmunity and excess immune reactions in peripheral tissues. The TNF family cytokines, RANK ligand, CD40 ligand, and lymphotoxin were found to promote the differentiation of AIRE- and TSA-expressing mTECs. Furthermore, activation of NF-κB is essential for mTEC differentiation. In this mini-review, we focus on molecular mechanisms that regulate induction of AIRE and TSA expression and discuss possible contributions of these mechanisms to prevent the onset of autoimmune diseases. PMID:23986760

  4. The effect of trimethylamine N-oxide on Helicobacter pylori-induced changes of immunoinflammatory genes expression in gastric epithelial cells.

    PubMed

    Wu, Daoyan; Cao, Mei; Peng, Jingshan; Li, Ningzhe; Yi, Sijun; Song, Liju; Wang, Xuege; Zhang, Mao; Zhao, Jian

    2017-02-01

    Colonization of Helicobacter pylori (H. pylori) induces immune and inflammatory response in gastric mucosa. Trimethylamine N-oxide (TMAO), from diet and metabolite through the action of gut microbiota, has been linked to inflammatory diseases. To investigate the effects of TMAO and H. pylori infection on gene expression in gastric epithelial cells, Human gene chip Affymetrix HTA 2.0 was used in this study. 1312 genes were identified as differentially expressed genes in GES-1 cells with H. pylori and TMAO co-treatment compared to the control. GO and KEGG analyses indicated that the functions of these differentially expressed genes were related closely with immune inflammation. GO-network showed that Toll-like receptor signaling pathway was the most important biological processes and 49 up-regulated genes related to immune inflammation were obtained. The synergistic effects of H. pylori and TMAO enhanced the genes expression of IL-6, CXCL1, CXCL2, FOS and C3 related to immune inflammation in comparison with those of non-infected control cells, H. pylori-infected cells, and TMAO-stimulated cells. RT-PCR verified the expression levels of IL-6, CXCL1. Additionally, expression levels of 2053 genes were altered and 52 immunoinflammatory genes were upregulated in comparison with H. pylori-infected cells. This study suggested that TMAO altered the expression levels of immunoinflammatory genes induced by H. pylori infection, and the synergistic effects of H. pylori and TMAO provided novel insights into the development of chronic gastritis, gastric ulcer and gastric cancer.

  5. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells1

    PubMed Central

    Oh, JS; Kucab, JE; Bushel, PR; Martin, K; Bennett, L; Collins, J; DiAugustine, RP; Barrett, JC; Afshari, CA; Dunn, SE

    2002-01-01

    Abstract Activation of the insulin-like growth factor-1 receptor (IGF-1R) by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P450 1A1, cytochrome P450 1B1, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s) whereby some of these changes occur. PMID:11988840

  6. Extensive papillomatosis of the palate exhibiting epithelial dysplasia and HPV 16 gene expression in a renal transplant recipient.

    PubMed

    Al-Osman, Abdulrahman; Perry, John B; Birek, Catalena

    2006-05-01

    We report a unique case of extensive papillomatosis of the palate in a renal transplant recipient. The condition resembled inflammatory papillary hyperplasia; it exhibited severe epithelial dysplasia and concurred with generalized gingival hyperplasia. We document and discuss the probable multifactorial etiology of the lesions, including evidence for human papillomavirus (HPV) type 16 expression, as detected by in situ reverse transcription polymerase chain reaction. This report illustrates the need for careful clinical investigation and follow-up of immunosuppressed individuals presenting with apparently benign, common oral lesions.

  7. Clostridium difficile-derived membrane vesicles induce the expression of pro-inflammatory cytokine genes and cytotoxicity in colonic epithelial cells in vitro.

    PubMed

    Nicholas, Asiimwe; Jeon, Hyejin; Selasi, Gati Noble; Na, Seok Hyeon; Kwon, Hyo Il; Kim, Yoo Jeong; Choi, Chi Won; Kim, Seung Il; Lee, Je Chul

    2017-03-09

    Clostridium difficile is the most common etiological agent of antibiotic-associated diarrhea in hospitalized and non-hospitalized patients. This study investigated the secretion of membrane vesicles (MVs) from C. difficile and determined the expression of pro-inflammatory cytokine genes and cytotoxicity of C. difficile MVs in epithelial cells in vitro. C. difficile ATCC 43255 and two clinical isolates secreted spherical MVs during in vitro culture. Proteomic analysis revealed that MVs of C. difficile ATCC 43255 contained a total of 262 proteins. Translation-associated proteins were the most commonly identified in C. difficile MVs, whereas TcdA and TcdB toxins were not detected. C. difficile ATCC 43255-derived MVs stimulated the expression of pro-inflammatory cytokine genes, including interleukin (IL)-1β, IL-6, IL-8, and monocyte chemoattractant protein-1 in human colorectal epithelial Caco-2 cells. Moreover, these extracellular vesicles induced cytotoxicity in Caco-2 cells. In conclusion, C. difficile MVs are important nanocomplexes that elicit a pro-inflammatory response and induce cytotoxicity in colonic epithelial cells, which may contribute, along with toxins, to intestinal mucosal injury during C. difficile infection.

  8. Bisphenol A suppresses glucocorticoid target gene (ENaCγ) expression via a novel ERβ/NF-κB/GR signalling pathway in lung epithelial cells.

    PubMed

    Hijazi, Ayten; Guan, Haiyan; Yang, Kaiping

    2017-04-01

    We previously demonstrated that prenatal exposure to Bisphenol A (BPA) disrupts fetal lung maturation likely through the glucocorticoid signalling pathway, but the precise molecular mechanisms remain obscure. Given that BPA diminished the expression of epithelial sodium channel-γ (ENaCγ), a well-known glucocorticoid receptor (GR) target gene, in fetal lungs, we used this GR target gene to delineate the molecular pathway through which BPA exerts its effects on lung cells. The A549 lung epithelial cell line was used as an in vitro model system. As a first step, we validated our in vitro cell model by demonstrating a robust concentration-dependent suppression of ENaCγ expression following BPA exposure. We also showed that both dexamethasone and siRNA-mediated knockdown of GR expression blocked/abrogated the inhibitory effects of BPA on ENaCγ expression, suggesting that BPA repressed ENaCγ expression via inhibition of GR activity. Given the well-known antagonistic interactions between the pro-inflammatory transcriptional factor NF-κB and GR, we then showed that BPA inhibited GR activity through the activation of NF-κB. Lastly, since BPA is known to function as a pro-inflammatory factor via the estrogen receptor β (ERβ), we provided evidence that BPA signals through ERβ to activate the NF-κB signalling pathway. Taken together, these findings demonstrate that BPA acts on ERβ to activate the NF-κB signalling pathway, which in turn leads to diminished GR activity and consequent repression of ENaCγ expression in lung epithelial cells. Thus, our present study reveals a novel BPA signalling pathway that involves ERβ, NF-κB and GR.

  9. SNAIL-induced epithelial-to-mesenchymal transition produces concerted biophysical changes from altered cytoskeletal gene expression.

    PubMed

    McGrail, Daniel J; Mezencev, Roman; Kieu, Quang Minh N; McDonald, John F; Dawson, Michelle R

    2015-04-01

    A growing body of evidence suggests that the developmental process of epithelial-to-mesenchymal transition (EMT) is co-opted by cancer cells to metastasize to distant sites. This transition is associated with morphologic elongation and loss of cell-cell adhesions, though little is known about how it alters cell biophysical properties critical for migration. Here, we use multiple-particle tracking (MPT) microrheology and traction force cytometry to probe how genetic induction of EMT in epithelial MCF7 breast cancer cells changes their intracellular stiffness and extracellular force exertion, respectively, relative to an empty vector control. This analysis demonstrated that EMT alone was sufficient to produce dramatic cytoskeletal softening coupled with increases in cell-exerted traction forces. Microarray analysis revealed that these changes corresponded with down-regulation of genes associated with actin cross-linking and up-regulation of genes associated with actomyosin contraction. Finally, we show that this loss of structural integrity to expedite migration could inhibit mesenchymal cell proliferation in a secondary tumor as it accumulates solid stress. This work demonstrates that not only does EMT enable escape from the primary tumor through loss of cell adhesions but it also induces a concerted series of biophysical changes enabling enhanced migration of cancer cells after detachment from the primary tumor. © FASEB.

  10. Bovine DNase I: gene organization, mRNA expression, and changes in the topological distribution of the protein during apoptosis in lens epithelial cells.

    PubMed

    De María, Alicia; Arruti, Cristina

    2003-12-19

    Genomic DNA sequencing and alignment with the known DNase I mRNA showed that the bovine gene consists of 9 exons and that only the last 8 encode the protein, since initial ATG was found at exon II. RT-PCR was used to identify DNase I mRNA in lens epithelium in vivo and in cultured epithelial cells. We found DNase I transcripts having the same nucleotide sequence as the pancreas form and others lacking almost all exon V. The lens protein presented a slightly higher relative molecular weight than the pancreatic enzyme. Lens DNase I was located in secretory pathway organelles and excluded from the nucleus. Nevertheless, in apoptotic lens epithelial cells in vitro, DNase I translocated to the nucleus and co-localized with TUNEL positive chromatin aggregates. These results indicate that cells in the lens epithelium constitutively express DNase I, and suggest a direct involvement of this nuclease in the final phases of chromatin degradation.

  11. A phytoestrogen supplement prevents the altered gene expression associated with pregnancy implantation induced by IL-1β in endometrial epithelial cells.

    PubMed

    Suzuki, Sayaka; Nakashima, Noe; Kageyama, Masakatsu; Yamagata, Kazuo

    2017-09-01

    Phytoestrogens stimulate expression of the uterine estrogen receptor and regulate uterine functions in reproductive tissues. However, comprehensive understanding of the beneficial impacts of phytoestrogens on uterine biology at the molecular level remains unexplored. Interleukin-1β (IL-1β) expression is increased in the inflamed decidua and is associated with first trimester pregnancy loss. AglyMax-Sup has the same composition as that of the phytoestrogen supplement AglyMax but with added vitamins and other components. Expression of genes associated with implantation may be enhanced by AglyMax-Sup compared with AglyMax. We tested the hypothesis that AglyMax-Sup has greater effects on implantation compared with AglyMax, using RT-PCR and Western blotting in the endometrial epithelial cell line. Furthermore, we investigated the protective effect of AglyMax-Sup on IL-1βinduced changes in estrogen-responsive gene expression in endometrial epithelial cells. The purpose of this study was to compare the effects of the phytoestrogen supplement AglyMax-Sup with those of AglyMax on estrogen-responsive gene expression. AglyMax and AglyMax-Sup significantly (p<0.05) induced gene expression of glycodelin-A, HoxA10, IL-11, LIF, MEG-E8 and TGFβ1. AglyMax-Sup induced high levels of these genes compared with the levels induced by AglyMax. The enhanced expression of LIF, IL-11, integrin αV, and HOXA10 induced by AglyMax-Sup was abolished by the ER antagonist fulvestrant and the ERK inhibitor PD98059. Meanwhile, IL-1β inhibited progesterone plus estrogen-induced TGFβ1, glycodelin-A, HOXA10, and integrin αV expression. IL-1β-induced suppression of these expression was reversed by AglyMax-Sup. These results indicate that expression of genes associated with implantation may be increased by AglyMax-Sup compared with AglyMax. AglyMax-Sup might abrogate IL-1β-mediated changes that can affect embryo implantation via the MAPK pathway. Copyright © 2017 Society for Biology of

  12. Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

    PubMed Central

    Seo, Hyo-Seok; Sikder, Mohamed Asaduzzaman; Lee, Hyun Jae; Ryu, Jiho; Lee, Choong Jae

    2014-01-01

    In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-α (TNF-α)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-α for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-α in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-α-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-κB activation induced by TNF-α. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-κB signaling pathway in airway epithelial cells. PMID:25489420

  13. Global gene expression analysis in human uterine epithelial cells defines new targets of glucocorticoid and estradiol antagonism.

    PubMed

    Whirledge, Shannon; Xu, Xiaojiang; Cidlowski, John A

    2013-09-01

    In preparation for embryo implantation and pregnancy, the uterine epithelium undergoes a genomic and biological transition that mediates adhesion and invasion of the blastocyst. These events resemble an inflammatory response, and the immune system likely takes an active role in the establishment and maintenance of pregnancy. Although glucocorticoids are primary mediators of the immune system, the functional role of glucocorticoid signaling in the uterine epithelium is not well defined. To investigate the dynamic relationship between glucocorticoids and reproductive hormones, we performed whole-genome microarray analysis in a human uterine endometrial cancer cell line (ECC1 cells) treated with the synthetic glucocorticoid dexamethasone (Dex) alone or in combination with estradiol (E₂). Over 10,000 genes were significantly regulated in the presence of Dex and/or E₂. Surprisingly, unique targets of Dex and E₂ together represented the largest group of regulated genes. Ingenuity pathway analysis found both overlapping and independent regulated networks for each hormone. Several hundred genes were found to be coregulated by Dex and E₂, including several that were antagonistically regulated. The effects of glucocorticoids and E₂ are mediated primarily through the glucocorticoid receptor (NR3C1) and estrogen receptor (ESR1), respectively. In silico promoter analysis revealed that NR3C1 and ESR1 response elements are enriched in antagonistically regulated genes, and signaling through these receptors was required for antagonism. Glucocorticoid and E₂ antagonism of target genes may represent a critical junction between the immune system and female reproductive system. Moreover, identification and ontology analysis of glucocorticoid-regulated genes in a uterine epithelial-like cell line suggests that glucocorticoid signaling regulates important biological functions, including immune cell trafficking and embryonic development.

  14. PI3K/Akt signaling mediated apoptosis blockage and viral gene expression in oral epithelial cells during herpes simplex virus infection.

    PubMed

    Hsu, Mei-Ju; Wu, Ching-Yi; Chiang, Hsiao-Han; Lai, Yu-Lin; Hung, Shan-Ling

    2010-10-01

    Phosphatidylinositol 3-kinases (PI3Ks) function in the anti-apoptotic pathway, and are commonly exploited by various viruses to accomplish the viral life cycle. This study examined the role of the PI3K pathway in human oral epithelial cells following herpes simplex virus type 1 (HSV-1) infection. The results showed that HSV-1 induced the phosphorylation of Akt and glycogen synthase kinase 3 (GSK-3). Phosphorylation of Akt, but not GSK-3, induced by HSV-1 was PI3K-dependent. The expression of HSV-1 immediate-early genes may be involved in the initial phosphorylation of Akt and GSK-3. Inhibition of HSV-1-induced PI3K activity increased DNA fragmentation and cleavage of poly ADP-ribose polymerase (PARP), caspase 3 and caspase 7 compared with infected alone. Inhibition of PI3K attenuated the expression of HSV-1-infected cell protein 0 (ICP0), but not thymidine kinase (TK) and viral replication. Collectively, these data suggested that, in oral epithelial cells, the HSV-1-induced PI3K/Akt activation was involved in the regulation of apoptosis blockage and viral gene expression.

  15. Expression of asthma susceptibility genes in bronchial epithelial cells and bronchial alveolar lavage in the Severe Asthma Research Program (SARP) cohort.

    PubMed

    Li, Xingnan; Hawkins, Gregory A; Moore, Wendy C; Hastie, Annette T; Ampleford, Elizabeth J; Milosevic, Jadranka; Li, Huashi; Busse, William W; Erzurum, Serpil C; Kaminski, Naftali; Wenzel, Sally E; Bleecker, Eugene R; Meyers, Deborah A

    2016-10-01

    Genome-wide association studies (GWASs) have identified genes associated with asthma, however expression of these genes in asthma-relevant tissues has not been studied. This study tested expression and correlation between GWAS-identified asthma genes and asthma or asthma severity. Correlation analyses of expression levels of GWAS-identified asthma genes and asthma-related biomarkers were performed in cells from human bronchial epithelial biopsy (BEC, n = 107) and bronchial alveolar lavage (BAL, n = 94). Expression levels of asthma genes between BEC and BAL and with asthma or asthma severity were weakly correlated. The expression levels of IL18R1 were consistently higher in asthma than controls or in severe asthma than mild/moderate asthma in BEC and BAL (p < 0.05). In RAD50-IL13 region, the expression levels of RAD50, not IL4, IL5, or IL13, were positively correlated between BEC and BAL (ρ = 0.53, P = 4.5 × 10(-6)). The expression levels of IL13 were positively correlated with IL5 in BEC (ρ = 0.35, P = 1.9 × 10(-4)) and IL4 in BAL (ρ = 0.42, P = 2.5 × 10(-5)), respectively. rs3798134 in RAD50, a GWAS-identified SNP, was correlated with IL13 expression and the expression levels of IL13 were correlated with asthma (P = 0.03). rs17772583 in RAD50 was significantly correlated with RAD50 expression in BAL and BEC (P = 7.4 × 10(-7) and 0.04) but was not associated with asthma. This is the first report studying the expression of GWAS-identified asthma genes in BEC and BAL. IL13, rather than RAD50, IL4, or IL5, is more likely to be the asthma susceptibility gene. Our study illustrates tissue-specific expression of asthma-related genes. Therefore, whenever possible, disease-relevant tissues should be used for transcription analysis.

  16. [Expression of TLR2 and TLR9 genes by epithelial cells of cervical canal mucous membrane in women with inflammatory diseases of small pelvis organs].

    PubMed

    Shibina, L V; Svitich, O A; Krasnoproshina, L I; Skhodova, S A; Ordiiants, I M; Bisheva, I V

    2013-01-01

    Determine subpopulation composition of blood lymphocytes and the level of expression of TLR2 and TLR9 by epithelial cells of cervical canal mucous membrane in women of reproductive age with inflammatory disease of small pelvis organs (IDSPO) at exacerbation stage and remission period. Clinical-laboratory and gynecological examination of 105 women was carried out and 3 groups were formed based on the results: patients at IDSPO exacerbation stage; patients at remission stage; clinically healthy women. By using real time PCR, TLR2, TLR9 gene expression levels were determined in epithelial cells of cervical canal mucous membrane in women of all the 3 groups. Subpopulation composition of blood lymphocytes was determined by flow cytofluorimetry by using monoclonal antibodies with CD45+ CD3+ -T-cell, CD45+ CD3+ CD4+ -T-helper, CD45+, CD3+, CD8+ -T-suppressors-cytotoxic killers, CD45+, CD3-, CD16+, CD56+ natural killers, CD45+, CD3-, CD19+ -B-lymphocytes. Immune fluorescence reaction evaluation was carried out in flow cytofluorimeter Cytomics FC 500 (Becton Coulter, USA). The level of expression of TLR2 gene in the studied groups of patients was established not to differ significantly from parameters in the comparison groups, however it should be noted that this parameter in women with IDSPO at exacerbation stage (causative agents of the infectious process--ureaplasma, staphylococcus, candida) was somewhat higher than in the comparison group. Significantly high level of TLR9 gene expression in cervical canal epithelial cells was detected to correlate with the presence of infectious causative agents. In the group of women with exacerbation of the infectious process the expression of TLR9 was 14.5 times higher compared with the group of women without IDSPO. Among groups of women with IDSPO significant differences in relation to control group in relative and absolute levels of CD3+ T-lymphocytes; CD4+ T-helpers; CD8+ cytotoxic killer T-suppressors, B-lymphocytes compared with

  17. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    PubMed

    DeSmet, Marsha L; Fleet, James C

    2017-01-16

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH)2D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH)2D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH)2D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH)2D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention.

  18. Absence of keratins 8 and 18 expression in rodent epithelial cell lines associates with keratin gene mutation and DNA methylation: cell line selective effects on cell invasion

    PubMed Central

    Omary, M. Bishr

    2016-01-01

    Epithelial-mesenchymal transition (EMT) in carcinoma is associated with dramatic up-regulation of vimentin and down-regulation of the simple-type keratins 8 and 18 (K8/K18), but the mechanisms of these changes are poorly understood. We demonstrate that two commonly-studied murine (CT26) and rat (IEC-6) intestinal cell lines have negligible K8/K18 but high vimentin protein expression. Proteasome inhibition led to a limited increase in K18 but not K8 stabilization, thereby indicating that K8/K18 absence is not due, in large part, to increased protein turnover. CT26 and IEC-6 cells had <10% of normal K8/K18 mRNA and exhibited decreased mRNA stability, with K8 being higher in IEC-6 versus CT26 and K18 being higher in CT26 versus IEC-6 cells. Keratin gene sequencing showed that KRT8 in CT26 cells had a 21-nucleotide deletion while K18 in IEC-6 cells had a 9-amino acid in-frame insertion. Furthermore, the KRT8 promoter in CT26 and the KRT18 promoter in IEC-6 are hypermethylated. Inhibition of DNA methylation using 5-azacytidine increased K8 or K18 in some but all the tested rodent epithelial cell lines. Restoring K8 and K18 by lentiviral transduction reduced CT26 but not IEC-6 cell matrigel invasion. K8/K18 re-introduction also decreased E-cadherin expression in IEC-6 but not CT26 cells, suggesting that the effect of keratin expression on epithelial to mesenchymal transition is cell-line dependent. Therefore, some commonly utilized rodent epithelial cell lines, unexpectedly, manifest barely detectable keratin expression but have high levels of vimentin. In the CT26 and IEC-6 intestinal cell lines, keratin expression correlates with keratin gene insertion or deletion and with promoter methylation, which likely suppress keratin transcription or mRNA stability. PMID:25882495

  19. Expression of preoperative KISS1 gene in tumor tissue with epithelial ovarian cancer and its prognostic value.

    PubMed

    Cao, Fang; Chen, Liping; Liu, Manhua; Lin, Weiwei; Ji, Jinlong; You, Jun; Qiao, Fenghai; Liu, Hongbin

    2016-11-01

    Our study aimed to elucidate the role of Kisspeptin (KISS1) in tumor tissues of patients with epithelial ovarian cancer (EOC) and investigate the prognostic value of this biomarker.Forty EOC patients and 20 uterine fibroids female patients with healthy ovaries undergoing cytoreductive surgery between January 2010 and January 2014 in our hospital were enrolled in this study. KISS1 expression in tumor and normal tissues was detected. Correlations between clinic-pathologic variables and KISS1 expression in EOC tissues and the prognostic value of KISS1 for overall survival were evaluated.During the follow-up of 11.2 to 62.1 months, the overall survival rate and mean survival time were 28.9% (11/38) and 38.35 ± 2.84 months. Preoperative KISS1 mRNA was higher in tumor tissue than in normal tissue (P <0.001), and it was associated with histologic grade of tumor, surgical FIGO stage, metastasis, and residual tumor size (all P <0.05). Multivariate survival analysis indicated significant influence of residual tumor size (HR = 2.357, P = 0.039) and preoperative KISS1 mRNA (HR = 0.0001, P <0.001) on mean survival time. Patients with low KISS1 mRNA expression had shorter survival time than those with high expression (P = 0.001).Preoperative KISS1 mRNA was a potential prognostic biomarker for EOC, and high preoperative KISS1 expression indicated a favorable prognosis.

  20. Expression of preoperative KISS1 gene in tumor tissue with epithelial ovarian cancer and its prognostic value

    PubMed Central

    Cao, Fang; Chen, Liping; Liu, Manhua; Lin, Weiwei; Ji, Jinlong; You, Jun; Qiao, Fenghai; Liu, Hongbin

    2016-01-01

    Abstract Our study aimed to elucidate the role of Kisspeptin (KISS1) in tumor tissues of patients with epithelial ovarian cancer (EOC) and investigate the prognostic value of this biomarker. Forty EOC patients and 20 uterine fibroids female patients with healthy ovaries undergoing cytoreductive surgery between January 2010 and January 2014 in our hospital were enrolled in this study. KISS1 expression in tumor and normal tissues was detected. Correlations between clinic-pathologic variables and KISS1 expression in EOC tissues and the prognostic value of KISS1 for overall survival were evaluated. During the follow-up of 11.2 to 62.1 months, the overall survival rate and mean survival time were 28.9% (11/38) and 38.35 ± 2.84 months. Preoperative KISS1 mRNA was higher in tumor tissue than in normal tissue (P <0.001), and it was associated with histologic grade of tumor, surgical FIGO stage, metastasis, and residual tumor size (all P <0.05). Multivariate survival analysis indicated significant influence of residual tumor size (HR = 2.357, P = 0.039) and preoperative KISS1 mRNA (HR = 0.0001, P <0.001) on mean survival time. Patients with low KISS1 mRNA expression had shorter survival time than those with high expression (P = 0.001). Preoperative KISS1 mRNA was a potential prognostic biomarker for EOC, and high preoperative KISS1 expression indicated a favorable prognosis. PMID:27861355

  1. The micronutrient zinc inhibits EAEC strain 042 adherence, biofilm formation, virulence gene expression, and epithelial cytokine responses benefiting the infected host

    PubMed Central

    Medeiros, Pedro; Bolick, David T; Roche, James K; Noronha, Francisco; Pinheiro, Caio; Kolling, Glynis L; Lima, Aldo; Guerrant, Richard L

    2013-01-01

    Enteroaggregative Escherichia coli (EAEC) is a major pathogen worldwide, associated with diarrheal disease in both children and adults, suggesting the need for new preventive and therapeutic treatments. We investigated the role of the micronutrient zinc in the pathogenesis of an E. coli strain associated with human disease. A variety of bacterial characteristics—growth in vitro, biofilm formation, adherence to IEC-6 epithelial cells, gene expression of putative EAEC virulence factors as well as EAEC-induced cytokine expression by HCT-8 cells—were quantified. At concentrations (≤ 0.05 mM) that did not alter EAEC growth (strain 042) but that are physiologic in serum, zinc markedly decreased the organism’s ability to form biofilm (P < 0.001), adhere to IEC-6 epithelial cells (P < 0.01), and express putative EAEC virulence factors (aggR, aap, aatA, virK) (P < 0.03). After exposure of the organism to zinc, the effect on virulence factor generation was prolonged (>3 h). Further, EAEC-induced IL-8 mRNA and protein secretion by HCT-8 epithelial cells were significantly reduced by 0.05 mM zinc (P < 0.03). Using an in vivo murine model of diet-induced zinc-deficiency, oral zinc supplementation (0.4 µg/mouse daily) administered after EAEC challenge (1010 CFU/mouse) significantly abrogated growth shortfalls (by >90%; P < 0.01); furthermore, stool shedding was reduced (days 9–11) but tissue burden of organisms in the intestine was unchanged. These findings suggest several potential mechanisms whereby physiological levels of zinc alter pathogenetic events in the bacterium (reducing biofilm formation, adherence to epithelium, virulence factor expression) as well as the bacterium’s effect on the epithelium (cytokine response to exposure to EAEC) to alter EAEC pathogenesis in vitro and in vivo. These effects may help explain and extend the benefits of zinc in childhood diarrhea and malnutrition. PMID:23958904

  2. Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4.

    PubMed

    Kiyoshima, Tamotsu; Fujiwara, Hiroaki; Nagata, Kengo; Wada, Hiroko; Ookuma, Yukiko F; Shiotsuka, Maho; Kihara, Makiko; Hasegawa, Kana; Someya, Hirotaka; Sakai, Hidetaka

    2014-01-01

    Previous studies have shown that the recombination of cells liberated from developing tooth germs develop into teeth. However, it is difficult to use human developing tooth germ as a source of cells because of ethical issues. Previous studies have reported that thymosin beta 4 (Tmsb4x) is closely related to the initiation and development of the tooth germ. We herein attempted to establish odontogenic epithelial cells from non-odontogenic HaCaT cells by transfection with TMSB4X. TMSB4X-transfected cells formed nodules that were positive for Alizarin-red S (ALZ) and von Kossa staining (calcium phosphate deposits) when cultured in calcification-inducing medium. Three selected clones showing larger amounts of calcium deposits than the other clones, expressed PITX2, Cytokeratin 14, and Sonic Hedgehog. The upregulation of odontogenesis-related genes, such as runt-related transcription factor 2 (RUNX2), Amelogenin (AMELX), Ameloblastin (AMBN) and Enamelin (ENAM) was also detected. These proteins were immunohistochemically observed in nodules positive for the ALZ and von Kossa staining. RUNX2-positive selected TMSB4X-transfected cells implanted into the dorsal subcutaneous tissue of nude mice formed matrix deposits. Immunohistochemically, AMELX, AMBN and ENAM were observed in the matrix deposits. This study demonstrated the possibility of induction of dental epithelial cell differentiation marker gene expression in non-odontogenic HaCaT cells by TMSB4X. Copyright © 2013. Published by Elsevier B.V.

  3. Differential gene expression pattern in human mammary epithelial cells induced by realistic organochlorine mixtures described in healthy women and in women diagnosed with breast cancer.

    PubMed

    Rivero, Javier; Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P; Pestano, José; Zumbado, Manuel; Boada, Luis D; Valerón, Pilar F

    2016-03-30

    Organochlorine pesticides (OCs) have been associated with breast cancer development and progression, but the mechanisms underlying this phenomenon are not well known. In this work, we evaluated the effects exerted on normal human mammary epithelial cells (HMEC) by the OC mixtures most frequently detected in healthy women (H-mixture) and in women diagnosed with breast cancer (BC-mixture), as identified in a previous case-control study developed in Spain. Cytotoxicity and gene expression profile of human kinases (n=68) and non-kinases (n=26) were tested at concentrations similar to those described in the serum of those cases and controls. Although both mixtures caused a down-regulation of genes involved in the ATP binding process, our results clearly indicate that both mixtures may exert a very different effect on the gene expression profile of HMEC. Thus, while BC-mixture up-regulated the expression of oncogenes associated to breast cancer (GFRA1 and BHLHB8), the H-mixture down-regulated the expression of tumor suppressor genes (EPHA4 and EPHB2). Our results indicate that the composition of the OC mixture could play a role in the initiation processes of breast cancer. In addition, the present results suggest that subtle changes in the composition and levels of pollutants involved in environmentally relevant mixtures might induce very different biological effects, which explain, at least partially, why some mixtures seem to be more carcinogenic than others. Nonetheless, our findings confirm that environmentally relevant pollutants may modulate the expression of genes closely related to carcinogenic processes in the breast, reinforcing the role exerted by environment in the regulation of genes involved in breast carcinogenesis.

  4. Specific expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus

    PubMed Central

    Gordon, Julie; Xiao, Shiyun; Hughes, Bernard; Su, Dong-ming; Navarre, Samuel P; Condie, Brian G; Manley, Nancy R

    2007-01-01

    Background Thymic epithelial cells (TECs) promote thymocyte maturation and are required for the early stages of thymocyte development and for positive selection. However, investigation of the mechanisms by which TECs perform these functions has been inhibited by the lack of genetic tools. Since the Foxn1 gene is expressed in all presumptive TECs from the early stages of thymus organogenesis and broadly in the adult thymus, it is an ideal locus for driving gene expression in differentiating and mature TECs. Results We generated two knock-in alleles of Foxn1 by inserting IRES-Cre or IRES-lacZ cassettes into the 3' UTR of the Foxn1 locus. We simultaneously electroporated the two targeting vectors to generate the two independent alleles in the same experiment, demonstrating the feasibility of multiplex gene targeting at this locus. Our analysis shows that the knockin alleles drive expression of Cre or lacZ in all TECs in the fetal thymus. Furthermore, the knockin alleles express Cre or lacZ in a Foxn1-like pattern without disrupting Foxn1 function as determined by phenotype analysis of Foxn1 knockin/Foxn1 null compound heterozygotes. Conclusion These data show that multiplex gene targeting into the 3' UTR of the Foxn1 locus is an efficient method to express any gene of interest in TECs from the earliest stage of thymus organogenesis. The resulting alleles will make possible new molecular and genetic studies of TEC differentiation and function. We also discuss evidence indicating that gene targeting into the 3' UTR is a technique that may be broadly applicable for the generation of genetically neutral driver strains. PMID:17577402

  5. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire).

    PubMed

    Oliveira, Ernna H; Macedo, Claudia; Donate, Paula B; Almeida, Renata S; Pezzi, Nicole; Nguyen, Catherine; Rossi, Marcos A; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2013-01-01

    In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Inhibition of beta-defensin gene expression in airway epithelial cells by low doses of residual oil fly ash is mediated by vanadium.

    PubMed

    Klein-Patel, Marcia E; Diamond, Gill; Boniotto, Michele; Saad, Sherif; Ryan, Lisa K

    2006-07-01

    Poor ambient air quality is associated with increased morbidity and mortality, including respiratory infections. However, its effects on various host-defense mechanisms are poorly understood. This study utilized an in vitro model to study the effect of particulate matter (PM(2.5)) on one antimicrobial mechanism of host defense in the airway, beta-defensin-2 and its bovine homologue, tracheal antimicrobial peptide (TAP) induction in response to lipopolysaccharide (LPS) and IL-1beta. Our model utilized cultured primary bovine tracheal epithelial (BTE) cells and the human alveolar type II epithelial cell line, A549, treated with 0-20 microg/cm(2) residual oil fly ash (ROFA) for 6 h. The cells were then washed and stimulated for 18 h with 100 ng/ml LPS or for 6 h with 100 ng/ml IL-1beta. ROFA inhibited the LPS-induced increase in TAP mRNA and protein without inducing significant cytotoxicity. As little as 2.5 microg/cm(2) of ROFA inhibited LPS-induced TAP gene expression by 30%. The inhibitory activity was associated with the soluble fraction and not the washed particle. The activity in the leachate was attributed to vanadium, but not nickel or iron. SiO(2) and TiO(2) were utilized as controls and did not inhibit LPS induction of TAP gene expression in BTE. ROFA also inhibited the increase of IL-1beta-induced human beta-defensin-2, a homologue of TAP, in A549 cells. The results show that ROFA, V(2)O(5), and VOSO(4) inhibit the ability of airway epithelial cells to respond to inflammatory stimuli at low, physiologically relevant doses and suggest that exposure to these agents could result in an impairment of defense against airborne pathogens.

  7. Colostrum whey down-regulates the expression of early and late inflammatory response genes induced by Escherichia coli and Salmonella enterica Typhimurium components in intestinal epithelial cells.

    PubMed

    Blais, M; Fortier, M; Pouliot, Y; Gauthier, S F; Boutin, Y; Asselin, C; Lessard, M

    2015-01-28

    Pathogenic invasion by Escherichia coli and Salmonellae remains a constant threat to the integrity of the intestinal epithelium and can rapidly induce inflammatory responses. At birth, colostrum consumption exerts numerous beneficial effects on the properties of intestinal epithelial cells and protects the gastrointestinal tract of newborns from pathogenic invasion. The present study aimed to investigate the effect of colostrum on the early and late inflammatory responses induced by pathogens. The short-term (2 h) and long-term (24 h) effects of exposure to heat-killed (HK) E. coli and Salmonella enterica Typhimurium on gene expression in the porcine intestinal epithelial cell (IPEC-J2) model were first evaluated by microarray and quantitative PCR analyses. Luciferase assays were performed using a NF-κB-luc reporter construct to investigate the effect of colostrum whey treatment on the activation of NF-κB induced by HK bacteria. Luciferase assays were also performed using NF-κB-luc, IL-8-luc and IL-6-luc reporter constructs in human colon adenocarcinoma Caco-2/15 cells exposed to dose-response stimulations with HK bacteria and colostrum whey. Bovine colostrum whey treatment decreased the expression of early and late inflammatory genes induced by HK bacteria in IPEC-J2, as well as the transcriptional activation of NF-κB-luc induced by HK bacteria. Unlike that with colostrum whey, treatment with other milk fractions failed to decrease the activation of NF-κB-luc induced by HK bacteria. Lastly, the reduction of the HK bacteria-induced activation of NF-κB-luc, IL-8-luc and IL-6-luc by colostrum whey was dose dependent. The results of the present study indicate that bovine colostrum may protect and preserve the integrity of the intestinal mucosal barrier in the host by controlling the expression levels of early and late inflammatory genes following invasion by enteric pathogens.

  8. Intracellular mechanisms underlying lipid accumulation (white opaque substance) in gastric epithelial neoplasms: A pilot study of expression profiles of lipid-metabolism-associated genes.

