Science.gov

Sample records for epithelial mesenchymal transition

  1. Epithelial-Mesenchymal Transition

    PubMed Central

    Klymkowsky, Michael W.; Savagner, Pierre

    2009-01-01

    Epithelial-mesenchymal transition (EMT) describes a series of rapid changes in cellular phenotype. During EMT, epithelial cells down-modulate cell-cell adhesion structures, alter their polarity, reorganize their cytoskeleton, and become isolated, motile, and resistant to anoikis. The term EMT is often applied to distinct biological events as if it were a single conserved process, but in fact EMT-related processes can vary in intensity from a transient loss of cell polarity to the total cellular reprogramming, as found by transcriptional analysis. Based on clinical observations, it is more appropriate in most cases to describe the emergence of an EMT-like phenotype during tumor progression. Although EMT implies complete trans-differentiation, EMT-like emphasizes the intermediary phenotype associated with tumor cell renewal and adaptation to specific microenvironments. Here, we categorize the various EMT-like phenotypes found in human carcinomas that, depending on the tumor type, may or not represent analogous stages in tumor progression. We based these categories on the global tumor phenotype. The tumor microenvironment, which is associated with stromal reactions, hypoxia, paucity of nutrients, impaired differentiation, and activation of various EMT-associated pathways, modulates overall tumor phenotype and leads to tumor heterogeneity. PMID:19342369

  2. Epithelial-mesenchymal, mesenchymal-epithelial, and endothelial-mesenchymal transitions in malignant tumors: An update

    PubMed Central

    Gurzu, Simona; Turdean, Sabin; Kovecsi, Attila; Contac, Anca Otilia; Jung, Ioan

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) represents conversion of an epithelial cell in an elongated cell with mesenchymal phenotype, which can occur in physiologic and pathologic processes such as embryogenesis (type 1 EMT), wound healing and/or fibrosis (type 2 EMT) and malignant tumors (type 3 EMT). The proliferation rate, metastasizing and recurrence capacity, as also the individualized response at chemotherapics, in both epithelial and mesenchymal malignant tumors is known to be influenced by reversible switch between EMT and mesenchymal-to-epithelial transition (MET). Although much research work has already been done in these fields, the specific molecular pathways of EMT, relating to the tumor type and tumor localization, are yet to be elucidated. In this paper, based on the literature and personal experience of the authors, an update in the field of EMT vs MET in epithelial and mesenchymal tumors is presented. The authors tried to present the latest data about the particularities of these processes, and also of the so-called endothelial-to-mesenchymal transition, based on tumor location. The EMT-angiogenesis link is discussed as a possible valuable parameter for clinical follow-up and targeted therapeutic oncologic management. The paper begins with presentation of the basic aspects of EMT, its classification and assessment possibilities, and concludes with prognostic and therapeutic perspectives. The particularities of EMT and MET in gastric and colorectal carcinomas, pancreatic cancer, hepatocellular and cholangiocarcinomas, and lung, breast and prostate cancers, respectively in sarcomas and gastrointestinal stromal tumors are presented in detail. PMID:25984514

  3. Biomarkers for epithelial-mesenchymal transitions.

    PubMed

    Zeisberg, Michael; Neilson, Eric G

    2009-06-01

    Somatic cells that change from one mature phenotype to another exhibit the property of plasticity. It is increasingly clear that epithelial and endothelial cells enjoy some of this plasticity, which is easily demonstrated by studying the process of epithelial-mesenchymal transition (EMT). Published reports from the literature typically rely on ad hoc criteria for determining EMT events; consequently, there is some uncertainty as to whether the same process occurs under different experimental conditions. As we discuss in this Personal Perspective, we believe that context and various changes in plasticity biomarkers can help identify at least three types of EMT and that using a collection of criteria for EMT increases the likelihood that everyone is studying the same phenomenon - namely, the transition of epithelial and endothelial cells to a motile phenotype.

  4. Transcriptional regulation of epithelial-mesenchymal transition.

    PubMed

    Teng, Yingqi; Zeisberg, Michael; Kalluri, Raghu

    2007-02-01

    It has become increasingly obvious that the notion of a terminally differentiated cell is likely a simplified concept. Epithelial-mesenchymal transition (EMT), during which epithelial cells assume a mesenchymal phenotype, is a key event occurring during normal development and pathological processes. Multiple extracellular stimuli and transcriptional regulators can trigger EMT, but how such distinct signaling pathways orchestrate the complex cellular events that facilitate EMT is not well understood. In this issue of the JCI, Venkov et al. report on their examination of fibroblasts resulting from EMT and describe a novel protein-DNA complex that is essential for transcription of fibroblast-specific protein 1 (FSP1) and sufficient to induce early EMT events (see the related article beginning on page 482). Collectively, their results suggest that this complex is an important regulator of the EMT transcriptome.

  5. Transcriptional regulation of epithelial-mesenchymal transition

    PubMed Central

    Teng, Yingqi; Zeisberg, Michael; Kalluri, Raghu

    2007-01-01

    It has become increasingly obvious that the notion of a terminally differentiated cell is likely a simplified concept. Epithelial-mesenchymal transition (EMT), during which epithelial cells assume a mesenchymal phenotype, is a key event occurring during normal development and pathological processes. Multiple extracellular stimuli and transcriptional regulators can trigger EMT, but how such distinct signaling pathways orchestrate the complex cellular events that facilitate EMT is not well understood. In this issue of the JCI, Venkov et al. report on their examination of fibroblasts resulting from EMT and describe a novel protein-DNA complex that is essential for transcription of fibroblast-specific protein 1 (FSP1) and sufficient to induce early EMT events (see the related article beginning on page 482). Collectively, their results suggest that this complex is an important regulator of the EMT transcriptome. PMID:17273552

  6. Epithelial-mesenchymal transition in liver fibrosis

    PubMed Central

    ZHAO, YA-LEI; ZHU, RONG-TAO; SUN, YU-LING

    2016-01-01

    Liver fibrosis is the result of a sustained wound healing response to sustained chronic liver injury, which includes viral, alcoholic and autoimmune hepatitis. Hepatic regeneration is the dominant outcome of liver damage. The outcomes of successful repair are the replacement of dead epithelial cells with healthy epithelial cells, and reconstruction of the normal hepatic structure and function. Prevention of the development of epithelial-mesenchymal transition (EMT) may control and even reverse liver fibrosis. EMT is a critical process for an epithelial cell to undergo a conversion to a mesenchymal phenotype, and is believed to be an inflammation-induced response, which may have a central role in liver fibrosis. The origin of fibrogenic cells in liver fibrosis remains controversial. Numerous studies have investigated the origin of all fibrogenic cells within the liver and the mechanism of the signaling pathways that lead to the activation of EMT programs during numerous chronic liver diseases. The present study aimed to summarize the evidence to explain the possible role of EMT in liver fibrosis. PMID:26998262

  7. Protons sensitize epithelial cells to mesenchymal transition.

    PubMed

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M; Pluth, Janice M; Cucinotta, Francis A

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  8. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    PubMed Central

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  9. Epithelial-mesenchymal transition in gastric cancer

    PubMed Central

    Huang, Lei; Wu, Ruo-Lin; Xu, A-Man

    2015-01-01

    Gastric cancer (GC) is one of the most common malignancies worldwide with poor prognosis for lack of early detection and effective treatment modalities. The significant influence of tumor microenvironment on malignant cells has been extensively investigated in this targeted-therapy era. Epithelial-mesenchymal transition (EMT) is a highly conserved and fundamental process that is critical for embryogenesis and some other pathophysiological processes, especially tumor genesis and progression. Aberrant gastric EMT activation could endow gastric epithelial cells with increased mesenchymal characteristics and less epithelial features, and promote cancer cell stemness, initiation, invasion, metastasis, and chemo-resistance with cellular adhesion molecules especially E-cadherin concomitantly repressed, which allows tumor cells to disseminate and spread throughout the body. Some pathogens, stress, and hypoxia could induce and aggravate GC via EMT, which is significantly correlated with prognosis. GC EMT is modulated by diverse micro-environmental, membrane, and intracellular cues, and could be triggered by various overexpressed transcription factors, which are downstream of several vital cross-talking signaling pathways including TGF-β, Wnt/β-catenin, Notch, etc. microRNAs also contribute significantly to GC EMT modulation. There are currently some agents which could suppress GC EMT, shedding light on novel anti-malignancy strategies. Investigating potential mechanisms modulating GC cell EMT and discovering novel EMT regulators will further elucidate GC biology, and may provide new biomarkers for early GC detection and potentially efficient targets for preventative and curative anti-GC intervention approaches to prevent local and distant invasions. PMID:26807164

  10. Clinical significance of epithelial-mesenchymal transition

    PubMed Central

    2014-01-01

    The concept of epithelial-mesenchymal transition (EMT), a process where cells change their epithelial towards a mesenchymal phenotype, has gained overwhelming attention especially in the cancer research community. Thousands of scientific reports investigated changes in gene, mRNA and protein expression compatible with EMT and their possible correlation with tumor invasion, metastatic spread or patient prognosis; however, up to now, a proof of clinical significance of the concept is still missing. This review, with a main focus on the role of EMT in tumors, will summarize the basic molecular events underlying EMT including the signaling pathways capable of its induction as well as changes in EMT-associated protein expression and will very briefly touch the role of microRNAs in EMT. We then outline protein markers that are used most frequently for the assessment of EMT in research and diagnostic evaluation of tumor specimens and depict the link between EMT, a cancer stem cell (CSC) phenotype and resistance to conventional antineoplastic therapies. Furthermore, we evaluate a possible correlation between EMT marker expression and patient prognosis as well as current therapeutic concepts targeting the EMT process to slow down or prevent metastatic spread of malignant tumors. PMID:25050175

  11. Epithelial-to-mesenchymal transition in penile squamous cell carcinoma.

    PubMed

    Masferrer, Emili; Ferrándiz-Pulido, Carla; Masferrer-Niubò, Magalí; Rodríguez-Rodríguez, Alfredo; Gil, Inmaculada; Pont, Antoni; Servitje, Octavi; García de Herreros, Antonio; Lloveras, Belen; García-Patos, Vicenç; Pujol, Ramon M; Toll, Agustí; Hernández-Muñoz, Inmaculada

    2015-02-01

    Epithelial-to-mesenchymal transition is a phenomenon in epithelial tumors that involves loss of intercellular adhesion, mesenchymal phenotype acquisition and enhanced migratory potential. While the epithelial-to-mesenchymal transition process has been extensively linked to metastatic progression of squamous cell carcinoma, studies of the role of epithelial-to-mesenchymal transition in squamous cell carcinoma containing high risk human papillomaviruses are scarce. Moreover, to our knowledge epithelial-to-mesenchymal transition involvement in human penile squamous cell carcinoma, which can arise through transforming HPV infections or independently of HPV, has not been investigated. We evaluated the presence of epithelial-to-mesenchymal transition markers and their relationship to HPV in penile squamous cell carcinoma. We assessed the expression of E-cadherin, vimentin and the epithelial-to-mesenchymal transition related transcription factors Twist, Zeb1 and Snail by immunohistochemical staining in 64 penile squamous cell carcinoma cases. HPV was detected by polymerase chain reaction amplification. Simultaneous loss of membranous E-cadherin expression and vimentin over expression were noted in 43.5% of penile squamous cell carcinoma cases. HPV was significantly associated with loss of membranous E-cadherin but not with epithelial-to-mesenchymal transition. Recurrence and mortality rates were significantly higher in cases showing epithelial-to-mesenchymal transition. Our findings indicate that in penile squamous cell carcinoma epithelial-to-mesenchymal transition is associated with poor prognosis but not with the presence of HPV. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Evidence for epithelial-mesenchymal transitions in adult liver cells.

    PubMed

    Sicklick, Jason K; Choi, Steve S; Bustamante, Marcia; McCall, Shannon J; Pérez, Elizabeth Hernández; Huang, Jiawen; Li, Yin-Xiong; Rojkind, Marcos; Diehl, Anna Mae

    2006-10-01

    Both myofibroblastic hepatic stellate cells (HSC) and hepatic epithelial progenitors accumulate in damaged livers. In some injured organs, the ability to distinguish between fibroblastic and epithelial cells is sometimes difficult because cells undergo epithelial-mesenchymal transitions (EMT). During EMT, cells coexpress epithelial and mesenchymal cell markers. To determine whether EMT occurs in adult liver cells, we analyzed the expression profile of primary HSC, two HSC lines, and hepatic epithelial progenitors. As expected, all HSC expressed HSC markers. Surprisingly, these markers were also expressed by epithelial progenitors. In addition, one HSC line expressed typical epithelial progenitor mRNAs, and these epithelial markers were inducible in the second HSC line. In normal and damaged livers, small ductular-type cells stained positive for an HSC marker. In conclusion, HSC and hepatic epithelial progenitors both coexpress epithelial and mesenchymal markers, providing evidence that EMT occurs in adult liver cells.

  13. Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells.

    PubMed

    Yasukawa, Atsushi; Hosoki, Koa; Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N; Suga, Shigeru; Kobayashi, Tetsu; Fujisawa, Takao; Taguchi, Osamu; Gabazza, Esteban C

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.

  14. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression.

    PubMed

    Hugo, Honor; Ackland, M Leigh; Blick, Tony; Lawrence, Mitchell G; Clements, Judith A; Williams, Elizabeth D; Thompson, Erik W

    2007-11-01

    Like a set of bookends, cellular, molecular, and genetic changes of the beginnings of life mirror those of one of the most common cause of death--metastatic cancer. Epithelial to mesenchymal transition (EMT) is an important change in cell phenotype which allows the escape of epithelial cells from the structural constraints imposed by tissue architecture, and was first recognized by Elizabeth Hay in the early to mid 1980's to be a central process in early embryonic morphogenesis. Reversals of these changes, termed mesenchymal to epithelial transitions (METs), also occur and are important in tissue construction in normal development. Over the last decade, evidence has mounted for EMT as the means through which solid tissue epithelial cancers invade and metastasize. However, demonstrating this potentially rapid and transient process in vivo has proven difficult and data connecting the relevance of this process to tumor progression is still somewhat limited and controversial. Evidence for an important role of MET in the development of clinically overt metastases is starting to accumulate, and model systems have been developed. This review details recent advances in the knowledge of EMT as it occurs in breast development and carcinoma and prostate cancer progression, and highlights the role that MET plays in cancer metastasis. Finally, perspectives from a clinical and translational viewpoint are discussed.

  15. Cell fusion between gastric epithelial cells and mesenchymal stem cells results in epithelial-to-mesenchymal transition and malignant transformation.

    PubMed

    He, Xianghui; Li, Baosong; Shao, Yang; Zhao, Na; Hsu, Yiling; Zhang, Zhixiang; Zhu, Liwei

    2015-01-30

    The discovery of cancer stem cells and tumor heterogeneity prompted the exploration of additional mechanisms aside from genetic mutations for carcinogenesis and cancer progression. The aim of the present study was to investigate the effect of cell fusion between mesenchymal stem cells and the gastric epithelial cells in tumorigenesis. Cell fusion between cord blood mesenchymal stem cells and human gastric epithelial cells was performed in vitro. Cell scratch and transwell assays were performed to determine migration and invasion abilities of the hybrids. The expressions of epithelial-mesenchymal transition-related proteins and genes were analyzed by immunocytochemistry and real time quantitative PCR. Tumorigenesis of the hybrids was evaluated through in vivo inoculation in nude mice. Hybrids expressed the phenotypes of both donor cells. Aneuploidy was observed in 84.1% of cells. The hybrids showed increased proliferation, migration and invasion abilities compared with the parental cells. In addition, the expression of N-cadherin and vimentin in the hybrids was significantly higher than that of the epithelial cells, and the mRNA expression of the epithelial-mesenchymal transition-related genes, Twist and Slug, in the hybrids was also increased compared with that of the parental epithelial cells. Furthermore, the hybrids formed masses of epithelial origin with glandular structures in BALB/c nude mice. These findings suggest that cell fusion between gastric epithelial cells and mesenchymal stem cells may result in epithelial to mesenchymal transition and malignant transformation.

  16. Commentary: acetaldehyde and epithelial-to-mesenchymal transition in colon.

    PubMed

    Rao, Radhakrishna K

    2014-02-01

    Elamin and colleagues in this issue report that acetaldehyde activates Snail, a transcription factor involved in epithelial-to-mesenchymal transition, in an intestinal epithelium. Snail mediates acetaldehyde-induced tight junction disruption and increase in paracellular permeability. Results of this study and other previous studies raise several important questions. This commentary addresses these questions by discussing the acetaldehyde concentration in colon, disruption of epical junctional complexes in the intestinal epithelium by acetaldehyde, and the consequence of long-term exposure to acetaldehyde on colonic epithelial regeneration, carcinogenesis, and metastases. The precise role of acetaldehyde in colonic epithelial modifications and promotion of colorectal cancers still remains to be understood.

  17. Epithelial to Mesenchymal Transition of Mesothelial Cells in Tuberculous Pleurisy

    PubMed Central

    Kim, Changhwan; Park, Sung-Hoon; Hwang, Yong Il; Jang, Seung Hun; Kim, Cheol Hong; Jung, Ki-Suck; Min, Kwangseon; Lee, Jae Woong; Jang, Young Sook

    2011-01-01

    Purpose Tuberculous pleurisy is the most frequent extrapulmonary manifestation of tuberculosis. In spite of adequate treatment, pleural fibrosis is a common complication, but the mechanism has not been elucidated. This study is to determine whether epithelial to mesenchymal transition (EMT) of mesothelial cells occurs in tuberculous pleurisy. Materials and Methods Normal pleural mesothelial cells, isolated from irrigation fluids during operations for primary spontaneous pneumothorax, were characterized by immunofluorescence and reverse transcription polymerase chain reaction (RT-PCR). These cells were treated in vitro with various cytokines, which were produced in the effluents of tuberculous pleurisy. The isolated cells from the effluents of tuberculous pleurisy were analyzed by immunofluorescence and RT-PCR analysis. Results The isolated cells from the irrigation fluid of primary spontaneous pneumothorax had epithelial characteristics. These cells, with transforming growth factor-β1 and/or interleukin-1β treatment, underwent phenotypic transition from epithelial to mesenchymal cells, with the loss of epithelial morphology and reduction in cytokeratin and E-cadherin expression. Effluent analysis from tuberculous pleurisy using immunofluorescence and RT-PCR demonstrated two phenotypes that showed mesenchymal characteristics and both epithelial & mesencymal characteristics. Conclusion Our results suggest that pleural mesothelial cells in tuberculous pleurisy have been implicated in pleural fibrosis through EMT. PMID:21155035

  18. Epithelial-mesenchymal transition in tissue repair and fibrosis.

    PubMed

    Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana

    2016-09-01

    The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).

  19. Epithelioid peritoneal mesothelioma: a hybrid phenotype within a mesenchymal-epithelial/epithelial-mesenchymal transition framework

    PubMed Central

    Bozzi, Fabio; Brich, Silvia; Dagrada, Gian Paolo; Negri, Tiziana; Conca, Elena; Cortelazzi, Barbara; Belfiore, Antonino; Perrone, Federica; Gualeni, Ambra Vittoria; Gloghini, Annunziata; Cabras, Antonello; Brenca, Monica; Maestro, Roberta; Zaffaroni, Nadia; Casali, Paolo; Bertulli, Rossella; Deraco, Marcello; Pilotti, Silvana

    2016-01-01

    The aim of this study was to reconsider the biological characteristics of epithelioid malignant peritoneal mesothelioma (E-MpM) in the light of new concepts about epithelial mesenchymal transition and mesenchymal epithelial reverse transition (EMT/MErT) and the role of epigenetic reprogramming in this context. To this end we profiled surgical specimens and derived cells cultures by a number of complementary approaches i.e. immunohistochemistry, immunofluorescence, in situ hybridization, biochemistry, pluripotent stem cell arrays, treatments with cytokines, growth factors and specific inhibitors. The analyses of the surgical specimens showed that i) EZH2 is expressed throughout the spectrum of MpM, ii) that E-MpM (including the high-grade undifferentiated form) are characterised by c-MYC and miRNA 17-5p expression, and iii) that progression to sarcomatoid MpM is dictated by EMT regulators. They also showed that E-MpM expressed c-MET and are enriched in E- and P-cadherins- and VEGFR2-expressing CSCs, thus strongly supporting a role for MErT reprogramming in endowing E-MpM tumour cells with stemness and plasticity, and hence with a drug resistant phenotype. The cell culture-based experiments confirmed the stemness traits and plasticity of E-MpM, and support the view that EZH2 is a druggable target in this tumor. PMID:27705913

  20. TFDP3 Regulates Epithelial-Mesenchymal Transition in Breast Cancer

    PubMed Central

    Yin, Kailin; Liu, Yanchen; Chu, Ming; Wang, Yuedan

    2017-01-01

    Breast cancer remains a lethal disease to women due to lymph node metastasis, the tumor microenvironment, secondary resistance and other unknown factors. Several important transcription factors involved in this disease, such as PTEN, p53 and beta-catenin, have been identified and researched in-depth as candidates for targeted therapy in breast cancer. TFDP3 is a new, promising candidate for transcriptional regulation in breast cancer, although it was first identified in hepatocellular carcinoma. Here, we demonstrate that TFDP3 is expressed in a variety of malignancies, normal testis tissue and breast cancer cell lines and thus provide evidence that TFDP3 is a cancer-testis antigen. We illustrate that overexpression or silencing TFDP3 interferes with epithelial-mesenchymal transition but does not influence cell proliferation, indicating that the TFDP3 protein acts as a transcription factor during epithelial-mesenchymal transition. These data highlight that TFDP3 is expressed in breast cancer, that it is a member of the cancer-testis antigen family and that it functions as a regulator in epithelial-mesenchymal transition. PMID:28114432

  1. Epithelial-mesenchymal transition in prostate cancer: an overview.

    PubMed

    Montanari, Micaela; Rossetti, Sabrina; Cavaliere, Carla; D'Aniello, Carmine; Malzone, Maria Gabriella; Vanacore, Daniela; Di Franco, Rossella; La Mantia, Elvira; Iovane, Gelsomina; Piscitelli, Raffaele; Muscariello, Raffaele; Berretta, Massimiliano; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Bianchi, Attilio Antonio Montano; Veneziani, Bianca Maria; Facchini, Gaetano

    2017-05-23

    Prostate cancer is a main urological disease associated with significant morbidity and mortality. Radical prostatectomy and radiotherapy are potentially curative for localized prostate cancer, while androgen deprivation therapy is the initial systemic therapy for metastatic prostate disease. However, despite temporary response, most patients relapse and evolve into castration resistant cancer.Epithelial-mesenchymal transition (EMT) is a complex gradual process that occurs during embryonic development and/or tumor progression. During this process, cells lose their epithelial characteristics and acquire mesenchymal features. Increasing evidences indicate that EMT promotes prostate cancer metastatic progression and it is closely correlated with increased stemness and drug resistance.In this review, we discuss the main molecular events that directly or indirectly govern the EMT program in prostate cancer, in order to better define the role and the mechanisms underlying this process in prostate cancer progression and therapeutic resistance.

  2. Metadherin regulates epithelial-mesenchymal transition in carcinoma.

    PubMed

    Wang, Zhao; Tang, Zheng-Yan; Yin, Zhuo; Wei, Yong-Bao; Liu, Long-Fei; Yan, Bin; Zhou, Ke-Qin; Nian, Ye-Qi; Gao, Yun-Liang; Yang, Jin-Rui

    2016-01-01

    Metadherin (MTDH) was first identified in primary human fetal astrocytes exposed to HIV-1 in 2002 and then recognized as an important oncogene mediating tumorigenesis, progression, invasiveness, and metastasis of carcinomas. Epithelial-mesenchymal transition (EMT) is a vital process in embryonic development, organ repair, and cancer progression. MTDH and EMT have also been proved to be related to the prognosis of patients with cancers. Recent studies reveal a relationship between MTDH overexpression and EMT in some malignancies. This review highlights the overexpression of MTDH and EMT in cancers and their correlations in clinical studies. Positive correlations have been established between MTDH and mesenchymal biomarkers, and negative correlations between MTDH and epithelial biomarkers have also been established. Furthermore, experiments reveal EMT regulated by MTDH, and some signal pathways have been established. Some anticancer drugs targeting MTDH and EMT are introduced in this review. Some perspectives concerning EMT regulation by MTDH are also presented in this review.

  3. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  4. Mechanisms of Epithelial-Mesenchymal Transition by TGF-β

    PubMed Central

    Wendt, Michael K.; Allington, Tressa M.; Schiemann, William P.

    2010-01-01

    Summary The formation of epithelial cell barriers results from the defined spatiotemporal differentiation of stem cells into a specialized and polarized epithelium, a process termed mesenchymal-epithelial transition. The reverse process, epithelial-mesenchymal transition (EMT), is a metastable process that enables polarized epithelial cells acquire a motile fibroblastoid phenotype. Physiological EMT also plays an essential role in promoting tissue healing, remodeling, or repair in response to a variety of pathological insults. On the other hand, pathophysiological EMT is a critical step in mediating the acquisition of metastatic phenotypes by localized carcinomas. Although metastasis clearly is the most lethal aspect of cancer, our knowledge of the molecular events that govern its development, including those underlying EMT, remain relatively undefined. Transforming growth factor-β (TGF-β) is a multifunctional cytokine that oversees and directs all aspects of cell development, differentiation, and homeostasis, as well as suppresses their uncontrolled proliferation and transformation. Quite dichotomously, tumorigenesis subverts the tumor suppressing function of TGF-β, and in doing so, converts TGF-β to a tumor promoter that stimulates pathophysiological EMT and metastasis. It therefore stands to reason that determining how TGF-β induces EMT in developing neoplasms will enable science and medicine to produce novel pharmacological agents capable of preventing its ability to do so, thereby improving the clinical course of cancer patients. Here we review the cellular, molecular, and microenvironmental mechanisms used by TGF-β to mediate its stimulation of EMT in normal and malignant cells. PMID:19852727

  5. Signaling mechanisms of the epithelial-mesenchymal transition

    PubMed Central

    Gonzalez, David M.; Medici, Damian

    2015-01-01

    The epithelial-mesenchymal transition (EMT) is an essential mechanism in embryonic development and tissue repair. EMT also contributes to the progression of disease, including organ fibrosis and cancer. EMT, as well as a similar transition occurring in vascular endothelial cells called endothelial-mesenchymal transition (EndMT), results from the induction of transcription factors that alter gene expression to promote loss of cell-cell adhesion, leading to a shift in cytoskeletal dynamics and a change from epithelial morphology and physiology to the mesenchymal phenotype. Transcription program switching in EMT is induced by signaling pathways mediated by transforming growth factor β (TGF-b) and bone morphogenetic protein (BMP), Wnt–β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. These pathways are activated by various dynamic stimuli from the local microenvironment, including growth factors and cytokines, hypoxia, and contact with the surrounding extracellular matrix (ECM). We discuss how these pathways crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease. Understanding these mechanisms will enable the therapeutic control of EMT to promote tissue regeneration, treat fibrosis, and prevent cancer metastasis. PMID:25249658

  6. Signaling mechanisms of the epithelial-mesenchymal transition.

    PubMed

    Gonzalez, David M; Medici, Damian

    2014-09-23

    The epithelial-mesenchymal transition (EMT) is an essential mechanism in embryonic development and tissue repair. EMT also contributes to the progression of disease, including organ fibrosis and cancer. EMT, as well as a similar transition occurring in vascular endothelial cells called endothelial-mesenchymal transition (EndMT), results from the induction of transcription factors that alter gene expression to promote loss of cell-cell adhesion, leading to a shift in cytoskeletal dynamics and a change from epithelial morphology and physiology to the mesenchymal phenotype. Transcription program switching in EMT is induced by signaling pathways mediated by transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. These pathways are activated by various dynamic stimuli from the local microenvironment, including growth factors and cytokines, hypoxia, and contact with the surrounding extracellular matrix (ECM). We discuss how these pathways crosstalk and respond to signals from the microenvironment to regulate the expression and function of EMT-inducing transcription factors in development, physiology, and disease. Understanding these mechanisms will enable the therapeutic control of EMT to promote tissue regeneration, treat fibrosis, and prevent cancer metastasis. Copyright © 2014, American Association for the Advancement of Science.

  7. Transcriptional factors for epithelial-mesenchymal transition are associated with mesenchymal differentiation in gliosarcoma.

    PubMed

    Nagaishi, Masaya; Paulus, Werner; Brokinkel, Benjamin; Vital, Anne; Tanaka, Yuko; Nakazato, Yoichi; Giangaspero, Felice; Ohgaki, Hiroko

    2012-09-01

    Gliosarcoma is a rare variant of glioblastoma characterized by a biphasic pattern of glial and mesenchymal differentiation. It is unclear whether mesenchymal differentiation in gliosarcomas is because of extensive genomic instability and/or to a mechanism similar to epithelial-mesenchymal transition (EMT). In the present study, we assessed 40 gliosarcomas for immunoreactivity of Slug, Twist, matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), which are involved in EMT in epithelial tumors. Nuclear Slug expression was observed in >50% of neoplastic cells in mesenchymal tumor areas of 33 (83%) gliosarcomas, but not in glial areas (P < 0.0001). Nuclear Twist expression was observed in >50% of neoplastic cells in mesenchymal tumor areas of 35 (88%) gliosarcomas, but glial tumor areas were largely negative except in four cases (P < 0.0001). Expression of MMP-2 and MMP-9 was also significantly more extensive in mesenchymal than in glial tumor areas. None of 20 ordinary glioblastomas showed Slug or Twist expression in >10% neoplastic cells. Thus, expression of Slug, Twist, MMP-2 and MMP-9 was characteristic of mesenchymal tumor areas of gliosarcomas, suggesting that mechanisms involved in the EMT in epithelial neoplasms may play roles in mesenchymal differentiation in gliosarcomas. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  8. TGF-β induced epithelial-mesenchymal transition modeling

    NASA Astrophysics Data System (ADS)

    Xenitidis, P.; Seimenis, I.; Kakolyris, S.; Adamopoulos, A.

    2015-09-01

    Epithelial cells may undergo a process called epithelial to mesenchymal transition (EMT). During EMT, cells lose their epithelial characteristics and acquire a migratory ability. Transforming growth factor-beta (TGF-β) signaling is considered to play an important role in EMT by regulating a set of genes through a gene regulatory network (GRN). This work aims at TGF-β induced EMT GRN modeling using publicly available experimental data (gene expression microarray data). The time-series network identification (TSNI) algorithm was used for inferring the EMT GRN. Receiver operating characteristic (ROC) and precision-recall (P-R) curves were constructed and the areas under them were used for evaluating the algorithm performance regarding network inference.

  9. Collective and individual migration following the epithelial-mesenchymal transition.

    PubMed

    Wong, Ian Y; Javaid, Sarah; Wong, Elisabeth A; Perk, Sinem; Haber, Daniel A; Toner, Mehmet; Irimia, Daniel

    2014-11-01

    During cancer progression, malignant cells in the tumour invade surrounding tissues. This transformation of adherent cells to a motile phenotype has been associated with the epithelial-mesenchymal transition (EMT). Here, we show that EMT-activated cells migrate through micropillar arrays as a collectively advancing front that scatters individual cells. Individual cells with few neighbours dispersed with fast, straight trajectories, whereas cells that encountered many neighbours migrated collectively with epithelial biomarkers. We modelled these emergent dynamics using a physical analogy to phase transitions during binary-mixture solidification, and validated it using drug perturbations, which revealed that individually migrating cells exhibit diminished chemosensitivity. Our measurements also indicate a degree of phenotypic plasticity as cells interconvert between individual and collective migration. The study of multicellular behaviours with single-cell resolution should enable further quantitative insights into heterogeneous tumour invasion.

  10. Collective and Individual Migration following the Epithelial-Mesenchymal Transition

    PubMed Central

    Wong, Ian Y.; Javaid, Sarah; Wong, Elisabeth A.; Perk, Sinem; Haber, Daniel A.; Toner, Mehmet; Irimia, Daniel

    2014-01-01

    During cancer progression, malignant cells in the tumour invade surrounding tissues. This transformation of adherent cells to a motile phenotype has been associated with the epithelial mesenchymal transition (EMT). Here, we show that EMT-activated cells migrate through micropillar arrays as a collectively advancing front that scatters individual cells. Individual cells with few neighbours dispersed with fast, straight trajectories, whereas cells that encountered many neighbours migrated collectively with epithelial biomarkers. We modelled these emergent dynamics using a physical analogy to solidification phase transitions in binary mixtures, and validated it using drug perturbations, which revealed that individually migrating cells exhibit diminished chemosensitivity. Our measurements also indicate a degree of phenotypic plasticity as cells interconvert between individual and collective migration. The study of multicellular behaviours with single-cell resolution should enable further quantitative insights into heterogeneous tumour invasion. PMID:25129619

  11. Collective and individual migration following the epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Wong, Ian Y.; Javaid, Sarah; Wong, Elisabeth A.; Perk, Sinem; Haber, Daniel A.; Toner, Mehmet; Irimia, Daniel

    2014-11-01

    During cancer progression, malignant cells in the tumour invade surrounding tissues. This transformation of adherent cells to a motile phenotype has been associated with the epithelial-mesenchymal transition (EMT). Here, we show that EMT-activated cells migrate through micropillar arrays as a collectively advancing front that scatters individual cells. Individual cells with few neighbours dispersed with fast, straight trajectories, whereas cells that encountered many neighbours migrated collectively with epithelial biomarkers. We modelled these emergent dynamics using a physical analogy to phase transitions during binary-mixture solidification, and validated it using drug perturbations, which revealed that individually migrating cells exhibit diminished chemosensitivity. Our measurements also indicate a degree of phenotypic plasticity as cells interconvert between individual and collective migration. The study of multicellular behaviours with single-cell resolution should enable further quantitative insights into heterogeneous tumour invasion.

  12. CCN1 induces a reversible epithelial-mesenchymal transition in gastric epithelial cells.

    PubMed

    Chai, Jianyuan; Norng, Manith; Modak, Cristina; Reavis, Kevin M; Mouazzen, Wasim; Pham, Jennifer

    2010-08-01

    CCN1 is a matricellular protein that activates many genes related to wound healing and tissue remodeling in fibroblasts, but its effect on epithelial cells remains unclear. This study examined the role of CCN1 in epithelial wound healing using rat gastric epithelial cells and rat stomach ulcer as in vitro and in vivo models, respectively. We found that CCN1 expression is highly upregulated in the epithelial cells adjacent to a wound and remains high until the wound is healed. Upregulation of CCN1 activates a transient epithelial-mesenchymal transition in the epithelial cells at the migrating front and drives wound closure. Once the wound is healed, these epithelial cells and their progeny can resume their original epithelial phenotype. We also found that CCN1-induced E-cadherin loss is not due to transcriptional regulation but rather protein degradation due to the collapse of adherens junctions, which is contributed by beta-catenin translocation. CCN1-activated integrin-linked kinase mediates this process. Finally, our in vivo study showed that locally neutralizing CCN1 drastically impairs wound closure, whereas local injection of recombinant CCN1 protein induces expression of vimentin and smooth muscle alpha-actin in normal gastric mucosal epithelial cells and accelerates re-epithelialization during ulcer healing. In conclusion, our study indicates that CCN1 can induce reversible epithelial-mesenchymal transition, and this feature may have great value for clinical wound healing.

  13. MET: roles in epithelial-mesenchymal transition and cancer stemness

    PubMed Central

    Jeon, Hye-Min

    2017-01-01

    In a number of cancers, deregulated MET pathway leads to aberrantly activated proliferative and invasive signaling programs that promote malignant transformation, cell motility and migration, angiogenesis, survival in hypoxia, and invasion. A better understanding of oncogenic MET signaling will help us to discover effective therapeutic approaches and to identify which tumors are likely to respond to MET-targeted cancer therapy. In this review, we will summarize the roles of MET signaling in cancer, with particular focus on epithelial-mesenchymal transition (EMT) and cancer stemness. Then, we will provide update on MET targeting agents and discuss the challenges that should be overcome for the development of an effective therapy. PMID:28164090

  14. Epithelial mesenchymal transition in lung cancer cells: A quantitative analysis.

    PubMed

    Sarkar, Atasi; Barui, A; Sengupta, S; Chatterjee, J; Ghorai, S; Mukherjee, Anirban

    2015-01-01

    Cellular auto-fluorescence along with morphological and cytoskeletal features were assessed in lung cancer cells undergoing induced epithelial mesenchymal transition (EMT). During EMT progression, significant increase was observed in cellular aspect ratio (AR), filamentous (F)-actin and green auto-fluorescence intensities while blue intensity decreased. These features were provided to a kernel classification framework. The classification accuracy were impressive, thus these features along with the classification technique can be considered as suitable tools for automated grading of lung cancer cells undergoing EMT progression.

  15. MicroRNA Regulation of Epithelial to Mesenchymal Transition

    PubMed Central

    Abba, Mohammed L.; Patil, Nitin; Leupold, Jörg Hendrik; Allgayer, Heike

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a central regulatory program that is similar in many aspects to several steps of embryonic morphogenesis. In addition to its physiological role in tissue repair and wound healing, EMT contributes to chemo resistance, metastatic dissemination and fibrosis, amongst others. Classically, the morphological change from epithelial to mesenchymal phenotype is characterized by the appearance or loss of a group of proteins which have come to be recognized as markers of the EMT process. As with all proteins, these molecules are controlled at the transcriptional and translational level by transcription factors and microRNAs, respectively. A group of developmental transcription factors form the backbone of the EMT cascade and a large body of evidence shows that microRNAs are heavily involved in the successful coordination of mesenchymal transformation and vice versa, either by suppressing the expression of different groups of transcription factors, or otherwise acting as their functional mediators in orchestrating EMT. This article dissects the contribution of microRNAs to EMT and analyzes the molecular basis for their roles in this cellular process. Here, we emphasize their interaction with core transcription factors like the zinc finger enhancer (E)-box binding homeobox (ZEB), Snail and Twist families as well as some pluripotency transcription factors. PMID:26784241

  16. Sirtuins and Cancer: Role in the Epithelial-Mesenchymal Transition

    PubMed Central

    Della-Morte, David; Capuani, Barbara; Silvestris, Franco

    2016-01-01

    The human sirtuins (SIRT1–SIRT7) enzymes are a highly conserved family of NAD+-dependent histone deacetylases, which play a critical role in the regulation of a large number of metabolic pathways involved in stress response and aging. Cancer is an age-associated disease, and sirtuins may have a considerable impact on a plethora of processes that regulate tumorigenesis. In particular, growing evidence suggests that sirtuins may modulate epithelial plasticity by inducing transcriptional reprogramming leading to epithelial-mesenchymal transition (EMT), invasion, and metastases. Though commonly regarded as EMT inducers, sirtuins may also suppress this process, and their functional properties seem to largely depend on the cellular context, stage of cancer development, tissue of origin, and microenvironment architecture. Here, we review the role of sirtuins in cancer biology with particular emphasis on their role in EMT. PMID:27379175

  17. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis.

    PubMed

    Igietseme, Joseph U; Omosun, Yusuf; Stuchlik, Olga; Reed, Matthew S; Partin, James; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Bollweg, Brigid; George, Zenas; Eko, Francis O; Bandea, Claudiu; Liu, Hsi; Yang, Genyan; Shieh, Wun-Ju; Pohl, Jan; Karem, Kevin; Black, Carolyn M

    2015-01-01

    Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV

  18. Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis

    PubMed Central

    Igietseme, Joseph U.; Omosun, Yusuf; Stuchlik, Olga; Reed, Matthew S.; Partin, James; He, Qing; Joseph, Kahaliah; Ellerson, Debra; Bollweg, Brigid; George, Zenas; Eko, Francis O.; Bandea, Claudiu; Liu, Hsi; Yang, Genyan; Shieh, Wun-Ju; Pohl, Jan; Karem, Kevin; Black, Carolyn M.

    2015-01-01

    Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV

  19. OVOL guides the epithelial-hybrid-mesenchymal transition

    PubMed Central

    Boareto, Marcelo; Parsana, Princy; Mooney, Steven M.; Pienta, Kenneth J.; Levine, Herbert; Ben-Jacob, Eshel

    2015-01-01

    Metastasis involves multiple cycles of Epithelial-to-Mesenchymal Transition (EMT) and its reverse-MET. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that has maximum cellular plasticity and allows migration of Circulating Tumor Cells (CTCs) as a cluster. Hence, deciphering the molecular players helping to maintain the hybrid E/M phenotype may inform anti-metastasis strategies. Here, we devised a mechanism-based mathematical model to couple the transcription factor OVOL with the core EMT regulatory network miR-200/ZEB that acts as a three-way switch between the E, E/M and M phenotypes. We show that OVOL can modulate cellular plasticity in multiple ways - restricting EMT, driving MET, expanding the existence of the hybrid E/M phenotype and turning both EMT and MET into two-step processes. Our theoretical framework explains the differences between the observed effects of OVOL in breast and prostate cancer, and provides a platform for investigating additional signals during metastasis. PMID:25944618

  20. Epithelial-mesenchymal transitions of bile duct epithelial cells in primary hepatolithiasis.

    PubMed

    Zhao, Lijin; Yang, Rigao; Cheng, Long; Wang, Maijian; Jiang, Yan; Wang, Shuguang

    2010-07-01

    The purpose of this study was to explore the role of epithelial-mesenchymal transition in the pathogenesis of hepatolithiasis. Thirty-one patients with primary hepatolithiasis were enrolled in this study. Expressions of E-cadherin, alpha-catenin, alpha-SMA, vimentin, S100A4, TGF-beta1 and P-smad2/3 in hepatolithiasis bile duct epithelial cells were examined by immunohistochemistry staining. The results showed that the expressions of the epithelial markers E-cadherin and alpha-catenin were frequently lost in hepatolithiasis (32.3% and 25.9% of cases, respectively), while the mesenchymal markers vimentin, alpha-SMA and S100A4 were found to be present in hepatolithiasis (35.5%, 29.0%, and 32.3% of cases, respectively). The increased mesenchymal marker expression was correlated with decreased epithelial marker expression. The expressions of TGF-beta1 and P-smad2/3 in hepatolithiasis were correlated with the expression of S100A4. These data indicate that TGF-beta1-mediated epithelial-mesenchymal transition might be involved in the formation of hepatolithiasis.

  1. Hyaluronan: a critical component of epithelial-mesenchymal and epithelial-carcinoma transitions.

    PubMed

    Toole, Bryan P; Zoltan-Jones, Alexandra; Misra, Suniti; Ghatak, Shibnath

    2005-01-01

    Hyaluronan plays a central role in the transition of epithelia to mesenchyme in the embryo and in the acquisition of transformed properties in carcinoma cells. In some cases, hyaluronan is both essential and sufficient for induction of epithelial-mesenchymal transitions (EMTs). Underlying its role are the effects of hyaluronan on receptor kinase activities, cell survival pathways, and multidrug transporters. A more complete understanding of the mechanisms whereby hyaluronan exerts its influences on cell behavior will enhance our understanding of normal and pathological EMTs and may lead to improved therapies for cancer patients.

  2. TRIM37 promotes epithelial-mesenchymal transition in colorectal cancer

    PubMed Central

    Hu, Cheng-En; Gan, Jun

    2017-01-01

    There is substantial research on the oncogenic role of tripartite motif containing 37 (TRIM37); however, its importance in colorectal cancer (CRC) remains to be elucidated. The present study used reverse transcription-quantitative polymerase chain reaction, immunohistochemistry and western blotting to detect the expression level of TRIM37 in CRC. The importance of TRIM37 in cell proliferation, invasion and metastasis of CRC were investigated through overexpressing or knocking-down of TRIM37 in CRC cell lines, to observe its function. The present study revealed that TRIM37 was overexpressed in human CRC tissues. High TRIM37 expression resulted in increased CRC proliferation, migration and invasion. Mechanistically, it was confirmed that TRIM37 enhanced invasion and metastasis of CRC via the epithelial-mesenchymal transition pathway. In conclusion, the present study suggested that TRIM3 may contribute to CRC and act as a potential therapeutic target for CRC treatment. PMID:28098873

  3. Lung cancer exosomes as drivers of epithelial mesenchymal transition

    PubMed Central

    Rahman, Mohammad A.; Barger, Jennifer F.; Lovat, Francesca; Gao, Min; Otterson, Gregory A.; Nana-Sinkam, Patrick

    2016-01-01

    Exosomes, a subgroup of extracellular vesicles (EVs), have been shown to serve as a conduit for the exchange of genetic information between cells. Exosomes are released from all types of cells but in abundance from cancer cells. The contents of exosomes consist of proteins and genetic material (mRNA, DNA and miRNA) from the cell of origin. In this study, we examined the effects of exosomes derived from human lung cancer serum and both highly metastatic and non-metastatic cells on recipient human bronchial epithelial cells (HBECs). We found that exosomes derived from highly metastatic lung cancer cells and human late stage lung cancer serum induced vimentin expression, and epithelial to mesenchymal transition (EMT) in HBECs. Exosomes derived from highly metastatic cancer cells as well as late stage lung cancer serum induce migration, invasion and proliferation in non-cancerous recipient cells. Our results suggest that cancer derived exosomes could be a potential mediator of EMT in the recipient cells. PMID:27363026

  4. A proximal activator of transcription in epithelial-mesenchymal transition

    PubMed Central

    Venkov, Christo D.; Link, Andrew J.; Jennings, Jennifer L.; Plieth, David; Inoue, Tsutomu; Nagai, Kojiro; Xu, Carol; Dimitrova, Yoana N.; Rauscher, Frank J.; Neilson, Eric G.

    2007-01-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism for phenotypic conversion in normal development and disease states such as tissue fibrosis and metastasis. While this conversion of epithelia is under tight transcriptional control, few of the key transcriptional proteins are known. Fibroblasts produced by EMT express a gene encoding fibroblast-specific protein 1 (FSP1), which is regulated by a proximal cis-acting promoter element called fibroblast transcription site–1 (FTS-1). In mass spectrometry, chromatin immunoprecipitation, and siRNA studies, we used FTS-1 as a unique probe for mediators of EMT and identified a complex of 2 proteins, CArG box–binding factor–A (CBF-A) and KRAB-associated protein 1 (KAP-1), that bind this site. Epithelial cells engineered to conditionally express recombinant CBF-A (rCBF-A) activate the transcription of FSP1 and undergo EMT. The FTS-1 response element also exists in the promoters modulating a broader EMT transcriptome, including Twist, and Snail, as well as E-cadherin, β-catenin, ZO 1, vimentin, α1(I) collagen, and α–smooth muscle actin, and the induction of rCBF-A appropriately alters their expression as well. We believe formation of the CBF-A/KAP-1/FTS-1 complex is sufficient for the induction of FSP1 and a novel proximal activator of EMT. PMID:17273560

  5. A proximal activator of transcription in epithelial-mesenchymal transition.

    PubMed

    Venkov, Christo D; Link, Andrew J; Jennings, Jennifer L; Plieth, David; Inoue, Tsutomu; Nagai, Kojiro; Xu, Carol; Dimitrova, Yoana N; Rauscher, Frank J; Neilson, Eric G

    2007-02-01

    Epithelial-mesenchymal transition (EMT) is an important mechanism for phenotypic conversion in normal development and disease states such as tissue fibrosis and metastasis. While this conversion of epithelia is under tight transcriptional control, few of the key transcriptional proteins are known. Fibroblasts produced by EMT express a gene encoding fibroblast-specific protein 1 (FSP1), which is regulated by a proximal cis-acting promoter element called fibroblast transcription site-1 (FTS-1). In mass spectrometry, chromatin immunoprecipitation, and siRNA studies, we used FTS-1 as a unique probe for mediators of EMT and identified a complex of 2 proteins, CArG box-binding factor-A (CBF-A) and KRAB-associated protein 1 (KAP-1), that bind this site. Epithelial cells engineered to conditionally express recombinant CBF-A (rCBF-A) activate the transcription of FSP1 and undergo EMT. The FTS-1 response element also exists in the promoters modulating a broader EMT transcriptome, including Twist, and Snail, as well as E-cadherin, beta-catenin, ZO 1, vimentin, alpha1(I) collagen, and alpha-smooth muscle actin, and the induction of rCBF-A appropriately alters their expression as well. We believe formation of the CBF-A/KAP-1/FTS-1 complex is sufficient for the induction of FSP1 and a novel proximal activator of EMT.

  6. Vitamin D and the Epithelial to Mesenchymal Transition

    PubMed Central

    Larriba, María Jesús; García de Herreros, Antonio; Muñoz, Alberto

    2016-01-01

    Several studies support reciprocal regulation between the active vitamin D derivative 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the epithelial to mesenchymal transition (EMT). Thus, 1,25(OH)2D3 inhibits EMT via the induction of a variety of target genes that encode cell adhesion and polarity proteins responsible for the epithelial phenotype and through the repression of key EMT inducers. Both direct and indirect regulatory mechanisms mediate these effects. Conversely, certain master EMT inducers inhibit 1,25(OH)2D3 action by repressing the transcription of VDR gene encoding the high affinity vitamin D receptor that mediates 1,25(OH)2D3 effects. Consequently, the balance between the strength of 1,25(OH)2D3 signaling and the induction of EMT defines the cellular phenotype in each context. Here we review the current understanding of the genes and mechanisms involved in the interplay between 1,25(OH)2D3 and EMT. PMID:26880977

  7. Seeding of recipient-originated epithelial cells attenuates epithelial to mesenchymal transition in rat tracheal allotransplantation.

    PubMed

    Huang, Xun; Yan, Xiaolong; Zhang, Zhipei; Li, Xiaofei

    2015-06-01

    The specific role and mechanism of epithelium in the progression of obliterative airway disease (OAD) after tracheal allotransplantation remain poorly understood. In this study, we used rat heterotopic tracheal transplantation to investigate the mechanism of epithelial cell seeding during the process of OAD. Prospective, basic science. Research laboratory. In total, 120 Sprague Dawley (SD) rats and 90 Wistar rats were used. Tracheas from SD rats were implanted into SD rats (syngeneic, n = 30) or Wistar rats (allogeneic, n = 30), and SD rat tracheas (seeded with Wistar rat-derived epithelial cells 6 days after transplantation) were transplanted into Wistar rats (seeded allogeneic, n = 30). Grafts were harvested at 7, 14, or 30 days after transplantation for histologic, quantitative reverse transcriptional polymerase chain reaction or Western blot analyses. Syngrafts retained normal histologic structures, while the corresponding allografts demonstrated less ciliated epithelia and more lumenal occlusion. Seeding of epithelial cells ameliorated the histologic changes, reduced the expression of epithelial to mesenchymal transition (EMT)-related transcriptional factors and mesenchymal markers, and dampened the expression of transforming growth factor β1 (TGF-β1) and phosphorylation of smad3. Seeding of recipient epithelial cells inhibits the progression of OAD by attenuating EMT via TGF-β-Smad signaling in rat heterotopic tracheal allografts. Clinically, the injection of recipient-originated epithelial cells might provide new insights into the treatment for OAD after tracheal allotransplantation. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  8. Epithelial-mesenchymal transitions in bronchopulmonary dysplasia of newborn rats.

    PubMed

    Yang, Haiping; Fu, Jianhua; Xue, Xindong; Yao, Li; Qiao, Lin; Hou, Ana; Jin, Linlin; Xing, Yujiao

    2014-11-01

    Bronchopulmonary dysplasia (BPD) is a major threat to the health of premature infants yet its pathogenesis is not fully understood. Epithelial-mesenchymal transition (EMT) of lung epithelial cells may lead to BPD. To investigate the potential occurrence of EMT in a newborn rat model of BPD. Newborn rats were exposed to a hyperoxic environment within 12 hr of birth. Lung tissue and isolated alveolar epithelial type II cells (AT2 cells) were collected on Days 1, 3, 7, 14, and 21 after hyperoxic exposure. Pathological changes in lung tissue, alveolar development, ultrastructural changes in AT2 cells, co-expression of surfactant associated surfactant protein C (SPC), and α-smooth muscle actin (α-SMA) were investigated. The relative expression of SPC, α-SMA, E-cadherin, and N-cadherin were investigated in lung tissue and isolated AT2 cells. In lung tissue, alveolar development was attenuated from Day 7 onwards in the BPD model group; co-expression of SPC and α-SMA and ultrastructural changes typical of EMT were observed in AT2 cells from rats in the BPD group. SPC and α-SMA expression levels were higher in tissue samples from the BPD group than in control samples. Beginning on Day 7, evidence of a switch from E-cadherin to N-cadherin expression was observed in BPD lung tissue sample and in isolated AT2 cells. EMT of AT2 cells occurred in the hyperoxia-induced newborn rat BPD model and resulted in attenuated alveolar development as a portion of the myofibroblasts accumulated in the lung originated from AT2 cells via EMT. © 2014 Wiley Periodicals, Inc.

  9. Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer

    PubMed Central

    Deng, Junli; Wang, Li; Chen, Hongmin; Hao, Jingli; Ni, Jie; Chang, Lei; Duan, Wei; Graham, Peter; Li, Yong

    2016-01-01

    Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment. PMID:27304054

  10. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles.

    PubMed

    Chiabotto, Giulia; Bruno, Stefania; Collino, Federica; Camussi, Giovanni

    2016-01-01

    Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs.

  11. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles

    PubMed Central

    Chiabotto, Giulia; Bruno, Stefania; Collino, Federica

    2016-01-01

    Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs. PMID:27409796

  12. Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas

    PubMed Central

    Jin, Joy Q.; Woodard, Gavitt A.; Tolani, Bhairavi; Luh, Thomas M.; Giroux-Leprieur, Etienne; Mo, Minli; Chen, Zhao; Che, Juanjuan; Zhang, Zhenfa; Zhou, Yong; Wang, Lei; Hao, Xishan; Jablons, David; Wang, Changli; He, Biao

    2016-01-01

    Adenocarcinoma is the most common type of lung cancer. Epithelial-mesenchymal transition (EMT) is required for tumor invasion/metastasis and the components that control this process are potential therapeutic targets. This study we examined the role of Gli in lung adenocarcinoma and whether its activation regulates metastasis through EMT in lung adenocarcinoma. We found that tumors with high Gli expression had significantly lower E-Cadherin expression in two independent cohorts of patients with lung adenocarcinoma that we studied. In vitro up-regulation of SHh resulted in increased cell migration while small molecule inhibitors of Smo or Gli significantly reduced cell mobility both in a wound healing assay and in a 3D cell invasion assay. Inhibition of Gli in vivo decreased tumor growth and induced an increase in E-Cadherin expression. Our results indicate that Gli may be critical for lung adenocarcinoma metastasis and that a novel Gli inhibitor shows promise as a therapeutic agent by preventing cell migration and invasion in vitro and significantly reducing tumor growth and increasing E-Cadherin expression in vivo. PMID:27533453

  13. Osteopontin—A Master Regulator of Epithelial-Mesenchymal Transition

    PubMed Central

    Kothari, Anai N.; Arffa, Matthew L.; Chang, Victor; Blackwell, Robert H.; Syn, Wing-Kin; Zhang, Jiwang; Mi, Zhiyong; Kuo, Paul C.

    2016-01-01

    Osteopontin (OPN) plays an important functional role in both physiologic and pathologic states. OPN is implicated in the progression of fibrosis, cancer, and metastatic disease in several organ systems. The epithelial-mesenchymal transition (EMT), first described in embryology, is increasingly being recognized as a significant contributor to fibrotic phenotypes and tumor progression. Several well-established transcription factors regulate EMT and are conserved across tissue types and organ systems, including TWIST, zinc finger E-box-binding homeobox (ZEB), and SNAIL-family members. Recent literature points to an important relationship between OPN and EMT, implicating OPN as a key regulatory component of EMT programs. In this review, OPN’s interplay with traditional EMT activators, both directly and indirectly, will be discussed. Also, OPN’s ability to restructure the tissue and tumor microenvironment to indirectly modify EMT will be reviewed. Together, these diverse pathways demonstrate that OPN is able to modulate EMT and provide new targets for directing therapeutics. PMID:27023622

  14. Tempol effect on epithelial-mesenchymal transition induced by hyperglycemia

    PubMed Central

    Jafari, Mohammad; Dadras, Farahnaz; Ghadimipour, Hamid Reza; Seif Rabiei, Mohamad Ali; Khoshjou, Farhad

    2017-01-01

    Background One of common mechanisms in pathophysiology of chronic kidney diseases is epithelial-mesenchymal transition (EMT). On the other hand oxidative stress has been known to participate in kidney damage of diabetic nephropathy (DN). Objectives We studied if tempol, a well-known antioxidant agent, can ameliorate EMT in DN induced in male rats. Materials and Methods Twenty-seven male rats were equally divided in to 4 groups. Group I (control or C), group II (diabetic or D), group III (T) rats which was given tempol (100 mg/kg/day) by gavages for 28 days and group IV (D&T) was diabetic rats that also received same dose of tempol. After treatment, their kidneys were studied by immunohistochemicalstaining. Results Pathological changes in the kidney were detected concurrently with increasing kidney weight and urinary albumin excretion. In addition, EMT indices, i.e. decline of E-cadherin and increase of α SMA staining were significantly emerged in the renal tubular cells of diabetic group and were partially modified in diabetic group which were simultaneously treated by tempol. Conclusions Tempol can modify, but not significantly, EMT induced by DN. PMID:28042546

  15. Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse.

    PubMed

    Yamben, Idella F; Rachel, Rivka A; Shatadal, Shalini; Copeland, Neal G; Jenkins, Nancy A; Warming, Soren; Griep, Anne E

    2013-12-01

    The integrity and function of epithelial tissues depend on the establishment and maintenance of defining characteristics of epithelial cells, cell-cell adhesion and cell polarity. Disruption of these characteristics can lead to the loss of epithelial identity through a process called epithelial to mesenchymal transition (EMT), which can contribute to pathological conditions such as tissue fibrosis and invasive cancer. In invertebrates, the epithelial polarity gene scrib plays a critical role in establishing and maintaining cell adhesion and polarity. In this study we asked if the mouse homolog, Scrib, is required for establishment and/or maintenance of epithelial identity in vivo. To do so, we conditionally deleted Scrib in the head ectoderm tissue that gives rise to both the ocular lens and the corneal epithelium. Deletion of Scrib in the lens resulted in a change in epithelial cell shape from cuboidal to flattened and elongated. Early in the process, the cell adhesion protein, E-cadherin, and apical polarity protein, ZO-1, were downregulated and the myofibroblast protein, αSMA, was upregulated, suggesting EMT was occurring in the Scrib deficient lenses. Correlating temporally with the upregulation of αSMA, Smad3 and Smad4, TGFβ signaling intermediates, accumulated in the nucleus and Snail, a TGFβ target and transcriptional repressor of the gene encoding E-cadherin, was upregulated. Pax6, a lens epithelial transcription factor required to maintain lens epithelial cell identity also was downregulated. Loss of Scrib in the corneal epithelium also led to molecular changes consistent with EMT, suggesting that the effect of Scrib deficiency was not unique to the lens. Together, these data indicate that mammalian Scrib is required to maintain epithelial identity and that loss of Scrib can culminate in EMT, mediated, at least in part, through TGFβ signaling.

  16. Klebsiella pneumoniae Is Able to Trigger Epithelial-Mesenchymal Transition Process in Cultured Airway Epithelial Cells

    PubMed Central

    Leone, Laura; Mazzetta, Francesca; Martinelli, Daniela; Valente, Sabatino; Alimandi, Maurizio; Raffa, Salvatore; Santino, Iolanda

    2016-01-01

    The ability of some bacterial pathogens to activate Epithelial-Mesenchymal Transition normally is a consequence of the persistence of a local chronic inflammatory response or depends on a direct interaction of the pathogens with the host epithelial cells. In this study we monitored the abilities of the K. pneumoniae to activate the expression of genes related to EMT-like processes and the occurrence of phenotypic changes in airway epithelial cells during the early steps of cell infection. We describe changes in the production of intracellular reactive oxygen species and increased HIF-1α mRNA expression in cells exposed to K. pneumoniae infection. We also describe the upregulation of a set of transcription factors implicated in the EMT processes, such as Twist, Snail and ZEB, indicating that the morphological changes of epithelial cells already appreciable after few hours from the K. pneumoniae infection are tightly regulated by the activation of transcriptional pathways, driving epithelial cells to EMT. These effects appear to be effectively counteracted by resveratrol, an antioxidant that is able to exert a sustained scavenging of the intracellular ROS. This is the first report indicating that strains of K. pneumoniae may promote EMT-like programs through direct interaction with epithelial cells without the involvement of inflammatory cells. PMID:26812644

  17. Epithelial to mesenchymal transition: new and old insights from the classical neural crest model

    PubMed Central

    Pablo H., Strobl-Mazzulla; Marianne E., Bronner

    2012-01-01

    The epithelial-to-mesenchymal transition (EMT) is an important event converting compact and ordered epithelial cells into migratory mesenchymal cells. Given the molecular and cellular similarities between pathological and developmental EMTs, studying this event during neural crest development offers and excellent in vivo model for understanding the mechanisms underlying this process. Here, we review new and old insight into neural crest EMT in search of commonalities with cancer progression that might aid in the design of specific therapeutic prevention. PMID:22575214

  18. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition.

    PubMed

    Uzunhan, Yurdagül; Bernard, Olivier; Marchant, Dominique; Dard, Nicolas; Vanneaux, Valérie; Larghero, Jérôme; Gille, Thomas; Clerici, Christine; Valeyre, Dominique; Nunes, Hilario; Boncoeur, Emilie; Planès, Carole

    2016-03-01

    Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF. Copyright © 2016 the American Physiological Society.

  19. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis.

    PubMed

    Chen, Tong; You, Yanan; Jiang, Hua; Wang, Zack Z

    2017-01-12

    The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.

  20. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    SciTech Connect

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  1. Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition

    PubMed Central

    Hong, Deli; Messier, Terri L.; Tye, Coralee E.; Dobson, Jason R.; Fritz, Andrew J.; Sikora, Kenneth R.; Browne, Gillian; Stein, Janet L.; Lian, Jane B.; Stein, Gary S.

    2017-01-01

    Runx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear. Here we demonstrate the consequences of Runx1 loss in normal mammary epithelial and breast cancer cells. We first observed that Runx1 is decreased in tumorigenic and metastatic breast cancer cells. We also observed loss of Runx1 expression upon induction of epithelial-mesenchymal transition (EMT) in MCF10A (normal-like) cells. Furthermore depletion of Runx1 in MCF10A cells resulted in striking changes in cell shape, leading to mesenchymal cell morphology. The epithelial phenotype could be restored in breast cancer cells by re-expressing Runx1. Analyses of breast tumors and patient data revealed that low Runx1 expression is associated with poor prognosis and decreased survival. We addressed mechanisms for the function of Runx1 in maintaining the epithelial phenotype and find Runx1 directly regulates E-cadherin; and serves as a downstream transcription factor mediating TGFβ signaling. We also observed through global gene expression profiling of growth factor depleted cells that induction of EMT and loss of Runx1 is associated with activation of TGFβ and WNT pathways. Thus these findings have identified a novel function for Runx1 in sustaining normal epithelial morphology and preventing EMT and suggest Runx1 levels could be a prognostic indicator of tumor progression. PMID:28407681

  2. Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition.