    PubMed

    Enjoji, Munechika; Kohjima, Motoyuki; Ohtsu, Kensei; Matsunaga, Kazuhisa; Murata, Yusuke; Nakamuta, Makoto; Imamura, Kentaro; Tanabe, Hiroshi; Iwashita, Akinori; Nagahama, Takashi; Yao, Kenshi

    2016-04-01

    White opaque substance (WOS) is a novel endoscopic finding in gastric neoplasms, indicating the intracellular accumulation of lipid droplets (LDs). However, gastric lipid metabolism has not been extensively investigated, even in normal mucosa. We investigated the expression profiles of lipid-metabolism-associated genes in gastric neoplasms. Thirty-four patients with early gastric cancer or adenoma were enrolled in this study. Paired biopsy samples from tumor and adjacent non-tumor areas were obtained and analyzed by real-time polymerase chain reaction. Endoscopically resected specimens were evaluated histopathologically. Genes associated with β-oxidation (peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1A, and hydroxyacyl-CoA dehydrogenase), lipoprotein excretion (apolipoprotein B, microsomal triglyceride transfer protein, and acyl-CoA:cholesterol acyltransferase 2), fatty acid transport (fatty acid-binding protein), construction of triglycerides in the endoplasmic reticulum (acyl-CoA:diacylglycerol acyltransferase 1), and LD degradation/lipolysis (comparative gene identification-58, adipose triglyceride lipase) were significantly downregulated in neoplasms compared with non-tumor areas. Pyruvate dehydrogenase lipoamide kinase isozyme 4 (negative regulator of glycolysis) and adipophilin (LD surface component) were also repressed. Conversely, expression levels of genes associated with de novo lipogenesis (sterol regulatory element-binding protein 1c, acyl-CoA:diacylglycerol acyltransferase 2) were significantly enhanced in neoplasms. There was no significant difference in gene expression levels between carcinomas and adenomas, or between WOS-positive and WOS-negative neoplasms. Gene expression profiles in neoplasms suggest a predominance of lipid storage (lipogenesis/LD formation) over consumption (β-oxidation/excretion/lipolysis). Lipid accumulation and WOS in gastric epithelial neoplasms may be caused by impaired mitochondrial

  9. Genome-Wide Small RNA Sequencing and Gene Expression Analysis Reveals a microRNA Profile of Cancer Susceptibility in ATM-Deficient Human Mammary Epithelial Cells

    PubMed Central

    Hesse, Jill E.; Liu, Liwen; Innes, Cynthia L.; Cui, Yuxia; Palii, Stela S.; Paules, Richard S.

    2013-01-01

    Deficiencies in the ATM gene are the underlying cause for ataxia telangiectasia, a syndrome characterized by neurological, motor and immunological defects, and a predisposition to cancer. MicroRNAs (miRNAs) are useful tools for cancer profiling and prediction of therapeutic responses to clinical regimens. We investigated the consequences of ATM deficiency on miRNA expression and associated gene expression in normal human mammary epithelial cells (HME-CCs). We identified 81 significantly differentially expressed miRNAs in ATM-deficient HME-CCs using small RNA sequencing. Many of these have been implicated in tumorigenesis and proliferation and include down-regulated tumor suppressor miRNAs, such as hsa-miR-29c and hsa-miR-16, as well as over-expressed pro-oncogenic miRNAs, such as hsa-miR-93 and hsa-miR-221. MicroRNA changes were integrated with genome wide gene expression profiles to investigate possible miRNA targets. Predicted mRNA targets of the miRNAs significantly regulated after ATM depletion included many genes associated with cancer formation and progression, such as SOCS1 and the proto-oncogene MAF. While a number of miRNAs have been reported as altered in cancerous cells, there is little understanding as to how these small RNAs might be driving cancer formation or how they might be used as biomarkers for cancer susceptibility. This study provides preliminary data for defining miRNA profiles that may be used as prognostic or predictive biomarkers for breast cancer. Our integrated analysis of miRNA and mRNA expression allows us to gain a better understanding of the signaling involved in breast cancer predisposition and suggests a mechanism for the breast cancer-prone phenotype seen in ATM-deficient patients. PMID:23741392

  10. Profiles of cytokine and chemokine gene expression in human pulmonary epithelial cells induced by human and avian influenza viruses

    PubMed Central

    2010-01-01

    Influenza pandemic remains a serious threat to human health. In this study, the repertoire of host cellular cytokine and chemokine responses to infections with highly pathogenic avian influenza H5N1, low pathogenicity avian influenza H9N2 and seasonal human influenza H1N1 were compared using an in vitro system based on human pulmonary epithelial cells. The results showed that H5N1 was more potent than H9N2 and H1N1 in inducing CXCL-10/IP-10, TNF-alpha and CCL-5/RANTES. The cytokine/chemokine profiles for H9N2, in general, resembled those of H1N1. Of interest, only H1N1, but none of the avian subtypes examined could induce a persistent elevation of the immune-regulatory cytokine - TGF-β2. The differential expression of cytokines/chemokines following infection with different influenza viruses could be a key determinant for clinical outcome. The potential of using these cytokines/chemokines as prognostic markers or targets of therapy is worth exploring. PMID:21108843

  11. The effect of heat stress on gene expression and synthesis of heat-shock and milk proteins in bovine mammary epithelial cells.

    PubMed

    Hu, Han; Zhang, Yangdong; Zheng, Nan; Cheng, Jianbo; Wang, Jiaqi

    2016-01-01

    In this study, bovine mammary epithelial cells were used to study stress responses after cells were exposed to 42°C for 0.5, 1, 3, 5, 8 or 12 h, and 38°C as control. The transcription of the genes (HSP27, HSP70 and HSP90) of heat shock protein (Hsp) was significantly enhanced under heat stress (HS). The peak transcription of HSP70 was 14 times the control at 1 h. Expression of proteins Hsp27 and Hsp70 was gradually increased under HS, with rapid deposition of Hsp70 in epithelial cells. The major milk protein genes of β-casein (CSN2) and butyrophilin (BTN1A1) were down-regulated and the synthesis of total caseins was decreased. After the cells were under HS (42°C) for 1 or 5 h, the cells were cultured at 38°C for 1, 6, 12 or 24 h for recovery. When the cells were cultured at 38°C for 24 h after HS for 1 h, the transcription of HSP70, HSP90, CSN2 and BTN reached normal levels. Our results suggest that HS initiated Hsp synthesis and decreased the milk protein synthesis. Hsp70 is extremely sensitive to HS and mainly responsible for mammary cell protection from HS. © 2015 Japanese Society of Animal Science.

  12. mRNA expression pattern of selected candidate genes differs in bovine oviductal epithelial cells in vitro compared with the in vivo state and during cell culture passages.

    PubMed

    Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph

    2016-08-15

    The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation

  13. Histone deacetylase class-I inhibition promotes epithelial gene expression in pancreatic cancer cells in a BRD4- and MYC-dependent manner.

    PubMed

    Mishra, Vivek Kumar; Wegwitz, Florian; Kosinsky, Robyn Laura; Sen, Madhobi; Baumgartner, Roland; Wulff, Tanja; Siveke, Jens T; Schildhaus, Hans-Ulrich; Najafova, Zeynab; Kari, Vijayalakshmi; Kohlhof, Hella; Hessmann, Elisabeth; Johnsen, Steven A

    2017-03-27

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a particularly dismal prognosis. Histone deacetylases (HDAC) are epigenetic modulators whose activity is frequently deregulated in various cancers including PDAC. In particular, class-I HDACs (HDAC 1, 2, 3 and 8) have been shown to play an important role in PDAC. In this study, we investigated the effects of the class I-specific HDAC inhibitor (HDACi) 4SC-202 in multiple PDAC cell lines in promoting tumor cell differentiation. We show that 4SC-202 negatively affects TGFβ signaling and inhibits TGFβ-induced epithelial-to-mesenchymal transition (EMT). Moreover, 4SC-202 markedly induced p21 (CDKN1A) expression and significantly attenuated cell proliferation. Mechanistically, genome-wide studies revealed that 4SC-202-induced genes were enriched for Bromodomain-containing Protein-4 (BRD4) and MYC occupancy. BRD4, a well-characterized acetyllysine reader, has been shown to play a major role in regulating transcription of selected subsets of genes. Importantly, BRD4 and MYC are essential for the expression of a subgroup of genes induced by class-I HDACi. Taken together, our study uncovers a previously unknown role of BRD4 and MYC in eliciting the HDACi-mediated induction of a subset of genes and provides molecular insight into the mechanisms of HDACi action in PDAC.

  14. Aromatase expression in ovarian epithelial cancers.

    PubMed

    Cunat, S; Rabenoelina, F; Daurès, J-P; Katsaros, D; Sasano, H; Miller, W R; Maudelonde, T; Pujol, P

    2005-01-01

    Our study focused on aromatase cytochrome P450 (CYP19) expression in ovarian epithelial normal and cancer cells and tissues. Aromatase mRNA expression was analyzed by real-time PCR in ovarian epithelial cancer cell lines, in human ovarian surface epithelial (HOSE) cell primary cultures, and in ovarian tissue specimens (n=94), including normal ovaries, ovarian cysts and cancers. Aromatase mRNA was found to be expressed in HOSE cells, in BG1, PEO4 and PEO14, but not in SKOV3 and NIH:OVCAR-3 ovarian cancer cell lines. Correlation analysis of aromatase expression was performed according to clinical, histological and biological parameters. Aromatase expression in ovarian tissue specimens was higher in normal ovaries and cysts than in cancers (P<0.0001). Using laser capture microdissection in normal postmenopausal ovaries, aromatase was found to be predominantly expressed in epithelial cells as compared to stromal component. Using immunohistochemistry (IHC), aromatase was also detected in the epithelium component. There was an inverse correlation between aromatase and ERalpha expression in ovarian tissues (P<0.001, r=-0.34). In the cancer group, no significant differences in aromatase expression were observed according to tumor histotype, grade, stage and survival. Aromatase activity was evaluated in ovarian epithelial cancer (OEC) cell lines by the tritiated water assay and the effects of third-generation aromatase inhibitors (AIs) on aromatase activity and growth were studied. Letrozole and exemestane were able to completely inhibit aromatase activity in BG1 and PEO14 cell lines. Interestingly, both AI showed an antiproliferative effect on the estrogen responsive BG1 cell line co-expressing aromatase and ERalpha. Aromatase expression was found in ovarian epithelial normal tissues and in some ovarian epithelial cancer cells and tissues. This finding raises the possibility that some tumors may respond to estrogen and provides a basis for ascertaining an antimitogenic

  15. Chromosomal Instability Is Associated with Higher Expression of Genes Implicated in Epithelial-Mesenchymal Transition, Cancer Invasiveness, and Metastasis and with Lower Expression of Genes Involved in Cell Cycle Checkpoints, DNA Repair, and Chromatin Maintenance1

    PubMed Central

    Roschke, Anna V; Glebov, Oleg K; Lababidi, Samir; Gehlhaus, Kristen S; Weinstein, John N; Kirsch, Ilan R

    2008-01-01

    Chromosomal instability—a hallmark of epithelial cancers—is an ongoing process that results in aneuploidy and karyotypic heterogeneity of a cancer cell population. Previously, we stratified cancer cell lines in the NCI-60 drug discovery panel based on their karyotypic complexity and heterogeneity. Using this stratification in conjunction with drug response data for the cell lines allowed us to identify classes of chemical compounds whose growthinhibitory activity correlates with karyotypic complexity and chromosomal instability. In this article, we asked the question: What are the biological processes, pathways, or genes associated with chromosomal instability of cancer cells? We found that increased instability of the chromosomal content in a cancer cell population, particularly, persistent gains and losses of chromosomes, is associated with elevated expression of genes involved with aggressive cellular behavior, including invasion- and metastasis-associated changes in cell communication, adhesion, motility, and migration. These same karyotypic features are negatively correlated with the expression of genes involved in cell cycle checkpoints, DNA repair, and chromatin maintenance. PMID:18953431

  16. Effects of ruminal doses of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells.

    PubMed

    Oba, M; Mewis, J L; Zhining, Z

    2015-01-01

    The objective was to evaluate effects of a ruminal dose of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells. Six ruminally cannulated nonlactating nonpregnant Holstein cows (body weight=725±69.6kg) were assigned to treatments in a 3×3 Latin square design with 7-d periods; 1d for data and sample collection followed by a 6-d washout period. Cows were fed a diet containing whole-crop barley silage and dry ground corn, and dietary neutral detergent fiber and crude protein contents were 41.8 and 13.2% [dry matter (DM) basis], respectively. Treatment was a pulse-dose of sucrose, lactose, and corn starch (3.0, 3.0, and 2.85kg of DM, respectively; providing similar amounts of hexose across the treatments) through the ruminal cannulas. All treatments were given with alfalfa silage (1.75kg DM) to prevent acute rumen acidosis. Rumen pH was continuously monitored, and rumen fluid was sampled at 0, 30, 60, 90, 120, 150, and 180min after the dose. In addition, ruminal papillae were sampled from the ventral sac at 180min after the dose. Ruminal dosing with sucrose and lactose, compared with corn starch, increased ruminal total volatile fatty acid concentration and molar proportion of butyrate from 60 to 180min after the dose, and expression of genes for sodium hydrogen exchanger isoforms 1 and 2, and ATPase isoform 1 in ruminal epithelial cells. Ruminal dosing with sucrose, compared with lactose and corn starch, decreased rumen pH from 120 to 180min after the dose and molar proportion of acetate in ruminal fluid from 60 to 150min after the dose, and increased molar proportion of propionate in ruminal fluid from 60 to 150min, and expression of genes involved in butyrate metabolism (3-hydroxy-3-methylglutaryl-coenzyme A synthase isoform 1) and anion exchange across ruminal apical cell membrane (putative anion transporter isoform 1). These results suggest that replacing dietary starch with sugars may affect ruminal

  17. Downregulation of hepatocyte nuclear factor-4{alpha} and its role in regulation of gene expression by TGF-{beta} in mammary epithelial cells

    SciTech Connect

    Ishikawa, Fumihiro; Nose, Kiyoshi; Shibanuma, Motoko

    2008-06-10

    We found that a specific isoform of hepatocyte nuclear factor 4{alpha} (HNF-4{alpha}), HNF-4{alpha}8, was expressed in mouse mammary epithelial NMuMG cells, and that its expression was repressed by TGF-{beta}. The repression was interfered by dominant negative forms of activin receptor-like kinase 5 (ALK5) and Smad3, and sensitive to cycloheximide, suggesting the involvement of additional protein(s) as well as ALK5 and Smad3 in the repression. Further study showed that high mobility group A2 (HMGA2), which is reported to be directly upregulated by Smads, repressed HNF-4{alpha}8 expression. Therefore, it is likely that HMGA2 mediates the downregulation of HNF-4{alpha}8 downstream of ALK5 and Smads To determine the significance of the downregulation of HNF-4{alpha}8 in TGF-{beta} signaling, we performed DNA microarray analysis and extracted a subgroup of TGF-{beta}1-regulated genes, including tenascin C and tissue inhibitor of metalloproteinase 3 (TIMP-3), whose regulation by TGF-{beta}1 was attenuated by forced expression of HNF-4{alpha}8. HMGA2 has recently emerged as a transcriptional organizer of TGF-{beta} signaling, regulating several key factors involved in epithelial-mesenchymal transition (EMT). In this study, we identified an isoform of HNF-4{alpha} as a new target downstream of HMGA2 and assigned a new role to HNF-4{alpha} in the TGF-{beta} signaling/transcriptional cascade driven by ALK5/Smad/HMGA2 and associated with the malignant transformation of cells.

  18. Wild-type and IL10-null mice have differential colonic epithelial gene expression responses to dietary supplementation with synbiotic Bifidobacterium animalis subspecies lactis and inulin.

    PubMed

    Kuo, Shiu-Ming; Chan, Wan-Chun; Hu, Zihua

    2014-03-01

    Prebiotic plus probiotic (synbiotic) supplementations promote fermentation and have shown anti-inflammatory activity in colonic epithelium. However, in many instances, patients with inflammatory bowel disease (IBD) have demonstrated adverse effects after prebiotic supplementation at a dose well tolerated by normal individuals. To test the hypothesis that the host inflammation affects the colonic epithelial response to increased fermentation, the gene expression of colonic epithelium was analyzed. In a 1-way experimental design to test the effect of supplements in wild-type mice using the standard diet formulated by the American Institute of Nutrition (AIN-93G) as the control diet, fermentable fiber inulin (5%) in the absence or presence of the probiotic Bifidobacterium animalis subspecies lactis (Bb12) (10(8) CFU/kg diet) showed limited effects on gene expression as determined by whole-genome microarray. Bb12 supplementation alone was known not to increase fermentation and here instead significantly upregulated genes in nucleic acid metabolic processes. The effects of the synbiotic diet were then determined in mice exposed to LPS-induced inflammation in a 2-way experimental design testing the effect of diet and LPS. The microarray and quantitative reverse transcription-polymerase chain reaction analyses on the wild-type mice revealed that LPS-induced changes in the colonic epithelium were 4- to 10-fold less in the synbiotic diet group compared with the control diet group. Unlike the wild-type mice, anti-inflammatory cytokine interleukin 10 (IL10)-null mice (susceptible to IBD) given the synbiotic diet, compared with those given the control diet, had 3- to 40-fold increased expression of inflammation-related genes such as Cxcl1 (chemokine C-X-C motif ligand 1) and S100a9 (S100 calcium binding protein A9) in the absence and presence of LPS exposure. These contrasting intestinal epithelial responses to increased fermentation in wild-type and IL10-null mice are similar

  19. Preliminary Study on Gene Expression of Chitinase-Like Cytokines in Human Airway Epithelial Cell Under Chitin and Chitosan Microparticles Treatment.

    PubMed

    Alimohammadi, Masumeh; Yeganeh, Farshid; Haji Molla Hoseini, Mostafa

    2016-06-01

    Small-sized chitin and chitosan microparticles (MPs) reduce allergic inflammation. We examined the capacity of these glycans to stimulate A549 human airway epithelial cells to determine the feasibility of using of these glycans as allergic therapeutic modality. A549 cells were treated with MPs and then expressions levels of chitinase domain-containing 1 (CHID1) and chitinase 3-like 1 (CHI3L1) genes were determined by quantitative real-time PCR. IL-6 production was measured by ELISA. Chitin MPs resulted in upregulation of CHI3L1 expression by 35.7-fold while mRNA expression did not change with chitosan MPs. Compared to the untreated group, production of IL-6 was significantly decreased in the chitosan MPs-treated group, but chitin MPs treatment cause elevation of IL-6 level. This study demonstrates that chitin potently induces CHI3L1 expression, but chitosan is relatively inert. This effect and inhibition of pro-inflammatory cytokine (IL-6) suggest that chitosan MPs may possess more potential for therapeutic uses in human airway allergic inflammation.

  20. Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells.

    PubMed

    Yao-Borengasser, Aiwei; Monzavi-Karbassi, Behjatolah; Hedges, Rebecca A; Rogers, Lora J; Kadlubar, Susan A; Kieber-Emmons, Thomas

    2015-06-01

    The development of breast cancer is linked to the loss of estrogen receptor (ER) during the course of tumor progression, resulting in loss of responsiveness to hormonal treatment. The mechanisms underlying dynamic ERα gene expression change in breast cancer remain unclear. A range of physiological and biological changes, including increased adipose tissue hypoxia, accompanies obesity. Hypoxia in adipocytes can establish a pro-malignancy environment in breast tissues. Epidemiological studies have linked obesity with basal-like breast cancer risk and poor disease outcome, suggesting that obesity may affect the tumor phenotype by skewing the microenvironment toward support of more aggressive tumor phenotypes. In the present study, human SGBS adipocytes were co-cultured with ER-positive MCF7 cells for 24 h. After co-culture, HIF1α, TGF-β, and lectin-type oxidized LDL receptor 1 (LOX1) mRNA levels in the SGBS cells were increased. Expression levels of the epithelial-mesenchymal transition (EMT)-inducing transcription factors FOXC2 and TWIST1 were increased in the co-cultured MCF7 cells. In addition, the E-cadherin mRNA level was decreased, while the N-cadherin mRNA level was increased in the co-cultured MCF7 cells. ERα mRNA levels were significantly repressed in the co-cultured MCF7 cells. ERα gene expression in the MCF7 cells was decreased due to increased HIF1α in the SGBS cells. These results suggest that adipocytes can modify breast cancer cell ER gene expression through hypoxia and also can promote EMT processes in breast cancer cells, supporting an important role of obesity in aggressive breast cancer development.

  1. Initial attachment, subsequent cell proliferation/viability and gene expression of epithelial cells related to attachment and wound healing in response to different titanium surfaces.

    PubMed

    An, Na; Rausch-fan, Xiaohui; Wieland, Marco; Matejka, Michael; Andrukhov, Oleh; Schedle, Andreas

    2012-12-01

    A tight seal between the epithelium and the dental implant surface is required to prevent bacterial inflammation and soft tissue recession and therefore to demonstrate a long-term success. Surface hydrophilicity was recently shown to promote osseointegration. The aim of this study was to investigate the influence of surface hydrophilicity in combination with surface topography of Ti implant surfaces on the behavior and activation/differentiation of epithelial cells using a set of in vitro experiments mimicking the implant-soft tissue contact. Hydrophobic acid-etched (A) and coarse-grit-blasted, acid-etched (SLA) surfaces and hydrophilic acid-etched (modA) and modSLA surfaces were produced. The behavior of an oral squamous cell carcinoma cell line (HSC-2) grown on all surfaces was compared through determination of cell attachment and proliferation/viability (CCK-8 and MTT assay), time-lapse microscopy of fluorescence labeled cells and determination of gene expression by real time polymerase chain reaction. Within the surfaces with similar wettability cell spreading and cell movements observed by time-lapse microscopy after one day of incubation were most pronounced on smoother (A and modA) surfaces compared to rougher (SLA and modSLA) surfaces. Within the surfaces with similar roughness the hydrophilic surfaces (modA and modSLA) showed more cell spreading and cell activity compared to the hydrophobic surfaces (A and SLA). The relative gene expressions of cytokeratin14, integrin α6, integrin β4, vinculin, transforming growth factor (TGF)-β, TGF-β1, and TGF-β3 were decreased in HSC-2 on all four types of Ti surfaces compared to control surfaces (tissue culture polystyrene; p<0.01) and there was no significant difference of gene expression on the four different implant-surfaces. We have demonstrated that for proliferation and spreading of HSC-2 cells the smoother and hydrophilic surface is optimal (modA). These results suggest that surface hydrophilicity might

  2. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line.

  3. Basal and copper-induced expression of metallothionein isoform 1,2 and 3 genes in epithelial cancer cells: The role of tumor suppressor p53.

    PubMed

    Ostrakhovitch, E A; Song, Y P; Cherian, M G

    2016-05-01

    Metallothioneins (MTs) are a ubiquitous low-molecular weight, cysteine rich proteins with a high affinity for metal ions. The expression and induction of MTs have been associated with protection against DNA damage, oxidative stress, and apoptosis. Our past research had shown that p53 is an important factor in metal regulation of MTs. The present study was undertaken to explore further the interrelationship between p53 and MTs. We investigated whether silencing of p53 could affect expression pattern of basal and copper induced metallothioneins. The silencing of wild-type p53 (wt-p53) in epithelial breast cancer MCF7 cells affected the basal level of MT-2A RNA, whereas the levels of MT-1A and MT-1X RNA remained largely unchanged. The expression of MT-3 was undetectable in MCF7 with either functional or silenced p53. MCF7 cells with silenced wt-p53 failed to upregulate MT-2A in response to copper and showed a reduced sensitivity toward copper induced cell apoptotic death. Similarly in MCF7-E6 and MDA-MB-231 cells, the presence of inactive/mutated p53 halted MT-1A and MT-2A gene expression in response to copper. Constitutive expression of MT-3 RNA was detectable in the presence of mutated p53 (mtp53). Transient transfection of MDA-MB-231 cells with wt-p53 enabled copper induced upregulation of both MT-1A and MT-2A but not basal level of MT-2A, MT-1E, MT-1X and MT-3. Inactivation of p53 in HepG2 cells amplified the basal expression of studied MT isoforms, including MT-3, as well as copper-induced mRNA expression of MTs except MT-1H and MT-3. Presented data demonstrate a direct relation between p53 and MT-1A and MT-2A and they also indicate that wt-p53 might be a negative regulator of MT-3 in epithelial cancer cells.

  4. The zinc finger gene ZIC2 has features of an oncogene and its over- expression correlates strongly with the clinical course of epithelial ovarian cancer

    PubMed Central

    Marchini, Sergio; Poynor, Elizabeth; Barakat, Richard R; Clivio, Luca; Cinquini, Michela; Fruscio, Robert; Porcu, Luca; Bussani, Cecilia; D’Incalci, Maurizio; Erba, Eugenio; Romano, Michela; Cattoretti, Giorgio; Katsaros, Dionyssios; Koff, Andrew; Luzzatto, Lucio

    2015-01-01

    Purpose Epithelial ovarian tumors (EOTs) are amongst the most lethal of malignancies in women. We have previously identified ZIC2 as expressed at a higher level in samples of a malignant form (MAL) of EOT than in samples of a form with low malignant potential (LMP). We have now investigated the role of ZIC2 in driving tumor growth and its association with clinical outcomes. Experimental Design ZIC2 expression levels were analysed in two independent tumor tissue collections of LMP and MAL. In vitro experiments aimed to test the role of ZIC2 as a transforming gene. Cox models were used to correlate ZIC2 expression with clinical endpoints. Results ZIC2 expression was about 40-fold in terms of mRNA and about 17-fold in terms of protein in MAL (n = 193) versus LMP (n = 39) tumors. ZIC2 mRNA levels were high in MAL cell lines, but undetectable in LMP cell lines. Over-expression of ZIC2 was localized to the nucleus. ZIC2 over-expression increases the growth rate and foci formation of NIH 3T3 cells, and stimulates anchorage-independent colony formation; down-regulation of ZIC2 decreases the growth rate of MAL cell lines. Zinc finger domains 1 and 2 are required for transforming activity. In stage I MAL ZIC2 expression was significantly associated with overall survival in both univariate (p = 0.046), and multivariate model (p = 0.049). Conclusions ZIC2, a transcription factor related to the sonic hedgehog pathway, is a strong discriminant between MAL and LMP tumors: it may be a major determinant of outcome of EOT. PMID:22733541

  5. Silencing of the Menkes copper-transporting ATPase (Atp7a) gene increases cyclin D1 protein expression and impairs proliferation of rat intestinal epithelial (IEC-6) cells.

    PubMed

    Gulec, Sukru; Collins, James F

    2014-10-01

    The Menkes copper-transporting ATPase (Atp7a) has dual roles in mammalian enterocytes: pumping copper into the trans-Golgi network (to support cuproenzyme synthesis) and across the basolateral membrane (to deliver dietary copper to the blood). Atp7a is strongly induced in the rodent duodenum during iron deprivation, suggesting that copper influences iron homeostasis. To investigate this possibility, Atp7a was silenced in rat intestinal epithelial (IEC-6) cells. Irrespective of its influence on iron homeostasis, an unexpected observation was made in the Atp7a knockdown (KD) cells: the cells grew slower (∼40% fewer cells at 96h) and were larger than negative-control shRNA-transfected cells. Lack of Atp7a activity thus perturbed cell cycle control. To elucidate a possible molecular mechanism, expression of two important cell cycle control proteins was assessed. Cyclin D1 (CD1) protein expression increased in Atp7a KD cells whereas proliferating-cell nuclear antigen (PCNA) expression was unaltered. Increased CD1 expression is consistent with impaired cell cycle progression. Expression of additional cell proliferation marker genes (p21 and Ki67) was also investigated; p21 expression increased, whereas Ki67 decreased, both consistent with diminished cell growth. Further experiments were designed to determine whether increased cellular copper content was the trigger for the altered growth phenotype of the Atp7a KD cells. Copper loading, however, did not influence the expression patterns of CD1, p21 or Ki67. Overall, these findings demonstrate that Atp7a is required for normal proliferation of IEC-6 cells. How Atp7a influences cell growth is unclear, but the underlying mechanism could relate to its roles in intracellular copper distribution or cuproenzyme synthesis. Copyright © 2014. Published by Elsevier GmbH.

  6. MicroRNA-762 is upregulated in human corneal epithelial cells in response to tear fluid and Pseudomonas aeruginosa antigens and negatively regulates the expression of host defense genes encoding RNase7 and ST2.

    PubMed

    Mun, James; Tam, Connie; Chan, Gary; Kim, Jong Hun; Evans, David; Fleiszig, Suzanne

    2013-01-01

    Mucosal surfaces regulate defenses against infection and excessive inflammation. We previously showed that human tears upregulated epithelial expression of genes encoding RNase7 and ST2, which inhibited Pseudomonas aeruginosa invasion of human corneal epithelial cells. Here, microRNA microarrays were used to show that a combination of tear fluid exposure (16 h) then P. aeruginosa antigens (3 h) upregulated miR-762 and miR-1207, and down-regulated miR-92 and let-7b (all > 2-fold) in human corneal epithelial cells compared to P. aeruginosa antigens alone. RT-PCR confirmed miR-762 upregulation ∼ 3-fold in tear-antigen exposed cells. Without tears or antigens, an antagomir reduced miR-762 expression relative to scrambled controls by ∼50%, increased expression of genes encoding RNase7 (∼80 %), ST2 (∼58%) and Rab5a (∼75%), without affecting P. aeruginosa internalization. However, P. aeruginosa invasion was increased > 3-fold by a miR-762 mimic which reduced RNase7 and ST2 gene expression. Tear fluid alone also induced miR-762 expression ∼ 4-fold, which was reduced by the miR-762 antagomir. Combination of tear fluid and miR-762 antagomir increased RNase7 and ST2 gene expression. These data show that mucosal fluids, such as tears, can modulate epithelial microRNA expression to regulate innate defense genes, and that miR-762 negatively regulates RNase7, ST2 and Rab5a genes. Since RNase7 and ST2 inhibit P. aeruginosa internalization, and are upregulated by tear fluid, other tear-induced mechanisms must counteract inhibitory effects of miR-762 to regulate resistance to bacteria. These data also suggest a complex relationship between tear induction of miR-762, its modulation of innate defense genes, and P. aeruginosa internalization.

  7. Aspergillus fumigatus germ tube growth and not conidia ingestion induces expression of inflammatory mediator genes in the human lung epithelial cell line A549.

    PubMed

    Bellanger, Anne-Pauline; Millon, Laurence; Khoufache, Khaled; Rivollet, Danièle; Bièche, Ivan; Laurendeau, Ingrid; Vidaud, Michel; Botterel, Françoise; Bretagne, Stéphane

    2009-02-01

    Inhalation of conidia is the main cause of invasive pulmonary aspergillosis (IPA) and the respiratory epithelium is the first line of defence. To explore the triggering factor for the inflammatory response to Aspergillus fumigatus, the species mainly responsible for IPA, this study analysed the differential expression of three inflammatory genes in A549 cells after challenge with live and killed conidia. The influence of steroids, one of the main risk factors for developing IPA, was also investigated. Quantification of mRNAs of the inflammatory mediator genes encoding interleukin (IL)-8, tumour necrosis factor (TNF)-alpha and granulocyte-monocyte colony-stimulating factor (GM-CSF) was carried out using real-time PCR. Ingestion rates were studied for the conidia of A. fumigatus and Penicillium chrysogenum using a fluorescence brightener. Similar results were obtained for both species, with ingestion rates ranging from 35 to 40 %. Exposure of A549 cells to live A. fumigatus conidia only induced a four- to fivefold increase in the mRNA levels of the three genes, starting 8 h after the initial contact. Both inactivation of live A. fumigatus conidia and treatment by dexamethasone (10(-7) M) prevented the overexpression of TNF-alpha, IL-8 and GM-CSF. Fungal growth, rather than conidia ingestion, appears to be the main stimulus for the production of inflammatory mediators by epithelial cells, and this production is inhibited by steroid therapy. These results underline the role that the epithelium plays in the innate response against IPA.

  8. Anodized-hydrothermally treated titanium with a nanotopographic surface structure regulates integrin-α6β4 and laminin-5 gene expression in adherent murine gingival epithelial cells.

    PubMed

    Miyata, Kyohei; Takebe, Jun

    2013-04-01

    Peri-implant epithelium associated with the structure of the internal basal lamina is in contact with a transmucosal portion of the endosseous implant surface. This contact is important to protect the many complex factors required for the long-term stability and maintenance of the implant. This study investigated the effect of initial adhesion of gingival epithelial cells to anodized-hydrothermally treated commercially pure titanium with nanotopographic structure (SA-treated c.p.Ti). Changes in cell morphology and gene expression of integrin-α6β4 and laminin-5 were assessed. Murine immortalized gingival epithelial (GE1) cells were cultured for 1-3 days on c.p.Ti, anodic oxide (AO) c.p.Ti, and SA-treated c.p.Ti disks. Cell morphology was analyzed using scanning electron microscopy (SEM). Cell proliferation was analyzed using the WST-1 assay. Integrin-α6β4 and laminin-5 (α3, β3, γ2) mRNA levels were measured using real-time quantitative RT-PCR. The GE1 cells appeared flattened with extensions on all disks by SEM analysis. Filopodium-like extensions were bound closely to the nanotopographic structure surface of SA-treated c.p.Ti especially at day 3 of culture. GE1 cell proliferation as well as the expression of integrin-α6β4 and laminin-5 (α3, β3, γ2) mRNAs was significantly higher on SA-treated c.p.Ti than on c.p.Ti and AO c.p.Ti disks after 3 days (P<0.05). Gingival epithelial cells initially attach to a transmucosal portion of SA-treated c.p.Ti implant material and subsequently express the integrin-α6β4 adhesion molecule and the laminin-5 extracellular matrix molecule. This cell behavior may play a key role in maintaining the peri-implant oral mucosal tissue barrier. Copyright © 2013 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Deep Sequencing-Based Transcriptional Analysis of Bovine Mammary Epithelial Cells Gene Expression in Response to In Vitro Infection with Staphylococcus aureus Stains

    PubMed Central

    Hu, Qingliang; Cui, Xinjie; Liu, Bingchun; Tao, Lin; Wang, Ting; Wu, Jingging; Chen, Yuan; Chen, Yan

    2013-01-01

    Staphylococcus aureus (S. aureus) is an important etiological organism in chronic and subclinical mastitis in lactating cows. Given the fundamental role the primary bovine mammary epithelial cells (pBMECs) play as a major first line of defense against invading pathogens, their interactions with S. aureus was hypothesized to be crucial to the establishment of the latter’s infection process. This hypothesis was tested by investigating the global transcriptional responses of pBMECs to three S. aureus strains (S56,S178 and S36) with different virulent factors, using a tag-based high-throughput transcriptome sequencing technique. Approximately 4.9 million total sequence tags were obtained from each of the three S. aureus-infected libraries and the control library. Referenced to the control, 1720, 219, and 427 differentially expressed unique genes were identified in the pBMECs infected with S56, S178 and S36 S. aureus strains respectively. Gene ontology (GO) and pathway analysis of the S56-infected pBMECs referenced to those of the control revealed that the differentially expressed genes in S56-infected pBMECs were significantly involved in inflammatory response, cell signalling pathways and apoptosis. In the same vein, the clustered GO terms of the differentially expressed genes of the S178-infected pBMECs were found to comprise immune responses, metabolism transformation, and apoptosis, while those of the S36-infected pBMECs were primarily involved in cell cycle progression and immune responses. Furthermore, fundamental differences were observed in the levels of expression of immune-related genes in response to treatments with the three S. aureus strains. These differences were especially noted for the expression of important pro-inflammatory molecules, including IL-1α, TNF, EFNB1, IL-8, and EGR1. The transcriptional changes associated with cellular signaling and the inflammatory response in this study may reflect different immunomodulatory mechanisms that underlie

  10. Deep sequencing-based transcriptional analysis of bovine mammary epithelial cells gene expression in response to in vitro infection with Staphylococcus aureus stains.

    PubMed

    Wang, Xiao; Xiu, Lei; Hu, Qingliang; Cui, Xinjie; Liu, Bingchun; Tao, Lin; Wang, Ting; Wu, Jingging; Chen, Yuan; Chen, Yan

    2013-01-01

    Staphylococcus aureus (S. aureus) is an important etiological organism in chronic and subclinical mastitis in lactating cows. Given the fundamental role the primary bovine mammary epithelial cells (pBMECs) play as a major first line of defense against invading pathogens, their interactions with S. aureus was hypothesized to be crucial to the establishment of the latter's infection process. This hypothesis was tested by investigating the global transcriptional responses of pBMECs to three S. aureus strains (S56,S178 and S36) with different virulent factors, using a tag-based high-throughput transcriptome sequencing technique. Approximately 4.9 million total sequence tags were obtained from each of the three S. aureus-infected libraries and the control library. Referenced to the control, 1720, 219, and 427 differentially expressed unique genes were identified in the pBMECs infected with S56, S178 and S36 S. aureus strains respectively. Gene ontology (GO) and pathway analysis of the S56-infected pBMECs referenced to those of the control revealed that the differentially expressed genes in S56-infected pBMECs were significantly involved in inflammatory response, cell signalling pathways and apoptosis. In the same vein, the clustered GO terms of the differentially expressed genes of the S178-infected pBMECs were found to comprise immune responses, metabolism transformation, and apoptosis, while those of the S36-infected pBMECs were primarily involved in cell cycle progression and immune responses. Furthermore, fundamental differences were observed in the levels of expression of immune-related genes in response to treatments with the three S. aureus strains. These differences were especially noted for the expression of important pro-inflammatory molecules, including IL-1α, TNF, EFNB1, IL-8, and EGR1. The transcriptional changes associated with cellular signaling and the inflammatory response in this study may reflect different immunomodulatory mechanisms that underlie

  11. C/EBPβ-mediated transcriptional regulation of bcl-xl gene expression in human breast epithelial cells in response to cigarette smoke condensate

    PubMed Central

    Connors, Shahnjayla K.; Balusu, Ramesh; Kundu, Chanakya N.; Jaiswal, Aruna S.; Gairola, C. Gary; Narayan, Satya

    2008-01-01

    In previous studies, we have shown that cigarette smoke condensate (CSC), a surrogate for cigarette smoke, is capable of transforming the spontaneously immortalized human breast epithelial cell line, MCF10A. These transformed cells displayed upregulation of the anti-apoptotic gene, bcl-xl. Upregulation of this gene may impede the apoptotic pathway and allow the accumulation of DNA damage that can lead to cell transformation and carcinogenesis. In the present study, we have determined the mechanism of CSC-mediated transcriptional upregulation of bcl-xl gene expression in MCF10A cells. We cloned the human bcl-xl promoter (pBcl-xLP) and identified putative transcription factor binding sites. Sequential deletion constructs that removed the putative cis-elements were constructed and transfected into MCF10A cells to determine the CSC-responsive cis-element(s) on the pBcl-xLP. Gel-shift, supershift, and chromatin immunoprecipitation (ChIP) analysis confirmed that C/EBPβ specifically bound to a C/EBP-binding site on the pBcl-xLP in vitro and in vivo. Additionally, overexpression of C/EBPβ-LAP2 stimulated pBcl-xLP activity and Bcl-xL protein levels, which mimicked the conditions of CSC treatment. Our results indicate that C/EBPβ regulates bcl-xl gene expression in MCF10A cells in response to CSC treatment, therefore making it a potential target for chemotherapeutic intervention of cigarette smoke-induced breast carcinogenesis. PMID:19043455

  12. Mechanisms of AEG-1 and CXCR4 gene expression regulating the epithelial-mesenchymal transition pathway involved in brain metastases of breast cancer.