    PubMed

    Hong, Deli; Messier, Terri L; Tye, Coralee E; Dobson, Jason R; Fritz, Andrew J; Sikora, Kenneth R; Browne, Gillian; Stein, Janet L; Lian, Jane B; Stein, Gary S

    2017-03-14

    Runx1 is a well characterized transcription factor essential for hematopoietic differentiation and Runx1 mutations are the cause of leukemias. Runx1 is highly expressed in normal epithelium of most glands and recently has been associated with solid tumors. Notably, the function of Runx1 in the mammary gland and how it is involved in initiation and progression of breast cancer is still unclear. Here we demonstrate the consequences of Runx1 loss in normal mammary epithelial and breast cancer cells. We first observed that Runx1 is decreased in tumorigenic and metastatic breast cancer cells. We also observed loss of Runx1 expression upon induction of epithelial-mesenchymal transition (EMT) in MCF10A (normal-like) cells. Furthermore depletion of Runx1 in MCF10A cells resulted in striking changes in cell shape, leading to mesenchymal cell morphology. The epithelial phenotype could be restored in breast cancer cells by re-expressing Runx1. Analyses of breast tumors and patient data revealed that low Runx1 expression is associated with poor prognosis and decreased survival. We addressed mechanisms for the function of Runx1 in maintaining the epithelial phenotype and find Runx1 directly regulates E-cadherin; and serves as a downstream transcription factor mediating TGFβ signaling. We also observed through global gene expression profiling of growth factor depleted cells that induction of EMT and loss of Runx1 is associated with activation of TGFβ and WNT pathways. Thus these findings have identified a novel function for Runx1 in sustaining normal epithelial morphology and preventing EMT and suggest Runx1 levels could be a prognostic indicator of tumor progression.

  3. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices

    NASA Astrophysics Data System (ADS)

    Nasrollahi, Samila; Pathak, Amit

    2016-01-01

    Epithelial cells disengage from their clusters and become motile by undergoing epithelial-to-mesenchymal transition (EMT), an essential process for both embryonic development and tumor metastasis. Growing evidence suggests that high extracellular matrix (ECM) stiffness induces EMT. In reality, epithelial clusters reside in a heterogeneous microenvironment whose mechanical properties vary not only in terms of stiffness, but also topography, dimensionality, and confinement. Yet, very little is known about how various geometrical parameters of the ECM might influence EMT. Here, we adapt a hydrogel-microchannels based matrix platform to culture mammary epithelial cell clusters in ECMs of tunable stiffness and confinement. We report a previously unidentified role of ECM confinement in EMT induction. Surprisingly, confinement induces EMT even in the cell clusters surrounded by a soft matrix, which otherwise protects against EMT in unconfined environments. Further, we demonstrate that stiffness-induced and confinement-induced EMT work through cell-matrix adhesions and cytoskeletal polarization, respectively. These findings highlight that both the structure and the stiffness of the ECM can independently regulate EMT, which brings a fresh perspective to the existing paradigm of matrix stiffness-dependent dissemination and invasion of tumor cells.

  4. Topographic confinement of epithelial clusters induces epithelial-to-mesenchymal transition in compliant matrices

    PubMed Central

    Nasrollahi, Samila; Pathak, Amit

    2016-01-01

    Epithelial cells disengage from their clusters and become motile by undergoing epithelial-to-mesenchymal transition (EMT), an essential process for both embryonic development and tumor metastasis. Growing evidence suggests that high extracellular matrix (ECM) stiffness induces EMT. In reality, epithelial clusters reside in a heterogeneous microenvironment whose mechanical properties vary not only in terms of stiffness, but also topography, dimensionality, and confinement. Yet, very little is known about how various geometrical parameters of the ECM might influence EMT. Here, we adapt a hydrogel-microchannels based matrix platform to culture mammary epithelial cell clusters in ECMs of tunable stiffness and confinement. We report a previously unidentified role of ECM confinement in EMT induction. Surprisingly, confinement induces EMT even in the cell clusters surrounded by a soft matrix, which otherwise protects against EMT in unconfined environments. Further, we demonstrate that stiffness-induced and confinement-induced EMT work through cell-matrix adhesions and cytoskeletal polarization, respectively. These findings highlight that both the structure and the stiffness of the ECM can independently regulate EMT, which brings a fresh perspective to the existing paradigm of matrix stiffness-dependent dissemination and invasion of tumor cells. PMID:26728047

  5. MAPK pathway mediates epithelial-mesenchymal transition induced by paraquat in alveolar epithelial cells.

    PubMed

    Huang, Min; Wang, Ya-Peng; Zhu, Ling-Qin; Cai, Qian; Li, Hong-Hui; Yang, Hui-Fang

    2016-11-01

    Epithelial-mesenchymal transition (EMT) is believed to be involved in lung fibrosis process induced by paraquat (PQ); however, the molecular mechanism of this process has not been clearly established. The present study investigated the potential involvement of EMT after PQ poisoning. The expressions of EMT markers, such as E-cadherin and α-smooth muscle actin (α-SMA), at multiple time points after exposure to different concentrations of PQ were evaluated by western blot analysis. Following PQ treatment, EMT induction was observed under microscopy. Related fibrosis genes, including Matrix metalloproteinase 2 (MMP-2), Matrix metalloproteinase 9 (MMP-9), collagens type I (COL I), and type III (COL III), were also evaluated by measuring their mRNA levels using RT-PCR analysis. Signaling pathways were analyzed using selective pharmacological inhibitors for MAPK. Cell migration ability was evaluated by scratch wound and Transwell assays. The data showed that PQ-induced epithelial RLE-6NT cells to develop mesenchymal cell characteristics, as indicated by a significant decrease in the epithelial marker E-cadherin and a significant increase in the extracellular matrix (ECM) marker α-smooth muscle actin in a dose and time-dependent manner. Moreover, PQ-treated RLE-6NT cells had an EMT-like phenotype with elevated expression of MMP-2, MMP-9, and COL I and COL III and enhanced migration ability. Signal pathway analysis revealed that PQ-induced EMT led to ERK-1 and Smad2 phosphorylation through activation of the MAPK pathway. The results of the current study indicate that PQ-induced pulmonary fibrosis occurs via EMT, which is mediated by the MAPK pathway. This implies that the MAPK pathway is a promising therapeutic target in alveolar epithelial cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1407-1414, 2016. © 2015 Wiley Periodicals, Inc.

  6. A comparison of epithelial-to-mesenchymal transition and re-epithelialization.

    PubMed

    Leopold, Philip L; Vincent, Jan; Wang, Hongjun

    2012-10-01

    Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.

  7. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk.

    PubMed

    Amankwah, Ernest K; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chen, Zhihua; Chen, Y Ann; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Permuth-Wey, Jennifer; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E; Berchuck, Andrew; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-12-01

    Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.

  8. Aneuploidy, oncogene amplification and epithelial to mesenchymal transition define spontaneous transformation of murine epithelial cells

    PubMed Central

    Padilla-Nash, Hesed M.; McNeil, Nicole E.

    2013-01-01

    Human epithelial cancers are defined by a recurrent distribution of specific chromosomal aneuploidies, a trait less typical for murine cancer models induced by an oncogenic stimulus. After prolonged culture, mouse epithelial cells spontaneously immortalize, transform and become tumorigenic. We assessed genome and transcriptome alterations in cultures derived from bladder and kidney utilizing spectral karyotyping, array CGH, FISH and gene expression profiling. The results show widespread aneuploidy, yet a recurrent and tissue-specific distribution of genomic imbalances, just as in human cancers. Losses of chromosome 4 and gains of chromosome 15 are common and occur early during the transformation process. Global gene expression profiling revealed early and significant transcriptional deregulation. Chromosomal aneuploidy resulted in expression changes of resident genes and consequently in a massive deregulation of the cellular transcriptome. Pathway interrogation of expression changes during the sequential steps of transformation revealed enrichment of genes associated with DNA repair, centrosome regulation, stem cell characteristics and aneuploidy. Genes that modulate the epithelial to mesenchymal transition and genes that define the chromosomal instability phenotype played a dominant role and were changed in a directionality consistent with loss of cell adhesion, invasiveness and proliferation. Comparison with gene expression changes during human bladder and kidney tumorigenesis revealed remarkable overlap with changes observed in the spontaneously transformed murine cultures. Therefore, our novel mouse models faithfully recapitulate the sequence of genomic and transcriptomic events that define human tumorigenesis, hence validating them for both basic and preclinical research. PMID:23619298

  9. Montelukast suppresses epithelial to mesenchymal transition of bronchial epithelial cells induced by eosinophils.

    PubMed

    Hosoki, Koa; Kainuma, Keigo; Toda, Masaaki; Harada, Etsuko; Chelakkot-Govindalayathila, Ayshwarya-Lakshmi; Roeen, Ziaurahman; Nagao, Mizuho; D'Alessandro-Gabazza, Corina N; Fujisawa, Takao; Gabazza, Esteban C

    2014-07-04

    Epithelial to mesenchymal transition (EMT) is a mechanism by which eosinophils can induce airway remodeling. Montelukast, an antagonist of the cysteinyl leukotriene receptor, can suppress airway remodeling in asthma. The purpose of this study was to evaluate whether montelukast can ameliorate airway remodeling by blocking EMT induced by eosinophils. EMT induced was assessed using a co-culture system of human bronchial epithelial cells and human eosinophils or the eosinophilic leukemia cell lines, Eol-1. Montelukast inhibited co-culture associated morphological changes of BEAS-2b cells, decreased the expression of vimentin and collagen I, and increased the expression of E-cadherin. Montelukast mitigated the rise of TGF-β1 production and Smad3 phosphorylation. Co-culture of human eosinophils with BEAS-2B cells significantly enhanced the production of CysLTs compared with BEAS-2B cells or eosinophils alone. The increase of CysLTs was abolished by montelukast pre-treatment. Montelukast had similar effects when co-culture system of Eol-1 and BEAS-2B was used. This study showed that montelukast suppresses eosinophils-induced EMT of airway epithelial cells. This finding may explain the mechanism of montelukast-mediated amelioration of airway remodeling in bronchial asthma.

  10. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    PubMed

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito; Kihara, Akio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  11. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

    PubMed Central

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis. PMID:27936102

  12. Epithelial-Mesenchymal Transition (EMT) gene variants and Epithelial Ovarian Cancer (EOC) risk

    PubMed Central

    Amankwah, Ernest K.; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chen, Zhihua; Chen, Y. Ann; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis N.; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Jim, Heather; Kellar, Melissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Permuth-Wey, Jennifer; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Kelemen, Linda E.; Berchuck, Andrew; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N.A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2016-01-01

    Introduction Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to EOC risk have been based on small sample sizes and none have sought replication in an independent population. Methods We screened 1254 SNPs in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (p<0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A p-value <0.05 and a false discovery rate (FDR) <0.2 was considered statistically significant. Results In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (OR=1.16, 95%CI=1.07–1.25, p=0.0003, FDR=0.19), while F8 rs7053448 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), F8 rs7058826 (OR=1.69, 95%CI=1.27–2.24, p=0.0003, FDR=0.12), and CAPN13 rs1983383 (OR=0.79, 95%CI=0.69–0.90, p=0.0005, FDR=0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. Conclusion These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC. PMID:26399219

  13. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos

    PubMed Central

    Katow, Hideki

    2015-01-01

    Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069

  14. Epithelial-mesenchymal transition and senescence: two cancer-related processes are crossing paths

    PubMed Central

    Smit, Marjon A.; Peeper, Daniel S.

    2010-01-01

    The epithelial-mesenchymal transition is involved in several physiological processes. However, it is also believed to contribute to cancer progression. Conversely, cellular senescence constitutes a failsafe program against cancer progression. Interestingly, EMT and senescence seem to cross paths, with several factors playing dominant roles in both settings. Here, we describe recent observations that link these important cellular processes. PMID:20975209

  15. The mutually regulatory loop of epithelial-mesenchymal transition and immunosuppression in cancer progression.

    PubMed

    Chen, Limo; Heymach, John V; Qin, F Xiao-Feng; Gibbons, Don L

    2015-05-01

    Epithelial-mesenchymal transition and immunosuppression are crucial for cancer metastasis and treatment resistance. The mechanism by which these distinct processes are co-opted remains incompletely understood. Our recent work has exposed the "dirty affairs" of the 2 at the tumor site, thus calling for a combined therapy to break such a dangerous liaison.

  16. The epithelial-mesenchymal transition in cancer: a potential critical topic for translational proteomic research.

    PubMed

    Bottoni, Patrizia; Isgrò, Maria Antonietta; Scatena, Roberto

    2016-01-01

    The epithelial-mesenchymal transition (EMT) is a morphogenetic process that results in a loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. First described in embryogenesis, the EMT has been recently implicated in carcinogenesis and tumor progression. In addition, recent evidence has shown that stem-like cancer cells present the hallmarks of the EMT. Some of the molecular mechanisms related to the interrelationships between cancer pathophysiology and the EMT are well-defined. Nevertheless, the precise molecular mechanism by which epithelial cancer cells acquire the mesenchymal phenotype remains largely unknown. This review focuses on various proteomic strategies with the goal of better understanding the physiological and pathological mechanisms of the EMT process.

  17. Transcription Factors OVOL1 and OVOL2 Induce the Mesenchymal to Epithelial Transition in Human Cancer

    PubMed Central

    Roca, Hernan; Hernandez, James; Weidner, Savannah; McEachin, Richard C.; Fuller, David; Sud, Sudha; Schumann, Taibriana; Wilkinson, John E.; Zaslavsky, Alexander; Li, Hangwen; Maher, Christopher A.; Daignault-Newton, Stephanie; Healy, Patrick N.; Pienta, Kenneth J.

    2013-01-01

    Cell plasticity regulated by the balance between the mesenchymal to epithelial transition (MET) and the opposite program, EMT, is critical in the metastatic cascade. Several transcription factors (TFs) are known to regulate EMT, though the mechanisms of MET remain unclear. We demonstrate a novel function of two TFs, OVOL1 and OVOL2, as critical inducers of MET in human cancers. Our findings indicate that the OVOL-TFs control MET through a regulatory feedback loop with EMT-inducing TF ZEB1, and the regulation of mRNA splicing by inducing Epithelial Splicing Regulatory Protein 1 (ESRP1). Using mouse prostate tumor models we show that expression of OVOL-TFs in mesenchymal prostate cancer cells attenuates their metastatic potential. The role of OVOL-TFs as inducers of MET is further supported by expression analyses in 917 cancer cell lines, suggesting their role as crucial regulators of epithelial-mesenchymal cell plasticity in cancer. PMID:24124593

  18. ED-B fibronectin expression is a marker of epithelial-mesenchymal transition in translational oncology.

    PubMed

    Petrini, Iacopo; Barachini, Serena; Carnicelli, Vittoria; Galimberti, Sara; Modeo, Letizia; Boni, Roberto; Sollini, Martina; Erba, Paola Anna

    2017-01-17

    Fibronectin is a component of the extracellular matrix that links collagen fibers to integrins on the cell's surface. The splicing isoforms, containing the ED-B domain, are not expressed in adult tissues but only in tumor stroma or during embryonic development. Fibroblasts and endothelial cells express ED-B fibronectin during angiogenesis. Also cancer cells can synthetize ED-B fibronectin, but its function in tumor growth needs to be further elucidated.We evaluated the expression of ED-B fibronectin in prostate cancer cell lines: PC3 and DU145. Using TGF-β, we induced epithelial to mesenchymal transition in culture and observed an increase of ED-B fibronectin expression. Thereafter, we evaluated the expression of ED-B fibronectin in multipotent mesangiogenic progenitor cells, and in mesenchymal stromal cells. The expression of ED-B fibronectin was much higher in mesenchymal than prostate cancer cells even after the epithelial to mesenchymal transition.Epithelial to mesenchymal transition is a key step for tumor progression contributing to the metastatic spread. Therefore, circulating cancer cells could seed into the metastatic niche taking advantage from the ED-B fibronectin that secrete their own.

  19. Elevated tropomyosin expression is associated with epithelial-mesenchymal transition of lens epithelial cells.

    PubMed

    Kubo, Eri; Hasanova, Nailia; Fatma, Nigar; Sasaki, Hiroshi; Singh, Dhirendra P

    2013-01-01

    Injury to lens epithelial cells (LECs) leads to epithelial-mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α-smooth muscle actin (α-SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up-regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non-cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α-SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm-based inhibitors for postponing PCO and cataractogenesis.

  20. Pathogenesis of Type 2 Epithelial to Mesenchymal Transition (EMT) in Renal and Hepatic Fibrosis

    PubMed Central

    Tennakoon, Anusha H.; Izawa, Takeshi; Kuwamura, Mitsuru; Yamate, Jyoji

    2015-01-01

    Epithelial to mesenchymal transition (EMT), particularly, type 2 EMT, is important in progressive renal and hepatic fibrosis. In this process, incompletely regenerated renal epithelia lose their epithelial characteristics and gain migratory mesenchymal qualities as myofibroblasts. In hepatic fibrosis (importantly, cirrhosis), the process also occurs in injured hepatocytes and hepatic progenitor cells (HPCs), as well as ductular reaction-related bile epithelia. Interestingly, the ductular reaction contributes partly to hepatocarcinogenesis of HPCs, and further, regenerating cholangiocytes after injury may be derived from hepatic stellate cells via mesenchymal to epithelia transition, a reverse phenomenon of type 2 EMT. Possible pathogenesis of type 2 EMT and its differences between renal and hepatic fibrosis are reviewed based on our experimental data. PMID:26729181

  1. Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Pawlizak, Steve; Fritsch, Anatol W.; Grosser, Steffen; Ahrens, Dave; Thalheim, Tobias; Riedel, Stefanie; Kießling, Tobias R.; Oswald, Linda; Zink, Mareike; Manning, M. Lisa; Käs, Josef A.

    2015-08-01

    We analyze the mechanical properties of three epithelial/mesenchymal cell lines (MCF-10A, MDA-MB-231, MDA-MB-436) that exhibit a shift in E-, N- and P-cadherin levels characteristic of an epithelial-mesenchymal transition associated with processes such as metastasis, to quantify the role of cell cohesion in cell sorting and compartmentalization. We develop a unique set of methods to measure cell-cell adhesiveness, cell stiffness and cell shapes, and compare the results to predictions from cell sorting in mixtures of cell populations. We find that the final sorted state is extremely robust among all three cell lines independent of epithelial or mesenchymal state, suggesting that cell sorting may play an important role in organization and boundary formation in tumours. We find that surface densities of adhesive molecules do not correlate with measured cell-cell adhesion, but do correlate with cell shapes, cell stiffness and the rate at which cells sort, in accordance with an extended version of the differential adhesion hypothesis (DAH). Surprisingly, the DAH does not correctly predict the final sorted state. This suggests that these tissues are not behaving as immiscible fluids, and that dynamical effects such as directional motility, friction and jamming may play an important role in tissue compartmentalization across the epithelial-mesenchymal transition.

  2. PUMA Cooperates with p21 to Regulate Mammary Epithelial Morphogenesis and Epithelial-To-Mesenchymal Transition.

    PubMed

    Zhang, Yanhong; Yan, Wensheng; Jung, Yong Sam; Chen, Xinbin

    2013-01-01

    Lumen formation is essential for mammary morphogenesis and requires proliferative suppression and apoptotic clearance of the inner cells within developing acini. Previously, we showed that knockdown of p53 or p73 leads to aberrant mammary acinus formation accompanied with decreased expression of p53 family targets PUMA and p21, suggesting that PUMA, an inducer of apoptosis, and p21, an inducer of cell cycle arrest, directly regulate mammary morphogenesis. To address this, we generated multiple MCF10A cell lines in which PUMA, p21, or both were stably knocked down. We found that morphogenesis of MCF10A cells was altered modestly by knockdown of either PUMA or p21 alone but markedly by knockdown of both PUMA and p21. Moreover, we found that knockdown of PUMA and p21 leads to loss of E-cadherin expression along with increased expression of epithelial-to-mesenchymal transition (EMT) markers. Interestingly, we found that knockdown of ΔNp73, which antagonizes the ability of wide-type p53 and TA isoform of p73 to regulate PUMA and p21, mitigates the abnormal morphogenesis and EMT induced by knockdown of PUMA or p21. Together, our data suggest that PUMA cooperates with p21 to regulate normal acinus formation and EMT.

  3. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process.

    PubMed

    Lee, Hae-Miru; Hwang, Kyung-A; Choi, Kyung-Chul

    2017-12-05

    Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with normal functions of natural hormones in the body, leading to a disruption of the endocrine system. Specifically, EDCs have the potential to cause formation of several hormone-dependent cancers, including breast, ovarian, and prostate cancers. Epithelial mesenchymal transition (EMT) process by which epithelial cells lose their cell polarity and cell-cell adhesion and acquire mesenchymal phenotype is closely associated with malignant transformation and the initiation of cancer metastasis. As a key epithelial marker responsible for adherens junction, E-cadherin enables the cells to maintain epithelial phenotypes. EMT event is induced by E-cadherin loss which can be carried out by many transcription factors (TFs), including Snail, Slug, ZEB1, ZEB2, Kruppel-like factor 8 (KLF8), and Twist. N-cadherin, fibronectin, and vimentin are mesenchymal markers needed for cellular migration. The EMT process is regulated by several signaling pathways mediated by transforming growth factor β (TGF-β), Wnt-β-catenin, Notch, Hedgehog, and receptor tyrosine kinases. In the present article, we reviewed the current understanding of cancer progression effects of synthetic chemical EDCs such as bisphenol A (BPA), phthalates, tetrachlorodibenzo-p-dioxin (TCDD), and triclosan by focusing their roles in the EMT process. Collectively, the majority of previous studies revealed that BPA, phthalates, TCDD, and triclosan have the potential to induce cancer metastasis through regulating EMT markers and migration via several signaling pathways associated with the EMT program. Therefore, it is considered that the exposure to these EDCs can increase the risk aggravating the disease for the patients suffering cancer and that more regulations about the use of these EDCs are needed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer

    PubMed Central

    Ma, Hui-Ying; Liu, Xin-Zhou; Liang, Chun-Min

    2016-01-01

    Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT. PMID:27547005

  5. Dynamic Chromatin Modification Sustains Epithelial-Mesenchymal Transition following Inducible Expression of Snail-1

    PubMed Central

    Javaid, Sarah; Zhang, Jianmin; Anderssen, Endre; Black, Josh C.; Wittner, Ben S.; Tajima, Ken; Ting, David T.; Smolen, Gromoslaw A.; Zubrowski, Matthew; Desai, Rushil; Maheswaran, Shyamala; Ramaswamy, Sridhar; Whetstine, Johnathan R.; Haber, Daniel A.

    2014-01-01

    SUMMARY Epithelial-mesenchymal transition (EMT) is thought to contribute to cancer metastasis, but its underlying mechanisms are not well understood. To define early steps in this cellular transformation, we analyzed human mammary epithelial cells with tightly regulated expression of Snail-1, a master regulator of EMT. After Snail-1 induction, epithelial markers were repressed within 6 hr, and mesenchymal genes were induced at 24 hr. Snail-1 binding to its target promoters was transient (6–48 hr) despite continued protein expression, and it was followed by both transient and long-lasting chromatin changes. Pharmacological inhibition of selected histone acetylation and demethylation pathways suppressed the induction as well as the maintenance of Snail-1-mediated EMT. Thus, EMT involves an epigenetic switch that may be prevented or reversed with the use of small-molecule inhibitors of chromatin modifiers. PMID:24360956

  6. Epithelial-to-mesenchymal transition: possible role in meningiomas.

    PubMed

    Pecina-Slaus, Nives; Cicvara-Pecina, Tatjana; Kafka, Anja

    2012-01-01

    Epithelial-to-mesenchimal transition (EMT) is a process involved in invasion and metastasis of tumors. The occurrence of EMT during tumor progression resembles the developmental scenario and sheds light on important mechanisms for the initial step of metastasis - invasion where noninvasive tumor cells acquire motility and ultimately disseminate to distant organs. The hallmark of EMT is the loss of expression of the cell-cell adhesion molecule E-cadherin. The numerous reports by many authors as well as our own results indicate that E-cadherin plays a role in CNS tumors - meningiomas. Our studies showed that 73 % of meningiomas had downregulation of E-cadherin. Moreover, loss of heterozygosity of E-cadherin was observed in 32 % of meningiomas. Bound to E-cadherin in adherens junctions is beta-catenin, whose translocation to the nucleus is yet another molecular event involved in EMT. In our study beta-catenin was progressively upregulated from meningothelial to atypical, while 60 % of anaplastic meningiomas showed upregulation and nuclear localization of the protein. The elucidation of molecular mechanisms that govern EMT will offer new approaches and targets to restrain metastasis.

  7. FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition.

    PubMed

    Brown, Wells S; Akhand, Saeed Salehin; Wendt, Michael K

    2016-12-13

    An emerging characteristic of drug resistance in cancer is the induction of epithelial-mesenchymal transition (EMT). However, the mechanisms of EMT-mediated drug resistance remain poorly defined. Therefore, we conducted long-term treatments of human epidermal growth factor receptor-2 (Her2)-transformed breast cancer cells with either the EGFR/Her2 kinase inhibitor, Lapatinib or TGF-β, a known physiological inducer of EMT. Both of these treatment regimes resulted in robust EMT phenotypes, but upon withdrawal a subpopulation of TGF-β induced cells readily underwent mesenchymal-epithelial transition, where as Lapatinib-induced cells failed to reestablish an epithelial population. The mesenchymal population that remained following TGF-β stimulation and withdrawal was quickly selected for during subsequent Lapatinib treatment, manifesting in inherent drug resistance. The Nanostring cancer progression gene panel revealed a dramatic upregulation of fibroblast growth factor receptor 1 (FGFR1) and its cognate ligand FGF2 in both acquired and inherent resistance. Mechanistically, FGF:Erk1/2 signaling functions to stabilize the EMT transcription factor Twist and thus maintain the mesenchymal and drug resistant phenotype. Finally, Lapatinib resistant cells could be readily eliminated using recently characterized covalent inhibitors of FGFR. Overall our data demonstrate that next-generation targeting of FGFR can be used in combination with Her2-targeted therapies to overcome resistance in this breast cancer subtype.

  8. FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition

    PubMed Central

    Brown, Wells S.; Akhand, Saeed Salehin; Wendt, Michael K.

    2016-01-01

    An emerging characteristic of drug resistance in cancer is the induction of epithelial-mesenchymal transition (EMT). However, the mechanisms of EMT-mediated drug resistance remain poorly defined. Therefore, we conducted long-term treatments of human epidermal growth factor receptor-2 (Her2)-transformed breast cancer cells with either the EGFR/Her2 kinase inhibitor, Lapatinib or TGF-β, a known physiological inducer of EMT. Both of these treatment regimes resulted in robust EMT phenotypes, but upon withdrawal a subpopulation of TGF-β induced cells readily underwent mesenchymal-epithelial transition, where as Lapatinib-induced cells failed to reestablish an epithelial population. The mesenchymal population that remained following TGF-β stimulation and withdrawal was quickly selected for during subsequent Lapatinib treatment, manifesting in inherent drug resistance. The Nanostring cancer progression gene panel revealed a dramatic upregulation of fibroblast growth factor receptor 1 (FGFR1) and its cognate ligand FGF2 in both acquired and inherent resistance. Mechanistically, FGF:Erk1/2 signaling functions to stabilize the EMT transcription factor Twist and thus maintain the mesenchymal and drug resistant phenotype. Finally, Lapatinib resistant cells could be readily eliminated using recently characterized covalent inhibitors of FGFR. Overall our data demonstrate that next-generation targeting of FGFR can be used in combination with Her2-targeted therapies to overcome resistance in this breast cancer subtype. PMID:27825137

  9. N-Cadherin Extracellular Repeat 4 Mediates Epithelial to Mesenchymal Transition and Increased Motility

    PubMed Central

    Kim, Jae-Beom; Islam, Shahidul; Kim, Young J.; Prudoff, Ryan S.; Sass, Kristin M.; Wheelock, Margaret J.; Johnson, Keith R.

    2000-01-01

    E- and N-cadherin are members of the classical cadherin family of proteins. E-cadherin plays an important role in maintaining the normal phenotype of epithelial cells. Previous studies from our laboratory and other laboratories have shown that inappropriate expression of N-cadherin by tumor cells derived from epithelial tissue results in conversion of the cell to a more fibroblast-like cell, with increased motility and invasion. Our present study was designed to determine which domains of N-cadherin make it different from E-cadherin, with respect to altering cellular behavior, such as which domains are responsible for the epithelial to mesenchymal transition and increased cell motility and invasion. To address this question, we constructed chimeric cadherins comprised of selected domains of E- and N-cadherin. The chimeras were transfected into epithelial cells to determine their effect on cell morphology and cellular behavior. We found that a 69–amino acid portion of EC-4 of N-cadherin was necessary and sufficient to promote both an epithelial to mesenchymal transition in squamous epithelial cells and increased cell motility. Here, we show that different cadherin family members promote different cellular behaviors. In addition, we identify a novel activity that can be ascribed to the extracellular domain of N-cadherin. PMID:11121435

  10. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition.

    PubMed

    Zhang, Heng; Liu, Chen-Ying; Zha, Zheng-Yu; Zhao, Bin; Yao, Jun; Zhao, Shimin; Xiong, Yue; Lei, Qun-Ying; Guan, Kun-Liang

    2009-05-15

    The TAZ transcription co-activator has been shown to promote cell proliferation and to induce epithelial-mesenchymal transition. Recently we have demonstrated that TAZ is phosphorylated and inhibited by the Hippo tumor suppressor pathway, which is altered in human cancer. The mechanism of TAZ-mediated transcription is unclear. We demonstrate here that TEAD is a key downstream transcription factor mediating the function of TAZ. Disruption of TEAD-TAZ binding or silencing of TEAD expression blocked the function of TAZ to promote cell proliferation and to induce epithelial-mesenchymal transition, demonstrating TEAD as a key downstream effector of TAZ. We also identified CTGF, a gene that regulates cell adhesion, proliferation, and migration, as a direct target of TAZ and TEAD. Our study establishes a functional partnership between TAZ and TEAD under negative regulation by the Hippo signaling pathway.

  11. Epithelial-mesenchymal transition: molecular pathways of hepatitis viruses-induced hepatocellular carcinoma progression.

    PubMed

    Panebianco, Concetta; Saracino, Chiara; Pazienza, Valerio

    2014-08-01

    Hepatocellular carcinoma is the fifth most common tumor and the third cause of death for cancer in the world. Among the main causative agents of this tumor is the chronic infection by hepatitis viruses B and C, which establish a context of chronic inflammation degenerating in fibrosis, cirrhosis, and, finally, cancer. Recent findings, however, indicate that hepatitis viruses are not only responsible for cancer onset but also for its progression towards metastasis. Indeed, they are able to promote epithelial-mesenchymal transition, a process of cellular reprogramming underlying tumor spread. In this manuscript, we review the currently known molecular mechanisms by which hepatitis viruses induce epithelial-mesenchymal transition and, thus, hepatocellular carcinoma progression.

  12. Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer

    PubMed Central

    Suh, Yongjoon; Yoo, Ki-Chun; Cui, Yan-Hong; Kim, Min-Jung; Lee, Hae-June; Kim, In-Gyu; Lee, Su-Jae

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is developmental process associated with cancer metastasis. Here, we found that breast carcinoma cells adopt epithelial-to-mesenchymal transition (EMT) in response to fractionated-radiation. Importantly, we show that Notch signaling is highly activated in fractionally-irradiated tumors as compared to non-irradiated tumors that are accompanied by an EMT. Moreover, we uncovered the mechanism of Notch-driven EMT, in which Notch enhanced EMT through IL-6/JAK/STAT3 signaling axis in mammary tumor cells. Collectively, we present converging evidence from our studies that Notch2 is a critical mediator of radiation-induced EMT and responsible for induced malignant tumor growth. PMID:27462787

  13. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    SciTech Connect

    Li, Hui; Li, Min; Xu, Ding; Zhao, Chun; Liu, Guodong; Wang, Fang

    2014-03-28

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.

  14. The Role of BRCA1 in Suppressing Epithelial-Mesenchymal Transition in Mammary Gland and Tumor Development

    DTIC Science & Technology

    2015-09-01

    in p18- deficient mice activates epithelial -to-mesenchymal transition (EMT) and induces dedifferentiation of luminal stem cells (LSCs), which...tumorigenesis. 15. SUBJECT TERMS Brca1 suppresses EMT and stem cell dedifferentiation 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18... epithelial -mesenchymal transition (EMT)-inducing transcription factors in p18 deficient luminal and tumor cells . Germline mutation of Brca1 converts p18

  15. Erythropoietin Induces an Epithelial to Mesenchymal Transition-like Process in Mammary Epithelial Cells MCF10A.

    PubMed

    Ordoñez-Moreno, Alejandra; Rodriguez-Monterrosas, Cecilia; Cortes-Reynosa, Pedro; Perez-Carreon, Julio Isael; Perez Salazar, Eduardo

    2017-03-01

    Anemia is associated with chemotherapy treatment in cancer patients. Erythropoietin (EPO) has been used to treat anemia of cancer patients, because it stimulates erythropoiesis. However, treatment of breast cancer patients with EPO has been associated with poor prognosis and decrease of survival. Epithelial to mesenchymal transition (EMT) is a process by which epithelial cells are transdifferentiated to a mesenchymal state. It has been implicated in tumor progression, because epithelial cells acquire the capacity to execute the multiple steps of invasion/metastasis process. However, the role of EPO on EMT process in human mammary epithelial cells has not been studied. In the present study, we demonstrate that EPO promotes a decrease of E-cadherin expression, an increase of N-cadherin, vimentin and Snail2 expression, activation of FAK and Src kinases and an increase of MMP-2 and MMP-9 secretions. Moreover, EPO induces an increase of NFκB DNA binding activity, an increase of binding of p50 and p65 NFκB subunits to Snail1 promoter, migration and invasion in mammary non-tumorigenic epithelial cells MCF10A. In summary, these findings demonstrate, for the first time, that EPO induces an EMT-like process in mammary non-tumorigenic epithelial cells. This article is protected by copyright. All rights reserved.

  16. G15 sensitizes epithelial breast cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of GPR30

    PubMed Central

    Liu, Yu; Du, Fei-Ya; Chen, Wei; Fu, Pei-Fen; Yao, Min-Ya; Zheng, Shu-Sen

    2015-01-01

    Resistance to single or multiple chemotherapeutic drugs is a major obstacle in breast cancer therapy. Recent studies have suggested that GPR30 is implicated in mediating cancer cell proliferation. The aim of this study was to examine the anti-tumor effects of the GPR30 antagonist G15 in breast cancer. We found that low concentrations of G15 had little effect on breast cancer cell viability, but could enhance doxorubicin sensitivity in MDA-MB-231 and MCF-7 cells with epithelial phenotypes. In addition, G15 prevented epithelial breast cancer cells undergoing epithelial-mesenchymal transition (EMT) after doxorubicin induction. Moreover, downregulation of GPR30 suppressed the EMT in breast cancer cells. These results support that G15 enhanced doxorubicin sensitivity and prevented the EMT in epithelial breast cancer cells by inhibiting GPR30 expression. PMID:26175858

  17. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives

    PubMed Central

    Díaz-López, Antonio; Moreno-Bueno, Gema; Cano, Amparo

    2014-01-01

    The microRNAs (miRNAs) are a class of small, 20–22 nucleotides in length, endogenously expressed noncoding RNAs that regulate multiple targets posttranscriptionally. Interestingly, miRNAs have emerged as regulators of most physiological and pathological processes, including metastatic tumor progression, in part by controlling a reversible process called epithelial-to-mesenchymal transition (EMT). The activation of EMT increases the migratory and invasive properties fundamental for tumor cell spread while activation of the reverse mesenchymal-to-epithelial transition is required for metastasis outgrowth. The EMT triggering leads to the activation of a core of transcription factors (EMT-TFs) – SNAIL1/SNAIL2, bHLH (E47, E2-2, and TWIST1/TWIST2), and ZEB1/ZEB2 – that act as E-cadherin repressors and, ultimately, coordinate EMT. Recent evidence indicates that several miRNAs regulate the expression of EMT-TFs or EMT-activating signaling pathways. Interestingly, some miRNAs and EMT-TFs form tightly interconnected negative feedback loops that control epithelial cell plasticity, providing self-reinforcing signals and robustness to maintain the epithelial or mesenchymal cell status. Among the most significant feedback loops, we focus on the ZEB/miR-200 and the SNAIL1/miR-34 networks that hold a clear impact in the regulation of the epithelial-mesenchymal state. Recent insights into the p53 modulation of the EMT-TF/miRNA loops and epigenetic regulatory mechanisms in the context of metastasis dissemination will also be discussed. Understanding the regulation of EMT by miRNAs opens new avenues for the diagnosis and prognosis of tumors and identifies potential therapeutic targets that might help to negatively impact on metastasis dissemination and increasing patient survival. PMID:24812525

  18. HMG20A is required for SNAI1-mediated epithelial to mesenchymal transition.

    PubMed

    Rivero, S; Ceballos-Chávez, M; Bhattacharya, S S; Reyes, J C

    2015-10-08

    HMG20A is a high mobility group (HMG) domain containing protein homologous to HMG20B, a core subunit of the Lys-specific demethylase 1/REST co-repressor 1 (LSD1-CoREST) histone demethylase complex. Here, we show that HMG20A can replace HMG20B and, therefore, they are mutually exclusive subunits of the complex. Both proteins interact through a coiled-coil domain with BHC80, another subunit of the LSD1-CoREST complex. To investigate the functional differences between the two proteins, we performed transcriptomic analysis of HMG20A- and HMG20B-depleted cells. Analysis of the misregulated genes in HMG20A-knockdown cells evidenced a high proportion of genes related to the epithelial-to-mesenchymal transition (EMT) process. EMT occurs during embryonic development or during the course of malignant cancer progression and consists in the dynamic and reversible transitions between epithelial and mesenchymal phenotypes. We show that HMG20A together with LSD1 are required for SNAI1-dependent repression of epithelial genes and for (transforming growth factor β) TGF-β-triggered EMT. Importantly, HMG20A-depleted cells displayed reduced binding of LSD1 to epithelial gene promoters and increased methylation of lysine 4 of histone H3, suggesting a role of HMG20A in recruiting or in stabilizing the complex at the chromatin. SNAI1 and the TGF-β-related transcription factor SMAD4 were found to be associated with the LSD1-CoREST complex containing HMG20A. Furthermore, we show that HMG20A-depleted cells displayed reduced motility and invasion activity. Finally, we show that expression of HMG20A correlates positively with mesenchymal markers and negatively with epithelial markers in human tumor samples. Taken together, our data demonstrate that HMG20A is essential for the mesenchymal phenotype.

  19. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells

    PubMed Central

    2013-01-01

    Background The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Methods Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. Results The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated

  20. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. | Office of Cancer Genomics

    Cancer.gov

    Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-β) or oncogenetic (MYC) factors.

  1. Epithelial to mesenchymal transition correlates with tumor budding and predicts prognosis in esophageal squamous cell carcinoma.

    PubMed

    Niwa, Yukiko; Yamada, Suguru; Koike, Masahiko; Kanda, Mitsuro; Fujii, Tsutomu; Nakayama, Goro; Sugimoto, Hiroyuki; Nomoto, Shuji; Fujiwara, Michitaka; Kodera, Yasuhiro

    2014-11-01

    Epithelial to mesenchymal transition (EMT) is considered to play an important role in cancer invasion. Tumor budding is a prognostic factor in esophageal squamous cell carcinoma (ESCC). The aim of this study was to explore the correlation between EMT and tumor budding. Surgical specimens from 78 cases of ESCC resected without preoperative treatment between 2001 and 2013 were enrolled in the study. The mRNA expressions of E-cadherin and vimentin were measured in cancerous tissues using real-time PCR, and each tumor was classified into either epithelial or mesenchymal group. Tumor budding was evaluated in H&E-stained slides and divided into two groups; low-grade budding (<3) and high-grade budding (≥3). The 5-year survival rate in the epithelial group was significantly higher than that in the mesenchymal group (62.0% vs. 31.5%, P = 0.021). Survival rate of patients in the low-grade budding group was significantly higher than that of patients in the high-grade budding group (75.1% vs. 25.9%, P < 0.001). High-grade tumor budding was significantly associated with the mesenchymal group (P = 0.009). EMT was found to occur in ESCC and was significantly associated with tumor budding. Tumor budding was identified as a significant independent prognostic factor among the current population of ESCC. © 2014 Wiley Periodicals, Inc.

  2. MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition.

    PubMed

    Luo, Huacheng; Shenoy, Anitha K; Li, Xuehui; Jin, Yue; Jin, Lihua; Cai, Qingsong; Tang, Ming; Liu, Yang; Chen, Hao; Reisman, David; Wu, Lizi; Seto, Edward; Qiu, Yi; Dou, Yali; Casero, Robert A; Lu, Jianrong

    2016-06-21

    The histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Systems biology approaches to understanding Epithelial Mesenchymal Transition (EMT) in mucosal remodeling and signaling in asthma

    PubMed Central

    2014-01-01

    A pathological hallmark of asthma is chronic injury and repair, producing dysfunction of the epithelial barrier function. In this setting, increased oxidative stress, growth factor- and cytokine stimulation, together with extracellular matrix contact produces transcriptional reprogramming of the epithelial cell. This process results in epithelial-mesenchymal transition (EMT), a cellular state associated with loss of epithelial polarity, expression of mesenchymal markers, enhanced mobility and extracellular matrix remodeling. As a result, the cellular biology of the EMT state produces characteristic changes seen in severe, refractory asthma: myofibroblast expansion, epithelial trans-differentiation and subepithelial fibrosis. EMT also induces profound changes in epithelial responsiveness that affects innate immune signaling that may have impact on the adaptive immune response and effectiveness of glucocorticoid therapy in severe asthma. We discuss how this complex phenotype is beginning to be understood using systems biology-level approaches through perturbations coupled with high throughput profiling and computational modeling. Understanding the distinct changes induced by EMT at the systems level may provide translational strategies to reverse the altered signaling and physiology of refractory asthma. PMID:24982697

  4. Classification of circulating tumor cells by epithelial-mesenchymal transition markers.

    PubMed

    Wu, Shiyang; Liu, Suyan; Liu, Zhiming; Huang, Jiefeng; Pu, Xiaoyu; Li, Jing; Yang, Dinghua; Deng, Haijun; Yang, Ning; Xu, Jiasen

    2015-01-01

    In cancer, epithelial-mesenchymal transition (EMT) is associated with metastasis. Characterizing EMT phenotypes in circulating tumor cells (CTCs) has been challenging because epithelial marker-based methods have typically been used for the isolation and detection of CTCs from blood samples. The aim of this study was to use the optimized CanPatrol CTC enrichment technique to classify CTCs using EMT markers in different types of cancers. The first step of this technique was to isolate CTCs via a filter-based method; then, an RNA in situ hybridization (RNA-ISH) method based on the branched DNA signal amplification technology was used to classify the CTCs according to EMT markers. Our results indicated that the efficiency of tumor cell recovery with this technique was at least 80%. When compared with the non-optimized method, the new method was more sensitive and more CTCs were detected in the 5-ml blood samples. To further validate the new method, 164 blood samples from patients with liver, nasopharyngeal, breast, colon, gastric cancer, or non-small-cell lung cancer (NSCLC) were collected for CTC isolation and characterization. CTCs were detected in 107 (65%) of 164 blood samples, and three CTC subpopulations were identified using EMT markers, including epithelial CTCs, biophenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. Compared with the earlier stages of cancer, mesenchymal CTCs were more commonly found in patients in the metastatic stages of the disease in different types of cancers. Circulating tumor microemboli (CTM) with a mesenchymal phenotype were also detected in the metastatic stages of cancer. Classifying CTCs by EMT markers helps to identify the more aggressive CTC subpopulation and provides useful evidence for determining an appropriate clinical approach. This method is suitable for a broad range of carcinomas.

  5. Insulin resistance and necroinflammation drives ductular reaction and epithelial-mesenchymal transition in chronic hepatitis C

    PubMed Central

    Svegliati-Baroni, Gianluca; Faraci, Graziella; Fabris, Luca; Saccomanno, Stefania; Cadamuro, Massimiliano; Pierantonelli, Irene; Trozzi, Luciano; Bugianesi, Elisabetta; Guido, Maria; Strazzabosco, Mario; Benedetti, Antonio; Marchesini, Giulio

    2013-01-01

    Objective To study the mechanism(s) linking insulin resistance (IR) to hepatic fibrosis and the role of the epithelial component in tissue repair and fibrosis in chronic hepatitis C (CHC). Design Prospective observational study. Setting Tertiary care academic centre. Patients 78 consecutive patients with CHC. Main outcome measures IR, calculated by the oral glucose insulin sensitivity during oral glucose tolerance test; necroinflammatory activity and fibrosis, defined according to Ishak’s score; steatosis, graded as 0 (<5% of hepatocytes), 1 (5–33%), 2 (33–66%) and 3 (>66%). To evaluate the role of the epithelial component in tissue repair and fibrosis, the expansion of the ductular reaction (DR) was calculated by keratin-7 (CK7) morphometry. Nuclear expression of Snail, downregulation of E-cadherin and expression of fibroblast specific protein-1 (FSP1) and vimentin by CK7-positive cells were used as markers of epithelial-mesenchymal transition in DR elements. Results IR, the degree of necroinflammation and expansion of the DR (stratified as reactive ductular cells (RDCs), hepatic progenitor cells and intermediate hepatobiliary cells according to morphological criteria) were all associated with the stage of fibrosis. Nuclear Snail expression, E-cadherin downregulation and vimentin upregulation were observed in RDCs. By dual immunofluorescence for CK7 and FSP1, the number of RDCs undergoing epithelial-mesenchymal transition progressively increased together with the necroinflammatory score. By multivariate analysis, total inflammation and insulin resistance were the only factors significantly predicting the presence of advanced fibrosis (Ishak score ≥3) and the expansion of RDCs. Conclusion This study indicates that IR is associated with the degree of necroinflammatory injury in CHC and contributes to hepatic fibrosis by stimulating the expansion of RDCs that express epithelial-mesenchymal transition markers. PMID:20966027

  6. Sox5 induces epithelial to mesenchymal transition by transactivation of Twist1

    SciTech Connect

    Pei, Xin-Hong; Lv, Xin-Quan; Li, Hui-Xiang

    2014-03-28

    Highlights: • Depletion of Sox5 inhibits breast cancer proliferation, migration, and invasion. • Sox5 transactivates Twist1 expression. • Sox5 induces epithelial to mesenchymal transition through transactivation of Twist1 expression. - Abstract: The epithelial to mesenchymal transition (EMT), a highly conserved cellular program, plays an important role in normal embryogenesis and cancer metastasis. Twist1, a master regulator of embryonic morphogenesis, is overexpressed in breast cancer and contributes to metastasis by promoting EMT. In exploring the mechanism underlying the increased Twist1 in breast cancer cells, we found that the transcription factor SRY (sex-determining region Y)-box 5(Sox5) is up-regulation in breast cancer cells and depletion of Sox5 inhibits breast cancer cell proliferation, migration, and invasion. Furthermore, depletion of Sox5 in breast cancer cells caused a dramatic decrease in Twist1 and chromosome immunoprecipitation assay showed that Sox5 can bind directly to the Twist1 promoter, suggesting that Sox5 transactivates Twist1 expression. We further demonstrated that knockdown of Sox5 up-regulated epithelial phenotype cell biomarker (E-cadherin) and down-regulated mesenchymal phenotype cell biomarkers (N-cadherin, Vimentin, and Fibronectin 1), resulting in suppression of EMT. Our study suggests that Sox5 transactivates Twist1 expression and plays an important role in the regulation of breast cancer progression.

  7. Epigenetic plasticity: A central regulator of epithelial-to-mesenchymal transition in cancer

    PubMed Central

    Bedi, Upasana; Mishra, Vivek Kumar; Wasilewski, David; Scheel, Christina; Johnsen, Steven A.

    2014-01-01

    Tumor metastasis is the major cause of mortality and morbidity in most solid cancers. A growing body of evidence suggests that the epithelial-to-mesenchymal transition (EMT) plays a central role during tumor metastasis and frequently imparts a stem cell-like phenotype and therapeutic resistance to tumor cells. The induction of EMT is accompanied by a dynamic reprogramming of the epigenome involving changes in DNA methylation and several post-translational histone modifications. These changes in turn promote the expression of mesenchymal genes or repress those associated with an epithelial phenotype. Importantly, in order for metastatic colonization and the formation of macrometastases to occur, tumor cells frequently undergo a reversal of EMT referred to as the mesenchymal-to-epithelial transition (MET). Thus, a high degree of epigenetic plasticity is required in order to induce and reverse EMT during tumor progression. In this review, we describe various epigenetic regulatory mechanisms employed by tumor cells during EMT and elaborate on the importance of the histone code in controlling both the expression and activity of EMT-associated transcription factors. We propose that a more thorough understanding of the epigenetic mechanisms controlling EMT may provide new opportunities which may be harnessed for improved and individualized cancer therapy based on defined molecular mechanisms. PMID:24840099

  8. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer.

    PubMed

    Chen, Xue; Bode, Ann M; Dong, Zigang; Cao, Ya

    2016-09-01

    The epithelial-mesenchymal transition (EMT), defined as transdifferentiation of epithelial cells into mesenchymal cells, is critical for embryonic development, wound healing, tissue regeneration, organ fibrosis, and cancer progression. Recently, the role of EMT in carcinogenesis has attracted much attention. Oncoviruses, including human papillomaviruses (HPVs), Epstein-Barr virus (EBV), and hepatitis B and C viruses (HBVs, HCVs), are known to be involved in the etiology of cancer and have been found to play important roles in cancer metastasis, especially in the EMT process. The HPV encoded oncoproteins E6 and E7 (E6/E7), EBV latent membrane protein-1 and -2A, EBV nuclear antigen, HBV-encoded X antigen, and nonstructural HCV protein 5A are all involved in the regulation of EMT. This review primarily focuses on the role of oncoviruses and their encoded proteins or signaling pathways in the EMT process. Understanding their roles will help us in the development of effective strategies for prevention and treatment of virus-related cancers.-Chen, X., Bode, A. M., Dong, Z., Cao, Y. The epithelial-mesenchymal transition (EMT) is regulated by oncoviruses in cancer.

  9. Furin promotes epithelial-mesenchymal transition in pancreatic cancer cells via Hippo-YAP pathway.

    PubMed

    Zhang, Youli; Zhou, Meng; Wei, Hong; Zhou, Hailang; He, Junbo; Lu, Ying; Wang, Dawei; Chen, Baoding; Zeng, Jian; Peng, Wanxin; Du, Fengyi; Gong, Aihua; Xu, Min

    2017-04-01

    Furin, a well-characterized proprotein convertase, plays an important role in many diseases and links to tumor metastasis. However, the role of furin in pancreatic cancer progression remains to be elucidated. In the present study, we found that furin promotes the growth and the epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. First, we found that furin knockdown significantly inhibited proliferation, invasion and migration in BxPC3 and SW1990 cells, while furin overexpression promoted the above behavior in PANC1 and PaTu8988 cells. Further evidence revealed that furin knockdown resulted in the upregulation of E-cadherin (epithelial marker), and the downregulation of N-cadherin and Vimentin (mesenchymal markers) in BxPC3 and SW1990 cells, whereas furin overexpression remarkably led to the opposite effects in PANC1 and PaTu8988 cells. Furthermore, our data showed that Furin knockdown, furin inhibitor D6R or overexpression significantly affected YAP phosphoration level and total YAP protein level, indicating that furin was involved in Hippo-YAP pathway. It is suggested that furin promotes epithelial-mesenchymal transition in pancreatic cancer cells probably via Hippo-YAP pathway and may be a potential target for anti-pancreatic cancer.

  10. Polarity Reversal by Centrosome Repositioning Primes Cell Scattering during Epithelial to Mesenchymal Transition

    PubMed Central

    Burute, Mithila; Prioux, Magali; Blin, Guillaume; Truchet, Sandrine; Letort, Gaëlle; Tseng, Qingzong; Bessy, Thomas; Lowell, Sally; Young, Joanne; Filhol-Cochet, Odile; Théry, Manuel

    2017-01-01

    Summary During epithelial to mesenchymal transition (EMT), cells lining the tissue periphery break up their cohesion to migrate within the tissue. This dramatic reorganization involves a poorly characterized reorientation of the apico-basal polarity of static epithelial cells into the front-rear polarity of migrating mesenchymal cells. To investigate the spatial coordination of intracellular reorganization with morphological changes, we monitored centrosome positioning during EMT in vivo, in developing mouse embryos and mammary gland, and in vitro, in cultured 3D cell aggregates and micro-patterned cell doublets. In all conditions, centrosomes moved from their off-centered position next to intercellular junctions toward extra-cellular matrix adhesions on the opposite side of the nucleus, resulting in an effective internal polarity reversal. This move appeared supported by controlled microtubule network disassembly. Sequential release of cell confinement using dynamic micropatterns, and modulation of microtubule dynamics, confirmed that centrosome repositioning was responsible for further cell disengagement and scattering. PMID:28041907

  11. On the role of mechanics in driving mesenchymal-to-epithelial transitions.

    PubMed

    Kim, Hye Young; Jackson, Timothy R; Davidson, Lance A

    2016-05-18

    The mesenchymal-to-epithelial transition (MET) is an intrinsically mechanical process describing a multi-step progression where autonomous mesenchymal cells gradually become tightly linked, polarized epithelial cells. METs are fundamental to a wide range of biological processes, including the evolution of multicellular organisms, generation of primary and secondary epithelia during development and organogenesis, and the progression of diseases including cancer. In these cases, there is an interplay between the establishment of cell polarity and the mechanics of neighboring cells and microenvironment. In this review, we highlight a spectrum of METs found in normal development as well as in pathological lesions, and provide insight into the critical role mechanics play at each step. We define MET as an independent process, distinct from a reverse-EMT, and propose questions to further explore the cellular and physical mechanisms of MET.

  12. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells.

    PubMed

    Jiang, Chunmiao; Zhang, Qunzhou; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Alawi, Faizan; Le, Anh D

    2017-09-01

    Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094. © 2017 AlphaMed Press.

  13. Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells

    PubMed Central

    Castillo, Lilian Fedra; Tascón, Rocío; Huvelle, María Amparo Lago; Novack, Gisela; Llorens, María Candelaria; dos Santos, Ancely Ferreira; Shortrede, Jorge; Cabanillas, Ana María; Joffé, Elisa Bal de Kier; Labriola, Leticia; Peters, María Giselle

    2016-01-01

    Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits. Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1. Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis. PMID:27507057

  14. Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells.

    PubMed

    Castillo, Lilian Fedra; Tascón, Rocío; Lago Huvelle, María Amparo; Novack, Gisela; Llorens, María Candelaria; Dos Santos, Ancely Ferreira; Shortrede, Jorge; Cabanillas, Ana María; Bal de Kier Joffé, Elisa; Labriola, Leticia; Peters, María Giselle

    2016-09-13

    Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.

  15. Combined proteasome and histone deacetylase inhibition attenuates epithelial-mesenchymal transition through E-cadherin in esophageal cancer cells.

    PubMed

    Taylor, Matthew D; Liu, Yuan; Nagji, Alykhan S; Theodosakis, Nicholas; Jones, David R

    2010-05-01

    Metastasis is thought to be governed partially by induction of epithelial-mesenchymal transition. Combination of proteasome and histone deacetylase inhibitors has shown significant promise, but no studies have investigated this in esophageal cancer. This study investigated effects of vorinostat (histone deacetylase inhibitor) and bortezomib (proteasome inhibitor) on esophageal cancer epithelial-mesenchymal transition. Three-dimensional tumor spheroids mimicking tumor architecture were created with esophageal squamous and adenocarcinoma cancer cells. Cells were treated with tumor necrosis factor alpha (to simulate proinflammatory tumor milieu) and transforming growth factor beta (cytokine critical for induction of epithelial-mesenchymal transition). Tumor models were then treated with vorinostat, bortezomib, or both. Cytotoxic assays assessed cell death. Messenger RNA and protein expressions of metastasis suppressor genes were assessed. After treatment, Boyden chamber invasion assays were performed. Combined therapy resulted in 3.7-fold decrease in adenocarcinoma cell invasion (P = .002) and 2.8-fold decrease in squamous cell invasion (P = .003). Three-dimensional invasion assays demonstrated significant decrease in epithelial-mesenchymal transition after combined therapy. Quantitative reverse transcriptase polymerase chain reaction and Western blot analyses revealed robust rescue of E-cadherin transcription and protein expression after combined therapy. Importantly, inhibition of the E-cadherin gene resulted in abolition of the salutary benefits of combined therapy, highlighting the importance of this metastasis suppressor gene in the epithelial-mesenchymal transition process. Combined vorinostat and bortezomib therapy significantly decreased esophageal cancer epithelial-mesenchymal transition. This combined therapeutic effect on esophageal cancer epithelial-mesenchymal transition was associated with upregulation of E-cadherin protein expression. 2010 The American

  16. Testing the differential adhesion hypothesis across the epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Pawlizak, Steve; Fritsch, Anatol; Grosser, Steffen; Oswald, Linda; Manning, Lisa; Kas, Josef

    We analyze the properties of three epithelial/mesenchymal cell lines that exhibit a shift in cadherin levels characteristic of an epithelial-mesenchymal transition (EMT) associated with processes such as metastasis, to quantify the role of cell cohesion in cell sorting and compartmentalization. We develop a unique set of methods to measure cell-cell adhesiveness, cell stiffness and cell shapes, and compare the results to predictions from cell sorting in mixtures of cell populations. We find that the final sorted state is extremely robust among all three cell lines independent of epithelial or mesenchymal state, suggesting that cell sorting may play an important role in organization and boundary formation in tumours. We find that surface densities of adhesive molecules do not correlate with measured cell-cell adhesion, but do correlate with cell shapes, cell stiffness and the rate at which cells sort, in accordance with an extended differential adhesion hypothesis (DAH). Surprisingly, the DAH does not correctly predict the final sorted state. This suggests that these tissues are not behaving as immiscible fluids, and that dynamical effects such as directional motility, friction and jamming may play an important role in tissue compartmentalization across the EMT.

  17. Combinatorial Interventions Inhibit the Epithelial-to-Mesenchymal Transition and Support Hybrid Cellular Phenotypes

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Steinway, S. N.; Michel, P. J.; Feith, D. J.; Loughran, T. P., Jr.; Albert, Reka

    Epithelial-to-mesenchymal transition (EMT) is a developmental process hijacked by cancer cells to leave the primary tumor site and spread to other parts of the body. The molecular network regulating EMT involves the cooperation and cross-talk between multiple signaling pathways and key transcription factors, which we incorporated into systems-level logical network model for EMT. Using the EMT network model, we investigate potential EMT-suppressing interventions by identifying which individual and combinatorial perturbations suppress the induction of EMT by TGF β, an important signal driving EMT in liver cancer. We find that all non-trivial interventions are combinatorial and involve the inhibition of the SMAD complex together with other targets, several of which we experimentally tested and validated using liver cancer cell lines. We compare the combinatorial interventions with the results from a network control method we recently developed, which allowed us to determine the specific feedback regulatory motifs through which the interventions suppress EMT. Our results also reveal that blocking certain network components gives rise to steady states that are intermediate to the epithelial and mesenchymal states, supporting the existence of hybrid epithelial-mesenchymal states. Supported by NSF Grants PHY 1205840 and IIS 1161001, and NIH Grant F30DK093234.

  18. Dynamic molecular changes associated with epithelial-mesenchymal transition and subsequent mesenchymal-epithelial transition in the early phase of metastatic tumor formation.

    PubMed

    Aokage, Keiju; Ishii, Genichiro; Ohtaki, Yoichi; Yamaguchi, Yoko; Hishida, Tomoyuki; Yoshida, Junji; Nishimura, Mitsuyo; Nagai, Kanji; Ochiai, Atsushi

    2011-04-01

    Metastatic tumor formation via vessel route begins with cancer cell extravasation from vessel lumen, migration into the connective tissue surrounding vessels, and invasion into target organ parenchyma. Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) have been recognized to play an important role in metastatic process, however, how and where these biological changes take place in the early phase of metastatic tumor development has never been clarified. We morphologically evaluated 34 small intrapulmonary metastases formed after cancer cell extravasation from lymphatics (lymphogenic metastasis) and 40 formed in the absence of extravasation (aerogenous metastasis) in human specimens and found that isolated or small clusters of invasive cancer cells (tumor budding) were frequently observed in lymphogenic metastasis (24/34; 71%), but were never observed within aerogenous metastasis. We immunostained 34 lymphogenic metastases for 13 molecular markers of EMT and MET and scored the immunostaining intensity of cancer cells floating in lymphatic vessels (LVs), migrating into the connective tissue surrounding vessels [bronchovascular bundle (BVB)], and growing in lung parenchyma (LP). Cancer cells within BVBs stained more weakly for E-cadherin (p < 0.001), β-catenin (p < 0.001), and Geminin (p < 0.001) and more strongly for MMP-7 (p = 0.046) and Laminin-5 γ2 (p = 0.037) than tumor cells in LVs. However, cancer cells in LP exhibited resurgent E-cadherin (p = 0.011), β-catenin (p < 0.001), and Geminin (p = 0.037) expression and reduced MMP-7 (p = 0.038) and Laminin-5 γ2 (p = 0.001) expression in comparison with cancer cells in BVBs. Our results suggested that in the early phase of metastatic tumor formation cancer cells undergo dynamic phenotypic change associated with EMT and subsequent MET. Copyright © 2010 UICC.

  19. MicroRNAs and epithelial-mesenchymal transition in prostate cancer

    PubMed Central

    Sekhon, Kirandeep; Bucay, Nathan; Majid, Shahana; Dahiya, Rajvir; Saini, Sharanjot

    2016-01-01

    Prostate cancer (PCa) is a leading cause of male cancer-related deaths. A significant fraction of prostate tumors are very aggressive, often metastasizing to bone, causing significant morbidity and mortality. Also, PCa is associated with high rates of recurrence, often attributed to the existence of cancer stem cells. Epithelial-mesenchymal transition (EMT), a process characterized by decreased expression of epithelial genes and increased expression of mesenchymal genes, plays a critical role in tumor invasion, metastasis and recurrence. In PCa, EMT has been implicated particularly in the context of metastatic disease and microRNAs have emerged as critical post-transcriptional regulators of PCa EMT. In this review, we summarize the role of miRNAs in PCa EMT that play a role in progression, metastasis and recurrence. Studies till date suggest that microRNAs mediate efficient and reversible control of PCa EMT via multiple mechanisms including either by (i) directly repressing single or multiple EMT-TFs or regulating cytoskeletal components (epithelial/mesenchymal genes) or (ii) regulating key signaling pathways involved in EMT. Oncogenic microRNAs often act as EMT promoters by repressing epithelial characteristics and tumor suppressive miRNAs act by inhibiting mesenchymal progression. Further, EMT is mechanistically linked to stem cell signatures in PCa and several miRNAs implicated in EMT have been reported to influence PCa stem cells. Loss of EMT-inhibiting miRNAs and/or gain of EMT promoting miRNAs lead to induction of PCa EMT, leading to tumor progression, metastasis and recurrence. Restoring expression of tumor suppressive miRNAs and inhibiting oncogenic miRNAs represent potential therapeutic opportunities to prevent disease metastasis and recurrence. PMID:27588490

  20. [TAK1 promotes epithelial-mesenchymal transition of lens epithelial cells].