    PubMed

    Chen, Yanjun; Wang, Xinjun

    2017-01-01

    To study the astrocyte elevated gene (AEG)-1 in breast cancer and the mechanism of the chemokine receptor CXCR4 regulating the epithelial-mesenchymal transition (EMT) involved in brain metastases of breast cancer. A total of 20 breast cancer patients with and 40 without brain metastases were recruited. The expressions of AEG-1, CXCR4, E-cadherin, N-cadherin and α-SMA were detected by immunohistochemical staining, real-time (RT) quantitative (q) PCR and Western blot respectively in cancer and adjacent normal tissues. The expressions detected in the adjacent normal tissues from both groups showed no significant difference (p>0.05). In the group with brain metastases, AEG-1, CXCR4, N-cadherin, α-SMA, mRNA and the relative expression level of protein were higher than those of patients without brain metastases, while E-cadherin showed the opposite trend. AEG-1 and CXCR4 activate and regulate the EMT pathway to participate in brain metastases.

  13. Effects of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in bovine mammary epithelial cells.

    PubMed

    Liu, Hongyun; Zhao, Ke; Liu, Jianxin

    2013-01-01

    As the main precursor for lactose synthesis, large amounts of glucose are required by lactating dairy cows. Milk yield greatly depends on mammary lactose synthesis due to its osmoregulatory property for mammary uptake of water. Thus, glucose availability to the mammary gland could be a potential regulator of milk production. In the present study, the effect of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in vitro was investigated. Bovine mammary epithelial cells (BMEC) were treated for 12 h with various concentrations of glucose (2.5, 5, 10 or 20 mmol/L). The higher concentrations of glucose (10-20 mmol/L) did not affect the mRNA expression of acetyl-CoA carboxylase, diacyl glycerol acyl transferase, glycerol-3 phosphate acyl transferase and α-lactalbumin, whereas fatty acid synthase, sterol regulatory element binding protein-1 and beta-1, 4-galactosyl transferase mRNA expression increased at 10 mmol/L and then decreased at 20 mmol/L. The content of lactose synthase increased with increasing concentration of glucose, with addition of highest value at 20 mmol/L of glucose. Moreover, the increased glucose concentration stimulated the activities of pyruvate kinase and glucose-6-phosphate dehydrogenase, and elevated the energy status of the BMEC. Therefore, it was deduced that after increasing glucose availability, the extra absorbed glucose was partitioned to entering the synthesis of milk fat and lactose by the regulation of the mRNA expression of key genes, promoting glucose metabolism by glycolysis and pentose phosphate pathway as well as energy status. These results indicated that the sufficient availability of glucose in BMEC may promote glucose metabolism, and affect the synthesis of milk composition.

  14. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells.

    PubMed

    Nakayama, Yohei; Matsui, Sari; Noda, Keisuke; Yamazaki, Mizuho; Iwai, Yasunobu; Matsumura, Hiroyoshi; Izawa, Takashi; Tanaka, Eiji; Ganss, Bernhard; Ogata, Yorimasa

    2016-10-01

    Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.

  15. Effects of cell culture techniques on gene expression and cholesterol efflux in primary bovine mammary epithelial cells derived from milk and tissue.

    PubMed

    Sorg, D; Potzel, A; Beck, M; Meyer, H H D; Viturro, E; Kliem, H

    2012-10-01

    Primary bovine mammary epithelial cells (pbMEC) are often used in cell culture to study metabolic and inflammatory processes in the udder of dairy cows. The most common source is udder tissue from biopsy or after slaughter. However, it is also possible to culture them from milk, which is non-invasive, repeatable and yields less contamination with fibroblasts. Generally, not much is known about the influence of cell origin and cell culture techniques such as cryopreservation on pbMEC functionality. Cells were extracted from milk and udder tissue to evaluate if milk-derived pbMEC are a suitable alternative to tissue-derived pbMEC and to test what influence cryopreservation has. The cells were cultivated for three passages and stored in liquid nitrogen. The relative gene expression of the five target genes kappa-casein, lingual antimicrobial peptide (LAP), lactoferrin, lysozyme (LYZ1) and the prolactin receptor normalised with keratin 8 showed a tendency to decrease in the tissue cultures, but not in the milk-derived cultures, suggesting a greater influence of the cultivation process on tissue-derived cells, freezing lowered expression levels in both cultures. Overall expression of LAP and LYZ1 tended to be higher in milk cells. Cholesterol efflux was measured to compare passages one to seven in milk-derived cells. Passage number did not alter the efflux rate (p ≤ 0.05). We showed for the first time that the extraction of pbMEC from milk can be a suitable alternative to tissue extraction.

  16. Gene expression alterations during HGF-induced dedifferentiation of a renal tubular epithelial cell line (MDCK) using a novel canine DNA microarray.

    PubMed

    Balkovetz, Daniel F; Gerrard, Edward R; Li, Shixiong; Johnson, David; Lee, James; Tobias, John W; Rogers, Katherine K; Snyder, Richard W; Lipschutz, Joshua H

    2004-04-01

    Hepatocyte growth factor (HGF) elicits a broad spectrum of biological activities, including epithelial cell dedifferentiation. One of the most widely used and best-studied polarized epithelial cell lines is the Madin-Darby canine kidney (MDCK) cell line. Here, we describe and validate the early response of polarized monolayers of MDCK cells stimulated with recombinant HGF using a novel canine DNA microarray designed to query 12,473 gene sequences. In our survey, eight genes previously implicated in the HGF signaling pathway were differentially regulated, demonstrating that the system was responsive to HGF. Also identified were 117 genes not previously known to be involved in the HGF pathway. The results were confirmed by real-time PCR or Western blot analysis for 38 genes. Of particular interest were the large number of differentially regulated genes encoding small GTPases, proteins involved in endoplasmic reticulum translation, proteins involved in the cytoskeleton, the extracellular matrix, and the hematopoietic and prostaglandin systems.

  17. Porphyromonas gingivalis genes isolated by screening for epithelial cell attachment.

    PubMed Central

    Duncan, M J; Emory, S A; Almira, E C

    1996-01-01

    Porphyromonas gingivalis is associated with chronic and severe periodontitis in adults. P. gingivalis and the other periodontal pathogens colonize and interact with gingival epithelial cells, but the genes and molecular mechanisms involved are unknown. To dissect the first steps in these interactions, a P. gingivalis expression library was screened for clones which bound human oral epithelial cells. Insert DNA from the recombinant clones did not contain homology to the P. gingivalis fimA gene, encoding fimbrillin, the subunit protein of fimbriae, but showed various degrees of homology to certain cysteine protease-hemagglutinin genes. The DNA sequence of one insert revealed three putative open reading frames which appeared to be in an operon. The relationship between P. gingivalis attachment to epithelial cells and the activities identified by the screen is discussed. PMID:8751909

  18. E1a induces the expression of epithelial characteristics

    PubMed Central

    1994-01-01

    Cells closely resembling epithelia constitute the first specific cell type in a mammalian embryo. Many other cell types emerge via epithelial- mesenchymal differentiation. The transcription factors and signal transduction pathways involved in this differentiation are being elucidated. I have previously reported (Frisch, 1991) that adenovirus E1a is a tumor suppressor gene in certain human cell lines. In the present report, I demonstrate that E1a expression caused diverse human tumor cells (rhabdomyosarcoma, fibrosarcoma, melanoma, osteosarcoma) and fibroblasts to assume at least two of the following epithelial characteristics: (a) epithelioid morphology; (b) epithelial-type intercellular adhesion proteins localized to newly formed junctional complexes; (c) keratin-containing intermediate filaments; and (d) down- regulation of non-epithelial genes. E1a thus appeared to partially convert diverse human tumor cells into an epithelial phenotype. This provides a new system for molecular analysis of epithelial-mesenchymal interconversions. This effect may also contribute to E1a's tumor suppression activity, possibly through sensitization to anoikis (Frisch, S.M., and H. Francis, 1994. J. Cell Biol. 124:619-626). PMID:7525602

  19. Phorbol ester and epidermal growth factor enhance the expression of two inducible prostaglandin H synthase genes in rat tracheal epithelial cells.

    PubMed

    Hamasaki, Y; Kitzler, J; Hardman, R; Nettesheim, P; Eling, T E

    1993-07-01

    TPA. Southern analysis of genomic EGV6 DNA indicated the presence of two distinct PHS genes in these cells. Taken together these findings indicate that two PHS genes are expressed in rat tracheal epithelial cells. In contrast to the PHS genes expressed in murine (and chicken) fibroblasts in which only the gene coding for the larger mRNA species is transcriptionally regulated, in the rat tracheal cells both genes are positively regulated by TPA and EGF and downregulated by glucocorticoids.

  20. Trans-cinnamaldehyde decreases attachment and invasion of uropathogenic Escherichia coli in urinary tract epithelial cells by modulating virulence gene expression.

    PubMed

    Amalaradjou, Mary Anne Roshni; Narayanan, Amoolya; Venkitanarayanan, Kumar

    2011-04-01

    Uropathogenic Escherichia coli is the primary bacterium causing urinary tract infection in humans. Attachment and invasion of urinary tract epithelial cells by UPEC is the first critical step in establishing a successful urinary tract infection. We investigated the efficacy of subinhibitory concentrations of trans-cinnamaldehyde to inhibit uropathogenic E. coli attachment and invasion of human uroepithelial cells. We also determined the trans-cinnamaldehyde effect on uropathogenic E. coli genes encoding virulence factors critical for uroepithelial cell bacterial attachment and invasion. Polystyrene 24-well plates seeded with uroepithelial cells were inoculated with uropathogenic E. coli (about 6.0 log cfu) and subinhibitory concentrations of trans-cinnamaldehyde (0, 325, 560 and 750 μM), and incubated for 60 minutes at 37C. Uroepithelial cells were washed and lysed to enumerate adhered uropathogenic E. coli populations. For the invasion assay uroepithelial cells were treated with gentamicin after incubation and lysed to enumerate invaded uropathogenic E. coli. Also, the trans-cinnamaldehyde effect on uropathogenic E. coli genes encoding attachment and invasion associated virulence factors was determined by real-time quantitative polymerase chain reaction. Trans-cinnamaldehyde significantly decreased uroepithelial cell attachment and invasion by uropathogenic E. coli (p <0.05). Real-time quantitative polymerase chain reaction revealed that trans-cinnamaldehyde significantly decreased the expression of major genes involved in uropathogenic E. coli attachment and invasion of host tissue (p <0.05). The down-regulating effect of trans-cinnamaldehyde on these genes potentially translated into decreased ability of uropathogenic E. coli to attach and invade bladder cells. Trans-cinnamaldehyde may potentially be used as a safe, effective antimicrobial to control uropathogenic E. coli infection. Followup studies in animal models are warranted. Copyright © 2011 American

  1. In vitro search for alternative promoters to the human immediate early cytomegalovirus (IE-cMV) to express the G gene of viral haemorrhagic septicemia virus (VHSV) in fish epithelial cells.

    PubMed

    Ruiz, S; Tafalla, C; Cuesta, A; Estepa, A; Coll, J M

    2008-12-02

    Present DNA vaccines against fish rhabdoviruses require intramuscular injection (fish-to-fish vaccination) of their G-protein gene under the control of the human immediate early cytomegalovirus (IE-CMV) promoter, while immersion delivery (mass DNA vaccination), for instance, by using fish epithelial-specific promoters, would be more practical for aquaculture. To find fish epithelial-specific promoters alternative to the IE-CMV, a comparative study of the effectiveness of different fish promoters constitutively expressing the G gene of the viral haemorrhagic septicemia virus (VHSV) in the epithelial papulosum cyprini (EPC) cell line was performed. The study included MCV1.4 (an alternative IE-CMV promoter version), AE6 (a version of the carp beta-actin promoter), long terminal repeats (LTR) of zebrafish or walleye retroviruses, trout Mx1, carp myosin-heavy-chain and flatfish pleurocidin promoters and salmonid sleeping beauty (SB)/medaka Tol2 transposon repeats. The G-protein expression in transfected EPC cells was studied by estimating the number of cells expressing the G-protein in their membrane and the average expression level per cell. In addition, in an attempt to reduce their sizes, some regions of the MCV1.4 and AE6 promoters were deleted and expression levels compared to those observed for full-length promoters. Since both zebrafish LTR and carp AE6 promoters were the most effective regulatory sequences for expressing the VHSV G-protein in EPC cells, these sequences might be candidates for new DNA vaccine vectors for fish epithelial tissues avoiding the IE-CMV promoter. Furthermore, known transcription factor binding sites (TFBS) common to most of the fish G-expressing promoters, might enable the future design of fully synthetic or hybrid promoters with improved efficacy of VHSV G-protein expression in epithelial fish cells.

  2. Lutein and zeaxanthin supplementation reduces photo-oxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells

    PubMed Central

    Bian, Qingning; Gao, Shasha; Zhou, Jilin; Qin, Jian; Taylor, Allen; Johnson, Elizabeth J.; Tang, Guangwen; Sparrow, Janet R.; Gierhart, Dennis; Shang, Fu

    2012-01-01

    Oxidative damage and inflammation are related to the pathogenesis of age-related macular degeneration (AMD). Epidemiologic studies suggest that insufficient dietary lutein and zeaxanthin intake or lower serum zeaxanthin levels are associated with increased risk for AMD. The objective of this work is to test the protective effects of lutein and zeaxanthin against photo-oxidative damage to retinal pigment epithelial cells (RPE) and oxidation-induced changes in expression of inflammation-related genes. To mimic lipofuscin-mediated photo-oxidation in vivo, we used ARPE-19 cells that accumulated A2E, a lipofuscin fluorophore and photosensitizer, as a model system to investigate the effects of lutein and zeaxanthin supplementation. The data show that supplementation with lutein or zeaxanthin in the medium resulted in accumulation of lutein or zeaxanthin in the RPE cells. The concentrations of lutein and zeaxanthin in the cells were 2–14-fold of that detected in the medium, indicating that ARPE-19 cells actively take up lutein or zeaxanthin. As compared with untreated cells, exposure of A2E-containing RPE to blue light resulted in a 40–60% decrease in proteasome activity, a 50–80% decrease in expression of CFH and MCP-1, and an ~ 20-fold increase in expression of IL-8. The photo-oxidation-induced changes in expression of MCP-1, IL-8 and CFH were similar to those caused by chemical inhibition of the proteasome, suggesting that inactivation of the proteasome is involved in the photo-oxidation-induced alteration in expression of these inflammation-related genes. Incubation of the A2E-containing RPE with lutein or zeaxanthin prior to blue light exposure significantly attenuated the photo-oxidation-induced inactivation of the proteasome and photo-oxidation induced changes in expression of MCP-1, IL-8, and CFH. Together, these data indicate that lutein or zeaxanthin modulates inflammatory responses in cultured RPE in response to photo-oxidation. Protecting the proteasome

  3. Evaluation of gene expression changes in human primary lung epithelial cells following 24-hr exposures to inorganic arsenic and its methylated metabolites and to arsenic trioxide.

    PubMed

    Efremenko, Alina Y; Seagrave, JeanClare; Clewell, Harvey J; Van Landingham, Cynthia; Gentry, P Robinan; Yager, Janice W

    2015-06-01

    The concentration response for altered gene expression in primary lung epithelial cells was determined following two treatments with arsenicals: (1) a mixture of trivalent arsenic compounds representative of urinary arsenic concentrations in exposed human populations, and (2) arsenite (As2 O3 ) a common form of inhaled arsenic dust that is frequently used in both in vivo and in vitro experimental exposures. Biochemical assays did not detect any evidence of cytotoxicity at the concentrations used, apart from a concentration-related increase in cellular heme oxygenase that was also indicated by the genomic analysis. Cell signal pathway enrichment analysis indicated similar responses to both treatments, with concentration-related responses in pathways related to cell adhesion, cytoskeleton remodeling, development (morphogenesis), cell cycle control, and to a lesser extent inflammatory responses. These cellular responses to arsenic were consistent with those observed in a previous study with primary uroepithelial cells. Benchmark dose analysis also demonstrated similar potency of the two treatments as well as comparable sensitivity of the two cell types. A number of genes showing similar concentration-dependent expression across individuals in both bladder and lung cells were identified, including heme oxygenase 1, thioredoxin reductase, DNA damage binding protein 2, and thrombomodulin. The data on human primary lung cells from this study, together with the data from human primary uroepithelial cells, support a conclusion that biological responses to arsenic by human cells under study conditions are unlikely to occur at concentrations below 0.1 µM. Environ. Mol. Mutagen. 56:477-490, 2015. © 2015 Wiley Periodicals, Inc.

  4. Oxidative stress modulates the expression of genes involved in cell survival in ΔF508 cystic fibrosis airway epithelial cells.

    PubMed

    Voisin, Grégory; Bouvet, Guillaume F; Legendre, Pierre; Dagenais, André; Massé, Chantal; Berthiaume, Yves

    2014-09-01

    Although cystic fibrosis (CF) pathophysiology is explained by a defect in CF transmembrane conductance regulator (CFTR) protein, the broad spectrum of disease severity is the consequence of environmental and genetic factors. Among them, oxidative stress has been demonstrated to play an important role in the evolution of this disease, with susceptibility to oxidative damage, decline of pulmonary function, and impaired lung antioxidant defense. Although oxidative stress has been implicated in the regulation of inflammation, its molecular outcomes in CF cells remain to be evaluated. To address the question, we compared the gene expression profile in NuLi-1 cells with wild-type CFTR and CuFi-1 cells homozygous for ΔF508 mutation cultured at air-liquid interface. We analyzed the transcriptomic response of these cell lines with microarray technology, under basal culture conditions and after 24 h oxidative stress induced by 15 μM 2,3-dimethoxy-1,4-naphtoquinone. In the absence of oxidative conditions, CuFi-1 gene profiling showed typical dysregulated inflammatory responses compared with NuLi-1. In the presence of oxidative conditions, the transcriptome of CuFi-1 cells reflected apoptotic transcript modulation. These results were confirmed in the CFBE41o- and corrCFBE41o- cell lines as well as in primary culture of human CF airway epithelial cells. Altogether, our data point to the influence of oxidative stress on cell survival functions in CF and identify several genes that could be implicated in the inflammation response observed in CF patients. Copyright © 2014 the American Physiological Society.

  5. Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells.

    PubMed

    Qi, Lizhi; Yan, Sumei; Sheng, Ran; Zhao, Yanli; Guo, Xiaoyu

    2014-03-01

    This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of αs1-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 μM) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 μM in a concentration-dependent manner, and the addition of 600 μM was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis.

  6. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells.

    PubMed

    Shen, Yifei; Wolkowicz, Michael J; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P

    2016-04-04

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products.

  7. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells

    PubMed Central

    Shen, Yifei; Wolkowicz, Michael J.; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P.

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137

  8. Gene expression profiles of bovine mammary epithelial cells and association with milk composition traits using RNA-seq

    USDA-ARS?s Scientific Manuscript database

    In most recent years, RNA Sequencing is rapidly emerging as the major quantitative transcriptome profiling system. Elucidation of the bovine mammary gland transcriptome with RNA-seq is essential for identifying candidate genes for milk composition traits in dairy cattle. Here we used massive paralle...

  9. Moderate folate depletion modulates the expression of selected genes involved in cell cycle, intracellular signaling, and folate uptake in human colonic epithelial cell lines

    USDA-ARS?s Scientific Manuscript database

    Folate deficiency may affect gene expression by disrupting DNA methylation patterns or by inducing base substitution, DNA breaks, gene deletions and gene amplification. Changes in expression may explain the inverse relationship observed between folate status and risk of colorectal cancer. Three cell...

  10. Expression of Respiratory Syncytial Virus-Induced Chemokine Gene Networks in Lower Airway Epithelial Cells Revealed by cDNA Microarrays

    PubMed Central

    Zhang, Yuhong; Luxon, Bruce A.; Casola, Antonella; Garofalo, Roberto P.; Jamaluddin, Mohammad; Brasier, Allan R.

    2001-01-01

    The Paramyxovirus respiratory syncytial virus (RSV) is the primary etiologic agent of serious epidemic lower respiratory tract disease in infants, immunosuppressed patients, and the elderly. Lower tract infection with RSV is characterized by a pronounced peribronchial mononuclear infiltrate, with eosinophilic and basophilic degranulation. Because RSV replication is restricted to airway epithelial cells, where RSV replication induces potent expression of chemokines, the epithelium is postulated to be a primary initiator of pulmonary inflammation in RSV infection. The spectrum of RSV-induced chemokines expressed by alveolar epithelial cells has not been fully investigated. In this report, we profile the kinetics and patterns of chemokine expression in RSV-infected lower airway epithelial cells (A549 and SAE). In A549 cells, membrane-based cDNA macroarrays and high-density oligonucleotide probe-based microarrays identified inducible expression of CC (I-309, Exodus-1, TARC, RANTES, MCP-1, MDC, and MIP-1α and -1β), CXC (GRO-α, -β, and -γ, ENA-78, interleukin-8 [IL-8], and I-TAC), and CX3C (Fractalkine) chemokines. Chemokines not previously known to be expressed by RSV-infected cells were independently confirmed by multiprobe RNase protection assay, Northern blotting, and reverse transcription-PCR. High-density microarrays performed on SAE cells confirmed a similar pattern of RSV-inducible expression of CC chemokines (Exodus-1, RANTES, and MIP-1α and -1β), CXC chemokines (I-TAC, GRO-α, -β, and -γ, and IL-8), and Fractalkine. In contrast, TARC, MCP-1, and MDC were not induced, suggesting the existence of distinct genetic responses for different types of airway-derived epithelial cells. Hierarchical clustering by agglomerative nesting and principal-component analyses were performed on A549-expressed chemokines; these analyses indicated that RSV-inducible chemokines are ordered into three related expression groups. These data profile the temporal changes in

  11. Probiotic Bifidobacterium species stimulate human SLC26A3 gene function and expression in intestinal epithelial cells.

    PubMed

    Kumar, Anoop; Hecht, Cameron; Priyamvada, Shubha; Anbazhagan, Arivarasu N; Alakkam, Anas; Borthakur, Alip; Alrefai, Waddah A; Gill, Ravinder K; Dudeja, Pradeep K

    2014-12-15

    SLC26A3, or downregulated in adenoma (DRA), plays a major role in mediating Cl(-) absorption in the mammalian intestine. Disturbances in DRA function and expression have been implicated in intestinal disorders such as congenital Cl(-) diarrhea and gut inflammation. We previously showed that an increase in DRA function and expression by Lactobacillus acidophilus and its culture supernatant (CS) might underlie antidiarrheal effects of this probiotic strain. However, the effects of Bifidobacterium species, important inhabitants of the human colon, on intestinal Cl(-)/HCO3 (-) exchange activity are not known. Our current results demonstrate that CS derived from Bifidobacterium breve, Bifidobacterium infantis, and Bifidobacterium bifidum increased anion exchange activity in Caco-2 cells (∼1.8- to 2.4-fold). Consistent with the increase in DRA function, CS also increased the protein, as well as the mRNA, level of DRA (but not putative anion transporter 1). CS of all three Bifidobacterium sp. increased DRA promoter activity (-1,183/+114 bp) in Caco-2 cells (1.5- to 1.8-fold). Furthermore, the increase in DRA mRNA expression by CS of B. breve and B. infantis was blocked in the presence of the transcription inhibitor actinomycin D (5 μM) and the ERK1/2 MAPK pathway inhibitor U0126 (10 μM). Administration of live B. breve, B. infantis, and B. bifidum by oral gavage to mice for 24 h increased DRA mRNA and protein levels in the colon. These data demonstrate an upregulation of DRA via activation of the ERK1/2 pathway that may underlie potential antidiarrheal effects of Bifidobacterium sp.

  12. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing.

  13. NDRG1 is important to maintain the integrity of airway epithelial barrier through claudin-9 expression.

    PubMed

    Gon, Yasuhiro; Maruoka, Shuichiro; Kishi, Hiroyuki; Kozu, Yutaka; Kazumichi, Kuroda; Nomura, Yasuyuki; Takeshita, Ikuko; Oshima, Takeshi; Hashimoto, Shu

    2017-02-13

    Impairment of epithelial barrier integrity caused by environmental triggers is associated with the pathogenesis of airway inflammation. Using human airway epithelial cells, we attempted to identify molecule(s) that promote airway epithelial barrier integrity. Microarray analyses were conducted using the Affimetrix human whole genome gene chip, and we identified the N-myc downstream-regulated gene 1 (NDRG1) gene, which was induced during the development of the epithelial cell barrier. Immunohistochemical analysis revealed strong NDRG1 expression in ciliated epithelial cells in nasal tissues sampled from patients with chronic rhinosinusitis (CRS), and the low expression of NDRG1 was observed in goblet cells or damaged epithelial cells. NDRG1 gene knockdown with its specific siRNA decreased the transepithelial electrical resistance and increased the dextran permeability. Immunocytochemistry revealed that NDRG1 knockdown disrupted tight junctions of airway epithelial cells. Next, we analyzed the effects of NDRG1 knockdown on the expression of tight and adhesion junction molecules. NDRG1 knockdown significantly decreased only claudin-9 expression, but did not decrease other claudin family molecules, such as E-cadherin, and ZO-1, -2, or -3. Knockdown of claudin-9 markedly impaired the barrier function in airway epithelial cells. These results suggest that NDRG1 is important for the barrier integrity in airway epithelial cells.

  14. Quercetin Blocks Airway Epithelial Cell Chemokine Expression

    PubMed Central

    Nanua, Suparna; Zick, Suzanna M.; Andrade, Juan E.; Sajjan, Umadevi S.; Burgess, John R.; Lukacs, Nicholas W.; Hershenson, Marc B.

    2006-01-01

    Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a dietary flavonoid, is an inhibitor of phosphatidylinositol (PI) 3-kinase and potent antioxidant. We hypothesized that quercetin blocks airway epithelial cell chemokine expression via PI 3-kinase–dependent mechanisms. Pretreatment with quercetin and the PI 3–kinase inhibitor LY294002 each reduced TNF-α–induced IL-8 and monocyte chemoattractant protein (MCP)-1 (also called CCL2) expression in cultured human airway epithelial cells. Quercetin also inhibited TNF-α–induced PI 3-kinase activity, Akt phosphorylation, intracellular H2O2 production, NF-κB transactivation, IL-8 promoter activity, and steady-state mRNA levels, consistent with the notion that quercetin inhibits chemokine expression by attenuating NF-κB transactivation via a PI 3-kinase/Akt-dependent pathway. Quercetin also reduced TNF-α–induced chemokine secretion in the presence of the transcriptional inhibitor actinomycin D, while inducing phosphorylation of eukaryotic translation initiation factor (eIF)-2α, suggesting that quercetin attenuates chemokine expression by post-transcriptional as well as transcriptional mechanisms. Finally, we tested the effects of quercetin in cockroach antigen–sensitized and –challenged mice. These mice show MCP-1–dependent airways hyperresponsiveness and inflammation. Quercetin significantly reduced lung MCP-1 and methacholine responsiveness. We conclude that quercetin blocks airway cell chemokine expression via transcriptional and post-transcriptional pathways. PMID:16794257

  15. Immune dynamics following infection of avian macrophages and epithelial cells with typhoidal and non-typhoidal Salmonella enterica serovars; bacterial invasion and persistence, nitric oxide and oxygen production, differential host gene expression, NF-κB signalling and cell cytotoxicity.

    PubMed

    Setta, Ahmed; Barrow, Paul A; Kaiser, Pete; Jones, Michael A

    2012-05-15

    Poultry-derived food is a common source of infection of human with the non-host-adapted salmonellae while fowl typhoid and pullorum disease are serious diseases in poultry. Development of novel immune-based control strategies against Salmonella infection necessitates a better understanding of the host-pathogen interactions at the cellular level. Intestinal epithelial cells are the first line of defence against enteric infections and the role of macrophages is crucial in Salmonella infection and pathogenesis. While gene expression following Salmonella infection has been investigated, a comparison between different serovars has not been, as yet, extensively studied in poultry. In this study, chicken macrophage-like cells (HD11) and chick kidney epithelial cells (CKC) were used to study and compare the immune responses and mechanisms that develop after infection with different Salmonella serotypes. Salmonella serovars Typhimurium, Enteritidis, Hadar and Infantis showed a greater level of invasion and/or uptake characters when compared with S. Pullorum or S. Gallinarum. Nitrate and reactive oxygen species were greater in Salmonella-infected HD11 cells with the expression of iNOS and nuclear factor-κB by chicken macrophages infected with both systemic and broad host range serovars. HD11 cells revealed higher mRNA gene expression for CXCLi2, IL-6 and iNOS genes in response to S. Enteritidis infection when compared to S. Pullorum-infected cells. S. Typhimurium- and S. Hadar-infected HD11 showed higher gene expression for CXCLi2 versus S. Pullorum-infected cells. Higher mRNA gene expression levels of pro-inflammatory cytokine IL-6, chemokines CXCLi1 and CXCLi2 and iNOS genes were detected in S. Typhimurium- and S. Enteritidis-infected CKC followed by S. Hadar and S. Infantis while no significant changes were observed in S. Pullorum or S. Gallinarum-infected CKC.

  16. Cytokine gene expression and NF-kappaB activation following infection of intestinal epithelial cells with Eimeria bovis or Eimeria alabamensis in vitro.

    PubMed

    Alcala-Canto, Y; Ibarra-Velarde, F

    2008-03-01

    In cattle, Eimeria produces clinical disease with different degrees of severity, depending on the dominant species. Eimeria bovis triggers severe intestinal damage, while E. alabamensis causes minimal damage. Cytokines and other factors derived from epithelial cells play important roles in inflammatory and immune responses in intestinal tissue. This study aimed to obtain a detailed view of IFN-gamma and IL-4 mRNA expression as well as of activation of NF-kappaB p50 and p65 subunits induced by E. bovis or E. alabamensis in intestinal epithelial cells by means of a RT-PCR assay and a NF-kappaB p50/p65 ELISA-based kit, respectively. Our results demonstrate that infection by both Eimeria species enhances IL-4 mRNA expression in intestinal cells. However, IL-4 was expressed more intensely in cells incubated with E. bovis whereas IFN-gamma levels were higher and detected at an earlier time in cells infected with E. alabamensis. NF-kappaB was activated in infected cells irrespective of species, yet the activity of the p50 subunit was significantly higher in cells incubated with E. bovis. Our results suggest that the intensity of host-cell responses triggered by these two Eimeria species could be considered as potential determinants of pathogenicity.

  17. ABLATION OF LUNG EPITHELIAL CELLS DEREGULATES FGF-10 EXPRESSION AND IMPAIRS LUNG BRANCHING MORPHOGENESIS

    PubMed Central

    Kim, Namjin; Yamamoto, Hiroaki; Pauling, Michelle Haynes; Lorizio, Walter; Vu, Thiennu H.

    2010-01-01

    Epithelial-mesenchymal interactions are essential for tissue patterning during organogenesis. Distal lung epithelium and its adjacent mesenchyme comprise the epithelial-mesenchymal signaling unit that regulates lung branching morphogenesis. Tissue recombination experiments have demonstrated the importance of mesenchymal signals in inducing lung epithelial differentiation and branching, but the role of the epithelium in regulating mesenchymal signals has not been well characterized. Using transgenic mice, we ablated distal lung epithelial cells during lung development by inducing the expression of a constitutively active proapoptotic Bax protein under the surfactant protein C (SP-C) promoter. We found that epithelial cell ablation results in impaired lung branching morphogenesis, which progresses to emphysematous airspaces in the adults. Mesenchymal expression of fibroblast growth factor 10 (Fgf-10), whose strict spatial and temporal expression is critical for proper lung branching morphogenesis, is disrupted and loses its localized pattern. Interestingly, the expression of sonic hedgehog (Shh), an epithelial gene known to modulate Fgf-10 expression, is unchanged, indicating the existence of other distal epithelial signals that regulate mesenchymal Fgf-10 expression. We propose that distal SP-C expressing lung epithelial cells provide essential signals for the downregulation of Fgf-10 expression in the distal mesenchyme during lung development. PMID:19115389

  18. Ablation of lung epithelial cells deregulates FGF-10 expression and impairs lung branching morphogenesis.

    PubMed

    Kim, Namjin; Yamamoto, Hiroaki; Pauling, Michelle Haynes; Lorizio, Walter; Vu, Thiennu H

    2009-01-01

    Epithelial-mesenchymal interactions are essential for tissue patterning during organogenesis. Distal lung epithelium and its adjacent mesenchyme comprise the epithelial-mesenchymal signaling unit that regulates lung branching morphogenesis. Tissue recombination experiments have demonstrated the importance of mesenchymal signals in inducing lung epithelial differentiation and branching, but the role of the epithelium in regulating mesenchymal signals has not been well characterized. Using transgenic mice, we ablated distal lung epithelial cells during lung development by inducing the expression of a constitutively active proapoptotic Bax protein under the surfactant protein C (SP-C) promoter. We found that epithelial cell ablation results in impaired lung branching morphogenesis, which progresses to emphysematous airspaces in the adults. Mesenchymal expression of fibroblast growth factor 10 (Fgf-10), whose strict spatial and temporal expression is critical for proper lung branching morphogenesis, is disrupted and loses its localized pattern. Interestingly, the expression of sonic hedgehog (Shh), an epithelial gene known to modulate Fgf-10 expression, is unchanged, indicating the existence of other distal epithelial signals that regulate mesenchymal Fgf-10expression. We propose that distal SP-C expressing lung epithelial cells provide essential signals for the downregulation of Fgf-10 expression in the distal mesenchyme during lung development. 292:123-130, 2009. (c) 2008 Wiley-Liss, Inc.

  19. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    SciTech Connect

    Walker, C.; Nettesheim, P.; Barrett, J.C.; Gilmer, T.M.

    1987-04-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injected into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of approx. = 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor.

  20. Dynamic expression of Six family genes in the dental mesenchyme and the epithelial ameloblast stem/progenitor cells during murine tooth development.

    PubMed

    Nonomura, Koji; Takahashi, Masanori; Wakamatsu, Yoshio; Takano-Yamamoto, Teruko; Osumi, Noriko

    2010-01-01

    Six family transcription factor genes play multiple and crucial roles in the development of the vertebrate sensory system including the eye, olfactory epithelium and otic vesicle, and these genes are highly expressed in the neural crest-derived cranial mesenchymal cells in the mouse embryo. However, expression patterns have yet to be determined for the Six family genes in the developing tooth germ. In this study, we examined expression of six members of the Six family genes in the dental mesenchyme and the dental epithelium of the developing tooth germs in mice by in situ hybridization. We found dynamic expression patterns for Six1, Six2, Six4 and Six5 in the oral epithelium and mesenchymal cells with distinct expression patterns at the early stage before invagination of the dental epithelium. In addition, expression of Six1 and Six4 was observed in the inner enamel epithelium of the incisor and molar tooth germs at the cap stage. Expression of Six5 was maintained in the bell stage tooth germs, and intense expression of Six1 and Six4 was detected not only in the mesenchyme-derived dental follicle but also in the proliferating inner enamel epithelium of the labial cervical loop of the incisor tooth germ. Taken together, our results suggest that dynamic expression of Six family genes represents specific stages of the developing tooth germ. This dynamic expression is embodied in changes in both space and over time, and these changes in expression suggest that Six family genes may participate in tooth germ morphogenesis and the proliferation and/or differentiation of the incisor ameloblast stem/progenitor cells.

  1. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells.