    PubMed

    Dong, N; Tang, X; Yuan, X Y; Song, H; Li, J

    2016-04-11

    Transforming growth factor-β-activated kinase-1 (TAK1) is thought to play a key role in the initiation of Smad-independent TGF-β signaling. This study investigated the role of TAK1 in the epithelial-mesenchymal transition (EMT) lens epithelial cells. TAK1 was overexpressed in the HLE B-3 cell line by transfecting TAK1-pcDNA3 and TAK1-binding protein 1 (TAB1)-pcDNA3 plasmids. The expression levels of TAK1, phospho-TAK1, E-cadherin, and fibronectin were detected by Western blot analysis and immunocytofluorescence to analyze the effects of overexpression. The levels of α-SMA and type I collagen were analyzed by real-time PCR. Quantitative data were analyzed by Student's t test or one-way analysis of variance (ANOVA) (multiple comparisons using LSD test). Western blot analysis showed in the TAK1-pcDNA3 plasmids group, expression of TAK1 proteins (1.00±0.03) with a maximum upregulation of approximately 80% at 24 h than it was in the control group (0.19±0.09)(t=8.02, P< 0.01); Western blot analysis showed in the TAB1-pcDNA3 plasmids group, expression of TAB1 proteins (1.00±0.02) with a maximum upregulation of approximately 78% at 24 h than it was in the control group (0.22±0.08)(t=7.63, P<0.01). The levels of E-cadherin/Beta-actin had significant differences among control, overexpression of TAK1 together with TAB1, overexpression of TAK1, and overexpression of TAB1 (1.00±0.02, 0.12±0.03, 0.98±0.09, 0.92±0.08;F=31.03, P<0.01). The levels of fibronectin/Beta-actin had significant differences among control, overexpression of TAK1 together with TAB1, overexpression of TAK1, and overexpression of TAB1 (0.11±0.03, 1.00±0.05, 0.16±0.04, 0.21±0.05;F=35.12, P<0.01). Overexpression of TAK1 with TAB1 resulted in upregulated expression of fibronectin, and downregulated expression of E-cadherin. The expression of E-cadherin was increased and the expression of fibronectin was decreased by TAK1 siRNA and TAK1 chemical inhibitors in the presence of TGF-β2. These data

  1. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    SciTech Connect

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  2. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes

    PubMed Central

    Franzen, C A; Blackwell, R H; Todorovic, V; Greco, K A; Foreman, K E; Flanigan, R C; Kuo, P C; Gupta, G N

    2015-01-01

    Bladder cancer, the fourth most common noncutaneous malignancy in the United States, is characterized by high recurrence rate, with a subset of these cancers progressing to a deadly muscle invasive form of disease. Exosomes are small secreted vesicles that contain proteins, mRNA and miRNA, thus potentially modulating signaling pathways in recipient cells. Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion and gain migratory and invasive properties to become mesenchymal stem cells. EMT has been implicated in the initiation of metastasis for cancer progression. We investigated the ability of bladder cancer-shed exosomes to induce EMT in urothelial cells. Exosomes were isolated by ultracentrifugation from T24 or UMUC3 invasive bladder cancer cell conditioned media or from patient urine or bladder barbotage samples. Exosomes were then added to the urothelial cells and EMT was assessed. Urothelial cells treated with bladder cancer exosomes showed an increased expression in several mesenchymal markers, including α-smooth muscle actin, S100A4 and snail, as compared with phosphate-buffered saline (PBS)-treated cells. Moreover, treatment of urothelial cells with bladder cancer exosomes resulted in decreased expression of epithelial markers E-cadherin and β-catenin, as compared with the control, PBS-treated cells. Bladder cancer exosomes also increased the migration and invasion of urothelial cells, and this was blocked by heparin pretreatment. We further showed that exosomes isolated from patient urine and bladder barbotage samples were able to induce the expression of several mesenchymal markers in recipient urothelial cells. In conclusion, the research presented here represents both a new insight into the role of exosomes in transition of bladder cancer into invasive disease, as well as an introduction to a new platform for exosome research in urothelial cells. PMID:26280654

  3. Dynamic transcription factor networks in epithelial-mesenchymal transition in breast cancer models.

    PubMed

    Siletz, Anaar; Schnabel, Michael; Kniazeva, Ekaterina; Schumacher, Andrew J; Shin, Seungjin; Jeruss, Jacqueline S; Shea, Lonnie D

    2013-01-01

    The epithelial-mesenchymal transition (EMT) is a complex change in cell differentiation that allows breast carcinoma cells to acquire invasive properties. EMT involves a cascade of regulatory changes that destabilize the epithelial phenotype and allow mesenchymal features to manifest. As transcription factors (TFs) are upstream effectors of the genome-wide expression changes that result in phenotypic change, understanding the sequential changes in TF activity during EMT provides rich information on the mechanism of this process. Because molecular interactions will vary as cells progress from an epithelial to a mesenchymal differentiation program, dynamic networks are needed to capture the changing context of molecular processes. In this study we applied an emerging high-throughput, dynamic TF activity array to define TF activity network changes in three cell-based models of EMT in breast cancer based on HMLE Twist ER and MCF-7 mammary epithelial cells. The TF array distinguished conserved from model-specific TF activity changes in the three models. Time-dependent data was used to identify pairs of TF activities with significant positive or negative correlation, indicative of interdependent TF activity throughout the six-day study period. Dynamic TF activity patterns were clustered into groups of TFs that change along a time course of gene expression changes and acquisition of invasive capacity. Time-dependent TF activity data was combined with prior knowledge of TF interactions to construct dynamic models of TF activity networks as epithelial cells acquire invasive characteristics. These analyses show EMT from a unique and targetable vantage and may ultimately contribute to diagnosis and therapy.

  4. Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition.

    PubMed

    Singh, Shalini; Howell, Danielle; Trivedi, Niraj; Kessler, Ketty; Ong, Taren; Rosmaninho, Pedro; Raposo, Alexandre Asf; Robinson, Giles; Roussel, Martine F; Castro, Diogo S; Solecki, David J

    2016-05-14

    In the developing mammalian brain, differentiating neurons mature morphologically via neuronal polarity programs. Despite discovery of polarity pathways acting concurrently with differentiation, it's unclear how neurons traverse complex polarity transitions or how neuronal progenitors delay polarization during development. We report that zinc finger and homeobox transcription factor-1 (Zeb1), a master regulator of epithelial polarity, controls neuronal differentiation by transcriptionally repressing polarity genes in neuronal progenitors. Necessity-sufficiency testing and functional target screening in cerebellar granule neuron progenitors (GNPs) reveal that Zeb1 inhibits polarization and retains progenitors in their germinal zone (GZ). Zeb1 expression is elevated in the Sonic Hedgehog (SHH) medulloblastoma subgroup originating from GNPs with persistent SHH activation. Restored polarity signaling promotes differentiation and rescues GZ exit, suggesting a model for future differentiative therapies. These results reveal unexpected parallels between neuronal differentiation and mesenchymal-to-epithelial transition and suggest that active polarity inhibition contributes to altered GZ exit in pediatric brain cancers.

  5. An in vivo model of epithelial to mesenchymal transition reveals a mitogenic switch

    PubMed Central

    Jahn, Stephan C.; Law, Mary E.; Corsino, Patrick E.; Parker, Nicole N.; Pham, Kien; Davis, Bradley J.; Lu, Jianrong; Law, Brian K.

    2012-01-01

    The epithelial to mesenchymal transition (EMT) is a process by which differentiated epithelial cells transition to a mesenchymal phenotype. EMT enables the escape of epithelial cells from the rigid structural constraints of the tissue architecture to a phenotype more amenable to cell migration and, therefore, invasion and metastasis. We characterized an in vivo model of EMT and discovered that marked changes in mitogenic signaling occurred during this process. DNA microarray analysis revealed that the expression of a number of genes varied significantly between post-EMT and pre-EMT breast cancer cells. Post-EMT cancer cells upregulated mRNA encoding c-Met and the PDGF and LPA receptors, and acquired increased responsiveness to HGF, PDGF, and LPA. This rendered the post-EMT cells responsive to the growth inhibitory effects of HGF, PDGF, and LPA receptor inhibitors/antagonists. Furthermore, post- EMT cells exhibited decreased basal Raf and Erk phosphorylation, and in comparison to pre-EMT cells, their proliferation was poorly inhibited by a MEK inhibitor. These studies suggest that therapies need to be designed to target both pre-EMT and post-EMT cancer cells and that signaling changes in post- EMT cells may allow them to take advantage of paracrine signaling from the stroma in vivo. PMID:22906417

  6. Hippo transducer TAZ promotes epithelial mesenchymal transition and supports pancreatic cancer progression

    PubMed Central

    Xie, Dacheng; Cui, Jiujie; Xia, Tian; Jia, Zhiliang; Wang, Liang; Wei, Wenfei; Zhu, Anna; Gao, Yong; Xie, Keping; Quan, Ming

    2015-01-01

    Transcriptional co-activator with PDZ binding motif (TAZ) is a transducer of the Hippo pathway and promotes cancer development and progression. In the present study, we sought to determine the roles and underlying mechanisms of elevated expression and activation of TAZ in pancreatic cancer development and progression. The mechanistic role of TAZ and Hippo signaling in promotion of pancreatic cancer development and progression was examined using cell culture, molecular biology, and mouse models. The relevance of our experimental and mechanistic findings was validated using human pancreatic tumor specimens. We found that TAZ expression was markedly higher in pancreatic tumors than in normal pancreatic tissue. Further analysis of the correlation of TAZ expression with tissue microarray clinicopathologic parameters revealed that this expression was positively associated with tumor differentiation. Also, TAZ expression was higher in pancreatic cancer cell lines than in pancreatic ductal epithelial cells. TAZ activation in pancreatic cancer cells promoted their proliferation, migration, invasion, and epithelial-mesenchymal transition. Further mechanistic studies demonstrated that aberrant expression and activation of TAZ in pancreatic cancer cells resulted from suppression of the expression of Merlin, a positive regulator upstream of the Hippo pathway, and that the oncogenic function of TAZ in pancreatic cancer cells was mediated by TEA/ATTS domain transcription factors. Therefore, TAZ functioned as an oncogene and promoted pancreatic cancer epithelial-mesenchymal transition and progression. TAZ thus may be a target for effective therapeutic strategies for pancreatic cancer. PMID:26416426

  7. Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy

    PubMed Central

    Ishikawa, Keijiro; He, Shikun; Terasaki, Hiroto; Nazari, Hossein; Zhang, Huiming; Spee, Christine; Kannan, Ram; Hinton, David R

    2015-01-01

    Proliferative vitreoretinopathy (PVR) is a serious complication of retinal detachment and ocular trauma, and its recurrence may lead to irreversible vision loss. Epithelial to mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is a critical step in the pathogenesis of PVR, which is characterized by fibrotic membrane formation and traction retinal detachment. In this study, we investigated the potential impact of resveratrol (RESV) on EMT and the fibrotic process in cultured RPE cells and further examined the preventive effect of RESV on PVR development using a rabbit model of PVR. We found that RESV induces mesenchymal to epithelial transition (MET) and inhibits transforming growth factor-β2(TGF-β2)-induced EMT of RPE cells by deacetylating SMAD4. The effect of RESV on MET was dependent on sirtuin1 activation. RESV suppressed proliferation, migration and fibronectin synthesis induced by platelet-derived growth factor-BB or TGF-β2. In vivo, RESV inhibited the progression of experimental PVR in rabbit eyes. Histological findings showed that RESV reduced fibrotic membrane formation and decreased α-SMA expression in the epiretinal membranes. These results suggest the potential use of RESV as a therapeutic agent to prevent the development of PVR by targeting EMT of RPE. PMID:26552368

  8. The epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome.

    PubMed

    Romero-Valdovinos, M; Bobadilla-Sandoval, N; Flisser, A; Vadillo-Ortega, F

    2014-09-01

    The etiology of the amniotic band syndrome is unknown, and has been subject of debate since the time of Hippocrates. The most accepted theories fail to cover all the abnomalities found in affected children. During organogenesis the epithelial-mesenchymal transition process (EMTP) participates in adequate formation of different organs from three embryo layers. Altered activation of EMTP occurs when the epithelial homeostasis is disturbed, the resulting myofibroblasts are able to secrete extracellular matrix proteins and deposit them on the tissues contributing to a fibrotic phenotype. If injury occurs during organogenesis, wound healing could be exaggerated and fibrotic response could be triggered. The molecule that regulates both of these processes (EMTP and fibrosis) is the transforming growth factor β (TGFβ); indeed null animals for TGFβ isoforms show similar defects than those seen in the amniotic band syndrome. Based on documented evidence this review intends to explain how the epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Mesenchymal-epithelial transition (MET) as a mechanism for metastatic colonisation in breast cancer.

    PubMed

    Gunasinghe, N P A Devika; Wells, Alan; Thompson, Erik W; Hugo, Honor J

    2012-12-01

    As yet, there is no cure for metastatic breast cancer. Historically, considerable research effort has been concentrated on understanding the processes of metastasis, how a primary tumour locally invades and systemically disseminates using the phenotypic switching mechanism of epithelial to mesenchymal transition (EMT); however, much less is understood about how metastases are then formed. Breast cancer metastases often look (and may even function) as 'normal' breast tissue, a bizarre observation against the backdrop of the organ structure of the lung, liver, bone or brain. Mesenchymal to epithelial transition (MET), the opposite of EMT, has been proposed as a mechanism for establishment of the metastatic neoplasm, leading to questions such as: Can MET be clearly demonstrated in vivo? What factors cause this phenotypic switch within the cancer cell? Are these signals/factors derived from the metastatic site (soil) or expressed by the cancer cells themselves (seed)? How do the cancer cells then grow into a detectable secondary tumour and further disseminate? And finally--Can we design and develop therapies that may combat this dissemination switch? This review aims to address these important questions by evaluating long-standing paradigms and novel emerging concepts in the field of epithelial mesencyhmal plasticity.

  10. Reprogramming during epithelial to mesenchymal transition under the control of TGFβ

    PubMed Central

    Tan, E-Jean; Olsson, Anna-Karin; Moustakas, Aristidis

    2015-01-01

    Epithelial-mesenchymal transition (EMT) refers to plastic changes in epithelial tissue architecture. Breast cancer stromal cells provide secreted molecules, such as transforming growth factor β (TGFβ), that promote EMT on tumor cells to facilitate breast cancer cell invasion, stemness and metastasis. TGFβ signaling is considered to be abnormal in the context of cancer development; however, TGFβ acting on breast cancer EMT resembles physiological signaling during embryonic development, when EMT generates or patterns new tissues. Interestingly, while EMT promotes metastatic fate, successful metastatic colonization seems to require the inverse process of mesenchymal-epithelial transition (MET). EMT and MET are interconnected in a time-dependent and tissue context-dependent manner and are coordinated by TGFβ, other extracellular proteins, intracellular signaling cascades, non-coding RNAs and chromatin-based molecular alterations. Research on breast cancer EMT/MET aims at delivering biomolecules that can be used diagnostically in cancer pathology and possibly provide ideas for how to improve breast cancer therapy. PMID:25482613

  11. Activation of LINE-1 Retrotransposon Increases the Risk of Epithelial-Mesenchymal Transition and Metastasis in Epithelial Cancer

    PubMed Central

    Rangasamy, D.; Lenka, N.; Ohms, S.; Dahlstrom, J.E.; Blackburn, A.C.; Board, P.G.

    2015-01-01

    Epithelial cancers comprise 80-90% of human cancers. During the process of cancer progression, cells lose their epithelial characteristics and acquire stem-like mesenchymal features that are resistant to chemotherapy. This process, termed the epithelial-mesenchymal transition (EMT), plays a critical role in the development of metastases. Because of the unique migratory and invasive properties of cells undergoing the EMT, therapeutic control of the EMT offers great hope and new opportunities for treating cancer. In recent years, a plethora of genes and noncoding RNAs, including miRNAs, have been linked to the EMT and the acquisition of stem cell-like properties. Despite these advances, questions remain unanswered about the molecular processes underlying such a cellular transition. In this article, we discuss how expression of the normally repressed LINE-1 (or L1) retrotransposons activates the process of EMT and the development of metastases. L1 is rarely expressed in differentiated stem cells or adult somatic tissues. However, its expression is widespread in almost all epithelial cancers and in stem cells in their undifferentiated state, suggesting a link between L1 activity and the proliferative and metastatic behaviour of cancer cells. We present an overview of L1 activity in cancer cells including how genes involved in proliferation, invasive and metastasis are modulated by L1 expression. The role of L1 in the differential expression of the let-7 family of miRNAs (that regulate genes involved in the EMT and metastasis) is also discussed. We also summarize recent novel insights into the role of the L1-encoded reverse transcriptase enzyme in epithelial cell plasticity that suggest it might be a potential therapeutic target that could reverse the EMT and the metastasis-associated stem cell-like properties of cancer cells. PMID:26321759

  12. Yes-associated protein (YAP) expression is involved in epithelial-mesenchymal transition in hepatocellular carcinoma.

    PubMed

    Wang, S; Li, H; Wang, G; Zhang, T; Fu, B; Ma, M; Quan, Z; Chen, G

    2016-02-01

    To investigate biological impact of the downregulation of yes-associated protein (YAP) through RNA interference in the process of epithelial-mesenchymal transition in MHCC97H and MHCC97L. MHCC97H and MHCC97L cells were transiently transfected by YAP-siRNA. Furthermore, protein expressions and mRNA levels of characteristic markers of epithelial-mesenchymal transition (E-cadherin, N-cadherin) were examined by Western blotting and real-time polymerase chain reaction, and transwell invasion assay was used to detect changes of invasiveness of MHCC97H and MHCC97L cells. The transfected group with YAP-siRNA in MHCC97H after 72 h by Western blotting showed obviously higher expression of E-cadherin compared with the control group (P < 0.05), and lower expression of N-cadherin (P < 0.05). In MHCC97L cells, the expression of E-cadherin was also significantly increased (P < 0.05); however, N-cadherin expression did not significantly change (P > 0.05). Moreover, compared with the control group, Transwell invasion assay showed that the number of the transfected groups was significantly decreased in MHCC97H and MHCC97L cell lines (both P < 0.05). The result of real-time polymerase chain reaction indicated that mRNA levels of E-cadherin increased (P < 0.05), but the mRNA levels of N-cadherin did not significantly change (P > 0.05) in these two cell lines, indicating some effects of post-transcriptional regulation mechanism after silencing YAP. YAP expression in human hepatocellular carcinoma cell lines MHCC97H and MHCC97L is closely related with the characteristic markers of epithelial-mesenchymal transition, N-cadherin and E-cadherin expression.

  13. PLK1 promotes epithelial-mesenchymal transition and metastasis of gastric carcinoma cells

    PubMed Central

    Cai, Xiao Peng; Chen, Liang Dong; Song, Hai Bin; Zhang, Chun Xiao; Yuan, Ze Wei; Xiang, Zhen Xian

    2016-01-01

    Cancer cell epithelial-mesenchymal transition (EMT) is the crucial event for cancer progression and plays a vital role in the metastasis of cancer cells. Activation of Polo-like kinase 1 (PLK1) signaling has been implicated as the critical event in several tumor metastasis and EMT, however, whether PLK1 participates in gastric carcinoma metastasis and EMT still remains unclear. For this study, we elucidated the potential physiological function of PLK1 in the metastasis of gastric tumors, as well its distinct role in cells EMT and subsequently determined the mechanism involved in PLK1 regulated. Immunoblotting assay and Oncomine data mining analysis indicated that PLK1 expression was highly up-regulated in gastric carcinoma. Kaplan-Meier survival analysis for the relationship between survival outcomes and PLK1 expression in gastric carcinoma was performed with an online Kaplan-Meier plotter (http://kmplot.com/analysis/). Over-expression of PLK1 in gastric cancer cells SGC-7901 and MKN-28 significantly promoted cells profound morphological changes and enhanced metastatic ability of tumor cells. On the contrary, silencing of PLK1 induced mesenchymal epithelial transition (MET)-like morphological and inhibited the metastatic process. Furthermore, we found that the metastatic characters promoting effects of PLK1 in gastric carcinoma was related to the activation of protein kinase B (AKT). Our mechanistic investigations revealed that AKT inhibition reversed PLK1-induced EMT, blocked gastric carcinoma cells invasiveness and metastasis. Additionally, over-expression of AKT promoted the migratory and invasion ability of the two cell lines, which was disrupted by PLK1 down-regulation. To conclude, our findings demonstrate that PLK1 accelerates the metastasis and epithelial-mesenchyme transition of gastric cancer cells through regulating the AKT pathway. PMID:27830001

  14. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma*

    PubMed Central

    Burkhalter, Rebecca J.; Westfall, Suzanne D.; Liu, Yueying; Stack, M. Sharon

    2015-01-01

    During tumor progression, epithelial ovarian cancer (EOC) cells undergo epithelial-to-mesenchymal transition (EMT), which influences metastatic success. Mutation-dependent activation of Wnt/β-catenin signaling has been implicated in gain of mesenchymal phenotype and loss of differentiation in several solid tumors; however, similar mutations are rare in most EOC histotypes. Nevertheless, evidence for activated Wnt/β-catenin signaling in EOC has been reported, and immunohistochemical analysis of human EOC tumors demonstrates nuclear staining in all histotypes. This study addresses the hypothesis that the bioactive lipid lysophosphatidic acid (LPA), prevalent in the EOC microenvironment, functions to regulate EMT in EOC. Our results demonstrate that LPA induces loss of junctional β-catenin, stimulates clustering of β1 integrins, and enhances the conformationally active population of surface β1 integrins. Furthermore, LPA treatment initiates nuclear translocation of β-catenin and transcriptional activation of Wnt/β-catenin target genes resulting in gain of mesenchymal marker expression. Together these data suggest that LPA initiates EMT in ovarian tumors through β1-integrin-dependent activation of Wnt/β-catenin signaling, providing a novel mechanism for mutation-independent activation of this pathway in EOC progression. PMID:26175151

  15. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition.

    PubMed

    Espinoza, Ingrid; Pochampally, Radhika; Xing, Fei; Watabe, Kounosuke; Miele, Lucio

    2013-09-06

    Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) have been reported. This review describes the role of Notch in the "stemness" program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process.

  16. Zinc supplementation attenuates high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells.

    PubMed

    Zhang, Xiuli; Wang, Jun; Fan, Yi; Yang, Lina; Wang, Lining; Ma, Jianfei

    2012-12-01

    Zinc (Zn) plays an important role in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. But its function in the EMT of the peritoneal mesothelial cells (PMCs) remains unknown. Here, we studied the Zn effect on the high glucose (HG)-induced EMT in the rat PMCs (RPMCs) and the underlying molecular mechanisms. We found that Zn supplementation significantly inhibited TGF-β1 and ROS production, and attenuated the HG-induced EMT in the RPMCs, likely through inhibition of MAPK, NF-κB, and TGF-β/Smad pathways.

  17. Clinical significance of epithelial-mesenchymal transition and cancer stem cells.

    PubMed

    Topcul, Mehmet; Cetin, Idil

    2016-01-01

    Purpose: Spread of cancer cells from the organ of the origin of them to another location, namely metastasis, is one of the most important factors that complicate the treatment of cancer. Therefore, research for the treatment of metastatic disease is gaining importance, especially for advanced cancers. This research focuses on the mechanisms that facilitate the metastatic tendency of cancer cells. Therefore, epithelial-mesenchymal transition (EMT) mechanism that helps the cells become metastatic and cancer stem cells (CSCs) present in the heterogeneous tumor mass are in the center of these researches.

  18. MicroRNA control of epithelial-mesenchymal transition and metastasis.

    PubMed

    Zhang, Jinsong; Ma, Li

    2012-12-01

    The great majority of cancer deaths are due to metastasis, which remains a poorly understood pathological process. The formation of a metastasis reflects a succession of complex steps leading to the macroscopic outgrowth of disseminated tumor cells at the secondary site. In the past 5 years, certain microRNAs (miRNAs) have been shown to regulate either a single step or multiple steps of metastasis, doing so by downregulating the expression of their target genes. In this review, we discuss recent studies on the functions and molecular mechanisms of miRNAs in regulating epithelial-mesenchymal transition (EMT) and cancer metastasis.

  19. Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer

    PubMed Central

    Elaskalani, Omar; Razak, Norbaini Binti Abdol; Falasca, Marco; Metharom, Pat

    2017-01-01

    Pancreatic cancer has one of the worst prognoses among all cancers due to the late manifestation of identifiable symptoms and high resistance to chemo- and radiation therapies. In recent years, a cancer development phase termed epithelial-mesenchymal transition (EMT) has gained increasing research focus. The process is implicated in tumour metastasis, and emerging evidence suggests EMT also contributes or induces chemoresistance in several cancers. Nevertheless, the applicability of therapeutic targeting of EMT faces many challenges. In this mini-review, we summarise the evidence supporting the role of EMT in pancreatic cancer progression, focusing particularly on its association with chemoresistance. PMID:28144398

  20. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition

    PubMed Central

    Espinoza, Ingrid; Pochampally, Radhika; Xing, Fei; Watabe, Kounosuke; Miele, Lucio

    2013-01-01

    Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) have been reported. This review describes the role of Notch in the “stemness” program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process. PMID:24043949

  1. Enhanced epithelial to mesenchymal transition (EMT) and upregulated MYC in ectopic lesions contribute independently to endometriosis.

    PubMed

    Proestling, Katharina; Birner, Peter; Gamperl, Susanne; Nirtl, Nadine; Marton, Erika; Yerlikaya, Gülen; Wenzl, Rene; Streubel, Berthold; Husslein, Heinrich

    2015-07-22

    Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose polarity and cell-to-cell contacts and acquire the migratory and invasive abilities of mesenchymal cells. These abilities are thought to be prerequisites for the establishment of endometriotic lesions. A hallmark of EMT is the functional loss of E-cadherin (CDH1) expression in epithelial cells. TWIST1, a transcription factor that represses E-cadherin transcription, is among the EMT inducers. SNAIL, a zinc-finger transcription factor, and its close relative SLUG have similar properties to TWIST1 and are thus also EMT inducers. MYC, which is upregulated by estrogens in the uterus by an estrogen response cis-acting element (ERE) in its promoter, is associated with proliferation in endometriosis. The role of EMT and proliferation in the pathogenesis of endometriosis was evaluated by analyzing TWIST1, CDH1 and MYC expression. CDH1, TWIST1, SNAIL and SLUG mRNA expression was analyzed by qRT-PCR from 47 controls and 74 patients with endometriosis. Approximately 42 ectopic and 62 eutopic endometrial tissues, of which 30 were matched samples, were collected during the same surgical procedure. We evaluated TWIST1 and MYC protein expression by immunohistochemistry (IHC) in the epithelial and stromal tissue of 69 eutopic and 90 ectopic endometrium samples, of which 49 matched samples were analyzed from the same patient. Concordant expression of TWIST1/SNAIL/SLUG and CDH1 but also of TWIST1 and MYC was analyzed. We found that TWIST1, SNAIL and SLUG are overexpressed (p < 0.001, p = 0.016 and p < 0.001) in endometriosis, while CDH1 expression was concordantly reduced in these samples (p < 0.001). Similar to TWIST1, the epithelial expression of MYC was also significantly enhanced in ectopic endometrium compared to eutopic tissues (p = 0.008). We found exclusive expression of either TWIST1 or MYC in the same samples (p = 0.003). Epithelial TWIST1 is overexpressed in

  2. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    PubMed Central

    Bennett, Jason; Cassidy, Hilary; Slattery, Craig; Ryan, Michael P.; McMorrow, Tara

    2016-01-01

    Epithelial-mesenchymal transition (EMT), a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs) has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506) and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity. PMID:27128949

  3. Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis.

    PubMed

    Bai, Yongheng; Lu, Hong; Lin, Chengcheng; Xu, Yaya; Hu, Dannü; Liang, Yong; Hong, Weilong; Chen, Bicheng

    2016-05-01

    The sonic hedgehog (SHH) signaling pathway plays a critical role in embryonic development, tissue regeneration and organogenesis. The activation of SHH signaling produces profibrogenic effects in various tissues, such as the liver and the biliary ducts. However, the role of SHH signaling in renal fibrogenesis remains to be elucidated. For this purpose, in the present study, we evaluated the hypothesis that activated SHH signaling promotes the acquisition of a myofibroblastic phenotype through the epithelial-mesenchymal transition (EMT), resulting in renal interstitial fibrosis (RIF). Kidney samples from rats subjected to unilateral or bilateral ureteral obstruction exhibited the enhanced expression of SHH-pathway proteins, mesenchymal markers and the decreased expression of epithelial markers. Overactive SHH signaling as well as tubular EMT and RIF in the obstructed kidneys were inhibited by recanalization of the ureter. In vitro, SHH signaling was activated during EMT induction and extracellular matrix (ECM) deposition was observed in transforming growth factor-β1 (TGF-β1)-treated renal tubular epithelial cells [RTECs; NRK-52E cell line]. Exogenous SHH activated SHH signaling and resulted in the upregulated expression of mesenchymal genes, the profibrogenic cytokine TGF-β1, and the downregulated expression of epithelial markers. The blockade of SHH signaling with cyclopamine abolished SHH-mediated EMT as well as the acquisition of a myofibroblastic phenotype, and decreased TGF-β1 expression and ECM production. Thus, taken together, these findings demonstrate that the activation of the SHH signaling pathway promotes the induction of EMT and renal tubulointerstitial fibrosis. The pharmacological inhibition of SHH signaling may potentially be of therapeutic value in the management of fibrotic kidney diseases.

  4. NANOG regulates epithelial-mesenchymal transition and chemoresistance through activation of the STAT3 pathway in epithelial ovarian cancer.

    PubMed

    Liu, Suqing; Sun, Jing; Cai, Bin; Xi, Xiaowei; Yang, Liu; Zhang, Zhenbo; Feng, Youji; Sun, Yunyan

    2016-07-01

    NANOG is a key transcription factor that is overexpressed and plays an important role in various cancers. Its overexpression is associated with highly tumorigenic, drug-resistant, and poor prognosis. However, the underlying mechanism of action of NANOG in ovarian cancer remains unclear. Epithelial-mesenchymal transition (EMT), which is a critical process in cancer invasion and metastasis, is also associated with drug resistance. We determined whether NANOG is associated with EMT and chemoresistance in epithelial ovarian cancer cells. NANOG expression was increased in epithelial ovarian cancer cells (HEY and SKOV3) compared with normal epithelial ovarian cells (Moody). Low expression of NANOG increased the expression of E-cadherin and decreased the expression of vimentin, β-catenin, and Snail. Furthermore, the cell migration and invasion abilities were decreased. The multidrug resistance genes MDR-1 and GST-π were also downregulated when NANOG was lowly expressed. The cells that were transfected with the si-NANOG plasmid were more sensitive to cisplatin compared with the cells that were transfected with empty vector. The data demonstrated that Stat3 was correlated with NANOG-mediated EMT and drug resistance. The silencing of Stat3 expression abrogated NANOG-mediated EMT changes and increased the sensitivity of the cells to chemotherapy. These results suggest that NANOG mediates EMT and drug resistance through activation of the Stat3 pathway in epithelial ovarian cancer.

  5. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis.

    PubMed

    Chen, Yi-Jen; Li, Hsin-Yang; Huang, Chi-Hung; Twu, Nae-Fang; Yen, Ming-Shyen; Wang, Peng-Hui; Chou, Teh-Ying; Liu, Yen-Ni; Chao, Kuan-Chong; Yang, Muh-Hwa

    2010-11-01

    Adenomyosis is an oestrogen-dependent disease caused by a downward extension of the endometrium into the uterine myometrium. Epithelial-mesenchymal transition (EMT) endows cells with migratory and invasive properties and can be induced by oestrogen. We hypothesized that oestrogen-induced EMT is critical in the pathogenesis of adenomyosis. We first investigated whether EMT occurred in adenomyotic lesions and whether it correlated with serum 17β-oestradiol (E2) levels. Immunohistochemistry was performed on adenomyotic lesions and corresponding eutopic endometrium samples from women with adenomyosis. Endometria from women without endometrial disorders were used as a control. In the epithelial component of adenomyotic lesions, vimentin expression was up-regulated and E-cadherin expression was down-regulated compared to the eutopic endometrium, suggesting that EMT occurs in adenomyosis. In adenomyosis, the serum E2 level was negatively correlated with E-cadherin expression in the epithelial components of the eutopic endometrium and adenomyotic lesions, suggesting the involvement of oestrogen-induced EMT in endometrial cells. In oestrogen receptor-positive Ishikawa endometrial epithelial cells, oestrogen induced a morphological change to a fibroblast-like phenotype, a shift from epithelial marker expression to mesenchymal marker expression, increased migration and invasion, and up-regulation of the EMT regulator Slug. Raloxifene, a selective oestrogen receptor modulator, abrogated these effects. To determine the role of oestrogen-induced EMT in the implantation of ectopic endometrium, we xenotransplanted eutopic endometrium or adenomyotic lesions from adenomyosis patients into ovariectomized SCID mice. The implantation of endometrium was oestrogen-dependent and was suppressed by raloxifene. Collectively, these data highlight the crucial role of oestrogen-induced EMT in the development of adenomyosis and suggest that raloxifene may be a potential therapeutic agent for

  6. Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial-mesenchymal transition in breast epithelial cells.

    PubMed

    Jung, Hyejung; Kim, Bomin; Moon, Byung In; Oh, Eok-Soo

    2016-12-01

    During epithelial-mesenchymal transition (EMT), epithelial cells lose key phenotypic markers (e.g., E-cadherin and cytokeratin 18) and acquire mesenchymal markers (e.g., N-cadherin and vimentin). Although the loss of cytokeratin 18 is a hallmark of EMT, the regulatory role of cytokeratin 18 in EMT is not yet fully understood. Here, we report that cytokeratin 18 is involved in the regulation of transforming growth factor-beta1 (TGF-β1)-induced EMT in breast epithelial cells. When MCF10A cells were treated with TGF-β1 for 24 h, considerable morphological changes, indicative of the early stages of EMT (e.g., loss of cell-cell contact), were observed and cytokeratin 18 was downregulated. However, E-cadherin levels were not altered until a later time point. This suggests that cytokeratin 18 may play an active role during the earlier stages of EMT. Consistent with this notion, siRNA-mediated knockdown of cytokeratin 18 delayed TGF-β1-mediated EMT, and the associated downregulation of E-cadherin reduced the phosphorylation/nuclear localization of smad 2/3 and decreased the expression levels of snail and slug (which inhibit E-cadherin expression in epithelial cells as an early response to TGF-β1). Taken together, these results suggest that cytokeratin 18 critically contributes to initiating TGF-β1-induced EMT via the smad 2/3-mediated regulation of snail and slug expression in breast epithelial cells.

  7. A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition.

    PubMed

    Romancino, Daniele P; Anello, Letizia; Lavanco, Antonella; Buffa, Valentina; Di Bernardo, Maria; Bongiovanni, Antonella

    2017-04-01

    Epithelial-mesenchymal transition (EMT) is an evolutionarily conserved cellular program, which is a prerequisite for the metastatic cascade in carcinoma progression. Here, we evaluate the EMT process using the sea urchin Paracentrotus lividus embryo. In sea urchin embryos, the earliest EMT event is related to the acquisition of a mesenchymal phenotype by the spiculogenetic primary mesenchyme cells (PMCs) and their migration into the blastocoel. We investigated the effect of inhibiting the epidermal growth factor (EGF) signaling pathway on this process, and we observed that mesenchyme cell differentiation was blocked. In order to extend and validate our studies, we investigated the migratory capability and the level of potential epidermal growth factor receptor (EGFr) targets in a breast cancer cell line after EGF modulation. Altogether, our data highlight the sensitivity of the sea urchin embryo to anti-EMT drugs and pinpoint the sea urchin embryo as a valuable in vivo model system for studying EMT and the screening of anti-EMT candidates. © 2017 Japanese Society of Developmental Biologists.

  8. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells.

    PubMed

    Guha, M; Srinivasan, S; Ruthel, G; Kashina, A K; Carstens, R P; Mendoza, A; Khanna, C; Van Winkle, T; Avadhani, N G

    2014-11-06

    Metastatic breast tumors undergo epithelial-to-mesenchymal transition (EMT), which renders them resistant to therapies targeted to the primary cancers. The mechanistic link between mtDNA (mitochondrial DNA) reduction, often seen in breast cancer patients, and EMT is unknown. We demonstrate that reducing mtDNA content in human mammary epithelial cells (hMECs) activates Calcineurin (Cn)-dependent mitochondrial retrograde signaling pathway, which induces EMT-like reprogramming to fibroblastic morphology, loss of cell polarity, contact inhibition and acquired migratory and invasive phenotype. Notably, mtDNA reduction generates breast cancer stem cells. In addition to retrograde signaling markers, there is an induction of mesenchymal genes but loss of epithelial markers in these cells. The changes are reversed by either restoring the mtDNA content or knockdown of CnAα mRNA, indicating the causal role of retrograde signaling in EMT. Our results point to a new therapeutic strategy for metastatic breast cancers targeted to the mitochondrial retrograde signaling pathway for abrogating EMT and attenuating cancer stem cells, which evade conventional therapies. We report a novel regulatory mechanism by which low mtDNA content generates EMT and cancer stem cells in hMECs.

  9. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer.

    PubMed

    Larsen, Jill E; Nathan, Vaishnavi; Osborne, Jihan K; Farrow, Rebecca K; Deb, Dhruba; Sullivan, James P; Dospoy, Patrick D; Augustyn, Alexander; Hight, Suzie K; Sato, Mitsuo; Girard, Luc; Behrens, Carmen; Wistuba, Ignacio I; Gazdar, Adi F; Hayward, Nicholas K; Minna, John D

    2016-09-01

    Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-β) or oncogenetic (MYC) factors. Both TGF-β- and MYC-induced EMT required ZEB1, but engaged distinct TGF-β-dependent and vitamin D receptor-dependent (VDR-dependent) pathways, respectively. Functionally, we found that ZEB1 causally promotes malignant progression of HBECs and tumorigenicity, invasion, and metastases in non-small cell lung cancer (NSCLC) lines. Mechanistically, ZEB1 expression in HBECs directly repressed epithelial splicing regulatory protein 1 (ESRP1), leading to increased expression of a mesenchymal splice variant of CD44 and a more invasive phenotype. In addition, ZEB1 expression in early stage IB primary NSCLC correlated with tumor-node-metastasis stage. These findings indicate that ZEB1-induced EMT and associated molecular changes in ESRP1 and CD44 contribute to early pathogenesis and metastatic potential in established lung cancer. Moreover, TGF-β and VDR signaling and CD44 splicing pathways associated with ZEB1 are potential EMT chemoprevention and therapeutic targets in NSCLC.

  10. CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer.

    PubMed

    Zeng, Qiqun; Li, Weidong; Lu, Di; Wu, Zhenzhen; Duan, Hongxia; Luo, Yongting; Feng, Jing; Yang, Dongling; Fu, Li; Yan, Xiyun

    2012-01-24

    The epithelial-mesenchymal transition (EMT) plays an important role in breast cancer metastasis, especially in the most aggressive and lethal subtype, "triple-negative breast cancer" (TNBC). Here, we report that CD146 is a unique activator of EMTs and significantly correlates with TNBC. In epithelial breast cancer cells, overexpression of CD146 down-regulated epithelial markers and up-regulated mesenchymal markers, significantly promoted cell migration and invasion, and induced cancer stem cell-like properties. We further found that RhoA pathways positively regulated CD146-induced EMTs via the key EMT transcriptional factor Slug. An orthotopic breast tumor model demonstrated that CD146-overexpressing breast tumors showed a poorly differentiated phenotype and displayed increased tumor invasion and metastasis. We confirmed these findings by conducting an immunohistochemical analysis of 505 human primary breast tumor tissues and found that CD146 expression was significantly associated with high tumor stage, poor prognosis, and TNBC. CD146 was expressed at abnormally high levels (68.9%), and was strongly associated with E-cadherin down-regulation in TNBC samples. Taken together, these findings provide unique evidence that CD146 promotes breast cancer progression by induction of EMTs via the activation of RhoA and up-regulation of Slug. Thus, CD146 could be a therapeutic target for breast cancer, especially for TNBC.

  11. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance.

    PubMed

    Fischer, Kari R; Durrans, Anna; Lee, Sharrell; Sheng, Jianting; Li, Fuhai; Wong, Stephen T C; Choi, Hyejin; El Rayes, Tina; Ryu, Seongho; Troeger, Juliane; Schwabe, Robert F; Vahdat, Linda T; Altorki, Nasser K; Mittal, Vivek; Gao, Dingcheng

    2015-11-26

    The role of epithelial-to-mesenchymal transition (EMT) in metastasis is a longstanding source of debate, largely owing to an inability to monitor transient and reversible EMT phenotypes in vivo. Here we establish an EMT lineage-tracing system to monitor this process in mice, using a mesenchymal-specific Cre-mediated fluorescent marker switch system in spontaneous breast-to-lung metastasis models. We show that within a predominantly epithelial primary tumour, a small proportion of tumour cells undergo EMT. Notably, lung metastases mainly consist of non-EMT tumour cells that maintain their epithelial phenotype. Inhibiting EMT by overexpressing the microRNA miR-200 does not affect lung metastasis development. However, EMT cells significantly contribute to recurrent lung metastasis formation after chemotherapy. These cells survived cyclophosphamide treatment owing to reduced proliferation, apoptotic tolerance and increased expression of chemoresistance-related genes. Overexpression of miR-200 abrogated this resistance. This study suggests the potential of an EMT-targeting strategy, in conjunction with conventional chemotherapies, for breast cancer treatment.

  12. Classification of epithelial-mesenchymal transition phenotypes in esophageal squamous cell carcinoma is strongly associated with patient prognosis.

    PubMed

    Sung, Chang Ohk; Park, Cheol-Keun; Kim, Seok-Hyung

    2011-08-01

    Epithelial-mesenchymal transition is characterized by a loss of cell adhesion and increased cell mobility due to cells gaining a mesenchymal phenotype. During the epithelial-mesenchymal transition process, tumor cells are expected to lose their epithelial phenotype and gradually and sequentially acquire a mesenchymal phenotype. Epithelial-mesenchymal transition is a dynamic and reversible process, which has been observed in patient tissues to display a wide spectrum of phenotypes. However, very little is known about the clinical significance of the different phenotypes of the epithelial-mesenchymal transition. Based on the expression pattern of various epithelial-mesenchymal transition-related proteins, we divided 168 esophageal squamous cell carcinomas into different phenotypes, including complete type; incomplete type, including hybrid type and null type; and a wild type. The clinical significance of each phenotype was investigated. Of the 168 cases, 31 were categorized as complete type, 53 as incomplete type (hybrid type, 26 cases; null type, 27 cases), and 84 as wild type. Epithelial-mesenchymal transition phenotype was significantly associated with tumor size (P=0.021), differentiation (P=0.001), and invasion depth (P<0.001). Overall survival and disease-free survival rates were significantly worse in the complete type, better in the incomplete type, and best in the wild type. Within the incomplete type group, the hybrid type survival curve was similar to that of the complete type, whereas the overall survival of the null type was similar to the wild type. Complete type had a noticeable poorer prognostic effect on survival in patients with early invasion (pT≤2) than it had on survival among patients with advanced invasion (pT≥3). The complete phenotype was an independent prognostic factor for both overall (P=0.009) and disease-free survival (P<0.001). In conclusion, classification of epithelial-mesenchymal transition phenotypes has novel clinical

  13. Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: comparison among different honeys.

    PubMed

    Ranzato, Elia; Martinotti, Simona; Burlando, Bruno

    2012-01-01

    Honey has been used since ancient times for wound repair, but the subjacent mechanisms are almost unknown. We have tried to elucidate the modulatory role of honey in an in vitro model of HaCaT keratinocyte re-epithelialization by using acacia, buckwheat, and manuka honeys. Scratch wound and migration assays showed similar increases of re-epithelialization rates and chemoattractant effects in the presence of different types of honey (0.1%, v/v). However, the use of kinase and calcium inhibitors suggested the occurrence of different mechanisms. All honeys activated cyclin-dependent kinase 2, focal adhesion kinase, and rasGAP SH3 binding protein 1. However, vasodilator-stimulated phosphoprotein, integrin-β3, cdc25C, and p42/44 mitogen activated protein kinase showed variable activation pattern. Re-epithelialization recapitulates traits of epithelial-mesenchymal transition (EMT) and the induction of this process was evaluated by a polymerase chain reaction array, revealing marked differences among honeys. Manuka induced few significant changes in the expression of EMT-regulatory genes, while the other two honeys acted on a wider number of genes and partially showed a common profile of up- and down-regulation. In conclusion, our findings have shown that honey-driven wound repair goes through the activation of keratinocyte re-epithelialization, but the ability of inducing EMT varies sensibly among honeys, according to their botanical origin.

  14. Directing epithelial to mesenchymal transition through engineered microenvironments displaying orthogonal adhesive and mechanical cues.

    PubMed

    Markowski, Marilyn C; Brown, Ashley C; Barker, Thomas H

    2012-08-01

    Cell interactions with their extracellular matrix (ECM) microenvironments play a major role in directing cellular processes that can drive wound healing and tissue regeneration but, if uncontrolled, lead to pathological progression. One such process, epithelial to mesenchymal transition (EMT), if finely controlled could have significant potential in regenerative medicine approaches. Despite recent findings that highlight the influence of biochemical and mechanical properties of the ECM on EMT, it is still unclear how these two orthogonal cues act synergistically to control epithelial cell phenotype. Here, we cultured lung epithelial cells on combinations of different mutants of fibronectin's cell binding domain that preferentially engage specific integrins and substrates of varying stiffness. Our results suggest that while stiff substrates induce spontaneous EMT, this response can be overcome by with fragments of fibronectin that support α3 and α5 integrin engagement. Furthermore, we found that substrate-induced EMT correlates with transforming growth factor beta activation by resident epithelial cells and is dependent on Rho/ROCK signaling. Suppressing cell-contractility was sufficient to maintain an epithelial phenotype. Our results suggest that integrin-specific engagement of fibronectin adhesive domains and the mechanics of the ECM act synergistically to direct EMT.

  15. Mechanisms of disease: epithelial-mesenchymal transition and back again: does cellular plasticity fuel neoplastic progression?

    SciTech Connect

    Bissell, Mina J; Turley, Eva A.; Veiseh, Mandana; Radisky, Derek C.; Bissell, Mina J.

    2008-02-13

    Epithelial-mesenchymal transition (EMT) is a conversion that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. A similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, which is associated with disease progression. EMT in cancer epithelial cells often seems to be an incomplete and bi-directional process. In this Review, we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the RAS-controlled signaling mediators, ERK1, ERK2 and PI3-kinase, as microenvironmental responsive regulators of EMT.

  16. SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis.

    PubMed

    Simic, Petra; Williams, Eric O; Bell, Eric L; Gong, Jing Jing; Bonkowski, Michael; Guarente, Leonard

    2013-04-25

    The epithelial-to-mesenchymal transition (EMT) is important for the development of cancer metastases and organ fibrosis, conditions prevalent in aging. Because sirtuins affect the pathology of aging, we tested the effect of SirT1 on EMT. Reduced SIRT1 levels in HMLER breast cancer cells led to increased metastases in nude mice, and the loss of SIRT1 in kidney tubular epithelial cells exacerbated injury-induced kidney fibrosis. SIRT1 reduces EMT in cancer and fibrosis by deacetylating Smad4 and repressing the effect of TGF-β signaling on MMP7, a Smad4 target gene. Consequently, less E-cadherin is cleaved from the cell surface and β-catenin remains bound to E-cadherin at the cell-cell junctions. Our findings suggest that the SIRT1/Smad4/β-catenin axis may be a target for diseases driven by EMT. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. ΔNp63α and microRNAs: leveraging the epithelial-mesenchymal transition

    PubMed Central

    Stacy, Andrew J.; Craig, Michael P.; Sakaram, Suraj; Kadakia, Madhavi

    2017-01-01

    The epithelial-mesenchymal transition (EMT) is a cellular reprogramming mechanism that is an underlying cause of cancer metastasis. Recent investigations have uncovered an intricate network of regulation involving the TGFβ Wnt, and Notch signaling pathways and small regulatory RNA species called microRNAs (miRNAs). The activity of a transcription factor vital to the maintenance of epithelial stemness, ?Np63a, has been shown to modulate the activity of these EMT pathways to either repress or promote EMT. Furthermore, ?Np63a is a known regulator of miRNA, including those directly involved in EMT. This review discusses the evidence of ?Np63a as a master regulator of EMT components and miRNA, highlighting the need for a deeper understanding of its role in EMT. This expanded knowledge may provide a basis for new developments in the diagnosis and treatment of metastatic cancer. PMID:27924063

  18. New views on the neural crest epithelial-mesenchymal transition and neuroepithelial interkinetic nuclear migration

    PubMed Central

    Erickson, Carol A

    2009-01-01

    By developing a technique for imaging the avian neural crest epithelial-mesenchymal transition (EMT), we have discovered cellular behaviors that challenge current thinking on this important developmental event, including the probability that complete disassembly of the adherens junctions may not control whether or not a neural epithelial cell undergoes an EMT. Further, neural crest cells can adopt multiple modes of cell motility in order to emigrate from the neuroepithelium. We also gained insights into interkinetic nuclear migration (INM). For example, the movement of the nucleus from the basal to apical domain may not require microtubule motors nor an intact nuclear envelope, and the nucleus does not always need to reach the apical surface in order for cytokinesis to occur. These studies illustrate the value of live-cell imaging to elucidate cellular processes. PMID:20195454

  19. OVOL2 Maintains the Transcriptional Program of Human Corneal Epithelium by Suppressing Epithelial-to-Mesenchymal Transition.

    PubMed

    Kitazawa, Koji; Hikichi, Takafusa; Nakamura, Takahiro; Mitsunaga, Kanae; Tanaka, Azusa; Nakamura, Masahiro; Yamakawa, Tatsuya; Furukawa, Shiori; Takasaka, Mieko; Goshima, Naoki; Watanabe, Akira; Okita, Keisuke; Kawasaki, Satoshi; Ueno, Morio; Kinoshita, Shigeru; Masui, Shinji

    2016-05-10

    In development, embryonic ectoderm differentiates into neuroectoderm and surface ectoderm using poorly understood mechanisms. Here, we show that the transcription factor OVOL2 maintains the transcriptional program of human corneal epithelium cells (CECs), a derivative of the surface ectoderm, and that OVOL2 may regulate the differential transcriptional programs of the two lineages. A functional screen identified OVOL2 as a repressor of mesenchymal genes to maintain CECs. Transduction of OVOL2 with several other transcription factors induced the transcriptional program of CECs in fibroblasts. Moreover, neuroectoderm derivatives were found to express mesenchymal genes, and OVOL2 alone could induce the transcriptional program of CECs in neural progenitors by repressing these genes while activating epithelial genes. Our data suggest that the difference between the transcriptional programs of some neuroectoderm- and surface ectoderm-derivative cells may be regulated in part by a reciprocally repressive mechanism between epithelial and mesenchymal genes, as seen in epithelial-to-mesenchymal transition.

  20. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells

    PubMed Central

    Shen, Yang; Zhang, Yingying; Yin, Hongmei; Zeng, Ye; Liu, Jingxia; Yan, Zhiping; Liu, Xiaoheng

    2016-01-01

    Laryngeal squamous cell carcinoma (LSCC) is one of the most commonly diagnosed malignancies with high occurrence of tumor metastasis, which usually exposes to fluid shear stress (FSS) in lymphatic channel and blood vessel. Epithelial-mesenchymal transition (EMT) is an important mechanism that induces metastasis and invasion of tumors. We hypothesized that FSS induced a progression of EMT in laryngeal squamous carcinoma. Accordingly, the Hep-2 cells were exposed to 1.4 dyn/cm2 FSS for different durations. Our results showed that most of cells changed their morphology from polygon to elongated spindle with well-organized F-actin and abundant lamellipodia/filopodia in protrusions. After removing the FSS, cells gradually recovered their flat polygon morphology. FSS induced Hep-2 cells to enhance their migration capacity in a time-dependent manner. In addition, FSS down-regulated E-cadherin, and simultaneously up-regulated N-cadherin, translocated β-catenin into the nucleus. These results confirmed that FSS induced the EMT in Hep-2 cells, and revealed a reversible mesenchymal-epithelial transition (MET) process when FSS was removed. We further examined the time-expressions of signaling cascades, and demonstrated that FSS induces the EMT and enhances cell migration depending on integrin-ILK/PI3K-AKT-Snail signaling events. The current study suggests that FSS, an important biophysical factor in tumor microenvironment, is a potential determinant of cell behavior and function regulation. PMID:27096955

  1. Tangzhiqing Granules Alleviate Podocyte Epithelial-Mesenchymal Transition in Kidney of Diabetic Rats.

    PubMed

    Xu, Haiyan; Wang, Xu; Liu, Mingming; He, Xueyuan

    2017-01-01

    This study discussed the effect of Tangzhiqing granules on podocyte epithelial-mesenchymal transition in kidney of diabetic rats. The diabetic rats were divided randomly into five groups: DM group treated with vehicle, Tangzhiqing granules low-dose treatment group, Tangzhiqing granules middle-dose treatment group, and Tangzhiqing granules high-dose treatment group. Eight Wistar rats used as control group were given saline solution. The intervention was all intragastric administration for 8 weeks. At the end of the 8 weeks, biochemical parameters and kidney weight/body weight ratio were measured. The kidney tissues were observed under light microscope and transmission electron microscopy. To search for the underlying mechanism, we examined the epithelial-to-mesenchymal transition (EMT) related molecular markers and TGF-β/smad signaling pathway key proteins expression. The results showed that Tangzhiqing granules relieved the structural damage and functional changes of diabetic kidneys. Kidney podocyte EMT related molecular markers nephrin and CD2AP expression were increased, when desmin and α-SMA levels were decreased by Tangzhiqing granules in diabetic rats. Further TGF-β/smad signaling pathway key proteins TGF-β1 and p-smad2/3 levels were decreased in diabetic rats after treatment with Tangzhiqing granules. These findings suggest that Tangzhiqing granules may protect the podocytes of diabetic nephropathy rats via alleviating podocyte EMT and likely activating TGFβ/smad signaling pathway.

  2. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development

    PubMed Central

    Mandalos, Nikolaos; Rhinn, Muriel; Granchi, Zoraide; Karampelas, Ioannis; Mitsiadis, Thimios; Economides, Aris N.; Dollé, Pascal; Remboutsika, Eumorphia

    2014-01-01

    Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC) pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A “Conditional by Inversion” Sox2 allele (Sox2COIN) has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV). Sox2EpINV/+(H) haploinsufficient and conditional (Sox2EpINV/mosaic) mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions (EMT) that are important for the cell flow in the developing head. PMID:25309446

  3. Tangzhiqing Granules Alleviate Podocyte Epithelial-Mesenchymal Transition in Kidney of Diabetic Rats

    PubMed Central

    Xu, Haiyan; Liu, Mingming; He, Xueyuan

    2017-01-01

    This study discussed the effect of Tangzhiqing granules on podocyte epithelial-mesenchymal transition in kidney of diabetic rats. The diabetic rats were divided randomly into five groups: DM group treated with vehicle, Tangzhiqing granules low-dose treatment group, Tangzhiqing granules middle-dose treatment group, and Tangzhiqing granules high-dose treatment group. Eight Wistar rats used as control group were given saline solution. The intervention was all intragastric administration for 8 weeks. At the end of the 8 weeks, biochemical parameters and kidney weight/body weight ratio were measured. The kidney tissues were observed under light microscope and transmission electron microscopy. To search for the underlying mechanism, we examined the epithelial-to-mesenchymal transition (EMT) related molecular markers and TGF-β/smad signaling pathway key proteins expression. The results showed that Tangzhiqing granules relieved the structural damage and functional changes of diabetic kidneys. Kidney podocyte EMT related molecular markers nephrin and CD2AP expression were increased, when desmin and α-SMA levels were decreased by Tangzhiqing granules in diabetic rats. Further TGF-β/smad signaling pathway key proteins TGF-β1 and p-smad2/3 levels were decreased in diabetic rats after treatment with Tangzhiqing granules. These findings suggest that Tangzhiqing granules may protect the podocytes of diabetic nephropathy rats via alleviating podocyte EMT and likely activating TGFβ/smad signaling pathway. PMID:28163747

  4. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    SciTech Connect

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered

  5. Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin).

    PubMed

    Oliveras-Ferraros, Cristina; Corominas-Faja, Bruna; Cufí, Sílvia; Vazquez-Martin, Alejandro; Martin-Castillo, Begoña; Iglesias, Juan Manuel; López-Bonet, Eugeni; Martin, Ángel G; Menendez, Javier A

    2012-11-01

    The rate of inherent resistance to single-agent trastuzumab in HER2-overexpressing metastatic breast carcinomas is impressive at above 70%. Unfortunately, little is known regarding the distinctive genetic signatures that could predict trastuzumab refractoriness ab initio. The epithelial-to-mesenchymal transition (EMT) molecular features, HER2 expression status and primary responses to trastuzumab were explored in the public Lawrence Berkeley Laboratory (LBL) Breast Cancer Collection. Lentivirus-delivered small hairpin RNAs were employed to reduce specifically and stably the expression of EMT transcription factors in trastuzumab-refractory basal/HER2+ cells. Cell proliferation assays and pre-clinical nude mice xenograft-based studies were performed to assess the contribution of specific EMT transcription factors to inherent trastuzumab resistance. Primary sensitivity to trastuzumab was restricted to the SLUG/SNAIL2-negative subset of luminal/HER2+ cell lines, whereas all of the SLUG/SNAIL2-positive basal/HER2+ cell lines exhibited an inherent resistance to trastuzumab. The specific knockdown of SLUG/SNAIL2 suppressed the stem-related CD44+CD24(-/low) mesenchymal immunophenotype by transcriptionally upregulating the luminal epithelial marker CD24 in basal/HER2+ cells. Basal/HER2+ cells gained sensitivity to the growth-inhibitory effects of trastuzumab following SLUG/SNAIL2 gene depletion, which induced the expression of the mesenchymal-to-epithelial transition (MET) genes involved in promoting an epithelial phenotype. The isolation of CD44+CD24(-/low) mesenchymal cells by magnetic-activated cell sorting (MACS) confirmed their intrinsic unresponsiveness to trastuzumab. A reduction in tumor growth and dramatic gain in sensitivity to trastuzumab in vivo were confirmed when the SLUG/SNAIL2 knockdown basal/HER2+ cells were injected into nude mice. HER2 overexpression in a basal, rather than in a luminal molecular background, results in a basal/HER2+ breast cancer subtype

  6. Population Heterogeneity in the Epithelial to Mesenchymal Transition Is Controlled by NFAT and Phosphorylated Sp1

    PubMed Central

    Chakrabarti, Anirikh; Varner, Jeffrey D.; Butcher, Jonathan

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an essential differentiation program during tissue morphogenesis and remodeling. EMT is induced by soluble transforming growth factor β (TGF-β) family members, and restricted by vascular endothelial growth factor family members. While many downstream molecular regulators of EMT have been identified, these have been largely evaluated individually without considering potential crosstalk. In this study, we created an ensemble of dynamic mathematical models describing TGF-β induced EMT to better understand the operational hierarchy of this complex molecular program. We used ordinary differential equations (ODEs) to describe the transcriptional and post-translational regulatory events driving EMT. Model parameters were estimated from multiple data sets using multiobjective optimization, in combination with cross-validation. TGF-β exposure drove the model population toward a mesenchymal phenotype, while an epithelial phenotype was enhanced following vascular endothelial growth factor A (VEGF-A) exposure. Simulations predicted that the transcription factors phosphorylated SP1 and NFAT were master regulators promoting or inhibiting EMT, respectively. Surprisingly, simulations also predicted that a cellular population could exhibit phenotypic heterogeneity (characterized by a significant fraction of the population with both high epithelial and mesenchymal marker expression) if treated simultaneously with TGF-β and VEGF-A. We tested this prediction experimentally in both MCF10A and DLD1 cells and found that upwards of 45% of the cellular population acquired this hybrid state in the presence of both TGF-β and VEGF-A. We experimentally validated the predicted NFAT/Sp1 signaling axis for each phenotype response. Lastly, we found that cells in the hybrid state had significantly different functional behavior when compared to VEGF-A or TGF-β treatment alone. Together, these results establish a predictive mechanistic model of EMT

  7. Podocalyxin influences malignant potential by controlling epithelial-mesenchymal transition in lung adenocarcinoma.

    PubMed

    Kusumoto, Hidenori; Shintani, Yasushi; Kanzaki, Ryu; Kawamura, Tomohiro; Funaki, Soichiro; Minami, Masato; Nagatomo, Izumi; Morii, Eiichi; Okumura, Meinoshin

    2017-03-01

    Epithelial-mesenchymal transition (EMT) plays an important role in the progression of lung carcinoma. Podocalyxin (PODXL), which belongs to the CD34 family and regulates cell morphology, has been linked to EMT in lung cancer, and PODXL overexpression is associated with poor prognosis in several different classes of cancers. The aim of this study was to clarify the role of PODXL overexpression in EMT in lung cancer, and to determine the prognostic value of PODXL overexpression in tumors from lung cancer patients. The morphology, EMT marker expression, and migration and invasion abilities of engineered A549 PODXL-knockdown (KD) or PODXL-overexpression (OE) lung adenocarcinoma cells were examined. PODXL expression levels were assessed by immunohistochemistry in 114 human clinical lung adenocarcinoma specimens and correlated with clinical outcomes. PODXL-KD cells were epithelial in shape, whereas PODXL-OE cells displayed mesenchymal morphology. Epithelial markers were upregulated in PODXL-KD cells and downregulated in PODXL-OE cells, whereas mesenchymal markers were downregulated in the former and upregulated in the latter. A highly selective inhibitor of phosphatidylinositol 3-kinase-Akt signaling attenuated EMT of PODXL-OE cells, while a transforming growth factor inhibitor did not, suggesting that PODXL induces EMT of lung adenocarcinoma cells via the phosphatidylinositol 3-kinase pathway. In lung adenocarcinoma clinical specimens, PODXL expression was detected in minimally invasive and invasive adenocarcinoma, but not in non-invasive adenocarcinoma. Disease free survival and cancer-specific survival were significantly worse for patients whose tumors overexpressed PODXL. PODXL overexpression induces EMT in lung adenocarcinoma and contributes to tumor progression. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Sub-circuits of a gene regulatory network control a developmental epithelial-mesenchymal transition.

    PubMed

    Saunders, Lindsay R; McClay, David R

    2014-04-01

    Epithelial-mesenchymal transition (EMT) is a fundamental cell state change that transforms epithelial to mesenchymal cells during embryonic development, adult tissue repair and cancer metastasis. EMT includes a complex series of intermediate cell state changes including remodeling of the basement membrane, apical constriction, epithelial de-adhesion, directed motility, loss of apical-basal polarity, and acquisition of mesenchymal adhesion and polarity. Transcriptional regulatory state changes must ultimately coordinate the timing and execution of these cell biological processes. A well-characterized gene regulatory network (GRN) in the sea urchin embryo was used to identify the transcription factors that control five distinct cell changes during EMT. Single transcription factors were perturbed and the consequences followed with in vivo time-lapse imaging or immunostaining assays. The data show that five different sub-circuits of the GRN control five distinct cell biological activities, each part of the complex EMT process. Thirteen transcription factors (TFs) expressed specifically in pre-EMT cells were required for EMT. Three TFs highest in the GRN specified and activated EMT (alx1, ets1, tbr) and the 10 TFs downstream of those (tel, erg, hex, tgif, snail, twist, foxn2/3, dri, foxb, foxo) were also required for EMT. No single TF functioned in all five sub-circuits, indicating that there is no EMT master regulator. Instead, the resulting sub-circuit topologies suggest EMT requires multiple simultaneous regulatory mechanisms: forward cascades, parallel inputs and positive-feedback lock downs. The interconnected and overlapping nature of the sub-circuits provides one explanation for the seamless orchestration by the embryo of cell state changes leading to successful EMT.