    PubMed

    Gao, X; Oba, M

    2016-11-01

    The objective of this study was to examine whether lactating dairy cows with a greater or lower risk of subacute ruminal acidosis (SARA) have differences in volatile fatty acid (VFA) absorption rate, expression of genes involved in VFA metabolism and intracellular pH regulation in rumen epithelial cells, and in situ carbohydrate digestibility in the rumen. We fed 14 ruminally cannulated mid-lactating dairy cows (119±47.2d in milk; body weight 640±47.9kg) a high-grain diet consisting of 30% forage ad libitum, with an 18-d diet adaptation and a 7-d sample and data collection period. Eight cows with the lowest acidosis index [area below pH 5.8 normalized for dry matter intake (DMI); 0.10±0.16 pH × min/kg of DMI] and 5 with the highest acidosis index (3.72±0.19 pH × min/kg of DMI) were classified as animals with lower risk (LS) and higher risk (HS) of SARA, respectively. Minimum (5.75 vs. 5.33) and mean rumen pH (6.33 vs. 5.98) were higher for LS than for HS cows. In addition, the duration and area of rumen pH below 5.8 was lower in LS cows (24.9 vs. 481min/d; 2.94 vs. 102 pH × min/d). Although DMI, milk yield, and milk component yields did not differ, milk fat concentration tended to be higher for LS cows than for HS cows (3.36 vs. 2.93%). However, we observed no difference in VFA absorption rate between LS and HS cows. In situ starch and neutral detergent fiber digestibility were not different between LS and HS cows, but the relative mRNA abundance of lanosterol synthase (LSS) was higher for LS cows than for HS cows. In addition, the mRNA abundance of hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) tended to be higher for LS cows than for HS cows. These results suggested that VFA absorption rate might not explain the difference in rumen pH between LS and HS cows in the current study, even though expression of some genes related to VFA metabolism in rumen epithelium may be associated with variation in the risk of SARA among lactating cows. This variation in

  2. Saccharomyces cerevisiae Modulates Immune Gene Expressions and Inhibits ETEC-Mediated ERK1/2 and p38 Signaling Pathways in Intestinal Epithelial Cells

    PubMed Central

    Zanello, Galliano; Berri, Mustapha; Dupont, Joëlle; Sizaret, Pierre-Yves; D'Inca, Romain

    2011-01-01

    Background Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. ETEC infections cause pro-inflammatory responses in intestinal epithelial cells and subsequent diarrhea in pigs, leading to reduced growth rate and mortality. Administration of probiotics as feed additives displayed health benefits against intestinal infections. Saccharomyces cerevisiae (Sc) is non-commensal and non-pathogenic yeast used as probiotic in gastrointestinal diseases. However, the immuno-modulatory effects of Sc in differentiated porcine intestinal epithelial cells exposed to ETEC were not investigated. Methodology/Principal Findings We reported that the yeast Sc (strain CNCM I-3856) modulates transcript and protein expressions involved in inflammation, recruitment and activation of immune cells in differentiated porcine intestinal epithelial IPEC-1 cells. We demonstrated that viable Sc inhibits the ETEC-induced expression of pro-inflammatory transcripts (IL-6, IL-8, CCL20, CXCL2, CXCL10) and proteins (IL-6, IL-8). This inhibition was associated to a decrease of ERK1/2 and p38 MAPK phosphorylation, an agglutination of ETEC by Sc and an increase of the anti-inflammatory PPAR-γ nuclear receptor mRNA level. In addition, Sc up-regulates the mRNA levels of both IL-12p35 and CCL25. However, measurement of transepithelial electrical resistance displayed that Sc failed to maintain the barrier integrity in monolayer exposed to ETEC suggesting that Sc does not inhibit ETEC enterotoxin activity. Conclusions Sc (strain CNCM I-3856) displays multiple immuno-modulatory effects at the molecular level in IPEC-1 cells suggesting that Sc may influence intestinal inflammatory reaction. PMID:21483702

  3. Expression of circadian rhythm genes CLOCK, BMAL1, and PER1 in buccal epithelial cells of patients with essential arterial hypertension in dependence on polymorphic variants of CLOCK and BMAL1 genes.

    PubMed

    Kurbatova, I V; Topchieva, L V; Korneva, V A; Kolomeichuk, S N; Nemova, N N

    2014-07-01

    The transcript levels of circadian rhythm genes CLOCK, BMAL1, and PER1 in buccal epithelial cells of the patients with essential arterial hypertension was analyzed in relation to polymorphic variants of CLOCK and BMAL1 genes. These levels were assessed with realtime PCR method at daily hours 9, 13, and 17. The significant differences were revealed in transcript levels of the examined genes in patients with various genotypes at the polymorphic markers 3111TC and 257TG regulatory regions of CLOCK gene. The study detected no significant differences among the carriers of various genotypes at polymorphic markers 862TC and 2121GA of CLOCK gene and 56445TC of BMAL1 gene.

  4. Expression changes in mRNAs and mitochondrial damage in lens epithelial cells with selenite.

    PubMed

    Belusko, P B; Nakajima, T; Azuma, M; Shearer, T R

    2003-10-13

    An overdose of sodium selenite induces cataracts in young rats. The mid-stage events producing the cataract include calpain-induced hydrolysis and precipitation of lens proteins. Apoptosis in lens epithelial cells has been suggested as an initial event in selenite cataracts. Expression levels of two genes associated with apoptosis were altered in lens epithelial cells from selenite-injected rats. The purpose of the present experiment was to perform a more comprehensive search for changes in expression of mRNAs in lens epithelial cells in order to more fully delineate the early events in selenite-induced cataracts. Lens epithelial cells were harvested at 1 and 2 days after a single subcutaneous injection of sodium selenite (30 mumol/kg body weight) into 12-day-old rats. Gene expression was analyzed using a commercial DNA array (Rat Genome U34A GeneChip array, Affymetrix). Of approximately 8000 genes assayed by hybridization, 13 genes were decreased and 27 genes were increased in the rat lens epithelial cells after injection of selenite. Some of the up-regulated genes included apoptosis-related genes, and a majority of the down-regulated genes were mitochondrial genes. Previously observed changes in expression of EGR-1 mRNA were also confirmed. Changes in the expression patterns of mRNAs were also confirmed by RT-PCR. To determine the mechanism for damage of lens epithelial cells (alpha TN4 cell) by culture in selenite, leakage of cytochrome c from mitochondria was measured. Selenite caused significant leakage of cytochrome c into the cytosol of alpha TN4 cells. Our data suggested that the loss of integrity of lens epithelial cells by selenite might be caused by preferential down-regulation of mitochondrial RNAs, release of cytochrome c, and impaired mitochondrial function. Up-regulation of mRNAs involved in maintenance of DNA, regulation of metabolism, and induction of apoptosis may also play roles.

  5. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    SciTech Connect

    Zhang, Wenjie; Zhang, Xiaomei; Lu, Hong; Matsukura, Makoto; Zhao, Jien; Shinohara, Makoto

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  6. Temporal Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells at 0.5, 1.0, 3.0, 6.0, 12 and 24 Hours Post-Exposure to 1064 nm, 3.6 ns Pulsed Laser Light

    DTIC Science & Technology

    2005-05-01

    USAFA TR 2005-05 Temporal Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells at 0.5, 1.0, 3.0, 6.0, 12 and 24 Hours...AIR FORCE ACADEMY COLORADO 80840 20050630 417 USAFA TR 2005-05 This article, "Temporal Differential Gene Expression in Explanted Human Retinal...Differential Gene Expression in Explanted Human Retinal Pigment USAFA F05611-02-P-0471 Epithelial Cells at 0.5, 1.0, 3.0, 6.0, 12 and 24-Hours Post-Exposure

  7. Gluten affects epithelial differentiation-associated genes in small intestinal mucosa of coeliac patients.

    PubMed

    Juuti-Uusitalo, K; Mäki, M; Kainulainen, H; Isola, J; Kaukinen, K

    2007-11-01

    In coeliac disease gluten induces an immunological reaction in genetically susceptible patients, and influences on epithelial cell proliferation and differentiation in the small-bowel mucosa. Our aim was to find novel genes which operate similarly in epithelial proliferation and differentiation in an epithelial cell differentiation model and in coeliac disease patient small-bowel mucosal biopsy samples. The combination of cDNA microarray data originating from a three-dimensional T84 epithelial cell differentiation model and small-bowel mucosal biopsy samples from untreated and treated coeliac disease patients and healthy controls resulted in 30 genes whose mRNA expression was similarly affected. Nine of 30 were located directly or indirectly in the receptor tyrosine kinase pathway starting from the epithelial growth factor receptor. Removal of gluten from the diet resulted in a reversion in the expression of 29 of the 30 genes in the small-bowel mucosal biopsy samples. Further characterization by blotting and labelling revealed increased epidermal growth factor receptor and beta-catenin protein expression in the small-bowel mucosal epithelium in untreated coeliac disease patients compared to healthy controls and treated coeliac patients. We found 30 genes whose mRNA expression was affected similarly in the epithelial cell differentiation model and in the coeliac disease patient small-bowel mucosal biopsy samples. In particular, those genes involved in the epithelial growth factor-mediated signalling pathways may be involved in epithelial cell differentiation and coeliac disease pathogenesis. The epithelial cell differentiation model is a useful tool for studying gene expression changes in the crypt-villus axis.

  8. Ozone enhances diesel exhaust particles (DEP)-induced interleukin-8 (IL-8) gene expression in human airway epithelial cells through activation of nuclear factors- kappaB (NF-kappaB) and IL-6 (NF-IL6).

    PubMed

    Kafoury, Ramzi M; Kelley, James

    2005-12-01

    Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals. Furthermore, epidemiological evidence has indicated that exposure to particulate matter (PM[2.5-10]), including diesel exhaust particles (DEP) has been correlated with increased acute and chronic respiratory morbidity and exacerbation of asthma. Previously, exposure to ozone or particulate matter and their effect on the lung have been addressed as separate environmental problems. Ozone and particulate matter may be chemically coupled in the ambient air. In the present study we determined whether ozone exposure enhances DEP effect on interleukin-8 (IL-8) gene expression in human airway epithelial cells. We report that ozone exposure (0.5 ppm x 1 hr) significantly increased DEP-induced IL-8 gene expression in A549 cells (117 +/- 19 pg/ml, n = 6, p < 0.05) as compared to cultures treated with DEP (100 microg/ml x 4 hr) alone (31 +/- 3 pg/ml, n = 6), or cultures exposed to purified air (24 +/- 6 pg/ml, n = 6). The increased DEP-induced IL-8 gene expression following ozone exposure was attributed to ozone-induced increase in the activity of the transcription factors NF-kappaB and NF-IL6. The results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung.

  9. Expression of activation-induced cytidine deaminase in oral epithelial dysplasia and oral squamous cell carcinoma.

    PubMed

    Miyazaki, Yuji; Fujinami, Masahiro; Inoue, Harumi; Kikuchi, Kentaro; Ide, Fumio; Kusama, Kaoru

    2013-01-01

    Oral epithelial dysplasia is thought to be a precursor state of carcinogenesis and may harbor gene alterations. Recently, it was reported that gene editing enzyme, activation-induced cytidine deaminase (AID), is expressed in precursor and cancer epithelial cells during carcinogenesis associated with chronic inflammation/infection and that this enzyme induces mutation of tumor-suppressor genes. Thus, AID may have a role in carcinogenesis via oral epithelial dysplasia. In this study, we classified oral mucosal epithelium exhibiting epithelial dysplasia as squamous intraepithelial neoplasia (SIN) grades 1-3, according to the 2005 World Health Organization classification, and used immunohistochemical techniques to examine AID expression in oral mucosal epithelium exhibiting SIN and oral cancer tissues. AID was observed in prickle cells in oral mucosal epithelium with epithelial dysplasia and in oral cancer cells. Additionally, to investigate the mechanism of AID expression and its role in cancer progression, we incubated the oral cancer cell line HSC-2 with inflammatory cytokines. In the HSC-2 cell line, AID expression was enhanced by TNF-α via NF-κB activation and promoted expression of N-cadherin by regulating Snail expression. These findings suggest that AID has a role in the development of oral epithelial dysplasia and promotes progression of oral cancer.

  10. Kinetics of lipogenic genes expression in milk purified mammary epithelial cells (MEC) across lactation and their correlation with milk and fat yield in buffalo.

    PubMed

    Yadav, Poonam; Kumar, Parveen; Mukesh, Manishi; Kataria, R S; Yadav, Anita; Mohanty, A K; Mishra, B P

    2015-04-01

    Expression patterns of lipogenic genes (LPL, ABCG2, ACSS2, ACACA, SCD, BDH, LIPIN1, SREBF1, PPARα and PPARγ) were studied in milk purified MEC across different stages of lactation (15, 30, 45, 60, 90, 120 and 240 days relative to parturition) in buffalo. PPARα was the most abundant gene while ABCG2 and ACSS2 had moderate level of expression; whereas expression of SREBF and PPARγ was very low. The expression patterns of some genes (BDH1, ACSS2, and LIPIN1) across lactation were positively correlated with milk yield while negatively correlated with fat yield. SCD also showed weak correlation with milk yield (p, 0.53) and fat yield (p, -0.47). On the other hand, expression pattern of ACACA was negatively correlated with milk yield (p, -0.88) and positively correlated with fat yield (p, 0.62). Strong correlation was observed between genes involved in de novo milk fat synthesis (BDH1, ACSS2, LIPIN2 and SCD) and milk yield.

  11. Basal and metal-induced expression of metallothionein isoform 1 and 2 genes in the RWPE-1 human prostate epithelial cell line.

    PubMed

    Albrecht, Amy L; Singh, Rajendra K; Somji, Seema; Sens, Mary Ann; Sens, Donald A; Garrett, Scott H

    2008-04-01

    The human prostate gland has low basal expression of the metallothionein-1 and -2 proteins. In prostate cancer, MT-1/2 protein expression is variable and correlates directly with the increasing Gleason score of the tumor. The goal of the present study was to determine if the RWPE-1 cell line is a good model to elucidate the mechanisms underlying the alterations in MT-1/2 expression that occur during the development of prostate cancer. It was shown that the RWPE-1 cell line and in situ prostate tissue have identical expression profiles of MT-1 and MT-2 isoform-specific mRNAs (MT-1E, MT-1X and MT-2A) and similar levels of MT-1/2 protein. It was also shown that the RWPE-1 cells respond to Zn(+2) and Cd(+2) exposure by induction of the basally expressed MT mRNAs and the accumulation of high levels MT-1/2 protein (in excess of 10% of total protein). It was also shown that additional MT-1 mRNAs were expressed when the cells were exposed to either metal; MT-1A, MT-1F, MT-G and MT-1H for Cd(+2)-exposed cells; and, MT-1F, MT-G and MT-1H for Zn(+2)-exposed cells. The results suggest that RWPE-1 cells may be a valuable system to define the interplay between Zn(+2) concentration, Cd(+2) exposure and MT in normal and malignant prostate epithelial cells.

  12. Differential regulation of gene expression in the digit forming area of the mouse limb bud by SHH and gremlin 1/FGF-mediated epithelial-mesenchymal signalling.

    PubMed

    Panman, Lia; Galli, Antonella; Lagarde, Nadege; Michos, Odysse; Soete, Gwen; Zuniga, Aimee; Zeller, Rolf

    2006-09-01

    Spatially and temporally coordinated changes in gene expression are crucial to orderly progression of embryogenesis. We combine mouse genetics with experimental manipulation of signalling to analyze the kinetics by which the SHH morphogen and the BMP antagonist gremlin 1 (GREM1) control gene expression in the digit-forming mesenchyme of mouse limb buds. Although most mesenchymal cells respond rapidly to SHH signalling, the transcriptional upregulation of specific SHH target signals in the mesenchyme occurs with differential temporal kinetics and in a spatially restricted fashion. In particular, the expression of the BMP antagonist Grem1 is always upregulated in mesenchymal cells located distal to the SHH source and acts upstream of FGF signalling by the apical ectodermal ridge. GREM1/FGF-mediated feedback signalling is, in turn, required to propagate SHH and establish the presumptive digit expression domains of the Notch ligand jagged 1 (Jag1) and 5'Hoxd genes in the distal limb bud mesenchyme. Their establishment is significantly delayed in Grem1-deficient limb buds and cannot be rescued by specific restoration of SHH signalling in mutant limb buds. This shows that GREM1/FGF feedback signalling is required for regulation of the temporal kinetics of the mesenchymal response to SHH signalling. Finally, inhibition of SHH signal transduction at distinct time points reveals the differential temporal dependence of Grem1, Jag1 and 5'Hoxd gene expression on SHH signalling. In particular, the expression of Hoxd13 depends on SHH signal transduction significantly longer than does Hoxd11 expression, revealing that the reverse co-linear establishment, but not maintenance of their presumptive digit expression domains, depends on SHH signalling.

  13. Effect of short-chain fatty acids on triacylglycerol accumulation, lipid droplet formation and lipogenic gene expression in goat mammary epithelial cells.

    PubMed

    Sun, Yuting; Luo, Jun; Zhu, Jiangjiang; Shi, Hengbo; Li, Jun; Qiu, Siyuan; Wang, Ping; Loor, Juan J

    2016-02-01

    Short-chain fatty acids (SCFAs) are the major energy sources for ruminants and are known to regulate various physiological functions in other species. However, their roles in ruminant milk fat metabolism are still unclear. In this study, goat mammary gland epithelial cells (GMECs) were treated with 3 mmol/L acetate, propionate or butyrate for 24 h to assess their effects on lipogenesis. Data revealed that the content of triacylglycerol (TAG) and lipid droplet formation were significantly stimulated by propionate and butyrate. The expression of FABP3, SCD1, PPARG, SREBP1, DGAT1, AGPAT6 and ADRP were upregulated by propionate and butyrate treatment. In contrast, the messenger RNA (mRNA) expression of FASN and LXRα was not affected by propionate, but reduced by butyrate. Acetate had no obvious effect on the content of TAG and lipid droplets but increased the mRNA expression of SCD1 and FABP3 in GMECs. Additionally, it was observed that propionate significantly increased the relative content of mono-unsaturated fatty acids (C18:1 and C16:1) at the expense of decreased saturated fatty acids (C16:0 and C18:0). Butyrate and acetate had no significant effect on fatty acid composition. Overall, the results from this work help enhance our understanding of the regulatory role of SCFAs on goat mammary cell lipid metabolism.

  14. An analysis of glucocorticoid receptor-mediated gene expression in BEAS-2B human airway epithelial cells identifies distinct, ligand-directed, transcription profiles with implications for asthma therapeutics.

    PubMed

    Joshi, T; Johnson, M; Newton, R; Giembycz, M

    2015-03-01

    International asthma guidelines recommend that inhaled glucocorticoids be used as a monotherapy in all patients with mild to moderate disease because of their ability to suppress airways inflammation. Current evidence suggests that the therapeutic benefit of glucocorticoids is due to the transactivation and transrepression of anti-inflammatory and pro-inflammatory genes respectively. However, the extent to which clinically relevant glucocorticoids are equivalent in their ability to modulate gene expression is unclear. A pharmacodynamics investigation of glucocorticoid receptor (GR)-mediated gene transactivation in BEAS-2B human airway epithelial cells was performed using a glucocorticoid response element luciferase reporter coupled with an analysis of glucocorticoid-inducible genes encoding proteins with anti-inflammatory and adverse-effect potential. Using transactivation as a functionally relevant output, a given glucocorticoid displayed a unique, gene expression 'fingerprint' where intrinsic efficacy and GR density were essential determinants. We showed that depending on the gene selected for analysis, a given glucocorticoid can behave as an antagonist, partial agonist, full agonist or even 'super agonist'. In the likely event that different, tissue-dependent gene expression profiles are reproduced in vivo, then the anti-inflammatory and adverse-effect potential of many glucocorticoids currently available as asthma therapeutics may not be equivalent. The generation of gene expression 'fingerprints' in target and off-target human tissues could assist the rational design of GR agonists with improved therapeutic ratios. This approach could identify compounds that are useful in the management of severe asthma and other inflammatory disorders where systemic exposure is desirable. © 2014 The British Pharmacological Society.

  15. Differential Roles of Hydrogen Peroxide in Adaptive and Inflammatory Gene Expression Induced by Exposure of Human Airway Epithelial Cells to Zn2+

    EPA Science Inventory

    Oxidant stress is believed to play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of PM that has been shown to induce adverse responses such as inflammatory and adaptive gene expression in airway epit...

  16. Differential Roles of Hydrogen Peroxide in Adaptive and Inflammatory Gene Expression Induced by Exposure of Human Airway Epithelial Cells to Zn2+

    EPA Science Inventory

    Oxidant stress is believed to play an important role in particulate matter (PM)–mediated toxicity in the respiratory tract. Zinc (Zn2+) is a ubiquitous component of PM that has been shown to induce adverse responses such as inflammatory and adaptive gene expression in airway epit...

  17. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain.

    PubMed

    Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe

    2012-04-01

    IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.

  18. Epithelial expression of keratinocytes growth factor in oral precancer lesions.

    PubMed

    Jimson, Sudha; Murali, S; Zunt, Susan L; Goldblatt, Lawrence I; Srinivasan, Mythily

    2016-01-01

    Keratinocyte growth factor (KGF) is a potent epithelial mitogen that acts by binding the KGF receptors (KGFRs) expressed on epithelial cells and regulates proliferation and differentiation. The objective of this study was to investigate the expression of KGF in the epithelium in oral precancer. Archival tissues of oral submucous fibrosis (SMF) and leukoplakia were assessed for epithelial KGF expression by immunohistochemistry and real-time quantitative polymerase chain reaction. KGF was predominantly expressed in the basal and parabasal cells in the epithelium of SMF tissues. KGF transcript in the epithelial cells increased with increasing severity of epithelial dysplasia in oral leukoplakia. Although widely reported as a product secreted by the mesenchymal cells, our data suggest that the KGF is also expressed in oral epithelial cells much like the expression in ovarian epithelial cells. Based on the localization of KGF in cells at the epithelial mesenchymal junction and that of the reported presence of KGFR in oral keratinocytes, a potential mechanism involving paracrine and autocrine interactions of KGF and KGFR in early stages of oral precancer is postulated.

  19. Epithelial expression of keratinocytes growth factor in oral precancer lesions

    PubMed Central

    Jimson, Sudha; Murali, S.; Zunt, Susan L.; Goldblatt, Lawrence I.; Srinivasan, Mythily

    2016-01-01

    Background: Keratinocyte growth factor (KGF) is a potent epithelial mitogen that acts by binding the KGF receptors (KGFRs) expressed on epithelial cells and regulates proliferation and differentiation. The objective of this study was to investigate the expression of KGF in the epithelium in oral precancer. Materials and Methods: Archival tissues of oral submucous fibrosis (SMF) and leukoplakia were assessed for epithelial KGF expression by immunohistochemistry and real-time quantitative polymerase chain reaction. Results: KGF was predominantly expressed in the basal and parabasal cells in the epithelium of SMF tissues. KGF transcript in the epithelial cells increased with increasing severity of epithelial dysplasia in oral leukoplakia. Conclusion: Although widely reported as a product secreted by the mesenchymal cells, our data suggest that the KGF is also expressed in oral epithelial cells much like the expression in ovarian epithelial cells. Based on the localization of KGF in cells at the epithelial mesenchymal junction and that of the reported presence of KGFR in oral keratinocytes, a potential mechanism involving paracrine and autocrine interactions of KGF and KGFR in early stages of oral precancer is postulated. PMID:27274338

  20. Enteral peptide formulas inhibit radiation induced enteritis and apoptosis in intestinal epithelial cells and suppress the expression and function of Alzheimer's and cell division control gene products

    SciTech Connect

    Cope, F.O. ); Issinger, O.G. ); McArdle, A.H. ); Shapiro, J.; Tomei, L.D. )

    1991-03-15

    Studies have shown that patients receiving enteral peptide formulas prior to irradiation have a significantly reduced incidence of enteritis and express a profound increase in intestinal cellularity. Two conceptual approaches were taken to describe this response. First was the evaluation in changes in programmed intestinal cell death and secondly the evaluation of a gene product controlling cell division cycling. This study provided a relationship between the ratio of cell death to cell formulations. The results indicate that in the canine and murine models, irradiation induces expression of the Alzheimer's gene in intestinal crypt cells, while the incidence of apoptosis in apical cells is significantly increased. The use of peptide enteral formulations suppresses the expression of the Alzheimer's gene in crypt cells, while apoptosis is eliminated in the apical cells of the intestine. Concomitantly, enteral peptide formulations suppress the function of the CK-II gene product in the basal and baso-lateral cells of the intestine. These data indicate that although the mitotic index is significantly reduced in enterocytes, this phenomenon alone is not sufficient to account for the peptide-induced radio-resistance of the intestine. The data also indicate a significant reduction of normal apoptosis in the upper lateral and apical cells of the intestinal villi. Thus, the ratio of cell death to cell replacement is significantly decreased resulting in an increase in villus height and hypertrophy of the apical villus cells. Thus, peptide solutions should be considered as an adjunct treatment both in radio- and chemotherapy.

  1. High-Resolution Mapping of Genomic Imbalance and Identification of Gene Expression Profiles Associated with Differential Chemotherapy Response in Serous Epithelial Ovarian Cancer1*

    PubMed Central

    Bernardini, Marcus; Lee, Chung-Hae; Beheshti, Ben; Prasad, Mona; Albert, Monique; Marrano, Paula; Begley, Heather; Shaw, Patricia; Covens, Al; Murphy, Joan; Rosen, Barry; Minkin, Salomon; Squire, Jeremy A; Macgregor, Pascale F

    2005-01-01

    Abstract Array comparative genomic hybridization (aCGH) and microarray expression profiling were used to subclassify DNA and RNA alterations associated with differential response to chemotherapy in ovarian cancer. Two to 4 Mb interval arrays were used to map genomic imbalances in 26 sporadic serous ovarian tumors. Cytobands 1p36, 1q42-44, 6p22.1-p21.2, 7q32.1-q34 9q33.3-q34.3, 11p15.2, 13q12.2-q13.1, 13q21.31, 17q11.2, 17q24.2-q25.3, 18q12.2, and 21q21.2-q21.3 were found to be statistically associated with chemotherapy response, and novel regions of loss at 15q11.2-q15.1 and 17q21.32-q21.33 were identified. Gene expression profiles were obtained from a subset of these tumors and identified a group of genes whose differential expression was significantly associated with drug resistance. Within this group, five genes (GAPD, HMGB2, HSC70, GRP58, and HMGB1), previously shown to form a nuclear complex associated with resistance to DNA conformation-altering chemotherapeutic drugs in in vitro systems, may represent a novel class of genes associated with in vivo drug response in ovarian cancer patients. Although RNA expression change indicated only weak DNA copy number dependence, these data illustrate the value of molecular profiling at both the RNA and DNA levels to identify small genomic regions and gene subsets that could be associated with differential chemotherapy response in ovarian cancer. PMID:16036111

  2. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    PubMed Central

    2009-01-01

    Background Prostate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. Methods CD26+ cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. Results The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Conclusions Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types. PMID:20021671

  3. Differential Influence of Inositol Hexaphosphate on the Expression of Genes Encoding TGF-β Isoforms and Their Receptors in Intestinal Epithelial Cells Stimulated with Proinflammatory Agents

    PubMed Central

    Kapral, Małgorzata; Wawszczyk, Joanna; Węglarz, Ludmiła

    2013-01-01

    Transforming growth factor β (TGF-β) is a multifunctional cytokine recognized as an important regulator of inflammatory responses. The effect of inositol hexaphosphate (IP6), a naturally occurring phytochemical, on the mRNA expression of TGF-β1, TGF-β2, TGF-β3 and TβRI, TβRII, and TβRIII receptors stimulated with bacterial lipopolysaccharides (Escherichia coli and Salmonella typhimurium) and IL-1β in intestinal cells Caco-2 for 3 and 12 h was investigated. Real-time qRT-PCR was used to validate mRNAs level of examined genes. Bacterial endotoxin promoted differential expression of TGF-βs and their receptors in a time-dependent manner. IL-1β upregulated mRNA levels of all TGF-βs and receptors at both 3 h and 12 h. IP6 elicited the opposed to LPS effect by increasing downregulated transcription of the examined genes and suppressing the expression of TGF-β1 at 12 h. IP6 counteracted the stimulatory effect of IL-1β on TGF-β1 and receptors expression by decreasing their mRNA levels. IP6 enhanced LPS- and IL-1β-stimulated mRNA expression of TGF-β2 and -β3. Based on these studies it may be concluded that IP6 present in the intestinal milieu may exert immunoregulatory effects and chemopreventive activity on colonic epithelium under inflammatory conditions or during microbe-induced infection/inflammation by modulating the expression of genes encoding TGF-βs and their receptors at transcriptional level. PMID:24459329

  4. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland.

  5. MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients

    PubMed Central

    Pichler, M; Ress, A L; Winter, E; Stiegelbauer, V; Karbiener, M; Schwarzenbacher, D; Scheideler, M; Ivan, C; Jahn, S W; Kiesslich, T; Gerger, A; Bauernhofer, T; Calin, G A; Hoefler, G

    2014-01-01

    Background: MicroRNAs (miRNAs) regulate the biological properties of colorectal cancer (CRC) cells and might serve as potential prognostic factors and therapeutic targets. In this study, we therefore globally profiled miRNAs associated with E-cadherin expression in CRC cells in an attempt to identify miRNAs that are associated with aggressive clinical course in CRC patients. Methods: Two CRC cell lines (Caco-2 and HRT-18) with different E-cadherin expression pattern were profiled for differences in abundance for more than 1000 human miRNAs using microarray technology. One of the most differentially expressed miRNAs, miR-200a was evaluated for its prognostic role in a cohort of 111 patients and independently validated in 217 patients of the Cancer Genome Atlas data set. To further characterise the biological role of miR-200a expression in CRC, in vitro miR-200a inhibition and overexpression were performed and the effects on cellular growth, apoptosis and epithelial–mesenchymal transition (EMT)-related gene expression were explored. Results: In situ hybridisation specifically localised miR-200a in CRC cells. In both cohorts, a low miR-200a expression was associated with poor survival (P<0.05). Multivariate Cox regression analysis identified low levels of miR-200a expression as an independent prognostic factor with respect to cancer-specific survival (HR=2.04, CI=1.28–3.25, P<0.002). Gain and loss of function assays for miR-200a in vitro led to a significantly differential and converse expression of EMT-related genes (P<0.001.) A low expression of miR-200a was also observed in cancer stem cell-enriched spheroid growth conditions (P<0.05). Conclusions: In conclusion, our data suggest that low miR-200a expression is associated with poor prognosis in CRC patients. MiR-200a has a regulatory effect on EMT and is associated with cancer stem cell properties in CRC. PMID:24504363

  6. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines

    PubMed Central

    2011-01-01

    Background Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. Methods The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR. Results The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. Conclusions These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients. PMID:21496221

  7. Probing for gene specificity in epithelial development.

    PubMed

    Schüpbach, T; Wieschaus, E

    1998-01-01

    We surveyed a total of 228 random insertions of a P[GawB] element to determine the fraction of regulatory regions in the Drosophila genome that activate gene expression specifically in follicle cells versus producing more complex patterns of expression. We monitored the GAL4 expression encoded by this construct in the ovarian follicle cells by crossing the lines to a strain containing a lacZ reporter construct. Sixty four per cent of the insertions showed ovarian expression. To assess the specificity of this expression, 124 of the 228 lines were crossed to strains containing either an activated form of Armadillo, the Drosophila homolog of beta-catenin, or an activated form of Torpedo/Egfr, the Drosophila homolog of the Epidermal Growth Factor receptor, under the control of GAL4 target sites. The lethality and imaginal disc phenotypes observed in these crosses suggest that most random insertions cause GAL4 expression in a variety of tissues. Very few insertions appear to drive expression only in follicle cells. Although the activated form of Armadillo produced higher frequencies of lethality and disk phenotypes, expression in the follicle cell epithelium at later stages of oogenesis did not lead to a visible phenotype. This contrasts with the dorsalized phenotypes observed in the combination of the same GAL4 lines with the activated Torpedo construct.

  8. Expression of polarity genes in human cancer.

    PubMed

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  9. Expression of Polarity Genes in Human Cancer

    PubMed Central

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical–basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function. PMID:25991909

  10. Human 21T breast epithelial cell lines mimic breast cancer progression in vivo and in vitro and show stage-specific gene expression patterns.

    PubMed

    Souter, Lesley H; Andrews, Joseph D; Zhang, Guihua; Cook, Amy C; Postenka, Carl O; Al-Katib, Waleed; Leong, Hon S; Rodenhiser, David I; Chambers, Ann F; Tuck, Alan B

    2010-08-01

    Early breast cancer progression involves advancement through specific morphological stages including atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive mammary carcinoma (IMC), although not necessarily always in a linear fashion. Observational studies have examined genetic, epigenetic and gene expression differences in breast tissues representing these stages of progression, but model systems which would allow for experimental testing of specific factors influencing transition through these stages are scarce. The 21T series cell lines, all originally derived from the same patient with metastatic breast cancer, have been proposed to represent a mammary tumor progression series. We report here that three of the 21T cell lines indeed mimic specific stages of human breast cancer progression (21PT-derived cells, ADH; 21NT-derived cells, DCIS; 21MT-1 cells, IMC) when grown in the mammary fat pad of nude mice, albeit after a year. To develop a more rapid, readily manipulatable in vitro assay for examining the biological differences between these cell lines, we have used a 3D Matrigel system. When the three cell lines were grown in 3D Matrigel, they showed characteristic morphologies, in which quantifiable aspects of stage-specific in vivo behaviors (ie, differences in acinar structure formation, cell polarization, colony morphology, cell proliferation, cell invasion) were recapitulated in a reproducible fashion. Gene expression profiling revealed a characteristic pattern for each of the three cell lines. Interestingly, Wnt pathway alterations are particularly predominant in the early transition from 21PTci (ADH) to 21NTci (DCIS), whereas alterations in expression of genes associated with control of cell motility and invasion phenomena are more prominent in the later transition of 21NTci (DCIS) to 21MT-1 (IMC). This system thus reveals potential therapeutic targets and will provide a means of testing the influences of identified genes on

  11. The Effects of Direct-fed Microbial Supplementation, as an Alternative to Antibiotics, on Growth Performance, Intestinal Immune Status, and Epithelial Barrier Gene Expression in Broiler Chickens.

    PubMed

    Gadde, U; Oh, S T; Lee, Y S; Davis, E; Zimmerman, N; Rehberger, T; Lillehoj, Hyun S

    2017-04-18

    The objective of this study was to investigate the effects of Bacillus subtilis-based probiotic supplementation in broiler chicken diets on growth performance, feed efficiency, intestinal cytokine, and tight junction (TJ) protein mRNA expression. Zero-day-old broiler chicks (n = 140) were randomly assigned to one of five dietary treatments: basal diet (CON); basal diet supplemented with either antibiotic bacitracin methylene disalicylate (BMD); or probiotics, namely, B. subtilis strain 1781 (PB1), a combination of B. subtilis strain 1104 + strain 747 (PB2), or B. subtilis strain 1781 + strain 747 (PB3). Body weight and feed intake were measured at 14 days of age, and the feed conversion ratio (FCR) was calculated. At 14 days of age, ileal samples were collected and used for intestinal cytokine, TJ protein, and mucin gene expression analysis using qRT-PCR. The chickens supplemented with antibiotic (BMD) and B. subtilis strain 1781 alone (PB1) had significantly higher body weights compared to controls of the same age. Dietary supplementation with antibiotic (BMD) or probiotics (PB1, PB2, PB3) significantly improved the feed efficiency as evidenced by decreased FCR compared to controls. No differences were observed in the expression of IL1β, IL17F, IFNγ, and MUC2 gene among the different treatment groups. However, elevated expression of IL6 (BMD, PB1, PB2), IL8 (PB2), and TNFSF15 (PB1, PB2, PB3) compared to controls was observed in the ileum. IL2 and IL10 expression was upregulated in chicks in the PB2 and PB3 groups, and IL4 was elevated in the PB1 group. IL13 was elevated in all probiotic-fed groups (PB1, PB2, PB3). Probiotic supplementation was also shown to significantly increase the expression of TJ proteins JAM2, ZO1 (PB2, PB3), and occludin (PB1, PB2). Taken together, B. subtilis supplementation altered intestinal immune activity and influenced gut barrier integrity through increased tight junction gene expression.

  12. Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells.

    PubMed

    Kole, Christo; Berdugo, Naomi; Da Silva, Corinne; Aït-Ali, Najate; Millet-Puel, Géraldine; Pagan, Delphine; Blond, Frédéric; Poidevin, Laetitia; Ripp, Raymond; Fontaine, Valérie; Wincker, Patrick; Zack, Donald J; Sahel, José-Alain; Poch, Olivier; Léveillard, Thierry

    2016-01-01

    To investigate the complexity of alternative splicing in the retina, we sequenced and analyzed a total of 115,706 clones from normalized cDNA libraries from mouse neural retina (66,217) and rat retinal pigmented epithelium (49,489). Based upon clustering the cDNAs and mapping them with their respective genomes, the estimated numbers of genes were 9,134 for the mouse neural retina and 12,050 for the rat retinal pigmented epithelium libraries. This unique collection of retinal of messenger RNAs is maintained and accessible through a web-base server to the whole community of retinal biologists for further functional characterization. The analysis revealed 3,248 and 3,202 alternative splice events for mouse neural retina and rat retinal pigmented epithelium, respectively. We focused on transcription factors involved in vision. Among the six candidates suitable for functional analysis, we selected Otx2S, a novel variant of the Otx2 gene with a deletion within the homeodomain sequence. Otx2S is expressed in both the neural retina and retinal pigmented epithelium, and encodes a protein that is targeted to the nucleus. OTX2S exerts transdominant activity on the tyrosinase promoter when tested in the physiological environment of primary RPE cells. By overexpressing OTX2S in primary RPE cells using an adeno associated viral vector, we identified 10 genes whose expression is positively regulated by OTX2S. We find that OTX2S is able to bind to the chromatin at the promoter of the retinal dehydrogenase 10 (RDH10) gene.

  13. Fibroblast growth factor receptor-3 (FGFR-3) regulates expression of paneth cell lineage-specific genes in intestinal epithelial cells through both TCF4/beta-catenin-dependent and -independent signaling pathways.

    PubMed

    Brodrick, Brooks; Vidrich, Alda; Porter, Edith; Bradley, Leigh; Buzan, Jenny M; Cohn, Steven M

    2011-05-27

    Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/β-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3(K650E), a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of β-catenin mRNA expression, leading to increased TCF4/β-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/β-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/β-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation.

  14. Fibroblast Growth Factor Receptor-3 (FGFR-3) Regulates Expression of Paneth Cell Lineage-specific Genes in Intestinal Epithelial Cells through both TCF4/β-Catenin-dependent and -independent Signaling Pathways*

    PubMed Central

    Brodrick, Brooks; Vidrich, Alda; Porter, Edith; Bradley, Leigh; Buzan, Jenny M.; Cohn, Steven M.

    2011-01-01

    Fibroblast growth factor receptor-3 (FGFR-3) expression in the developing intestine is restricted to the undifferentiated epithelial cells within the lower portion of the crypt. We previously showed that mice lacking functional FGFR-3 have a significant decrease in the number of Paneth cells in the small intestine. Here, we used Caco2 cells to investigate whether FGFR-3 signaling can directly modulate expression of Paneth cell differentiation markers through its effects on TCF4/β-catenin or through other signaling pathways downstream of this receptor. Caco2 cells treated with FGFR-3 ligands or expressing FGFR-3K650E, a constitutively active mutant, resulted in a significantly increased expression of genes characteristic of mature Paneth cells, including human α-defensins 5 and 6 (HD5 and HD6) and Paneth cell lysozyme, whereas enterocytic differentiation markers were reduced. Activation of FGFR-3 signaling sustained high levels of β-catenin mRNA expression, leading to increased TCF4/β-catenin-regulated transcriptional activity in Caco2 cells. Sustained activity of the TCF4/β-catenin pathway was required for the induction of Paneth cell markers. Activation of the MAPK pathway by FGFR-3 is also required for the induction of Paneth cell markers in addition to and independent of the effect of FGFR-3 on TCF4/β-catenin activity. These studies suggest that coordinate activation of multiple independent signaling pathways downstream of FGFR-3 is involved in regulation of Paneth cell differentiation. PMID:21388956

  15. Alternaria induces STAT-6 dependent acute airway eosinophila and epithelial FIZZ1 expression that promotes airway fibrosis and epithelial thickness

    PubMed Central

    Doherty, Taylor A.; Khorram, Naseem; Sugimoto, Kotaro; Sheppard, Dean; Rosenthal, Peter; Youn Cho, Jae; Pham, Alexa; Miller, Marina; Croft, Michael; Broide, David H.

    2012-01-01

    The fungal allergen, Alternaria, is specifically associated with severe asthma, including life-threatening exacerbations. To better understand the acute innate airway response to Alternaria, naïve WT mice were challenged once intranasally with Alternaria. Naïve WT mice developed significant BAL eosinophila following Alternaria challenge when analyzed 24 hours later. In contrast to Alternaria, neither Aspergillus nor Candida induced BAL eosinophilia. Gene microarray analysis of airway epithelial cell brushings demonstrated that Alternaria-challenged naïve WT mice had an over 20 fold increase level of expression of “Found in Inflammatory Zone 1” (FIZZ1/Retnla), a resistin-like molecule. Lung immunostaining confirmed strong airway epithelial FIZZ1 expression present as early as 3 hours after a single Alternaria challenge that persisted for at least 5 days and was significantly reduced in STAT6-deficient, but not PAR-2-deficient mice. Bone marrow chimera studies revealed that STAT6 expressed in lung cells was required for epithelial FIZZ1 expression, while in contrast, STAT6 present in bone marrow derived cells contributed to airway eosinophilia. Studies investigating which cells in the non-challenged lung bind FIZZ1 demonstrated that CD45+CD11c+ (macrophages and dendritic cells) as well as collagen-1 producing CD45 negative cells (fibroblasts) can bind to FIZZ1. Importantly, direct administration of recombinant FIZZ1 to naïve WT mice led to airway eosinophilia, peribronchial fibrosis, and increased thickness of the airway epithelium. Thus, Alternaria induces STAT-6 dependent acute airway eosinophila and epithelial FIZZ1 expression that promotes airway fibrosis and epithelial thickness. This may provide some insight into the uniquely pathogenic aspects of Alternaria-associated asthma. PMID:22327070

  16. Bronchial epithelial injury in the context of alloimmunity promotes lymphocytic bronchiolitis through hyaluronan expression

    PubMed Central

    Stober, Vandy P.; Szczesniak, Christopher; Childress, Quiana; Heise, Rebecca L.; Bortner, Carl; Hollingsworth, John W.; Neuringer, Isabel P.; Palmer, Scott M.

    2014-01-01

    Epithelial injury is often detected in lung allografts, however, its relation to rejection pathogenesis is unknown. We hypothesized that sterile epithelial injury can lead to alloimmune activation in the lung. We performed adoptive transfer of mismatched splenocytes into recombinant activating gene 1 (Rag1)-deficient mice to induce an alloimmune status and then exposed these mice to naphthalene to induce sterile epithelial injury. We evaluated lungs for presence of alloimmune lung injury, endoplasmic reticulum (ER) stress, and hyaluronan expression, examined the effect of ER stress induction on hyaluronan expression and lymphocyte trapping by bronchial epithelia in vitro, and examined airways from patients with bronchiolitis obliterans syndrome and normal controls histologically. We found that Rag1-deficient mice that received mismatched splenocytes and naphthalene injection displayed bronchial epithelial ER stress, peribronchial hyaluronan expression, and lymphocytic bronchitis. Bronchial epithelial ER stress led to the expression of lymphocyte-trapping hyaluronan cables in vitro. Blockade of hyaluronan binding ameliorated naphthalene-induced lymphocytic bronchitis. ER stress was present histologically in >40% of bronchial epithelia of BOS patients and associated with subepithelial hyaluronan deposition. We conclude that sterile bronchial epithelial injury in the context of alloimmunity can lead to sustained ER stress and promote allograft rejection through hyaluronan expression. PMID:24748604

  17. Heme oxygenase-1 gene expression in human alveolar epithelial cells (A549) following exposure to whole cigarette smoke on a direct in vitro exposure system.

    PubMed

    Fukano, Yasuo; Yoshimura, Hiroyuki; Yoshida, Takemi

    2006-07-01

    Many in vitro studies have employed cigarette smoke condensates or soluble smoke components to investigate the biological effects of cigarette smoke. However, neither of these methods evaluates the biological effects of fresh whole cigarette smoke. It is most desirable to conduct in vitro biological studies under conditions which accommodate the dynamic physicochemical character of fresh cigarette smoke. Previously we reported the development of a whole smoke exposure system to assess the biological effects of mainstream cigarette smoke. The exposure system design was based on a combination of the sedimentation procedure and the CULTEX cultivation technique, which includes a systemized air/liquid interface methodology and exposes the cells to fresh smoke at every puff. The aim of this study was to adopt the other biological endpoint to our whole smoke exposure system. We focused on heme oxygenase (HO)-1 mRNA gene expression, an enzyme which has recently been shown to be highly responsible for oxidative stress. In the present study, a dose-response relationship between the HO-1 mRNA expression based on the reverse transcription real-time PCR method and total exposure to cigarette smoke was observed. When a Cambridge filter pad was placed between the cigarette and exposure module, to ensure the cells were only exposed to the gas/vapor phase, the latter, as well as the whole smoke, induced HO-1 mRNA dose dependently. For the next step, acetate plain and charcoal filters with the same pressure drop were prepared to assess the potential ability of charcoal filters with regard to the vapor phase performance. The results revealed reduced HO-1 mRNA gene expression when a charcoal filter was used. Direct whole smoke exposure is a significant approach and may reflect the conditions of exposure essentially resulting from direct contact between cells and a dynamic mixture of gaseous and particulate constituents. We were able to adopt a gene expression assay for oxidative

  18. [Over-expression of CCL21 up-regulates the antigen presentation-related genes of CK8/18 positive thymic epithelial cells in patients with myasthenia gravis].

    PubMed

    Zhang, Yun; Zhao, Juntao; Zhu, Zhengkun; Yin, Tingting; Xuan, Xiaoyan; Liu, Pingping; Li, Qianru; DU, Ying

    2015-07-01

    To identify the distribution of chemokine (C-C motif) ligand 21 (CCL21) in the thymus of patients with myasthenia gravis (MG) and explore the effects of up-regulation of CCL21 on the expressions of antigen presentation-related genes in cytokeratin 8/18 (CK8/18) positive thymic epithelial cells (TECs) after transfected with CCL21 genes. The expressions and distributions of CK8/18 and CCL21 in the thymus tissue of MG patients were detected by immunohistochemistry. The mRNA levels of CCL21, CCL19 and their receptor chemokine (C-C motif) receptor 7 (CCR7) in the thymus tissue of MG patients were determined by real-time quantitative PCR (qRT-PCR). Primary cultured CK8/18⁺ TECs were transfected with pCMV-CCL21, and the relative mRNA expressions of function-associated genes (CD80, ICAM-1, CD86, HLA-DR, HLA-A) in CK8/18⁺ TECs before and after the transfection were investigated by qRT-PCR. Immunohistochemical results showed that the number of CK8/18 positive cells in the hyperplastic thymus tissues of MG patients was significantly more than that in the normal controls, and the protein expression of CCL21 was also much higher in the hyperplastic thymus tissues. The qRT-PCR showed that the expressions of CCL21 and CCR7 mRNA increased significantly in hyperplastic thymus tissues of MG patients compared with those in normal controls, while there was no difference in the expression of CCL19. Furthermore, CK8/18 positive cells were found mainly located in cortico-medullary junction and medulla area. The relative mRNA expression levels of HLA-A, HLA-DR, ICAM and CD80 rose significantly in CK8/18⁺ TECs after transfected with pCMV-CCL21. The over-expression of CCL21 could increased the expressions of antigen presentation-related genes in CK8/18⁺ TECs in MG patients.

  19. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells.

    PubMed

    Checa, Marco; Hagood, James S; Velazquez-Cruz, Rafael; Ruiz, Victor; García-De-Alba, Carolina; Rangel-Escareño, Claudia; Urrea, Francisco; Becerril, Carina; Montaño, Martha; García-Trejo, Semiramis; Cisneros Lira, José; Aquino-Gálvez, Arnoldo; Pardo, Annie; Selman, Moisés

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549), was exposed to cigarette smoke extract (CSE) for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12) and rat (RLE-6TN) epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.

  20. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells

    PubMed Central

    Checa, Marco; Hagood, James S.; Velazquez-Cruz, Rafael; Ruiz, Victor; García-De-Alba, Carolina; Rangel-Escareño, Claudia; Urrea, Francisco; Becerril, Carina; Montaño, Martha; García-Trejo, Semiramis; Cisneros Lira, José; Aquino-Gálvez, Arnoldo; Pardo, Annie; Selman, Moisés

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549), was exposed to cigarette smoke extract (CSE) for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12) and rat (RLE-6TN) epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers. PMID:26934369

  1. CYP1A1 and CYP1B1 gene expression and DNA adduct formation in normal human mammary epithelial cells exposed to benzo[a]pyrene in the absence or presence of chlorophyllin.

    PubMed

    John, Kaarthik; Divi, Rao L; Keshava, Channa; Orozco, Christine C; Schockley, Marie E; Richardson, Diana L; Poirier, Miriam C; Nath, Joginder; Weston, Ainsley

    2010-06-28

    Benzo[a]pyrene (BP) is a potent pro-carcinogen and ubiquitous environmental pollutant. Here, we examined the induction and modulation of CYP1A1 and CYP1B1 and 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG) adduct formation in DNA from 20 primary normal human mammary epithelial cell (NHMEC) strains exposed to BP (4muM) in the absence or presence of chlorophyllin (5muM). Real-time polymerase chain reaction (RT-PCR) analysis revealed strong induction of both CYP1A1 and CYP1B1 by BP, with high levels of inter-individual variability. Variable BPdG formation was found in all strains by r7, t8-dihydroxy-t-9, 10 epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA chemiluminescence assay (CIA). Chlorophyllin mitigated BP-induced CYP1A1 and CYP1B1 gene expression in all 20 strains when administered with BP. Chlorophyllin, administered prior to BP-exposure, mitigated CYP1A1 expression in 18/20 NHMEC strains (p<0.005) and CYP1B1 expression in 17/20 NHMEC strains (p<0.005). Maximum percent reductions of CYP1A1 and CYP1B1 gene expression and BPdG adduct formation were observed when cells were pre-dosed with chlorophyllin followed by administration of the carcinogen with chlorophyllin (p<0.005 for CYP1A1 and CYP1B1 expression and p<0.0005 for BPdG adducts). Therefore, chlorophyllin is likely to be a good chemoprotective agent for a large proportion of the human population.

  2. Expression and Function of CD44 in Epithelial Ovarian Carcinoma

    PubMed Central

    Sacks, Joelle D.; Barbolina, Maria V.

    2015-01-01

    CD44, a cell surface glycoprotein, has been increasingly implicated in the pathogenesis and progression of epithelial ovarian cancer, the deadliest gynecologic malignancy in women. Here, we review recent reports on the expression and function of CD44 in epithelial ovarian carcinoma. Further functional data for CD44 in peritoneal adhesion and metastatic progression and its association with stem cells is highlighted. Recent studies utilizing CD44 for therapeutic targeting are also discussed. PMID:26569327

  3. Expression and Function of CD44 in Epithelial Ovarian Carcinoma.

    PubMed

    Sacks, Joelle D; Barbolina, Maria V

    2015-11-11

    CD44, a cell surface glycoprotein, has been increasingly implicated in the pathogenesis and progression of epithelial ovarian cancer, the deadliest gynecologic malignancy in women. Here, we review recent reports on the expression and function of CD44 in epithelial ovarian carcinoma. Further functional data for CD44 in peritoneal adhesion and metastatic progression and its association with stem cells is highlighted. Recent studies utilizing CD44 for therapeutic targeting are also discussed.

  4. Differential transformation of mammary epithelial cells by Wnt genes.

    PubMed Central

    Wong, G T; Gavin, B J; McMahon, A P

    1994-01-01

    The mouse Wnt family includes at least 10 genes that encode structurally related secreted glycoproteins. Wnt-1 and Wnt-3 were originally identified as oncogenes activated by the insertion of mouse mammary tumor virus in virus-induced mammary adenocarcinomas, although they are not expressed in the normal mammary gland. However, five other Wnt genes are differentially expressed during development of adult mammary tissue, suggesting that they may play distinct roles in various phases of mammary gland growth and development. Induction of transformation by Wnt-1 and Wnt-3 may be due to interference with these normal regulatory events; however, there is no direct evidence for this hypothesis. We have tested Wnt family members for the ability to induce transformation of cultured mammary cells. The results demonstrate that the Wnt gene family can be divided into three groups depending on their ability to induce morphological transformation and altered growth characteristics of the C57MG mammary epithelial cell line. Wnt-1, Wnt-3A, and Wnt-7A were highly transforming and induced colonies which formed and shed balls of cells. Wnt-2, Wnt-5B, and Wnt-7B also induced transformation but with a lower frequency and an apparent decrease in saturation density. In contrast, Wnt-6 and two other family members which are normally expressed in C57MG cells, Wnt-4 and Wnt-5A, failed to induce transformation. These data demonstrate that the Wnt genes have distinct effects on cell growth and should not be regarded as functionally equivalent. Images PMID:8065359

  5. Novel radiation response genes identified in gene-trapped MCF10A mammary epithelial cells.

    PubMed

    Malone, Jennifer; Ullrich, Robert

    2007-02-01

    We have used a gene-trapping strategy to screen human mammary epithelial cells for radiation response genes. Relative mRNA expression levels of five candidate genes in MCF10A cells were analyzed, both with and without exposure to radiation. In all five cases, the trapped genes were significantly down-regulated after radiation treatment. Sequence analysis of the fusion transcripts identified the trapped genes: (1) the human androgen receptor, (2) the uncharacterized DREV1 gene, which has known homology to DNA methyltransferases, (3) the human creatine kinase gene, (4) the human eukaryotic translation elongation factor 1 beta 2, and (5) the human ribosomal protein L27. All five genes were down-regulated significantly after treatment with varying doses of ionizing radiation (0.10 to 4.0 Gy) and at varying times (2-30 h after treatment). The genes were also analyzed in human fibroblast and lymphoblastoid cell lines to determine whether the radiation response being observed was cell-type specific. The results verified that the observed radiation response was not a cell-type-specific phenomenon, suggesting that the genes play essential roles in the radiation damage control pathways. This study demonstrates the potential of the gene-trap approach for the identification and functional analysis of novel radiation response genes.

  6. Expression of Sox genes in tooth development.

    PubMed

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  7. Expression of Sox genes in tooth development

    PubMed Central

    KAWASAKI, KATSUSHIGE; KAWASAKI, MAIKO; WATANABE, MOMOKO; IDRUS, ERIK; NAGAI, TAKAHIRO; OOMMEN, SHELLY; MAEDA, TAKEYASU; HAGIWARA, NOBUKO; QUE, JIANWEN; SHARPE, PAUL T.; OHAZAMA, ATSUSHI

    2017-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development. PMID:26864488

  8. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    PubMed Central

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study , we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA – mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. PMID:26780400

  9. ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6.

    PubMed

    Miller, Marina; Tam, Arvin B; Cho, Jae Youn; Doherty, Taylor A; Pham, Alexa; Khorram, Naseem; Rosenthal, Peter; Mueller, James L; Hoffman, Hal M; Suzukawa, Maho; Niwa, Maho; Broide, David H

    2012-10-09

    Orosomucoid like 3 (ORMDL3) has been strongly linked with asthma in genetic association studies, but its function in asthma is unknown. We demonstrate that in mice ORMDL3 is an allergen and cytokine (IL-4 or IL-13) inducible endoplasmic reticulum (ER) gene expressed predominantly in airway epithelial cells. Allergen challenge induces a 127-fold increase in ORMDL3 mRNA in bronchial epithelium in WT mice, with lesser 15-fold increases in ORMDL-2 and no changes in ORMDL-1. Studies of STAT-6-deficient mice demonstrated that ORMDL3 mRNA induction highly depends on STAT-6. Transfection of ORMDL3 in human bronchial epithelial cells in vitro induced expression of metalloproteases (MMP-9, ADAM-8), CC chemokines (CCL-20), CXC chemokines (IL-8, CXCL-10, CXCL-11), oligoadenylate synthetases (OAS) genes, and selectively activated activating transcription factor 6 (ATF6), an unfolded protein response (UPR) pathway transcription factor. siRNA knockdown of ATF-6α in lung epithelial cells inhibited expression of SERCA2b, which has been implicated in airway remodeling in asthma. In addition, transfection of ORMDL3 in lung epithelial cells activated ATF6α and induced SERCA2b. These studies provide evidence of the inducible nature of ORMDL3 ER expression in particular in bronchial epithelial cells and suggest an ER UPR pathway through which ORMDL3 may be linked to asthma.

  10. ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6

    PubMed Central

    Miller, Marina; Tam, Arvin B.; Cho, Jae Youn; Doherty, Taylor A.; Pham, Alexa; Khorram, Naseem; Rosenthal, Peter; Mueller, James L.; Hoffman, Hal M.; Suzukawa, Maho; Niwa, Maho; Broide, David H.

    2012-01-01

    Orosomucoid like 3 (ORMDL3) has been strongly linked with asthma in genetic association studies, but its function in asthma is unknown. We demonstrate that in mice ORMDL3 is an allergen and cytokine (IL-4 or IL-13) inducible endoplasmic reticulum (ER) gene expressed predominantly in airway epithelial cells. Allergen challenge induces a 127-fold increase in ORMDL3 mRNA in bronchial epithelium in WT mice, with lesser 15-fold increases in ORMDL-2 and no changes in ORMDL-1. Studies of STAT-6–deficient mice demonstrated that ORMDL3 mRNA induction highly depends on STAT-6. Transfection of ORMDL3 in human bronchial epithelial cells in vitro induced expression of metalloproteases (MMP-9, ADAM-8), CC chemokines (CCL-20), CXC chemokines (IL-8, CXCL-10, CXCL-11), oligoadenylate synthetases (OAS) genes, and selectively activated activating transcription factor 6 (ATF6), an unfolded protein response (UPR) pathway transcription factor. siRNA knockdown of ATF-6α in lung epithelial cells inhibited expression of SERCA2b, which has been implicated in airway remodeling in asthma. In addition, transfection of ORMDL3 in lung epithelial cells activated ATF6α and induced SERCA2b. These studies provide evidence of the inducible nature of ORMDL3 ER expression in particular in bronchial epithelial cells and suggest an ER UPR pathway through which ORMDL3 may be linked to asthma. PMID:23011799

  11. Does FACS perturb gene expression?

    PubMed

    Richardson, Graham M; Lannigan, Joanne; Macara, Ian G

    2015-02-01

    Fluorescence activated cell sorting is the technique most commonly used to separate primary mammary epithelial sub-populations. Many studies incorporate this technique before analyzing gene expression within specific cellular lineages. However, to our knowledge, no one has examined the effects of fluorescence activated cell sorting (FACS) separation on short-term transcriptional profiles. In this study, we isolated a heterogeneous mixture of cells from the mouse mammary gland. To determine the effects of the isolation and separation process on gene expression, we harvested RNA from the cells before enzymatic digestion, following enzymatic digestion, and following a mock FACS sort where the entire cohort of cells was retained. A strict protocol was followed to minimize disruption to the cells, and to ensure that no subpopulations were enriched or lost. Microarray analysis demonstrated that FACS causes minimal disruptions to gene expression patterns, but prior steps in the mammary cell isolation process are followed by upregulation of 18 miRNA's and rapid decreases in their predicted target transcripts. © 2015 International Society for Advancement of Cytometry. © 2015 International Society for Advancement of Cytometry.

  12. Antioxidative effects of astaxanthin against nitric oxide-induced oxidative stress on cell viability and gene expression in bovine oviduct epithelial cell and the developmental competence of bovine IVM/IVF embryos.

    PubMed

    Jang, H Y; Ji, S J; Kim, Y H; Lee, H Y; Shin, J S; Cheong, H T; Kim, J T; Park, I C; Kong, H S; Park, C K; Yang, B K

    2010-12-01

    The aim of the present study was to elucidate the fundamental mechanism of bovine oviduct epithelial cell (BOEC) co-culture on developmental capacity of bovine in vitro oocyte maturation/in vitro fertilization (IVM/IVF) embryos. We examined the effects of astaxanthin against nitric oxide-induced oxidative stress on cell viability by MTT assay, lipid peroxidation (LPO) by using thiobarbituric acid (TBA) reaction for malondialdehyde (MDA) and the expression of antioxidant genes (CuZnSOD, MnSOD and Catalase) or apoptosis genes (Bcl-2, Caspase-3 and Bax) by RT-PCR in BOEC. We also evaluated the developmental rates of bovine IVM/IVF embryos co-cultured with BOEC pre-treated with astaxanthin (500 μM) in the presence or absence of sodium nitroprusside (SNP, 1000 μM) for 24 h. Cell viability in BOEC treated with SNP (50-2000 μM) lowered, while astaxanthin addition (50-500 μM) increased it in a dose-dependent manner. Cell viability in astaxanthin plus SNP (1000 μM) gradually recovered according to the increase in astaxanthin additions (100-500 mM). The LPO in astaxanthin group (50-500 μM) gradually decreased in a dose dependent manner and among SNP or astaxanthin plus SNP group, SNP alone and astaxanthin (50 μM) plus SNP shown a significant increase than other groups (p < 0.05). Expression of apoptosis or antioxidant genes was detected by RT-PCR. Bcl-2 and antioxidant genes were detected in astaxanthin or astaxanthin plus SNP group, and Caspase-3 and Bax genes were only found in SNP group. When bovine IVM/IVF embryos were cultured for 6-7 days under co-culture system such as BOEC treated with astaxanthin in the presence or absence of SNP, the developmental ability to blastocysts in 500 μM astaxanthin group was the highest of all groups. These results suggest that astaxanthin has a antioxidative effect on cell viability and LPO of BOEC, and development of bovine IVM/IVF embryos due to the induction of antioxidant genes and suppression of

  13. An enhancer from the 8q24 prostate cancer risk region is sufficient to direct reporter gene expression to a subset of prostate stem-like epithelial cells in transgenic mice

    PubMed Central

    Ting, Man-Chun; Liao, Chun-Peng; Yan, Chunli; Jia, Li; Groshen, Susan; Frenkel, Baruch; Roy-Burman, Pradip; Coetzee, Gerhard A.; Maxson, Robert

    2012-01-01

    SUMMARY Regions in the 8q24 gene desert contribute significantly to the risk of prostate cancer and other adult cancers. This region contains several DNA regions with enhancer activity in cultured cells. One such segment, histone acetylation peak 10 (AcP10), contains a risk single nucleotide polymorphism (SNP) that is significantly associated with the pathogenesis of colorectal, prostate and other cancers. The mechanism by which AcP10 influences cancer risk remains unknown. Here we show that AcP10 contains a sequence that is highly conserved across terrestrial vertebrates and is capable in transgenic mice of directing reporter gene expression to a subset of prostate lumenal epithelial cells. These cells include a small population of Nkx3.1-positive cells that persist even after androgen ablation. Castration-resistant Nkx3.1-positive (CARN) cells were shown by others to function both as stem cells and cells of origin of prostate cancer. Our results thus provide a mechanism by which AcP10 could influence prostate cancer risk. PMID:22279083

  14. Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain

    PubMed Central

    1995-01-01

    We cloned a novel ankyrin, Ank3, from mouse kidney cDNA. The full- length transcript is predicted to encode a 214-kD protein containing an 89 kD, NH2 terminal "repeat" domain; a 65 kD, central "spectrin- binding" domain; and a 56 kD, COOH-terminal "regulatory" domain. The Ank3 gene maps to mouse Chromosome 10, approximately 36 cM from the centromere, a locus distinct from Ank1 and Ank2. Ank3 is the major kidney ankyrin. Multiple transcripts of approximately 7.5, 6.9, 6.3, 5.7, 5.1, and 4.6 kb are highly expressed in kidney where Ank1 and Ank2 mRNAs are barely detectable. The smaller mRNAs (< or = 6.3 kb) lack the entire repeat domain. These transcripts have a unique 5'untranslated region and NH2-terminal sequence and encode a predicted protein of 121 kD. Two small sequences of 21 and 18 amino acids are alternatively spliced at the junction of the repeat and spectrin-binding domains in the larger (> or = 6.9 kb) RNAs. Alternative splicing of a 588 bp sequence (corresponding to a 21.5-kD acidic amino acid sequence) within the regulatory domain also occurs. Ank3 is much more widely expressed than previously described ankyrins. By Northern hybridization or immunocytochemistry, it is present in most epithelial cells, in neuronal axons, in muscle cells, and in megakaryocytes/platelets, macrophages, and the interstitial cells of Leydig (testis). On immunoblots, an antibody raised to a unique regions of the regulatory domain detects multiple Ank3 isoforms in the kidney (215, 200, 170, 120, 105 kD) and in other tissues. The 215/200 kD and 120/105-kD kidney proteins are close to the sizes predicted for the 7.5/6.9- and 6.3/5.7- kb RNAs (with/without the 588-bp acidic insert). Interestingly, it appears that Ank3 exhibits a polarized distribution only in tissues that express the approximately 7.0-kb isoforms, the only isoforms in the kidney that contain the repeat domain. In tissues where smaller transcripts (< or = 6.3 kb) are expressed. Ank3 is diffusely distributed in some

  15. Airway Epithelial miRNA Expression Is Altered in Asthma

    PubMed Central

    Solberg, Owen D.; Ostrin, Edwin J.; Love, Michael I.; Peng, Jeffrey C.; Bhakta, Nirav R.; Nguyen, Christine; Solon, Margaret; Nguyen, Cindy; Barczak, Andrea J.; Zlock, Lorna T.; Blagev, Denitza P.; Finkbeiner, Walter E.; Ansel, K. Mark; Arron, Joseph R.; Erle, David J.

    2012-01-01

    Rationale: Changes in airway epithelial cell differentiation, driven in part by IL-13, are important in asthma. Micro-RNAs (miRNAs) regulate cell differentiation in many systems and could contribute to epithelial abnormalities in asthma. Objectives: To determine whether airway epithelial miRNA expression is altered in asthma and identify IL-13–regulated miRNAs. Methods: We used miRNA microarrays to analyze bronchial epithelial brushings from 16 steroid-naive subjects with asthma before and after inhaled corticosteroids, 19 steroid-using subjects with asthma, and 12 healthy control subjects, and the effects of IL-13 and corticosteroids on cultured bronchial epithelial cells. We used quantitative polymerase chain reaction to confirm selected microarray results. Measurements and Main Results: Most (12 of 16) steroid-naive subjects with asthma had a markedly abnormal pattern of bronchial epithelial miRNA expression by microarray analysis. Compared with control subjects, 217 miRNAs were differentially expressed in steroid-naive subjects with asthma and 200 in steroid-using subjects with asthma (false discovery rate < 0.05). Treatment with inhaled corticosteroids had modest effects on miRNA expression in steroid-naive asthma, inducing a statistically significant (false discovery rate < 0.05) change for only nine miRNAs. qPCR analysis confirmed differential expression of 22 miRNAs that were highly differentially expressed by microarrays. IL-13 stimulation recapitulated changes in many differentially expressed miRNAs, including four members of the miR-34/449 family, and these changes in miR-34/449 family members were resistant to corticosteroids. Conclusions: Dramatic alterations of airway epithelial cell miRNA levels are a common feature of asthma. These alterations are only modestly corrected by inhaled corticosteroids. IL-13 effects may account for some of these alterations, including repression of miR-34/449 family members that have established roles in airway

  16. Pax-6 is expressed early in the differentiation of a corneal epithelial model system.

    PubMed

    García-Villegas, Refugio; Escamilla, Juan; Sánchez-Guzmán, Erika; Pastén, Angela; Hernández-Quintero, Miriam; Gómez-Flores, Eber; Castro-Muñozledo, Federico

    2009-08-01

    Pax-6 is a regulatory gene with a major role during visual system development, but its association with corneal epithelial differentiation is not clearly established. Using the RCE1-(5T5) cell line, which mimics corneal epithelial differentiation, we analyzed Pax-6 biological role. Immunostaining of proliferating colonies and confluent sheets showed that Pax-6-positive cells were also K3 keratin-positive, suggesting that Pax-6 is expressed in differentiating cells. Pax-6 mRNA was barely expressed in early cell cultures; but after confluence, its levels raised up to fivefold as demonstrated by Northern blot and RT-qPCR. The raise in Pax-6 expression preceded for 9 h the increase in LDH-H and LDH-M mRNAs, previously shown as early markers of corneal epithelial cell differentiation. The full-length mRNAs encoding for the two major Pax-6 isoforms were found at very low levels in proliferating cells, and abundantly expressed in the confluent stratified epithelia; Pax-6 mRNA was 2- to 2.5-fold more abundant than Pax-6(5a) mRNA. The ectopic expression of Pax-6 or Pax-6(5a) decreased proliferative ability leading to the formation of abortive, non-proliferative colonies. In contrast, culture conditions that delay or block corneal epithelial cell differentiation reduced or inhibited the expression of Pax-6. Collectively, results show that Pax-6 is the earlier differentiation marker expressed by corneal epithelial cells, and open the possibility for a major role of Pax-6 as the main driver of the differentiation of corneal epithelial cells.

  17. WT1 expression induces features of renal epithelial differentiation in mesenchymal fibroblasts.

    PubMed

    Hosono, S; Luo, X; Hyink, D P; Schnapp, L M; Wilson, P D; Burrow, C R; Reddy, J C; Atweh, G F; Licht, J D

    1999-01-14

    The WT1 tumor suppressor gene, implicated in hereditofamilial and sporadic Wilms' tumor, is required for normal renal development and is up-regulated during the mesenchymal-epithelial transition. NIH3T3 fibroblasts overexpressing WT1 were less proliferative, larger in size and more firmly attached to tissue culture plastic, suggesting an alteration of their state of differentiation. These cells were studied in vivo by subcutaneous injection into nude mice. The resulting tumors exhibited epithelioid histopathology and formed desmosome-like structures. Molecular analyses of these WT1 expressing fibroblasts grown in culture and in nude mice revealed significant alterations in the expression of many kidney epithelial markers. These studies indicate that WT1 expression can initiate features of a program of epithelial differentiation consistent with a prominent role for WT1 in the mesenchymal epithelial transition that occurs during renal development. Through this work we identified a number of novel target genes for the WT1 transcription factor, including uvomorulin, integrin alpha8 and perlecan, and suggest that WTI may activate the IGF-II gene, also implicated in the development of Wilms' tumor.

  18. Dynamic Chromatin Modification Sustains Epithelial-Mesenchymal Transition following Inducible Expression of Snail-1

    PubMed Central

    Javaid, Sarah; Zhang, Jianmin; Anderssen, Endre; Black, Josh C.; Wittner, Ben S.; Tajima, Ken; Ting, David T.; Smolen, Gromoslaw A.; Zubrowski, Matthew; Desai, Rushil; Maheswaran, Shyamala; Ramaswamy, Sridhar; Whetstine, Johnathan R.; Haber, Daniel A.

    2014-01-01

    SUMMARY Epithelial-mesenchymal transition (EMT) is thought to contribute to cancer metastasis, but its underlying mechanisms are not well understood. To define early steps in this cellular transformation, we analyzed human mammary epithelial cells with tightly regulated expression of Snail-1, a master regulator of EMT. After Snail-1 induction, epithelial markers were repressed within 6 hr, and mesenchymal genes were induced at 24 hr. Snail-1 binding to its target promoters was transient (6–48 hr) despite continued protein expression, and it was followed by both transient and long-lasting chromatin changes. Pharmacological inhibition of selected histone acetylation and demethylation pathways suppressed the induction as well as the maintenance of Snail-1-mediated EMT. Thus, EMT involves an epigenetic switch that may be prevented or reversed with the use of small-molecule inhibitors of chromatin modifiers. PMID:24360956

  19. Role of TGFBIp in Wound Healing and Mucin Expression in Corneal Epithelial Cells

    PubMed Central

    Maeng, Yong-Sun; Lee, Ga-Hyun; Lee, Boram; Choi, Seung-Il; Kim, Tae-im

    2017-01-01

    Purpose Transforming growth factor-β-induced protein (TGFBIp) is highly expressed in the cornea, and mutant TGFBIp induces corneal diseases. However, the function of TGFBIp in cornea epithelium is not fully investigated. Here, we tested the importance of TGFBIp in regulation of gene expression and corneal epithelial cell (CEC) activity. Materials and Methods The effect of TGFBIp on CEC activity was analyzed by cell migration, adhesion, proliferation and wound healing assay. Analysis of gene expression was examined by western blot and quantitative reverse transcription PCR. Results The results demonstrated that TGFBIp increased adhesion, migration, proliferation, and wound healing of CECs. Analysis of gene expression presented that TGFBIp-stimulated CECs exhibited increased expression of mucin family genes, such as MUC1, -4, -5AC, and -16. Furthermore, TGFBIp treatment increased the expression of MUC1, -4, -5AC, -7, and -16 in conjunctival epithelial cells. TGFBIp also increased the activity of intracellular signaling molecules ERK and AKT in CECs. Using pharmacologic inhibitors of ERK and AKT, we showed that the expression of mucin genes by TGFBIp is mediated by the activation of ERK and AKT signaling. Conclusion Our findings demonstrate that the locally generated TGFBIp in the cornea may contribute to wound healing of CECs by enhancing the migration, adhesion, and proliferation of CECs. In addition, our results suggest that TGFBIp has a protective effect on ocular surfaces by inducing the expression of mucin genes in corneal and conjunctival epithelial cells. These data suggest that TGFBIp is a useful therapeutic target for patients with corneal wounds. PMID:28120575

  20. Immunohistochemical expression of Bcl-2 in oral epithelial dysplasia and oral squamous cell carcinoma.

    PubMed

    Juneja, S; Chaitanya, N Babu; Agarwal, M

    2015-01-01

    The B cell lymphoma-2 gene is a proto-oncogene whose protein product inhibits apoptosis. Its role is associated with keeping cells alive, but not by stimulating them to proliferation, as other proto-oncogenes do. Increased expression of protein product of Bcl-2 gene appears in the early phase of carcinogenesis leading to apoptosis impairment and in consequence to the progression of neoplastic changes. To evaluate and compare the expression of Bcl-2 protein in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). Sixty cases of formalin-fixed paraffin-embedded archival specimens comprising of 30 cases of leukoplakia with oral epithelial dysplasia and 30 cases of OSCC were taken for immunohistochemical analysis using monoclonal antibody against anti-human Bcl-2 oncoprotein. Immunostaining for Bcl-2 protein was identified in basal and parabasal layers as granular cytoplasmic staining in oral epithelial dysplasia. In OSCC, Bcl-2 immunoreactivity was most prominent in the peripheral cells of the infiltrating tumor islands which diminished toward the center in well-differentiated and moderately differentiated OSCC, whereas stronger and more diffuse expression of Bcl-2 oncoprotein was seen in poorly differentiated OSCC. Overall positivity of 26.7% (8/30) was observed in oral epithelial dysplasia and 30% (9/30) in OSCC in this study. Altered expression of Bcl-2 oncoprotein may be an early molecular event which leads to prolonged cell survival, increased chances of accumulation of genetic alterations, and subsequent increase in malignant transformation potential.