  9. Study of Epithelial to Mesenchymal Transition in Atypical Fibroxanthoma and Undifferentiated Pleomorphic Sarcoma to Discern an Epithelial Origin.

    PubMed

    Toll, Agustí; Gimeno, Javier; Baró, Teresa; Hernández-Muñoz, Maria I; Pujol, Ramon M

    2016-04-01

    Atypical fibroxanthoma (AFX) is considered a fibroblastic or myofibroblastic neoplasm probably corresponding to a superficial variant of undifferentiated pleomorphic sarcoma (UPS). However, an epithelial origin has also been postulated. An immunohistochemical study of the epithelial to mesenchymal transition (EMT) phenomenon was performed in a series of 19 AFX and 4 UPS to discern an epithelial origin. A panel of epithelial (cytokeratins AE1-AE3 panel, podoplanin D2-40, and E-cadherin) and EMT (vimentin, Twist, Zeb1, and Snail1) markers were evaluated in both tumoral cells and the adjacent epidermis. Podoplanin and Snail1 were negative in all the samples. Nuclear E-cadherin, Twist, and Zeb1 were detected in most lesions, as previously reported in other sarcomas. In the epidermis, E-cadherin showed a normal membranous pattern and only isolated cells were positive for vimentin. Twist and Zeb1 were mainly negative in the epidermis. None of the immunohistochemical markers mentioned above elicited a conspicuous bridging between the epidermis and the dermis. Our findings suggest that EMT does not play a role in the development of AFX or UPS.

  10. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells

    PubMed Central

    Raghavan, Cibin T.; Nagaraj, Ram H.

    2016-01-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis. PMID:27263094

  11. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells.

    PubMed

    Raghavan, Cibin T; Nagaraj, Ram H

    2016-08-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.

  12. Altered Death Receptor Signaling Promotes Epithelial-to-Mesenchymal Transition and Acquired Chemoresistance

    PubMed Central

    Antoon, James W.; Lai, Rongye; Struckhoff, Amanda P.; Nitschke, Ashley M.; Elliott, Steven; Martin, Elizabeth C.; Rhodes, Lyndsay V.; Yoon, Nam Seung; Salvo, Virgilio A.; Shan, Bin; Beckman, Barbara S.; Nephew, Kenneth P.; Burow, Matthew E.

    2012-01-01

    Altered death receptor signaling and resistance to subsequent apoptosis is an important clinical resistance mechanism. Here, we investigated the role of death receptor resistance in breast cancer progression. Resistance of the estrogen receptor alpha (ER)-positive, chemosensitive MCF7 breast cancer cell line to tumor necrosis factor (TNF) was associated with loss of ER expression and a multi-drug resistant phenotype. Changes in three major pathways were involved in this transition to a multidrug resistance phenotype: ER, Death Receptor and epithelial to mesenchymal transition (EMT). Resistant cells exhibited altered ER signaling, resulting in decreased ER target gene expression. The death receptor pathway was significantly altered, blocking extrinsic apoptosis and increasing NF-kappaB survival signaling. TNF resistance promoted EMT changes, resulting in a more aggressive phenotype. This first report identifying specific mechanisms underlying acquired resistance to TNF could lead to a better understanding of the progression of breast cancer in response to chemotherapy treatment. PMID:22844580

  13. Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds.

    PubMed

    Ravikrishnan, Anitha; Ozdemir, Tugba; Bah, Mohamed; Baskerville, Karen A; Shah, S Ismat; Rajasekaran, Ayyappan K; Jia, Xinqiao

    2016-07-20

    Epithelial-to-mesenchymal transition (EMT) is a well-studied biological process that takes place during embryogenesis, carcinogenesis, and tissue fibrosis. During EMT, the polarized epithelial cells with a cuboidal architecture adopt an elongated fibroblast-like morphology. This process is accompanied by the expression of many EMT-specific molecular markers. Although the molecular mechanism leading to EMT has been well-established, the effects of matrix topography and microstructure have not been clearly elucidated. Synthetic scaffolds mimicking the meshlike structure of the basement membrane with an average fiber diameter of 0.5 and 5 μm were produced via the electrospinning of poly(ε-caprolactone) (PCL) and were used to test the significance of fiber diameter on EMT. Cell-adhesive peptide motifs were conjugated to the fiber surface to facilitate cell attachment. Madin-Darby Canine Kidney (MDCK) cells grown on these substrates showed distinct phenotypes. On 0.5 μm substrates, cells grew as compact colonies with an epithelial phenotype. On 5 μm scaffolds, cells were more individually dispersed and appeared more fibroblastic. Upon the addition of hepatocyte growth factor (HGF), an EMT inducer, cells grown on the 0.5 μm scaffold underwent pronounced scattering, as evidenced by the alteration of cell morphology, localization of focal adhesion complex, weakening of cell-cell adhesion, and up-regulation of mesenchymal markers. In contrast, HGF did not induce a pronounced scattering of MDCK cells cultured on the 5.0 μm scaffold. Collectively, our results show that the alteration of the fiber diameter of proteins found in the basement membrane may create enough disturbances in epithelial organization and scattering that might have important implications in disease progression.

  14. Regulation of Epithelial-to-Mesenchymal Transition Using Biomimetic Fibrous Scaffolds

    PubMed Central

    Ravikrishnan, Anitha; Ozdemir, Tugba; Bah, Mohamed; Baskerville, Karen A.; Shah, S. Ismat; Rajasekaran, Ayyappan K.; Jia, Xinqiao

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is a well-studied biological process that takes place during embryogenesis, carcinogenesis and tissue fibrosis. During EMT, the polarized epithelial cells with a cuboidal architecture adopt an elongated fibroblast-like morphology. This process is accompanied by the expression of many EMT-specific molecular markers. While the molecular mechanism leading to EMT has been well established, the effects of matrix topography and microstructure have not been clearly elucidated. Synthetic scaffolds mimicking the mesh-like structure of the basement membrane with an average fiber diameter of 0.5 μm and 5 μm were produced via electrospinning of poly(ε-caprolactone) (PCL) and were used to test the significance of fiber diameter on EMT. Cell-adhesive peptide motifs were conjugated to the fiber surface to facilitate cell attachment. Madin-Darby Canine Kidney (MDCK) cells grown on these substrates showed distinct phenotypes. On 0.5 μm substrates, cells grew as compact colonies with an epithelial phenotype. On 5 μm scaffolds, cells were more individually dispersed and appeared more fibroblastic. Upon addition of hepatocyte growth factor (HGF), an EMT inducer, cells grown on the 0.5 μm scaffold underwent pronounced scattering, as evidenced by the alteration of cell morphology, localization of focal adhesion complex, weakening of cell-cell adhesion, and upregulation of mesenchymal markers. By contrast, HGF did not induce a pronounced scattering of MDCK cells cultured on the 5.0 μm scaffold. Collectively, our results show that the alteration of the fiber diameter of proteins found in the basement membrane may create enough disturbances in epithelial organization and scattering that might have important implications in disease progression. PMID:27322677

  15. Neutrophil Granulocytes in Ovarian Cancer - Induction of Epithelial-To-Mesenchymal-Transition and Tumor Cell Migration

    PubMed Central

    Mayer, Christine; Darb-Esfahani, Silvia; Meyer, Anne-Sophie; Hübner, Katrin; Rom, Joachim; Sohn, Christof; Braicu, Ioana; Sehouli, Jalid; Hänsch, G. Maria; Gaida, Matthias M.

    2016-01-01

    Background: Ovarian cancer (OvCa) is a highly aggressive malignoma with a tumor-promoting microenvironment. Infiltration of polymorphonuclear neutrophils (PMN) is frequently seen, raising the question of their impact on tumor development. In that context, effects of PMN on human ovarian cancer cells were assessed. Methods: Human epithelial ovarian cancer cells were incubated with human PMN, lysate of PMN, or neutrophil elastase. Morphological alterations were observed by time-lapse video-microscopy, and the underlying molecular mechanism was analyzed by flow cytometry and Western blotting. Functional alternations were assessed by an in vitro wound healing assay. In parallel, a large cohort of n=334 primary OvCa tissue samples of various histological subtypes was histologically evaluated. Results: Co-cultivation of cancer cells with either PMN or PMN lysate causes a change of the polygonal epithelial phenotype of the cells towards a spindle shaped morphology, causing a cribriform cell growth. The PMN-induced alteration could be attributed to elastase, a major protease of PMN. Elastase-induced shape change was most likely due to the degradation of membranous E-cadherin, which results in loss of cell contacts and polarity. Moreover, in response to elastase, epithelial cytokeratins were downmodulated, in parallel with a nuclear translocation of β-catenin. These PMN-elastase induced alterations of cells are compatible with an epithelial-to-mesenchymal transition (EMT) of the cancer cells. Following EMT, the cells displayed a more migratory phenotype. In human biopsies, neutrophil infiltration was seen in 72% of the cases. PMN infiltrates were detected preferentially in areas with low E-cadherin expression. Conclusion: PMN in the microenvironment of OvCa can alter tumor cells towards a mesenchymal and migratory phenotype. PMID:27053953

  16. Investigating the Link between Molecular Subtypes of Glioblastoma, Epithelial-Mesenchymal Transition, and CD133 Cell Surface Protein

    PubMed Central

    Zarkoob, Hadi; Taube, Joseph H.; Singh, Sheila K.; Mani, Sendurai A.; Kohandel, Mohammad

    2013-01-01

    In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between genes up regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provide evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we study the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrate that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM displays similarity with the signatures of both EMT and CD133, it also exhibits some differences with each of these signatures that are partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together these data shed light on the role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme. PMID:23734191

  17. Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression.

    PubMed

    Haynes, Jennifer; Srivastava, Jyoti; Madson, Nikki; Wittmann, Torsten; Barber, Diane L

    2011-12-01

    Remodeling of actin filaments is necessary for epithelial-mesenchymal transition (EMT); however, understanding of how this is regulated in real time is limited. We used an actin filament reporter and high-resolution live-cell imaging to analyze the regulated dynamics of actin filaments during transforming growth factor-β-induced EMT of mammary epithelial cells. Progressive changes in cell morphology were accompanied by reorganization of actin filaments from thin cortical bundles in epithelial cells to thick, parallel, contractile bundles that disassembled more slowly but remained dynamic in transdifferentiated cells. We show that efficient actin filament remodeling during EMT depends on increased expression of the ezrin/radixin/moesin (ERM) protein moesin. Cells suppressed for moesin expression by short hairpin RNA had fewer, thinner, and less stable actin bundles, incomplete morphological transition, and decreased invasive capacity. These cells also had less α-smooth muscle actin and phosphorylated myosin light chain in cortical patches, decreased abundance of the adhesion receptor CD44 at membrane protrusions, and attenuated autophosphorylation of focal adhesion kinase. Our findings suggest that increased moesin expression promotes EMT by regulating adhesion and contractile elements for changes in actin filament organization. We propose that the transciptional program driving EMT controls progressive remodeling of actin filament architectures.

  18. Epithelial Mesenchymal Transition (EMT) in Metastatic Breast Cancer in Omani Women.

    PubMed

    Lakhtakia, Ritu; Aljarrah, Adil; Furrukh, Muhammad; Ganguly, Shyam S

    2017-05-19

    Breast cancer (BC) in Oman affects younger women and has a more aggressive course. Clinical and biological variables like age, pregnancy, tumor size, type, grade, receptor expression and proliferation predict disease aggression but there is no direct predictor of metastasis except lymphovascular invasion. Epithelial-mesenchymal transition (EMT) is characterized by epithelial cells losing epithelial and acquiring mesenchymal morpho-immunophenotypic characteristics. In tumors, EMT-like transitions may signify a metastatic phenotype and have features in common with cancer stem cells (CSC) which show resistance to chemotherapy. This study aimed to identify EMT and CSC phenotypes in metastatic and non-metastatic breast cancer in Omani women and their association with conventional clinico-pathological predictors of BC. In a retrospective study of ninety-six Omani women with breast cancer, the association of age, pregnancy/lactation, tumor size, type, grade, ductal carcinoma insitu (DCIS), lymphovascular invasion, hormone/ HER2 receptor expression and Ki67 proliferation index (Ki67 PI) was tested with EMT/ CSC phenotype and metastasis. Young age ≤ 40 years, lymphovascular invasion and EMT had a strong association with metastasis; CSC approached significance. Vimentin expression in tumor cells, fibronectin and MMP-11 in stroma were reliable markers of EMT; dual EMT and CSC phenotype (Vim+/ CD44+/ CD 24-/low) had a strong association with apocrine variant, basal-like tumors and triple negative cancers. EMT had a strong association with Ki67 proliferation index (PI) and CSC with HER2-like tumors and distant metastasis. These select markers may be useful in metastasis-prediction in pre-treatment biopsies.

  19. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis

    PubMed Central

    Shriver, M; Stroka, KM; Vitolo, MI; Martin, S; Huso, DL; Konstantopoulos, K; Kontrogianni-Konstantopoulos, A

    2015-01-01

    Obscurins, encoded by the single OBSCN gene, are giant cytoskeletal proteins with structural and regulatory roles. The OBSCN gene is highly mutated in different types of cancers. Loss of giant obscurins from breast epithelial cells confers them with a survival and growth advantage, following exposure to DNA-damaging agents. Here we demonstrate that the expression levels and subcellular distribution of giant obscurins are altered in human breast cancer biopsies compared with matched normal samples. Stable clones of non-tumorigenic MCF10A cells lacking giant obscurins fail to form adhesion junctions, undergo epithelial-to-mesenchymal transition and generate >100-μm mammospheres bearing markers of cancer-initiating cells. Obscurin-knockdown MCF10A cells display markedly increased motility as a sheet in 2-dimensional (2D) substrata and individually in confined spaces and invasion in 3D matrices. In line with these observations, actin filaments redistribute to extending filopodia where they exhibit increased dynamics. MCF10A cells that stably express the K-Ras oncogene and obscurin short hairpin RNA (shRNA), but not scramble control shRNA, exhibit increased primary tumor formation and lung colonization after subcutaneous and tail vein injections, respectively. Collectively, our findings reveal that loss of giant obscurins from breast epithelium results in disruption of the cell–cell contacts and acquisition of a mesenchymal phenotype that leads to enhanced tumorigenesis, migration and invasiveness in vitro and in vivo. PMID:25381817

  20. The Network of Epithelial-mesenchymal transition: potential new targets for tumor resistance

    PubMed Central

    Nantajit, Danupon; Lin, Dong; Li, Jian Jian

    2014-01-01

    Purpose In multiple cell metazoans, the ability of polarized epithelial cells to convert to motile mesenchymal cells in order to relocate to another location is governed by a unique process termed epithelial-mesenchymal transition (EMT). While being an essential process of cellular plasticity for normal tissue and organ developments, EMT is found to be involved in an array of malignant phenotypes of tumor cells including proliferation and invasion, angiogenesis, stemness of cancer cells and resistance to chemo-radiotherapy. Although EMT is being extensively studied and demonstrated to play a key role in tumor metastasis and in sustaining tumor hallmarks, there is a lack of clear picture of the overall EMT signaling network, wavering the potential clinical trials targeting EMT. Methods In this review, we highlight the potential key therapeutic targets of EMT linked with tumor aggressiveness, hypoxia, angiogenesis and cancer stem cells, emphasizing on an emerging EMT-associated NF-κB/HER2/STAT3 pathway in radioresistance of breast cancer stem cells. Results Further definition of cancer stem cell repopulation due to EMT-controlled tumor microenvironment will help to understand how tumors exploit the EMT mechanisms for their survival and expansion advantages. Conclusions The knowledge of EMT will offer more effective targets in clinical trials to treat therapy-resistant metastatic lesions. PMID:25270087

  1. Fisetin inhibits migration, invasion and epithelial-mesenchymal transition of LMP1-positive nasopharyngeal carcinoma cells.

    PubMed

    Li, Rong; Zhao, Yinhai; Chen, Jin; Shao, Songjun; Zhang, Xiujuan

    2014-02-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) has been reported to possess certain anticancer properties. It may inhibit tumor cell proliferation, metastasis and induce apoptosis. However, the effects of fisetin in preventing the metastasis of nasopharyngeal carcinoma (NPC) cells remain to be determined. The epithelial-mesenchymal transition (EMT) is involved in several metastatic malignancies including NPC. It has been reported that the Epstein-Barr virus latent membrane protein-1 (LMP1) induced EMT and is associated with the metastasis of NPC. The aim of this study was to examine the effects of fisetin in preventing the migration and invasion of LMP1-expressing NPC cells (CNE1-LMP1 cells), as well as to investigate whether fisetin may inhibit the molecular changes associated with EMT induced by LMP1. The investigation demonstrated that fisetin suppressed the migration and invasion of CNE1-LMP1 cells under non-cytotoxic concentrations. Fisetin inhibited molecular changes associated with EMT induced by LMP1, upregulated the epithelial marker, E-cadherin protein, and downregulated the mesenchymal marker, vimentin protein, levels. Fisetin also significantly reduced the levels of Twist protein, an EMT regulator. The investigation suggested that fisetin inhibits the migration and invasion of LMP1-positive NPC cells, and the molecular mechanism involves fisetin reversing the EMT induced by LMP1 and downregulates the expression of Twist. This study indicated that fisetin serves as a potential candidate for the treatment of cancer metastasis.

  2. Modeling TGF-β signaling pathway in epithelial-mesenchymal transition

    NASA Astrophysics Data System (ADS)

    Laise, Pasquale; Fanelli, Duccio; Lió, Pietro; Arcangeli, Annarosa

    2012-03-01

    The epithelial-mesenchymal transition (EMT) consists in a morphological change in epithelial cells characterized by the loss of the cell adhesion and the acquisition of mesenchymal phenotype. This process plays a crucial role in the embryonic development and in regulating the tissue homeostasis in the adult, but it proves also fundamental for the development of cancer metastasis. Experimental evidences have shown that the EMT depends on the TGF-β signaling pathway, which in turn regulates the transcriptional cellular activity. In this work, a dynamical model of the TGF-β pathway is proposed and calibrated versus existing experimental data on lung cancer A549 cells. The analysis combines Bayesian Markov Chain Monte Carlo (MCMC) and standard Ordinary Differential Equations (ODEs) techniques to interpolate the gene expression data via an iterative adjustments of the parameters involved. The kinetic of the Smad proteins phosphorylation, as predicted within the model is found in excellent agreement with available experiments, an observation that confirms the adequacy of the proposed mathematical picture.

  3. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development.

    PubMed

    Jeon, So-Ye; Hwang, Kyung-A; Choi, Kyung-Chul

    2016-04-01

    As the primary female sex steroid hormones, estrogens and progesterone play important roles to regulate growth, differentiation, and function of a broad range of target tissues in the human body and maintain the function of female reproductive tissues. Ovarian cancer is the most cause of cancer death in gynecological malignancy. Despite enormous outcomes in the understanding of ovarian cancer pathology, this disease has resulted in poor survival rates since most patients are asymptomatic until the disease has been metastasized. The exact molecular events leading to metastasis of ovarian tumor cells have not yet been well elucidated, although it is recognized that the acquisition of capacity for migration and invasiveness would be a necessary prerequisite. During metastasis, epithelial-mesenchymal transition (EMT) is an important process, in which epithelial cells lose their intracellular adhesion and cell polarity and acquire increased motility and invasive properties to become mesenchymal like cells. The process of cancer cells to undergo EMT is regulated through the up- and down- regulation of a multiple cellular markers and signaling proteins. In this review, we focused the roles of women sex steroid hormones, estrogen and progesterone, in ovarian cancer, especially the ovarian cancer undergoing EMT and metastatic process. All things considered, we may suggest that progesterone is a potent hormone which inhibits the growth of human ovarian cancer cells and development to metastasis whereas estrogen may act as a risk factor of ovarian cancer progression and that progesterone therapy may be an alternative clinically effective tool for the treatment of human ovarian cancer.

  4. P300 promotes migration, invasion and epithelial-mesenchymal transition in a nasopharyngeal carcinoma cell line

    PubMed Central

    Liao, Zhi-Wei; Zhao, Lei; Cai, Mu-Yan; Xi, Mian; He, Li-Ru; Yu, Fang; Zhou, Tong-Chong; Liu, Meng-Zhong

    2017-01-01

    A previous study demonstrated that p300 is overexpressed in nasopharyngeal carcinoma (NPC), and that its expression is an independent prognostic factor. The aim of the present study is to investigate the role of p300 in human NPC development. A small hairpin (sh) RNA lentiviral expression vector targeting the p300 gene was constructed to suppress the expression of p300 in NPC cells. Knockdown of p300 was verified by reverse transcription-quantitative polymerase chain reaction and western blotting. Wound-healing, invasion, immunofluorescence and immunoprecipitation assays were performed to assess the influence of p300 on nasopharyngeal tumorigenesis and metastasis in vitro. The expression of p300 was upregulated in NPC cell lines. After knockdown of p300, the migration and invasion ability of shp300 cells were significantly inhibited (P<0.05). Furthermore, the depletion of p300 expression in NPC cell lines resulted in the upregulation of epithelial phenotype marker E-cadherin and α-catenin, and downregulation of mesenchymal phenotype markers N-cadherin and vimentin. p300 promotes epithelial-mesenchymal transition (EMT) through the acetylation of Smad2 and Smad3 in the tumor growth factor-β signaling pathway. In conclusion, p300 may be involved in the invasion and metastasis of NPC through the induction of EMT. PMID:28356956

  5. Intratumoral heterogeneity: Clonal cooperation in epithelial-to-mesenchymal transition and metastasis

    PubMed Central

    Neelakantan, Deepika; Drasin, David J; Ford, Heide L

    2015-01-01

    Although phenotypic intratumoral heterogeneity was first described many decades ago, the advent of next-generation sequencing has provided conclusive evidence that in addition to phenotypic diversity, significant genotypic diversity exists within tumors. Tumor heterogeneity likely arises both from clonal expansions, as well as from differentiation hierarchies existent in the tumor, such as that established by cancer stem cells (CSCs) and non-CSCs. These differentiation hierarchies may arise due to genetic mutations, epigenetic alterations, or microenvironmental influences. An additional differentiation hierarchy within epithelial tumors may arise when only a few tumor cells trans-differentiate into mesenchymal-like cells, a process known as epithelial-to-mesenchymal transition (EMT). Again, this process can be influenced by both genetic and non-genetic factors. In this review we discuss the evidence for clonal interaction and cooperation for tumor maintenance and progression, particularly with respect to EMT, and further address the far-reaching effects that tumor heterogeneity may have on cancer therapy. PMID:25482627

  6. Vitiligo patient-derived keratinocytes exhibit characteristics of normal wound healing via epithelial to mesenchymal transition.

    PubMed

    Banerjee, Poulomi; Venkatachalam, Sandhyaa; Mamidi, Murali Krishna; Bhonde, Ramesh; Shankar, Krupa; Pal, Rajarshi

    2015-05-01

    Vitiligo is an autoimmune disorder that leads to depigmentation of skin via melanocyte dysfunction. Keratinocyte-induced toxicity is one among the several etiological factors implicated for vitiligo, and hence, autologous keratinocyte grafting is projected as one of the primary mode of treatment for vitiligo. However, reports indicate that perilesional keratinocytes not only display signatures of apoptosis but also could secrete cytokines and mediators which have antagonistic effect on proliferation or survival. Therefore, we investigated how vitiligo patients' derived keratinocytes respond to surplus amounts of inflammatory cytokines and whether they recapitulate events that take place during conventional wound healing. The primary objective of our study was to determine whether keratinocytes isolated from a vitiligo patient would undergo epithelial-mesenchymal transition similar to their normal counterparts upon induction with inflammatory cytokines such as TGF-b1 and EGF. We found that these keratinocytes undergo EMT during wound repair accompanied with increase in the levels of mesenchymal markers and ECM proteins; decrease in the levels of epithelial markers and enhanced migratory ability. Besides, we also demonstrated that EMT induction leads to activation of SMAD and MAPK pathways via Ras, Raf, PAI 1, Snail, Slug and ZO1. To our knowledge, this is the first report on the characterization of primary keratinocytes isolated from vitiligo patients with respect to their wound healing capacity.

  7. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells.

    PubMed

    Patel, Pranali; West-Mays, Judy; Kolb, Martin; Rodrigues, Juan-Carlos; Hoff, Catherine M; Margetts, Peter J

    2010-03-01

    Platelet derived growth factor (PDGF) is involved in wound healing in various organ systems. Its potential role in the context of peritoneal injury following long-term peritoneal dialysis is unclear. We used an adenovirus expressing the B chain of PDGF (AdPDGF-B) to assess its effect on pro-fibrotic pathways in the peritoneal membrane. To assess the transforming growth factor (TGF) beta independent effects of PDGF, we over-expressed PDGF-B in the peritoneum of either wild-type mice (Smad3+/+) or those with a deletion of the TGFbeta signaling protein Smad3 (Smad3(-/-)). PDGF-B induced sustained angiogenesis in both Smad3+/+ and Smad3(-/-) mice. Despite increased collagen gene expression, collagen accumulation was transient and fibrogenesis was associated with induction of collagenase activity. We observed epithelial to mesenchymal transition (EMT) involving the peritoneal mesothelial cells, as shown by increased SNAIL and decreased E-Cadherin expression with evidence of mesothelial cells expressing both epithelial and mesenchymal markers. Unlike TGFbeta-induced EMT, PDGF-B exposure did not lead to mobilization of the mesothelial cells; they remained as a single monolayer throughout the observation period. This "non-invasive" EMT phenomenon is a novel finding and may have implications concerning the role of EMT in peritoneal fibrosis and injury to other organ systems. The observed effects were similar in Smad3(-/-) and Smad3+/+ animals, suggesting that the PDGF-B effects were independent of TGFbeta or Smad signaling.

  8. Effect of Cigarette Smoking on Epithelial to Mesenchymal Transition (EMT) in Lung Cancer

    PubMed Central

    Vu, Trung; Jin, Lin; Datta, Pran K.

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is a process that allows an epithelial cell to acquire a mesenchymal phenotype through multiple biochemical changes resulting in an increased migratory capacity. During cancer progression, EMT is found to be associated with an invasive or metastatic phenotype. In this review, we focus on the discussion of recent studies about the regulation of EMT by cigarette smoking. Various groups of active compounds found in cigarette smoke such as polycyclic aromatic hydrocarbons (PAH), nicotine-derived nitrosamine ketone (NNK), and reactive oxygen specicies (ROS) can induce EMT through different signaling pathways. The links between EMT and biological responses to cigarette smoke, such as hypoxia, inflammation, and oxidative damages, are also discussed. The effect of cigarette smoke on EMT is not only limited to cancer types directly related to smoking, such as lung cancer, but has also been found in other types of cancer. Altogether, this review emphasizes the importance of understanding molecular mechanisms of the induction of EMT by cigarette smoking and will help in identifying novel small molecules for targeting EMT induced by smoking. PMID:27077888

  9. Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression

    PubMed Central

    SUN, BO; FANG, YANTIAN; LI, ZHENYANG; CHEN, ZONGYOU; XIANG, JIANBIN

    2015-01-01

    Currently, cancer metastases remain a major clinical problem that highlights the importance of recognition of the metastatic process in cancer diagnosis and treatment. A critical process associated with the metastasis process is the transformation of epithelial cells toward the motile mesenchymal state, a process called epithelial-mesenchymal transition (EMT). Increasing evidence suggests the crucial role of the cytoskeleton in the EMT process. The cytoskeleton is composed of the actin cytoskeleton, the microtubule network and the intermediate filaments that provide structural design and mechanical strength that is necessary for the EMT. The dynamic reorganization of the actin cytoskeleton is a prerequisite for the morphology, migration and invasion of cancer cells. The microtubule network is the cytoskeleton that provides the driving force during cell migration. Intermediate filaments are significantly rearranged, typically switching from cytokeratin-rich to vimentin-rich networks during the EMT process, accompanied by a greatly enhanced cell motility capacity. In the present review, the recent novel insights into the different cytoskeleton underlying EMT are summarized. There are numerous advances in our understanding of the fundamental role of the cytoskeleton in cancer cell invasion and migration. PMID:26405532

  10. Epithelial-Mesenchymal Transition in Keratocystic Odontogenic Tumor: Possible Role in Locally Aggressive Behavior

    PubMed Central

    Zhong, Wen-Qun; Chen, Gang; Zhang, Wei; Ren, Jian-Gang; Wu, Zhong-Xing; Zhao, Yi; Liu, Bing; Zhao, Yi-Fang

    2015-01-01

    The aim of this study is to clarify whether epithelial-mesenchymal transition (EMT) is involved in the pathogenesis and development of keratocystic odontogenic tumor (KCOT). The expression levels of EMT-related proteins and genes in normal oral mucosa (OM), radicular cyst (RC), and KCOT were determined and compared by real-time quantitative PCR and immunohistochemistry. Our data showed that the expression of epithelial markers E-cadherin and Pan-cytokeratin was significantly downregulated in KCOT with upregulation of mesenchymal markers N-cadherin compared to OM and RC. Importantly, TGF-β, a potent EMT inducer, and Slug, a master transcription factor, were also found highly expressed in KCOT. In addition, the results from Spearman rank correlation test and clustering analysis revealed the close relationship between Slug and MMP-9, which was further evidenced by double-labeling immunofluorescence that revealed a synchronous distribution for Slug with MMP-9 in KCOT samples. All the data suggested EMT might be involved in the locally aggressive behavior of KCOT. PMID:25879017

  11. Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation

    PubMed Central

    Tanaka, Nobuyuki; Miyazaki, Yasumasa; Mikami, Shuji; Niwa, Naoya; Otsuka, Yutaro; Mizuno, Ryuichi; Kikuchi, Eiji; Miyajima, Akira; Sabe, Hisataka; Okada, Yasunori; Suematsu, Makoto; Oya, Mototsugu

    2016-01-01

    To identify the molecules involved in epithelial to mesenchymal transition (EMT) in urothelial carcinoma (UC) after acquisition of platinum resistance, here we examined the changes in global gene expression before and after platinum treatment. Four invasive UC cell lines, T24, 5637, and their corresponding sublines T24PR and 5637PR with acquired platinum resistance, were assessed by microarray, and the ubiquitin E3 ligase FBXO32 was newly identified as a negative regulator of EMT in UC tumors after acquisition of platinum resistance. In vitro and in vivo studies showed an intimate relationship between FBXO32 expression and EMT, demonstrating that FBXO32 dysregulation in T24PR cells results in elevated expression of the mesenchymal molecules SNAIL and vimentin and decreased expression of the epithelial molecule E-cadherin. The association between FBXO32 expression and EMT was further validated using clinical samples. Knockdown of MyoD expression, a specific target of FBXO32 polyubiquitination, revealed upregulation of E-cadherin expression and downregulation of SNAIL and vimentin expression in T24PR cells. Comparative genomic hybridization array analysis demonstrated loss of heterozygosity at 8q24.13 in T24PR cells, which harbors FBXO32. Our findings suggest the importance of the association between EMT and ubiquitin-proteasome regulation when tumors develop acquired platinum resistance. PMID:27812537

  12. Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation.

    PubMed

    Tanaka, Nobuyuki; Kosaka, Takeo; Miyazaki, Yasumasa; Mikami, Shuji; Niwa, Naoya; Otsuka, Yutaro; Minamishima, Yoji Andrew; Mizuno, Ryuichi; Kikuchi, Eiji; Miyajima, Akira; Sabe, Hisataka; Okada, Yasunori; Uhlén, Per; Suematsu, Makoto; Oya, Mototsugu

    2016-11-03

    To identify the molecules involved in epithelial to mesenchymal transition (EMT) in urothelial carcinoma (UC) after acquisition of platinum resistance, here we examined the changes in global gene expression before and after platinum treatment. Four invasive UC cell lines, T24, 5637, and their corresponding sublines T24PR and 5637PR with acquired platinum resistance, were assessed by microarray, and the ubiquitin E3 ligase FBXO32 was newly identified as a negative regulator of EMT in UC tumors after acquisition of platinum resistance. In vitro and in vivo studies showed an intimate relationship between FBXO32 expression and EMT, demonstrating that FBXO32 dysregulation in T24PR cells results in elevated expression of the mesenchymal molecules SNAIL and vimentin and decreased expression of the epithelial molecule E-cadherin. The association between FBXO32 expression and EMT was further validated using clinical samples. Knockdown of MyoD expression, a specific target of FBXO32 polyubiquitination, revealed upregulation of E-cadherin expression and downregulation of SNAIL and vimentin expression in T24PR cells. Comparative genomic hybridization array analysis demonstrated loss of heterozygosity at 8q24.13 in T24PR cells, which harbors FBXO32. Our findings suggest the importance of the association between EMT and ubiquitin-proteasome regulation when tumors develop acquired platinum resistance.

  13. Effect of Cigarette Smoking on Epithelial to Mesenchymal Transition (EMT) in Lung Cancer.

    PubMed

    Vu, Trung; Jin, Lin; Datta, Pran K

    2016-04-11

    Epithelial to mesenchymal transition (EMT) is a process that allows an epithelial cell to acquire a mesenchymal phenotype through multiple biochemical changes resulting in an increased migratory capacity. During cancer progression, EMT is found to be associated with an invasive or metastatic phenotype. In this review, we focus on the discussion of recent studies about the regulation of EMT by cigarette smoking. Various groups of active compounds found in cigarette smoke such as polycyclic aromatic hydrocarbons (PAH), nicotine-derived nitrosamine ketone (NNK), and reactive oxygen specicies (ROS) can induce EMT through different signaling pathways. The links between EMT and biological responses to cigarette smoke, such as hypoxia, inflammation, and oxidative damages, are also discussed. The effect of cigarette smoke on EMT is not only limited to cancer types directly related to smoking, such as lung cancer, but has also been found in other types of cancer. Altogether, this review emphasizes the importance of understanding molecular mechanisms of the induction of EMT by cigarette smoking and will help in identifying novel small molecules for targeting EMT induced by smoking.

  14. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease

    PubMed Central

    von Gise, Alexander; Pu, William T.

    2012-01-01

    Epithelial to mesenchymal transition (EMT) converts epithelial cells to mobile and developmentally plastic mesenchymal cells. All cells in the heart arise from one or more EMTs. Within the developing heart, endocardial and epicardial EMTs produce most of the non-cardiomyocyte lineages of the mature heart. Endocardial EMT generates valve progenitor cells and is necessary for formation of the cardiac valves and for complete cardiac septation. Epicardial EMT is required for myocardial growth and coronary vessel formation, and generates cardiac fibroblasts, vascular smooth muscle cells, a subset of coronary endothelial cells, and possibly a subset of cardiomyocytes. Emerging studies suggest that these developmental mechanisms are redeployed in adult heart valve disease, in cardiac fibrosis, and in myocardial responses to ischemic injury. Redirection and amplification of disease-related EMTs offer potential new therapeutic strategies and approaches for treatment of heart disease. Here we review the role and molecular regulation of endocardial and epicardial EMT in fetal heart development, and we summarize key literature implicating reactivation of endocardial and epicardial EMT in adult heart disease. PMID:22679138

  15. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis

    PubMed Central

    Lin, Pei-Shan; Liao, Pei-Yu; Tung, Jia-Chen; Hsieh, Chang-Hsun; Hung, Mien-Chie; Chen, Chung-Hsuan; Chang, Wei-Chao

    2016-01-01

    Hepatic metastasis is the major cause of mortality in colorectal cancer (CRC) patients. Using proteomic analysis, we found sciellin (SCEL) to be specifically expressed in hepatic metastatic CRC cell lines. SCEL knockdown increased CRC cell migration and invasion, while overexpression had the opposite effect. SCEL knockdown also caused cancer cells to form more invasive structures within 3D cultures, increased the mesenchymal marker vimentin, and attenuated the epithelial marker E-cadherin. SCEL increased WNT signaling by activating β-catenin and its downstream target c-myc, and activated mesenchymal-to-epithelial transition (MET) through a SCEL-β-catenin-E-cadherin axis. SCEL showed higher expression in late stage primary CRC than in its hepatic metastatic counterpart. SCEL expression is dynamically modulated by TGF-β1 and hypoxia, revealing a plastic MET mechanism for tumor colonization. Intrahepatic injection in immunodeficient mice revealed that SCEL is necessary for metastatic CRC tumor growth in the liver. These results demonstrate that SCEL is a MET inducer dynamically regulated through the metastasis process. They suggest SCEL may be a useful therapeutic target for preventing or eliminating CRC hepatic metastasis. PMID:27013588

  16. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors

    PubMed Central

    Morandi, Andrea; Taddei, Maria Letizia; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention. PMID:28352611

  17. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors.

    PubMed

    Morandi, Andrea; Taddei, Maria Letizia; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention.

  18. Epithelial-to-Mesenchymal Transition in Diabetic Nephropathy: Fact or Fiction?

    PubMed Central

    Loeffler, Ivonne; Wolf, Gunter

    2015-01-01

    The pathophysiology of diabetic nephropathy (DN), one of the most serious complications in diabetic patients and the leading cause of end-stage renal disease worldwide, is complex and not fully elucidated. A typical hallmark of DN is the excessive deposition of extracellular matrix (ECM) proteins in the glomerulus and in the renal tubulointerstitium, eventually leading to glomerulosclerosis and interstitial fibrosis. Although it is obvious that myofibroblasts play a major role in the synthesis and secretion of ECM, the origin of myofibroblasts in DN remains the subject of controversial debates. A number of studies have focused on epithelial-to-mesenchymal transition (EMT) as one source of matrix-generating fibroblasts in the diseased kidney. EMT is characterized by the acquisition of mesenchymal properties by epithelial cells, preferentially proximal tubular cells and podocytes. In this review we comprehensively review the literature and discuss arguments both for and against a function of EMT in renal fibrosis in DN. While the precise extent of the contribution to nephrotic fibrosis is certainly arduous to quantify, the picture that emerges from this extensive body of literature suggests EMT as a major source of myofibroblasts in DN. PMID:26473930

  19. Estrogen-related receptor gamma promotes mesenchymal-to-epithelial transition and suppresses breast tumor growth.

    PubMed

    Tiraby, Claire; Hazen, Bethany C; Gantner, Marin L; Kralli, Anastasia

    2011-04-01

    Estrogen-related receptors (ERR), ERR alpha (ERRα) and ERR gamma (ERRγ), are orphan nuclear receptors implicated in breast cancer that function similarly in the regulation of oxidative metabolism genes. Paradoxically, in clinical studies, high levels of ERRα are associated with poor outcomes whereas high levels of ERRγ are associated with a favorable course. Recent studies suggest that ERRα may indeed promote breast tumor growth. The roles of ERRγ in breast cancer progression and how ERRα and ERRγ may differentially affect cancer growth are unclear. In mammary carcinoma cells that do not express endogenous ERRγ, we found that ectopic expression of ERRγ enhanced oxidative metabolism in vitro and inhibited the growth of tumor xenografts in vivo. In contrast, ectopic expression of the ERRα coactivator PGC-1α enhanced oxidative metabolism but did not affect tumor growth. Notably, ERRγ activated expression of a genetic program characteristic of mesenchymal-to-epithelial transition (MET). This program was apparent by changes in cellular morphology, upregulation of epithelial cell markers, downregulation of mesenchymal markers, and decreased cellular invasiveness. We determined that this program was also associated with upregulation of E-cadherin, which is activated directly by ERRγ. In contrast, PGC-1α activated only a subset of genes characteristic of the MET program and, unlike ERRγ, did not upregulate E-cadherin. In conclusion, these results show that ERRγ induces E-cadherin, promotes MET, and suppresses breast cancer growth. Our findings suggest that ERRγ agonists may have applications in the treatment of breast cancer.

  20. Epithelial-to-Mesenchymal Transition in Diabetic Nephropathy: Fact or Fiction?

    PubMed

    Loeffler, Ivonne; Wolf, Gunter

    2015-10-09

    The pathophysiology of diabetic nephropathy (DN), one of the most serious complications in diabetic patients and the leading cause of end-stage renal disease worldwide, is complex and not fully elucidated. A typical hallmark of DN is the excessive deposition of extracellular matrix (ECM) proteins in the glomerulus and in the renal tubulointerstitium, eventually leading to glomerulosclerosis and interstitial fibrosis. Although it is obvious that myofibroblasts play a major role in the synthesis and secretion of ECM, the origin of myofibroblasts in DN remains the subject of controversial debates. A number of studies have focused on epithelial-to-mesenchymal transition (EMT) as one source of matrix-generating fibroblasts in the diseased kidney. EMT is characterized by the acquisition of mesenchymal properties by epithelial cells, preferentially proximal tubular cells and podocytes. In this review we comprehensively review the literature and discuss arguments both for and against a function of EMT in renal fibrosis in DN. While the precise extent of the contribution to nephrotic fibrosis is certainly arduous to quantify, the picture that emerges from this extensive body of literature suggests EMT as a major source of myofibroblasts in DN.

  1. Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer

    PubMed Central

    Kolijn, Kimberley; Verhoef, Esther I.; van Leenders, Geert J.L.H.

    2015-01-01

    Epithelial-to-mesenchymal transition (EMT) is a process known to be associated with aggressive tumor behavior, metastasis and treatment resistance. It is characterized by coincidental upregulation of mesenchymal markers such as vimentin, fibronectin and N-cadherin concurrent with E-cadherin downregulation. Studies on EMT are generally performed in cell lines and mouse models, while the histopathological and phenotypical properties in clinical prostate cancer (PCa) are still unclear. The objective of this study was to identify EMT in PCa patients. We demonstrated that N-cadherin, vimentin and fibronectin were generally not co-expressed in corresponding tumor regions. Immunofluorescent double stainings confirmed that co-expression of mesenchymal markers was uncommon, as we found no prostate cancer cells that co-expressed N-cadherin with fibronectin and only rare (<1%) cells that co-expressed N-cadherin with vimentin. Downregulation of E-cadherin was demonstrated in all N-cadherin positive tumor cells, but not in vimentin or fibronectin positive tumor cells. We further analyzed N-cadherin expression in morphologically distinct PCa growth patterns in a radical prostatectomy cohort (n = 77) and found that N-cadherin is preferentially expressed in ill-defined Gleason grade 4 PCa. In conclusion, we demonstrate that N-cadherin is the most reliable marker for EMT in clinical PCa and is preferentially expressed in ill-defined Gleason grade 4 growth pattern. PMID:26041890

  2. Role of fucosyltransferase IV in epithelial-mesenchymal transition in breast cancer cells.

    PubMed

    Yang, X; Liu, S; Yan, Q

    2013-07-25

    Epithelial-mesenchymal transition (EMT) is a crucial step in tumor progression and has an important role during cancer invasion and metastasis. Although fucosyltransferase IV (FUT4) has been implicated in the modulation of cell migration, invasion and cancer metastasis, its role during EMT is unclear. This study explores the molecular mechanisms of the involvement of FUT4 in EMT in breast cancer cells. Breast cancer cell lines display increased expression of FUT4, which is accompanied by enhanced appearance of the mesenchymal phenotype and which can be reversed by knockdown of endogenous FUT4. Moreover, FUT4 induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt, and inactivation of GSK3β and nuclear translocation of NF-κB, resulting in increased Snail and MMP-9 expression and greater cell motility. Taken together, these findings indicate that FUT4 has a role in EMT through activation of the PI3K/Akt and NF-κB signaling systems, which induce the key mediators Snail and MMP-9 and facilitate the acquisition of a mesenchymal phenotype. Our findings support the possibility that FUT4 is a novel regulator of EMT in breast cancer cells and a promising target for cancer therapy.

  3. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition.

    PubMed

    Kang, Min-Kyung; Park, Sin-Hye; Choi, Yean-Jung; Shin, Daekeun; Kang, Young-Hee

    2015-07-01

    Renal fibrosis is a crucial event in the pathogenesis of diabetic nephropathy (DN). The process known as epithelial to mesenchymal transition (EMT) contributes to the accumulation of matrix proteins in kidneys, in which renal tubular epithelial cells play an important role in progressive renal fibrosis. The current study investigated that chrysin (5,7-dihydroxyflavone) present in bee propolis and herbs, inhibited renal tubular EMT and tubulointerstitial fibrosis due to chronic hyperglycemia. Human renal proximal tubular epithelial cells (RPTEC) were incubated in media containing 5.5 mM glucose, 27.5 mM mannitol (as an osmotic control), or 33 mM glucose (HG) in the absence and presence of 1-20 μM chrysin for 72 h. Chrysin significantly inhibited high glucose-induced renal EMT through blocking expression of the mesenchymal markers vimentin, α-smooth muscle actin, and fibroblast-specific protein-1 in RPTEC and db/db mice. Chrysin reversed the HG-induced down-regulation of the epithelial marker E-cadherin and the HG-enhanced N-cadherin induction in RPTEC. In addition, chrysin inhibited the production of collagen IV in tubular cells and the deposition of collagen fibers in mouse kidneys. Furthermore, chrysin blocked tubular cell migration concurrent with decreasing matrix metalloproteinase-2 activity, indicating epithelial cell derangement and tubular basement membrane disruption. Chrysin restored the induction of the tight junction proteins Zona occludens protein-1 (ZO-1) and occludin downregulated in diabetic mice. Chrysin inhibited renal tubular EMT-mediated tubulointerstitial fibrosis caused by chronic hyperglycemia. Therefore, chrysin may be a potent renoprotective agent for the treatment of renal fibrosis-associated DN. • Glucose increases renal tubular epithelial induction of vimentin, α-SMA and FSP-1. • Glucose enhances renal EMT by blocking tubular epithelial E-cadherin expression. • Chrysin inhibits tubular EMT-mediated tubulointerstitial fibrosis in

  4. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition.

    PubMed

    Andarawewa, Kumari L; Erickson, Anna C; Chou, William S; Costes, Sylvain V; Gascard, Philippe; Mott, Joni D; Bissell, Mina J; Barcellos-Hoff, Mary Helen

    2007-09-15

    Transforming growth factor beta1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Nonmalignant HMEC (MCF10A, HMT3522 S1, and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture or treated with a low concentration of TGFbeta (0.4 ng/mL) or double treated. All double-treated (IR + TGFbeta) HMEC underwent a morphologic shift from cuboidal to spindle shaped. This phenotype was accompanied by a decreased expression of epithelial markers E-cadherin, beta-catenin, and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin, and vimentin. Furthermore, double treatment increased cell motility, promoted invasion, and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, although IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double-treated cells exhibit a specific 10-gene signature associated with Erk/mitogen-activated protein kinase (MAPK) signaling. We hypothesized that IR-induced MAPK activation primes nonmalignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation was transiently induced by irradiation and persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a MAP/Erk kinase (MEK) inhibitor, blocked the EMT phenotype. Together, these data show that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  5. Specific N-glycan alterations are coupled in epithelial-mesenchymal transition induced by EGF in GE11 epithelial cells.

    PubMed

    Xu, Qingsong; Qu, Chen; Wang, Wenjing; Gu, Jianguo; Du, Yuguang; Song, Linsheng

    2017-02-01

    Epithelial-mesenchymal transition (EMT) is a phenomenon in cancer progression during which cancer cells undergo remarkable alteration acquiring highly invasive property. The aim of this study was to evaluate specific N-glycan alterations during EMT induced by epidermal growth factor (EGF) in GE11 epithelial cells. Herein, we demonstrated that EGF activated epidermal growth factor receptor (EGFR)/Akt/extracellular signal-regulated kinase (ERK) phosphorylation and promoted GE11 cell proliferation. Meanwhile, EGF stimulated the epithelial cells to undergo morphological alteration, destroying cell-cell inter-contact and exhibiting mesenchymal cells higher metastatic potential. A wound-healing assay showed the migratory ability increased 1.5-fold after EGF treatment. Moreover, the relative intensity of N-cadherin versus E-cadherin increased 2.6-fold, and the E-cadherin distribution in cell-cell junctions became jagged and faint after EGF incubation for 72 h. Interestingly, the amounts of bisecting GlcNAc structure were dramatically declined, by contrast, the formation of β1,6 GlcNAc branches on cell surface was upregulated during EMT induced by EGF. To understand the roles of N-glycans in EGF-induced EMT, the cells were stably transfected with N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the bisecting GlcNAc structure formation. As the markers for EMT, EGF-induced E-cadherin decrease and fibronectin increase were delayed in GnT-III-overexpressing cells. Taken together, these results demonstrated that specific N-glycan alterations were coupled in EMT induced by EGF, which might be contributed to diagnosis and therapy of tumor metastasis.

  6. Human NUMB6 Induces Epithelial-Mesenchymal Transition and Enhances Breast Cancer Cells Migration and Invasion.

    PubMed

    Karaczyn, Aldona A; Adams, Tamara L; Cheng, Robert Y S; Matluk, Nicholas N; Verdi, Joseph M

    2017-02-01

    Mammalian NUMB is alternatively spliced generating four isoforms NUMB1-NUMB4 that can function as tumor suppressors. NUMB1-NUMB4 proteins, which normally determine how different cell types develop, are reduced in 21% of primary breast tumors. Our previous work has, however, indicated that two novel NUMB isoforms, NUMB5 and NUMB6 have the pro-oncogenic functions. Herein, we address a novel function of human NUMB isoform 6 (NUMB6) in promoting cancer cell migration and invasion. We found that NUMB6 induced expression of embryonic transcription factor Slug, which in turn actively repressed E-cadherin, prompting cells to undergo epithelial-mesenchymal transition (EMT). Low-metastatic breast cancer cells DB-7 stably expressing NUMB6, lost their epithelial phenotype, exhibited migratory and pro-invasive behavior, and ultimately elevated expression of mesenchymal markers. Among these markers, increased vimentin, β-catenin, and fibronectin expression elicited metalloproteinase 9 (MMP9) production. Our results revealed that NUMB6-DB-7 cells have significantly increased level of Akt1 and Akt2 phosphorylation. Therefore, antagonizing Akt signaling using a chemical inhibitor LY294002, we found that NUMB6-induced Slug expression was reduced, and ultimately accompanied with decreased cell migration and invasion. In summary, this study identified a novel molecular determinant of breast cancer progression, uncovering a potential oncogenic role for the NUMB6 protein in cancer cell migration and invasion, coupled to the maintenance of mesenchymal-like cells. J. Cell. Biochem. 118: 237-251, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma

    PubMed Central

    Kodama, Takahiro; Newberg, Justin Y.; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C.; Parsons, Pamela H.; Wu, Hao; Finegold, Milton J.; Copeland, Neal G.; Jenkins, Nancy A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392

  8. Arsenic Exposure Perturbs Epithelial-Mesenchymal Cell Transition and Gene Expression In a Collagen Gel Assay

    PubMed Central

    Lencinas, Alejandro; Broka, Derrick M.; Konieczka, Jay H.; Klewer, Scott E.; Antin, Parker B.; Camenisch, Todd D.; Runyan, Raymond B.

    2010-01-01

    Arsenic is a naturally occurring metalloid and environmental contaminant. Arsenic exposure in drinking water is reported to cause cancer of the liver, kidneys, lung, bladder, and skin as well as birth defects, including neural tube, facial, and vasculogenic defects. The early embryonic period most sensitive to arsenic includes a variety of cellular processes. One key cellular process is epithelial-mesenchymal transition (EMT) where epithelial sheets develop into three-dimensional structures. An embryonic prototype of EMT is found in the atrioventricular (AV) canal of the developing heart, where endothelia differentiate to form heart valves. Effects of arsenic on this cellular process were examined by collagen gel invasion assay (EMT assay) using explanted AV canals from chicken embryo hearts. AV canals treated with 12.5–500 ppb arsenic showed a loss of mesenchyme at 12.5 ppb, and mesenchyme formation was completely inhibited at 500 ppb. Altered gene expression in arsenic-treated explants was investigated by microarray analysis. Genes whose expression was altered consistently at exposure levels of 10, 25, and 100 ppb were identified, and results showed that 25 ppb in vitro was particularly effective. Three hundred and eighty two genes were significantly altered at this exposure level. Cytoscape analysis of the microarray data using the chicken interactome identified four clusters of altered genes based on published relationships and pathways. This analysis identified cytoskeleton and cell adhesion–related genes whose disruption is consistent with an altered ability to undergo EMT. These studies show that EMT is sensitive to arsenic and that an interactome-based approach can be useful in identifying targets. PMID:20308225

  9. The essential roles of CCR7 in epithelial-to-mesenchymal transition induced by hypoxia in epithelial ovarian carcinomas.

    PubMed

    Cheng, Shaomei; Han, Lin; Guo, Jingyan; Yang, Qing; Zhou, Jianfang; Yang, Xiangshan

    2014-12-01

    The chemokine receptor CCR7 and its ligands CCL19/21 mediate the tumor mobility, invasion, and metastasis (Wu et al. Curr Pharm Des. 15:742-57, 2009). Hypoxia induced epithelial-to-mesenchymal transition (EMT) to facilitate the tumor biology. Here, we addressed the roles of CCR7 in epithelial ovarian carcinoma tissues and hypoxia-induced serous papillary cystic adenocarcinoma (SKOV-3) EMT. The expression level of CCR7 protein was analyzed by immunohistochemistry in 30 specimens of epithelial ovarian carcinomas. Western blot was used to investigate the expression of hypoxia-induced CCR7, HIF-1α, and EMT markers (N-cadherin, Snail, MMP-9). In addition, wound healing and Transwell assay were introduced to observe the capacity of migration and invasiveness. Our data showed CCR7 expression was observed in 22 cases of tissues and closely associated with lymph node metastasis and FIGO stage (III + IV). At 6, 12, 24, and 36 h following hypoxia, CCR7 and HIF-1α proteins were both obviously upregulated in a time-dependent method, compared with normal oxygen. In vitro, SKOV-3 expressed N-cadherin, Snail, and MMP-9 once either CCL21 stimulation or hypoxia induction, while hypoxia accompanied with CCL21 induction exhibited strongest upregulation of N-cadherin, Snail, and MMP-9 proteins. Besides, wound healing and Transwell assay further identified that hypoxia with CCL21 stimulation can remarkably promote cell migration and invasiveness. Taken together, CCR7 can constitutively express in epithelial ovarian carcinomas and be induced rapidly in response to hypoxia, which indeed participates in EMT development and prompts the cell migration and invasion. Thus, this study suggested that the epithelial ovarian cancer invasion and metastasis can be inhibited by antagonizing CCR7.

  10. On the Origin of Prostate Cancer Stem Cells through Transmissible ER Stress-Mediated Epithelial to Mesenchymal Transition

    DTIC Science & Technology

    2013-10-01

    telomeres and the potential for an unlimited number of cell divisions. ß-catenin has been shown to bind the Tert promoter and increase Tert expression...that transmissible ER stress (TERS) promotes the Epithelial to Mesenchymal Transition (EMT) in differentiated prostate cancer cells, programming...Zanetti, M.D. Abstract This DoD Innovation grant was based on the hypothesis that transmissible ER stress (TERS) promotes the Epithelial to

  11. Expression of Proteins Involved in Epithelial-Mesenchymal Transition as Predictors of Metastasis and Survival in Breast Cancer Patients

    DTIC Science & Technology

    2015-01-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this research is to investigate protein expression and promoter region DNA ... DNA and methylation assay. 15. SUBJECT TERMS Breast cancer; molecular epidemiology; epithelial-mesenchymal transition; metastasis; metastasis...suppressor genes; immunohistochemistry; DNA methylation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  12. Inhibition of SDF-1/CXCR4-induced epithelial-mesenchymal transition by kisspeptin-10.

    PubMed

    Gründker, Carsten; Bauerschmitz, Gerd; Knapp, Juliane; Schmidt, Elena; Olbrich, Theresa; Emons, Günter

    2015-07-01

    Recently we have shown that breast cancer cell invasion was dramatically increased when co-cultured with MG63 cells. In addition we have generated mesenchymal transformed MCF-7 breast cancer cells (MCF-7-EMT), showing significantly increased invasion in contrast to wild type MCF-7 cells (MCF-7 WT). In this study we have analyzed whether stromal derived factor-1 (SDF-1) is responsible for MCF-7 and T-47-D breast cancer cell invasion and epithelial-mesenchymal-transition (EMT). In addition we have analyzed whether kisspeptin-10 (KP-10) treatment affects SDF-1-induced invasion and EMT. Invasion was quantified by assessment of MCF-7 and T-47-D breast cancer cell migration rate through an artificial basement membrane in a modified Boyden chamber during co-culture with MG63 cells or after treatment with SDF-1α, SDF-1β or the combination of both isoforms. Induction of EMT was verified by analysis of protein expression of epithelial marker E-cadherin (CDH1) and mesenchymal markers N-cadherin (CDH2) and Vimentin (VIM). The role of SDF-1 for invasion and induction of EMT in breast cancer cells was analyzed by blocking SDF-1 secretion during co-culture with MG63 cells. In addition effects of KP-10 treatment on SDF-1-induced invasion and EMT were analyzed. Breast cancer cell invasion was significantly increased when co-cultured with MG63 cells. During co-culture SDF-1 protein expression of MG63 cells was significantly induced. The increased breast cancer cell invasion could be blocked by anti-SDF-1 antibodies. Treatment of breast cancer cells in monoculture (without MG63) with SDF-1α, SDF-1β or the combination of both isoforms resulted in a significant escalation of breast cancer cell invasion and induction of EMT. Protein expression of mesenchymal markers CDH2 and VIM was clearly elevated, whereas protein expression of epithelial marker CDH1 was clearly decreased. The SDF-1-induced increase of cell invasion was significantly reduced after treatment with KP-10. In addition

  13. Na, K-ATPase subunits as markers for epithelial-mesenchymal transition in cancer and fibrosis

    PubMed Central

    Rajasekaran, Sigrid A.; Huynh, Thu P.; Wolle, Daniel G.; Espineda, Cromwell E.; Inge, Landon J.; Skay, Anna; Lassman, Charles; Nicholas, Susanne B.; Harper, Jeffrey F.; Reeves, Anna E.; Ahmed, Mansoor M.; Leatherman, James M; Mullin, James M.; Rajasekaran, Ayyappan K.

    2010-01-01

    Epithelial-to-mesenchymal transition (EMT) is an important developmental process, participates in tissue repair and occurs during pathological processes of tumor invasiveness, metastasis and tissue fibrosis. The molecular mechanisms leading to EMT are poorly understood. While it is well documented that transforming growth factor (TGF)-β plays a central role in the induction of EMT, the targets of TGF-β signaling are poorly defined. We have shown earlier that Na,K-ATPase β1-subunit levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients’ tumor samples. In this study, we provide evidence that Na,K-ATPase is a new target of TGF-β1-mediated EMT in renal epithelial cells, a model system used in studies of both cancer progression and fibrosis. We show that following treatment with TGF-β1 the surface expression of the β1-subunit of Na,K-ATPase is reduced, prior to well-characterized EMT markers and is associated with the acquisition of a mesenchymal phenotype. RNAi mediated knockdown confirmed the specific involvement of the Na,K-ATPase β1-subunit in the loss of the epithelial phenotype and exogenous over-expression of the Na,K-ATPase β1-subunit attenuated TGF-β1-mediated EMT. We further show that both Na,K-ATPase α- and β-subunit levels are highly reduced in renal fibrotic tissues. These findings for the first time reveal that Na,K-ATPase is a target of TGF-β1-mediated EMT and is associated with the progression of EMT in both cancer and fibrosis. PMID:20501797

  14. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer

    PubMed Central

    Larsen, Jill E.; Nathan, Vaishnavi; Osborne, Jihan K.; Farrow, Rebecca K.; Deb, Dhruba; Sullivan, James P.; Dospoy, Patrick D.; Augustyn, Alexander; Hight, Suzie K.; Sato, Mitsuo; Girard, Luc; Behrens, Carmen; Wistuba, Ignacio I.; Gazdar, Adi F.; Hayward, Nicholas K.

    2016-01-01

    Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-β) or oncogenetic (MYC) factors. Both TGF-β– and MYC-induced EMT required ZEB1, but engaged distinct TGF-β–dependent and vitamin D receptor–dependent (VDR-dependent) pathways, respectively. Functionally, we found that ZEB1 causally promotes malignant progression of HBECs and tumorigenicity, invasion, and metastases in non–small cell lung cancer (NSCLC) lines. Mechanistically, ZEB1 expression in HBECs directly repressed epithelial splicing regulatory protein 1 (ESRP1), leading to increased expression of a mesenchymal splice variant of CD44 and a more invasive phenotype. In addition, ZEB1 expression in early stage IB primary NSCLC correlated with tumor-node-metastasis stage. These findings indicate that ZEB1-induced EMT and associated molecular changes in ESRP1 and CD44 contribute to early pathogenesis and metastatic potential in established lung cancer. Moreover, TGF-β and VDR signaling and CD44 splicing pathways associated with ZEB1 are potential EMT chemoprevention and therapeutic targets in NSCLC. PMID:27500490

  15. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro.

    PubMed

    Piskareva, Olga; Harvey, Harry; Nolan, John; Conlon, Ross; Alcock, Leah; Buckley, Patrick; Dowling, Paul; Henry, Michael; O'Sullivan, Finbarr; Bray, Isabella; Stallings, Raymond L

    2015-08-10

    Neuroblastoma is a challenging childhood malignancy, with a very high percentage of patients relapsing following acquisition of drug resistance, thereby necessitating the identification of mechanisms of drug resistance as well as new biological targets contributing to the aggressive pathogenicity of the disease. In order to investigate the molecular pathways that are involved with drug resistance in neuroblastoma, we have developed and characterised cisplatin resistant sublines SK-N-ASCis24, KellyCis83 and CHP-212Cis100, integrating data of cell behaviour, cytotoxicity, genomic alterations and modulation of protein expression. All three cisplatin resistant cell lines demonstrated cross resistance to temozolomide, etoposide and irinotecan, all of which are drugs in re-initiation therapy. Array CGH analysis indicated that resistant lines have acquired additional genomic imbalances. Differentially expressed proteins were identified by mass spectrometry and classified by bioinformatics tools according to their molecular and cellular functions and their involvement into biological pathways. Significant changes in the expression of proteins involved with pathways such as actin cytoskeletal signalling (p = 9.28E-10), integrin linked kinase (ILK) signalling (p = 4.01E-8), epithelial adherens junctions signalling (p = 5.49E-8) and remodelling of epithelial adherens junctions (p = 5.87E-8) pointed towards a mesenchymal phenotype developed by cisplatin resistant SK-N-ASCis24. Western blotting and confocal microscopy of MYH9, ACTN4 and ROCK1 coupled with invasion assays provide evidence that elevated levels of MYH9 and ACTN4 and reduced levels of ROCK1 contribute to the increased ROCK1-independent migratory potential of SK-N-ASCis24. Therefore, our results suggest that epithelial-to-mesenchymal transition is a feature during the development of drug resistance in neuroblastoma.