  1. Expression of IL-4/IL-13 receptors in differentiating human airway epithelial cells

    PubMed Central

    Martin, Linda D.; Stern, Randi; Laxman, Bharathi; Marroquin, Bertha A.

    2010-01-01

    IL-4 and IL-13 elicit several important responses in airway epithelium including chemokine secretion and mucous secretion that may contribute to airway inflammation, cell migration, and differentiation. These cytokines have overlapping but not identical effector profiles likely due to shared subunits in their receptor complexes. These receptors are variably described in epithelial cells, and the relative expression, localization, and function of these receptors in differentiated and repairing epithelial cells are not clear. We examined IL-4/IL-13 receptor expression and localization in primary airway epithelial cells collected from normal human lungs and grown under conditions yielding both undifferentiated and differentiated cells inclusive of basal, goblet, and ciliated cell phenotypes. Gene expression of the IL-4Rα, IL-2Rγc, IL-13Rα1, and IL-13Rα2 receptor subunits increased with differentiation, but different patterns of localization and protein abundance were seen for each subunit based on both differentiation and the cell subtypes present. Increased expression of receptor subunits observed in more differentiated cells was associated with more substantial functional responses to IL-4 stimulation including increased eotaxin-3 expression and accelerated migration after injury. We demonstrate substantial differences in IL-4/IL-13 receptor subunit expression and responsiveness to IL-4 based on the extent of airway epithelial cell differentiation and suggest that these differences may have functional consequences in airway inflammation. PMID:20729386

  2. All-Trans Retinoic Acid Increases Aquaporin 3 Expression in Human Vaginal Epithelial Cells.

    PubMed

    Lee, Hyun-Suk; Kim, Sun-Ouck; Ahn, Kyuyoun; Park, Kwangsung

    2016-12-01

    Water channel aquaporin 3 (AQP3) is an aquaglyceroporin that transports small neutral solutes and water. All-trans retinoic acid (ATRA), a member of the retinoid drug class, acts as a regulator in several biological processes. To investigate the effect of ATRA on the expression of AQP3 in human vaginal epithelial cells. Human vaginal mucosal epithelial cells (CRL2616) were treated with ATRA 0, 0.01, 0.1, and 1 μmol/L for 24 hours to examine the dose-dependent effects of ATRA and with ATRA 1 μmol/L for 0, 3, 6, 12, and 24 hours. The expression of AQP3 and retinoic acid receptor (RAR) was determined by western blot analysis and reverse transcription polymerase chain reaction. AQP3 was detected in the cell membrane of human vaginal epithelial cells. ATRA increased the protein expression and mRNA levels of AQP3 in a dose-dependent manner (P < .05). ATRA also increased the protein expression of RARα (P < .05). Treatment of CRL2616 cells with an RAR antagonist (Ro 41-5253) significantly decreased AQP3 protein expression (P < .05). ATRA mediated by RARα increased AQP3 gene and protein expression in human vaginal mucosal epithelial cells. These results imply that AQP3 regulated by ATRA could play an important role in the mechanism of vaginal lubrication. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. GS-5759, a Bifunctional β2-Adrenoceptor Agonist and Phosphodiesterase 4 Inhibitor for Chronic Obstructive Pulmonary Disease with a Unique Mode of Action: Effects on Gene Expression in Human Airway Epithelial Cells.

    PubMed

    Joshi, Taruna; Yan, Dong; Hamed, Omar; Tannheimer, Stacey L; Phillips, Gary B; Wright, Clifford D; Kim, Musong; Salmon, Michael; Newton, Robert; Giembycz, Mark A

    2017-02-01

    (R)-6-[(3-{[4-(5-{[2-hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl]amino}pent-1-yn-1-yl)phenyl] carbamoyl}phenyl)sulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide trifluoroacetic acid (GS-5759) is a bifunctional ligand composed of a quinolinone-containing pharmacophore [β2-adrenoceptor agonist orthostere (β2A)] found in several β2-adrenoceptor agonists, including indacaterol, linked covalently to a phosphodiesterase 4 (PDE4) inhibitor related to 6-[3-(dimethylcarbamoyl)benzenesulphonyl]-4-[(3-methoxyphenyl)amino]-8-methylquinoline-3-carboxamide (GSK 256066) by a pent-1-yn-1-ylbenzene spacer. GS-5759 had a similar affinity for PDE4B1 and the native β2-adrenoceptor expressed on BEAS-2B human airway epithelial cells. However, compared with the monofunctional parent compound, β2A, the KA of GS-5759 for the β2-adrenoceptor was 35-fold lower. Schild analysis determined that the affinities of the β-adrenoceptor antagonists, (2R,3R)-1-[(2,3-dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl) amino]-2-butanol (ICI 118551) and propranolol, were agonist-dependent, being significantly lower for GS-5759 than β2A. Collectively, these data can be explained by "forced proximity," bivalent binding where the pharmacophore in GS-5759 responsible for PDE4 inhibition also interacts with a nonallosteric domain within the β2-adrenoceptor that enhances the affinity of β2A for the orthosteric site. Microarray analyses revealed that, after 2-hour exposure, GS-5759 increased the expression of >3500 genes in BEAS-2B cells that were highly rank-order correlated with gene expression changes produced by indacaterol and GSK 256066 in combination (Ind/GSK). Moreover, the line of regression began close to the origin with a slope of 0.88, indicating that the magnitude of most gene expression changes produced by Ind/GSK was quantitatively replicated by GS-5759. Thus, GS-5759 is a novel compound exhibiting dual β2-adrenoceptor agonism and PDE4 inhibition

  4. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  5. Elevated tropomyosin expression is associated with epithelial-mesenchymal transition of lens epithelial cells.

    PubMed

    Kubo, Eri; Hasanova, Nailia; Fatma, Nigar; Sasaki, Hiroshi; Singh, Dhirendra P

    2013-01-01

    Injury to lens epithelial cells (LECs) leads to epithelial-mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α-smooth muscle actin (α-SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up-regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non-cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α-SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm-based inhibitors for postponing PCO and cataractogenesis.

  6. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  7. Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity.

    PubMed

    Yao, Fei; Kausalya, Jaya P; Sia, Yee Yen; Teo, Audrey S M; Lee, Wah Heng; Ong, Alicia G M; Zhang, Zhenshui; Tan, Joanna H J; Li, Guoliang; Bertrand, Denis; Liu, Xingliang; Poh, Huay Mei; Guan, Peiyong; Zhu, Feng; Pathiraja, Thushangi Nadeera; Ariyaratne, Pramila N; Rao, Jaideepraj; Woo, Xing Yi; Cai, Shaojiang; Mulawadi, Fabianus H; Poh, Wan Ting; Veeravalli, Lavanya; Chan, Chee Seng; Lim, Seong Soo; Leong, See Ting; Neo, Say Chuan; Choi, Poh Sum D; Chew, Elaine G Y; Nagarajan, Niranjan; Jacques, Pierre-Étienne; So, Jimmy B Y; Ruan, Xiaoan; Yeoh, Khay Guan; Tan, Patrick; Sung, Wing-Kin; Hunziker, Walter; Ruan, Yijun; Hillmer, Axel M

    2015-07-14

    Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H(+) leakage, and the fusion might contribute to invasiveness once a cell is transformed.

  8. Modulation of ovine SBD-1 expression by 17beta-estradiol in ovine oviduct epithelial cells

    PubMed Central

    2012-01-01

    Background Mucosal epithelia, including those of the oviduct, secrete antimicrobial innate immune molecules (AIIMS). These have bactericidal/bacteriostatic functions against a variety of pathogens. Among the AIIMs, sheep β-defensin-1 (SBD-1) is one of the most potent. Even though the SBD-1 is an important AIIM and it is regulated closely by estrogenic hormone, the regulation mechanism of 17β-estradiol has not been clearly established. We investigated the effects of E2 and agonist or inhibitor on ovine oviduct epithelial cells in regard to SBD-1 expression using reverse transcription quantitative PCR (RT-qPCR). In addition, three different pathways were inhibited separately or simultaneously to confirm the effect of different inhibitors in the regulation mechanism. Results 17beta-estradiol (E2) induced release of SBD-1 in ovine oviduct epithelial cells. SBD-1 expression was mediated through G-protein-coupled receptor 30 (GPR30) and Estrogen Receptors (ERs) activation in ovine oviduct epithelial cell. Inhibition of gene expression of protein kinase A (PKA), protein kinase C (PKC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) led to a decreased SBD-1 expression. Conclusions Taken together, E2-induced up-regulation of SBD-1 expressions were GPR30-dependent during prophase and ERs-dependent during later-stage in ovine oviduct epithelial cells, and we assume that the effect was completed by the PKA, PKC, and NF-κB pathways simultaneous. PMID:22920556

  9. HNF4α Regulates Claudin-7 Protein Expression during Intestinal Epithelial Differentiation

    PubMed Central

    Farkas, Attila E.; Hilgarth, Roland S.; Capaldo, Christopher T.; Gerner-Smidt, Christian; Powell, Doris R.; Vertino, Paula M.; Koval, Michael; Parkos, Charles A.; Nusrat, Asma

    2016-01-01

    The intestinal epithelium is a dynamic barrier that maintains the distinct environments of intestinal tissue and lumen. Epithelial barrier function is defined principally by tight junctions, which, in turn, depend on the regulated expression of claudin family proteins. Claudins are expressed differentially during intestinal epithelial cell (IEC) differentiation. However, regulatory mechanisms governing claudin expression during epithelial differentiation are incompletely understood. We investigated the molecular mechanisms regulating claudin-7 during IEC differentiation. Claudin-7 expression is increased as epithelial cells differentiate along the intestinal crypt–luminal axis. By using model IECs we observed increased claudin-7 mRNA and nascent heteronuclear RNA levels during differentiation. A screen for potential regulators of the CLDN7 gene during IEC differentiation was performed using a transcription factor/DNA binding array, CLDN7 luciferase reporters, and in silico promoter analysis. We identified hepatocyte nuclear factor 4α as a regulatory factor that bound endogenous CLDN7 promoter in differentiating IECs and stimulated CLDN7 promoter activity. These findings support a role of hepatocyte nuclear factor 4α in controlling claudin-7 expression during IEC differentiation. PMID:26216285

  10. CDX2 increases SLC7A7 expression and proliferation of pig intestinal epithelial cells

    PubMed Central

    Li, Xiang-guang; Xu, Gao-feng; Zhai, Zhen-ya; Gao, Chun-qi; Yan, Hui-chao; Xi, Qian-yun; Guan, Wu-tai; Wang, Song-bo; Wang, Xiu-qi

    2016-01-01

    Nutrient absorption mediated by nutrient transporters expressed in the intestinal epithelium supplies substrates to support intestinal processes, including epithelial cell proliferation. We evaluated the role of Caudal type homeobox 2 (CDX2), an intestine-specific transcription factor, in the proliferation of pig intestinal epithelial cells (IPEC-1) and searched for novel intestinal nutrient transporter genes activated by CDX2. Our cloned pig CDX2 cDNA contains a “homeobox” DNA binding motif, suggesting it is a transcriptional activator. CDX2 overexpression in IPEC-1 cells increased cell proliferation, the percentage of cells in S/G2 phase, and the abundance of transcripts of the cell cycle-related genes Cyclin A2; Cyclin B; Cyclin D2; proliferating cell nuclear antigen; and cell cycle cyclin-dependent kinases 1, 2 and 4, as well as the predicted CDX2 target genes SLC1A1, SLC5A1 and SLC7A7. In addition, luciferase reporter and chromatin immunoprecipitation assays revealed that CDX2 binds directly to the SLC7A7 promoter. This is the first report of CDX2 function in pig intestinal epithelial cells and identifies SLC7A7 as a novel CDX2 target gene. Our findings show that nutrient transporters are activated during CDX2-induced proliferation of normal intestinal epithelial cells. PMID:27121315

  11. Gene expression during normal and malignant differentiation

    SciTech Connect

    Andersson, L.C.; Gahmberg, C.G.; Ekblom, P.

    1985-01-01

    This book contains 18 selections. Some of the titles are: Exploring Carcinogenesis with Retroviral and Cellular Oncogenes; Retroviruses, Oncogenes and Evolution; HTLV and Human Neoplasi; Modes of Activation of cMyc Oncogene in B and T Lymphoid Tumors; The Structure and Function of the Epidermal Growth Factor Receptor: Its Relationship to the Protein Product of the V-ERB-B Oncogene; and Expression of Human Retrovirus Genes in Normal and Neoplastic Epithelial Cells.

  12. Promoter methylation regulates Helicobacter pylori-stimulated cyclooxygenase-2 expression in gastric epithelial cells.

    PubMed

    Akhtar, M; Cheng, Y; Magno, R M; Ashktorab, H; Smoot, D T; Meltzer, S J; Wilson, K T

    2001-03-15

    Cyclooxygenase (COX)-2, the inducible form of the rate-limiting enzyme for prostaglandin synthesis, is up-regulated in gastrointestinal cancers and is a key mediator of epithelial cell growth. Helicobacter pylori is causally linked to gastric cancer. In H. pylori gastritis, COX-2 expression localizes to the subepithelial region, with variable levels in the epithelium. In contrast, in gastric cancer, COX-2 strongly predominates in the epithelium, suggesting that the transition to consistent epithelial COX-2 overexpression may be a critical molecular event in gastric carcinogenesis. Because aberrant promoter methylation inhibits expression of a variety of genes in gastrointestinal cancers, we sought to determine whether methylation of the COX-2 promoter could regulate the response to H. pylori in gastric epithelial cells. We assessed COX-2 expression and promoter methylation status in six gastric epithelial cell lines. In all four of the cell lines that exhibited basal expression of COX-2 and a significant increase in expression in response to H. pylori, the COX-2 promoter was unmethylated, whereas in the two cell lines that did not express COX-2, the COX-2 promoter was methylated. Treatment of COX-2-methylated cells with the demethylating agent 5-azacytidine had a modest effect on COX-2 expression, but when 5-azacytidine-treated cells were subsequently stimulated with H. pylori, there was a significant, 5-10-fold enhancement of both COX-2 mRNA and protein expression and release of the COX-2 product, prostaglandin E2. In contrast, in COX-2-expressing cell lines that were unmethylated at the COX-2 promoter, 5-azacytidine had no effect on H. pylori-stimulated COX-2 expression. These findings suggest that loss of COX-2 methylation may facilitate COX-2 expression and promote gastric carcinogenesis associated with H. pylori infection.

  13. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer.

    PubMed

    Jaszczynska-Nowinka, Karolina; Rucinski, Marcin; Ziolkowska, Agnieszka; Markowska, Anna; Malendowicz, Ludwik K

    2014-05-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  14. The expression profiles of acidic epithelial keratins in ameloblastoma.

    PubMed

    Pal, Samir Kumar; Sakamoto, Kei; Aragaki, Tadanobu; Akashi, Takumi; Yamaguchi, Akira

    2013-04-01

    To characterize the subtypes of ameloblastoma by differentiation markers. Expression of 9 major acidic epithelial keratins was immunohistochemically examined in 28 ameloblastomas. Keratin 15 (K15) expression patterns corresponded to histological variants: follicular, plexiform and acanthomatous. Tumor nests comprising K15-expressing basal cells mimicked oral epithelium or dental lamina, and tumor nests comprising K15-negative basal cells mimicked outer enamel epithelium. Keratin 19 (K19) was consistently expressed in solid/multicystic ameloblastoma and unicystic ameloblastoma, while peripheral ameloblastoma and desmoplastic ameloblastoma contained K19-negative cells. The 4 current subtypes had unvaried expression patterns within each group. However, they could be divided into 2 groups by K19 expression pattern: solid/multicystic and unicystic versus extraosseous/peripheral and desmoplastic. K15 expression pattern represented various types of differentiation for tumor nests mimicking tooth germ and oral epithelium. The results clarify the homogeneity and heterogeneity of ameloblastoma cell lineage and differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Expression and roles of CCN2 in dental epithelial cells.

    PubMed

    Shimo, Tsuyoshi; Koyama, Eiki; Kurio, Naito; Matsumoto, Kenichi; Okui, Tatsuo; Ibaragi, Soichiro; Yoshioka, Norie; Sasaki, Akira

    2015-01-01

    Connective tissue growth factor (CCN2) regulates diverse cellular functions, including tooth development. In order to delineate the precise role of CCN2 in the epithelium during odontogenesis, we investigated how it is expressed and what roles it may have in primary cultures of epithelial cells derived from developing tooth germ of the bovine fetus. Ccn2 mRNA and protein were strongly expressed in the inner dental epithelium, which is consistent with the expression of transforming growth factor-β2 mRNA and proliferating cell nuclear antigen. Bone morphogenetic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2) were also expressed in the inner dental epithelium, indicating that CCN2 functionally interacts with these factors in the epithelium. The stimulatory effects of FGF2 on cell proliferation and BMP4 on cell differentiation were additively up-regulated by CCN2 in a newly-established dental epithelium cell culture. Taken together, our data provide clear evidence that CCN2 is synthesized by inner dental epithelial cells, and appears to act as an autocrine factor, which regulates dental epithelial cell proliferation and differentiation in concert with growth factors. Copyright © 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Neuroendocrine marker expression in thyroid epithelial tumors.

    PubMed

    Satoh, F; Umemura, S; Yasuda, M; Osamura, R Y

    2001-01-01

    Tissue sections from 50 cases with thyroid tumors, composed of 11 follicular adenomas, 10 follicular carcinomas, 14 papillary carcinomas, 10 anaplastic carcinomas, and 5 medullary carcinomas, were immunohistochemically analyzed for representative neuroendocrine markers. Immunoexpression ratios of these neuroendocrine markers were as follows: Follicular adenomas, neuron-specific enolase (NSE)63.6%, synaptophysin (SynP) 45.5%, Leu7 27.3%, NCAM 45.5%, chromogranin A (CgA) 0%, SNAP25 0%; follicular carcinomas, NSE 90.0%, SynP 80.0%, Leu7 80.0%, NCAM 0%, CgA 0%, SNAP25 0%; papillary carcinomas, NSE 85.7%, SynP 78.6%, Leu7 100%, NCAM 7.0%, CgA 0%, SNAP25.0%; anaplastic carcinomas, NSE 10.0%, SynP 0%, Leu7 0%, NCAM 0%, CgA 0%, SNAP25 0%; medullary carcinomas, NSE 100%, SynP100%, Leu7 80.0%, NCAM 40.0%, CgA 100%, SNAP25 100%. The two follicular carcinomas, which were morphologically characterized by "insular" (or "alveolar") arrangements, showed distinct immunoexpression of NSE and SynP at the same time. By in situ hybridization (ISH), expression of mRNA for NSE was confirmed in cases with marked immunoexpression of NSE. Although no endocrine granules were found, our results suggested that a specific type of follicular carcinoma, i.e., insular variant, may be immaturely neuroendocrine-differentiated.

  17. Onset of keratin 17 expression coincides with the definition of major epithelial lineages during skin development.

    PubMed

    McGowan, K M; Coulombe, P A

    1998-10-19

    The type I keratin 17 (K17) shows a peculiar localization in human epithelial appendages including hair follicles, which undergo a growth cycle throughout adult life. Additionally K17 is induced, along with K6 and K16, early after acute injury to human skin. To gain further insights into its potential function(s), we cloned the mouse K17 gene and investigated its expression during skin development. Synthesis of K17 protein first occurs in a subset of epithelial cells within the single-layered, undifferentiated ectoderm of embryonic day 10.5 mouse fetuses. In the ensuing 48 h, K17-expressing cells give rise to placodes, the precursors of ectoderm-derived appendages (hair, glands, and tooth), and to periderm. During early development, there is a spatial correspondence in the distribution of K17 and that of lymphoid-enhancer factor (lef-1), a DNA-bending protein involved in inductive epithelial-mesenchymal interactions. We demonstrate that ectopic lef-1 expression induces K17 protein in the skin of adult transgenic mice. The pattern of K17 gene expression during development has direct implications for the morphogenesis of skin epithelia, and points to the existence of a molecular relationship between development and wound repair.

  18. Localisation and expression of aquaporin subtypes in epithelial ovarian tumours.

    PubMed

    Yang, Jian-Hua; Yu, Yu-Qun; Yan, Chun-xiao

    2011-09-01

    To characterise AQP subtype localisation and expression in epithelial ovarian tumours, immunohistochemistry was used to assess the localisation and expression of AQP1-9 in 30 benign tumour cases, 30 borderline tumour cases, 50 malignant tumour cases and 20 normal ovarian tissue cases. Multiple AQP subtypes were expressed in epithelial ovarian tumours, with each AQP subtype displaying a different pattern of localisation and expression. AQP1 was mainly expressed in the microvascular endothelium, and AQP 2-9 were mainly expressed in tumour cells. Most AQP subtypes co-localised in the basolateral membranes of the epithelia of benign tumours and plasma membranes of malignant tumour cells. The positive rates for AQP1, 5, 6, 7, 8, and 9 were over 50%, but those for AQP2, 3 and 4 were only 10-40%. The expression of AQP1, 5 and 9 in malignant and borderline tumours was significantly higher than that in benign tumours (P<0.05) and normal ovarian tissue (P<0.05). However, AQP6 expression in ovarian malignant and borderline tumours was significantly lower than that in benign tumours (P<0.01) or normal ovarian tissue (P<0.01). AQP1 expression was increased in cases with ascites volumes greater than 1000 mL (P<0.05), AQP5 expression was greater in cases with lymph node metastasis (P<0.05), and more AQP9 expression was observed in G3 cases versus G1 and G2 cases (P<0.01). These results suggest that changes in the distribution and expression of AQP subtypes may be involved in ovarian carcinogenesis. This study presents a novel avenue of research that could illuminate the mechanism of ovarian carcinogenesis and treatment.

  19. Gastrin stimulates MMP-1 expression in gastric epithelial cells: putative role in gastric epithelial cell migration.

    PubMed

    Kumar, J Dinesh; Steele, Islay; Moore, Andrew R; Murugesan, Senthil V; Rakonczay, Zoltan; Venglovecz, Viktoria; Pritchard, D Mark; Dimaline, Rodney; Tiszlavicz, Laszlo; Varro, Andrea; Dockray, Graham J

    2015-07-15

    The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling.

  20. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection

    PubMed Central

    Gong, Ai-Yu; Hu, Guoku; Zhou, Rui; Liu, Jun; Feng, Yaoyu; Soukup, Garrett A.; Chen, Xian-Ming

    2011-01-01

    Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrheal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia, a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa. Expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), on infected epithelial cell surfaces may facilitate adhesion and recognition of lymphocytes at infection sites. MicroRNAs (miRNAs) are small RNA molecules of 23 nucleotides that negatively regulate protein-coding gene expression via translational suppression or mRNA degradation. We recently reported that microRNA-221 (miR-221) regulates ICAM-1 translation through targeting the ICAM-1 3′-untranslated region (UTR). In this study, we tested the role of miR-221 in regulating ICAM-1 expression in epithelial cells in response to C. parvum infection using an in vitro model of human biliary cryptosporidiosis. Up-regulation of ICAM-1 at both message and protein levels was detected in epithelial cells following C. parvum infection. Inhibition of ICAM-1 transcription with actinomycin D could only partially block C. parvum-induced ICAM-1 expression at the protein level. Cryptosporidium parvum infection decreased miR-221 expression in infected epithelial cells. When cells were transfected with a luciferase reporter construct covering the miR-221 binding site in the ICAM-1 3′-UTR and then exposed to C. parvum, an enhanced luciferase activity was detected. Transfection of miR-221 precursor abolished C. parvum-stimulated ICAM-1 protein expression. In addition, expression of ICAM-1 on infected epithelial cells facilitated epithelial adherence of co-cultured Jurkat cells. These results indicate that miR-221-mediated translational suppression controls ICAM-1 expression in epithelial cells in response to C. parvum infection. PMID:21236259

  1. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.

    PubMed

    Amankwah, Ernest K; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chen, Zhihua; Chen, Y Ann; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E; Berchuck, Andrew; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-12-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.

  2. Usefulness of epithelial cell adhesion molecule expression in the algorithmic approach to Lynch syndrome identification.

    PubMed

    Musulen, Eva; Blanco, Ignacio; Carrato, Cristina; Fernandez-Figueras, Maria Teresa; Pineda, Marta; Capella, Gabriel; Ariza, Aurelio

    2013-03-01

    Lynch syndrome (LS), the most frequent form of hereditary colorectal cancer syndrome, is caused by germ-line mutations in the mismatch repair system genes. Recently, a new mechanism involving the epithelial cell adhesion molecule (EPCAM)/TACSTD1 gene has been shown to be responsible in cases with abnormal MSH2 expression. Of interest, 3' exons deletions of the EPCAM gene, which is located upstream of MSH2 in chromosome 2, are associated with MSH2 promoter hypermethylation. EPCAM protein, expressed in epithelial tissues, is encoded by the EPCAM/TACSTD1 gene. Our study's aim was to explore EPCAM expression in colorectal carcinomas of MSH2-associated LS cases to evaluate the usefulness of EPCAM protein expression in the algorithm approach to LS population screening. We included a total of 19 MSH2-negative colorectal carcinomas from 14 different patients in whom we were able to perform a complete germ-line analysis. Nine patients showed a deleterious germ-line mutation that involved the MSH2 gene in 3 instances and the EPCAM gene exon 9 in 6 instances. All patients harboring the EPCAM mutation belonged to the same family. Of the 19 colorectal carcinomas, EPCAM expression loss was seen in only 5 tumors, all of them from patients showing a germ-line EPCAM deletion. Of interest, 6 tumors from 3 different patients carrying the same germ-line EPCAM deletion showed normal EPCAM expression. In conclusion, owing to the high specificity of EPCAM protein expression to identify LS patients carrying an EPCAM deletion, we recommend adding EPCAM immunohistochemistry to the LS diagnostic algorithm in MSH2-negative colorectal carcinoma.

  3. Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype.

    PubMed Central

    Crabtree, J E; Covacci, A; Farmery, S M; Xiang, Z; Tompkins, D S; Perry, S; Lindley, I J; Rappuoli, R

    1995-01-01

    AIMS--To use a range of natural phenotypically variant strains of Helicobacter pylori with disparate CagA and VacA (vacuolating cytotoxin) expression to determine which bacterial factors are more closely associated with epithelial interleukin-8 (IL-8) induction. METHODS--Gastric epithelial cells (AGS and KATO-3) were co-cultured with five H pylori strains which were variously shown to express the cagA gene/CagA protein, VacA and/or to exhibit biological cytotoxicity. Secreted IL-8 was assayed by enzyme leaked immunosorbent assay (ELISA) and IL-8 messenger RNA (mRNA) was assayed using a reverse transcription polymerase chain reaction based technique (RT-PCR). RESULTS--Strains expressing CagA, including a variant strain (D931) which is non-cytotoxic and does not express the VacA protein, were found to upregulate epithelial IL-8 secretion and gene expression. In contrast, strains with no CagA expression, even in the presence of VacA and/or biological cytotoxicity, (G104, BA142), failed to induce IL-8 protein or mRNA above control values. CONCLUSIONS--These results strongly support a role for H pylori CagA or coexpressed factors other than the cytotoxin in upregulation of gastric epithelial IL-8. Increased epithelial IL-8 secretion and concomitant neutrophil chemotaxis and activation in addition to direct cytotoxicity may be an important factor in tissue damage and ulceration. Images PMID:7706517

  4. Enhanced Expression of Hedgehog Pathway Proteins in Oral Epithelial Dysplasia.

    PubMed

    Dias, Rosane Borges; Valverde, Ludmila de Faro; Sales, Caroline Brandi Schlaepfer; Guimarães, Vanessa Sousa Nazaré; Cabral, Márcia Grillo; de Aquino Xavier, Flávia Caló; Dos Santos, Jean Nunes; Ramos, Eduardo Antônio Gonçalves; Gurgel Rocha, Clarissa Araújo

    2016-09-01

    The aim of this study was to characterize the profile of the proteins involved in the Hedgehog signaling pathway to aid in the understanding of the pathogenesis of oral epithelial dysplasia (OED). The proteins SHH, PTCH1, HHIP, SUFU, GLI1, and cyclin D1 were evaluated by immunohistochemistry in 25 cases of OED, 4 of non-neoplasic oral mucosa, 8 of inflammatory fibrous hyperplasia and 5 of hyperkeratosis. SHH proteins were predominant in OED cases. Although PTCH1 protein was observed in all cases, this molecule was more highly expressed in OED. The inhibitor protein SUFU was present in OED and HHIP protein was overexpressed in OED. GLI1 proteins were predominantly found in the nuclei of epithelial cells in OED. Basal and suprabasal cells in the epithelial lining were positive for cyclin D1 only in OED. In conclusion, comparative analysis of the proteins involved in the Hedgehog pathway suggests that enhanced expression of these proteins can play an important role in the biological behavior of OED.

  5. Trichostatin A inhibits beta-casein expression in mammary epithelial cells

    SciTech Connect

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2002-02-22

    Many aspects of cellular behavior are affected by information derived from association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein beta-casein. Previously, we defined the minimal ECM- and Prl-responsive enhancer element BCE-1 from the upstream region of the beta-casein gene. We also found that BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous b-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of b-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM could mediate rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types.

  6. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways.

    PubMed

    DiFranco, Kristina M; Mulligan, Jennifer K; Sumal, Aman S; Diamond, Gill

    2017-01-24

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which often leads to protein misfolding and no CFTR surface localization. This then leads to chronic airway infections, inflammation, and tissue damage. Although vitamin D has been explored as a therapy to treat CF due to its antimicrobial-inducing and anti-inflammatory properties, the effect of 1,25-dihydroxyvitamin D3 (1α,25(OH)2D3) on CFTR directly has not been studied. We treated cultured healthy and diseased bronchial epithelial cells (BEC) with 10nM 1α,25(OH)2D3 for 6 and 24h and found that 1α,25(OH)2D3 increases both mRNA and protein CFTR levels using RT-qPCR, flow cytometry and fluorescence immunohistochemistry. Treatment of CF cells with 10nM 1α,25(OH)2D3 led to an increase in both total and surface CFTR expression, suggesting 1α,25(OH)2D3 could be used to increase properly localized CFTR in airway cells. To determine if BEC could convert the more clinically relevant cholecalciferol to 25OHD3, cultured non-CF and CF BECs were treated with a range of cholecalciferol concentrations, and 25OHD3 levels were quantified by ELISA. We found that 25OHD3 levels increased in a concentration-dependent manner. Treatment of BEC with 10μM cholecalciferol led to increases in both CYP24A1 and CFTR mRNA levels, even when added to the apical surface of cells grown in an air-liquid interface, suggesting that topical administration of vitamin D could be used therapeutically. To demonstrate this in vivo, we intranasally delivered 1μM 1α,25(OH)2D3 into mice. After 6h, we observed induction of both Cyp24A1 and CFTR expression in the tracheas of treated mice. The major findings of this study are that vitamin D can be converted to the active form when topically administered to the airway, and this could be used to increase CFTR levels in patients with CF. This could potentially be useful as an adjunctive therapy, together with

  7. CIRCADIAN CLOCK AND CELL CYCLE GENE EXPRESSION

    PubMed Central

    Metz, Richard P.; Qu, Xiaoyu; Laffin, Brian; Earnest, David; Porter, Weston W.

    2009-01-01

    Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation and differentiation marker genes. Expression of the clock genes, Per1 and Bmal1, were elevated in differentiated HC-11 cells whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, while Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels while Per1 and Bmal1 expression changed in conjunction with ß-casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation. PMID:16261617

  8. Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition.

    PubMed

    Diepenbruck, Maren; Waldmeier, Lorenz; Ivanek, Robert; Berninger, Philipp; Arnold, Phil; van Nimwegen, Erik; Christofori, Gerhard

    2014-04-01

    The cellular changes during an epithelial-mesenchymal transition (EMT) largely rely on global changes in gene expression orchestrated by transcription factors. Tead transcription factors and their transcriptional co-activators Yap and Taz have been previously implicated in promoting an EMT; however, their direct transcriptional target genes and their functional role during EMT have remained elusive. We have uncovered a previously unanticipated role of the transcription factor Tead2 during EMT. During EMT in mammary gland epithelial cells and breast cancer cells, levels of Tead2 increase in the nucleus of cells, thereby directing a predominant nuclear localization of its co-factors Yap and Taz via the formation of Tead2-Yap-Taz complexes. Genome-wide chromatin immunoprecipitation and next generation sequencing in combination with gene expression profiling revealed the transcriptional targets of Tead2 during EMT. Among these, zyxin contributes to the migratory and invasive phenotype evoked by Tead2. The results demonstrate that Tead transcription factors are crucial regulators of the cellular distribution of Yap and Taz, and together they control the expression of genes critical for EMT and metastasis.

  9. Expression of growth factor and receptor mRNAs in skin epithelial cells following acute cutaneous injury.

    PubMed Central

    Antoniades, H. N.; Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C. P.; Lynch, S. E.

    1993-01-01

    We report that acute injury induces the expression of selective growth factor and growth factor receptors in the epithelial cells of the wounded tissue. In situ hybridization analysis of skin biopsy specimens obtained after cutaneous injury in swine demonstrated the induction of the expression of transforming growth factor-alpha, its receptor, epidermal growth factor-R, acidic fibroblast growth factor, and basic fibroblast growth factor messenger RNAs in the skin epithelial cells of the wounded tissue. There was no significant expression in the epithelial cells of control, uninjured tissues. The expression levels were maximal during the period of active tissue repair (1 to 5 days after injury) and were totally suppressed upon the healing of the wounded tissues. In contrast, insulinlike growth factor-I, (IGF-I), IGF-I receptor, and IGF-II receptor messenger RNAs were expressed in the epithelial cells of both the control, uninjured tissues and in tissue specimens obtained after injury. There was no significant expression of IGF-II messenger RNA in the epithelial cells before or after injury. It seems that injury induces the coordinated expression of selective growth factor and growth factor receptor genes whose products contribute to the regulation of the complex processes involved in tissue repair and remodeling. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8386442

  10. Expression of inducible nitric oxide in human lung epithelial cells.

    PubMed

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  11. Gastrin stimulates MMP-1 expression in gastric epithelial cells: putative role in gastric epithelial cell migration

    PubMed Central

    Kumar, J. Dinesh; Steele, Islay; Moore, Andrew R.; Murugesan, Senthil V.; Rakonczay, Zoltan; Venglovecz, Viktoria; Pritchard, D. Mark; Dimaline, Rodney; Tiszlavicz, Laszlo; Varro, Andrea

    2015-01-01

    The pyloric antral hormone gastrin plays a role in remodeling of the gastric epithelium, but the specific targets of gastrin that mediate these effects are poorly understood. Glandular epithelial cells of the gastric corpus express matrix metalloproteinase (MMP)-1, which is a potential determinant of tissue remodeling; some of these cells express the CCK-2 receptor at which gastrin acts. We have now examined the hypothesis that gastrin stimulates expression of MMP-1 in the stomach. We determined MMP-1 transcript abundance in gastric mucosal biopsies from Helicobacter pylori negative human subjects with normal gastric mucosal histology, who had a range of serum gastrin concentrations due in part to treatment with proton pump inhibitors (PPI). The effects of gastrin were studied on gastric epithelial AGS-GR cells using Western blot and migration assays. In human subjects with increased serum gastrin due to PPI usage, MMP-1 transcript abundance was increased 2-fold; there was also increased MMP-7 transcript abundance but not MMP-3. In Western blots, gastrin increased proMMP-1 abundance, as well that of a minor band corresponding to active MMP-1, in the media of AGS-GR cells, and the response was mediated by protein kinase C and p42/44 MAP kinase. There was also increased MMP-1 enzyme activity. Gastrin-stimulated AGS-GR cell migration in both scratch wound and Boyden chamber assays was inhibited by MMP-1 immunoneutralization. We conclude that MMP-1 expression is a target of gastrin implicated in mucosal remodeling. PMID:25977510

  12. Trehalose maintains vitality of mouse epididymal epithelial cells and mediates gene transfer.

    PubMed

    Qu, Bin; Gu, Yihua; Shen, Jian; Qin, Jinzhou; Bao, Jianqiang; Hu, Yuan; Zeng, Wenxian; Dong, Wuzi

    2014-01-01

    In the present study, trehalose was utilized to improve primary culture of mouse epididymal epithelial cells in vitro, and to enhance naked DNA delivery in epididymis in vivo. During the six-day culture, the proliferation activity of the cells in the medium with addition of trehalose was higher than that of those cells cultured in absence of trehalose (p<0.01). To determine the optimal concentration for cell proliferation, a series of trehalose concentrations (0, 60, 120, 180 mM) were tested, and the result indicated that the cell in the medium with 120 mM trehalose showed the highest proliferation potential. The epididymis epithelial cells were cultured in the medium containing 120 mM trehalose upon 16th passage, and they continued expressing markers of epididymal epithelial cell, such as rE-RABP, AR and ER-beta. Our study also indicated that trehalose concentrations of 120-240 mM, especially 180 mM, could effectively enhance DNA delivery into the mouse epididymis epithelial cell in vitro. Moreover, trehalose could induce in vivo expression of exogenous DNA in epididymal epithelial cells and help to internalize plasmid into sperm,which did not influence motility of sperm when the mixture of trehalose (180 mM) and DNA was injected into epididymal lumen through efferent tubule. This study suggested that trehalose, as an effective and safer reagent, could be employed potentially to maintain vitality of mouse epididymal epithelial cells during long-term culture in vitro and to mediate in vitro and in vivo gene transfer.