  16. Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition

    PubMed Central

    Balli, David; Ustiyan, Vladimir; Zhang, Yufang; Wang, I-Ching; Masino, Alex J; Ren, Xiaomeng; Whitsett, Jeffrey A; Kalinichenko, Vladimir V; Kalin, Tanya V

    2013-01-01

    Alveolar epithelial cells (AECs) participate in the pathogenesis of pulmonary fibrosis, producing pro-inflammatory mediators and undergoing epithelial-to-mesenchymal transition (EMT). Herein, we demonstrated the critical role of Forkhead Box M1 (Foxm1) transcription factor in radiation-induced pulmonary fibrosis. Foxm1 was induced in AECs following lung irradiation. Transgenic expression of an activated Foxm1 transcript in AECs enhanced radiation-induced pneumonitis and pulmonary fibrosis, and increased the expression of IL-1β, Ccl2, Cxcl5, Snail1, Zeb1, Zeb2 and Foxf1. Conditional deletion of Foxm1 from respiratory epithelial cells decreased radiation-induced pulmonary fibrosis and prevented the increase in EMT-associated gene expression. siRNA-mediated inhibition of Foxm1 prevented TGF-β-induced EMT in vitro. Foxm1 bound to and increased promoter activity of the Snail1 gene, a critical transcriptional regulator of EMT. Expression of Snail1 restored TGF-β-induced loss of E-cadherin in Foxm1-deficient cells in vitro. Lineage-tracing studies demonstrated that Foxm1 increased EMT during radiation-induced pulmonary fibrosis in vivo. Foxm1 is required for radiation-induced pulmonary fibrosis by enhancing the expression of genes critical for lung inflammation and EMT. PMID:23288041

  17. Regulation of Epithelial-Mesenchymal Transition in Breast Cancer Cells by Cell Contact and Adhesion

    PubMed Central

    Cichon, Magdalena A; Nelson, Celeste M; Radisky, Derek C

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a physiological program that is activated during cancer cell invasion and metastasis. We show here that EMT-related processes are linked to a broad and conserved program of transcriptional alterations that are influenced by cell contact and adhesion. Using cultured human breast cancer and mouse mammary epithelial cells, we find that reduced cell density, conditions under which cell contact is reduced, leads to reduced expression of genes associated with mammary epithelial cell differentiation and increased expression of genes associated with breast cancer. We further find that treatment of cells with matrix metalloproteinase-3 (MMP-3), an inducer of EMT, interrupts a defined subset of cell contact-regulated genes, including genes encoding a variety of RNA splicing proteins known to regulate the expression of Rac1b, an activated splice isoform of Rac1 known to be a key mediator of MMP-3-induced EMT in breast, lung, and pancreas. These results provide new insights into how MMPs act in cancer progression and how loss of cell–cell interactions is a key step in the earliest stages of cancer development. PMID:25698877

  18. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells

    PubMed Central

    Shenoy, Anitha K.; Jin, Yue; Luo, Huacheng; Pampo, Christine; Shao, Rong; Siemann, Dietmar W.; Heldermon, Coy D.; Law, Brian K.; Chang, Lung-Ji

    2016-01-01

    Carcinoma cells can acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT). However, the significance of EMT in cancer metastasis has been controversial, and the exact fates and functions of EMT cancer cells in vivo remain inadequately understood. Here, we tracked epithelial cancer cells that underwent inducible or spontaneous EMT in various tumor transplantation models. Unlike epithelial cells, the majority of EMT cancer cells were specifically located in the perivascular space and closely associated with blood vessels. EMT markedly activated multiple pericyte markers in carcinoma cells, in particular PDGFR-β and N-cadherin, which enabled EMT cells to be chemoattracted towards and physically interact with endothelium. In tumor xenografts generated from carcinoma cells that were prone to spontaneous EMT, a substantial fraction of the pericytes associated with tumor vasculature were derived from EMT cancer cells. Depletion of such EMT cells in transplanted tumors diminished pericyte coverage, impaired vascular integrity, and attenuated tumor growth. These findings suggest that EMT confers key pericyte attributes on cancer cells. The resulting EMT cells phenotypically and functionally resemble pericytes and are indispensable for vascular stabilization and sustained tumor growth. This study thus proposes a previously unrecognized role for EMT in cancer. PMID:27721239

  19. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells.

    PubMed

    Shenoy, Anitha K; Jin, Yue; Luo, Huacheng; Tang, Ming; Pampo, Christine; Shao, Rong; Siemann, Dietmar W; Wu, Lizi; Heldermon, Coy D; Law, Brian K; Chang, Lung-Ji; Lu, Jianrong

    2016-11-01

    Carcinoma cells can acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT). However, the significance of EMT in cancer metastasis has been controversial, and the exact fates and functions of EMT cancer cells in vivo remain inadequately understood. Here, we tracked epithelial cancer cells that underwent inducible or spontaneous EMT in various tumor transplantation models. Unlike epithelial cells, the majority of EMT cancer cells were specifically located in the perivascular space and closely associated with blood vessels. EMT markedly activated multiple pericyte markers in carcinoma cells, in particular PDGFR-β and N-cadherin, which enabled EMT cells to be chemoattracted towards and physically interact with endothelium. In tumor xenografts generated from carcinoma cells that were prone to spontaneous EMT, a substantial fraction of the pericytes associated with tumor vasculature were derived from EMT cancer cells. Depletion of such EMT cells in transplanted tumors diminished pericyte coverage, impaired vascular integrity, and attenuated tumor growth. These findings suggest that EMT confers key pericyte attributes on cancer cells. The resulting EMT cells phenotypically and functionally resemble pericytes and are indispensable for vascular stabilization and sustained tumor growth. This study thus proposes a previously unrecognized role for EMT in cancer.

  20. Snail1 is involved in the renal epithelial-mesenchymal transition

    SciTech Connect

    Yoshino, Jun; Monkawa, Toshiaki Tsuji, Mihoko; Inukai, Mai; Itoh, Hiroshi; Hayashi, Matsuhiko

    2007-10-12

    The pathological significance of the tubular epithelial-mesenchymal transition (EMT) in kidney diseases is becoming increasingly recognized, and the transcription factor Snail1 plays a critical role in EMT. The results of this study show that Snail1 mRNA and protein were upregulated in the tubular epithelial cells of the obstructed kidneys in a rat model of unilateral ureteral obstruction and in human proximal tubule HKC-8 cells treated with TGF-{beta}1. Glycogen synthase kinase-3{beta} (GSK-3{beta}) regulates the Snail1 level by degrading Snail1 protein. The level of the phosphorylated inactive form of GSK-3{beta} was increased in the tubular epithelial cells of the obstructed kidney. TGF-{beta}1 increased the phosphorylated form of GSK-3{beta} in HKC-8 cells, and inhibition of GSK-3{beta} by the selective inhibitors lithium and TDZD-8 caused Snail1 protein to accumulate. This study demonstrated that Snail1 is involved in renal tubular EMT and that TGF-{beta}1 regulates Snail1 at the transcription and protein degradation levels.

  1. CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer.

    PubMed

    Bergamaschi, Anna; Kim, Young H; Kwei, Kevin A; La Choi, Yoon; Bocanegra, Melanie; Langerød, Anita; Han, Wonshik; Noh, Dong-Young; Huntsman, David G; Jeffrey, Stefanie S; Børresen-Dale, Anne-Lise; Pollack, Jonathan R

    2008-12-01

    Breast cancer exhibits clinical and molecular heterogeneity, where expression profiling studies have identified five major molecular subtypes. The basal-like subtype, expressing basal epithelial markers and negative for estrogen receptor (ER), progesterone receptor (PR) and HER2, is associated with higher overall levels of DNA copy number alteration (CNA), specific CNAs (like gain on chromosome 10p), and poor prognosis. Discovering the molecular genetic basis of tumor subtypes may provide new opportunities for therapy. To identify the driver oncogene on 10p associated with basal-like tumors, we analyzed genomic profiles of 172 breast carcinomas. The smallest shared region of gain spanned just seven genes at 10p13, including calcium/calmodulin-dependent protein kinase ID (CAMK1D), functioning in intracellular signaling but not previously linked to cancer. By microarray, CAMK1D was overexpressed when amplified, and by immunohistochemistry exhibited elevated expression in invasive carcinomas compared to carcinoma in situ. Engineered overexpression of CAMK1D in non-tumorigenic breast epithelial cells led to increased cell proliferation, and molecular and phenotypic alterations indicative of epithelial-mesenchymal transition (EMT), including loss of cell-cell adhesions and increased cell migration and invasion. Our findings identify CAMK1D as a novel amplified oncogene linked to EMT in breast cancer, and as a potential therapeutic target with particular relevance to clinically unfavorable basal-like tumors.

  2. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer.

    PubMed

    Du, Bowen; Shim, Joong Sup

    2016-07-22

    Epithelial-mesenchymal transition (EMT) is known to play an important role in cancer progression, metastasis and drug resistance. Although there are controversies surrounding the causal relationship between EMT and cancer metastasis, the role of EMT in cancer drug resistance has been increasingly recognized. Numerous EMT-related signaling pathways are involved in drug resistance in cancer cells. Cells undergoing EMT show a feature similar to cancer stem cells (CSCs), such as an increase in drug efflux pumps and anti-apoptotic effects. Therefore, targeting EMT has been considered a novel opportunity to overcome cancer drug resistance. This review describes the mechanism by which EMT contributes to drug resistance in cancer cells and summarizes new advances in research in EMT-associated drug resistance.

  3. Molecular mechanisms of microRNAs in regulating epithelial-mesenchymal transitions in human cancers.

    PubMed

    Tang, Jinlong; Li, Yuan; Wang, Jingyu; Wen, Zhineng; Lai, Maode; Zhang, Honghe

    2016-02-28

    The epithelial-mesenchymal transition (EMT) provides a strong driving force in the progression of various human cancers and the development of chemoresistance. Recently, numbers of studies have demonstrated that microRNAs (miRNAs), by post-transcriptionally silencing EMT-related molecules, can promote or inhibit the EMT process and play pivotal roles in effectively manipulating the occurrence, development, invasion, and metastasis of cancers. MiRNAs can also control the EMT or be controlled by genetic modification and mutual regulation, especially negative feedback. Therefore, miRNAs can be viewed as either oncogenes or tumor suppressor genes to facilitate or retard the EMT, resulting in far-reaching impact on tumor metastasis and effective diagnosis, treatment, and prognosis.

  4. TGFβ Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis

    PubMed Central

    2015-01-01

    Retaining the delicate balance in cell signaling activity is a prerequisite for the maintenance of physiological tissue homeostasis. Transforming growth factor-beta (TGFβ) signaling is an essential pathway that plays crucial roles during embryonic development as well as in adult tissues. Aberrant TGFβ signaling activity regulates tumor progression in a cancer cell-autonomous or non-cell-autonomous fashion and these effects may be tumor suppressing or tumor promoting depending on the cellular context. The fundamental role of this pathway in promoting cancer progression in multiple stages of the metastatic process, including epithelial-to-mesenchymal transition (EMT), is also becoming increasingly clear. In this review, we discuss the latest advances in the effort to unravel the inherent complexity of TGFβ signaling and its role in cancer progression and metastasis. These findings provide important insights into designing personalized therapeutic strategies against advanced cancers. PMID:25883652

  5. CYB5R1 links epithelial-mesenchymal transition and poor prognosis in colorectal cancer

    PubMed Central

    Lamprecht, Sebastian; Engel, Jutta; Hermeking, Heiko; Kirchner, Thomas; Horst, David

    2016-01-01

    Colorectal cancers show significant tumor cell heterogeneity within the same core genetic background. Epithelial-mesenchymal transition (EMT) is an important functional aspect of this heterogeneity and hallmark of colorectal cancer progression. Here, we identify CYB5R1, an enzyme involved in oxidative stress protection and drug metabolism, as an indicator of EMT in colon cancer. We demonstrate high CYB5R1 expression in colorectal cancer cells undergoing EMT at the infiltrative tumor edge and reveal an extraordinarily strong association of CYB5R1 expression with two core EMT gene expression signatures in a large independent colon cancer data set from The Cancer Genome Atlas (TCGA). Furthermore, we demonstrate that CYB5R1 is required for an infiltrative tumor cell phenotype, and robustly linked with poor prognosis in colorectal cancer. Our findings have important implications for colon cancer cells undergoing EMT and may be exploited for diagnostic and therapeutic purposes. PMID:27120783

  6. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition.

    PubMed

    Acevedo, Victor D; Gangula, Rama D; Freeman, Kevin W; Li, Rile; Zhang, Youngyou; Wang, Fen; Ayala, Gustavo E; Peterson, Leif E; Ittmann, Michael; Spencer, David M

    2007-12-01

    Fibroblast Growth Factor Receptor-1 (FGFR1) is commonly overexpressed in advanced prostate cancer (PCa). To investigate causality, we utilized an inducible FGFR1 (iFGFR1) prostate mouse model. Activation of iFGFR1 with chemical inducers of dimerization (CID) led to highly synchronous, step-wise progression to adenocarcinoma that is linked to an epithelial-to-mesenchymal transition (EMT). iFGFR1 inactivation by CID withdrawal led to full reversion of prostatic intraepithelial neoplasia, whereas PCa lesions became iFGFR1-independent. Gene expression profiling at distinct stages of tumor progression revealed an increase in EMT-associated Sox9 and changes in the Wnt signaling pathway, including Fzd4, which was validated in human PCa. The iFGFR1 model clearly implicates FGFR1 in PCa progression and demonstrates how CID-inducible models can help evaluate candidate molecules in tumor progression and maintenance.

  7. Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition.

    PubMed

    Russell, Ronan; Perkhofer, Lukas; Liebau, Stefan; Lin, Qiong; Lechel, André; Feld, Fenja M; Hessmann, Elisabeth; Gaedcke, Jochen; Güthle, Melanie; Zenke, Martin; Hartmann, Daniel; von Figura, Guido; Weissinger, Stephanie E; Rudolph, Karl-Lenhard; Möller, Peter; Lennerz, Jochen K; Seufferlein, Thomas; Wagner, Martin; Kleger, Alexander

    2015-07-29

    Pancreatic ductal adenocarcinoma (PDAC) is associated with accumulation of particular oncogenic mutations and recent genetic sequencing studies have identified ataxia telangiectasia-mutated (ATM) mutations in PDAC cohorts. Here we report that conditional deletion of ATM in a mouse model of PDAC induces a greater number of proliferative precursor lesions coupled with a pronounced fibrotic reaction. ATM-targeted mice display altered TGFβ-superfamily signalling and enhanced epithelial-to-mesenchymal transition (EMT) coupled with shortened survival. Notably, our mouse model recapitulates many features of more aggressive human PDAC subtypes. Particularly, we report that low expression of ATM predicts EMT, a gene signature specific for Bmp4 signalling and poor prognosis in human PDAC. Our data suggest an intimate link between ATM expression and pancreatic cancer progression in mice and men.

  8. Discoidin domain receptor 2 is a critical regulator of epithelial-mesenchymal transition

    PubMed Central

    Walsh, Logan A.; Nawshad, Ali; Medici, Damian

    2011-01-01

    Discoidin domain receptor 2 (DDR2) is a collagen receptor that is expressed during epithelial-mesenchymal transition (EMT), a cellular transformation that mediates many stages of embryonic development and disease. However, the functional significance of this receptor in EMT is unknown. Here we show that Transforming Growth Factor-beta1 (TGF-β1), a common stimulator of EMT, promotes increased expression of type I collagen and DDR2. Inhibiting expression of COL1A1 or DDR2 with siRNA is sufficient to perturb activity of the NF-βB and LEF-1 transcription factors and to inhibit EMT and cell migration induced by TGF-β1. Furthermore, knockdown of DDR2 expression with siRNA inhibits EMT directly induced by type I collagen. These data establish a critical role for type I collagen-dependent DDR2 signaling in the regulation of EMT. PMID:21477649

  9. Induction of epithelial-mesenchymal transition with O-glycosylated oncofetal fibronectin

    PubMed Central

    Ding, Yao; Gelfenbeyn, Kirill; Freire-de-Lima, Leonardo; Handa, Kazuko; Hakomori, Sen-itiroh

    2012-01-01

    Epithelial-mesenchymal transition (EMT) has been shown to play a key role in embryogenesis and cancer progression. We previously found that fibronectin (FN) carrying O-GalNAc at a specific site is selectively expressed in cancer and fetal cells/tissues, and termed oncofetal FN (onfFN). Here, we show that (i) a newly-established monoclonal antibody against FN lacking the O-GalNAc, termed normalFN (norFN), is useful for isolation of onfFN, (ii) onfFN, but not norFN, can induce EMT in human lung carcinoma cells, (iii) onfFN has a synergistic effect with transforming growth factor (TGF)β1 in EMT induction. PMID:22641031

  10. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia.

    PubMed

    Marie-Egyptienne, Delphine Tamara; Lohse, Ines; Hill, Richard Peter

    2013-11-28

    Numerous studies have demonstrated the presence of cancer stem cells (CSCs) within solid tumors. Although the precursor of these cells is not clearly established, recent studies suggest that the phenotype of CSCs may be quite plastic and associated with the epithelial-to-mesenchymal transition (EMT). In patients, the presence of EMT and CSCs has been implicated in increased resistance to radiotherapy. Hypoxia, a negative prognostic factor for treatment success, is a potent driver of a multitude of molecular signalling pathways that allow cells to survive and thrive in the hostile tumor microenvironment and can induce EMT. Hypoxia also provides tumor cells with cues for maintenance of a stem-like state and may help to drive the linkage between EMT and CSCs. Understanding the biology of CSCs, the EMT phenotype and their implications in therapeutic relapse may provide crucial new approaches in the development of improved therapeutic strategies.

  11. Epigenetic Regulation of the Epithelial to Mesenchymal Transition in Lung Cancer.

    PubMed

    Roche, Joëlle; Gemmill, Robert M; Drabkin, Harry A

    2017-06-24

    Lung cancer is the leading cause of cancer deaths worldwide. It is an aggressive and devastating cancer because of metastasis triggered by enhanced migration and invasion, and resistance to cytotoxic chemotherapy. The epithelial to mesenchymal transition (EMT) is a fundamental developmental process that is reactivated in wound healing and a variety of diseases including cancer where it promotes migration/invasion and metastasis, resistance to treatment, and generation and maintenance of cancer stem cells. The induction of EMT is associated with reprogramming of the epigenome. This review focuses on major mechanisms of epigenetic regulation mainly in lung cancer with recent data on EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit ), the catalytic subunit of the PRC2 (Polycomb Group PcG), that behaves as an oncogene in lung cancer associated with gene repression, non-coding RNAs and the epitranscriptome.

  12. Epigenetic Regulation of the Epithelial to Mesenchymal Transition in Lung Cancer

    PubMed Central

    Roche, Joëlle; Gemmill, Robert M.; Drabkin, Harry A.

    2017-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. It is an aggressive and devastating cancer because of metastasis triggered by enhanced migration and invasion, and resistance to cytotoxic chemotherapy. The epithelial to mesenchymal transition (EMT) is a fundamental developmental process that is reactivated in wound healing and a variety of diseases including cancer where it promotes migration/invasion and metastasis, resistance to treatment, and generation and maintenance of cancer stem cells. The induction of EMT is associated with reprogramming of the epigenome. This review focuses on major mechanisms of epigenetic regulation mainly in lung cancer with recent data on EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit ), the catalytic subunit of the PRC2 (Polycomb Group PcG), that behaves as an oncogene in lung cancer associated with gene repression, non-coding RNAs and the epitranscriptome. PMID:28672805

  13. Epithelial-to-Mesenchymal Transition in the Female Reproductive Tract: From Normal Functioning to Disease Pathology

    PubMed Central

    Bilyk, Olena; Coatham, Mackenzie; Jewer, Michael; Postovit, Lynne-Marie

    2017-01-01

    Epithelial-to-mesenchymal transition (EMT) is a physiological process that is vital throughout the human lifespan. In addition to contributing to the development of various tissues within the growing embryo, EMT is also responsible for wound healing and tissue regeneration later in adulthood. In this review, we highlight the importance of EMT in the development and normal functioning of the female reproductive organs (the ovaries and the uterus) and describe how dysregulation of EMT can lead to pathological conditions, such as endometriosis, adenomyosis, and carcinogenesis. We also summarize the current literature relating to EMT in the context of ovarian and endometrial carcinomas, with a particular focus on how molecular mechanisms and the tumor microenvironment can govern cancer cell plasticity, therapy resistance, and metastasis. PMID:28725636

  14. EEF1D modulates proliferation and epithelial-mesenchymal transition in oral squamous cell carcinoma.

    PubMed

    Flores, Isadora L; Kawahara, Rebeca; Miguel, Márcia C C; Granato, Daniela C; Domingues, Romênia R; Macedo, Carolina C S; Carnielli, Carolina M; Yokoo, Sami; Rodrigues, Priscila C; Monteiro, Bárbara V B; Oliveira, Carine E; Salmon, Cristiane R; Nociti, Francisco H; Lopes, Márcio A; Santos-Silva, Alan; Winck, Flavia V; Coletta, Ricardo D; Paes Leme, Adriana F

    2016-05-01

    EEF1D (eukaryotic translation elongation factor 1δ) is a subunit of the elongation factor 1 complex of proteins that mediates the elongation process during protein synthesis via enzymatic delivery of aminoacyl-tRNAs to the ribosome. Although the functions of EEF1D in the translation process are recognized, EEF1D expression was found to be unbalanced in tumours. In the present study, we demonstrate the overexpression of EEF1D in OSCC (oral squamous cell carcinoma), and revealed that EEF1D and protein interaction partners promote the activation of cyclin D1 and vimentin proteins. EEF1D knockdown in OSCC reduced cell proliferation and induced EMT (epithelial-mesenchymal transition) phenotypes, including cell invasion. Taken together, these results define EEF1D as a critical inducer of OSCC proliferation and EMT. © 2016 Authors; published by Portland Press Limited.

  15. Sorafenib inhibits macrophage-mediated epithelial-mesenchymal transition in hepatocellular carcinoma

    PubMed Central

    Lian, Zhe-Xiong; Li, Xingsheng; Hou, Xin

    2016-01-01

    Tumor-associated macrophages, crucial components of the microenvironment in hepatocellular carcinoma, hamper anti-cancer immune responses. The aim of the present study was to investigate the effect of sorafenib on the formation of the tumor microenvironment, especially the relationship between polarized macrophages and hepatocytes. Macrophage infiltration was reduced in patients with hepatocellular carcinoma who were treated with sorafenib. In vitro, sorafenib abolished polarized macrophage-induced epithelial mesenchymal transition (EMT) and migration of hepatocellular carcinoma cells but not normal hepatocytes. Moreover, sorafenib attenuated HGF secretion in polarized macrophages, and decreased plasma HGF in patients with hepatocellular carcinoma. Additionally, sorafenib abolished the polarized macrophage-induced activation of the HGF receptor Met in hepatocellular carcinoma cells. Our findings suggest that sorafenib inhibits polarized macrophage-induced EMT in hepatocellular carcinoma cells via the HGF-Met signaling pathway. These results contribute to our understanding of the immunological mechanisms that underlie the protective effects of sorafenib in hepatocellular carcinoma therapy. PMID:27203677

  16. Upregulation of TrkB promotes epithelial-mesenchymal transition and anoikis resistance in endometrial carcinoma.

    PubMed

    Bao, Wei; Qiu, Haifeng; Yang, Tingting; Luo, Xin; Zhang, Huijuan; Wan, Xiaoping

    2013-01-01

    Mechanisms governing the metastasis of endometrial carcinoma (EC) are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF), are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05) and lymphovascular space involvement (p<0.05) in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT). RNA interference (RNAi)-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC.

  17. Preprocessing with Photoshop Software on Microscopic Images of A549 Cells in Epithelial-Mesenchymal Transition.

    PubMed

    Ren, Zhou-Xin; Yu, Hai-Bin; Shen, Jun-Ling; Li, Ya; Li, Jian-Sheng

    2015-06-01

    To establish a preprocessing method for cell morphometry in microscopic images of A549 cells in epithelial-mesenchymal transition (EMT). Adobe Photoshop CS2 (Adobe Systems, Inc.) was used for preprocessing the images. First, all images were processed for size uniformity and high distinguishability between the cell and background area. Then, a blank image with the same size and grids was established and cross points of the grids were added into a distinct color. The blank image was merged into a processed image. In the merged images, the cells with 1 or more cross points were chosen, and then the cell areas were enclosed and were replaced in a distinct color. Except for chosen cellular areas, all areas were changed into a unique hue. Three observers quantified roundness of cells in images with the image preprocess (IPP) or without the method (Controls), respectively. Furthermore, 1 observer measured the roundness 3 times with the 2 methods, respectively. The results between IPPs and Controls were compared for repeatability and reproducibility. As compared with the Control method, among 3 observers, use of the IPP method resulted in a higher number and a higher percentage of same-chosen cells in an image. The relative average deviation values of roundness, either for 3 observers or 1 observer, were significantly higher in Controls than in IPPs (p < 0.01 or 0.001). The values of intraclass correlation coefficient, both in Single Type or Average, were higher in IPPs than in Controls both for 3 observers and 1 observer. Processed with Adobe Photoshop, a chosen cell from an image was more objective, regular, and accurate, creating an increase of reproducibility and repeatability on morphometry of A549 cells in epithelial to mesenchymal transition.

  18. Immunohistochemical Localization of Epithelial Mesenchymal Transition Markers in Cyclosporine A Induced Gingival Overgrowth

    PubMed Central

    Arora, Hitesh; Madapusi, Balaji Thodur; Ramamurti, Anjana; Narasimhan, Malathi; Periasamy, Soundararajan

    2016-01-01

    Introduction Cyclosporine, an immunosuppressive agent used in the management of renal transplant patients is known to produce Drug Induced Gingival Overgrowth (DIGO) as a side effect. Several mechanisms have been elucidated to understand the pathogenesis of DIGO. Recently, epithelial mesenchymal transition has been proposed as a mechanism underlying fibrosis of various organs. Aim The aim of the study was to investigate if Epithelial Mesenchymal Transition (EMT) operates in Cyclosporine induced gingival overgrowth. Materials and Methods The study involved obtaining gingival tissue samples from healthy individuals (n=17) and subjects who exhibited cyclosporine induced gingival overgrowth (n=18). Presence and distribution of E-Cadherin, S100 A4 and alpha smooth muscle actin (α-SMA) was assessed using immunohistochemistry and cell types involved in their expression were determined. The number of α– SMA positive fibroblasts were counted in the samples. Results In control group, there was no loss of E-Cadherin and a pronounced staining was seen in the all layers of the epithelium in all the samples analysed (100%). S100 A4 staining was noted in langerhans cells, fibroblasts, endothelial cells and endothelial lined blood capillaries in Connective Tissue (CT) of all the samples (100%) while α - SMA staining was seen only on the endothelial lined blood capillaries in all the samples (100%). However in DIGO, there was positive staining of E-Cadherin only in the basal and suprabasal layers of the epithelium in all the samples (100%). Moreover there was focal loss of E-Cadherin in the epithelium in eight out of 18 samples (44%). A break in the continuity of the basement membrane was noted in three out of 18 samples (16%) on H & E staining. Conclusion Based on the analysis of differential staining of the markers, it can be concluded that EMT could be one of the mechanistic pathways underlying the pathogenesis of DIGO. PMID:27656563

  19. MiR-338* targeting smoothened to inhibit pulmonary fibrosis by epithelial-mesenchymal transition

    PubMed Central

    Zhuang, Yi; Dai, Jinghong; Wang, Yongsheng; Zhang, Huan; Li, Xinxiu; Wang, Chunli; Cao, Mengshu; Liu, Yin; Ding, Jingjing; Cai, Hourong; Zhang, Deping; Wang, Yaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease involving pulmonary injury associated with tissue repair, dysfunction and fibrosis. Recent studies indicate that some microRNAs (miRNAs) may play critical roles in the pathogenesis of pulmonary fibrosis. In this study, we aim to investigate whether miR-338* (miR-338-5p), which has been found to be associated with tumor progression, is associated with pathological process of pulmonary fibrosis. Balb/c mice were treated with bleomycin (BLM) to establish IPF models. Targtscan was used to predict the downstream target of miR-338*. Morphological changes were observed with light microscope and epithelial to mesenchymal transition (EMT) markers were detected by western blot. The expression of miR-338* or downstream target SMO was analyzed by real-time quantitative RT-PCR, northern blot or western blot. MiR-338* was down-regulated in the lung tissue from mice with bleomycin-induced pulmonary fibrosis. The smoothened (SMO) is a direct target of miR-338*, and knocking-down the expression of SMO could partially rescue the fibrotic phenotype of TGF-β-induced NuLi-1 cells. Over-expression of SMO led to the fibrotic phenotype of NuLi-1 cells even without TGF-β treatment. These findings showed that the over-expression of SMO contributed to the fibrotic phenotype of NuLi-1 cells by affecting the epithelial-to-mesenchymal transition (EMT) procedure. Furthermore, in vivo, lentivirus-mediated over-expression of miR-338* can alleviate lung fibrosis induced by bleomycin in mice. In conclusion, our results suggest that miR-338* can target SMO to reduce the EMT procedure and thus postpone the development of pulmonary fibrosis. PMID:27508042

  20. The epithelial-mesenchymal transition of the Drosophila mesoderm requires the Rho GTP exchange factor Pebble.

    PubMed

    Smallhorn, Masha; Murray, Michael J; Saint, Robert

    2004-06-01

    Drosophila pebble (pbl) encodes a Rho-family GTP exchange factor (GEF) required for cytokinesis. The accumulation of high levels of PBL protein during interphase and the developmentally regulated expression of pbl in mesodermal tissues suggested that the primary cytokinetic mutant phenotype might be masking other roles. Using various muscle differentiation markers, we found that Even skipped (EVE) expression in the dorsal mesoderm is greatly reduced in pbl mutant embryos. EVE expression in the dorsalmost mesodermal cells is induced in response to DPP secreted by the dorsal epidermal cells. Further analysis revealed that this phenotype is likely to be a consequence of an earlier defect. pbl mutant mesodermal cells fail to undergo the normal epithelial-mesenchymal transition (EMT) and dorsal migration that follows ventral furrow formation. This phenotype is not a secondary consequence of failed cytokinesis, as it is rescued by a mutant form of pbl that does not rescue the cytokinetic defect. In wild-type embryos, newly invaginated cells at the lateral edges of the mesoderm extend numerous protrusions. In pbl mutant embryos, however, cells appear more tightly adhered to their neighbours and extend very few protrusions. Consistent with the dependence of the mesoderm EMT and cytokinesis on actin organisation, the GTP exchange function of the PBL RhoGEF is required for both processes. By contrast, the N-terminal BRCT domains of PBL are required only for the cytokinetic function of PBL. These studies reveal that a novel PBL-mediated intracellular signalling pathway operates in mesodermal cells during the transition from an epithelial to migratory mesenchymal morphology during gastrulation.

  1. Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression.

    PubMed

    Sridaran, Dhivya; Ramamoorthi, Ganesan; MahaboobKhan, Rasool; Kumpati, Premkumar

    2016-10-01

    During tumorigenesis, cancer cells generate complex, unresolved interactions with the surrounding oxystressed cellular milieu called tumor microenvironment (TM) that favors spread of cancer to other body parts. This dissemination of cancer cells from the primary tumor site is the main clinical challenge in cancer treatment. In addition, the significance of enhanced oxidative stress in TM during cancer progression still remains elusive. Thus, the present study was performed to investigate the molecular and cytoskeletal alterations in breast cancer cells associated with oxystressed TM that potentiates metastasis. Our results showed that depending on the extent of oxidative stress in TM, cancer cells exhibited enhanced migration and survival with reduction of chemosensitivity. Corresponding ultrastructural analysis showed radical cytoskeletal modifications that reorganize cell-cell interactions fostering transition of epithelial cells to mesenchymal morphology (EMT) marking metastasis, which was reversed upon antioxidant treatment. Decreased E-cadherin and increased vimentin, Twist1/2 expression corroborated the initiation of EMT in oxystressed TM-influenced cells. Further evaluation of cellular energetics demonstrated significant metabolic reprogramming with inclination towards glucose or external glutamine from TM as energy source depending on the breast cancer cell type. These observations prove the elemental role of oxystressed TM in cancer progression, initiating EMT and metabolic reprogramming. Further cell-type specific metabolomic analysis would unravel the alternate mechanisms in cancer progression for effective therapeutic intervention. Graphical abstract Schematic representation of the study and proposed mechanism of oxystressed TM influenced cancer progression. Cancer cells exhibit a close association with tumor microenvironment (TM), and oxystressed TM enhances cancer cell migration and survival and reduces chemosensitivity. Oxystressed TM induces dynamic

  2. Invasive Front Grading and Epithelial-Mesenchymal Transition in Canine Oral and Cutaneous Squamous Cell Carcinomas.

    PubMed

    Nagamine, E; Hirayama, K; Matsuda, K; Okamoto, M; Ohmachi, T; Uchida, K; Kadosawa, T; Taniyama, H

    2017-09-01

    Oral and cutaneous tissues are the most frequent origin in canine squamous cell carcinoma (SSC). In SCC, changes in adhesion molecule expression and transition from epithelial to mesenchymal phenotype are thought to be important in development of invasive behavior of neoplastic cells at the leading front of the tumor. We therefore investigated histological invasive front grading and epithelial-mesenchymal transition (EMT) in both oral SCCs and cutaneous SCCs. EMT was assessed by evaluating immunohistochemical expression of E-cadherin, β-catenin, desmoglein, vimentin, and N-cadherin. Regardless of the anatomic location, invasive front grading resulted in higher histological grades than grading of the surface. Most oral SCCs were of significantly higher histologic grade than cutaneous SCCs ( P < .01). Expression of E-cadherin, β-catenin, and desmoglein was significantly lower in oral SCC compared with cutaneous SCC ( P < .01). A significant association was found between invasive front grading and loss of E-cadherin, β-catenin, and desmoglein ( P < .01). Also, vimentin-positive neoplastic cells had low immunoreactivity of these adhesion molecules, and a few of these neoplastic cells were positive for N-cadherin. These results suggest not only E-cadherin and β-catenin but also desmoglein as markers for predicting biological behavior of canine SCC. Depending on their primary sites, EMT correlates with biological behavior and therefore histological grade of canine SCC. We suggest that combining invasive front grading with assessment of immunohistochemical expression of E-cadherin, β-catenin, and desmoglein may allow more accurate prediction of biological behavior of canine SCCs.

  3. Clinical significance of altering epithelial-mesenchymal transition in metastatic lymph nodes of gastric cancer.

    PubMed

    Okubo, Keishi; Uenosono, Yoshikazu; Arigami, Takaaki; Yanagita, Shigehiro; Matsushita, Daisuke; Kijima, Takashi; Amatatsu, Masahiko; Uchikado, Yasuto; Kijima, Yuko; Maemura, Kosei; Natsugoe, Shoji

    2017-02-28

    The E-cadherin, N-cadherin, and Snail genes are epithelial-mesenchymal transition (EMT)-inducible genes. Previous studies demonstrated that the expression of EMT markers in the primary tumor sites of gastric cancer correlates with tumor progression and prognosis. However, the clinical significance of the expression of these EMT markers in metastatic lymph nodes remains unclear. In the present study, we investigated the expression of these EMT markers in the primary tumor sites and metastatic lymph nodes. Immunohistochemistry was used to investigate the expression of E-cadherin, N-cadherin, and Snail in 89 primary tumors and 511 metastatic lymph nodes obtained from patients with gastric cancer. The weak expression of E-cadherin in tumors and lymph nodes increased with more lymph node metastasis and in more undifferentiated tumors. The strong expression of N-cadherin in lymph nodes correlated with more lymph nodes metastasis, an advanced stage, and poor prognosis. The weak expression of Snail in tumors correlated with lymphatic invasion. The strong expression of Snail in lymph nodes correlated with more lymph node metastasis and an advanced stage. The strong expression of Snail in tumors and its weak expression in lymph nodes correlated with more lymph node metastasis, an advanced stage, and poor prognosis. The expression of N-cadherin in metastatic lymph nodes is useful for predicting the prognosis of patients with gastric cancer. The Snail switch-namely, the positive-to-negative conversion of the Snail status-between primary tumors and lymph node metastasis may be important for confirming EMT and mesenchymal-epithelial transition.

  4. Transient and permanent changes in DNA methylation patterns in inorganic arsenic-mediated epithelial-to-mesenchymal transition.

    PubMed

    Eckstein, Meredith; Rea, Matthew; Fondufe-Mittendorf, Yvonne N

    2017-09-15

    Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition

    PubMed Central

    Singh, Shalini; Howell, Danielle; Trivedi, Niraj; Kessler, Ketty; Ong, Taren; Rosmaninho, Pedro; Raposo, Alexandre ASF; Robinson, Giles; Roussel, Martine F; Castro, Diogo S; Solecki, David J

    2016-01-01

    In the developing mammalian brain, differentiating neurons mature morphologically via neuronal polarity programs. Despite discovery of polarity pathways acting concurrently with differentiation, it's unclear how neurons traverse complex polarity transitions or how neuronal progenitors delay polarization during development. We report that zinc finger and homeobox transcription factor-1 (Zeb1), a master regulator of epithelial polarity, controls neuronal differentiation by transcriptionally repressing polarity genes in neuronal progenitors. Necessity-sufficiency testing and functional target screening in cerebellar granule neuron progenitors (GNPs) reveal that Zeb1 inhibits polarization and retains progenitors in their germinal zone (GZ). Zeb1 expression is elevated in the Sonic Hedgehog (SHH) medulloblastoma subgroup originating from GNPs with persistent SHH activation. Restored polarity signaling promotes differentiation and rescues GZ exit, suggesting a model for future differentiative therapies. These results reveal unexpected parallels between neuronal differentiation and mesenchymal-to-epithelial transition and suggest that active polarity inhibition contributes to altered GZ exit in pediatric brain cancers. DOI: http://dx.doi.org/10.7554/eLife.12717.001 PMID:27178982

  6. Neuropilin-2 Expression Promotes TGF-β1-Mediated Epithelial to Mesenchymal Transition in Colorectal Cancer Cells

    PubMed Central

    Grandclement, Camille; Pallandre, Jean René; Valmary Degano, Séverine; Viel, Erika; Bouard, Adeline; Balland, Jérémy; Rémy-Martin, Jean-Paul; Simon, Benoit; Rouleau, Alain; Boireau, Wilfrid; Klagsbrun, Michael; Ferrand, Christophe; Borg, Christophe

    2011-01-01

    Neuropilins, initially characterized as neuronal receptors, act as co-receptors for cancer related growth factors and were recently involved in several signaling pathways leading to cytoskeletal organization, angiogenesis and cancer progression. Then, we sought to investigate the ability of neuropilin-2 to orchestrate epithelial-mesenchymal transition in colorectal cancer cells. Using specific siRNA to target neuropilin-2 expression, or gene transfer, we first observed that neuropilin-2 expression endows HT29 and Colo320 for xenograft formation. Moreover, neuropilin-2 conferred a fibroblastic-like shape to cancer cells, suggesting an involvement of neuropilin-2 in epithelial-mesenchymal transition. Indeed, the presence of neuropilin-2 in colorectal carcinoma cell lines was correlated with loss of epithelial markers such as cytokeratin-20 and E-cadherin and with acquisition of mesenchymal molecules such as vimentin. Furthermore, we showed by surface plasmon resonance experiments that neuropilin-2 is a receptor for transforming-growth factor-β1. The expression of neuropilin-2 on colon cancer cell lines was indeed shown to promote transforming-growth factor-β1 signaling, leading to a constitutive phosphorylation of the Smad2/3 complex. Treatment with specific TGFβ-type1 receptor kinase inhibitors restored E-cadherin levels and inhibited in part neuropilin-2-induced vimentin expression, suggesting that neuropilin-2 cooperates with TGFβ-type1 receptor to promote epithelial-mesenchymal transition in colorectal cancer cells. Our results suggest a direct role of NRP2 in epithelial-mesenchymal transition and highlight a cross-talk between neuropilin-2 and TGF-β1 signaling to promote cancer progression. These results suggest that neuropilin-2 fulfills all the criteria of a therapeutic target to disrupt multiple oncogenic functions in solid tumors. PMID:21747928

  7. Effects of PPAR gamma ligands on TGF-beta1-induced epithelial-mesenchymal transition in alveolar epithelial cells.

    PubMed

    Tan, Xiahui; Dagher, Hayat; Hutton, Craig A; Bourke, Jane E

    2010-02-23

    Transforming growth factor beta1 (TGF-beta1)-mediated epithelial mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to lung fibrosis. Since PPAR gamma ligands have been shown to inhibit fibroblast activation by TGF-beta1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ) and ciglitazone (CGZ) to regulate TGF-beta1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker) and N-cadherin (mesenchymal cell marker), and collagen 1 alpha 1 (COL1A1), CTGF and MMP-2 mRNA. Serum-deprived A549 cells (human AEC cell line) were pre-incubated with RGZ and CGZ (1 - 30 microM) in the absence or presence of the PPAR gamma antagonist GW9662 (10 microM) before TGFbeta-1 (0.075-7.5 ng/ml) treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. TGFbeta-1 (2.5 ng/ml)-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGF beta 1-induced changes in cell morphology, and PPAR gamma-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-beta1 (0.25 ng/ml). However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-beta1 (2.5 ng/ml), with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-beta1 was not inhibited by RGZ or CGZ. RGZ and CGZ inhibited profibrotic changes in TGF-beta1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR gamma

  8. Dynamic Sialylation in Transforming Growth Factor-β (TGF-β)-induced Epithelial to Mesenchymal Transition*

    PubMed Central

    Du, Jun; Hong, Senlian; Dong, Lu; Cheng, Bo; Lin, Liang; Zhao, Bing; Chen, Ye-Guang; Chen, Xing

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and organ formation. Aberrant regulation of EMT often leads to tumor progression. Changes in cell surface sialylation have recently been implicated in mediating EMT. Herein we report the visualization of dynamic changes of sialylation and glycoproteomic analysis of newly synthesized sialylated proteins in EMT by metabolic labeling of sialylated glycans with azides, followed by click labeling with fluorophores or affinity tags. We discovered that sialylation was down-regulated during EMT but then reverted and up-regulated in the mesenchymal state after EMT, accompanied by mRNA expression level changes of genes involved in the sialic acid biosynthesis. Quantitative proteomic analysis identified a list of sialylated proteins whose biosynthesis was dynamically regulated during EMT. Sialylation of cell surface adherent receptor integrin β4 was found to be down-regulated, which may regulate integrin functions during EMT. Furthermore, a global sialylation inhibitor was used to probe the functional role of sialylation during EMT. We found that inhibition of sialylation promoted EMT. Taken together, our findings suggest the important role of sialylation in regulating EMT and imply its possible function in related pathophysiological events, such as cancer metastasis. PMID:25809486

  9. Elk-3 Contributes to the Progression of Liver Fibrosis by Regulating the Epithelial-Mesenchymal Transition.

    PubMed

    Li, Tian Zhu; Kim, Sung Min; Hur, Wonhee; Choi, Jung Eun; Kim, Jung-Hee; Hong, Sung Woo; Lee, Eun Byul; Lee, Joon Ho; Yoon, Seung Kew

    2017-01-15

    The role of Elk-3 in the epithelial-mesenchymal transition (EMT) during liver fibrogenesis remains unclear. Here, we determined the expression of Elk-3 in in vitro and in vivo models and in human liver fibrotic tissues. We also investigated the molecular relationships among Elk-3, early growth response-1 (Egr-1), and the mitogen activated protein kinases (MAPK) pathway during EMT in hepatocytes. We established an in vitro EMT model in which normal mouse hepatocyte cell lines were treated with transforming growth factor (TGF)-β1 and a CCl₄-induced liver fibrosis model. Characteristics of EMT were determined by evaluating the expression levels of related markers. The expression of Elk-3 and its target Egr-1 were analyzed using Western blotting. Gene silencing of Elk-3 was performed using an siRNA knockdown system. The expression levels of mesenchymal markers were increased during TGF-β1-induced EMT of hepatocytes. The expression levels of Elk-3 and Egr-1 were significantly (p<0.05) increased during the EMT of hepatocytes, in CCl₄-induced mouse liver fibrotic tissues, and in human liver cirrhotic tissues. Silencing of Elk-3 and inhibition of the Ras-Elk-3 pathway with an inhibitor suppressed the expression of EMT-related markers. Moreover, Elk-3 expression was regulated by p38 MAPK phosphorylation during EMT. Elk-3 contributes to the progression of liver fibrosis by modulating the EMT via the regulation of Egr-1 under MAPK signaling.

  10. Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial-mesenchymal transition.

    PubMed

    Saha, Sharmistha; Duan, Xinrui; Wu, Laying; Lo, Pang-Kuo; Chen, Hexin; Wang, Qian

    2012-01-31

    In this work we created electrospun fibrous scaffolds with random and aligned fiber orientations in order to mimic the three-dimensional structure of the natural extracellular matrix (ECM). The rigidity and topography of the ECM environment have been reported to alter cancer cell behavior. However, the complexity of the in vivo system makes it difficult to isolate and study such extracellular topographical cues that trigger cancer cells' response. Breast cancer cells were cultured on these fibrous scaffolds for 3-5 days. The cells showed elongated spindle-like morphology in the aligned fibers, whereas they maintained a mostly flat stellar shape in the random fibers. Gene expression profiling of these cells post seeding showed up-regulation of transforming growth factor β-1 (TGFβ-1) along with other mesenchymal biomarkers, suggesting that these cells undergo epithelial-mesenchymal transitions in response to the polymer scaffold. The results of this study indicate that the topographical cue may play a significant role in tumor progression.

  11. Cytoplasmic PML promotes TGF-β-associated epithelial-mesenchymal transition and invasion in prostate cancer.

    PubMed

    Buczek, M E; Miles, A K; Green, W; Johnson, C; Boocock, D J; Pockley, A G; Rees, R C; Hulman, G; van Schalkwyk, G; Parkinson, R; Hulman, J; Powe, D G; Regad, T

    2016-06-30

    Epithelial-mesenchymal transition (EMT) is a key event that is involved in the invasion and dissemination of cancer cells. Although typically considered as having tumour-suppressive properties, transforming growth factor (TGF)-β signalling is altered during cancer and has been associated with the invasion of cancer cells and metastasis. In this study, we report a previously unknown role for the cytoplasmic promyelocytic leukaemia (cPML) tumour suppressor in TGF-β signalling-induced regulation of prostate cancer-associated EMT and invasion. We demonstrate that cPML promotes a mesenchymal phenotype and increases the invasiveness of prostate cancer cells. This event is associated with activation of TGF-β canonical signalling pathway through the induction of Sma and Mad related family 2 and 3 (SMAD2 and SMAD3) phosphorylation. Furthermore, the cytoplasmic localization of promyelocytic leukaemia (PML) is mediated by its nuclear export in a chromosomal maintenance 1 (CRM1)-dependent manner. This was clinically tested in prostate cancer tissue and shown that cytoplasmic PML and CRM1 co-expression correlates with reduced disease-specific survival. In summary, we provide evidence of dysfunctional TGF-β signalling occurring at an early stage in prostate cancer. We show that this disease pathway is mediated by cPML and CRM1 and results in a more aggressive cancer cell phenotype. We propose that the targeting of this pathway could be therapeutically exploited for clinical benefit.

  12. Organochlorine pesticides induce epithelial to mesenchymal transition of human primary cultured hepatocytes.

    PubMed

    Zucchini-Pascal, Nathalie; Peyre, Ludovic; de Sousa, Georges; Rahmani, Roger

    2012-11-01

    Persistent organic pollutants (POPs) are a group of organic or chemicals that adversely affect human health and are persistent in the environment. These highly toxic compounds include industrial chemicals, pesticides such as organochlorines, and unwanted wastes such as dioxins. Although studies have described the general toxicity effects of organochlorine pesticides, the mechanisms underlying its potential carcinogenic effects in the liver are not well understood. In this study, we analyzed the effect of three organochlorine pesticides (dichlorodiphenyltrichloroethane, heptachlore and endosulfan) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the epithelial to mesenchymal transition (EMT) in primary cultured human hepatocytes. We found that these compounds modified the hepatocyte phenotype, inducing cell spread, formation of lamellipodia structures and reorganization of the actin cytoskeleton in stress fibers. These morphological alterations were accompanied by disruption of cell-cell junctions, E-cadherin repression and albumin down-regulation. Interestingly, these characteristic features of dedifferentiating hepatocytes were correlated with the gain of expression of various mesenchymal genes, including vimentin, fibronectin and its receptor ITGA5. These various results show that organochlorines and TCDD accelerate cultured human hepatocyte dedifferentiation and EMT processes. These events could account, at least in part, for the carcionogenic and/or fibrogenic activities of these POPs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Examination of Epithelial Mesenchymal Transition in Keloid Tissues and Possibility of Keloid Therapy Target

    PubMed Central

    Tosa, Mamiko; Egawa, Seiko; Murakami, Masahiro; Mohammad, Ghazizadeh; Ogawa, Rei

    2016-01-01

    Background: Keloid is a fibroproliferative skin disorder that is characterized by collagen accumulation and blood vessel proliferation in the reticular layer of the dermis. It is caused by prolonged inflammation after cutaneous injury. Several studies suggested recently that epithelial mesenchymal transition (EMT) is involved in the development of fibrosis. This study assessed whether EMT also participates in keloid development and/or aggravation. Methods: Resected keloid (n = 19) and normal skin (n = 13) samples were subjected to immunohistochemical, immunofluorescent, and Western blot analyses of their expression of epidermal (E-cadherin) and mesenchymal (vimentin) proteins. Results: Immunohistochemical analysis showed that the keloid tissues had more vimentin-positive cells in the epidermis than the normal tissues. When normal primary keratinocytes were cultured with proinflammatory cytokines, the cobblestone-shaped cells changed to a spindle shape and many vimentin-positive cells were detected. When immortalized HaCaT keratinocytes were cocultured in split-well plates with normal or keloid-derived fibroblasts, they also underwent EMT, as indicated by their greater vimentin expression on Western blot analysis compared with HaCaT cells that were cultured alone. Conclusions: EMT was observed in keloid specimens. EMT was induced by inflammatory cytokines and fibroblasts. EMT may be involved in keloid generation and/or aggravation and may have potential as a keloid treatment target. PMID:27975033

  14. Ezrin contributes to cervical cancer progression through induction of epithelial-mesenchymal transition.

    PubMed

    Kong, Jienan; Di, Chunchan; Piao, Junjie; Sun, Jie; Han, Longzhe; Chen, Liyan; Yan, Guanghai; Lin, Zhenhua

    2016-04-12

    Cervical cancer is the third most common cancer in females worldwide. The treatment options for advanced cervical cancer are limited, leading to high mortality. Ezrin is a membrane-cytoskeleton-binding protein recently reported to act as a tumor promoter, and we previously indicated that the aberrant localization and overexpression of Ezrin could be an independent effective biomarker for prognostic evaluation of cervical cancers. In this study, we identified Ezrin as a regulator of epithelial-mesenchymal transition (EMT) and metastasis in cervical cancer. Ezrin knock-down inhibited anchorage-independent growth, cell migration, and invasion of cervical cancer cell lines in vitro and in vivo. EMT was inhibited in Ezrin-depleted cells, with up-regulation of E-cadherin and Cytokeratin-18 (CK-18) and down-regulation of mesenchymal markers. Ezrin knock-down also induced Akt phosphorylation. These results implicate Ezrin as an EMT regulator and tumor promoter in cervical cancer, and down-regulation of Ezrin suppressed cervical cancer progression, possibly via the phosphoinositide 3-kinase/Akt pathway. Furthermore, the expression pattern of Ezrin protein was closely related with the lymphovascular invasion status of cervical cancer by immunohistochemistry, and the survival analysis revealed that the cervical cancer patients with the perinuclear Ezrin expression pattern had longer survival time than those with the cytoplasmic Ezrin expression pattern. Ezrin thus represents a promising target for the development of novel and effective strategies aimed at preventing the progression of cervical cancer.

  15. PDK1 Regulates Vascular Remodeling and Promotes Epithelial-Mesenchymal Transition in Cardiac Development▿

    PubMed Central

    Feng, Qiuting; Di, Ruomin; Tao, Fang; Chang, Zai; Lu, Shuangshuang; Fan, Wenjing; Shan, Congjia; Li, Xinli; Yang, Zhongzhou

    2010-01-01

    One essential downstream signaling pathway of receptor tyrosine kinases (RTKs), such as vascular endothelial growth factor receptor (VEGFR) and the Tie2 receptor, is the phosphoinositide-3 kinase (PI3K)-phosphoinositide-dependent protein kinase 1 (PDK1)-Akt/protein kinase B (PKB) cascade that plays a critical role in development and tumorigenesis. However, the role of PDK1 in cardiovascular development remains unknown. Here, we deleted PDK1 specifically in endothelial cells in mice. These mice displayed hemorrhage and hydropericardium and died at approximately embryonic day 11.5 (E11.5). Histological analysis revealed defective vascular remodeling and development and disrupted integrity between the endothelium and trabeculae/myocardium in the heart. The atrioventricular canal (AVC) cushion and valves failed to form, indicating a defect in epithelial-mesenchymal transition (EMT), together with increased endothelial apoptosis. Consistently, ex vivo AVC explant culture showed impeded mesenchymal outgrowth. Snail protein was reduced and was absent from the nucleus in AVC cells. Delivery of the Snail S6A mutant to the AVC explant effectively rescued EMT defects. Furthermore, adenoviral Akt delivery rescued EMT defects in AVC explant culture, and deletion of PTEN delayed embryonic lethality of PDK1 endothelial deletion mice by 1 day and rendered normal development of the AVC cushion in the PDK1-deficient heart. Taken together, these results have revealed an essential role of PDK1 in cardiovascular development through activation of Akt and Snail. PMID:20457809

  16. Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition.

    PubMed

    Millanes-Romero, Alba; Herranz, Nicolás; Perrera, Valentina; Iturbide, Ane; Loubat-Casanovas, Jordina; Gil, Jesús; Jenuwein, Thomas; García de Herreros, Antonio; Peiró, Sandra

    2013-12-12

    Although heterochromatin is enriched with repressive traits, it is also actively transcribed, giving rise to large amounts of noncoding RNAs. Although these RNAs are responsible for the formation and maintenance of heterochromatin, little is known about how their transcription is regulated. Here, we show that the Snail1 transcription factor represses mouse pericentromeric transcription, acting through the H3K4 deaminase LOXL2. Since Snail1 plays a key role in the epithelial-to-mesenchymal transition (EMT), we analyzed the regulation of heterochromatin transcription in this process. At the onset of EMT, one of the major structural heterochromatin proteins, HP1α, is transiently released from heterochromatin foci in a Snail1/LOXL2-dependent manner, concomitantly with a downregulation of major satellite transcription. Moreover, preventing the downregulation of major satellite transcripts compromised the migratory and invasive behavior of mesenchymal cells. We propose that Snail1 regulates heterochromatin transcription through LOXL2, thus creating the favorable transcriptional state necessary for completing EMT.

  17. Hyperglycemia Promotes the Epithelial-Mesenchymal Transition of Pancreatic Cancer via Hydrogen Peroxide

    PubMed Central

    Jiang, Zhengdong

    2016-01-01

    Diabetes mellitus (DM) and pancreatic cancer are intimately related, as approximately 85% of patients diagnosed with pancreatic cancer have impaired glucose tolerance or even DM. Our previous studies have indicated that high glucose could promote the invasive and migratory abilities of pancreatic cancer cells. We therefore explored the underlying mechanism that hyperglycemia modulates the metastatic potential of pancreatic cancer. Our data showed that streptozotocin- (STZ-) treated diabetic nude mice exhibit larger tumor size than that of the euglycemic mice. The number of nude mice that develop liver metastasis or ascites is much more in the STZ-treated group than that in the euglycemic group. Hyperglycemic mice contain a higher plasma H2O2-level than that from euglycemic mice. The injection of polyethylene glycol-conjugated catalase (PEG-CAT), an H2O2 scavenger, may reverse hyperglycemia-induced tumor metastasis. In addition, hyperglycemia could also modulate the expression of epithelial-mesenchymal transition- (EMT-) related factors in pancreatic tumor tissues, as the E-cadherin level is decreased and the expression of mesenchymal markers N-cadherin and vimentin as well as transcription factor snail is strongly increased. The injection of PEG-CAT could also reverse hyperglycemia-induced EMT. These results suggest that the association between hyperglycemia and poor prognosis of pancreatic cancer can be attributed to the alterations of EMT through the production of hydrogen peroxide. PMID:27433288

  18. Role of Endoplasmic Reticulum Stress in Epithelial–Mesenchymal Transition of Alveolar Epithelial Cells

    PubMed Central

    Zhong, Qian; Zhou, Beiyun; Ann, David K.; Minoo, Parviz; Liu, Yixin; Banfalvi, Agnes; Krishnaveni, Manda S.; Dubourd, Mickael; Demaio, Lucas; Willis, Brigham C.; Kim, Kwang-Jin; duBois, Roland M.; Crandall, Edward D.; Beers, Michael F.

    2011-01-01

    Endoplasmic reticulum (ER) stress has been implicated in alveolar epithelial type II (AT2) cell apoptosis in idiopathic pulmonary fibrosis. We hypothesized that ER stress (either chemically induced or due to accumulation of misfolded proteins) is also associated with epithelial–mesenchymal transition (EMT) in alveolar epithelial cells (AECs). ER stress inducers, thapsigargin (TG) or tunicamycin (TN), increased expression of ER chaperone, Grp78, and spliced X-box binding protein 1, decreased epithelial markers, E-cadherin and zonula occludens–1 (ZO-1), increased the myofibroblast marker, α–smooth muscle actin (α-SMA), and induced fibroblast-like morphology in both primary AECs and the AT2 cell line, RLE-6TN, consistent with EMT. Overexpression of the surfactant protein (SP)–C BRICHOS mutant SP-CΔExon4 in A549 cells increased Grp78 and α-SMA and disrupted ZO-1 distribution, and, in primary AECs, SP-CΔExon4 induced fibroblastic-like morphology, decreased ZO-1 and E-cadherin and increased α-SMA, mechanistically linking ER stress associated with mutant SP to fibrosis through EMT. Whereas EMT was evident at lower concentrations of TG or TN, higher concentrations caused apoptosis. The Src inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4]pyramidine) (PP2), abrogated EMT associated with TN or TG in primary AECs, whereas overexpression of SP-CΔExon4 increased Src phosphorylation, suggesting a common mechanism. Furthermore, increased Grp78 immunoreactivity was observed in AT2 cells of mice after bleomycin injury, supporting a role for ER stress in epithelial abnormalities in fibrosis in vivo. These results demonstrate that ER stress induces EMT in AECs, at least in part through Src-dependent pathways, suggesting a novel role for ER stress in fibroblast accumulation in pulmonary fibrosis. PMID:21169555

  19. GOLPH3 induces epithelial-mesenchymal transition via Wnt/β-catenin signaling pathway in epithelial ovarian cancer.

    PubMed

    Sun, Jing; Yang, Xiaoming; Zhang, Ru; Liu, Suqing; Gan, Xupei; Xi, Xiaowei; Zhang, Zhenbo; Feng, Youji; Sun, Yunyan

    2017-03-23

    Golgi phosphoprotein 3 (GOLPH3), a newly recognized oncogene, is associated with tumor growth, metastasis, and poor prognosis in several types of cancer. However, its biological role and underlying mechanism in epithelial ovarian cancer (EOC) remain poorly understood. Here, we found that GOLPH3 was overexpressed in EOC tissues and cell lines. This overexpression promoted the migration and invasion of EOC cells. Moreover, GOLPH3 upregulated the expression of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin and Snail, and the Wnt/β-catenin-related genes cyclin-D1 and c-Myc, which were restored via silencing of GOLPH3 expression. Furthermore, the inhibitor and activator of the Wnt/β-catenin pathway, XAV939 and LiCl, enhanced or decreased, respectively, the effect of GOLPH3 on EMT, which further confirmed that GOLPH3 promoted EMT progression via activation of Wnt/β-catenin signaling. In addition, we found that EDD, the human hyperplastic discs gene, was consistent with GOLPH3 expression and also promoted the EMT process and activated Wnt/β-catenin signaling. These findings demonstrate that EDD might be a downstream factor of GOLPH3. Taken together, our findings demonstrate the existence of a GOLPH3-Wnt/β-catenin-EMT axis in EOC and provide a new therapeutic target to treat EOC.

  20. Prostate Epithelial Pten/TP53 Loss Leads to Transformation of Multipotential Progenitors and Epithelial to Mesenchymal Transition

    PubMed Central

    Martin, Philip; Liu, Yen-Nien; Pierce, Rachel; Abou-Kheir, Wassim; Casey, Orla; Seng, Victoria; Camacho, Daniel; Simpson, R. Mark; Kelly, Kathleen

    2011-01-01

    Loss of PTEN and loss of TP53 are common genetic aberrations occurring in prostate cancer. PTEN and TP53 contribute to the regulation of self-renewal and differentiation in prostate progenitors, presumptive tumor initiating cells for prostate cancer. Here we characterize the transformed phenotypes resulting from deletion of the Pten and TP53 tumor suppressors in prostate epithelium. Using the PB-Cre4+Ptenfl/flTP53fl/fl model of prostate cancer, we describe the histological and metastatic properties of primary tumors, transplanted primary tumor cells, and clonal cell lines established from tumors. Adenocarcinoma was the major primary tumor type that developed, which progressed to lethal sarcomatoid carcinoma at approximately 6 months of age. In addition, basal carcinomas and prostatic urothelial carcinomas were observed. We show that tumor heterogeneity resulted, at least in part, from the transformation of multipotential progenitors. CK8+ luminal epithelial cells were capable of undergoing epithelial to mesenchymal transition in vivo to sarcomatoid carcinomas containing osseous metaplasia. Metastasis rarely was observed from primary tumors, but metastasis to lung and lymph nodes occurred frequently from orthotopic tumors initiated from a biphenotypic clonal cell line. Androgen deprivation influenced the differentiated phenotypes of metastases. These data show that one functional consequence of Pten/TP53 loss in prostate epithelium is lineage plasticity of transformed cells. PMID:21703421

  1. Low doses ionizing radiation enhances the invasiveness of breast cancer cells by inducing epithelial-mesenchymal transition

    SciTech Connect

    Zhang, Xin; Li, Xiaoyan; Zhang, Ning; Yang, Qifeng; Moran, Meena S.

    2011-08-19

    Highlights: {yields} Low doses ionizing irradiation would enhance the invasiveness of breast cancer cells by inducing EMT. {yields} Low doses ionizing radiation induced morphologic changes in breast cancer cells. {yields} Low doses ionizing radiation led to upregulation of mesenchymal markers and down-regulation of epithelial markers. {yields} Low doses ionizing radiation increased migration and invasion of breast cancer cells. -- Abstract: Epithelial-mesenchymal transition (EMT) is a process cellular morphologic and molecular alterations facilitate cell invasion. We hypothesized that low dose ionizing irradiation (LDIR) enhances the invasiveness of breast cancer cells by inducing EMT. The effects of LDIR on cellular morphology and the EMT markers of MCF-7 breast cancer cells were analyzed by western blot/RT-PCR and migration/invasion was examined using the transwell assay. We found that LDIR led to the phenotypic changes of EMT in MCF-7 cells and down-regulation of epithelial differentiation markers and transcriptional induction of mesenchymal markers. Furthermore, the radiated cells demonstrated enhanced migration/invasion MCF-7 cells compared with non-radiated cells. In summary, LDIR promotes the invasiveness of breast cancer cells through epithelial to mesenchymal transition. These findings may ultimately provide a new targeted approach for improving the therapeutic effectiveness of radiation in breast cancer.