  13. Respiratory epithelial cell expression of human transforming growth factor-alpha induces lung fibrosis in transgenic mice.

    PubMed Central

    Korfhagen, T R; Swantz, R J; Wert, S E; McCarty, J M; Kerlakian, C B; Glasser, S W; Whitsett, J A

    1994-01-01

    Increased production of EGF or TGF-alpha by the respiratory epithelial cells has been associated with the pathogenesis of various forms of lung injury. Growth factors and cytokines are thought to act locally, via paracrine and autocrine mechanisms, to stimulate cell proliferation and matrix deposition by interstitial lung cells resulting in pulmonary fibrosis. To test whether TGF-alpha mediates pulmonary fibrotic responses, we have generated transgenic mice expressing human TGF-alpha under control of regulatory regions of the human surfactant protein C (SP-C) gene. Human TGF-alpha mRNA was expressed in pulmonary epithelial cells in the lungs of the transgenic mice. Adult mice bearing the SP-C-TGF-alpha transgene developed severe pulmonary fibrosis. Fibrotic lesions were observed in peribronchial, peribronchiolar, and perivascular regions, as well as subjacent to pleural surfaces. Lesions consisted of fibrous tissue that included groups of epithelial cells expressing endogenous SP-C mRNA, consistent with their identification as distal respiratory epithelial cells. Peripheral fibrotic regions consisted of thickened pleura associated with extensive collagen deposition. Alveolar architecture was disrupted in the transgenic mice with loss of alveoli in the lung parenchyma. Pulmonary epithelial cell expression of TGF-alpha in transgenic mice disrupts alveolar morphogenesis and produces fibrotic lesions mediated by paracrine signaling between respiratory epithelial and interstitial cells of the lung. Images PMID:8163670

  14. The core planar cell polarity gene, Vangl2, directs adult corneal epithelial cell alignment and migration.

    PubMed

    Findlay, Amy S; Panzica, D Alessio; Walczysko, Petr; Holt, Amy B; Henderson, Deborah J; West, John D; Rajnicek, Ann M; Collinson, J Martin

    2016-10-01

    This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro. Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration.

  15. The core planar cell polarity gene, Vangl2, directs adult corneal epithelial cell alignment and migration

    PubMed Central

    Findlay, Amy S.; Panzica, D. Alessio; Walczysko, Petr; Holt, Amy B.; Henderson, Deborah J.; West, John D.; Rajnicek, Ann M.

    2016-01-01

    This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro. Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration. PMID:27853583

  16. Epithelial expression of cytokeratins 15 and 19 in vitiligo.

    PubMed

    Saleh, Fatma Y; Awad, Sherif S; Nasif, Ghada A; Halim, Christein

    2016-12-01

    Cytokeratins (CK) belong to the family of intermediate filament proteins, and among them specific epithelial keratins are considered markers for stem cells activation. This study aims to investigate the expression of CK15 and CK19 as possible stem cell markers in vitiligo during phototherapy. The study was conducted on vitiligo patients receiving narrow-band ultraviolet therapy. Immunohistochemical staining for CK15 and CK19 was carried out, and clinical follow-up continued for 4 weeks. Of 28 patients, CK15 expression was demonstrated in 17 cases (61%) while CK19 expression was demonstrated in 11 cases (39%). Cells expressing positive staining were demonstrated in follicular and interfollicular epithelium. Expression was clearly demonstrated in patients younger than 20 years old, with shorter disease duration, with disease stability, and with normally pigmented hairs. Expression of cytokeratins was significantly correlated to improvement of vitiligo lesions. CK15 and CK19 are expressed in vitiligo during UV repigmentation in the follicular and interfollicular epithelium. This expression of cytokeratins was significantly correlated to improvement and can be considered valuable tool to monitor stem cells stimulation for the sake of the repigmentation process in vitiligo. © 2016 Wiley Periodicals, Inc.

  17. miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells.

    PubMed

    Liao, Yalin; Du, Xiaogu; Lönnerdal, Bo

    2010-09-01

    Lactoferrin (Lf) is an abundantly expressed protein in human milk. Lactoferrin exhibits several important biological functions, and its expression is regulated by multiple environmental factors. Cellular endogenous factors, however, have not been extensively studied with regard to lactoferrin gene expression. In this study, we showed that lactoferrin gene expression and function are directly targeted by miR-214 in HC11 and MCF7 cells. In the lactoferrin mRNA 3 prime untranslated region (UTR) of human, mouse, rat, pig, bovine, camel, and goat species, there is a conserved region that perfectly matches the seed region of miR-214. Transfection of miR-214 mimic in HEK293 cells dose-dependently inhibited the activity of pGL3-control vector containing lactoferrin mRNA 3 prime UTR downstream of the luciferase gene. In HC11 cells, miR-214 overexpression inhibited the induction of lactoferrin expression by beta -estradiol (E2) and dexamethasone-prolactin-insulin (DPI). Furthermore, in MCF7 cells, overexpression of miR-214 markedly decreased lactoferrin expression (P lt 0.05), and inhibition of endogenous miR-214 expression increased lactoferrin expression and cellular apoptotic activities (P lt 0.05). In summary, our data showed that miR-214 is directly involved in lactoferrin expression and lactoferrin mediated cancer susceptibility (proapoptotic activities) in mammary epithelial cells.

  18. Trichostatin A Inhibits β-Casein Expression in Mammary Epithelial Cells

    PubMed Central

    Pujuguet, Philippe; Radisky, Derek; Levy, Dinah; Lacza, Charlemagne; Bissell, Mina J.

    2010-01-01

    Many aspects of cellular behavior are defined by the content of information provided by association of the extracellular matrix (ECM) and with cell membrane receptors. When cultured in the presence of laminin-containing ECM and prolactin (Prl), normal mammary epithelial cells express the milk protein β-casein. We have previously found that the minimal ECM- and Prl-responsive enhancer element BCE-1 was only active when stably integrated into chromatin, and that trichostatin A (TSA), a reagent that leads to alterations in chromatin structure, was able to activate the integrated enhancer element. We now show that endogenous β-casein gene, which is controlled by a genetic assembly that is highly similar to that of BCE-1 and which is also activated by incubation in ECM and Prl, is instead inhibited by TSA. We provide evidence that the differing response of β-casein and BCE-1 to TSA is neither due to an unusual effect of TSA on mammary epithelial cells, nor to secondary consequences from the expression of a separate gene, nor to a particular property of the BCE-1 construct. As a component of this investigation, we also showed that ECM mediated rapid histone deacetylation in mammary epithelial cells. These results are discussed in combination with previous work showing that TSA mediates the differentiation of many types of cancer cells but inhibits differentiation of some nonmalignant cell types. PMID:11746508

  19. Expression of Proteins Involved in Epithelial-Mesenchymal Transition as Predictors of Metastasis and Survival in Breast Cancer Patients

    DTIC Science & Technology

    2015-01-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this research is to investigate protein expression and promoter region DNA ... DNA and methylation assay. 15. SUBJECT TERMS Breast cancer; molecular epidemiology; epithelial-mesenchymal transition; metastasis; metastasis...suppressor genes; immunohistochemistry; DNA methylation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  20. Epithelial-Mesenchymal Transition (EMT) gene variants and Epithelial Ovarian Cancer (EOC) risk

    PubMed Central

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chen, Zhihua; Chen, Y. Ann; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E.; Berchuck, Andrew; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N.A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Introduction Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to EOC risk have been based on small sample sizes and none have sought replication in an independent population. Methods We screened 1254 SNPs in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (p<0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A p-value <0.05 and a false discovery rate (FDR) <0.2 was considered statistically significant. Results In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (OR=1.16, 95%CI=1.07–1.25, p=0.0003, FDR=0.19), while F8 rs7053448 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), F8 rs7058826 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), and CAPN13 rs1983383 (OR=0.79, 95%CI=0.69–0.90, p=0.0005, FDR=0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. Conclusion These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. PMID:26399219

  1. Epithelial membrane protein 1 expression in ovarian serous tumors.

    PubMed

    Demirag, Guzin Gonullu; Kefeli, Mehmet; Kemal, Yasemin; Yucel, Idris

    2016-03-01

    The present study aimed to analyze the clinical significance of epithelial membrane protein 1 (EMP1) expression in ovarian serous tumors. A total of 84 cases of ovarian serous tumor (50 patients with malignant ovarian serous tumors and 34 patients with borderline and benign serous tumors) were retrospectively analyzed. Differences in the expression levels of EMP1 between the malignant and non-malignant tumor groups were evaluated by immunohistochemical staining. In addition, the association between EMP1 expression and prognostic factors in malignant ovarian serous tumors was investigated. The expression levels of EMP1 were significantly reduced in all the 50 malignant ovarian serous tumors, compared with the 34 non-malignant ovarian serous tumors (P<0.000). Reduced expression of EMP1 was correlated with high grade (P=0.009) and stage (P<0.000) of malignant tumors. EMP1 expression was not observed to be correlated with any other investigated parameters, including surgery, type of operation and chemotherapy response (P>0.005). These results indicated that EMP1 may have a significant role as a negative regulator in ovarian serous tumors, and reduced EMP1 expression in serous tumors may be associated with increased disease severity.

  2. Gene Regulation of Intestinal Porcine Epithelial Cells IPEC-J2 Is Dependent on the Site of Deoxynivalenol Toxicological Action

    PubMed Central

    Diesing, Anne-Kathrin; Nossol, Constanze; Ponsuksili, Siriluck; Wimmers, Klaus; Kluess, Jeannette; Walk, Nicole; Post, Andreas; Rothkötter, Hermann-Josef; Kahlert, Stefan

    2012-01-01

    The intestinal epithelial cell layer represents the border between the luminal and systemic side of the gut. The decision between absorption and exclusion of substances is the quintessential function of the gut and varies along the gut axis. Consequently, potentially toxic substances may reach the basolateral domain of the epithelial cell layer via blood stream. The mycotoxin deoxynivalenol (DON) is a Fusarium derived secondary metabolite known to enter the blood stream and displaying a striking toxicity on the basolateral side of polarised epithelial cell layers in vitro. Here we analysed potential mechanisms of apical and basolateral DON toxicity reflected in the gene expression. We used the jejunum-derived, polarised intestinal porcine epithelial cell line IPEC-J2 as an in vitro cell culture model. Luminal and systemic DON challenge of the epithelial cell layer was mimicked by a DON application from the apical or basolateral compartment of membrane inserts for 72 h. We compared the genome-wide gene expression of untreated and DON-treated IPEC-J2 cells with the GeneChip® Porcine Genome Array of Affymetrix. Low basolateral DON (200 ng/mL) application triggered 10 times more gene transcripts in comparison to the corresponding apical application (2539 versus 267) despite the intactness of the challenged cell layer as measured by transepithelial electrical resistance. Analysis of the regulated genes by bioinformatic resource DAVID identified several groups of biochemical pathways modulated by concentration and orientation of DON application. Selected genes representing pathways of the cellular metabolism, information processing and structural design were analysed in detail by quantitative PCR. Our findings clearly show that apical and basolateral challenge of epithelial cell layers trigger different gene response profiles paralleled with a higher susceptibility towards basolateral challenge. The evaluation of toxicological potentials of mycotoxins should take this

  3. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine.

  4. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    SciTech Connect

    Yaswen, P.; Smoll, A.; Stampfer, M.R. ); Peehl, D.M. ); Trask, D.K.; Sager, R. )

    1990-10-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo({alpha})pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type {beta} increased its relative abundance. The protein encoded by NB-1 may have Ca{sup 2{sup plus}} binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined.

  5. Mouse Hair Cycle Expression Dynamics Modeled as Coupled Mesenchymal and Epithelial Oscillators

    PubMed Central

    Tasseff, Ryan; Bheda-Malge, Anjali; DiColandrea, Teresa; Bascom, Charles C.; Isfort, Robert J.; Gelinas, Richard

    2014-01-01

    The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its regulation would shed light on many other complex systems relevant to biological and medical research. Currently, a systematic characterization of gene expression and summarization within the context of a mathematical model is not yet available. Given the cyclic nature of the hair cycle, we felt it was important to consider a subset of genes with periodic expression. To this end, we combined several mathematical approaches with high-throughput, whole mouse skin, mRNA expression data to characterize aspects of the dynamics and the possible cell populations corresponding to potentially periodic patterns. In particular two gene clusters, demonstrating properties of out-of-phase synchronized expression, were identified. A mean field, phase coupled oscillator model was shown to quantitatively recapitulate the synchronization observed in the data. Furthermore, we found only one configuration of positive-negative coupling to be dynamically stable, which provided insight on general features of the regulation. Subsequent bifurcation analysis was able to identify and describe alternate states based on perturbation of system parameters. A 2-population mixture model and cell type enrichment was used to associate the two gene clusters to features of background mesenchymal populations and rapidly expanding follicular epithelial cells. Distinct timing and localization of expression was also shown by RNA and protein imaging for representative genes. Taken together, the evidence suggests that synchronization between expanding epithelial and background mesenchymal cells may be maintained, in part, by inhibitory regulation, and potential mediators of this regulation were identified. Furthermore, the model suggests that impairing this negative

  6. HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells

    PubMed Central

    Krop, Ian E.; Sgroi, Dennis; Porter, Dale A.; Lunetta, Kathryn L.; LeVangie, Rebbecca; Seth, Pankaj; Kaelin, Carolyn M.; Rhei, Esther; Bosenberg, Marcus; Schnitt, Stuart; Marks, Jeffrey R.; Pagon, Zrinka; Belina, Drazen; Razumovic, Jasminka; Polyak, Kornelia

    2001-01-01

    To identify molecular alterations implicated in the initiating steps of breast tumorogenesis, we compared the gene expression profiles of normal and ductal carcinoma in situ (DCIS) mammary epithelial cells by using serial analysis of gene expression (SAGE). Through the pair-wise comparison of normal and DCIS SAGE libraries, we identified several differentially expressed genes. Here, we report the characterization of one of these genes, HIN-1 (high in normal-1). HIN-1 expression is significantly down regulated in 94% of human breast carcinomas and in 95% of preinvasive lesions, such as ductal and lobular carcinoma in situ. This decrease in HIN-1 expression is accompanied by hypermethylation of its promoter in the majority of breast cancer cell lines (>90%) and primary tumors (74%). HIN-1 is a putative cytokine with no significant homology to known proteins. Reintroduction of HIN-1 into breast cancer cells inhibits cell growth. These results indicate that HIN-1 is a candidate tumor suppressor gene that is inactivated at high frequency in the earliest stages of breast tumorogenesis. PMID:11481438

  7. Estradiol antagonism of glucocorticoid-induced GILZ expression in human uterine epithelial cells and murine uterus.

    PubMed

    Whirledge, Shannon; Cidlowski, John A

    2013-01-01

    Sex hormone signaling regulates a variety of functions in the uterine endometrium essential for embryo implantation and immunity. Epithelial cells of the uterine endometrium are the target of the coordinated actions of estradiol (E(2)) and progesterone. However, little information exists regarding the interplay of estrogens with glucocorticoids in this tissue. Using the human uterine epithelial cell line ECC1, E(2) was found to antagonize induction of the glucocorticoid-induced leucine zipper (GILZ) gene expression, which is associated with several of the immune-related functions of glucocorticoids. Interestingly, E(2) antagonizes glucocorticoid regulated nascent RNA GILZ expression within 1 h of hormone treatment. Repression of glucocorticoid-induced GILZ expression requires the estrogen receptor (ER), because both treatment with the ER-antagonist ICI 182,780 and small interfering RNA knockdown of ERα block E(2)'s ability to repress GILZ gene expression. Antagonism of glucocorticoid-induced GILZ expression may not be unique to ERα, as the ERβ agonist Liquiritigenin is also able to antagonize glucocorticoid signaling. Transcriptional regulation appears to be at the level of promoter binding. Both the glucocorticoid receptor and ERα are recruited to regions of the GILZ promoter containing glucocorticoid response elements and the transcriptional start site. Glucocorticoid receptor binding to these regions in the presence of dexamethasone decreases with E(2) treatment. GILZ gene expression was also found to be repressed in the whole mouse uterus treated with a combination of dexamethasone and E(2). Regulation of the antiinflammatory gene GILZ by glucocorticoids and E(2) suggests cross talk between the immune modulating functions of glucocorticoids and the reproductive actions of estradiol signaling.

  8. Overlapping gene coexpression patterns in human medullary thymic epithelial cells generate self-antigen diversity.

    PubMed

    Pinto, Sheena; Michel, Chloé; Schmidt-Glenewinkel, Hannah; Harder, Nathalie; Rohr, Karl; Wild, Stefan; Brors, Benedikt; Kyewski, Bruno

    2013-09-10

    Promiscuous expression of numerous tissue-restricted self-antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential to safeguard self-tolerance. A distinct feature of promiscuous gene expression is its mosaic pattern (i.e., at a given time, each self-antigen is expressed only in 1-3% of mTECs). How this mosaic pattern is generated at the single-cell level is currently not understood. Here, we show that subsets of human mTECs expressing a particular TRA coexpress distinct sets of genes. We identified three coexpression groups comprising overlapping and complementary gene sets, which preferentially mapped to certain chromosomes and intrachromosomal gene clusters. Coexpressed gene loci tended to colocalize to the same nuclear subdomain. The TRA subsets aligned along progressive differentiation stages within the mature mTEC subset and, in vitro, interconverted along this sequence. Our data suggest that single mTECs shift through distinct gene pools, thus scanning a sizeable fraction of the overall repertoire of promiscuously expressed self-antigens. These findings have implications for the temporal and spatial (re)presentation of self-antigens in the medulla in the context of tolerance induction.

  9. Expression of HPIP in epithelial ovarian carcinoma: a clinicopathological study

    PubMed Central

    Wang, Yuping; Meng, Fanling; Liu, Yunduo; Chen, Xiuwei

    2017-01-01

    Objectives Hematopoietic pre-B-cell leukemia transcription factor (PBX)-interacting protein (HPIP) plays an important role in cancer invasion and metastasis. The aim of this study is to investigate the expression of HPIP in epithelial ovarian cancer (EOC). Patients and methods Immunohistochemical method was performed using 42 normal ovarian specimens and 145 specimens with EOC. The correlations of HPIP expression with the clinicopathological factors and prognosis of EOC patients were evaluated. Statistical analyses were performed using the chi-square test, multivariate Cox proportional hazard, and Kaplan–Meier method. Results HPIP expression in EOC was higher than that in normal tissues (P<0.001). HPIP expression was significantly associated with histological grade, International Federation of Gynecology and Obstetrics stage, and lymphatic metastasis of EOC (P<0.05). Patients with high HPIP expression had poorer overall survival and disease-free survival (P<0.001) compared with patients with low HPIP expression. Multivariate Cox analysis demonstrated that HPIP was an independent factor for overall survival and disease-free survival (P<0.05). Conclusion HPIP may be a valuable biomarker for predicting the prognosis of EOC patients and may serve as a potential target for cancer therapy. PMID:28053543

  10. An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells.

    PubMed

    Wang, Y; Liu, L; Moore, D J; Shen, X; Peek, R M; Acra, S A; Li, H; Ren, X; Polk, D B; Yan, F

    2017-03-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells, leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation, this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting immunoglobulin A (IgA) production. p40 upregulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells, which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfr(fl/fl), but not Egfr(fl/fl)-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells, exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B-cell class switching to IgA(+) cells and IgA production, which was suppressed by APRIL receptor-neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells, fecal IgA levels, IgA(+)B220(+), IgA(+)CD19(+), and IgA(+) plasma cells in lamina propria of Egfr(fl/fl), but not of Egfr(fl/fl)-Vil-Cre, mice. Thus p40 upregulates EGFR-dependent APRIL production in intestinal epithelial cells, which may contribute to promoting IgA production.

  11. Genome-wide gain-of-function screen for genes that induce epithelial-to-mesenchymal transition in breast cancer.

    PubMed

    Škalamera, Dubravka; Dahmer-Heath, Mareike; Stevenson, Alexander J; Pinto, Cletus; Shah, Esha T; Daignault, Sheena M; Said, Nur Akmarina B M; Davis, Melissa; Haass, Nikolas K; Williams, Elizabeth D; Hollier, Brett G; Thompson, Erik W; Gabrielli, Brian; Gonda, Thomas J

    2016-09-20

    Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy.

  12. Genome-wide gain-of-function screen for genes that induce epithelial-to-mesenchymal transition in breast cancer

    PubMed Central

    Škalamera, Dubravka; Dahmer-Heath, Mareike; Stevenson, Alexander J.; Pinto, Cletus; Shah, Esha T.; Daignault, Sheena M.; Said, Nur Akmarina B.M.; Davis, Melissa; Haass, Nikolas K.; Williams, Elizabeth D.; Hollier, Brett G.; Thompson, Erik W.; Gabrielli, Brian; Gonda, Thomas J.

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy. PMID:27876705

  13. Associations of epithelial c-kit expression in phyllodes tumours of the breast.

    PubMed

    Tawasil, John; Go, Edna May L; Tsang, Julia Y S; Ni, Yun-Bi; Ko, Chun-Wai; Tse, Gary M

    2015-10-01

    Mammary phyllodes tumours (PT) are rare biphasic neoplasms but have important clinical significance. Both epithelial and stromal components participate in PT development. Despite a number of studies on stromal c-kit in PT, little is known about the role of its epithelial expression. To further evaluate the stromal and epithelial expression of c-kit in a cohort of patients with PT. Expression of c-kit in both epithelial and stromal components was examined and correlated with histological features in PT. Stromal c-kit expression was associated positively with stromal cellularity (median expression=10.0, 30.0 and 50.0 from mild to severe cellularity; p=0.019). Conversely, a significant negative trend between epithelial c-kit expression with stromal pleomorphism (median expression=55.0, 30.0 and 2.5 from mild to severe pleomorphism; p=0.043) and mitosis (median expression=70.0 and 20.0 for low and high mitosis respectively; p=0.003); and a trend of negative correlation with increased PT grade was found. Despite these reverse associations, epithelial and stromal c-kit expressions were positively correlated with each other. Notably, the correlation of stromal c-kit expression with malignant histological features appeared to be stronger in cases with low epithelial c-kit expression but not in those with high epithelial c-kit expression. This study demonstrated the association of epithelial c-kit expression with stromal histological features and stromal c-kit. Interestingly, epithelial c-kit expression affected the strength of the correlation of stromal c-kit with these histological features. These findings provide further evidence of the interaction between the epithelial and stromal components in PT. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Diallyl disulfide induces MUC5B expression via ERK2 in human airway epithelial cells.

    PubMed

    Bae, Chang Hoon; Kwak, Dong Suk; Ye, Sang Baik; Song, Si-Youn; Kim, Yong-Dae

    2012-02-01

    Garlic has been shown to have antimicrobial, hypolipidemic, antithrombotic, antitumor and immunostimulatory properties. The medicinal effects of garlic are derived from the flavonoid and organosulfur components. Diallyl disulfide (DADS), an organosulfur, is the main component responsible for the diverse biological effects of garlic. However, the effects of DADS on mucin gene expression in airway epithelial cells have not been reported to date. Therefore, this study was performed to investigate the effects and brief signaling pathway of DADS associated with MUC5B expression in NCI-H292 epithelial cells using RT-PCR, ELISA, western blot, immunocytochemistry and cell transfection with siRNA. DADS induced MUC5B expression and activated the phosphorylation of ERK1/2 MAPK. In addition, U0126 inhibited DADS-induced MUC5B expression and DADS-activated phosphorylation of ERK1/2 MAPK. Moreover, the immunopositive cells for MUC5B protein did not appear after treatment of DADS with U0126, and the knockdown of ERK2 MAPK by ERK2 MAPK siRNA significantly blocked DADS-induced MUC5B mRNA expression. However, DADS did not activate the phosphorylation of p38 MAPK, and SB203580 did not inhibit DADS-induced MUC5B expression. This is the first study to show that DADS-induced MUC5B expression appears to be regulated by activation of the ERK2 MAPK signaling pathway in human NCI-H292 airway epithelial cells. Copyright © 2011 John Wiley & Sons, Ltd.

  15. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures

    PubMed Central

    Haikala, Heidi M.; Klefström, Juha; Eilers, Martin; Wiese, Katrin E.

    2016-01-01

    ABSTRACT Apoptosis caused by deregulated MYC expression is a prototype example of intrinsic tumor suppression. However, it is still unclear how supraphysiological MYC expression levels engage specific sets of target genes to promote apoptosis. Recently, we demonstrated that repression of SRF target genes by MYC/MIZ1 complexes limits AKT-dependent survival signaling and contributes to apoptosis induction. Here we report that supraphysiological levels of MYC repress gene sets that include markers of basal-like breast cancer cells, but not luminal cancer cells, in a MIZ1-dependent manner. Furthermore, repressed genes are part of a conserved gene signature characterizing the basal subpopulation of both murine and human mammary gland. These repressed genes play a role in epithelium and mammary gland development and overlap with genes mediating cell adhesion and extracellular matrix organization. Strikingly, acute activation of oncogenic MYC in basal mammary epithelial cells is sufficient to induce luminal cell identity markers. We propose that supraphysiological MYC expression impacts on mammary epithelial cell identity by repressing lineage-specific target genes. Such abrupt cell identity switch could interfere with adhesion-dependent survival signaling and thus promote apoptosis in pre-malignant epithelial tissue. PMID:26873145

  16. Nonadditive gene expression in polyploids.

    PubMed

    Yoo, Mi-Jeong; Liu, Xiaoxian; Pires, J Chris; Soltis, Pamela S; Soltis, Douglas E

    2014-01-01

    Allopolyploidy involves hybridization and duplication of divergent parental genomes and provides new avenues for gene expression. The expression levels of duplicated genes in polyploids can show deviation from parental additivity (the arithmetic average of the parental expression levels). Nonadditive expression has been widely observed in diverse polyploids and comprises at least three possible scenarios: (a) The total gene expression level in a polyploid is similar to that of one of its parents (expression-level dominance); (b) total gene expression is lower or higher than in both parents (transgressive expression); and (c) the relative contribution of the parental copies (homeologs) to the total gene expression is unequal (homeolog expression bias). Several factors may result in expression nonadditivity in polyploids, including maternal-paternal influence, gene dosage balance, cis- and/or trans-regulatory networks, and epigenetic regulation. As our understanding of nonadditive gene expression in polyploids remains limited, a new generation of investigators should explore additional phenomena (i.e., alternative splicing) and use other high-throughput "omics" technologies to measure the impact of nonadditive expression on phenotype, proteome, and metabolome.

  17. Identification of human metapneumovirus-induced gene networks in airway epithelial cells by microarray analysis

    SciTech Connect

    Bao, X.; Sinha, M. |; Liu, T.; Hong, C.; Luxon, B.A. |; Garofalo, R.P. ||; Casola, A. ||

    2008-04-25

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections in infants, elderly and immunocompromised patients. Little is known about the response to hMPV infection of airway epithelial cells, which play a pivotal role in initiating and shaping innate and adaptive immune responses. In this study, we analyzed the transcriptional profiles of airway epithelial cells infected with hMPV using high-density oligonucleotide microarrays. Of the 47,400 transcripts and variants represented on the Affimetrix GeneChip Human Genome HG-U133 plus 2 array, 1601 genes were significantly altered following hMPV infection. Altered genes were then assigned to functional categories and mapped to signaling pathways. Many up-regulated genes are involved in the initiation of pro-inflammatory and antiviral immune responses, including chemokines, cytokines, type I interferon and interferon-inducible proteins. Other important functional classes up-regulated by hMPV infection include cellular signaling, gene transcription and apoptosis. Notably, genes associated with antioxidant and membrane transport activity, several metabolic pathways and cell proliferation were down-regulated in response to hMPV infection. Real-time PCR and Western blot assays were used to confirm the expression of genes related to several of these functional groups. The overall result of this study provides novel information on host gene expression upon infection with hMPV and also serves as a foundation for future investigations of genes and pathways involved in the pathogenesis of this important viral infection. Furthermore, it can facilitate a comparative analysis of other paramyxoviral infections to determine the transcriptional changes that are conserved versus the one that are specific to individual pathogens.

  18. Protection of epithelial barrier function by the Crohn's disease associated gene protein tyrosine phosphatase n2.

    PubMed

    Scharl, Michael; Paul, Gisela; Weber, Achim; Jung, Barbara C; Docherty, Michael J; Hausmann, Martin; Rogler, Gerhard; Barrett, Kim E; McCole, Declan F

    2009-12-01

    Protein tyrosine phosphatase N2 (PTPN2) has been identified as a Crohn's disease (CD) candidate gene. However, a role for PTPN2 in the pathogenesis of CD has not been identified. Increased permeability of the intestinal epithelium is believed to contribute prominently to CD. The aim of this study was to determine a possible role for PTPN2 in CD pathogenesis. Intestinal epithelial cell (IEC) lines T(84) and HT29cl.19a were used in all studies. Protein analysis was performed by Western blotting, and protein knockdown was induced by small interfering RNA. Primary samples were from control and CD patients. Here, we demonstrate increased PTPN2 expression in CD intestinal biopsy specimens and that the proinflammatory cytokine interferon (IFN)-gamma increases PTPN2 expression and activity in IEC. Moreover, IFN-gamma-induced STAT1 and STAT3 phosphorylation in IEC is enhanced by PTPN2 knockdown. The cellular energy sensor adenosine monophosphate-activated protein kinase partially regulates the IFN-gamma-induced effects on PTPN2. Additionally, PTPN2 knockdown potentiates IFN-gamma-induced increases in epithelial permeability, accompanied by elevated expression of the pore-forming protein claudin-2. PTPN2 is activated by IFN-gamma and limits IFN-gamma-induced signalling and consequent barrier defects. These data suggest a functional role for PTPN2 in maintaining the intestinal epithelial barrier and in the pathophysiology of CD.

  19. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  20. Heparin-binding epidermal-growth-factor-like growth factor gene expression is induced by scrape-wounding epithelial cell monolayers: involvement of mitogen-activated protein kinase cascades.

    PubMed Central

    Ellis, P D; Hadfield, K M; Pascall, J C; Brown, K D

    2001-01-01

    Peptide growth factors can promote the cell migration and proliferation that is needed to repair epithelia after mechanical or chemical injury. We report here that scrape-wounding rat intestinal epithelial (RIE-1) cell monolayers caused a rapid increase in levels of heparin-binding epidermal-growth-factor-like growth factor (HB-EGF) mRNA, with a maximal response at approx. 1 h. Hybridization in situ showed that transcript induction occurred primarily in cells at or near wound borders. The increase in HB-EGF mRNA was preceded by activation of the p42 mitogen-activated protein kinase (MAPK) in the wounded cell cultures. Moreover, the induction of HB-EGF mRNA was blocked by PD098059 and U0126, inhibitors that prevent the activation of p42/p44 MAPKs and extracellular signal-regulated protein kinase 5 (ERK5). Both p42 MAPK activation and HB-EGF mRNA induction were inhibited by genistein, indicating a requirement for an upstream tyrosine kinase activity. In contrast, neither response was affected by inhibition of phosphoinositide 3-kinase activity, down-regulation of protein kinase C, or disruption of the actin cytoskeleton with cytochalasin B. We conclude that scrape-wounding epithelial cell monolayers induces HB-EGF mRNA expression by a mechanism that most probably requires p42/p44 MAPK activation, although we cannot exclude a role for ERK5. Our results suggest a physiological role for locally synthesized HB-EGF in promoting epithelial repair after injury. PMID:11171084

  1. Connexin expression in nonneoplastic human prostate epithelial cells.

    PubMed

    Saladino, Francesca; Carruba, Giuseppe; Quader, Salmaan T A; Amoroso, Maria; Di Cristina, Antoniette; Webber, Mukta M; Castagnetta, Luigi A M

    2002-06-01

    Expression of gap-junction proteins connexins (Cx), specifically Cx43, Cx32, and Cx26, in both nontumorigenic (RWPE-1) and tumorigenic (RWPE-2) human prostate epithelial cells as well as in two cell clones (WPEI-7 and WPEI-10) originating from the RWPE-1 cell line was investigated. The aim was to determine whether individual connexins are differentially expressed in cultured cells. Western blot analysis revealed striking differences in the expression of individual connexins in the cell lines studied. In particular, Cx43 is largely expressed in RWPE-1 and WPEI-10 cells, whereas Cx32 is expressed predominantly in RWPE-2 and WPEI-7 cells. In addition, both forskolin and estrone increase Cx43 expression levels in WPEI-10 cells, with no apparent effect on WPEI-7 cells. Conversely, forskolin and especially estrone induce a marked increase of Cx32 in WPEI-7 cells, whereas Cx32 expression is limitedly affected by both agents in WPEI-10 cells. Overall, expression levels of Cx43 and Cx32 appear to be inversely related, with RWPE-1 and WPEI-10 cells having a significantly higher Cx43 to Cx32 ratio than that observed in RWPE-2 and WPEI-7 cells. We recently reported that junctional communication could be rescued in RWPE-1 cells by either forskolin or estrone and that restoration of GJIC is associated with an increase of Cx43 or a decrease of Cx32, or both, eventually leading to a marked rise of the Cx43 to Cx32 ratio. Studies are currently ongoing in our laboratories to assess the potential effect of agents increasing the Cx43 to Cx32 ratio on GJIC activity in these systems.

  2. Mechanisms of Legionella pneumophila-induced interleukin-8 expression in human lung epithelial cells

    PubMed Central

    Teruya, Hiromitsu; Higa, Futoshi; Akamine, Morikazu; Ishikawa, Chie; Okudaira, Taeko; Tomimori, Koh; Mukaida, Naofumi; Tateyama, Masao; Heuner, Klaus; Fujita, Jiro; Mori, Naoki

    2007-01-01

    Background Legionella pneumophila is a facultative intracellular bacterium, capable of replicating within the phagosomes of macrophages and monocytes, but little is known about its interaction with human lung epithelial cells. We investigated the effect of L. pneumophila on the expression of interleukin-8 (IL-8) in human A549 alveolar and NCI-H292 tracheal epithelial cell lines. Results Infection of L. pneumophila strain, but not heat-killed strain, resulted in upregulation of IL-8. IL-8 mRNA expression was induced immediately after the infection and its signal became gradually stronger until 24 h after infection. On the other hand, IL-8 expression in A549 cells infected with L. pneumophila lacking a functional type IV secretion system was transient. The IL-8 expression was slightly induced at 16 h and increased at 24 h after infection with flagellin-deficient Legionella. Activation of the IL-8 promoter by L. pneumophila infection occurred through the action of nuclear factor-κB (NF-κB). Transfection of dominant negative mutants of NF-κB-inducing kinase, IκB kinase and IκB inhibited L. pneumophila-mediated activation of IL-8 promoter. Treatment with hsp90 inhibitor suppressed L. pneumophila-induced IL-8 mRNA due to deactivation of NF-κB. Conclusion Collectively, these results suggest that L. pneumophila induces activation of NF-κB through an intracellular signaling pathway that involves NF-κB-inducing kinase and IκB kinase, leading to IL-8 gene transcription, and that hsp90 acts as a crucial regulator in L. pneumophila-induced IL-8 expression, presumably contributing to immune response in L. pneumophila. The presence of flagellin and a type IV secretion system are critical for Legionella to induce IL-8 expression in lung epithelial cells. PMID:18034886

  3. Cigarette smoke induces genetic instability in airway epithelial cells by suppressing FANCD2 expression

    PubMed Central

    Hays, L E; Zodrow, D M; Yates, J E; Deffebach, M E; Jacoby, D B; Olson, S B; Pankow, J F; Bagby, G C

    2008-01-01

    Chromosomal abnormalities are commonly found in bronchogenic carcinoma cells, but the molecular causes of chromosomal instability (CIN) and their relationship to cigarette smoke has not been defined. Because the Fanconi anaemia (FA)/BRCA pathway is essential for maintenance of chromosomal stability, we tested the hypothesis that cigarette smoke suppresses that activity of this pathway. Here, we show that cigarette smoke condensate (CSC) inhibited translation of FANCD2 mRNA (but not FANCC or FANCG) in normal airway epithelial cells and that this suppression of FANCD2 expression was sufficient to induce both genetic instability and programmed cell death in the exposed cell population. Cigarette smoke condensate also suppressed FANCD2 function and induced CIN in bronchogenic carcinoma cells, but these cells were resistant to CSC-induced apoptosis relative to normal airway epithelial cells. We, therefore, suggest that CSC exerts pressure on airway epithelial cells that results in selection and emergence of genetically unstable somatic mutant clones that may have lost the capacity to effectively execute an apoptotic programme. Carcinogen-mediated suppression of FANCD2 gene expression provides a plausible molecular mechanism for CIN in bronchogenic carcinogenesis. PMID:18475298

  4. α(E)-Catenin Regulates BMP-7 Expression and Migration in Renal Epithelial Cells

    PubMed Central

    Nichols, LaNita A.; Slusarz, Anna; Grunz-Borgmann, Elizabeth A.; Parrish, Alan R.