  2. Roles of Dietary Phytoestrogens on the Regulation of Epithelial-Mesenchymal Transition in Diverse Cancer Metastasis

    PubMed Central

    Lee, Geum-A.; Hwang, Kyung-A.; Choi, Kyung-Chul

    2016-01-01

    Epithelial-mesenchymal transition (EMT) plays a key role in tumor progression. The cells undergoing EMT upregulate the expression of cell motility-related proteins and show enhanced migration and invasion. The hallmarks of EMT in cancer cells include changed cell morphology and increased metastatic capabilities in cell migration and invasion. Therefore, prevention of EMT is an important tool for the inhibition of tumor metastasis. A novel preventive therapy is needed, such as treatment of natural dietary substances that are nontoxic to normal human cells, but effective in inhibiting cancer cells. Phytoestrogens, such as genistein, resveratrol, kaempferol and 3,3′-diindolylmethane (DIM), can be raised as possible candidates. They are plant-derived dietary estrogens, which are found in tea, vegetables and fruits, and are known to have various biological efficacies, including chemopreventive activity against cancers. Specifically, these phytoestrogens may induce not only anti-proliferation, apoptosis and cell cycle arrest, but also anti-metastasis by inhibiting the EMT process in various cancer cells. There have been several signaling pathways found to be associated with the induction of the EMT process in cancer cells. Phytoestrogens were demonstrated to have chemopreventive effects on cancer metastasis by inhibiting EMT-associated pathways, such as Notch-1 and TGF-beta signaling. As a result, phytoestrogens can inhibit or reverse the EMT process by upregulating the expression of epithelial phenotypes, including E-cadherin, and downregulating the expression of mesenchymal phenotypes, including N-cadherin, Snail, Slug, and vimentin. In this review, we focused on the important roles of phytoestrogens in inhibiting EMT in many types of cancer and suggested phytoestrogens as prominent alternative compounds to chemotherapy. PMID:27231938

  3. Meta-Analysis of Gene Expression Signatures Defining the Epithelial to Mesenchymal Transition during Cancer Progression

    PubMed Central

    Gröger, Christian J.; Grubinger, Markus; Waldhör, Thomas; Vierlinger, Klemens; Mikulits, Wolfgang

    2012-01-01

    The epithelial to mesenchymal transition (EMT) represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis. Numerous gene expression studies (GES) have been conducted to obtain transcriptome signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type. GES of EMT induced via transforming growth factor-β and tumor necrosis factor-α treatment yielded uniformly defined clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into the mechanisms that are governing carcinoma progression. PMID:23251436

  4. Inhibition of histamine receptor 3 suppresses glioblastoma tumor growth, invasion, and epithelial-to-mesenchymal transition

    PubMed Central

    Cai, Wen-Ke; Yang, Yong-Xiang; Sun, Chao; Zhang, Zhuo; Xu, Yu-Qiao; Chang, Ting; Li, Zhu-Yi

    2015-01-01

    Histamine receptor 3 (H3R) is expressed in various tumors and correlated with malignancy and tumor proliferation. However, the role of H3R in tumor invasion and epithelial to mesenchymal transition (EMT) remains unknown. Here, we explored the H3R in the highly invasive glioblastoma (GBM) and U87MG cells. We found that H3R mRNA and protein levels were up-regulated in the GBM and glioma cell lines compared to normal brain tissue and astrocytes. In U87MG cell line, inhibition of H3R by siRNA or the antagonist ciproxifan (CPX) suppressed proliferation, invasiveness, and the expression of EMT activators (Snail, Slug and Twist). In addition, expression of epithelial markers (E-cadherin and ZO-1) was up-regulated and expression of mesenchymal markers (vimentin and N-cadherin) was down-regulated in vitro and in vivo in a xenograft model. In addition, we also showed that inhibition of H3R by siRNA or CPX inactivated the PI3K/Akt and MEK/ERK signaling pathways, while inhibition of Akt or ERK activity with antagonists or siRNAs suppressed H3R agonist (R)-(α)-(−)- methylhistamine dihydrobromide (RAMH) mediated invasion and reorganization of cadherin-household. In conclusion, overexpression of H3R is associated with glioma progression. Inhibition of H3R leads to suppressed invasion and EMT of GBM by inactivating the PI3K/Akt and MEK/ERK pathways in gliomas. PMID:25940798

  5. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition

    PubMed Central

    Roepman, Paul; Schlicker, Andreas; Tabernero, Josep; Majewski, Ian; Tian, Sun; Moreno, Victor; Snel, Mireille H; Chresta, Christine M; Rosenberg, Robert; Nitsche, Ulrich; Macarulla, Teresa; Capella, Gabriel; Salazar, Ramon; Orphanides, George; Wessels, Lodewyk FA; Bernards, Rene; Simon, Iris M

    2014-01-01

    In most colorectal cancer (CRC) patients, outcome cannot be predicted because tumors with similar clinicopathological features can have differences in disease progression and treatment response. Therefore, a better understanding of the CRC biology is required to identify those patients who will benefit from chemotherapy and to find a more tailored therapy plan for other patients. Based on unsupervised classification of whole genome data from 188 stages I–IV CRC patients, a molecular classification was developed that consist of at least three major intrinsic subtypes (A-, B- and C-type). The subtypes were validated in 543 stages II and III patients and were associated with prognosis and benefit from chemotherapy. The heterogeneity of the intrinsic subtypes is largely based on three biological hallmarks of the tumor: epithelial-to-mesenchymal transition, deficiency in mismatch repair genes that result in high mutation frequency associated with microsatellite instability and cellular proliferation. A-type tumors, observed in 22% of the patients, have the best prognosis, have frequent BRAF mutations and a deficient DNA mismatch repair system. C-type patients (16%) have the worst outcome, a mesenchymal gene expression phenotype and show no benefit from adjuvant chemotherapy treatment. Both A-type and B-type tumors have a more proliferative and epithelial phenotype and B-types benefit from adjuvant chemotherapy. B-type tumors (62%) show a low overall mutation frequency consistent with the absence of DNA mismatch repair deficiency. Classification based on molecular subtypes made it possible to expand and improve CRC classification beyond standard molecular and immunohistochemical assessment and might help in the future to guide treatment in CRC patients. PMID:23852808

  6. Regulatory Roles of Dclk1 in Epithelial Mesenchymal Transition and Cancer Stem Cells.

    PubMed

    Chandrakesan, P; Panneerselvam, J; Qu, D; Weygant, N; May, R; Bronze, M S; Houchen, C W

    2016-04-01

    The identification of functionally relevant subpopulations of therapy-resistant cancer cells is a challenge. These cells, intrinsically resistant to conventional therapy, can cause recurrence. Evidence has suggested that therapy-resistant cancer cells are likely epithelial-mesenchymal transition (EMT) cells and/or stem-like cells called cancer stem cells (CSCs). EMT, a normal embryological process that converts epithelial cells into mesenchymal cells, is frequently activated during cancer development and progression. CSCs are a small subpopulation of cancer cells within a tumor mass that have the ability to self-renew and maintain tumor-initiating capacity by giving rise to heterogeneous lineages of cancer cells that comprise the whole tumor. Although the origin of CSCs and EMT cells remains to be fully explored, a growing body of evidence has indicated that the biology of EMT and CSCs is strongly linked. Doublecortin-like kinase 1 (DCLK1), a cancer stem cell marker, is functionally involved in maintaining cancer stemness and the process of EMT important for cancer initiation, cancer metastasis, and secondary tumor formation. Therefore, targeting these cells may provide new strategies to overcome tumor heterogeneity, therapeutic resistance, and cancer relapse. In this review, we will provide a potential mechanistic link between EMT induction and the emergence of CSCs for the origin and progression of cancer. We will highlight the functional activity of DCLK1 in supporting EMT and cancer cell self-renewal, which will lead us to a better understanding of DCLK1 expression in cancer development and progression, and help us to develop targeted therapies for effective cancer treatment.

  7. Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells.

    PubMed

    Winitthana, Thidarat; Lawanprasert, Somsong; Chanvorachote, Pithi

    2014-01-01

    Alteration of cancer cell toward mesenchymal phenotype has been shown to potentiate tumor aggressiveness by increasing cancer cell metastasis. Herein, we report the effect of triclosan, a widely used antibacterial agent found in many daily products, in enhancing the epithelial-to-mesenchymal transition (EMT) in aggressive anoikis resistant human H460 lung cancer cells. EMT has been long known to increase abilities of the cells to increase migration, invasion, and survival in circulating system. The present study reveals that treatment of the cancer cells with triclosan at the physiologically related concentrations significantly increased the colony number of the cancer cells assessed by tumor formation assay. Also, the mesenchymal-like morphology and decrease in cell-to-cell adhesion were observed in triclosan-treated cells. Importantly, western blot analysis revealed that triclosan-treated cells exhibited decreased E-cadherin, while the levels of EMT markers, namely N-cadherin, vimentin, snail and slug were found to be significantly up-regulated. Furthermore, EMT induced by triclosan treatment was accompanied by the activation of focal adhesion kinase/ATP dependent tyrosine kinase (FAK/Akt) and Ras-related C3 botulinum toxin substrate 1 (Rac1), which enhanced the ability of the cells to migrate and invade. In conclusion, we demonstrated for the first time that triclosan may potentiate cancer cells survival in detached condition and motility via the process of EMT. As mentioned capabilities are required for success in metastasis, the present study provides the novel toxicological information and encourages the awareness of triclosan use in cancer patients.

  8. Reciprocal regulation of the cholinic phenotype and epithelial-mesenchymal transition in glioblastoma cells

    PubMed Central

    Koch, Katharina; Hartmann, Rudolf; Schröter, Friederike; Suwala, Abigail Kora; Maciaczyk, Donata; Krüger, Andrea Caroline; Willbold, Dieter; Kahlert, Ulf Dietrich; Maciaczyk, Jaroslaw

    2016-01-01

    Glioblastoma (GBM) is the most malignant brain tumor with very limited therapeutic options. Standard multimodal treatments, including surgical resection and combined radio-chemotherapy do not target the most aggressive subtype of glioma cells, brain tumor stem cells (BTSCs). BTSCs are thought to be responsible for tumor initiation, progression, and relapse. Furthermore, they have been associated with the expression of mesenchymal features as a result of epithelial-mesenchymal transition (EMT) thereby inducing tumor dissemination and chemo resistance. Using high resolution proton nuclear magnetic resonance spectroscopy (1H NMR) on GBM cell cultures we provide evidence that the expression of well-known EMT activators of the ZEB, TWIST and SNAI families and EMT target genes N-cadherin and VIMENTIN is associated with aberrant choline metabolism. The cholinic phenotype is characterized by high intracellular levels of phosphocholine and total choline derivatives and was associated with malignancy in various cancers. Both genetic and pharmacological inhibition of the cardinal choline metabolism regulator choline kinase alpha (CHKα) significantly reduces the cell viability, invasiveness, clonogenicity, and expression of EMT associated genes in GBM cells. Moreover, in some cell lines synergetic cytotoxic effects were observed when combining the standard of care chemotherapeutic temozolomide with the CHKα inhibitor V-11-0711. Taken together, specific inhibition of the enzymatic activity of CHKα is a powerful strategy to suppress EMT which opens the possibility to target chemo-resistant BTSCs through impairing their mesenchymal transdifferentiation. Moreover, the newly identified EMT-oncometabolic network may be helpful to monitor the invasive properties of glioblastomas and the success of anti-EMT therapy. PMID:27705917

  9. HDAC inhibitors induce epithelial-mesenchymal transition in colon carcinoma cells.

    PubMed

    Ji, Meiying; Lee, Eun Jeoung; Kim, Ki Bae; Kim, Yangmi; Sung, Rohyun; Lee, Sang-Jeon; Kim, Don Soo; Park, Seon Mee

    2015-05-01

    The effects of histone deacetylase (HDAC) inhibitors on epithelial-mesenchymal transition (EMT) differ in various types of cancers. We investigated the EMT phenotype in four colon cancer cell lines when challenged with HDAC inhibitors trichostatin A (TSA) and valproic acid (VPA) with or without transforming growth factor-β1 (TGF-β1) treatment. Four colon cancer cell lines with different phenotypes in regards to tumorigenicity, microsatellite stability and DNA mutation were used. EMT phenotypes were assessed by the expression of E-cadherin and vimentin using western blot analysis, immunofluorescence, quantitative real-time RT-PCR following treatment with TSA (100 or 200 nM) or VPA (0.5 mM) with or without TGF-β1 (5 ng/ml) for 24 h. Biological EMT phenotypes were also evaluated by cell morphology, migration and invasion assays. TSA or VPA induced mesenchymal features in the colon carcinoma cells by a decrease in E-cadherin and an increase in vimentin expression at the mRNA and protein levels. Confocal microscopy revealed membranous attenuation or nuclear translocation of E-cadherin and enhanced expression of vimentin. These responses occurred after 6 h and increased until 24 h. Colon cancer cells changed from a round or rectangular shape to a spindle shape with increased migration and invasion ability following TSA or VPA treatment. The susceptibility to EMT changes induced by TSA or VPA was comparable in microsatellite stable (SW480 and HT29) and microsatellite unstable cells (DLD1 and HCT116). TSA or VPA induced a mesenchymal phenotype in the colon carcinoma cells and these effects were augmented in the presence of TGF-β1. HDAC inhibitors require careful caution before their application as new anticancer drugs for colon cancers.

  10. Triclosan Potentiates Epithelial-To-Mesenchymal Transition in Anoikis-Resistant Human Lung Cancer Cells

    PubMed Central

    Winitthana, Thidarat; Lawanprasert, Somsong; Chanvorachote, Pithi

    2014-01-01

    Alteration of cancer cell toward mesenchymal phenotype has been shown to potentiate tumor aggressiveness by increasing cancer cell metastasis. Herein, we report the effect of triclosan, a widely used antibacterial agent found in many daily products, in enhancing the epithelial-to-mesenchymal transition (EMT) in aggressive anoikis resistant human H460 lung cancer cells. EMT has been long known to increase abilities of the cells to increase migration, invasion, and survival in circulating system. The present study reveals that treatment of the cancer cells with triclosan at the physiologically related concentrations significantly increased the colony number of the cancer cells assessed by tumor formation assay. Also, the mesenchymal-like morphology and decrease in cell-to-cell adhesion were observed in triclosan-treated cells. Importantly, western blot analysis revealed that triclosan-treated cells exhibited decreased E-cadherin, while the levels of EMT markers, namely N-cadherin, vimentin, snail and slug were found to be significantly up-regulated. Furthermore, EMT induced by triclosan treatment was accompanied by the activation of focal adhesion kinase/ATP dependent tyrosine kinase (FAK/Akt) and Ras-related C3 botulinum toxin substrate 1 (Rac1), which enhanced the ability of the cells to migrate and invade. In conclusion, we demonstrated for the first time that triclosan may potentiate cancer cells survival in detached condition and motility via the process of EMT. As mentioned capabilities are required for success in metastasis, the present study provides the novel toxicological information and encourages the awareness of triclosan use in cancer patients. PMID:25329306

  11. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer.

    PubMed

    Kyuno, Daisuke; Yamaguchi, Hiroshi; Ito, Tatsuya; Kono, Tsuyoshi; Kimura, Yasutoshi; Imamura, Masafumi; Konno, Takumi; Hirata, Koichi; Sawada, Norimasa; Kojima, Takashi

    2014-08-21

    Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and -18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin (CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1, -7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition (EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer.

  12. Targeting tight junctions during epithelial to mesenchymal transition in human pancreatic cancer

    PubMed Central

    Kyuno, Daisuke; Yamaguchi, Hiroshi; Ito, Tatsuya; Kono, Tsuyoshi; Kimura, Yasutoshi; Imamura, Masafumi; Konno, Takumi; Hirata, Koichi; Sawada, Norimasa; Kojima, Takashi

    2014-01-01

    Pancreatic cancer continues to be a leading cause of cancer-related death worldwide and there is an urgent need to develop novel diagnostic and therapeutic strategies to reduce the mortality of patients with this disease. In pancreatic cancer, some tight junction proteins, including claudins, are abnormally regulated and therefore are promising molecular targets for diagnosis, prognosis and therapy. Claudin-4 and -18 are overexpressed in human pancreatic cancer and its precursor lesions. Claudin-4 is a high affinity receptor of Clostridium perfringens enterotoxin (CPE). The cytotoxic effects of CPE and monoclonal antibodies against claudin-4 are useful as novel therapeutic tools for pancreatic cancer. Claudin-18 could be a putative marker and therapeutic target with prognostic implications for patients with pancreatic cancer. Claudin-1, -7, tricellulin and marvelD3 are involved in epithelial to mesenchymal transition (EMT) of pancreatic cancer cells and thus might be useful as biomarkers during disease. Protein kinase C is closely related to EMT of pancreatic cancer and regulates tight junctions of normal human pancreatic duct epithelial cells and the cancer cells. This review focuses on the regulation of tight junctions via protein kinase C during EMT in human pancreatic cancer for the purpose of developing new diagnostic and therapeutic modalities for pancreatic cancer. PMID:25152584

  13. F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check.

    PubMed

    Díaz, Víctor M; de Herreros, Antonio García

    2016-02-01

    F-box proteins are the key recognition subunit of multimeric E3 ubiquitin ligase complexes that participate in the proteasome degradation of specific substrates. In the last years, a discrete number of F-box proteins have been shown to regulate the epithelial-to-mesenchymal transition (EMT), a process defined by a rapid change of cell phenotype, the loss of epithelial characteristics and the acquisition of a more invasive phenotype. Specific EMT transcription factors (EMT-TFs), such as Snail, Slug, Twist and Zeb, control EMT induction both during development and in cancer. These EMT-TFs are short-lived proteins that are targeted to the proteasome system by specific F-box proteins, keeping them at low levels. F-box proteins also indirectly regulate the EMT process by controlling EMT inducers, such as Notch, c-Myc or mTOR. Here we summarize the role that these F-box proteins (Fbxw1, Fbxw7, Fbxl14, Fbxl5, Fbxo11 and Fbxo45) play in controlling EMT during development and cancer progression, a process dependent on post-translational modifications that govern their interaction with target proteins.

  14. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas.

    PubMed

    McCart Reed, Amy E; Kutasovic, Jamie R; Vargas, Ana C; Jayanthan, Janani; Al-Murrani, Amel; Reid, Lynne E; Chambers, Rachael; Da Silva, Leonard; Melville, Lewis; Evans, Elizabeth; Porter, Alan; Papadimos, David; Thompson, Erik W; Lakhani, Sunil R; Simpson, Peter T

    2016-03-01

    Epithelial to mesenchymal transition (EMT) is a cellular phenotype switching phenomenon which occurs during normal development and is proposed to promote tumour cell invasive capabilities during tumour progression. Invasive lobular carcinoma (ILC) is a histological special type of breast cancer with a peculiar aetiology - the tumour cells display an invasive growth pattern, with detached, single cells or single files of cells, and a canonical feature is the loss of E-cadherin expression. These characteristics are indicative of an EMT or at the very least that they represent some plasticity between phenotypes. While some gene expression profiling data support this view, the tumour cells remain epithelial and limited immunohistochemistry data suggest that EMT markers may not feature prominently in ILC. We assessed the expression of a panel of EMT markers (fibronectin, vimentin, N-cadherin, smooth muscle actin, osteonectin, Snail, Twist) in 148 ILCs and performed a meta-analysis of publically available molecular data from 154 ILCs. Three out of 148 (2%) ILCs demonstrated an early and coordinated alteration of multiple EMT markers (down-regulation of E-cadherin, nuclear TWIST, and up-regulation of vimentin, osteonectin, and smooth muscle actin). However, the data overall do not support a role for EMT in defining the phenotypic peculiarities of the majority of ILCs. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence

    PubMed Central

    Côté, Marceline; Miller, A. Dusty; Liu, Shan-Lu

    2014-01-01

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induce cell cycle arrest and senescence, leading to impaired cell proliferation. PMID:17588532

  16. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence.

    PubMed

    Côté, Marceline; Miller, A Dusty; Liu, Shan-Lu

    2007-08-17

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation.

  17. Human RON receptor tyrosine kinase induces complete epithelial-to-mesenchymal transition but causes cellular senescence

    SciTech Connect

    Cote, Marceline; Miller, A. Dusty; Liu, Shan-Lu . E-mail: shan-lu.liu@mcgill.ca

    2007-08-17

    The RON receptor tyrosine kinase is a member of the MET proto-oncogene family and is important for cell proliferation, differentiation, and cancer development. Here, we created a series of Madin-Darby canine kidney (MDCK) epithelial cell clones that express different levels of RON, and have investigated their biological properties. While low levels of RON correlated with little morphological change in MDCK cells, high levels of RON expression constitutively led to morphological scattering or complete and stabilized epithelial-to-mesenchymal transition (EMT). Unexpectedly, MDCK clones expressing higher levels of RON exhibited retarded proliferation and senescence, despite increased motility and invasiveness. RON was constitutively tyrosine-phosphorylated in MDCK cells expressing high levels of RON and undergoing EMT, and the MAPK signaling pathway was activated. This study reveals for the first time that RON alone is sufficient to induce complete and stabilized EMT in MDCK cells, and overexpression of RON does not cause cell transformation but rather induces cell cycle arrest and senescence, leading to impaired cell proliferation.

  18. Curcumin Suppresses Intestinal Fibrosis by Inhibition of PPARγ-Mediated Epithelial-Mesenchymal Transition

    PubMed Central

    Jiang, Bin; Wang, Hui; Shen, Cunsi; Chen, Hao

    2017-01-01

    Intestinal fibrotic stricture is a major complication of Crohn's disease (CD) and epithelial-to-mesenchymal transition (EMT) is considered as an important contributor to the formation of intestinal fibrosis by increasing extracellular matrix (ECM) proteins. Curcumin, a compound derived from rhizomes of Curcuma, has been demonstrated with a potent antifibrotic effect. However, its effect on intestinal fibrosis and the potential mechanism is not completely understood. Here we found that curcumin pretreatment significantly represses TGF-β1-induced Smad pathway and decreases its downstream α-smooth muscle actin (α-SMA) gene expression in intestinal epithelial cells (IEC-6); in contrast, curcumin increases expression of E-cadherin and peroxisome proliferator-activated receptor γ (PPARγ) in IEC-6. Moreover, curcumin promotes nuclear translocation of PPARγ and the inhibitory effect of curcumin on EMT could be reversed by PPARγ antagonist GW9662. Consistently, in the rat model of intestinal fibrosis induced by 2,4,5-trinitrobenzene sulphonic acid (TNBS), oral curcumin attenuates intestinal fibrosis by increasing the expression of PPARγ and E-cadherin and decreasing the expression of α-SMA, FN, and CTGF in colon tissue. Collectively, these results indicated that curcumin is able to prevent EMT progress in intestinal fibrosis by PPARγ-mediated repression of TGF-β1/Smad pathway. PMID:28203261

  19. A novel regulatory role for tissue transglutaminase in epithelial-mesenchymal transition in cystic fibrosis.

    PubMed

    Nyabam, Samuel; Wang, Zhuo; Thibault, Thomas; Oluseyi, Ayinde; Basar, Rameeza; Marshall, Lindsay; Griffin, Martin

    2016-09-01

    Cystic fibrosis (CF) is a genetic disorder caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) for which there is no overall effective treatment. Recent work indicates tissue transglutaminase (TG2) plays a pivotal intracellular role in proteostasis in CF epithelia and that the pan TG inhibitor cysteamine improves CFTR stability. Here we show TG2 has another role in CF pathology linked with TGFβ1 activation and signalling, induction of epithelial-mesenchymal transition (EMT), CFTR stability and induction of matrix deposition. We show that increased TG2 expression in normal and CF bronchial epithelial cells increases TGFβ1 levels, promoting EMT progression, and impairs tight junctions as measured by Transepithelial Electric Resistance (TEER) which can be reversed by selective inhibition of TG2 with an observed increase in CFTR stability. Our data indicate that selective inhibition of TG2 provides a potential therapeutic avenue for reducing fibrosis and increasing CFTR stability in CF. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Glycosylation in Cancer: Interplay between Multidrug Resistance and Epithelial-to-Mesenchymal Transition?

    PubMed Central

    da Fonseca, Leonardo Marques; da Silva, Vanessa Amil; Freire-de-Lima, Leonardo; Previato, José Osvaldo; Mendonça-Previato, Lucia; Capella, Márcia Alves Marques

    2016-01-01

    The expression of unusual glycan structures is a hallmark of cancer progression, and their functional roles in cancer biology have been extensively investigated in epithelial-to-mesenchymal transition (EMT) models. EMT is a physiological process involved in embryonic development and wound healing. It is characterized by loss of epithelial cell polarity and cell adhesion, permitting cell migration, and thus formation of new epithelia. However, this process is unwanted when occurring outside their physiological limit, resulting in fibrosis of organs and progression of cancer and metastasis. Several studies observed that EMT is related to the acquisition of multidrug resistance (MDR) phenotype, a condition in which cancer cells acquire resistance to multiple different drugs, which has virtually nothing in common. However, although some studies suggested interplay between these two apparently distinct phenomena, almost nothing is known about this possible relationship. A common pathway to them is the need for glycosylation, a post-translational modification that can alter biological function. Thus, this review intends to compile the main facts obtained until now in these two areas, as an effort to unravel the relationship between EMT and MDR. PMID:27446804

  1. miR-34c attenuates epithelial-mesenchymal transition and kidney fibrosis with ureteral obstruction

    PubMed Central

    Morizane, Ryuji; Fujii, Shizuka; Monkawa, Toshiaki; Hiratsuka, Ken; Yamaguchi, Shintaro; Homma, Koichiro; Itoh, Hiroshi

    2014-01-01

    micro RNAs (miRNAs) are small non-coding RNAs that act as posttranscriptional repressors by binding to the 3′-UTR of target mRNAs. On the other hand, mesenchymal-epithelial transition (EMT) and kidney fibrosis is a pathological process of chronic kidney disease (CKD), and its relationship to miRNAs is becoming recognized as a potential target for CKD therapies. To find new miRNAs involved in EMT, we examined miRNA expression in experimental models of EMT and renal epithelialization using microarray, and found that miR-34c attenuates EMT induced by TGF-β in a mouse tubular cell line. To confirm the effects of miR-34c in vivo, we administered the precursor of miR-34c to mice with unilateral ureteral obstruction, and miR-34c decreased kidney fibrosis area and the expression of connective tissue growth factor, α-SMA, collagen type 1, collagen type 3 and fibronectin. In conclusion, our study showed miR-34c attenuates EMT and kidney fibrosis of mice with ureteral obstruction. PMID:24694752

  2. Nrf2 inhibits epithelial-mesenchymal transition by suppressing snail expression during pulmonary fibrosis

    PubMed Central

    Zhou, Wencheng; Mo, Xiaoting; Cui, Wenhui; Zhang, Zhihui; Li, Delin; Li, Liucheng; Xu, Liang; Yao, Hongwei; Gao, Jian

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a phenotype conversion that plays a critical role in the development of pulmonary fibrosis (PF). It is known that snail could regulate the progression of EMT. Nuclear factor erythroid 2 related factor 2 (Nrf2), a key regulator of antioxidant defense system, protects cells against oxidative stress. However, it is not known whether Nrf2 regulates snail thereby modulating the development of PF. Here, bleomycin (BLM) was intratracheally injected into both Nrf2-knockout (Nrf2−/−) and wild-type mice to compare the development of PF. Rat type II alveolar epithelial cells (RLE-6TN) were treated with a specific Nrf2 activator sulforaphane, or transfected with Nrf2 and snail siRNAs to determine their effects on transforming growth factor β1 (TGF-β1)-induced EMT. We found that BLM-induced EMT and lung fibrosis were more severe in Nrf2−/− mice compared to wild-type mice. In vitro, sulforaphane treatment attenuated TGF-β1-induced EMT, accompanied by the down-regulation of snail. Inversely, silencing Nrf2 by siRNA enhanced TGF-β1-induced EMT along with increased expression of snail. Interestingly, when snail was silenced by siRNA, sulforaphane treatment was unable to reduce the progression of EMT in RLE-6TN cells. These findings suggest that Nrf2 attenuates EMT and fibrosis process by regulating the expression of snail in PF. PMID:27982105

  3. Glycosylation in Cancer: Interplay between Multidrug Resistance and Epithelial-to-Mesenchymal Transition?

    PubMed

    da Fonseca, Leonardo Marques; da Silva, Vanessa Amil; Freire-de-Lima, Leonardo; Previato, José Osvaldo; Mendonça-Previato, Lucia; Capella, Márcia Alves Marques

    2016-01-01

    The expression of unusual glycan structures is a hallmark of cancer progression, and their functional roles in cancer biology have been extensively investigated in epithelial-to-mesenchymal transition (EMT) models. EMT is a physiological process involved in embryonic development and wound healing. It is characterized by loss of epithelial cell polarity and cell adhesion, permitting cell migration, and thus formation of new epithelia. However, this process is unwanted when occurring outside their physiological limit, resulting in fibrosis of organs and progression of cancer and metastasis. Several studies observed that EMT is related to the acquisition of multidrug resistance (MDR) phenotype, a condition in which cancer cells acquire resistance to multiple different drugs, which has virtually nothing in common. However, although some studies suggested interplay between these two apparently distinct phenomena, almost nothing is known about this possible relationship. A common pathway to them is the need for glycosylation, a post-translational modification that can alter biological function. Thus, this review intends to compile the main facts obtained until now in these two areas, as an effort to unravel the relationship between EMT and MDR.

  4. PROP1 triggers epithelial-mesenchymal transition-like process in pituitary stem cells

    PubMed Central

    Pérez Millán, María Inés; Brinkmeier, Michelle L; Mortensen, Amanda H; Camper, Sally A

    2016-01-01

    Mutations in PROP1 are the most common cause of hypopituitarism in humans; therefore, unraveling its mechanism of action is highly relevant from a therapeutic perspective. Our current understanding of the role of PROP1 in the pituitary gland is limited to the repression and activation of the pituitary transcription factor genes Hesx1 and Pou1f1, respectively. To elucidate the comprehensive PROP1-dependent gene regulatory network, we conducted genome-wide analysis of PROP1 DNA binding and effects on gene expression in mutant mice, mouse isolated stem cells and engineered mouse cell lines. We determined that PROP1 is essential for stimulating stem cells to undergo an epithelial to mesenchymal transition-like process necessary for cell migration and differentiation. Genomic profiling reveals that PROP1 binds to genes expressed in epithelial cells like Claudin 23, and to EMT inducer genes like Zeb2, Notch2 and Gli2. Zeb2 activation appears to be a key step in the EMT process. Our findings identify PROP1 as a central transcriptional component of pituitary stem cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.14470.001 PMID:27351100

  5. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget.

    PubMed

    Zlobec, Inti; Lugli, Alessandro

    2010-11-01

    Epithelial mesenchymal transition (EMT) is proposed as a critical mechanism for the acquisition of malignant phenotypes by epithelial cells. In colorectal cancer, tumor cells having undergone EMT are histologically represented by the presence of tumor buds defined as single cells or small clusters of de-differentiated tumor cells at the invasive front. Tumor budding is not a static, histological feature rather it represents a snap-shot of a dynamic process undertaken by an aggressive tumor with the potential to disseminate and metastasize. Strong, consistent evidence shows that tumor budding is a predictor of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival time and an independent prognostic factor. Moreover, the International Union against Cancer (UICC) recognizes tumor budding as a highly relevant, additional prognostic parameter. The aim of this review is to summarize the evidence supporting the implementation of tumor budding into diagnostic pathology and patient management and additionally to illustrate its worthiness as a potential therapeutic target.

  6. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: Tumor budding as oncotarget

    PubMed Central

    Zlobec, Inti; Lugli, Alessandro

    2010-01-01

    Epithelial mesenchymal transition (EMT) is proposed as a critical mechanism for the acquisition of malignant phenotypes by epithelial cells. In colorectal cancer, tumor cells having undergone EMT are histologically represented by the presence of tumor buds defined as single cells or small clusters of de-differentiated tumor cells at the invasive front. Tumor budding is not a static, histological feature rather it represents a snap-shot of a dynamic process undertaken by an aggressive tumor with the potential to disseminate and metastasize. Strong, consistent evidence shows that tumor budding is a predictor of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival time and an independent prognostic factor. Moreover, the International Union against Cancer (UICC) recognizes tumor budding as a highly relevant, additional prognostic parameter. The aim of this review is to summarize the evidence supporting the implementation of tumor budding into diagnostic pathology and patient management and additionally to illustrate its worthiness as a potential therapeutic target. PMID:21317460

  7. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition

    PubMed Central

    Chang, Hongyuan; Liu, Yuwei; Xue, Mengzhu; Liu, Haiyue; Du, Shaowei; Zhang, Liwen; Wang, Peng

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is a complex multistep process in which phenotype switches are mediated by a network of transcription factors (TFs). Systematic characterization of all dynamic TFs controlling EMT state transitions, especially for the intermediate partial-EMT state, represents a highly relevant yet largely unexplored task. Here, we performed a computational analysis that integrated time-course EMT transcriptomic data with public cistromic data and identified three synergistic master TFs (ETS2, HNF4A and JUNB) that regulate the transition through the partial-EMT state. Overexpression of these regulators predicted a poor clinical outcome, and their elimination readily abolished TGF-β-induced EMT. Importantly, these factors utilized a clique motif, physically interact and their cumulative binding generally characterized EMT-associated genes. Furthermore, analyses of H3K27ac ChIP-seq data revealed that ETS2, HNF4A and JUNB are associated with super-enhancers and the administration of BRD4 inhibitor readily abolished TGF-β-induced EMT. These findings have implications for systematic discovery of master EMT regulators and super-enhancers as novel targets for controlling metastasis. PMID:26926107

  8. Negative regulation of TGFβ-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists.

    PubMed

    Zhao, Guannan; Wojciechowski, Magdalena C; Jee, Seonah; Boros, Jessica; McAvoy, John W; Lovicu, Frank J

    2015-03-01

    An eclectic range of ocular growth factors with differing actions are present within the aqueous and vitreous humors that bathe the lens. Growth factors that exert their actions via receptor tyrosine kinases (RTKs), such as FGF, play a normal regulatory role in lens; whereas other factors, such as TGFβ, can lead to an epithelial to mesenchymal transition (EMT) that underlies several forms of cataract. The respective downstream intracellular signaling pathways of these factors are in turn tightly regulated. One level of negative regulation is thought to be through RTK-antagonists, namely, Sprouty (Spry), Sef and Spred that are all expressed in the lens. In this study, we tested these different negative regulators and compared their ability to block TGFβ-induced EMT in rat lens epithelial cells. Spred expression within the rodent eye was confirmed using RT-PCR, western blotting and immunofluorescence. Rat lens epithelial explants were used to examine the morphological changes associated with TGFβ-induced EMT over 3 days of culture, as well as α-smooth muscle actin (α-sma) immunolabeling. Cells in lens epithelial explants were transfected with either a reporter (EGFP) vector (pLXSG), or with plasmids also coding for different RTK-antagonists (i.e. pLSXG-Spry1, pLSXG-Spry2, pLXSG-Sef, pLSXG-Spred1, pLSXG-Spred2, pLSXG-Spred3), before treating with TGFβ for up to 3 days. The percentages of transfected cells that underwent TGFβ-induced morphological changes consistent with an EMT were determined using cell counts and validated with a paired two-tailed t-test. Explants transfected with pLXSG demonstrated a distinct transition in cell morphology after TGFβ treatment, with ∼60% of the cells undergoing fibrotic-like cell elongation. This percentage was significantly reduced in cells overexpressing the different antagonists, indicative of a block in lens EMT. Of the antagonists tested under these in vitro conditions, Spred1 was the most potent demonstrating the

  9. Curcumin Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells through the Inhibition of Akt/mTOR Pathway.

    PubMed

    Zhu, Fang-Qiang; Chen, Min-Jia; Zhu, Ming; Zhao, Rong-Seng; Qiu, Wei; Xu, Xiang; Liu, Hong; Zhao, Hong-Wen; Yu, Rong-Jie; Wu, Xiong-Fei; Zhang, Keqin; Huang, Hong

    2017-01-01

    Curcumin has exhibited a protective effect against development of renal fibrosis in animal models, however, its underlying molecular mechanisms are largely unclear. Therefore, we investigated the anti-fibrosis effects of curcumin in transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT), and the mechanism by which it mediates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Human kidney tubular epithelial cells (HKCs) were treated with TGF-β1 or curcumin alone, or TGF-β1 in combination with curcumin. The effect of curcumin on cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of E-cadherin, cytokeratin, vimentin, alpha smooth muscle actin (α-SMA), fibroblast-specific protein 1 (FSP1) and key proteins of Akt/mammalian target of rapamycin (mTOR) pathway were analyzed by immunocytochemistry, real-time PCR and Western blot. Low dose curcumin (3.125 and 25 µmol/L) effectively promoted HKC proliferation. When HKCs were co-incubated with TGF-β1 and curcumin for 72 h, curcumin maintained the epithelial morphology in a dose-dependent manner, decreased expression of vimentin, α-SMA and FSP1 normally induced by TGF-β1, and increased expression of E-cadherin, cytokeratin. Importantly, we found that curcumin reduced Akt, mTOR and P70S6K phosphorylation, effectively suppressing the activity of the Akt/mTOR pathway in HKCs. Curcumin also promoted HKC proliferation, and antagonized TGF-β1-driven EMT through the inhibition of Akt/mTOR pathway activity, which may suggest an alternative therapy for renal fibrosis.

  10. β-Catenin/CBP–Dependent Signaling Regulates TGF-β–Induced Epithelial to Mesenchymal Transition of Lens Epithelial Cells

    PubMed Central

    Taiyab, Aftab; Korol, Anna; Deschamps, Paula A.; West-Mays, Judith A.

    2016-01-01

    Purpose Transforming growth factor-β–induced epithelial–mesenchymal transition (EMT) is one of the main causes of posterior capsular opacification (PCO) or secondary cataract; however, the signaling events involved in TGF-β–induced PCO have not been fully characterized. Here, we focus on examining the role of β-catenin/cyclic AMP response element–binding protein (CREB)-binding protein (CBP) and β-catenin/T-cell factor (TCF)-dependent signaling in regulating cytoskeletal dynamics during TGF-β–induced EMT in lens epithelial explants. Methods Rat lens epithelial explants were cultured in medium M199 in the absence of serum. Explants were treated with TGF-β2 in the presence or absence of the β-catenin/CBP interaction inhibitor, ICG-001, or the β-catenin/TCF interaction inhibitor, PNU-74654. Western blot and immunofluorescence experiments were carried out and analyzed. Results An increase in the expression of fascin, an actin-bundling protein, was observed in the lens explants upon stimulation with TGF-β, and colocalized with F-actin filaments. Inhibition of β-catenin/CBP interactions, but not β-catenin/TCF interactions, led to a decrease in TGF-β–induced fascin and stress fiber formation, as well as a decrease in the expression of known markers of EMT, α-smooth muscle actin (α-SMA) and matrix metalloproteinase 9 (MMP9). In addition, inhibition of β-catenin/CBP–dependent signaling also prevented TGF-β–induced downregulation of epithelial cadherin (E-cadherin) in lens explants. Conclusions We show that β-catenin/CBP–dependent signaling regulates fascin, MMP9, and α-SMA expression during TGF-β–induced EMT. We demonstrate that β-catenin/CBP–dependent signaling is crucial for TGF-β–induced EMT in the lens. PMID:27787561

  11. Propolis inhibits TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells via PPARγ activation.

    PubMed

    Kao, Hui-Fang; Chang-Chien, Pei-Wen; Chang, Wen-Tsan; Yeh, Trai-Ming; Wang, Jiu-Yao

    2013-03-01

    Emerging evidence suggests that the transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to airway remodeling in severe asthma and fibrotic lung diseases. Studies have shown that extracts from propolis protect chemical-induced cardiac and liver fibrosis in animals. This study assesses the inhibitory effect of propolis on TGF-β1-induced EMT in serum-deprived A549 cells (human AECs). Experimental results show progressive cell morphological changes, decreased E-cadherin, increased N-cadherin production, intracellular F-actin rearrangement, increased reactive oxygen species (ROS) production, and increased cell motility with increasing TGF-β1 concentration. A549 cells pretreated with propolis and then treated with TGF-β1 for 24 h regained epithelial cell morphology, decreased the production of N-cadherin and ROS, and had reduced motility. Propolis prevents the effects of TGF-β1-induced Smad2 and AKT activation pathways and Snail expression. Moreover, propolis pretreatment may prevent the TGF-β1-induced down-regulation of nuclear hormone receptors and peroxisome proliferator-activated receptor gamma (PPARγ) protein in A549 cells, whose effect was blocked by adding PPARγ antagonist, GW9662. Two active components of propolis, caffeic acid phenethyl ester (CAPE) and pinocembrin (PIN), only had partial effects on TGF-β1-induced EMT in A549 cells. The results of this study suggest that natural propolis extracts may prevent TGF-β1-induced EMT in immortalized type II AECs via multiple inhibitory pathways, which may be clinically applied in the prevention and/or treatment of EMT-related fibrotic diseases as well as airway remodeling in chronic asthma. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Nicotine-induced epithelial-mesenchymal transition via Wnt/β-catenin signaling in human airway epithelial cells.

    PubMed

    Zou, Weifeng; Zou, Yimin; Zhao, Zhuxiang; Li, Bing; Ran, Pixin

    2013-02-15

    Epithelial-mesenchymal transition (EMT) has been proposed to be a mechanism in airway remodeling, which is a characteristic of chronic obstructive pulmonary disease (COPD). Studies have shown that cigarette smoke and nicotine are factors that induce Wnt/β-catenin activation, which is a pathway that has also been implicated in EMT. The main aim of this study was to test whether human bronchial epithelial cells are able to undergo EMT in vitro following nicotine stimulation via the Wnt3a/β-catenin signaling pathway. We show that nicotine activates the Wnt3a signal pathway, which leads to the translocation of β-catenin into the nucleus and activation of β-catenin/Tcf-dependent transcription in the human bronchial epithelial cell (HBEC) line. This accumulation was accompanied by an increase in smooth muscle actin, vimentin, matrix metalloproteinases-9, and type I collagen expression as well as downregulation of E-cadherin, which are typical characteristics of EMT. We also noted that the release of TGF-β(1) from these cells was stimulated by nicotine. Knockdown of Wnt3a with small interfering RNA (siRNA) prevented these effects, implying that β-catenin activation in these responses is Wnt3a dependent. Furthermore, specific knockdown of TGF-β(1) with TGF-β(1) siRNA partially prevented nicotine-induced EMT, suggesting that TGF-β(1) has a role in nicotine-mediated EMT in HBECs. These results suggest that HBECs are able to undergo EMT in vitro upon nicotine stimulation via the Wnt3a/β-catenin signaling pathway.

  13. Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression.

    PubMed

    Yori, Jennifer L; Johnson, Emhonta; Zhou, Guangjin; Jain, Mukesh K; Keri, Ruth A

    2010-05-28

    The Krüppel-like factor 4 (KLF4) is a transcriptional regulator of proliferation and differentiation in epithelial cells, both during development and tumorigenesis. Although KLF4 functions as a tumor suppressor in several tissues, including the colon, the role of KLF4 in breast cancer is less clear. Here, we show that KLF4 is necessary for maintenance of the epithelial phenotype in non-transformed MCF-10A mammary epithelial cells. KLF4 silencing led to alterations in epithelial cell morphology and migration, indicative of an epithelial-to-mesenchymal transition. Consistent with these changes, decreased levels of KLF4 also resulted in the loss of E-cadherin protein and mRNA. Promoter/reporter analyses revealed decreased E-cadherin promoter activity with KLF4 silencing, while chromatin immunoprecipitation identified endogenous KLF4 binding to the GC-rich/E-box region of this promoter. Furthermore, forced expression of KLF4 in the highly metastatic MDA-MB-231 breast tumor cell line was sufficient to restore E-cadherin expression and suppress migration and invasion. These findings identify E-cadherin as a novel transcriptional target of KLF4. The clear requirement for KLF4 to maintain E-cadherin expression and prevent epithelial-to-mesenchymal transition in mammary epithelial cells supports a metastasis suppressive role for KLF4 in breast cancer.

  14. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines.

    PubMed

    Gallardo, Marcela; Calaf, Gloria M

    2016-09-01

    Curcumin (diferuloyl methane) is an antioxidant that exerts antiproliferative and apoptotic effects and has anti-invasive and anti-metastatic properties. Evidence strongly implicates that epithelial-mesenchymal transition (EMT) is involved in malignant progression affecting genes such as Slug, AXL and Twist1. These genes are abnormally expressed in many tumors and favor metastasis. The purpose of this study was to determine the potential effect of curcumin on EMT, migration and invasion. Triple-positive and triple-negative breast cancer cell lines for estrogen receptor (ER), progesterone receptor (PgR) and HER/neu were used: i) MCF-10F, a normal immortalized breast epithelial cell line (negative), ii) Tumor2, a malignant and tumorigenic cell line (positive) derived from Alpha5 cell line injected into the immunologically depressed mice and transformed by 60/60 cGy doses of high LET (linear energy transfer) α particles (150 keV/µm) of radiation and estrogen, and iii) a commercially available MDA-MB‑231 (negative). The effect of curcumin (30 µM for 48 h) was evaluated on expression of EMT-related genes by RT-qPCR. Results showed that curcumin decreased E-cadherin, N-cadherin, β-catenin, Slug, AXL, Twist1, Vimentin and Fibronectin protein expression, independently of the positivity of the markers in the cell lines. Curcumin also decreased migration and invasive capabilities in comparison to their own controls. It can be concluded that curcumin influenced biochemical changes associated with EMT-related genes that seems to promote such transition and are at the core of several signaling pathways that mediate the transition. Thus, it can be suggested that curcumin is able to prevent or delay cancer progression through the interruption of this process.

  15. Actin cytoskeletal control during epithelial to mesenchymal transition: focus on the pancreas and intestinal tract

    PubMed Central

    Morris, H T; Machesky, L M

    2015-01-01

    The formation of epithelial tissues allows organisms to specialise and form tissues with diverse functions and compartmentalised environments. The tight controls on cell growth and migration required to maintain epithelia can present problems such as the development and spread of cancer when normal pathways are disrupted. By attaining a deeper understanding of how cell migration is suppressed to maintain the epithelial organisation and how it is reactivated when epithelial tissues become mesenchymal, new insights into both cancer and development can be gained. Here we discuss recent developments in our understanding of epithelial and mesenchymal regulation of the actin cytoskeleton in normal and cancerous tissue, with a focus on the pancreas and intestinal tract. PMID:25611303

  16. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion

    PubMed Central

    Vindigni, Carla; Pucci, Angela; Balsamo, Michele; Libro, Rosaliana; Senchenko, Vera; Dmitriev, Alexey; Jacchetti, Emanuela; Cecchini, Marco; Roviello, Franco; Lai, Michele; Broccoli, Vania; Andreazzoli, Massimiliano; Mazzanti, Chiara M.; Angeloni, Debora

    2016-01-01

    The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy. PMID:26689989

  17. MICAL2 is a novel human cancer gene controlling mesenchymal to epithelial transition involved in cancer growth and invasion.

    PubMed

    Mariotti, Sara; Barravecchia, Ivana; Vindigni, Carla; Pucci, Angela; Balsamo, Michele; Libro, Rosaliana; Senchenko, Vera; Dmitriev, Alexey; Jacchetti, Emanuela; Cecchini, Marco; Roviello, Franco; Lai, Michele; Broccoli, Vania; Andreazzoli, Massimiliano; Mazzanti, Chiara M; Angeloni, Debora

    2016-01-12

    The MICAL (Molecules Interacting with CasL) proteins catalyze actin oxidation-reduction reactions destabilizing F-actin in cytoskeletal dynamics. Here we show for the first time that MICAL2 mRNA is significantly over-expressed in aggressive, poorly differentiated/undifferentiated, primary human epithelial cancers (gastric and renal). Immunohistochemistry showed MICAL2-positive cells on the cancer invasive front and in metastasizing cancer cells inside emboli, but not at sites of metastasis, suggesting MICAL2 expression was 'on' in a subpopulation of primary cancer cells seemingly detaching from the tissue of origin, enter emboli and travel to distant sites, and was turned 'off' upon homing at metastatic sites. In vitro, MICAL2 knock-down resulted in mesenchymal to epithelial transition, reduction of viability, and loss of motility and invasion properties of human cancer cells. Moreover, expression of MICAL2 cDNA in MICAL2-depleted cells induced epithelial to mesenchymal transition. Altogether our data indicate that MICAL2 over-expression is associated with cancer progression and metastatic disease. MICAL2 might be an important regulator of epithelial to mesenchymal transition and therefore a promising target for anti-metastatic therapy.

  18. Lysophosphatidic Acid Promotes Epithelial to Mesenchymal Transition in Ovarian Cancer Cells by Repressing SIRT1.

    PubMed

    Ray, Upasana; Roy, Sib Sankar; Chowdhury, Shreya Roy

    2017-01-01

    Epithelial-to-mesenchymal transition (EMT) plays an essential role in the transition from early to invasive phenotype, however the underlying mechanisms still remain elusive. Herein, we propose a mechanism through which the class-III deacetylase SIRT1 regulates EMT in ovarian cancer (OC) cells. Expression analysis was performed using Q-PCR, western blot, immunofluorescence and fluorescence-IHC study. Matrigel invasion assay was used for the invasion study. Morphological alterations were observed by phalloidin-staining. Co-immunoprecipitation study was performed to analyze protein-protein interaction. Overexpression of SIRT1-WT as well as Resveratrol-mediated SIRT1 activation antagonized the invasion of OC cells by suppressing EMT. SIRT1 deacetylates HIF1α, to inactivate its transcriptional activity. To further validate HIF1α inactivation, its target gene, i.e. ZEB1, an EMT-inducing factor was found to attenuate upon SIRT1 activation. To uncover the regulatory factor governing SIRT1 expression, lysophosphatidic acid (LPA), a highly enriched oncolipid in ascites/serum of OC patients, was found to down-regulate SIRT1 expression. Importantly, LPA was found to induce the mesenchymal switch in OC cells through suppression of SIRT1. Decreased level of SIRT1 was further validated in ovarian tissue samples of OC patients. We have identified a mechanism that relates SIRT1 down-regulation to LPA-induced EMT in OC cells and may open new arenas on developing novel anti-cancer therapeutics. © 2017 The Author(s)Published by S. Karger AG, Basel.

  19. P63 regulates tubular formation via epithelial-to-mesenchymal transition

    PubMed Central

    Zhang, Y; Yan, W; Chen, X

    2016-01-01

    P63, a p53 family member, is expressed as TA and ΔN isoforms. Interestingly, both TAp63 and ΔNp63 are transcription factors, and regulate both common and distinct sets of target genes. p63 is required for survival of some epithelial cell lineages, and lack of p63 leads to loss of epidermis and other epithelia in humans and mice. Here, we explored the role of p63 isoforms in cell proliferation, migration and tubulogenesis by using Madin–Darby Canine Kidney (MDCK) tubular epithelial cells in two- or three-dimensional (2-D or 3-D) culture. We found that like downregulation of p53, downregulation of p63 and TAp63 decreases expression of growth-suppressing genes, including p21, PUMA and MIC-1, and consequently promotes cell proliferation and migration in 2-D culture. However, in 3-D culture, downregulation of p63, especially TAp63, but not p53, decapacitates MDCK cells to form a cyst structure through enhanced epithelial-to-mesenchymal transition (EMT). In contrast, downregulation of ΔNp63 inhibits MDCK cell proliferation and migration in 2-D culture, and delays but does not block MDCK cell cyst formation and tubulogenesis in 3-D culture. Consistent with this, downregulation of ΔNp63 markedly upregulates growth-suppressing genes, including p21, PUMA and MIC-1. Taken together, these data suggest that TAp63 is the major isoform required for tubulogenesis by maintaining an appropriate level of EMT, whereas ΔNp63 fine-tunes the rate of cyst formation and tubulogenesis by maintaining an appropriate expression level of genes involved in cell cycle arrest and apoptosis. PMID:23542170

  20. Functional cooperation of RKTG with p53 in tumorigenesis and epithelial-mesenchymal transition.

    PubMed

    Jiang, Yuhui; Xie, Xiaoduo; Li, Zhigang; Wang, Zheng; Zhang, Yixuan; Ling, Zhi-Qiang; Ling, Zhiqiang; Pan, Yi; Wang, Zhenzhen; Chen, Yan

    2011-04-15

    Raf kinase trapping to Golgi (RKTG) is a potential tumor suppressor gene due to its negative roles in regulating Ras/Raf/MEK/ERK (extracellular signal-regulated kinase) pathway and GPCR (G protein-coupled receptor) Gβγ subunit signaling. Interestingly, RKTG-deficient mice are free of tumors, although they are prone to form skin cancer on carcinogen administration. On the other hand, p53 is a well-characterized tumor suppressor gene and p53 heterozygous mice develop sarcoma and other tumors starting from 12 months of age. In RKTG-null mouse embryonic fibroblasts, lypophosphatidic acid (LPA), but not EGF (epidermal growth factor), could stimulate hyperphosphorylation of AKT and GSK3β, accompanied by increases in phosphorylation of p53 at Ser15 and accumulation of p53, as well as its target genes p21 and p16. Spontaneous skin cancer-like tumors were detected in about 25% of RKTG nullizygous and p53 heterozygous mice within 7 months of age. Hyperplasia and epithelial-mesenchymal transition (EMT) were observed in the tumor-overlying epidermis, in which LOH of p53 occurred and EMT features emerged. In p53-mutated A431 epithelial carcinoma cells, knockdown of RKTG led to enhancement of LPA-stimulated AKT and GSK3β phosphorylation, together with increased accumulation of β-catenin and appearance of EMT features that were antagonized by p53 overexpression. In HepG2 epithelial cells, LPA-stimulated AKT phosphorylation and EMT features reached maximum when both RKTG and p53 were simultaneously silenced. In summary, these results not only indicate that RKTG has an in vivo tumor suppressor function to cooperate with p53 in tumorigenesis but also suggest that p53 has an EMT checkpoint function and the loss of this function can combine with loss of RKTG to drive EMT and tumor progression.

  1. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition

    PubMed Central

    Gawronska-Kozak, Barbara; Grabowska, Anna; Kur-Piotrowska, Anna; Kopcewicz, Marta

    2016-01-01

    Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process. PMID:26938103

  2. Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition.

    PubMed

    Gawronska-Kozak, Barbara; Grabowska, Anna; Kur-Piotrowska, Anna; Kopcewicz, Marta

    2016-01-01

    Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process.

  3. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation.

    PubMed

    Iser, Isabele C; Pereira, Mariana B; Lenz, Guido; Wink, Márcia R

    2017-03-01

    Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer due to its highly invasive nature that impedes the surgical removal of all tumor cells, making relapse inevitable. However, the mechanisms used by glioma cells to invade the surrounding tissue are still unclear. In this context, epithelial-to-mesenchymal transition (EMT) has emerged as a key regulator of this invasive state and although the real relevance of this program in malignant glioma is still controversial, it has been strongly associated with GBM malignancy. EMT is a very complex process regulated by several families of transcriptional factors through many signaling pathways that form a network that allows cancer cells to acquire invasive properties and penetrate the neighboring stroma, resulting in the formation of an advantageous microenvironment for cancer progression and metastasis. In this systematic review, we focus on the molecular mechanisms of EMT including EMT-factors, drug resistance, miRNA, and new therapeutic strategies. In addition, we address controversial questions about mesenchymal shift in GBMs with a bioinformatics analysis to show that in terms of epithelial and mesenchymal phenotype, the majority of GBMs samples analyzed have a profile more mesenchymal than epithelial. If induced, this phenotype can be shifted toward an even more mesenchymal phenotype in an EMT-like process in glioma cells. A better understanding of the molecular regulation of the EMT during tumor spreading will help to provide potential therapeutic interventions to target this program when treating GBM.

  4. Epigenetic coordination of signaling pathways during the epithelial-mesenchymal transition

    PubMed Central

    2013-01-01

    Background The epithelial-mesenchymal transition (EMT) is a de-differentiation process required for wound healing and development. In tumors of epithelial origin aberrant induction of EMT contributes to cancer progression and metastasis. Studies have begun to implicate epigenetic reprogramming in EMT; however, the relationship between reprogramming and the coordination of cellular processes is largely unexplored. We have previously developed a system to study EMT in a canonical non-small cell lung cancer (NSCLC) model. In this system we have shown that the induction of EMT results in constitutive NF-κB activity. We hypothesized a role for chromatin remodeling in the sustained deregulation of cellular signaling pathways. Results We mapped sixteen histone modifications and two variants for epithelial and mesenchymal states. Combinatorial patterns of epigenetic changes were quantified at gene and enhancer loci. We found a distinct chromatin signature among genes in well-established EMT pathways. Strikingly, these genes are only a small minority of those that are differentially expressed. At putative enhancers of genes with the ‘EMT-signature’ we observed highly coordinated epigenetic activation or repression. Furthermore, enhancers that are activated are bound by a set of transcription factors that is distinct from those that bind repressed enhancers. Upregulated genes with the ‘EMT-signature’ are upstream regulators of NF-κB, but are also bound by NF-κB at their promoters and enhancers. These results suggest a chromatin-mediated positive feedback as a likely mechanism for sustained NF-κB activation. Conclusions There is highly specific epigenetic regulation at genes and enhancers across several pathways critical to EMT. The sites of these changes in chromatin state implicate several inducible transcription factors with critical roles in EMT (NF-κB, AP-1 and MYC) as targets of this reprogramming. Furthermore, we find evidence that suggests that these

  5. Role and prognostic significance of the epithelial-mesenchymal transition factor ZEB2 in ovarian cancer

    PubMed Central

    Prislei, Silvia; Martinelli, Enrica; Zannoni, Gian Franco; Petrillo, Marco; Filippetti, Flavia; Mariani, Marisa; Mozzetti, Simona; Raspaglio, Giuseppina; Scambia, Giovanni; Ferlini, Cristiano

    2015-01-01

    ZEB2 is a key factor in epithelial-mesenchymal transition (EMT), a program controlling cell migration in embryonic development and adult tissue homeostasis. We demonstrated a role of ZEB2 in migration and anchorage-independent cell growth in ovarian cancer, as shown by ZEB2 silencing. We found that the RNA-binding protein HuR bound the 3′UTR of ZEB2 mRNA, acting as a positive regulator of ZEB2 protein expression. In Hey ovarian cell line, HuR silencing decreased ZEB2 and ZEB1 nuclear expression and impaired migration. In hypoglycemic conditions ZEB2 expression decreased, along with ZEB1, vimentin and cytoplasmic HuR, and a reduced cellular migration ability was observed. Analysis of ZEB2 and HuR expression in ovarian cancers revealed that nuclear ZEB2 is localized in tumor leading edge and co-localizes with cytoplasmic HuR. In a series of 143 ovarian cancer patients high expression of ZEB2 mRNA significantly correlated with a poor prognosis in term of both overall survival and progression- free survival. Moreover, at immunohistochemical evaluation, we found that prognostic significance of ZEB2 protein relies on its nuclear expression and co-localization with cytoplasmic HuR. In conclusion our findings indicated that nuclear ZEB2 may enhance progression of EMT transition and acquisition of an aggressive phenotype in ovarian cancer. PMID:26136338

  6. The human NANOS3 gene contributes to lung tumour invasion by inducing epithelial-mesenchymal transition.

    PubMed

    Grelet, Simon; Andries, Vanessa; Polette, Myriam; Gilles, Christine; Staes, Katrien; Martin, Anne-Pascaline; Kileztky, Claire; Terryn, Christine; Dalstein, Véronique; Cheng, Chun-Wen; Shen, Chen-Yang; Birembaut, Philippe; Van Roy, Frans; Nawrocki-Raby, Béatrice

    2015-09-01

    We have explored the role of the human NANOS3 gene in lung tumour progression. We show that NANOS3 is over-expressed by invasive lung cancer cells and is a prognostic marker for non-small cell lung carcinomas (NSCLCs). NANOS3 gene expression is restricted in testis and brain and is regulated by epigenetic events. It is up-regulated in cultured cells undergoing epithelial - mesenchymal transition (EMT). NANOS3 over-expression in human NSCLC cell lines enhances their invasiveness by up-regulating EMT, whereas its silencing induces mesenchymal - epithelial transition. NANOS3 represses E-cadherin at the transcriptional level and up-regulates vimentin post-transcriptionally. Also, we show that NANOS3 binds mRNAs encoding vimentin and regulates the length of their poly(A) tail. Finally, NANOS3 can also protect vimentin mRNA from microRNA-mediated repression. We thus demonstrate a role for NANOS3 in the acquisition of invasiveness by human lung tumour cells and propose a new mechanism of post-transcriptional regulation of EMT. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Trps1 Regulates Biliary Epithelial-Mesenchymal Transition and Has Roles during Biliary Fibrosis in Liver Grafts: A Preliminary Study

    PubMed Central

    Zhe, Cheng; Yu, Fan; Tian, Ju; Zheng, Shuguo

    2015-01-01

    Objective To investigate the role(s) of Trps1 in non-anastomotic biliary stricture (NABS) following liver transplantation. Methods Immunohistochemical and histological techniques were used to detect Trps1, E-cadherin, CK19, vimentin, α-SMA, and collagen deposition. Human intrahepatic biliary epithelial cells (HIBECs) were infected with a Trps1 adenovirus, or transfected with Trps1 short-interfering RNAs (siRNAs). Reverse transcription polymerase chain reaction (RT-PCR) assays and western blotting were used to determine expression levels of epithelial and mesenchymal markers, and Trps1 in HIBECs. Results Expression of Trps1 and epithelial markers was down-regulated or absent in NABS liver samples. Mesenchymal markers were seen in biliary epithelial cells (BECs), with collagen deposited around the bile duct. Trps1 expression positively correlated with epithelial markers. Expression of epithelial marker mRNAs and proteins in HIBECs decreased with prolonged cold preservation (CP), while mesenchymal marker expression increased. A 12-h CP period led to increased Trps1 mRNA and protein levels. Expression of E-cadherin was increased in HIBECs following Trps1 adenovirus infection and CP/reperfusion injury (CPRI), with vimentin expression levels reduced and CPRI-mediated epithelial-mesenchymal transition (EMT) inhibited. Transfection of HIBECs with Trps1 siRNAs in conjunction with CPRI revealed that E-cadherin expression was decreased, vimentin expression was increased, and CPRI-mediated EMT was promoted. Conclusion Trps1 is involved in NABS pathogenesis following liver transplantation and negatively correlates with BEC EMT and biliary fibrosis in liver grafts. Trps1 demonstrates antagonistic effects that could reverse EMT. PMID:25886207

  8. Trps1 regulates biliary epithelial-mesenchymal transition and has roles during biliary fibrosis in liver grafts: a preliminary study.

    PubMed

    Zhe, Cheng; Yu, Fan; Tian, Ju; Zheng, Shuguo

    2015-01-01

    To investigate the role(s) of Trps1 in non-anastomotic biliary stricture (NABS) following liver transplantation. Immunohistochemical and histological techniques were used to detect Trps1, E-cadherin, CK19, vimentin, α-SMA, and collagen deposition. Human intrahepatic biliary epithelial cells (HIBECs) were infected with a Trps1 adenovirus, or transfected with Trps1 short-interfering RNAs (siRNAs). Reverse transcription polymerase chain reaction (RT-PCR) assays and western blotting were used to determine expression levels of epithelial and mesenchymal markers, and Trps1 in HIBECs. Expression of Trps1 and epithelial markers was down-regulated or absent in NABS liver samples. Mesenchymal markers were seen in biliary epithelial cells (BECs), with collagen deposited around the bile duct. Trps1 expression positively correlated with epithelial markers. Expression of epithelial marker mRNAs and proteins in HIBECs decreased with prolonged cold preservation (CP), while mesenchymal marker expression increased. A 12-h CP period led to increased Trps1 mRNA and protein levels. Expression of E-cadherin was increased in HIBECs following Trps1 adenovirus infection and CP/reperfusion injury (CPRI), with vimentin expression levels reduced and CPRI-mediated epithelial-mesenchymal transition (EMT) inhibited. Transfection of HIBECs with Trps1 siRNAs in conjunction with CPRI revealed that E-cadherin expression was decreased, vimentin expression was increased, and CPRI-mediated EMT was promoted. Trps1 is involved in NABS pathogenesis following liver transplantation and negatively correlates with BEC EMT and biliary fibrosis in liver grafts. Trps1 demonstrates antagonistic effects that could reverse EMT.

  9. PSME3 induces epithelial-mesenchymal transition with inducing the expression of CSC markers and immunosuppression in breast cancer.

    PubMed

    Yi, Ziying; Yang, Dejuan; Liao, Xuelian; Guo, Fuchun; Wang, Yongsheng; Wang, Xiaoyi

    2017-09-15

    Proteasome activator subunit 3 (PSME3) plays a key role in breast cancer by regulating the cell cycle. However, its role in other pathogenesis-related features of breast cancer is unclear. In this study, we found that overexpression of PSME3 induced the epithelial-mesenchymal transition and contributed to induce the expression of cancer stem cell markers of the MDA-MB-231 cell line, thus increasing the migration, and invasion of the cells. Moreover, overexpression of PSME3 reduced the chemotaxis of CD8(+) T cells and induced the apoptosis of T cells in vitro. Furthermore, PSME3 knockdown increased the number of CD8(+) T cells in vivo and reduced the subcutaneous tumor growth rate. These findings revealed that PSME3 induces epithelial-mesenchymal transition with inducing the expression of CSC markers and influencing the tumor immune microenvironment in breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Circadian Gating of Epithelial-to-Mesenchymal Transition in Breast Cancer Cells Via Melatonin-Regulation of GSK3β

    PubMed Central

    Mao, Lulu; Dauchy, Robert T.; Blask, David E.; Slakey, Lauren M.; Xiang, Shulin; Yuan, Lin; Dauchy, Erin M.; Shan, Bin; Brainard, George C.; Hanifin, John P.; Duplessis, Tamika T.; Hill, Steven M.

    2012-01-01

    Disturbed sleep-wake cycle and circadian rhythmicity are associated with cancer, but the underlying mechanisms are unknown. Employing a tissue-isolated human breast xenograft tumor nude rat model, we observed that glycogen synthase kinase 3β (GSK3β), an enzyme critical in metabolism and cell proliferation/survival, exhibits a circadian rhythm of phosphorylation in human breast tumors. Exposure to light-at-night suppresses the nocturnal pineal melatonin synthesis, disrupting the circadian rhythm of GSK3β phosphorylation. Melatonin activates GSK3β by inhibiting the serine-threonine kinase Akt phosphorylation, inducing β-catenin degradation and inhibiting epithelial-to-mesenchymal transition, a fundamental process underlying cancer metastasis. Thus, chronic circadian disruption by light-at-night via occupational exposure or age-related sleep disturbances may contribute to cancer incidence and the metastatic spread of breast cancer by inhibiting GSK3β activity and driving epithelial-to-mesenchymal transition in breast cancer patients. PMID:23002080

  11. Employing an orthotopic model to study the role of epithelial-mesenchymal transition in bladder cancer metastasis.

    PubMed

    Roth, Beat; Jayaratna, Isuru; Sundi, Debasish; Cheng, Tiewei; Melquist, Jonathan; Choi, Woonyoung; Porten, Sima; Nitti, Giovanni; Navai, Neema; Wszolek, Matthew; Guo, Charles; Czerniak, Bogdan; McConkey, David; Dinney, Colin

    2016-08-02

    Epithelial-to-mesenchymal transition (EMT) has been implicated in the progression of bladder cancer. To study its contribution to bladder cancer metastasis, we established new xenograft models derived from human bladder cancer cell lines utilizing an orthotopic "recycling" technique that allowed us to isolate and examine the primary tumor and its corresponding circulating tumor cells (CTC's) and metastatic lesions. Using whole genome mRNA expression profiling, we found that a reversible epithelial-to-mesenchymal transition (EMT) characterized by TGFβ pathway activation and SNAIL expression was associated with the accumulation of CTCs. Finally, we observed that conditional silencing of SNAIL completely blocked CTC production and regional/distant metastasis. Using this unique bladder cancer xenograft model, we conclude that metastasis is dependent on a reversible EMT mediated by SNAIL.

  12. Reversibility of the Snail-induced epithelial-mesenchymal transition revealed by the Cre-loxP system.

    PubMed

    Ozawa, Masayuki; Kobayashi, Wakako

    2015-03-13

    The epithelial-mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell-cell junctions and cell polarity, as well as the acquisition of migratory and invasive properties. Snail is an EMT-inducer whose expression in several different epithelial cells, e.g., Madin-Darby canine kidney (MDCK), leads to EMT. To further understand EMT induced by Snail expression, the Cre-loxP site-specific recombination system was used to investigate its reversibility. Transfection of MDCK cells with loxP-flanked Snail (Snail-loxP) resulted in EMT induction, which included the acquisition of a spindle-shaped fibroblastic morphology, the downregulation of epithelial markers, and the upregulation of mesenchymal markers. DNA methylation of the E-cadherin promoter, which often occurs during E-cadherin downregulation, was not observed in Snail+ cells. After Cre-mediated excision of Snail-loxP, the cells reacquired an epithelial morphology, upregulated epithelial markers, and downregulated mesenchymal markers. Thus, EMT induced by Snail expression was reversible.

  13. MAP3K4 Controls the Chromatin Modifier HDAC6 during Trophoblast Stem Cell Epithelial-to-Mesenchymal Transition.

    PubMed

    Mobley, Robert J; Raghu, Deepthi; Duke, Lauren D; Abell-Hart, Kayley; Zawistowski, Jon S; Lutz, Kyla; Gomez, Shawn M; Roy, Sujoy; Homayouni, Ramin; Johnson, Gary L; Abell, Amy N

    2017-03-07

    The first epithelial-to-mesenchymal transition (EMT) occurs in trophoblast stem (TS) cells during implantation. Inactivation of the serine/threonine kinase MAP3K4 in TS cells (TS(KI4) cells) induces an intermediate state of EMT, where cells retain stemness, lose epithelial markers, and gain mesenchymal characteristics. Investigation of relationships among MAP3K4 activity, stemness, and EMT in TS cells may reveal key regulators of EMT. Here, we show that MAP3K4 activity controls EMT through the ubiquitination and degradation of HDAC6. Loss of MAP3K4 activity in TS(KI4) cells results in elevated HDAC6 expression and the deacetylation of cytoplasmic and nuclear targets. In the nucleus, HDAC6 deacetylates the promoters of tight junction genes, promoting the dissolution of tight junctions. Importantly, HDAC6 knockdown in TS(KI4) cells restores epithelial features, including cell-cell adhesion and barrier formation. These data define a role for HDAC6 in regulating gene expression during transitions between epithelial and mesenchymal phenotypes.

  14. miR-495 promotes the chemoresistance of SCLC through the epithelial-mesenchymal transition via Etk/BMX

    PubMed Central

    Wei, Ting; Zhu, Weiliang; Fang, Shun; Zeng, Xiangpin; Huang, Jie; Yang, Jie; Zhang, Jian; Guo, Linlang

    2017-01-01

    miR-495 serves as an oncogenic miRNA or a tumor suppressor in different types of cancer. However, its role in the drug resistance of small cell lung cancer (SCLC) remains unidentified. In this study, we investigated whether miR-495 regulates the chemoresistance of SCLC through the epithelial-mesenchymal transition (EMT) via Epithelial and endothelial tyrosine kinase (Etk/BMX) using two drug-resistant cell lines. Loss- and gain-of-function experiments showed miR-495 regulated cell proliferation, tumor growth and drug resistance. miR-495 suppression or Etk/BMX elevation in SCLC specimens was correlated with poor pathologic stage and survival time. Etk/BMX was one of the directly targeted genes of miR-495. Ectopic expression of Etk/BMX obviously rescued the miR-495 elevation elevation-induced inhibition of drug resistance. Etk/BMX over-expression led to higher levels of EMT mesenchymal factors (Zeb-2, Twist, Vim) and lower levels of the epithelial molecule β-catenin, while suppression of Etk/BMX showed the opposite trend. Knockdown of Zeb-2 and Twist inhibited the chemoresistance of cells. Our study revealed that miR-495 promoted the chemoresistance of SCLC through the epithelial-mesenchymal transition via Etk/BMX. miR-495 re-expression or Etk/BMX depletion is a promising strategy for interfering with chemoresistance in SCLC. PMID:28401017

  15. Epithelial-mesenchymal transitions during cell culture of primary thyroid tumors?

    PubMed

    Herrmann, M E; Trevor, K T

    1993-04-01

    Fibroblast contamination of epithelial tumor cell cultures is of great concern when examining tumor cells in vitro for specific biochemical and cytogenetic changes. The observations of normal karyotypes in thyroid tumor cell cultures have raised the concern of whether residual tissue fibroblasts might obscure the cytogenetic analysis of transformed epithelial cells. We have characterized early passaged thyroid tumor cells to examine the proportions of epithelial and fibroblastic cell types. Cells were analyzed by immunocytology using antibodies recognizing the thyroid prohormone thyroglobulin, epithelial cytokeratins, and vimentin, a mesenchyme marker. Tumors consisted of one follicular adenoma and five papillary carcinomas. When examined by day 15 in culture, all cells contained filaments composed of vimentin, which most likely represents an adaptation to culture conditions. Double immunofluorescence staining for thyroglobulin and cytokeratin revealed the presence of not only epithelial but also spindle-like fibroblastoid cells possessing thyroid epithelial cell markers. The results suggest that in thyroid tumor cultures there is a unique cell type intermediate between epithelial and mesenchyme phenotypes that must be considered when performing cytogenetic analysis.

  16. Elk-3 Contributes to the Progression of Liver Fibrosis by Regulating the Epithelial-Mesenchymal Transition

    PubMed Central

    Li, Tian Zhu; Kim, Sung Min; Hur, Wonhee; Choi, Jung Eun; Kim, Jung-Hee; Hong, Sung Woo; Lee, Eun Byul; Lee, Joon Ho; Yoon, Seung Kew

    2017-01-01

    Background/Aims The role of Elk-3 in the epithelial-mesenchymal transition (EMT) during liver fibrogenesis remains unclear. Here, we determined the expression of Elk-3 in in vitro and in vivo models and in human liver fibrotic tissues. We also investigated the molecular relationships among Elk-3, early growth response-1 (Egr-1), and the mitogen activated protein kinases (MAPK) pathway during EMT in hepatocytes. Methods We established anin vitro EMT model in which normal mouse hepatocyte cell lines were treated with transforming growth factor (TGF)-β1 and a CCl4-induced liver fibrosis model. Characteristics of EMT were determined by evaluating the expression levels of related markers. The expression of Elk-3 and its target Egr-1 were analyzed using Western blotting. Gene silencing of Elk-3 was performed using an siRNA knockdown system. Results The expression levels of mesenchymal markers were increased during TGF-β1-induced EMT of hepatocytes. The expression levels of Elk-3 and Egr-1 were significantly (p<0.05) increased during the EMT of hepatocytes, in CCl4-induced mouse liver fibrotic tissues, and in human liver cirrhotic tissues. Silencing of Elk-3 and inhibition of the Ras-Elk-3 pathway with an inhibitor suppressed the expression of EMT-related markers. Moreover, Elk-3 expression was regulated by p38 MAPK phosphorylation during EMT. Conclusions Elk-3 contributes to the progression of liver fibrosis by modulating the EMT via the regulation of Egr-1 under MAPK signaling. PMID:27538444

  17. Regulatory Roles of Dclk1 in Epithelial Mesenchymal Transition and Cancer Stem Cells

    PubMed Central

    Chandrakesan, P; Panneerselvam, J; Qu, D; Weygant, N; May, R; Bronze, MS; Houchen, CW

    2016-01-01

    The identification of functionally relevant subpopulations of therapy-resistant cancer cells is a challenge. These cells, intrinsically resistant to conventional therapy, can cause recurrence. Evidence has suggested that therapy-resistant cancer cells are likely epithelial–mesenchymal transition (EMT) cells and/or stem-like cells called cancer stem cells (CSCs). EMT, a normal embryological process that converts epithelial cells into mesenchymal cells, is frequently activated during cancer development and progression. CSCs are a small subpopulation of cancer cells within a tumor mass that have the ability to self-renew and maintain tumor-initiating capacity by giving rise to heterogeneous lineages of cancer cells that comprise the whole tumor. Although the origin of CSCs and EMT cells remains to be fully explored, a growing body of evidence has indicated that the biology of EMT and CSCs is strongly linked. Doublecortin-like kinase 1 (DCLK1), a cancer stem cell marker, is functionally involved in maintaining cancer stemness and the process of EMT important for cancer initiation, cancer metastasis, and secondary tumor formation. Therefore, targeting these cells may provide new strategies to overcome tumor heterogeneity, therapeutic resistance, and cancer relapse. In this review, we will provide a potential mechanistic link between EMT induction and the emergence of CSCs for the origin and progression of cancer. We will highlight the functional activity of DCLK1 in supporting EMT and cancer cell self-renewal, which will lead us to a better understanding of DCLK1 expression in cancer development and progression, and help us to develop targeted therapies for effective cancer treatment. PMID:27335684

  18. The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition.

    PubMed

    Fedorova, Larisa V; Raju, Vanamala; El-Okdi, Nasser; Shidyak, Amjad; Kennedy, David J; Vetteth, Sandeep; Giovannucci, David R; Bagrov, Alexei Y; Fedorova, Olga V; Shapiro, Joseph I; Malhotra, Deepak

    2009-04-01

    We recently demonstrated that the cardiotonic steroid marinobufagenin (MBG) induced fibrosis in rat hearts through direct stimulation of collagen I secretion by cardiac fibroblasts. This stimulation was also responsible for the cardiac fibrosis seen in experimental renal failure. In this study, the effect of MBG on the development of renal fibrosis in rats was investigated. Four weeks of MBG infusion triggered mild periglomerular and peritubular fibrosis in the cortex and the appearance of fibrotic scars in the corticomedullary junction of the kidney. MBG also significantly increased the protein levels and nuclear localization of the transcription factor Snail in the tubular epithelia. It is known that activation of Snail is associated with epithelial-to-mesenchymal transition (EMT) during renal fibrosis. To examine whether MBG alone can trigger EMT, we used the porcine proximal tubular cell line LLC-PK1. MBG (100 nM) caused LLC-PK1 cells grown to confluence to acquire a fibroblast-like shape and have an invasive motility. The expressions of the mesenchymal proteins collagen I, fibronectin, and vimentin were increased twofold. However, the total level of E-cadherin remained unchanged. These alterations in LLC-PK1 cells in the presence of MBG were accompanied by elevated expression and nuclear translocation of Snail. During the time course of EMT, MBG did not have measurable inhibitory effects on the ion pumping activity of its natural ligand, Na(+)-K(+)-ATPase. Our data suggest that the MBG may be an important factor in inducing EMT and, through this mechanism, elevated levels of MBG in chronic renal failure may play a role in the progressive fibrosis.

  19. Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition

    PubMed Central

    Place, Trenton L.; Nauseef, Jones T.; Peterson, Maina K.; Henry, Michael D.; Mezhir, James J.; Domann, Frederick E.

    2013-01-01

    Prolyl-4-hydroxylation by the intracellular prolyl-4-hydroxylase enzymes (PHD1-3) serves as a master regulator of environmental oxygen sensing. The activity of these enzymes is tightly tied to tumorigenesis, as they regulate cell metabolism and angiogenesis through their control of hypoxia-inducible factor (HIF) stability. PHD3 specifically, is gaining attention for its broad function and rapidly accumulating array of non-HIF target proteins. Data from several recent studies suggest a role for PHD3 in the regulation of cell morphology and cell migration. In this study, we aimed to investigate this role by closely examining the relationship between PHD3 expression and epithelial-to-mesenchymal transition (EMT); a transcriptional program that plays a major role in controlling cell morphology and migratory capacity. Using human pancreatic ductal adenocarcinoma (PDA) cell lines and Madin-Darby Canine Kidney (MDCK) cells, we examined the correlation between several markers of EMT and PHD3 expression. We demonstrated that loss of PHD3 expression in PDA cell lines is highly correlated with a mesenchymal-like morphology and an increase in cell migratory capacity. We also found that induction of EMT in MDCK cells resulted in the specific downregulation of PHD3, whereas the expression of the other HIF-PHD enzymes was not affected. The results of this study clearly support a model by which the basal expression and hypoxic induction of PHD3 is suppressed by the EMT transcriptional program. This may be a novel mechanism by which migratory or metastasizing cells alter signaling through specific pathways that are sensitive to regulation by O2. The identification of downstream pathways that are affected by the suppression of PHD3 expression during EMT may provide important insight into the crosstalk between O2 and the migratory and metastatic potential of tumor cells. PMID:24367580

  20. Cardiac Epithelial-Mesenchymal Transition Is Blocked by Monomethylarsonous Acid (III)

    PubMed Central

    Huang, Tianfang; Barnett, Joey V.; Camenisch, Todd D.

    2014-01-01

    Arsenic exposure during embryonic development can cause ischemic heart pathologies later in adulthood which may originate from impairment in proper blood vessel formation. The arsenic-associated detrimental effects are mediated by arsenite (iAsIII) and its most toxic metabolite, monomethylarsonous acid [MMA (III)]. The impact of MMA (III) on coronary artery development has not yet been studied. The key cellular process that regulates coronary vessel development is the epithelial-mesenchymal transition (EMT). During cardiac EMT, activated epicardial progenitor cells transform to mesenchymal cells to form the cellular components of coronary vessels. Smad2/3 mediated TGFβ2 signaling, the key regulator of cardiac EMT, is disrupted by arsenite exposure. In this study, we compared the cardiac toxicity of MMA (III) with arsenite. Epicardial progenitor cells are 15 times more sensitive to MMA (III) cytotoxicity when compared with arsenite. MMA (III) caused a significant blockage in epicardial cellular transformation and invasion at doses 10 times lower than arsenite. Key EMT genes including TGFβ ligands, TβRIII, Has2, CD44, Snail1, TBX18, and MMP2 were down regulated by MMA (III) exposure. MMA (III) disrupted Smad2/3 activation at a dose 20 times lower than arsenite. Both arsenite and MMA (III) significantly inhibited Erk1/2 and Erk5 phosphorylation. Nuclear translocation of Smad2/3 and Erk5 was also blocked by arsenical exposure. However, p38 activation, as well as smooth muscle differentiation, was refractory to the inhibition by the arsenicals. Collectively, these findings revealed that MMA (III) is a selective disruptor of cardiac EMT and as such may predispose to arsenic-associated cardiovascular disorders. PMID:25145660

  1. Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells.

    PubMed

    Bersaas, Audun; Arnoldussen, Yke Jildouw; Sjøberg, Mari; Haugen, Aage; Mollerup, Steen

    2016-09-01

    Lung cancer is largely an environmentally caused disease with poor prognosis. An in vitro transformation model of human bronchial epithelial cells (HBEC) was used to study long-term effects of tobacco smoke carcinogens on epithelial-mesenchymal transition (EMT) and the forkhead box transcription factors FOXA1 and FOXA2. CDK4 and hTERT immortalized HBEC2 and HBEC12 cell lines were exposed weekly to either cigarette smoke condensate (CSC), benzo[a]pyrene, or methylnitrosourea. Transformed cell lines were established from soft-agar colonies after 12weeks of exposure. HBEC12 was transformed by all exposures while HBEC2 was only transformed by CSC. Untransformed HBEC2 showed little invasive capacity, whereas transformed cell lines completely closed the gap in a matrigel scratch wound assay. CDH1 was down-regulated in all of the transformed cell lines. In contrast, CDH2 was up-regulated in both HBEC2 and one of the HBEC12 transformed cell lines. Furthermore, transformed cells showed activation of EMT markers including SNAI1, ZEB1, VIM, and MMP2. All transformed cell lines had significant down-regulation of FOXA1 and FOXA2, indicating a possible role in cell transformation and EMT. ChIP analysis showed increased binding of Histone-H3 and macroH2A in FOXA1 and FOXA2 in the transformed HBEC2 cell lines, indicating a compact chromatin. In conclusion, long-term carcinogen exposure lead to down-regulation of FOXA1 and FOXA2 concomitantly with the occurrence of EMT and in vitro transformation in HBEC cells. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Ganglioside GM3 participates in the TGF-β1-induced epithelial-mesenchymal transition of human lens epithelial cells.

    PubMed

    Kim, Seok-Jo; Chung, Tae-Wook; Choi, Hee-Jung; Kwak, Choong-Hwan; Song, Kwon-Ho; Suh, Seok-Jong; Kwon, Kyung-Min; Chang, Young-Chae; Park, Young-Guk; Chang, Hyeun Wook; Kim, Kyoung-Sook; Kim, Cheorl-Ho; Lee, Young-Choon

    2013-01-01

    TGF-β (transforming growth factor-β)-induced EMT (epithelial-mesenchymal transition) induces the proliferation and migration of the HLE (human lens epithelial) cells. Ganglioside GM3, simple sialic-acid-containing glycosphingolipids on mammalian cell membranes, regulates various pathological phenomena such as insulin resistance and tumour progression. However, the relationship between ganglioside GM3 and TGF-β-induced EMT in the HLE B-3 cells is poorly understood. In the present study we demonstrated that ganglioside GM3 was involved in TGF-β1-induced EMT in HLE B-3 cells. Our results indicated that the expression of ganglioside GM3 and GM3 synthase mRNA were significantly increased in TGF-β1-induced HLE B-3 cells. Reporter gene analysis also demonstrated that transcriptional activation of the GM3 synthase gene was regulated by Sp1 (specificity protein 1) in HLE B-3 cells upon TGF-β1 stimulation. Interestingly, the inhibition of ganglioside GM3 expression by d-PDMP [d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol] and GM3 synthase shRNA (short hairpin RNA) resulted significantly in the suppression of cell migration and EMT-related signalling in HLE B-3 cells stimulated by TGF-β. Furthermore, exogenous treatment of ganglioside GM3 rescued the expression of EMT molecules and cell migration suppressed by the depletion of ganglioside GM3 in TGF-β1-induced HLE B-3 cells. We also found that ganglioside GM3 interacted with TGFβRs (TGF-β receptors) in TGF-β1-induced HLE B-3 cells. Taken together, these results suggest that ganglioside GM3 induced by TGF-β1 regulates EMT by potential interaction with TGFβRs.

  3. V-ATPase promotes transforming growth factor-β-induced epithelial-mesenchymal transition of rat proximal tubular epithelial cells.

    PubMed

    Cao, Xueqin; Yang, Qiongqiong; Qin, Jing; Zhao, Shili; Li, Xiaoyan; Fan, Jinjin; Chen, Wenfang; Zhou, Yi; Mao, Haiping; Yu, Xueqing

    2012-05-01

    The ubiquitous vacuolar H(+)-ATPase (V-ATPase), a multisubunit proton pump, is essential for intraorganellar acidification. Here, we hypothesized that V-ATPase is involved in the pathogenesis of kidney tubulointerstitial fibrosis. We first examined its expression in the rat unilateral ureteral obstruction (UUO) model of kidney fibrosis and transforming growth factor (TGF)-β1-mediated epithelial-to-mesenchymal transition (EMT) in rat proximal tubular epithelial cells (NRK52E). Immunofluorescence experiments showed that UUO resulted in significant upregulation of V-ATPase subunits (B2, E, and c) and α-smooth muscle actin (α-SMA) in areas of tubulointerstitial injury. We further observed that TGF-β1 (10 ng/ml) treatment resulted in EMT of NRK52E (upregulation of α-SMA and downregulation of E-cadherin) in a time-dependent manner and significant upregulation of V-ATPase B2 and c subunits after 48 h and the E subunit after 24 h, by real-time PCR and immunoblot analyses. The ATP hydrolysis activity tested by an ATP/NADH-coupled assay was increased after 48-h TGF-β1 treatment. Using intracellular pH measurements with the SNARF-4F indicator, Na(+)-independent pH recovery was significantly faster after an NH(4)Cl pulse in 48-h TGF-β1-treated cells than controls. Furthermore, the V-ATPase inhibitor bafilomycin A1 partially protected the cells from EMT. TGF-β1 induced an increase in the cell surface expression of the B2 subunit, and small interfering RNA-mediated B2 subunit knockdown partially reduced the V-ATPase activity and attenuated EMT induced by TGF-β1. Together, these findings show that V-ATPase may promote EMT and chronic tubulointerstitial fibrosis due to increasing its activity by either overexpression or redistribution of its subunits.

  4. On the Origin of Prostate Cancer Stem Cells through Transmissible ER Stress-Mediated Epithelial to Mesenchymal Transition

    DTIC Science & Technology

    2013-04-01

    catenin, we have begun to pursue if Wnt signaling occurs during TERS driven EMT . Given that this signaling process has tumor implicated roles in...hypothesis that transmissible ER stress (TERS) promotes Epithelial to Mesenchymal Transition ( EMT ) in differentiated prostate cancer cells, programming...tumorigenesis. Through the work performed during the last year, we have been able to demonstrate a link between prostate tumor ER stress and EMT . The

  5. 4.1N suppresses hypoxia-induced epithelial-mesenchymal transition in epithelial ovarian cancer cells.

    PubMed

    Zhang, Letian; Hu, Ajin; Li, Mengrui; Zhang, Hongquan; Ren, Caixia; An, Xiuli; Liu, Congrong

    2016-01-01

    Protein 4.1N (4.1N) is a member of the protein 4.1 family and is essential for the regulation of cell adhesion, motility and signaling. Previous studies have suggested that 4.1N may serve a tumor suppressor role. However, the molecular mechanisms remain unclear. In the current study, the role of 4.1N in the downregulation of hypoxia‑induced factor 1α (HIF‑1α) under hypoxic conditions and therefore the suppression of hypoxia induced epithelial‑mesenchymal transition (EMT) was investigated. The data were obtained from overexpressed and knockdown 4.1N epithelial ovarian cancer (EOC) cell lines. It was identified that 4.1N was capable of regulating the sub‑cellular localization and expression levels of HIF‑1α, by which 4.1N served a dominant role in the suppression of hypoxia‑induced EMT and associated genes. Collectively, the data of the current study identified 4.1N as an inhibitor of hypoxia‑induced tumor progression in EOC cells and highlighted its potential role in EOC therapy.

  6. Notch signaling modulates proliferative vitreoretinopathy via regulating retinal pigment epithelial-to-mesenchymal transition.

    PubMed

    Zhang, Jingjing; Yuan, Gongqiang; Dong, Muchen; Zhang, Ting; Hua, Gao; Zhou, Qingjun; Shi, Weiyun

    2016-09-07

    Elevated Notch signaling has been verified in a large range of fibrotic diseases developed in the kidney, liver, and lung, inducing the development of the epithelial-mesenchymal transition (EMT). The aim of this study was to observe the involvement of Notch signaling in the EMT of retinal pigment epithelial (RPE) cells and the pathogenesis of proliferative vitreoretinopathy (PVR). In vitro cultivated human RPE cells (ARPE-19) were treated with 10 ng/mL transforming growth factor (TGF)-β1 for 24, 48, and 72 h. The expression levels of ZO-1, α-SMA, vimentin, Notch1 intracellular domain (NICD1), and Hes-1 were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence staining or Western blot. TGF-β1 induced EMT and the activation of Notch signaling in ARPE-19 cells. To examine the effect of Notch inhibition on TGF-β1-induced EMT and PVR formation, ARPE-19 cells were preincubated with γ-secretase inhibitor LY411575 before TGF-β1 treatment. Mouse PVR model was used for in vivo study. ARPE-19 cells were injected intravitreously with or without the LY411575 to examine the effect of Notch inhibition on PVR formation. LY411575 significantly attenuated EMT by inhibiting the Notch signaling activation in vitro. PVR was induced by intravitreal injections of ARPE-19 cells, while LY411575 inhibited mouse PVR formation in vivo. Notch signaling plays a critical role in TGF-β1-induced EMT in vitro and mice PVR model, which provides a novel insight into the pathogenesis of PVR. The specific inhibition of Notch signaling by γ-secretase inhibitor may provide a new approach for the prevention of PVR.

  7. Hypoxia-Induced Epithelial-Mesenchymal Transition Is Involved in Bleomycin-Induced Lung Fibrosis.

    PubMed

    Guo, Liang; Xu, Jun-mei; Liu, Lei; Liu, Su-mei; Zhu, Rong

    2015-01-01

    Pulmonary fibrosis is a severe disease that contributes to the morbidity and mortality of a number of lung diseases. However, the molecular and cellular mechanisms leading to lung fibrosis are poorly understood. This study investigated the roles of epithelial-mesenchymal transition (EMT) and the associated molecular mechanisms in bleomycin-induced lung fibrosis. The bleomycin-induced fibrosis animal model was established by intratracheal injection of a single dose of bleomycin. Protein expression was measured by Western blot, immunohistochemistry, and immunofluorescence. Typical lesions of lung fibrosis were observed 1 week after bleomycin injection. A progressive increase in MMP-2, S100A4, α-SMA, HIF-1α, ZEB1, CD44, phospho-p44/42 (p-p44/42), and phospho-p38 MAPK (p-p38) protein levels as well as activation of EMT was observed in the lung tissues of bleomycin mice. Hypoxia increased HIF-1α and ZEB1 expression and activated EMT in H358 cells. Also, continuous incubation of cells under mild hypoxic conditions increased CD44, p-p44/42, and p-p38 protein levels in H358 cells, which correlated with the increase in S100A4 expression. In conclusion, bleomycin induces progressive lung fibrosis, which may be associated with activation of EMT. The fibrosis-induced hypoxia may further activate EMT in distal alveoli through a hypoxia-HIF-1α-ZEB1 pathway and promote the differentiation of lung epithelial cells into fibroblasts through phosphorylation of p38 MAPK and Erk1/2 proteins.

  8. EZH2 inhibition promotes epithelial-to-mesenchymal transition in ovarian cancer cells.

    PubMed

    Cardenas, Horacio; Zhao, Janice; Vieth, Edyta; Nephew, Kenneth P; Matei, Daniela

    2016-12-20

    Cancer cells acquire essential characteristics for metastatic dissemination through the process of epithelial-to-mesenchymal transition (EMT), which is regulated by gene expression and chromatin remodeling changes. The enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the polycomb repressive complex 2 (PRC2), catalyzes trimethylation of lysine 27 of histone H3 (H3K27me3) to repress gene transcription. Here we report the functional roles of EZH2-catalyzed H3K27me3 during EMT in ovarian cancer (OC) cells. TGF-β-induced EMT in SKOV3 OC cells was associated with decreased levels of EZH2 and H3K27me3 (P<0.05). These effects were delayed (~72 h relative to EMT initiation) and coincided with increased (>15-fold) expression of EMT-associated transcription factors ZEB2 and SNAI2. EZH2 knockdown (using siRNA) or enzymatic inhibition (by GSK126) induced EMT-like changes in OC cells. The EMT regulator ZEB2 was upregulated in cells treated with either approach. Furthermore, TGF-β enhanced expression of ZEB2 in EZH2 siRNA- or GSK126-treated cells (P<0.01), suggesting that H3K27me3 plays a role in TGF-β-stimulated ZEB2 induction. Chromatin immunoprecipitation assays confirmed that TGF-β treatment decreased binding of EZH2 and H3K27me3 to the ZEB2 promoter (P<0.05). In all, these results demonstrate that EZH2, by repressing ZEB2, is required for the maintenance of an epithelial phenotype in OC cells.

  9. HSP72 inhibits Smad3 activation and nuclear translocation in renal epithelial-to-mesenchymal transition.

    PubMed

    Zhou, Yi; Mao, Haiping; Li, Shu; Cao, Shirong; Li, Zhijian; Zhuang, Shougang; Fan, Jinjin; Dong, Xiuqing; Borkan, Steven C; Wang, Yihan; Yu, Xueqing

    2010-04-01

    Although heat shock protein 72 (HSP72) ameliorates renal tubulointerstitial fibrosis by inhibiting epithelial-to-mesenchymal transition (EMT), the underlying mechanism is unknown. Because Smad proteins transduce TGF-beta signaling from the cytosol to the nucleus and HSP72 assists in protein folding and facilitates nuclear translocation, we investigated whether HSP72 inhibits TGF-beta-induced EMT by modulating Smad expression, activation, and nuclear translocation. To evaluate the roles of distinct HSP72 structural domains in these processes, we constructed vectors that expressed wild-type HSP72 or mutants lacking either the peptide-binding domain (HSP72-DeltaPBD), which is responsible for substrate binding and refolding, or the nuclear localization signal (HSP72-DeltaNLS). Overexpression of wild-type HSP72 or HSP72-DeltaNLS inhibited TGF-beta1-induced EMT, but HSP72-DeltaPBD did not, suggesting a critical role for the PBD in this inhibition. HSP72 overexpression inhibited TGF-beta1-induced phosphorylation and nuclear translocation of Smad3 and p-Smad3, but not Smad2; these inhibitory effects required the PBD but not the NLS. Coimmunoprecipitation assays suggested a physical interaction between Smad3 and the PBD. siRNA knockdown of endogenous HSP72 enhanced both TGF-beta1-induced Smad3 phosphorylation and EMT and confirmed the interaction of HSP72 with both Smad3 and p-Smad3. In vivo, induction of HSP72 by geranylgeranylacetone suppressed Smad3 phosphorylation in renal tubular cells after unilateral ureteral obstruction. In conclusion, HSP72 inhibits EMT in renal epithelial cells primarily by exerting domain-specific effects on Smad3 activation and nuclear translocation.

  10. Withania somnifera root extract inhibits mammary cancer metastasis and epithelial to mesenchymal transition.

    PubMed

    Yang, Zhen; Garcia, Anapatricia; Xu, Songli; Powell, Doris R; Vertino, Paula M; Singh, Shivendra; Marcus, Adam I

    2013-01-01

    Though clinicians can predict which patients are at risk for developing metastases, traditional therapies often prove ineffective and metastatic disease is the primary cause of cancer patient death; therefore, there is a need to develop anti-metastatic therapies that can be administered over long durations to specifically inhibit the motility of cancer cells. Withaniasomnifera root extracts (WRE) have anti-proliferative activity and the active component, Withaferin A, inhibits the pro-metastatic protein, vimentin. Vimentin is an intermediate filament protein and is part of the epithelial to mesenchymal transition (EMT) program to promote metastasis. Here, we determined whether WRE standardized to Withaferin A (sWRE) possesses anti-metastatic activity and whether it inhibits cancer motility via inhibition of vimentin and the EMT program. Several formulations of sWRE were created to enrich for Withaferin A and a stock solution of sWRE in EtOH could recover over 90% of the Withaferin A found in the original extract powder. This sWRE formulation inhibited breast cancer cell motility and invasion at concentrations less than 1µM while having negligible cytotoxicity at this dose. sWRE treatment disrupted vimentin morphology in cell lines, confirming its vimentin inhibitory activity. To determine if sWRE inhibited EMT, TGF-β was used to induce EMT in MCF10A human mammary epithelial cells. In this case, sWRE prevented EMT induction and inhibited 3-D spheroid invasion. These studies were taken into a human xenograft and mouse mammary carcinoma model. In both models, sWRE and Withaferin A showed dose-dependent inhibition of tumor growth and metastatic lung nodule formation with minimal systemic toxicity. Taken together, these data support the hypothesis that low concentrations of sWRE inhibit cancer metastasis potentially through EMT inhibition. Moreover, these doses of sWRE have nearly no toxicity in normal mouse organs, suggesting the potential for clinical use of orally

  11. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells.

    PubMed

    Cannito, Stefania; Novo, Erica; Compagnone, Alessandra; Valfrè di Bonzo, Lorenzo; Busletta, Chiara; Zamara, Elena; Paternostro, Claudia; Povero, Davide; Bandino, Andrea; Bozzo, Francesca; Cravanzola, Carlo; Bravoco, Vittoria; Colombatto, Sebastiano; Parola, Maurizio

    2008-12-01

    Epithelial-mesenchymal transition (EMT) and hypoxia are considered as crucial events favouring invasion and metastasis of many cancer cells. In this study, different human neoplastic cell lines of epithelial origin were exposed to hypoxic conditions in order to investigate whether hypoxia per se may trigger EMT programme as well as to mechanistically elucidate signal transduction mechanisms involved. The following human cancer cell lines were used: HepG2 (from human hepatoblastoma), PANC-1 (from pancreatic carcinoma), HT-29 (from colon carcinoma) and MCF-7 (from breast carcinoma). Cancer cells were exposed to carefully controlled hypoxic conditions and investigated for EMT changes and signal transduction by using morphological, cell and molecular biology techniques. All cancer cells responded to hypoxia within 72 h by classic EMT changes (fibroblastoid phenotype, SNAIL and beta-catenin nuclear translocation and changes in E-cadherin) and by increased migration and invasiveness. This was involving very early inhibition of glycogen synthase kinase-3beta (GSK-3beta), early SNAIL translocation as well as later and long-lasting activation of Wnt/beta-catenin-signalling machinery. Experimental manipulation, including silencing of hypoxia-inducible factor (HIF)-1alpha and the specific inhibition of mitochondrial generation of reactive oxygen species (ROS), revealed that early EMT-related events induced by hypoxia (GSK-3beta inhibition and SNAIL translocation) were dependent on transient intracellular increased generation of ROS whereas late migration and invasiveness were sustained by HIF-1alpha- and vascular endothelial growth factor (VEGF)-dependent mechanisms. These findings indicate that in cancer cells, early redox mechanisms can switch on hypoxia-dependent EMT programme whereas increased invasiveness is sustained by late and HIF-1alpha-dependent release of VEGF.

  12. Ketamine Inhalation Ameliorates Ovalbumin-Induced Murine Asthma by Suppressing the Epithelial-Mesenchymal Transition

    PubMed Central

    Song, Li; Sen, Shi; Sun, Yuhong; Zhou, Jun; Mo, Liqun; He, Yanzheng

    2016-01-01

    Background Asthma accounts for 0.4% of all deaths worldwide, a figure that increases annually. Ketamine induces bronchial smooth muscle relaxation, and increasing evidence suggests that its anti-inflammatory properties might protect against lung injury and ameliorate asthma. However, there is a lack of evidence of the usefulness and mechanism of ketamine in acute asthma exacerbation. This study aimed to analyze the therapeutic effects and mechanism of action of ketamine on acute ovalbumin (OVA)-induced murine asthma. Material/Methods In vivo, BALB/c mice with OVA-induced asthma were treated with or without ketamine (25 or 50 mg/mL). Serum, lung sections, and mononuclear cell suspensions from the lung were collected for histological, morphometric, immunofluorescence, microRNA, quantitative polymerase chain reaction, regulatory T cell identification, cytokine, and Western blotting analyses. In vitro, bronchial epithelial cells were cultured to analyze the effect and mechanism of ketamine on epithelial-mesenchymal transition (EMT) and transforming growth factor-β (TGF-β) signaling. Results The inhalation of ketamine 25 or 50 mg/mL markedly suppressed OVA-induced airway hyper-responsiveness and airway inflammation, significantly increased the percentage of CD4+CD25+ T cells, and significantly decreased OVA-induced up-regulation of TGF-β1 and the EMT. MiR-106a was present at higher amounts in OVA-induced lung samples and was suppressed by ketamine treatment. The in vitro results showed that TGF-β1-induced EMT was suppressed by ketamine via miR-106a level regulation. Conclusions Ketamine ameliorates lung fibrosis in OVA-induced asthmatic mice by suppressing EMT and regulating miR-106a level, while ketamine inhalation might be a new therapeutic approach to the treatment of allergic asthma. PMID:27418244

  13. Sulfate Aerosols Promote Lung Cancer Metastasis by Epigenetically Regulating the Epithelial-to-Mesenchymal Transition (EMT).

    PubMed

    Yun, Yang; Gao, Rui; Yue, Huifeng; Guo, Lin; Li, Guangke; Sang, Nan

    2017-10-03

    Secondary inorganic aerosols (SIA), particularly sulfate aerosols, are central particulate matter (PM) constituents of severe haze formation in China and exert profound impacts on human health; however, our understanding of the mechanisms by which sulfate aerosols cause malignancy in lung carcinogenesis remains incomplete. Here, we show that exposure to secondary inorganic aerosols induced the invasion and migration of lung epithelial cells, and that (NH4)2SO4 exerted the most serious effects in vitro and promoted lung tumor metastasis in vivo. This action was associated with alterations of phenotype markers in the epithelial-to-mesenchymal transition (EMT), such as the up-regulation of fibronectin (Fn1) and the down-regulation of E-cadherin (E-cad). Hypoxia-inducible factor 1α (HIF-1α)-Snail signaling, regulated by the generation of reactive oxygen species (ROS), was involved in the (NH4)2SO4-induced EMT, and the potent antioxidant N-acetylcysteine (NAC) inhibited the activation of HIF-1α-Snail and blocked the EMT, cell invasion, and migration in response to (NH4)2SO4. Additionally, CpG hypermethylation in the E-cad promoter regions partly contributed to the (NH4)2SO4-regulated E-cad repression, and the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza) restored the (NH4)2SO4-induced down-regulation of E-cad. Our findings reveal a potential mechanistic basis for exploring the association between sulfate aerosol exposure and increased malignancy during lung carcinogenesis, and suggest new approaches for the treatment, improvement, and prevention of lung cancer resulting from sulfate aerosol exposure in severe haze-fog.

  14. Elevated tropomyosin expression is associated with epithelial–mesenchymal transition of lens epithelial cells

    PubMed Central

    Kubo, Eri; Hasanova, Nailia; Fatma, Nigar; Sasaki, Hiroshi; Singh, Dhirendra P

    2013-01-01

    Injury to lens epithelial cells (LECs) leads to epithelial–mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α-smooth muscle actin (α-SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up-regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non-cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α-SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm-based inhibitors for postponing PCO and cataractogenesis. PMID:23205574

  15. Role of the urokinase-fibrinolytic system in epithelial-mesenchymal transition during lung injury.

    PubMed

    Marudamuthu, Amarnath Satheesh; Bhandary, Yashodhar Prabhakar; Shetty, Shwetha Kumari; Fu, Jian; Sathish, Venkatachalem; Prakash, Ys; Shetty, Sreerama

    2015-01-01

    Alveolar type II epithelial (ATII) cell injury precedes development of pulmonary fibrosis. Mice lacking urokinase-type plasminogen activator (uPA) are highly susceptible, whereas those deficient in plasminogen activator inhibitor (PAI-1) are resistant to lung injury and pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) has been considered, at least in part, as a source of myofibroblast formation during fibrogenesis. However, the contribution of altered expression of major components of the uPA system on ATII cell EMT during lung injury is not well understood. To investigate whether changes in uPA and PAI-1 by ATII cells contribute to EMT, ATII cells from patients with idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, and mice with bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced lung injury were analyzed for uPA, PAI-1, and EMT markers. We found reduced expression of E-cadherin and zona occludens-1, whereas collagen-I and α-smooth muscle actin were increased in ATII cells isolated from injured lungs. These changes were associated with a parallel increase in PAI-1 and reduced uPA expression. Further, inhibition of Src kinase activity using caveolin-1 scaffolding domain peptide suppressed bleomycin-, transforming growth factor β-, or passive cigarette smoke-induced EMT and restored uPA expression while suppressing PAI-1. These studies show that induction of PAI-1 and inhibition of uPA during fibrosing lung injury lead to EMT in ATII cells. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Chidamide alleviates TGF-β-induced epithelial-mesenchymal transition in lung cancer cell lines.

    PubMed

    Lin, Sheng-Hao; Wang, Bing-Yen; Lin, Ching-Hsiung; Chien, Peng-Ju; Wu, Yueh-Feng; Ko, Jiunn-Liang; Chen, Jeremy J W

    2016-07-01

    Transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis.

  17. The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy.

    PubMed

    Lee, Helena; O'Meara, Sarah J; O'Brien, Colm; Kane, Rosemary

    2007-09-01

    Proliferative vitreoretinopathy (PVR), a major reason for failure of retinal detachment surgery, is characterized by the formation of scarlike tissue that contains transdifferentiated retinal pigment epithelial (RPE) cells. The scar tissue occurs in response to growth factors such as transforming growth factor (TGF)-beta and epidermal growth factor (EGF). The authors postulate that transdifferentiation of RPE cells may arise via epithelial-to-mesenchymal transition (EMT). Bone morphogenetic proteins (BMPs) are expressed in the retina and have an antiproliferative role. Gremlin is expressed in the outer retina and is a BMP antagonist. The study was conducted to establish a model of PVR by inducing EMT in the human RPE cell line ARPE-19, using TGF-beta and EGF and to establish the contribution of gremlin to EMT. ARPE-19 cells were cultured and stimulated with TGF-beta1, EGF, and gremlin. The expression of alpha-smooth muscle actin (alpha-SMA), vimentin, and zona occludens (ZO)-1 were examined via PCR, Western blot analysis, and immunofluorescence. Zymography was performed for matrix metalloproteinase (MMP) activity. Scratch assays were performed to assess migration. A model of EMT was established in the ARPE-19 cell line. The characteristics of EMT include gain of alpha-SMA, loss of ZO-1, upregulation of MMP activity and enhanced migration. Gremlin plays an important role in this process, contributing to the gain of alpha-SMA, loss of ZO-1, and upregulation of MMP activity. EMT occurs in vitro in the ARPE-19 cell line in response to the growth factors TGF-beta1 and EGF. EMT is also induced by Gremlin.

  18. The Genetics and Biophysics of the Epithelial-Mesenchymal Transition (EMT): Can Theoretical Physics Help Cancer Biology

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    In order to spread from the primary tumor to distant sites, cancer cells must undergo a coordinated change in their phenotypic properties referred to as the ''epithelial-to-mesenchymal'' transition. We have studied the nonlinear genetic circuits that are responsible for this cellular decision-making progress and propose that the transition actually goes through a series of intermediate states. At the same time, we have formulated motility models which allow for the correlation of the state of this network and the cell's biophysical capabilities. Hopefully, these thereby efforts will help us better understand the transition to metastatic disease and possible treatments thereof.

  19. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update.

    PubMed

    Makker, Annu; Goel, Madhu Mati

    2016-02-01

    Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.

  20. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice

    PubMed Central

    Cho, Hyun Seop; Kim, Jin Hyun; Jang, Ha Nee; Lee, Tae Won; Jung, Myeong Hee; Kim, Tae Ho; Chang, Se-Ho; Park, Dong Jun

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) is one of mechanisms that induce renal interstitial fibrosis. Understanding EMT in renal fibrosis has important therapeutic implications for patients with kidney disease. Alpha-lipoic acid (ALA) is a natural compound with antioxidant properties. Studies for ALA are performed in acute kidney injury with renal tubular apoptosis, renal inflammation, and oxidative stress. We investigated the effects of ALA on EMT-mediated renal interstitial fibrosis in mice with unilateral ureteral obstruction (UUO). UUO mice developed severe tubular atrophy and tubulointerstitial fibrosis, with a robust EMT response and ECM deposition after 7 postoperative days. In contrast, ALA-treated UUO mice showed only moderate injury and minimal fibrosis and also larger reductions in the expression of ECM proteins, inflammatory factors, and EMT markers. ALA was shown to be involved in the suppression of infiltrating macrophages associated with EMT and the progression of interstitial fibrosis. It also lessened the destruction of the tubular basement membrane, by reducing the expression of matrix metalloproteinases. This is the first study to show that ALA modulates EMT in a UUO mouse model. Our results suggest that ALA merits further exploration as a therapeutic agent in the prevention and treatment of chronic kidney disease. PMID:28378840

  1. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis.

    PubMed

    Zhao, Hui; Qin, Hou-Ying; Cao, Lin-Feng; Chen, Yuan-Hua; Tan, Zhu-Xia; Zhang, Cheng; Xu, De-Xiang

    2015-01-05

    A recent report showed that unfolded protein response (UPR) signaling was activated during bleomycin (BLM)-induced pulmonary fibrosis. Phenylbutyric acid (PBA) is an endoplasmic reticulum (ER) chemical chaperone that inhibits the UPR signaling. The present study investigated the effects of PBA on BLM-induced epithelial-mesenchymal transition (EMT) and pulmonary fibrosis. For induction of pulmonary fibrosis, all mice except controls were intratracheally injected with a single dose of BLM (3.0mg/kg). In PBA+BLM group, mice were intraperitoneally injected with PBA (150mg/kg) daily. Three weeks after BLM injection, EMT was measured and pulmonary fibrosis was evaluated. BLM-induced pulmonary UPR activation was inhibited by PBA. Moreover, BLM-induced pulmonary nuclear factor kappa B (NF-κB) p65 activation was blocked by PBA. In addition, BLM-induced up-regulation of pulmonary inflammatory cytokines was repressed by PBA. Further analysis showed that BLM-induced α-smooth muscle actin (α-SMA), a marker for EMT, was significantly attenuated by PBA. Moreover, BLM-induced pulmonary collagen (Col1α1 and Col1α2) was obviously inhibited by PBA. Importantly, BLM-induced pulmonary fibrosis, as determined using Sirius red staining, was obviously alleviated by PBA. Taken together, these results suggest that PBA alleviates ER stress-mediated EMT in the pathogenesis of BLM-induced pulmonary fibrosis.

  2. LOXL2 drives epithelial-mesenchymal transition via activation of IRE1-XBP1 signalling pathway

    PubMed Central

    Cuevas, Eva P.; Eraso, Pilar; Mazón, María J.; Santos, Vanesa; Moreno-Bueno, Gema; Cano, Amparo; Portillo, Francisco

    2017-01-01

    Epithelial-to-Mesenchymal Transition (EMT) is a key process contributing to the aggressiveness of cancer cells. EMT is triggered by activation of different transcription factors collectively known as EMT-TFs. Different cellular cues and cell signalling networks activate EMT at transcriptional and posttranscriptional level in different biological and pathological situations. Among them, overexpression of LOXL2 (lysyl oxidase-like 2) induces EMT independent of its catalytic activity. Remarkably, perinuclear/cytoplasmic accumulation of LOXL2 is a poor prognosis marker of squamous cell carcinomas and is associated to basal breast cancer metastasis by mechanisms no yet fully understood. Here, we report that overexpression of LOXL2 promotes its accumulation in the Endoplasmic Reticulum where it interacts with HSPA5 leading to activation of the IRE1-XBP1 signalling pathway of the ER-stress response. LOXL2-dependent IRE1-XBP1 activation induces the expression of several EMT-TFs: SNAI1, SNAI2, ZEB2 and TCF3 that are direct transcriptional targets of XBP1. Remarkably, inhibition of IRE1 blocks LOXL2-dependent upregulation of EMT-TFs thus hindering EMT induction. PMID:28332555

  3. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition.

    PubMed

    Tang, J; Shen, L; Yang, Q; Zhang, C

    2014-10-01

    Osteosarcoma (OS) is one of the most common primary malignant bone tumours of childhood and adolescence, and is characterized by high propensity for metastasis (specially to the lung), which is the main cause of death. However, molecular mechanisms underlying metastasis of OS are still poorly understood. Metadherin (MTDH) was identified to be significantly upregulated in OS tissues that had metastasized compared to OS without metastasis, using a two-dimensional approach of electrophoresis, coupled with mass spectrometry. To understand the function of MTDH in OS, OS cell lines U2OS and SOSP-M were transfected with retroviral shRNA vector against MTDH. It was found that metastatic propensity as well as cell proliferation were significantly reduced in both U2OS and SOSP-M. Migration and invasion of U2OS and SOSP-M cells were significantly lower after knock-down of MTDH. In addition, epithelial-mesenchymal transition (EMT) was reduced after knock-down of MTDH. Clinicopathologically, overexpression of MTDH was significantly associated with metastasis and poor survival of patients with OS. Taken together, our results demonstrate that MTDH mediated metastasis of OS through regulating EMT. This could be an ideal therapeutic target against metastasis of OS. © 2014 John Wiley & Sons Ltd.

  4. The relationship between platinum drug resistance and epithelial-mesenchymal transition.

    PubMed

    Brozovic, Anamaria

    2017-02-01

    One of the most commonly used chemotherapeutics, platinum drugs are used to treat a wide range of cancer types. Although many cancers initially respond well to those drugs, drug resistance occurs frequently and different molecular mechanisms have been associated with it. However, predictive biomarkers of cellular response in specific tumour types still do not exist. Epithelial-mesenchymal transition (EMT) is a malignant cancer phenotype characterized by aggressive invasion and metastasis, and resistance to apoptosis. Recent studies indicate that EMT accompanies the development of drug resistance to a number of cancer chemotherapies. The link between these two phenomena is still not elucidated, although several important molecules involved in both these complex processes, such as transcription factors (SNAIL, TWIST, ZEB, etc.) and miRNAs (miRNA-200 family, miR-15, miR-186, etc.) have been recognized as important. This article reviews numerous unresolved issues regarding platinum drugs resistance and EMT, the complexity of the signalling networks that regulate those two phenomena and their importance in tumour response and spreading which are becoming focuses of interest of many scientists. This article also presents molecules involved in platinum resistance and EMT as possible targets for new cancer therapy.

  5. Mechanisms of fibrogenesis in liver cirrhosis: The molecular aspects of epithelial-mesenchymal transition

    PubMed Central

    Lee, Sun-Jae; Kim, Kyung-Hyun; Park, Kwan-Kyu

    2014-01-01

    Liver injuries are repaired by fibrosis and regeneration. The cause of fibrosis and diminished regeneration, especially in liver cirrhosis, is still unknown. Epithelial-mesenchymal transition (EMT) has been found to be associated with liver fibrosis. The possibility that EMT could contribute to hepatic fibrogenesis reinforced the concept that activated hepatic stellate cells are not the only key players in the hepatic fibrogenic process and that other cell types, either hepatic or bone marrow-derived cells could contribute to this process. Following an initial enthusiasm for the discovery of this novel pathway in fibrogenesis, more recent research has started to cast serious doubts upon the real relevance of this phenomenon in human fibrogenetic disorders. The debate on the authenticity of EMT or on its contribution to the fibrogenic process has become very animated. The overall result is a general confusion on the meaning and on the definition of several key aspects. The aim of this article is to describe how EMT participates to hepatic fibrosis and discuss the evidence of supporting this possibility in order to reach reasonable and useful conclusions. PMID:24799989

  6. CCR7 regulates Twist to induce the epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma.

    PubMed

    Li, Kexin; Xu, Baofeng; Xu, Guangying; Liu, Rui

    2016-01-01

    As reported, the CC chemokine receptor 7 (CCR7) trigger a series of signaling cascades in the epithelial-mesenchymal transition (EMT) of some malignancies. Meanwhile, Twist promotes EMT in pancreatic ductal adenocarcinoma (PDAC) progression. Here, effects of Twist on CCR7-induced EMT in the PDAC were investigated in detail. The immunohistochemistry was used to detect the expression of Twist, and then, in vitro assays were applied. The expression rate of Twist was 72.0 % in PDAC samples and closely correlated with tumor-node-metastasis (TNM) stage and invasion. When PDAC cell line PANC1 was subjected to CCL19 stimulation, the expression of p-ERK, p-AKT, Twist, N-cadherin, MMP9, and α-smooth muscle actin (α-SMA) was induced, while the GSK1120212, BEZ235, and MK2206 prohibited the increase of Twist and EMT biomarkers. For another thing, the si-Twist treatment attenuated CCL19-stimulated EMT occurrence, migration, and invasion phenotypes of PANC1 cells. In conclusion, CCR7 pathway up-regulates Twist expression via ERK and PI3K/AKT signaling to manage the EMT of PDAC. Our work allows for clinical gene or protein-targeted regimen of PDAC patients in the near future.

  7. Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition

    PubMed Central

    Kim, Hyun Ji; Choi, Won Jun; Lee, Chang Hoon

    2015-01-01

    Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis. PMID:26157545

  8. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells.

    PubMed

    Cohen, Evan N; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J; Cristofanilli, Massimo; Mani, Sendurai A; Croix, Denise A; Ueno, Naoto T; Woodward, Wendy A; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction.

  9. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    PubMed Central

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  10. Targeting epithelial-mesenchymal transition: Metal organic network nano-complexes for preventing tumor metastasis.

    PubMed

    Fan, Jin-Xuan; Zheng, Di-Wei; Rong, Lei; Zhu, Jing-Yi; Hong, Sheng; Li, Cao; Xu, Zu-Shun; Cheng, Si-Xue; Zhang, Xian-Zheng

    2017-09-01

    Tumor metastasis is the leading cause of death in cancer patients, and epithelial-mesenchymal transition (EMT) is an essential step in tumor metastasis. Unfortunately, during the chemotherapy, EMT could be induced under the selective pressure of clinical cytotoxic drugs. Here, to solve this problem, we have synthesized multi-functional epigallocatechin gallate/iron nano-complexes (EIN) as a versatile coating material to improve conventional therapies. In vitro studies showed that this strategy could eliminate EMT-type cancer cells. Mechanism studies also revealed that EIN was able to down-regulate the downstream expression of metastasis-associated factors, decrease the migration ability of cancer cells and prevent cancer cells from gaining drug resistance. In vivo investigation revealed that EIN had superior ability to enhance the therapeutic effect of conventional nanomedicines and inhibit the EMT process. Our study indicates the promising use of EIN to make up for the deficiencies of chemotherapy may provide insights into systematic cancer therapy to overcome tumor metastasis and drug resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition

    PubMed Central

    Barriga, Elias H.; Maxwell, Patrick H.

    2013-01-01

    One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell–cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells. PMID:23712262

  12. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition.

    PubMed

    Barriga, Elias H; Maxwell, Patrick H; Reyes, Ariel E; Mayor, Roberto

    2013-05-27

    One of the most important mechanisms that promotes metastasis is the stabilization of Hif-1 (hypoxia-inducible transcription factor 1). We decided to test whether Hif-1α also was required for early embryonic development. We focused our attention on the development of the neural crest, a highly migratory embryonic cell population whose behavior has been likened to cancer metastasis. Inhibition of Hif-1α by antisense morpholinos in Xenopus laevis or zebrafish embryos led to complete inhibition of neural crest migration. We show that Hif-1α controls the expression of Twist, which in turn represses E-cadherin during epithelial to mesenchymal transition (EMT) of neural crest cells. Thus, Hif-1α allows cells to initiate migration by promoting the release of cell-cell adhesions. Additionally, Hif-1α controls chemotaxis toward the chemokine SDF-1 by regulating expression of its receptor Cxcr4. Our results point to Hif-1α as a novel and key regulator that integrates EMT and chemotaxis during migration of neural crest cells.

  13. Role of epithelial-mesenchymal transition involved molecules in the progression of cutaneous melanoma.

    PubMed

    Murtas, Daniela; Maxia, Cristina; Diana, Andrea; Pilloni, Luca; Corda, Claudia; Minerba, Luigi; Tomei, Sara; Piras, Franca; Ferreli, Caterina; Perra, Maria Teresa

    2017-08-21

    Epithelial-mesenchymal transition (EMT) has been suggested to have a driving role in the acquisition of a metastatic potential by melanoma cells. Important hallmarks of EMT include both E-cadherin downregulation and increased expression of N-cadherin. This switch in distinct classes of adhesion molecules leads melanoma cells to lose contact with adjacent keratinocytes and interact instead with stromal fibroblasts and endothelial cells, thus promoting dermal and vascular melanoma invasion. Consequently, tumor cells migrate to distant host tissues and establish metastases. A key regulator in the induction of EMT in melanoma is the Notch1 signaling pathway that, when activated, is prompt to upregulate N-cadherin expression. By means of this strategy, melanoma cells gain enhanced survival, proliferation and invasion properties, driving the tumor toward a more aggressive phenotype. On the basis of these statements, the present study aimed to investigate the possible association between N-cadherin and Notch1 presence in primary cutaneous melanomas and lymph node metastases. Our results from immunohistochemical analysis confirmed a positive correlation between N-cadherin and Notch1 presence in the same tumor samples. Moreover, this study highlighted that a concomitant high expression of N-cadherin and Notch1, both in primary lesions and in lymph node metastases, predicts an adverse clinical outcome in melanoma patients. Therefore, N-cadherin and Notch1 co-presence can be monitored as a predictive factor in early- and advanced-stage melanomas and open additional therapeutic targets for the restraint of melanoma metastasis.

  14. FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer.

    PubMed

    Liu, Rui; Li, Jingyi; Xie, Ke; Zhang, Tao; Lei, Yunlong; Chen, Yi; Zhang, Lu; Huang, Kai; Wang, Kui; Wu, Hong; Wu, Min; Nice, Edouard C; Huang, Canhua; Wei, Yuquan

    2013-10-01

    Tumor cells evolve by interacting with the local microenvironment; however, the tumor-stroma interactions that govern tumor metastasis are poorly understood. In this study, proteomic analyses reveal that coculture with tumor-associated fibroblasts (TAF) induces significant overexpression of FGFR4, but not other FGFRs, in colorectal cancer cell lines. Mechanistic study shows that FGFR4 plays crucial roles in TAF-induced epithelial-to-mesenchymal transition (EMT) in colorectal cancer cell lines. Accumulated FGFR4 in cell membrane phosphorylates β-catenin, leading to translocation of β-catenin into the nucleus. Further, TAF-derived CCL2 and its downstream transcription factor, Ets-1, are prerequisites for TAF-induced FGFR4 upregulation. Furthermore, FGFR4-associated pathways are shown to be preferentially activated in colorectal tumor samples, and direct tumor metastasis in a mouse metastasis model. Our study shows a pivotal role of FGFR4 in tumor-stroma interactions during colorectal cancer metastasis, and suggests novel therapeutic opportunities for the treatment of colorectal cancer.

  15. FLASH protects ZEB1 from degradation and supports cancer cells' epithelial-to-mesenchymal transition

    PubMed Central

    Abshire, C F; Carroll, J L; Dragoi, A-M

    2016-01-01

    Cancer metastasis remains a significant challenge and the leading cause of cancer-associated deaths. It is postulated that during metastasis cells undergo epithelial-to-mesenchymal transition (EMT), a process characterized by loss of cell–cell contacts and increased migratory and invasive potential. ZEB1 is one the most prominent transcriptional repressors of genes associated with EMT. We identified caspase-8-associated protein 2 (CASP8AP2 or FLASH) as a novel posttranscriptional regulator of ZEB1. Here we demonstrate that FLASH protects ZEB1 from proteasomal degradation brought by the action of the ubiquitin ligases SIAH1 and F-box protein FBXO45. As a result, loss of FLASH rapidly destabilized ZEB1 and reversed EMT cellular characteristics. Importantly, loss of FLASH blocked transforming growth factor-β-induced EMT and enhanced sensitivity to chemotherapy. Thus, we propose that FLASH–ZEB1 interplay may be a protective mechanism against ZEB1 degradation in cells undergoing EMT and may be an efficacious target for therapies aimed to block EMT progression. PMID:27526108

  16. Nimotuzumab Inhibits Cholangiocarcinoma Cell Metastasis via Suppression of the Epithelial-Mesenchymal Transition Process.