    2014-01-01

    Background The aging kidney has a decreased ability to repair following injury. We have shown a loss in expression of α-catenin in the aging rat kidney and hypothesize that decreased α-catenin expression in tubular epithelial cells results in diminished repair capacity. Methods In an effort to elucidate alterations due to the loss of α-catenin, we generated NRK-52E cell lines with stable knockdown of α(E)-catenin. Results α(E)-catenin knockdown resulted in decreased wound repair due to alterations in cell migration. Analysis of gene expression in the α(E)-catenin knockdown cells demonstrated almost a complete loss of bone morphogenetic protein-7 (BMP-7) expression that was associated with decreased phospho-Smad1/5/8 staining. However, addition of exogenous BMP-7 increased phosph-Smad1/5/8, suggesting that the BMP-7 pathway remained intact in C2 cells. Given the potential role of BMP-7 in repair, we investigated its role in wound repair. Inhibition of BMP-7 decreased repair in non-targeted control cells; conversely, exogenous BMP-7 restored repair in α(E)-catenin knockdown cells to control levels. Conclusions Taken together, the data suggests that the loss of α(E)-catenin expression and subsequent down-regulation of BMP-7, is a mechanism underlying the altered migration of tubular epithelial cells that contributes to the inability of the aging kidney to repair following injury. PMID:24818804

  5. Perilla frutescens leaf extract inhibits mite major allergen Der p 2-induced gene expression of pro-allergic and pro-inflammatory cytokines in human bronchial epithelial cell BEAS-2B.

    PubMed

    Liu, Jer-Yuh; Chen, Yi-Ching; Lin, Chun-Hsiang; Kao, Shao-Hsuan

    2013-01-01

    Perilla frutescens has been used in traditional medicine for respiratory diseases due to its anti-bacterial and anti-inflammatory activity. This study aimed to investigate effects of Perilla frutescens leaf extract (PFE) on expression of pro-allergic and pro-inflammatory cytokines in airway epithelial cells exposed to mite major allergen Der p 2 (DP2) and the underlying mechanisms. Our results showed that PFE up to 100 µg/mL had no cytotoxic effect on human bronchial epithelial cell BEAS-2B. Further investigations revealed that PFE dose-dependently diminished mRNA expression of pro-allergic cytokine IL-4, IL-5, IL-13 and GM-CSF, as well as pro-inflammatory cytokine IL-6, IL-8 and MCP-1 in BEAS-2B cells treated with DP2. In parallel to mRNA, the DP-2-elevated levels of the tested cytokines were decreased. Further investigation showed that DP2-indued phosphorylation of p38 MAPK (P38) and JNK, but not Erk1/2, was also suppressed by PFE. In addition, PFE elevated cytosolic IκBα level and decreased nuclear NF-κB level in DP2-stimulated BEAS-2B cells. Taken together, these findings revealed that PFE significantly diminished both mRNA expression and protein levels of pro-allergic and pro-inflammatory cytokines in response to DP2 through inhibition of P38/JNK and NK-κB activation. These findings suggest that PFE should be beneficial to alleviate both allergic and inflammatory responses on airway epithelium in response to aeroallergens.

  6. Perilla frutescens Leaf Extract Inhibits Mite Major Allergen Der p 2-induced Gene Expression of Pro-Allergic and Pro-Inflammatory Cytokines in Human Bronchial Epithelial Cell BEAS-2B

    PubMed Central

    Liu, Jer-Yuh; Chen, Yi-Ching; Lin, Chun-Hsiang; Kao, Shao-Hsuan

    2013-01-01

    Perilla frutescens has been used in traditional medicine for respiratory diseases due to its anti-bacterial and anti-inflammatory activity. This study aimed to investigate effects of Perilla frutescens leaf extract (PFE) on expression of pro-allergic and pro-inflammatory cytokines in airway epithelial cells exposed to mite major allergen Der p 2 (DP2) and the underlying mechanisms. Our results showed that PFE up to 100 µg/mL had no cytotoxic effect on human bronchial epithelial cell BEAS-2B. Further investigations revealed that PFE dose-dependently diminished mRNA expression of pro-allergic cytokine IL-4, IL-5, IL-13 and GM-CSF, as well as pro-inflammatory cytokine IL-6, IL-8 and MCP-1 in BEAS-2B cells treated with DP2. In parallel to mRNA, the DP-2-elevated levels of the tested cytokines were decreased. Further investigation showed that DP2-indued phosphorylation of p38 MAPK (P38) and JNK, but not Erk1/2, was also suppressed by PFE. In addition, PFE elevated cytosolic IκBα level and decreased nuclear NF-κB level in DP2-stimulated BEAS-2B cells. Taken together, these findings revealed that PFE significantly diminished both mRNA expression and protein levels of pro-allergic and pro-inflammatory cytokines in response to DP2 through inhibition of P38/JNK and NK-κB activation. These findings suggest that PFE should be beneficial to alleviate both allergic and inflammatory responses on airway epithelium in response to aeroallergens. PMID:24204835

  7. Expression of cystic fibrosis transmembrane conductance regulator corrects defective chloride channel regulation in cystic fibrosis airway epithelial cells

    NASA Astrophysics Data System (ADS)

    Rich, Devra P.; Anderson, Matthew P.; Gregory, Richard J.; Cheng, Seng H.; Paul, Sucharita; Jefferson, Douglas M.; McCann, John D.; Klinger, Katherine W.; Smith, Alan E.; Welsh, Michael J.

    1990-09-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (ΔF508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.

  8. Intestinal Epithelial Barrier Disruption through Altered Mucosal MicroRNA Expression in Human Immunodeficiency Virus and Simian Immunodeficiency Virus Infections

    PubMed Central

    Gaulke, Christopher A.; Porter, Matthew; Han, Yan-Hong; Sankaran-Walters, Sumathi; Grishina, Irina; George, Michael D.; Dang, Angeline T.; Ding, Shou-Wei; Jiang, Guochun; Korf, Ian

    2014-01-01

    ABSTRACT Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4+ T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5′-3′-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of mi

  9. Reduced Expression of IRF7 in Nasal Epithelial Cells from Smokers after Infection with Influenza

    PubMed Central

    Jaspers, Ilona; Horvath, Katherine M.; Zhang, Wenli; Brighton, Luisa E.; Carson, Johnny L.; Noah, Terry L.

    2010-01-01

    Smokers are more susceptible to respiratory viral infections, including influenza virus, but the mechanisms mediating this effect are unknown. To determine how epithelial cells contribute to the enhanced susceptibility seen in smokers, we established an in vitro model of differentiated nasal epithelial cells (NECs) from smokers, which showed enhanced mucin expression. The NECs from smokers responded to influenza infection with greater cytotoxicity, release of interleukin-6, and viral shedding than NECs from nonsmokers. Focusing on type I interferon (IFN) expression, we observed that influenza-infected NECs from smokers produced significantly less IFN-α than NECs from nonsmokers. Similarly, the expression of IRF7, a key transcription factor controlling the expression of IFN-α, was significantly decreased in influenza-infected and IFN-β–stimulated NECs from smokers. Furthermore, our data indicate that the DNA methylation of the IRF7 gene and expression of the DNA (cytosine-5-)-methyltransferase 1 was enhanced in NECs from smokers. To confirm these findings in vivo, we initiated a study in which smoking and nonsmoking healthy volunteers were inoculated nasally with the live-attenuated influenza virus (LAIV) vaccine, and nasal biopsies were obtained before and after the administration of LAIV. The LAIV-induced expression of IRF7 was lower in the nasal epithelium from smokers, supporting our in vitro observations. These data demonstrate that infection with influenza results in the reduced expression of transcription factor IRF7 in NECs from smokers, and that these effects may be mediated by an epigenetic modification of the IRF7 gene, thus providing a potential mechanism rendering smokers more susceptible to respiratory virus infections. PMID:19880818

  10. MUC Expression in Gallbladder Epithelial Tissues in Cholesterol-Associated Gallbladder Disease

    PubMed Central

    Yoo, Kyo-Sang; Choi, Ho Soon; Jun, Dae Won; Lee, Hang Lak; Lee, Oh Young; Yoon, Byung Chul; Lee, Kyeong Geun; Paik, Seung Sam; Kim, Yong Seok; Lee, Jin

    2016-01-01

    Background/Aims Gallstone pathogenesis is linked to mucin hypersecretion and bacterial infection. Several mucin genes have been identified in gallbladder epithelial cells (GBECs). We investigated MUC expression in cholesterol-associated gallbladder disease and evaluated the relationship between mucin and bacterial infection. Methods The present study involved 20 patients with cholesterol stones with cholecystitis, five with cholesterol stones with cholesterolosis, six with cholesterol polyps, two with gallbladder cancer, and six controls. Canine GBECs treated with lipopolysaccharide were also studied. MUC3, MUC5AC, MUC5B, and MUC6 antibodies were used for dot/slot immunoblotting and immunohistochemical studies of the gallbladder epithelial tissues, canine GBECs, and bile. Reverse-transcription polymerase chain reaction was performed to evaluate MUC3 and MUC5B expression. Results MUC3, MUC5AC, MUC5B, and MUC6 were expressed in the normal gallbladder epithelium, and of those, MUC3 and MUC5B exhibited the highest expression levels. Greatly increased levels of MUC3 and MUC5B expression were observed in the cholesterol stone group, and slightly increased levels were observed in the cholesterol polyp group; MUC3 and MUC5B mRNA was also upregulated in those groups. Canine GBECs treated with lipopolysaccharide also showed upregulation of MUC3 and MUC5B. Conclusions The mucin genes with the highest expression levels in gallbladder tissue in cholesterol-associated diseases were MUC3 and MUC5B. Cholesterol stones and gallbladder infections were associated with increased MUC3 and MUC5B expression. PMID:27563024

  11. Overexpression of piRNA pathway genes in epithelial ovarian cancer.

    PubMed

    Lim, Shu Ly; Ricciardelli, Carmela; Oehler, Martin K; Tan, Izza M D De Arao; Russell, Darryl; Grützner, Frank

    2014-01-01

    The importance of the Piwi-interacting RNA (piRNA) pathway for germ cell maintenance, genome integrity, DNA methylation and retrotransposon control raises possible roles of this pathway in cancer. Indeed aberrant expression of human PIWI orthologs and Maelstrom has been observed in various cancers. In this study we explored the expression and function of piRNA pathway genes in human ovarian cancer, based on our recent work, which showed widespread expression of piRNA pathway genes in the mammalian. Our work shows that PIWIL1 and MAEL expression is significantly increased in malignant EOC (n = 25) compared to benign tumor tissues (n = 19) and normal ovarian tissue (n = 8). The expression of PIWIL3 is lower in malignant and benign tissues when compared to normal ovary. Sequencing of PIWIL1 transcript revealed that in many tumors deletion of exon 17 leads to the introduction of a premature stop codon in the PIWI domain, likely due to a splicing error. In situ hybridization on tumor sections revealed that L1, PIWIL1, 2 and MAEL are specifically expressed in epithelial cells (cancerous cells) of EOC. Furthermore, PIWIL2 and MAEL are co-expressed in the stromal cells adjacent to tumor cells. Since PIWIL1 and MAEL are up regulated in malignant EOC and expressed in the epithelial cells, we investigated if these two genes affect invasiveness of ovarian cancer cell lines that do not normally express these genes. PIWIL1 and MAEL were transiently over expressed in the ovarian cancer cell line SKOV3, followed by real-time measurements of cell invasiveness. Surprisingly both PIWIL1 and MAEL over expression decreased the invasiveness of SKOV3 cells. Our findings support a growing body of evidence that shows that genes in this pathway are upregulated in cancer. In ovarian cancer we show for the first time that Piwil1 transcript may often be abnormal result in non functional product. In contrast to what has been observed in other cell types, we found that PIWIL1 and MAEL have a

  12. Overexpression of piRNA Pathway Genes in Epithelial Ovarian Cancer

    PubMed Central

    Lim, Shu Ly; Ricciardelli, Carmela; Oehler, Martin K.; De Arao Tan, Izza M. D.; Russell, Darryl; Grützner, Frank

    2014-01-01

    The importance of the Piwi-interacting RNA (piRNA) pathway for germ cell maintenance, genome integrity, DNA methylation and retrotransposon control raises possible roles of this pathway in cancer. Indeed aberrant expression of human PIWI orthologs and Maelstrom has been observed in various cancers. In this study we explored the expression and function of piRNA pathway genes in human ovarian cancer, based on our recent work, which showed widespread expression of piRNA pathway genes in the mammalian. Our work shows that PIWIL1 and MAEL expression is significantly increased in malignant EOC (n = 25) compared to benign tumor tissues (n = 19) and normal ovarian tissue (n = 8). The expression of PIWIL3 is lower in malignant and benign tissues when compared to normal ovary. Sequencing of PIWIL1 transcript revealed that in many tumors deletion of exon 17 leads to the introduction of a premature stop codon in the PIWI domain, likely due to a splicing error. In situ hybridization on tumor sections revealed that L1, PIWIL1, 2 and MAEL are specifically expressed in epithelial cells (cancerous cells) of EOC. Furthermore, PIWIL2 and MAEL are co-expressed in the stromal cells adjacent to tumor cells. Since PIWIL1 and MAEL are up regulated in malignant EOC and expressed in the epithelial cells, we investigated if these two genes affect invasiveness of ovarian cancer cell lines that do not normally express these genes. PIWIL1 and MAEL were transiently over expressed in the ovarian cancer cell line SKOV3, followed by real-time measurements of cell invasiveness. Surprisingly both PIWIL1 and MAEL over expression decreased the invasiveness of SKOV3 cells. Our findings support a growing body of evidence that shows that genes in this pathway are upregulated in cancer. In ovarian cancer we show for the first time that Piwil1 transcript may often be abnormal result in non functional product. In contrast to what has been observed in other cell types, we found that PIWIL1 and

  13. Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy.

    PubMed

    Hinrichs, Christian S

    2016-04-01

    Adoptive transfer of T cells genetically engineered to express a tumor-targeting chimeric antigen receptor (CAR) or T-cell receptor (TCR) can mediate cancer regression in some patients. CARs are synthetic single-chain proteins that use antibody domains to target cell surface antigens. TCRs are natural heterodimeric proteins that can target intracellular antigens through recognition of peptides bound to human leukocyte antigens. CARs have shown promise in B-cell malignancies and TCRs in melanoma, but neither approach has achieved clear success in an epithelial cancer. Treatment of epithelial cancers may be particularly challenging because of a paucity of target antigens expressed by carcinomas and not by important healthy tissues. In addition, epithelial cancers may be protected by inhibitory ligands and soluble factors in the tumor microenvironment. One strategy to overcome these negative regulators is to modulate expression of T-cell genes to enhance intrinsic T-cell function. Programmable nucleases, which can suppress inhibitory genes, and inducible gene expression systems, which can enhance stimulatory genes, are entering clinical testing. Other work is delineating whether control of genes for immune checkpoint receptors (e.g.,PDCD1, CTLA4) and cytokine and TCR signaling regulators (e.g.,CBLB, CISH, IL12, IL15) can increase the antitumor activity of therapeutic T cells.

  14. LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer

    PubMed Central

    Wang, Huan; Fu, Ziyi; Dai, Chencheng; Cao, Jian; Liu, Xiaoguang; Xu, Juan; Lv, Mingming; Gu, Yun; Zhang, Jingmin; Hua, Xiangdong; Jia, Genmei; Xu, Sujuan; Jia, Xuemei; Xu, Pengfei

    2016-01-01

    Long noncoding RNA (lncRNA) has been recognized as a regulator of gene expression, and the dysregulation of lncRNAs is involved in the progression of many types of cancer, including epithelial ovarian cancer (EOC). To explore the potential roles of lncRNAs in EOC, we performed lncRNA and mRNA microarray profiling in malignant EOC, benign ovarian cyst and healthy control tissues. In this study, 663 transcripts of lncRNAs were found to be differentially expressed in malignant EOC compared with benign and normal control tissues. We also selected 18 altered lncRNAs to confirm the validity of the microarray analysis using quantitative real-time PCR (qPCR). Pathway and Gene Ontology (GO) analyses demonstrated that these altered transcripts were involved in multiple biological processes, especially the cell cycle. Furthermore, Series Test of Cluster (STC) and lncRNA-mRNA co-expression network analyses were conducted to predict lncRNA expression trends and the potential target genes of lncRNAs. We also determined that two antisense lncRNAs (RP11-597D13.9 and ADAMTS9-AS1) were associated with their nearby coding genes (FAM198B, ADAMTS9), which participated in cancer progression. This study offers helpful information to understand the initiation and development mechanisms of EOC. PMID:27941916

  15. Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants

    PubMed Central

    Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.

    2016-01-01

    Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805

  16. A NOVEL GENE DELIVERY METHOD TRANSDUCES PORCINE PANCREATIC DUCT EPITHELIAL CELLS

    PubMed Central

    Griffin, Michelle A.; Restrepo, M. Santiago; Abu-El-Haija, Marwa; Wallen, Tanner; Buchanan, Elizabeth; Rokhlina, Tatiana; Chen, Yong Hong; McCray, Paul B.; Davidson, Beverly L.; Divekar, Abhay; Uc, Aliye

    2014-01-01

    Gene therapy offers the possibility to treat pancreatic disease in Cystic Fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however gene transfer to the pancreas is untested in humans. The pancreatic disease phenotype is very similar between humans and pigs with CF, thus CF pigs create an excellent opportunity to study gene transfer to the pancreas. There are no studies showing efficient transduction of pig pancreas with gene transfer vectors. Our objective is to develop a safe and efficient method to transduce wild-type (WT) porcine pancreatic ducts that express CFTR. We catheterized the umbilical artery of WT newborn pigs and delivered an adeno-associated virus serotype 9 vector expressing green fluorescent protein (AAV9CMV.sceGFP) or vehicle to the celiac artery, the vessel that supplies major branches to the pancreas. This technique resulted in stable and dose-dependent transduction of pancreatic duct epithelial cells that expressed CFTR. Intravenous injection of AAV9CMV.sceGFP did not transduce the pancreas. Our technique offers an opportunity to deliver the CFTR gene to the pancreas of CF pigs. The celiac artery can be accessed via umbilical artery in newborns and via femoral artery at older ages; delivery approaches which can be translated to humans. PMID:24257348

  17. A novel gene delivery method transduces porcine pancreatic duct epithelial cells.

    PubMed

    Griffin, M A; Restrepo, M S; Abu-El-Haija, M; Wallen, T; Buchanan, E; Rokhlina, T; Chen, Y H; McCray, P B; Davidson, B L; Divekar, A; Uc, A

    2014-02-01

    Gene therapy offers the possibility to treat pancreatic disease in cystic fibrosis (CF), caused by mutations in the CF transmembrane conductance regulator (CFTR) gene; however, gene transfer to the pancreas is untested in humans. The pancreatic disease phenotype is very similar between humans and pigs with CF; thus, CF pigs create an excellent opportunity to study gene transfer to the pancreas. There are no studies showing efficient transduction of pig pancreas with gene-transfer vectors. Our objective is to develop a safe and efficient method to transduce wild-type (WT) porcine pancreatic ducts that express CFTR. We catheterized the umbilical artery of WT newborn pigs and delivered an adeno-associated virus serotype 9 vector expressing green-fluorescent protein (AAV9CMV.sceGFP) or vehicle to the celiac artery, the vessel that supplies major branches to the pancreas. This technique resulted in stable and dose-dependent transduction of pancreatic duct epithelial cells that expressed CFTR. Intravenous (IV) injection of AAV9CMV.sceGFP did not transduce the pancreas. Our technique offers an opportunity to deliver the CFTR gene to the pancreas of CF pigs. The celiac artery can be accessed via the umbilical artery in newborns and via the femoral artery at older ages--delivery approaches that can be translated to humans.

  18. Cationic Surface Modification of PLG Nanoparticles Offers Sustained Gene Delivery to Pulmonary Epithelial Cells

    PubMed Central

    BAOUM, ABDULGADER; DHILLON, NAVNEET; BUCH, SHILPA; BERKLAND, CORY

    2010-01-01

    Biodegradable polymeric nanoparticles are currently being explored as a nonviral gene delivery system; however, many obstacles impede the translation of these nanomaterials. For example, nanoparticles delivered systemically are inherently prone to adsorbing serum proteins and agglomerating as a result of their large surface/volume ratio. What is desired is a simple procedure to prepare nanoparticles that may be delivered locally and exhibit minimal toxicity while improving entry into cells for effectively delivering DNA. The objective of this study was to optimize the formulation of poly(D,L-lactide-co-glycolide) (PLG) nanoparticles for gene delivery performance to a model of the pulmonary epithelium. Using a simple solvent diffusion technique, the chemistry of the particle surface was varied by using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (~200 nm) efficiently encapsulated plasmids encoding for luciferase (80–90%) and slowly released the same for 2 weeks. In A549 alveolar lung epithelial cells, high levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least 2 weeks. In contrast, PEI gene expression ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium. PMID:19911425

  19. Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection.

    PubMed

    Verway, Mark; Bouttier, Manuella; Wang, Tian-Tian; Carrier, Marilyn; Calderon, Mario; An, Beum-Soo; Devemy, Emmanuelle; McIntosh, Fiona; Divangahi, Maziar; Behr, Marcel A; White, John H

    2013-01-01

    Although vitamin D deficiency is a common feature among patients presenting with active tuberculosis, the full scope of vitamin D action during Mycobacterium tuberculosis (Mtb) infection is poorly understood. As macrophages are the primary site of Mtb infection and are sites of vitamin D signaling, we have used these cells to understand the molecular mechanisms underlying modulation of the immune response by the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D). We found that the virulent Mtb strain H37Rv elicits a broad host transcriptional response. Transcriptome profiling also revealed that the profile of target genes regulated by 1,25D is substantially altered by infection, and that 1,25D generally boosts infection-stimulated cytokine/chemokine responses. We further focused on the role of 1,25D- and infection-induced interleukin 1β (IL-1β) expression in response to infection. 1,25D enhanced IL-1β expression via a direct transcriptional mechanism. Secretion of IL-1β from infected cells required the NLRP3/caspase-1 inflammasome. The impact of IL-1β production was investigated in a novel model wherein infected macrophages were co-cultured with primary human small airway epithelial cells. Co-culture significantly prolonged survival of infected macrophages, and 1,25D/infection-induced IL-1β secretion from macrophages reduced mycobacterial burden by stimulating the anti-mycobacterial capacity of co-cultured lung epithelial cells. These effects were independent of 1,25D-stimulated autophagy in macrophages but dependent upon epithelial IL1R1 signaling and IL-1β-driven epithelial production of the antimicrobial peptide DEFB4/HBD2. These data provide evidence that the anti-microbial actions of vitamin D extend beyond the macrophage by modulating paracrine signaling, reinforcing its role in innate immune regulation in humans.

  20. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  1. The flow of gene expression.

    PubMed

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  2. Discovering modulators of gene expression

    PubMed Central

    Babur, Özgün; Demir, Emek; Gönen, Mithat; Sander, Chris; Dogrusoz, Ugur

    2010-01-01

    Proteins that modulate the activity of transcription factors, often called modulators, play a critical role in creating tissue- and context-specific gene expression responses to the signals cells receive. GEM (Gene Expression Modulation) is a probabilistic framework that predicts modulators, their affected targets and mode of action by combining gene expression profiles, protein–protein interactions and transcription factor–target relationships. Using GEM, we correctly predicted a significant number of androgen receptor modulators and observed that most modulators can both act as co-activators and co-repressors for different target genes. PMID:20466809

  3. Increased renal epithelial na channel expression and activity correlate with elevation of blood pressure in spontaneously hypertensive rats.

    PubMed

    Haloui, Mounsif; Tremblay, Johanne; Seda, Ondrej; Koltsova, Svetlana V; Maksimov, Georgy V; Orlov, Sergei N; Hamet, Pavel

    2013-10-01

    Elevation of blood pressure with age is one of the hallmarks of hypertension in both males and females. This study examined transcriptomic profiles in the kidney of 12-, 40-, and 80-week-old spontaneously hypertensive rats and 4 recombinant inbred strains in search for functional genetic elements supporting temporal dynamics of blood pressure elevation. We found that both in males and females of spontaneously hypertensive rats and hypertensive recombinant inbred strains age-dependent blood pressure increment was accompanied by 50% heightened expression of epithelial sodium channel β- and γ-subunits. Epithelial sodium channel subunit expression correlated positively with blood pressure but correlated negatively with renin expression. Increased epithelial sodium channel activity was observed in cultured epithelial cells isolated from the kidney medulla of 80-week-old spontaneously hypertensive rats but not in age-matched normotensive Wistar Kyoto. This difference remained evident after 24-hour treatment with aldosterone. 22Na uptake in the perfused kidney medulla was increased whereas the urinary Na/K ratio was decreased in old spontaneously hypertensive rats compared with normotensive controls. The difference was eliminated by the administration of epithelial sodium channel inhibitor benzamil. Observations in recombinant inbred strains representing various mixtures of parental hypertensive and normotensive genomes suggest that Scnn1g and Scnn1b genes themselves are not implicated in heightened expression and that the increased expression is neither secondary nor required for a partial elevation of blood pressure in contrast to spontaneously hypertensive rats. We suggest that spontaneously hypertensive rats display an intact negative feed-back between renin-angiotensin-system and epithelial Na channel activity whose upregulated expression is supported by a yet unknown mechanism.

  4. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65

    PubMed Central

    Kucknoor, Ashwini S.; Mundodi, Vasanthakrishna; Alderete, John F.

    2007-01-01

    Summary We showed recently that contact of human vaginal epithelial cells (VECs) by Trichomonas vaginalis and incubation with trichomonad proteins in conditioned medium induced expression of VEC genes. We performed 2-D SDS-PAGE followed by MALDI-TOF to identify the major secreted proteins. Based on protein abundance and separation of spots in 2-D gels, 32 major secreted proteins were examined, which gave 19 proteins with accession numbers. These proteins included known secreted cysteine proteinases. In addition, other secreted proteins were enzymes of carbohydrate metabolism, adhesin protein AP65, heat shock proteins, thioredoxin reductase and coronins. We confirmed that the secreted trichomonad proteins induced expression of VEC genes, including interleukin 8 (IL-8), COX-2 and fibronectin. Purified AP65 added to VECs had a pronounced effect only on IL-8 gene expression, which was inhibited in the presence of 12G4 monoclonal antibody to AP65. Moreover, AP65 expressed episomally within epithelial cells was found to enhance the expression of IL-8 and COX-2. This may be the first report of analysis of the secreted proteins of T. vaginalis and of the host epithelial cell response to these proteins and to the prominent adhesin AP65. PMID:17590165

  5. R-twist gene expression during rat palatogenesis.

    PubMed

    Bloch-Zupan, A; Hunter, N; Manthey, A; Gibbins, J

    2001-04-01

    Palatal clefting is often associated with premature fusion of cranial sutures in human craniosynostosis syndromes, many of which are characterised by mutations affecting the fibroblast growth factor receptor (FGFR) gene family. In palatal fusion, epithelio-mesenchymal transition (EMT) contributes to the dispersion of the midline epithelial seam. EMT has also been observed in neoplastic epithelial cells in relation to the acquisition of malignant characteristics where morphological changes are accompanied by rapid switching in the expression of fgfr2 from the epithelial type (kgfr) to the mesenchymal type (bek). The twist gene codes for a basic helix-loop-helix transcription factor putatively involved in regulation of transcription of fgfr2. Mutations in the TWIST gene have been described as being responsible for the Saethre-Chotzen syndrome, an autosomal dominant craniosynostosis associated with cleft palate as well as other disturbances of the facial skeleton. In this study we have analysed the distribution of twist transcripts during rat palatogenesis in vivo from 14.5 to 17.5 days post coitum by in situ hybridisation with digoxygenin-labelled ssDNA probes. twist transcripts were found to be concentrated in mesenchymal cells beneath the epithelium at the tip of the palatal shelves immediately prior to, and during fusion as well as in a localised epithelial area at the tip of the shelves prior to fusion, thereby implicating twist gene expression in the process of palatogenesis. This pattern of expression illuminates the disturbances of maxillary growth that occur in human craniosynostotic syndromes.

  6. Chemokine expression of oral fibroblasts and epithelial cells in response to artificial saliva.

    PubMed

    Müller, Heinz-Dieter; Cvikl, Barbara; Lussi, Adrian; Gruber, Reinhard

    2016-06-01

    Artificial saliva is widely used to overcome reduced natural salivary flow. Natural saliva provokes the expression of chemokines in oral fibroblasts in vitro. However, if artificial saliva changes the expression of chemokines remains unknown. Here, we investigated the ability of Saliva Orthana®, Aldiamed®, Glandosane®, and Saliva Natura® to change the expression of chemokines in human oral fibroblasts and the human oral epithelial cell line HSC-2 by means of reverse transcription polymerase chain reaction and immunoassays. Mucins isolated from bovine submaxillary glands and recombinant human mucin 1 were included in the bioassay. Formazan formation and LIVE/DEAD® staining determined the impact of artificial saliva on cell viability. The involvement of signaling pathways was determined by pharmacologic inhibitors and Western blotting. In gingival fibroblasts, Saliva Orthana®-containing mucins provoked a significantly increased expression of CXC ligand 8 (CXCL8, or interleukin 8), CXCL1, and CXCL2. Immunoassays for CXCL8 and CXCL1 confirmed the translation at the protein level. The respective dilution of artificial saliva had no impact on formazan formation and LIVE/DEAD® staining. Mucins isolated from bovine submaxillary glands also increased the panel of chemokine expression in gingival fibroblasts. BAY 11-7082, a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitor, but also TAK-242, an inhibitor of toll-like receptor 4 signaling, blocked chemokine expression of Saliva Orthana® and bovine mucins. In HSC-2 cells, Glandosane® significantly increased CXCL8 expression. Saliva Orthana® stimulated chemokine expression in gingival fibroblasts. Mammalian mucins, but also possible contaminations with endotoxins, might contribute to the respective changes in gene expression. Epithelial cells have a differential response to artificial saliva with Glandosane® changing CXCL8 expression. Artificial saliva can incite a cellular response

  7. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis

    PubMed Central

    Teoh-Fitzgerald, ML; Fitzgerald, MP; Zhong, W; Askeland, RW; Domann, FE

    2013-01-01

    Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging

  8. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis.

    PubMed

    Teoh-Fitzgerald, M L; Fitzgerald, M P; Zhong, W; Askeland, R W; Domann, F E

    2014-01-16

    Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging

  9. The expression of gingival epithelial junctions in response to subgingival biofilms.

    PubMed

    Belibasakis, Georgios N; Kast, Jeannette I; Thurnheer, Thomas; Akdis, Cezmi A; Bostanci, Nagihan

    2015-01-01

    Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting tissues. It is caused by the formation of subgingival biofilms on the surface of the tooth. Characteristic bacteria associated with subgingival biofilms are the Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, collectively known as the "red complex" species. Inter-epithelial junctions ensure the barrier integrity of the gingival epithelium. This may however be disrupted by the biofilm challenge. The aim of this in vitro study was to investigate the effect of subgingival biofilms on the expression of inter-epithelial junctions by gingival epithelia, and evaluate the relative role of the red complex. Multi-layered human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its variant without the red complex, for 3 h and 24 h. A low-density array microfluidic card platform was then used for analyzing the expression of 62 genes encoding for tight junctions, gap junctions, adherens junctions, and desmosomes. Although there was a limited effect of the biofilms on the expression of tight, adherens and gap junctions, the expression of a number of desmosomal components was affected. In particular, Desmoglein-1 displayed a limited and transient up-regulation in response to the biofilm. In contrast, Desmocollin-2, Desmoplakin and Plakoglobin were down-regulated equally by both biofilm variants, after 24 h. In conclusion, this subgingival biofilm model may down-regulate selected desmosomal junctions in the gingival epithelium, irrespective of the presence of the "red complex." In turn, this could compromise the structural integrity of the gingival tissue, favoring bacterial invasion and chronic infection.

  10. The expression of gingival epithelial junctions in response to subgingival biofilms

    PubMed Central

    Belibasakis, Georgios N; Kast, Jeannette I; Thurnheer, Thomas; Akdis, Cezmi A; Bostanci, Nagihan

    2015-01-01

    Periodontitis is an infectious inflammatory disease that destroys the tooth-supporting tissues. It is caused by the formation of subgingival biofilms on the surface of the tooth. Characteristic bacteria associated with subgingival biofilms are the Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, collectively known as the “red complex” species. Inter-epithelial junctions ensure the barrier integrity of the gingival epithelium. This may however be disrupted by the biofilm challenge. The aim of this in vitro study was to investigate the effect of subgingival biofilms on the expression of inter-epithelial junctions by gingival epithelia, and evaluate the relative role of the red complex. Multi-layered human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its variant without the red complex, for 3 h and 24 h. A low-density array microfluidic card platform was then used for analyzing the expression of 62 genes encoding for tight junctions, gap junctions, adherens junctions, and desmosomes. Although there was a limited effect of the biofilms on the expression of tight, adherens and gap junctions, the expression of a number of desmosomal components was affected. In particular, Desmoglein-1 displayed a limited and transient up-regulation in response to the biofilm. In contrast, Desmocollin-2, Desmoplakin and Plakoglobin were down-regulated equally by both biofilm variants, after 24 h. In conclusion, this subgingival biofilm model may down-regulate selected desmosomal junctions in the gingival epithelium, irrespective of the presence of the “red complex.” In turn, this could compromise the structural integrity of the gingival tissue, favoring bacterial invasion and chronic infection. PMID:26305580

  11. Substance P induces CCN1 expression via histone deacetylase activity in human colonic epithelial cells.

    PubMed

    Koon, Hon Wai; Shih, David Q; Hing, Tressia C; Chen, Jeremy; Ho, Samantha; Zhao, Dezheng; Targan, Stephan R; Pothoulakis, Charalabos

    2011-11-01

    We have shown that substance P (SP) and its neurokinin-1 receptor (NK-1R) regulate intestinal angiogenesis by increasing expression of protein CYR61 (the cysteine-rich angiogenic inducer 61, or CCN1) in colonic epithelial cells. However, the mechanism involved in SP-induced CCN1 expression has not been studied, and the outcome of increased CCN1 expression in the development of colitis is not fully understood. Because histone deacetylase (HDAC) modulates transcription of several genes involved in inflammation, we investigated participation of HDAC in SP-induced CCN1 expression in human colonic epithelial NCM460 cells overexpressing NK-1R (NCM460-NK-1R) and in primary colonocytes. SP increased HDAC activity with deacetylation and dephosphorylation of nucleosome protein histone H3 in NCM460-NK-1R and/or primary colonocytes. Histone deacetylation and dephosphorylation was observed in colonic mucosa from irritable bowel disease patients. Similarly, colonic mucosal tissues from mice exposed to dextran sulfate sodium showed histone H3 deacetylation and dephosphorylation and increased HDAC activity that was reversed by the NK-1R antagonist CJ-12255. SP-induced increased CCN1 expression in NCM460-NK-1R cells was abolished by pharmacological HDAC inhibition. HDAC overexpression activated basal and SP-induced CCN1 promoter activity. Intracolonic CCN1 overexpression significantly ameliorated dextran sulfate sodium-induced colitis, with reduction of proinflammatory cytokine expression in mice. Thus, SP-mediated CCN1 expression in the inflamed human and mouse colon involves increased HDAC activity. Our results strongly suggest that increased CCN1 expression may be involved in mucosal healing during colitis.

  12. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    PubMed Central

    Jim, Heather S.L.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Vierkant, Robert A.; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malco