    PubMed

    Padthaisong, Sureerat; Thanee, Malinee; Techasen, Anchalee; Namwat, Nisana; Yongvanit, Puangrat; Liwatthakun, Aekkaphod; Hankla, Khittisak; Sangkhamanon, Sakkarn; Loilome, Watcharin

    2017-07-01

    Changes in epidermal growth factor receptor (EGFR) are commonly found in cancer progression, signaling a poor outcome in patients. In the present study, we aimed to investigate whether nimotuzumab could be of benefit for cholangiocarcinoma (CCA) treatment. The expression of EGFR was explored using immunohistochemical staining in cases divided into groups with low and high expression. The effect of nimotuzumab on CCA cell growth, metastasis and the molecular mechanisms by which nimotuzumab inhibits CCA cell metastasis were evaluated. The expression of EGFR was high in 55% of patients with CCA. This was significantly correlated with a shorter survival of patients. CCA cells treated with nimotuzumab showed inhibited cell growth. Moreover, nimotuzumab inhibited CCA cell metastasis via induction of E-cadherin and suppression of zinc finger protein SNAI1 (SNAIL1), vimentin and matrix metalloproteinase 9 (MMP9) expression. Nimotuzumab appears to inhibit cell metastasis via suppression of the epithelial-mesenchymal transition process. Therefore, nimotuzumab should be considered as a potential therapeutic agent against CCA. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Targeted silencing of CXCR4 inhibits epithelial-mesenchymal transition in oral squamous cell carcinoma.

    PubMed

    Duan, Yuansheng; Zhang, Shu; Wang, Longlong; Zhou, Xuan; He, Qinghua; Liu, Su; Yue, Kai; Wang, Xudong

    2016-09-01

    Aberrant overexpression of C-X-C chemokine receptor type 4 (CXCR4) is a critical event during tumor metastasis. It has been previously reported that the expression of CXCR4 is linked with epithelial-mesenchymal transition (EMT) in oral squamous cell carcinoma (OSCC) tissues derived from patients. The present study addresses the role of CXCR4 in EMT in tongue squamous cell carcinoma (TSCCA) cells in vitro and in xenograft models. Small interfering (si) RNA sequences targeting the CXCR4 gene were transfected into TSCCA cells. Cell migration, invasion, apoptosis and EMT markers were determined in TSCCA cells using wound healing and Transwell assays, Annexin V/propdidum iodide double staining and western blot analysis, respectively. In vivo, tumor growth was assessed by subcutaneous inoculation of cells into BALB/c nude mice. Phenotypic EMT markers and regulatory factors were detected in the tumor tissues derived from the mice. In vitro, silencing of CXCR4 expression suppressed cell migration and invasion, and induced apoptosis. The protein expression of the EMT-associated markers N-cadherin and matrix metalloproteinases 2/9 were attenuated, while E-cadherin was increased. In vivo, CXCR4 siRNA inhibited tumor growth, and EMT-associated proteins had similar expression patterns to the experimental results observed in vitro. In conclusion, the present study demonstrated that CXCR4 silencing suppressed EMT in OSCC, thus affecting tumor metastasis.

  18. Soluble factors regulated by epithelial-mesenchymal transition mediate tumour angiogenesis and myeloid cell recruitment.

    PubMed

    Suarez-Carmona, Meggy; Bourcy, Morgane; Lesage, Julien; Leroi, Natacha; Syne, Laïdya; Blacher, Silvia; Hubert, Pascale; Erpicum, Charlotte; Foidart, Jean-Michel; Delvenne, Philippe; Birembaut, Philippe; Noël, Agnès; Polette, Myriam; Gilles, Christine

    2015-08-01

    Epithelial-mesenchymal transition (EMT) programmes provide cancer cells with invasive and survival capacities that might favour metastatic dissemination. Whilst signalling cascades triggering EMT have been extensively studied, the impact of EMT on the crosstalk between tumour cells and the tumour microenvironment remains elusive. We aimed to identify EMT-regulated soluble factors that facilitate the recruitment of host cells in the tumour. Our findings indicate that EMT phenotypes relate to the induction of a panel of secreted mediators, namely IL-8, IL-6, sICAM-1, PAI-1 and GM-CSF, and implicate the EMT-transcription factor Snail as a regulator of this process. We further show that EMT-derived soluble factors are pro-angiogenic in vivo (in the mouse ear sponge assay), ex vivo (in the rat aortic ring assay) and in vitro (in a chemotaxis assay). Additionally, conditioned medium from EMT-positive cells stimulates the recruitment of myeloid cells. In a bank of 40 triple-negative breast cancers, tumours presenting features of EMT were significantly more angiogenic and infiltrated by a higher quantity of myeloid cells compared to tumours with little or no EMT. Taken together, our results show that EMT programmes trigger the expression of soluble mediators in cancer cells that stimulate angiogenesis and recruit myeloid cells in vivo, which might in turn favour cancer spread.

  19. Enhanced proliferation, invasion, and epithelial-mesenchymal transition of nicotine-promoted gastric cancer by periostin

    PubMed Central

    Liu, Yu; Liu, Bao-An

    2011-01-01

    AIM: To investigate the contribution of periostin in nicotine-promoted gastric cancer cell proliferation, survival, invasion, drug resistance, and epithelial-mesenchymal transition (EMT). METHODS: Gastric cancer cells were treated with nicotine and periostin protein expression was determined by immunoblotting. Periostin mRNA in gastric cancer cells was silenced using small interfering RNA (siRNA) techniques and periostin gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction. Gastric cancer cells transfected with control or periostin siRNA plasmid were compared in terms of cell proliferation using the methylthiazolyldiphenyl-tetrazolium bromide assay. Cell apoptosis was compared using annexin V-fluoresceine isothiocyanate and propidium iodine double staining. Tumor invasion was determined using the Boyden chamber invasion assay, and the EMT marker Snail expression was evaluated by immunoblotting. RESULTS: Nicotine upregulated periostin in gastric cancer cells through a COX-2 dependent pathway, which was blocked by the COX-2-specific inhibitor NS398. Periostin mRNA expression was decreased by ~87.2% by siRNA in gastric cancer cells, and stable periostin-silenced cells were obtained by G418 screening. Periostin-silenced gastric cancer cells exhibited reduced cell proliferation, elevated sensitivity to chemotherapy with 5-fluorouracil, and decreased cell invasion and Snail expression (P < 0.05). CONCLUSION: Periostin is a nicotine target gene in gastric cancer and plays a role in gastric cancer cell growth, invasion, drug resistance, and EMT facilitated by nicotine. PMID:21677839

  20. A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition.

    PubMed

    Díaz-Martín, Juan; Díaz-López, Antonio; Moreno-Bueno, Gema; Castilla, M Ángeles; Rosa-Rosa, Juan M; Cano, Amparo; Palacios, José

    2014-02-01

    Although it is becoming clear that certain miRNAs fulfil a fundamental role in the regulation of the epithelial-to-mesenchymal transition (EMT), a comprehensive study of the miRNAs associated with this process has yet to be performed. Here, we profiled the signature of miRNA expression in an in vitro model of EMT, ectopically expressing in MDCK cells one of seven EMT transcription factors (SNAI1, SNAI2, ZEB1, ZEB2, TWIST1, TWIST2 or E47) or the EMT inducer LOXL2. In this way, we identified a core subset of deregulated miRNAs that were further validated in vivo, studying endometrial carcinosarcoma (ECS), a tumour entity that represents an extreme example of phenotypic plasticity. Moreover, epigenetic silencing through DNA methylation of miRNA genes of the miR-200 family and miR-205 that are down-regulated during EMT was evident in both the in vitro (MDCK transfectants) and in vivo (ECS) models of EMT. The strong correlation between expression and DNA methylation suggests a major role for this epigenetic mark in the regulation of the miR-141-200c locus. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition.

    PubMed

    Shen, Lan; Zhang, Fang; Huang, Ruimin; Yan, Jun; Shen, Bing

    2017-10-01

    Urinary bladder cancer (UBC) is one of the most common urological cancer types. Muscle invasive bladder cancer possesses high propensity for metastasis with poor prognosis. Honokiol is a lignan isolated from Magnolia officinalis with high bioavailability and potent anticancer effects. The results of the present study demonstrated that honokiol significantly inhibited UBC cell migration and invasion in a dose-dependent manner compared with the vehicle-treated control group. In addition, honokiol treatment suppressed epithelial-mesenchymal transition by induction of E-cadherin and repression of N-cadherin. Honokiol was capable of significantly downregulating the expression of cell invasion-associated genes, steroid receptor coactivator-3 (SRC-3), matrix metalloproteinase (MMP)-2 and Twist1. Notably, the inhibition of UBC cell invasion by honokiol was reversed by reintroduction of oncoprotein SRC-3 expression, with the restoration of MMP-2 and Twist1, and reduction of E-cadherin expression. Furthermore, the results of the luciferase assay confirmed that SRC-3 could regulate Twist1 promoter activity. Taken together, the results of the present study suggest that honokiol is a promising agent against UBC cell invasion via downregulation of SRC-3 and its target genes.

  2. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition

    PubMed Central

    Khan, Md. Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang

    2015-01-01

    Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis. PMID:26023736

  3. Melanoma Proteoglycan Modifies Gene Expression to Stimulate Tumor Cell Motility, Growth and Epithelial to Mesenchymal Transition

    PubMed Central

    Yang, Jianbo; Price, Matthew A.; Li, GuiYuan; Bar-Eli, Menashe; Salgia, Ravi; Jagedeeswaran, Ramasamy; Carlson, Jennifer H.; Ferrone, Soldano; Turley, Eva A.; McCarthy, James B.

    2009-01-01

    Melanoma chondroitin sulfate proteoglycan (MCSP) is a plasma membrane-associated proteoglycan that facilitates the growth, motility and invasion of tumor cells. MCSP expression in melanoma cells enhances integrin function and constitutive activation of Erk 1,2. The current studies were performed to determine the mechanism by which MCSP expression promotes tumor growth and motility. The results demonstrate that MCSP expression in radial growth phase (RGP), vertical growth phase (VGP) or metastatic cell lines causes sustained activation of Erk 1,2, enhanced growth and motility which all require the cytoplasmic domain of the MCSP core protein. MCSP expression in an RGP cell line also promotes an epithelial to mesenchymal transition (EMT) based on changes in cell morphology and the expression of several EMT markers. Finally MCSP enhances the expression of c-Met and HGF, and inhibiting c-Met expression or activation limits the increased growth and motility of multiple melanoma cell lines. The studies collectively demonstrate an importance for MCSP in promoting progression by an epigenetic mechanism and they indicate that MCSP could be targeted to delay or inhibit tumor progression in patients. PMID:19738072

  4. MAEL expression links epithelial-mesenchymal transition and stem cell properties in colorectal cancer.

    PubMed

    Li, Qingguo; Wei, Ping; Huang, Ben; Xu, Ye; Li, Xinxiang; Li, Yaqi; Cai, Sanjun; Li, Dawei

    2016-12-01

    MAEL plays a central role during spermatogenesis by repressing transposable elements and preventing their mobilisation, however, its role on cancers is unclear. In this study, MAEL expression was analysed in a tissue microarray containing 185 samples of primary colon cancer tumor samples and human colon cancer cell lines. The effect of MAEL on cell proliferation, tumorigenesis, metastasis and drug resistance was examined in vitro and in vivo. Immunoprecipitation assay, confocal immunofluorescent analysis and luciferase assay were used for mechanism study. As results, MAEL was significantly upregulated in colon cancer patient tissue samples, and elevated MAEL protein levels positively correlated with overall survival and disease free survival of colon cancer patients. Using in vitro and in vivo models, we demonstrated that MAEL expression was correlated with cell proliferation, invasion and drug resistance of colon cancer cells by inducing epithelial-mesenchymal transition and stemness characteristics. Mechanistically, our study demonstrated that MAEL interacts with Snail and inhibit E-cadherin promoter activity. Collectively, MAEL is an oncogene that plays an important role in the development and progression of colon cancer, which may be a novel potential therapeutic target for colon cancer. © 2016 UICC.

  5. Mesenchymal to epithelial transition during tissue homeostasis and regeneration: Patching up the Drosophila midgut epithelium.

    PubMed

    Antonello, Zeus A; Reiff, Tobias; Dominguez, Maria

    2015-01-01

    Stem cells are responsible for preserving morphology and function of adult tissues. Stem cells divide to self-renew and to generate progenitor cells to sustain cell demand from the tissue throughout the organism's life. Unlike stem cells, the progenitor cells have limited proliferation potential but have the capacity to terminally differentiate and thereby to substitute older or damaged mature cells. Recent findings indicate that adult stem cells can adapt their division kinetics dynamically to match changes in tissue demand during homeostasis and regeneration. However, cell turnover not only requires stem cell division but also needs timed differentiation of the progenitor cells, which has been much less explored. In this Extra View article, we discuss the ability of progenitor cells to actively postpone terminal differentiation in the absence of a local demand and how tissue demand activates terminal differentiation via a conserved mesenchymal-epithelial transition program revealed in our recent EMBO J paper and other published and unpublished data. The extent of the significance of these results is discussed for models of tissue dynamics during both homeostasis and regeneration.

  6. In vivo positron emission tomography (PET) imaging of mesenchymal-epithelial transition (MET) receptor.

    PubMed

    Wu, Chunying; Tang, Zhe; Fan, Weiwen; Zhu, Wenxia; Wang, Changning; Somoza, Edurado; Owino, Norbert; Li, Ruoshi; Ma, Patrick C; Wang, Yanming

    2010-01-14

    We report the radiosynthesis and evaluation of 3-[3,5-dimethyl-4-(4-[11C]methylpiperazinecarbonyl)-1H-pyrrol-2-ylmethylene]-2-oxo-2,3-dihydro-1H-indole-5-sulfonic acid (3-chlorophenyl)methylamide, termed [11C]SU11274 ([11C]14) for in vivo imaging of mesenchymal-epithelial transition (MET) receptor by positron emission tomography (PET). Following the synthesis of the precursor (13) that was achieved in 10 steps with a total yield of 9.7%, [11C]14 was obtained through radiomethylation in a range of 5-10% radiochemical yield and over 95% radiochemical purity. For in vivo PET studies, two human lung cancer xenograft models were established using MET-positive NCI-H1975 and MET-negative NCI-H520 cell lines. Quantitative [11C]14-PET studies showed that the tumor uptake of [11C]14 in the NCI-H1975 xenografts was significantly higher than that in the NCI-H520 xenografts, which is consistent with their corresponding immunohistochemical tissue staining patterns of MET receptors from the same animals. These studies demonstrated that [11C]14-PET is an appropriate imaging marker for quantification of MET receptor in vivo, which can facilitate efficacy evaluation in the clinical development of MET-targeted cancer therapeutics.

  7. Epithelial-to-Mesenchymal Transition and MicroRNAs in Lung Cancer

    PubMed Central

    Pécuchet, Nicolas; Imbeaud, Sandrine; Pallier, Karine; Didelot, Audrey; Roussel, Hélène; Gibault, Laure; Fabre, Elizabeth; Le Pimpec-Barthes, Françoise; Laurent-Puig, Pierre; Blons, Hélène

    2017-01-01

    Despite major advances, non-small cell lung cancer (NSCLC) remains the major cause of cancer-related death in developed countries. Metastasis and drug resistance are the main factors contributing to relapse and death. Epithelial-to-mesenchymal transition (EMT) is a complex molecular and cellular process involved in tissue remodelling that was extensively studied as an actor of tumour progression, metastasis and drug resistance in many cancer types and in lung cancers. Here we described with an emphasis on NSCLC how the changes in signalling pathways, transcription factors expression or microRNAs that occur in cancer promote EMT. Understanding the biology of EMT will help to define reversing process and treatment strategies. We will see that this complex mechanism is related to inflammation, cell mobility and stem cell features and that it is a dynamic process. The existence of intermediate phenotypes and tumour heterogeneity may be debated in the literature concerning EMT markers, EMT signatures and clinical consequences in NSCLC. However, given the role of EMT in metastasis and in drug resistance the development of EMT inhibitors is an interesting approach to counteract tumour progression and drug resistance. This review describes EMT involvement in cancer with an emphasis on NSCLC and microRNA regulation. PMID:28771186

  8. Epithelial mesenchymal transition from a natural gestational orchestration to a bizarre cancer disturbance.

    PubMed

    Shirkoohi, Reza

    2013-01-01

    The epithelial to mesenchymal transition (EMT), a pathologic phenomenon in cancer, has a twin in the embryonic period of life. In the first one, its promotion will cause metastasis to become a life-threatening stage of cancer, while in the second it will lead to organogenesis, which is necessary for all living creatures. There is one more from this phenomenon, which occurs during the wound healing process and if dys-regulated can lead to fibrosis. In both there are stimulants in common and one that are different. Stages start from cell-cell junction dissociation followed by morphological changes and behavioral and essence alterations. To control the EMT as a bizarre disturbance in cancer and metastasis, initially it is better to understand the wonder of natural gestational orchestration in early life. In this review, first the structure of the two heads of the spectrum is described followed by the cellular and micro-environmental alterations during this phenomenon. Understanding cellular behavior in this process and what makes them invasive resistant stemness cells will be of great importance in highlighting roads to cancer treatment.

  9. MicroRNA-Mediated Post-Transcriptional Regulation of Epithelial to Mesenchymal Transition in Cancer.

    PubMed

    Behbahani, Golnoush Dehbashi; Ghahhari, Nastaran Mohammadi; Javidi, Mohammad Amin; Molan, Asghar Farzi; Feizi, Neda; Babashah, Sadegh

    2017-01-01

    Epithelial to mesenchymal transition (EMT) program participates in tissue repair, embryogenesis and numerous pathological conditions, particularly cancer progression and tumor metastasis. A highly complex and strongly controlled post-transcriptionally regulated network of microRNAs (miRNAs) regulates the EMT process. miRNAs are critical parts of the post-transcriptional regulation of gene expression. A set of miRNAs target multiple components of major signaling pathways and downstream effectors of EMT. miRNAs associated with this process are involved in controlling tumor progression and invasiveness either as oncogenes or as tumor suppressors. Since several miRNAs directly affect EMT-related master regulators, they have been discovered to have the potential to be used as biomarkers or targets in EMT-based pathological conditions such as cancer. Therefore, comprehensive understanding of miRNA-EMT correlation with tumor metastatic spread may provide improvements to diagnostic tools or therapeutics for cancer. This review summarizes our current knowledge about some of these important miRNAs and focuses on their specific roles in regulation of the EMT process in cancer.

  10. Bioinformatic approaches to augment study of epithelial-to-mesenchymal transition in lung cancer

    PubMed Central

    Beck, Tim N.; Chikwem, Adaeze J.; Solanki, Nehal R.

    2014-01-01

    Bioinformatic approaches are intended to provide systems level insight into the complex biological processes that underlie serious diseases such as cancer. In this review we describe current bioinformatic resources, and illustrate how they have been used to study a clinically important example: epithelial-to-mesenchymal transition (EMT) in lung cancer. Lung cancer is the leading cause of cancer-related deaths and is often diagnosed at advanced stages, leading to limited therapeutic success. While EMT is essential during development and wound healing, pathological reactivation of this program by cancer cells contributes to metastasis and drug resistance, both major causes of death from lung cancer. Challenges of studying EMT include its transient nature, its molecular and phenotypic heterogeneity, and the complicated networks of rewired signaling cascades. Given the biology of lung cancer and the role of EMT, it is critical to better align the two in order to advance the impact of precision oncology. This task relies heavily on the application of bioinformatic resources. Besides summarizing recent work in this area, we use four EMT-associated genes, TGF-β (TGFB1), NEDD9/HEF1, β-catenin (CTNNB1) and E-cadherin (CDH1), as exemplars to demonstrate the current capacities and limitations of probing bioinformatic resources to inform hypothesis-driven studies with therapeutic goals. PMID:25096367

  11. YKL-40 promotes the migration and invasion of prostate cancer cells by regulating epithelial mesenchymal transition.

    PubMed

    Hao, Hailong; Wang, Lei; Chen, Huiqing; Xie, Liwu; Bai, Tao; Liu, Hongyu; Wang, Dongwen

    2017-01-01

    This study aims to observe the expression of YKL-40 in prostate cancer and whether YKL-40 can affect the migration and invasion of tumor cells by regulating epithelial mesenchymal transition. We collected 14 cases of prostate cancer tissues and adjacent tissues in this study. The expression levels of YKL-40 in the tissues were analyzed by western blotting and immunohistochemical methods. The expression of YKL-40 in human prostate cancer cell line DU145 and PC3 was detected by fluorescence quantitative PCR and western blotting methods. The expression levels of YKL-40 in different cells were up-regulated or down- regulated by lentivirus to observe the changes of cell migration and invasion. The expression levels of EMT related genes were analyzed by RT-PCR and Western blotting methods. The expression level of YKL-40 in prostate cancer tissues was significantly higher than that in adjacent tissues (P<0.01), and it was higher in DU145 cells than that in PC3 cells (P<0.05). The expression level of YKL-40 was positively correlated with cell migration and invasion. YKL-40 can regulate the expression of EMT related genes (Twist, Snail, Slug, N-cadherin, Vimentin and E-cadherin). The expression level of YKL-40 was positively correlated with the migration and invasion of prostate cells, it affects cancer metastasis by regulating EMT.

  12. SATB1 promotes epithelial-mesenchymal transition and metastasis in prostate cancer.

    PubMed

    Qi, Honggang; Fu, Xinyang; Li, Yeping; Pang, Xiang; Chen, Sansan; Zhu, Xiaojun; Li, Fei; Tan, Wanlong

    2017-04-01

    Special AT-rich sequence-binding protein-1 (SATB1) is associated with cancer progression and poor clinical outcome. The present study aims to evaluate whether SATB1 affects the biological behaviors of prostate cancer (PCa), and furthermore, to elucidate whether this effect works through the epithelial-mesenchymal transition (EMT) pathway. Firstly, the expression of SATB1 was investigated in a series of PCa tissues as well as in a panel of PCa cell lines. Cell proliferation, migration and invasion were evaluated in SATB1 knockdown and overexpressed PCa cell lines by MTT and Transwell assays. The results showed that the expression of SATB1 was markedly upregulated in PCa tissues and all PCa cell lines (P<0.001). Ectopic expression of SATB1 promoted PCa cell proliferation and migration. Knockdown of SATB1 repressed the ability of cell proliferation and migration of PCa cells. In addition, inhibition of SATB1 could reverse the EMT processes through upregulation of E-cadherin and downregulation of vimentin. The present study provided evidence that SATB1 may act as a potential therapeutic target in PCa patients.

  13. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition.

    PubMed

    Zhao, Le; Li, Zhen; Chen, Wei; Zhai, Wen; Pan, Jingjing; Pang, Huan; Li, Xu

    2017-01-01

    Endometrial cancer is one of the most common types of gynecological malignancy worldwide. Novel biomarkers and therapeutic targets are imperative for improving patients' survival. Previous studies have suggested the long non-coding RNA H19 as a potential cancer biomarker. To investigate the role of H19 in endometrial cancer, the present study examined the expression pattern of H19 in endometrial cancer tissues by quantitative polymerase chain reaction, and characterized its function in the endometrial cancer cell line via knocking down its expression with small interfering RNAs. It was found that H19 level was significantly higher in tumor tissues than in paratumoral tissues. Knockdown of H19 did not affect the growth rate of HEC-1-B endometrial cancer cells, but significantly suppressed in vitro migration and invasion of HEC-1-B cells. Furthermore, H19 downregulation decreased Snail level and increased E-cadherin expression without affecting vimentin level, indicating partial reversion of epithelial-mesenchymal transition (EMT). The present findings suggested that H19 contributed to the aggressiveness of endometrial cancer by modulating EMT process.

  14. FLASH protects ZEB1 from degradation and supports cancer cells' epithelial-to-mesenchymal transition.

    PubMed

    Abshire, C F; Carroll, J L; Dragoi, A-M

    2016-08-15

    Cancer metastasis remains a significant challenge and the leading cause of cancer-associated deaths. It is postulated that during metastasis cells undergo epithelial-to-mesenchymal transition (EMT), a process characterized by loss of cell-cell contacts and increased migratory and invasive potential. ZEB1 is one the most prominent transcriptional repressors of genes associated with EMT. We identified caspase-8-associated protein 2 (CASP8AP2 or FLASH) as a novel posttranscriptional regulator of ZEB1. Here we demonstrate that FLASH protects ZEB1 from proteasomal degradation brought by the action of the ubiquitin ligases SIAH1 and F-box protein FBXO45. As a result, loss of FLASH rapidly destabilized ZEB1 and reversed EMT cellular characteristics. Importantly, loss of FLASH blocked transforming growth factor-β-induced EMT and enhanced sensitivity to chemotherapy. Thus, we propose that FLASH-ZEB1 interplay may be a protective mechanism against ZEB1 degradation in cells undergoing EMT and may be an efficacious target for therapies aimed to block EMT progression.

  15. La enhances IRES-mediated translation of laminin B1 during malignant epithelial to mesenchymal transition.

    PubMed

    Petz, Michaela; Them, Nicole; Huber, Heidemarie; Beug, Hartmut; Mikulits, Wolfgang

    2012-01-01

    The majority of transcripts that harbor an internal ribosome entry site (IRES) are involved in cancer development via corresponding proteins. A crucial event in tumor progression referred to as epithelial to mesenchymal transition (EMT) allows carcinoma cells to acquire invasive properties. The translational activation of the extracellular matrix component laminin B1 (LamB1) during EMT has been recently reported suggesting an IRES-mediated mechanism. In this study, the IRES activity of LamB1 was determined by independent bicistronic reporter assays. Strong evidences exclude an impact of cryptic promoter or splice sites on IRES-driven translation of LamB1. Furthermore, no other LamB1 mRNA species arising from alternative transcription start sites or polyadenylation signals were detected that account for its translational control. Mapping of the LamB1 5'-untranslated region (UTR) revealed the minimal LamB1 IRES motif between -293 and -1 upstream of the start codon. Notably, RNA affinity purification showed that the La protein interacts with the LamB1 IRES. This interaction and its regulation during EMT were confirmed by ribonucleoprotein immunoprecipitation. In addition, La was able to positively modulate LamB1 IRES translation. In summary, these data indicate that the LamB1 IRES is activated by binding to La which leads to translational upregulation during hepatocellular EMT.

  16. Critical Roles of p53 in Epithelial-Mesenchymal Transition and Metastasis of Hepatocellular Carcinoma Cells

    PubMed Central

    Wang, Zheng; Jiang, Yuhui; Guan, Dongxian; Li, Jingjing; Yin, Hongkun; Pan, Yi; Xie, Dong; Chen, Yan

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most malignant tumors and the biggest obstacle in curing HCC is its high metastasis potential. Alteration of p53 is the most frequent genetic change found in HCC. Although the biological function of p53 in tumor initiation and progression has been well characterized, whether or not p53 is implicated in metastasis of HCC is largely unknown. In this study, we analyzed the potential functions of p53 in epithelial-mesenchymal transition (EMT) and metastasis of HCC cells. Both insulin- and TGF-β1-induced changes of critical EMT markers were greatly enhanced by p53 knockdown in HCC cells. The insulin- and TGF-β1-stimulated migration of HCC cells were enhanced by p53 knockdown. Furthermore, in vivo metastasis of HCC cells using different mouse models was robustly enhanced by p53 knockdown. In addition, we found that p53 regulation on EMT and metastasis involves β-catenin signaling. The nuclear accumulation and transcriptional activity of β-catenin was modulated by p53. The enhanced EMT phenotype, cell migration and tumor metastasis of HCC cells by p53 knockdown were abrogated by inhibiting β-catenin signal pathway. In conclusion, this study reveals that p53 plays a pivotal role in EMT and metastasis of HCC cells via its regulation on β-catenin signaling. PMID:24023784

  17. Kisspeptin-10 inhibits the migration of breast cancer cells by regulating epithelial-mesenchymal transition.

    PubMed

    Song, Guo-Qing; Zhao, Yi

    2015-02-01

    Breast cancer is the leading cause of cancer-related death in women. Kisspeptin-10 (KP-10) is a shorter fragment of KISS1. In the present study, we demonstrated the antitumor effects of KP-10 on human breast cancer cell lines, MDA-MB-231 and MDA-MB-157, both in vitro and in vivo. KP-10 was observed to induce apoptosis and inhibit the mobility of MDA-MB-231 and MDA-MB-157 cells. Correspondingly, KP-10 suppressed tumor growth in established xenograft tumor models and improved the survival rate of tumor-bearing mice. The formation of intratumoral microvessels was inhibited following treatment with KP-10. Finally, we confirmed that KP-10 inhibited cell mobility via epithelial-mesenchymal transition (EMT). Overall, the present study demonstrated that KP-10 suppressed breast cancer and human umbilical vein endothelial cell (HUVEC) growth both in vivo and in vitro. KP-10 is a novel regulator of EMT in breast cancer cells. However, additional studies are needed to confirm these results in other cell types.

  18. Geranylgeranylacetone alleviates radiation-induced lung injury by inhibiting epithelial-to-mesenchymal transition signaling.

    PubMed

    Kim, Joong-Sun; Son, Yeonghoon; Jung, Myung-Gu; Jeong, Ye Ji; Kim, Sung-Ho; Lee, Su-Jae; Lee, Yoon-Jin; Lee, Hae-June

    2016-06-01

    Radiation-induced lung injury (RILI) involves pneumonitis and fibrosis, and results in pulmonary dysfunction. Moreover, RILI can be a fatal complication of thoracic radiotherapy. The present study investigated the protective effect of geranylgeranlyacetone (GGA), an inducer of heat shock protein (HSP)70, on RILI using a C57BL/6 mouse model of RILI developing 6 months subsequent to exposure to 12.5 Gy thoracic radiation. GGA was administered 5 times orally prior and subsequent to radiation exposure, and the results were assessed by histological analysis and western blotting. The results show that late RILI was alleviated by GGA treatment, possibly through the suppression of epithelial‑to‑mesenchymal transition (EMT) marker expression. Based on histological examination, orally administered GGA during the acute phase of radiation injury not only significantly inhibited pro‑surfactant protein C (pro‑SPC) and vimentin expression, but also preserved E‑cadherin expression 6 months after irradiation‑induced injury of the lungs. GGA induced HSP70 and inhibited EMT marker expression in L132 human lung epithelial cells following IR. These data suggest that the prevention of EMT signaling is a key cytoprotective effect in the context of RILI. Thus, HSP70‑inducing drugs, such as GGA, could be beneficial for protection against RILI.

  19. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells.

    PubMed

    McCubrey, James A; Fitzgerald, Timothy L; Yang, Li V; Lertpiriyapong, Kvin; Steelman, Linda S; Abrams, Stephen L; Montalto, Giuseppe; Cervello, Melchiorre; Neri, Luca M; Cocco, Lucio; Martelli, Alberto M; Laidler, Piotr; Dulińska-Litewka, Joanna; Rakus, Dariusz; Gizak, Agnieszka; Nicoletti, Ferdinando; Falzone, Luca; Candido, Saverio; Libra, Massimo

    2017-02-21

    Various signaling pathways exert critical roles in the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). The Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, hedgehog (Hh), Notch and TP53 pathways elicit essential regulatory influences on cancer initiation, EMT and progression. A common kinase involved in all these pathways is moon-lighting kinase glycogen synthase kinase-3 (GSK-3). These pathways are also regulated by micro-RNAs (miRs). TP53 and components of these pathways can regulate the expression of miRs. Targeting members of these pathways may improve cancer therapy in those malignancies that display their abnormal regulation. This review will discuss the interactions of the multi-functional GSK-3 enzyme in the Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, Hh, Notch and TP53 pathways. The regulation of these pathways by miRs and their effects on CSC generation, EMT, invasion and metastasis will be discussed.

  20. Genotypes of cancer stem cells characterized by epithelial-to-mesenchymal transition and proliferation related functions.

    PubMed

    Hsu, Chueh-Lin; Chung, Feng-Hsiang; Chen, Chih-Hao; Hsu, Tzu-Ting; Liu, Szu-Mam; Chung, Dao-Sheng; Hsu, Ya-Fen; Chen, Chien-Lung; Ma, Nianhan; Lee, Hoong-Chien

    2016-09-06

    Cancer stem cells (CSCs), or cancer cells with stem cell-like properties, generally exhibit drug resistance and have highly potent cancer inducing capabilities. Genome-wide expression data collected at public repositories over the last few years provide excellent material for studies that can lead to insights concerning the molecular and functional characteristics of CSCs. Here, we conducted functional genomic studies of CSC based on fourteen PCA-screened high quality public CSC whole genome gene expression datasets and, as control, four high quality non-stem-like cancer cell and non-cancerous stem cell datasets from the Gene Expression Omnibus database. A total of 6,002 molecular signatures were taken from the Molecular Signatures Database and used to characterize the datasets, which, under two-way hierarchical clustering, formed three genotypes. Type 1, consisting of mainly glia CSCs, had significantly enhanced proliferation, and significantly suppressed epithelial-mesenchymal transition (EMT), related functions. Type 2, mainly breast CSCs, had significantly enhanced EMT, but not proliferation, related functions. Type 3, composed of ovarian, prostate, and colon CSCs, had significantly suppressed proliferation related functions and mixed expressions on EMT related functions.

  1. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition

    PubMed Central

    Sciacovelli, Marco; Gonçalves, Emanuel; Isaac Johnson, Timothy; Roberto Zecchini, Vincent; da Costa, Ana Sofia Henriques; Gaude, Edoardo; Vercauteren Drubbel, Alizee; Julian Theobald, Sebastian; Abbo, Sandra; Tran, Maxine; Rajeeve, Vinothini; Cardaci, Simone; Foster, Sarah; Yun, Haiyang; Cutillas, Pedro; Warren, Anne; Gnanapragasam, Vincent; Gottlieb, Eyal; Franze, Kristian; Huntly, Brian; Richard Maher, Eamonn; Henry Maxwell, Patrick; Saez-Rodriguez, Julio; Frezza, Christian

    2016-01-01

    Mutations of the tricarboxylic acid cycle (TCA cycle) enzyme fumarate hydratase (FH) cause Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC)1. FH-deficient renal cancers are highly aggressive and metastasise even when small, leading to an abysmal clinical outcome2. Fumarate, a small molecule metabolite that accumulates in FH-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite3. Fumarate was shown to inhibit α-ketoglutarate (aKG)-dependent dioxygenases involved in DNA and histone demethylation4,5. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of FH and the subsequent accumulation of fumarate elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis6. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster6 miR-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of FH-proficient cells with cell-permeable fumarate. Loss of FH is associated with suppression of miR-200 and EMT signature in renal cancer patients, and is associated with poor clinical outcome. These results imply that loss of FH and fumarate accumulation contribute to the aggressive features of FH-deficient tumours. PMID:27580029

  2. Expression of Epithelial-Mesenchymal Transition Regulating Transcription Factors in Head and Neck Squamous Cell Carcinomas.

    PubMed

    Göppel, Juliane; Möckelmann, Nikolaus; Münscher, Adrian; Sauter, Guido; Schumacher, Udo

    2017-10-01

    The transcription factors Twist, Snail, Slug, ZEB1 and ZEB2 regulate epithelial-mesenchymal transition (EMT) and their expression has been associated with a poor prognosis in several cancer entities. The aim of this analysis was to investigate in parallel the expression of all of these transcription factors in head and neck squamous cell carcinomas (HNSCCs) in order to gain insight into their possible co-expression. Tumor tissue samples were immunohistochemically stained using antibodies against these transcription factors. The staining intensity and cellular distribution of the immunoreactivity was recorded. In general, transcription factor immunoreactivity was noted in the nucleus of both cancer and stromal cells. The highest immunoreactivity was observed for Twist. Snail, Slug, ZEB1 and ZEB2 showed a much lesser immunoreactivity in cancer cells and they were expressed independently from each other. Twist is the major transcription factor active in HNSCC; the other transcription factors of EMT seem to be of less importance in this tumor entity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Regulation of epithelial-mesenchymal transition by tumor-associated macrophages in cancer

    PubMed Central

    Zhang, Jia; Yao, Hongmei; Song, Ge; Liao, Xia; Xian, Yao; Li, Weimin

    2015-01-01

    It should be urgently better understood of the mechanism that contributes cancer aggressiveness. Epithelial-mesenchymal transition (EMT) plays a fundamental role in tumor progression and metastasis formation by invasion, resistance to cell death and senescence, resistance to chemotherapy and immunotherapy, immune surveillance, immunosuppression and inflammation, confers stem cell properties. Tumor-associated macrophages (TAMs) are key orchestrators and a set of macrophages in tumor microenvironment. They are major players in the connection between inflammation and cancer. TAMs could promote proliferation, invasion and metastasis of tumor cells, stimulate tumor angiogenesis, and inhibit anti-tumor immune response mediated by T cell followed by promoting tumor progression. Recently, studies showed that TAMs played critical role in the regulation of EMT in cancer, although the underlying mechanism of TAMs-mediated acquisition of EMT has been largely unclear. This review will discuss recent advances in our understanding of the role of TAMs in the regulation of EMT during tumorigenesis and summarize the recent ongoing experimental and pre-clinical TAMs targeted studies. PMID:26692918

  4. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells

    PubMed Central

    McCubrey, James A.; Fitzgerald, Timothy L.; Yang, Li V.; Lertpiriyapong, Kvin; Steelman, Linda S.; Abrams, Stephen L.; Montalto, Giuseppe; Cervello, Melchiorre; Neri, Luca M.; Cocco, Lucio; Martelli, Alberto M.; Laidler, Piotr; Dulińska-Litewka, Joanna; Rakus, Dariusz; Gizak, Agnieszka; Nicoletti, Ferdinando; Falzone, Luca; Candido, Saverio; Libra, Massimo

    2017-01-01

    Various signaling pathways exert critical roles in the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). The Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, hedgehog (Hh), Notch and TP53 pathways elicit essential regulatory influences on cancer initiation, EMT and progression. A common kinase involved in all these pathways is moon-lighting kinase glycogen synthase kinase-3 (GSK-3). These pathways are also regulated by micro-RNAs (miRs). TP53 and components of these pathways can regulate the expression of miRs. Targeting members of these pathways may improve cancer therapy in those malignancies that display their abnormal regulation. This review will discuss the interactions of the multi-functional GSK-3 enzyme in the Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, Hh, Notch and TP53 pathways. The regulation of these pathways by miRs and their effects on CSC generation, EMT, invasion and metastasis will be discussed. PMID:27999207

  5. Diffusion kurtosis imaging evaluating epithelial-mesenchymal transition in colorectal carcinoma xenografts model: a preliminary study.

    PubMed

    Liu, Huanhuan; Shen, Wenbin; Zhang, Caiyuan; Cui, Yanfen; Li, Jinning; Zhang, Tingting; Chen, Weibo; Wang, Dengbin

    2017-09-12

    Epithelial-mesenchymal transition (EMT) plays an important role in aggravating invasiveness and metastatic behavior of colorectal cancer (CRC). Identification of EMT is important for structuring treatment strategy, but has not yet been studied by using noninvasive imaging modality. Diffusion kurtosis imaging (DKI) is an advanced diffusion weighted model that could reflect tissue microstructural changes in vivo. In this study, EMT was induced in CRC cells (HCT116) by overexpressing Snail1 gene. We aimed to investigate the value of DKI in identifying EMT in CRC and decipher the correlations between DKI-derived parameters and EMT biomarker E-cadherin and cell proliferative index Ki-67 expression. Our results revealed that HCT116/Snail1 cells presented changes consistent with EMT resulting in significant increase in migration and invasion capacities. DKI could identify CRC with EMT, in which the DKI-derived parameter diffusivity was significantly lower, and kurtosis was significantly higher than those in the CRC/Control. Diffusivity was negatively and kurtosis was positively correlated with Ki-67 expression, whereas diffusivity was positively and kurtosis was negatively correlated with E-cadherin expression. Therefore, our study concluded that DKI can identify EMT in CRC xenograft tumors. EMT-contained CRC tumors with high Ki-67 and low E-cadherin expression were vulnerable to have lower diffusivity and higher kurtosis coefficients.

  6. Gremlin: a novel mediator of epithelial mesenchymal transition and fibrosis in chronic allograft nephropathy.

    PubMed

    Carvajal, G; Droguett, A; Burgos, M E; Aros, C; Ardiles, L; Flores, C; Carpio, D; Ruiz-Ortega, M; Egido, J; Mezzano, S

    2008-04-01

    Chronic allograft nephropathy (CAN) is the most frequent cause of chronic dysfunction and late loss of renal allografts. Epithelial mesenchymal transition (EMT) has been identified as responsible for the presence of activated interstitial fibroblasts (myofibroblasts) and transforming growth factor beta (TGF-beta)/Smad is the key signaling mediator. It has been proposed that the bone morphogenetic protein 7 (BMP-7) antagonist, Gremlin, could participate in EMT, as a downstream mediator of TGF-beta. We evaluated 33 renal allograft biopsies, 16 of which showed CAN, versus 17 controls. By in situ hybridization we studied the expression of TGF-beta and Gremlin mRNA. Gremlin, BMP-7, E-cadherin, and alpha-smooth muscle actin (alpha-SMA) proteins were evaluated by immunohistochemistry and Smad3 activation by Southwestern. In cultured human tubuloepithelial cells (HK2 cell line), Gremlin induction by TGF-beta was studied by confocal microscopy. Among renal biopsies of transplanted patients with CAN, we detected up-regulation of TGF-beta in colocalization with Gremlin (RNA and protein), mainly in areas of tubulointerstitial fibrosis. In the same tubules, we observed decreased expression of E-cadherin and induction of vimentin and alpha-SMA. BMP-7 was significantly decreased in the CAN biopsies. In addition, HK2 stimulated with TGF-beta (1 ng/mL) induced Gremlin production at 72 hours. We postulated that Gremlin is a downstream mediator of TGF-beta, suggesting a role for Gremlin in EMT observed in CAN.

  7. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review.

    PubMed

    Cao, Hui; Xu, Enping; Liu, Hong; Wan, Ledong; Lai, Maode

    2015-08-01

    Tumor metastasis is a multi-step process by which tumor cells disseminate from their primary site and form secondary tumors at a distant site. And metastasis is the major cause of death in the vast majority of cancer patients. However, the mechanisms underlying each step remain obscure. In the past decade, a developmental program epithelial-to-mesenchymal transition (EMT) has been increasingly recognized to play pivotal and intricate roles in promoting carcinoma invasion and metastasis. The EMT process is very complex and controlled by various families of transcriptional regulators through different signaling pathways. In this system review, we focus on the molecular network of the EMT program and its malignant phenotypes associated with metastasis in colorectal cancer (CRC), including cancer stem cells, tumor budding, circulating tumor cells and drug resistance. A better understanding of the molecular regulation of the dynamic EMT program during tumor metastasis will help to provide much-needed therapeutic interventions to target this program when treating metastatic CRC. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. HIC1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition.

    PubMed

    Hao, Mingang; Li, Yue; Wang, Jinglong; Qin, Jun; Wang, Yingying; Ding, Yufeng; Jiang, Min; Sun, Xueqing; Zu, Lidong; Chang, Kun; Lin, Guowen; Du, Jiangyuan; Korinek, Vladimir; Ye, Din-Wei; Wang, Jianhua

    2017-08-01

    Metastatic disease is the leading cause of death due to prostate cancer (PCa). Although the hypermethylated in cancer 1 (HIC1) gene has been observed to be epigenetically modified in PCa, its intrinsic role and mechanism in PCa metastasis still remain uncertain. Here, we show that hypermethylation of the HIC1 promoter markedly reduces its suppressive function in metastatic PCa tissues as compared with primary and adjacent normal prostate tissues, and is associated with poor patient survival. PCas in cancer-prone mice homozygous for a prostate-targeted Hic1 conditional knockout showed stronger metastatic behaviour than those in heterozygous mice, as a result of epithelial-mesenchymal transition (EMT). Moreover, impairment of HIC1 expression in PCa cells induced their migration and metastasis through EMT, by enhancing expression of Slug and CXCR4, both of which are critical to PCa metastasis; the CXCL12-CXCR4 axis promotes EMT by activating the extracellular signal-regulated kinase (ERK) 1/2 pathway. Taken together, our results suggest that evaluation of HIC1-CXCR4-Slug signalling may provide a potential predictor for PCa aggressiveness. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. Substrate stiffness modulates lung cancer cell migration but not epithelial to mesenchymal transition.

    PubMed

    Shukla, V C; Higuita-Castro, N; Nana-Sinkam, P; Ghadiali, S N

    2016-05-01

    Biomechanical properties of the tumor microenvironment, including matrix/substrate stiffness, play a significant role in tumor evolution and metastasis. Epithelial to Mesenchymal Transition (EMT) is a fundamental biological process that is associated with increased cancer cell migration and invasion. The goal of this study was to investigate (1) how substrate stiffness modulates the migration behaviors of lung adenocarcinoma cells (A549) and (2) if stiffness-induced changes in cell migration correlate with biochemical markers of EMT. Collagen-coated polydimethylsiloxane (PDMS) substrates and an Ibidi migration assay were used to investigate how substrate stiffness alters the migration patterns of A549 cells. RT-PCR, western blotting and immunofluorescence were used to investigate how substrate stiffness alters biochemical markers of EMT, that is, E-cadherin and N-cadherin, and the phosphorylation of focal adhesion proteins. Increases in substrate stiffness led to slower, more directional migration but did not alter the biochemical markers of EMT. Interestingly, growth factor (i.e., Transforming Growth Factor-β) stimulation resulted in similar levels of EMT regardless of substrate stiffness. We also observed decreased levels of phosphorylated focal adhesion kinase (FAK) and paxillin on stiffer substrates which correlated with slower cell migration. These results indicate that substrate stiffness modulates lung cancer cell migration via focal adhesion signaling as opposed to EMT signaling.

  10. KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer

    PubMed Central

    Gumireddy, Kiranmai; Li, Anping; Gimotty, Phyllis A.; Klein-Szanto, Andres J.; Showe, Louise C.; Katsaros, Dionyssios; Coukos, George; Zhang, Lin; Huang, Qihong

    2009-01-01

    Metastasis is a complex multi-step process requiring the concerted action of many genes and is the primary cause of cancer deaths. Pathways that regulate metastasis enhancement and suppression both contribute to tumor dissemination process. In order to identify novel metastasis suppressors, we set up a forward genetic screen in a mouse model. We transduced a genome-wide RNAi library into the non-metastatic 168FARN breast cancer cell line, orthotopically transplanted the cells into mouse mammary fat pads, and then selected for cells that could metastasize to the lung and identified an RNAi for the KLF17 gene. Conversely, we demonstrate that ectopic expression of KLF17 in highly metastatic 4T1 breast cancer cell line inhibited their ability to metastasize from the mammary fat pad to the lung. We also show that suppression of KLF17 expression promotes breast cancer cell invasion and epithelial-mesenchymal transition (EMT) and that KLF17 functions by directly binding to the promoter of Id-1, a key metastasis regulator in breast cancer, to inhibit its transcription. Finally, we demonstrate that KLF17 expression is significantly down-regulated in primary human breast cancer samples and that the combined expression patterns of KLF17 and Id-1 can serve as a potential biomarker for lymph node metastasis in breast cancer. PMID:19801974

  11. Cell Surface Glycan Alterations in Epithelial Mesenchymal Transition Process of Huh7 Hepatocellular Carcinoma Cell

    PubMed Central

    Kang, Xiaonan; Sun, Chun; Jiang, Kai; Huang, Li; Lu, Yu; Sui, Jingzhe; Qin, Xue; Liu, Yinkun

    2013-01-01

    Background and Objective Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC) is high. It is well known that the epithelial mesenchymal transition (EMT) and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. Methodology HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. Results After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α) GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. Conclusions The findings of this study systematically clarify the alterations of cell surface glycan in cancer EMT, and

  12. Expression of epithelial-mesenchymal transition markers at the invasive front of oral squamous cell carcinoma

    PubMed Central

    COSTA, Liana Cristina Melo Carneiro; LEITE, Camila Ferreira; CARDOSO, Sérgio Vitorino; LOYOLA, Adriano Mota; de FARIA, Paulo Rogério; SOUZA, Paulo Eduardo Alencar; HORTA, Martinho Campolina Rebello

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is one of the most common malignances. In epithelial-mesenchymal transition (EMT), epithelial cells switch to mesenchymal-like cells exhibiting high mobility. This migratory phenotype is significant during tumor invasion and metastasis. Objective : The aim of this study is to evaluate the expression of the EMT markers E-cadherin, N-cadherin and vimentin in OSCC. Material and Methods : Immunohistochemical detection of E-cadherin, N-cadherin and vimentin was performed on 20 OSCC samples. Differences in the expression of each protein at the invasive front (IF) and in the central/superficial areas (CSA) of the tumor were assessed. Differences in the expression of each protein at the IF of both histologically high- and low-invasive OSCCs were evaluated. Associations among expression of proteins at the IF were assessed. Correlations between the expression levels of each protein at the IF and the tumor stage and clinical nodal status were also evaluated. Results : Reduced expression of E-cadherin was detected in 15 samples (75%). E-cadherin expression was reduced at the IF when compared to the CSA and in high-invasive tumors when compared to low-invasive tumors. All samples were negative for N-cadherin, even though one sample showed an inconspicuous expression. Positive expression of vimentin was observed in 6 samples (30%). Nevertheless, there was no difference in vimentin expression between the IF and the CSA regions or between the low- and high-invasive tumors. Furthermore, no association was observed among protein expression levels at the IF. Finally, no correlations were observed between each protein’s expression levels and tumor stage or clinical nodal status. Conclusions : Reduced E-cadherin expression at the IF and its association with histological invasiveness suggest that this protein is a noteworthy EMT marker in OSCC. Although vimentin was also detected as an EMT marker, its expression was neither limited to the IF nor was

  13. Colocynth Extracts Prevent Epithelial to Mesenchymal Transition and Stemness of Breast Cancer Cells.

    PubMed

    Chowdhury, Kaushik; Sharma, Ankit; Kumar, Suresh; Gunjan, Gyanesh K; Nag, Alo; Mandal, Chandi C

    2017-01-01

    Modern treatment strategies provide better overall survival in cancer patients, primarily by controlling tumor growth. However, off-target and systemic toxicity, tumor recurrence, and resistance to therapy are still inadvertent hurdles in current treatment regimens. Similarly, metastasis is another deadly threat to patients suffering from cancer. This has created an urgent demand to come up with new drugs having anti-metastatic potential and minimum side effects. Thus, this study was aimed at exploring the anti-proliferative and anti-metastatic potential of colocynth medicinal plant. Results from MTT assay, morphological visualization of cells and scratch assay indicated a role of ethanol and acetone extracts of fruit pulp of the colocynth plant in inhibiting cell viability, enhancing cell cytotoxicity and preventing cell migration in various cancer cell types, including breast cancer cell lines MCF-7 and MDA-MB-231, and cervical cancer cell line SiHa, subsequently having a low cytotoxic effect on mononuclear PBMC and macrophage J774A cells. Our study in metastatic MDA-MB-231 cells showed that both ethanol and acetone pulp extracts decreased transcript levels of the anti-apoptotic genes BCL2 and BCLXL, and a reverse effect was observed for the pro-apoptotic genes BAX and caspase 3. Additionally, enhanced caspase 3 activity and downregulated BCL2 protein were seen, indicating a role of these extracts in inducing apoptotic activity. Moreover, MDA-MB-231 cells treated with both these extracts demonstrated up-regulation of the epithelial gene keratin 19 and down-regulation of the mesenchymal genes, vimentin, N-cadherin, Zeb1 and Zeb2 compared to control, suggesting a suppressive impact of these extracts in epithelial to mesenchymal transition (EMT). In addition, these extracts inhibited colony and sphere formation with simultaneous reduction in the transcript level of the stemness associated genes, BMI-1 and CD44. It was also found that both the plant extracts

  14. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation.

    PubMed

    Cousins, Fiona L; Murray, Alison; Esnal, Arantza; Gibson, Douglas A; Critchley, Hilary O D; Saunders, Philippa T K

    2014-01-01

    In women dynamic changes in uterine tissue architecture occur during each menstrual cycle. Menses, characterised by the shedding of the upper functional layer of the endometrium, is the culmination of a cascade of irreversible changes in tissue function including stromal decidualisation, inflammation and production of degradative enzymes. The molecular mechanisms that contribute to the rapid restoration of tissue homeostasis at time of menses are poorly understood. A modified mouse model of menses was developed to focus on the events occurring within the uterine lining during endometrial shedding/repair. Decidualisation, vaginal bleeding, tissue architecture and cell proliferation were evaluated at 4, 8, 12, and 24 hours after progesterone (P4) withdrawal; mice received a single injection of bromodeoxyuridine (BrdU) 90 mins before culling. Expression of genes implicated in the regulation of mesenchymal to epithelial transition (MET) was determined using a RT2 PCR profiler array, qRTPCR and bioinformatic analysis. Mice exhibited vaginal bleeding between 4 and 12 hours after P4 withdrawal, concomitant with detachment of the decidualised cell mass from the basal portion of the endometrial lining. Immunostaining for BrdU and pan cytokeratin revealed evidence of epithelial cell proliferation and migration. Cells that appeared to be in transition from a mesenchymal to an epithelial cell identity were identified within the stromal compartment. Analysis of mRNAs encoding genes expressed exclusively in the epithelial or stromal compartments, or implicated in MET, revealed dynamic changes in expression, consistent with a role for reprogramming of mesenchymal cells so that they could contribute to re-epithelialisation. These studies have provided novel insights into the cellular processes that contribute to re-epithelialisation post-menses implicating both epithelial cell migration and mesenchymal cell differentiation in restoration of an intact epithelial cell layer. These

  15. A prospective epigenetic paradigm between cellular senescence and epithelial-mesenchymal transition in organismal development and aging.

    PubMed

    Kishi, Shuji; Bayliss, Peter E; Hanai, Jun-Ichi

    2015-01-01

    Epigenetic states can govern the plasticity of a genome to be adaptive to environments where many stress stimuli and insults compromise the homeostatic system with age. Although certain elastic power may autonomously reset, reprogram, rejuvenate, or reverse the organismal aging process, enforced genetic manipulations could at least reset and reprogram epigenetic states beyond phenotypic plasticity and elasticity in cells, which can be further manipulated into organisms. The question, however, remains how we can rejuvenate intrinsic resources and infrastructures in a noninvasive manner, particularly in a whole complex aging organism. Given inevitable increase of cancer with age, presumably any failure of resetting, reprogramming, or even rejuvenation could be a prominent causative factor of malignancy. Accompanied by progressive deteriorations of physiological functions in organisms with advancing age, aging-associated cancer risk may essentially arise from unforeseen complications in cellular senescence. At the cellular level, epithelial-mesenchymal plasticity (dynamic and reversible transitions between epithelial and mesenchymal phenotypic states) is enabled by underlying shifts in epigenetic regulation. Thus, the epithelial-mesenchymal transition (EMT) and its reversal (mesenchymal-epithelial transition [MET]) function as a key of cellular transdifferentiation programs. On the one hand, the EMT-MET process was initially appreciated in developmental biology, but is now attracting increasing attention in oncogenesis and senescence, because the process is involved in the malignant progression vs regression of cancer. On the other hand, senescence is often considered the antithesis of early development, but yet between these 2 phenomena, there may be common factors and governing mechanisms such as the EMT-MET program, to steer toward rejuvenation of the biological aging system, thereby precisely controlling or avoiding cancer through epigenetic interventions

  16. Dynamics and plasticity of the epithelial to mesenchymal transition induced by miR-200 family inhibition.

    PubMed

    Haraguchi, Takeshi; Kondo, Masayuki; Uchikawa, Ryo; Kobayashi, Kazuyoshi; Hiramatsu, Hiroaki; Kobayashi, Kyousuke; Chit, Ung Weng; Shimizu, Takanobu; Iba, Hideo

    2016-02-18

    Whereas miR-200 family is known to be involved in the epithelial-to-mesenchymal transition (EMT), a crucial biological process observed in normal and pathological contexts, it has been largely unclear how far the functional levels of these tiny RNAs alone can propagate the molecular events to accomplish this process within several days. By developing a potent inhibitor of miR-200 family members (TuD-141/200c), the expression of which is strictly regulatable by the Tet (tetracycline)-On system, we found using a human colorectal cell line, HCT116, that several direct gene target mRNAs (Zeb1/Zeb2, ESRP1, FN1and FHOD1) of miR-200 family were elevated with distinct kinetics. Prompt induction of the transcriptional suppressors, Zeb1/Zeb2 in turn reduced the expression levels of miR-200c/-141 locus, EpCAM, ESRP1 and E-Cad. The loss of ESRP1 subsequently switched the splicing isoforms of CD44 and p120 catenin mRNAs to mesenchymal type. Importantly, within 9 days after the release from the inhibition of miR-200 family, all of the expression changes in the 14 genes observed in this study returned to their original levels in the epithelial cells. This suggests that the inherent epithelial plasticity is supported by a weak retention of key regulatory gene expression in either the epithelial or mesenchymal states through epigenetic regulation.

  17. Expression of microRNA-133 inhibits epithelial-mesenchymal transition in lung cancer cells by directly targeting FOXQ1.

    PubMed

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Ji, Cheng

    2016-10-01

    MicroRNA (miR) was implicated in the tumorigenesis of many types of cancer, but no study was conducted on the exact role of miR-133 in lung cancer. We have identified miR-133 as a putative regulator of FOXQ1 expression, and investigated the potential involvement of miR-133 in the migration and invasion of lung cancer cells, as well as the underlying molecular mechanism. MiR-133 directly targeted and down-regulated FOXQ1 expression, which in turn reduced TGF-β level. MiR-133 was down-regulated in lung cancer cell lines A549 and HCC827, and its re-expression significantly inhibited the migration and invasion of the lung cancer cells. Further investigation revealed that this inhibition was caused by reversing the epithelial-mesenchymal transition, evidenced by miR-133 induced elevation of epithelial marker E-cadherin, and reduction of mesenchymal marker Vimentin. Our study is the first to identify miR-133 as a biomarker for lung cancer. It functions to down-regulate FOXQ1, and inhibit epithelial-mesenchymal transition, which antagonizes lung cancer tumorigenesis. Therefore our data support the role of miR-133 as a potential molecular therapeutic tool in treating lung cancer. Copyright © 2015 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. SIRT1 promotes epithelial-mesenchymal transition and metastasis in colorectal cancer by regulating Fra-1 expression.

    PubMed

    Cheng, Feifei; Su, Li; Yao, Chao; Liu, Limei; Shen, Junjie; Liu, Chungang; Chen, Xuejiao; Luo, Yongli; Jiang, Lupin; Shan, Juanjuan; Chen, Jun; Zhu, Wei; Shao, Jimin; Qian, Cheng

    2016-06-01

    Understanding molecular mechanisms of colorectal cancer (CRC) metastasis is urgently required for targeted therapy and prognosis of metastatic CRC. In this study, we explored potential effects of silent mating type information regulation 2 homolog 1 (SIRT1) on CRC metastasis. Our data showed that ectopic expression of SIRT1 markedly increased the migration and invasion of CRC cells. In contrast, silencing SIRT1 repressed this behavior in aggressive CRC cells. Tumor xenograft experiments revealed that knockdown of SIRT1 impaired CRC metastasis in vivo. Silencing SIRT1 in CRC cells induced mesenchymal-epithelial transition (MET), which is the reverse process of epithelial-mesenchymal transition (EMT) and characterized by a gain of epithelial and loss of mesenchymal markers. We provided a mechanistic insight toward regulation of Fra-1 by SIRT1 and demonstrated a direct link between the SIRT1-Fra-1 axis and EMT. Moreover, SIRT1 expression correlated positively with Fra-1 expression, metastasis and overall survival in patients with CRC. Taken together, our data provide a novel mechanistic role of SIRT1 in CRC metastasis, suggesting that SIRT1 may serve as a potential therapeutic target for metastatic CRC.

  19. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton.

    PubMed

    Wicki, Andreas; Lehembre, François; Wick, Nikolaus; Hantusch, Brigitte; Kerjaschki, Dontscho; Christofori, Gerhard

    2006-04-01

    The expression of podoplanin, a small mucin-like protein, is upregulated in the invasive front of a number of human carcinomas. We have investigated podoplanin function in cultured human breast cancer cells, in a mouse model of pancreatic beta cell carcinogenesis, and in human cancer biopsies. Our results indicate that podoplanin promotes tumor cell invasion in vitro and in vivo. Notably, the expression and subcellular localization of epithelial markers are unaltered, and mesenchymal markers are not induced in invasive podoplanin-expressing tumor cells. Rather, podoplanin induces collective cell migration by filopodia formation via the downregulation of the activities of small Rho family GTPases. In conclusion, podoplanin induces an alternative pathway of tumor cell invasion in the absence of epithelial-mesenchymal transition (EMT).

  20. Trichostatin A Inhibits Epithelial Mesenchymal Transition Induced by TGF-β1 in Airway Epithelium

    PubMed Central

    Shin, Jae-Min; Lee, Heung-Man

    2016-01-01

    Background and Objectives Tissue remodeling is believed to cause recalcitrant chronic rhinosinusitis (CRS). Epithelial-mesenchymal transition (EMT) is a novel clinical therapeutic target in many chronic airway diseases related with tissue remodeling. The aim of this study was to investigate the effect of trichostatin A (TSA) on transforming growth factor (TGF)-β1-induced EMT in airway epithelium and nasal tissue. Materials and Methods A549 cells, primary nasal epithelial cells (PNECs), or inferior nasal turbinate organ culture were exposed to TSA prior to stimulation with TGF-β1. Expression levels of E-cadherin, vimentin, fibronectin, α-smooth muscle actin (SMA), histone deacetylase 2 (HDAC2), and HDAC4 were determined by western blotting and/or immunofluorescent staining. Hyperacetylation of histone H2 and H4 by TSA was measured by western blotting. After siHDAC transfection, the effects of HDAC2 and HDAC4 silencing on expression of E-cadherin, vimentin, fibronectin, α-SMA, HDAC2, and HDAC4 in TGF-β1-induced A549 were determined by RT-PCR and/or western blotting. We assessed the change in migration capacity of A549 cells by using cell migration assay and transwell invasion assay. Results TGF-β1 altered mRNA and protein expression levels of EMT markers including E-cadherin, vimentin, fibronectin, α-SMA, slug, and snail in A549 cells. Inhibition and silencing of HDAC2 and HDAC4 by TSA and siRNA enhanced TGF-β1-induced EMT in A549 cells. TSA blocked the effect of TGF-β1 on the migratory ability of A549 cells. In experiments using PNECs and inferior turbinate organ cultures, TSA suppressed expression of EMT markers induced by TGF-β1. Conclusions We showed that EMT is induced by TGF-β1 in airway epithelial cells and nasal tissue via activation of HDAC2 and HDAC4, and that inhibition of HDAC2 and HDAC4 by TSA reduces TGF-β1-induced EMT. This observation indicates that histone deacetylase inhibitors such as TSA could be potential candidates for treatment of

  1. Calcium oxalate crystals and oxalate induce an epithelial-to-mesenchymal transition in the proximal tubular epithelial cells: Contribution to oxalate kidney injury

    PubMed Central

    Convento, Marcia Bastos; Pessoa, Edson Andrade; Cruz, Edgar; da Glória, Maria Aparecida; Schor, Nestor; Borges, Fernanda Teixeira

    2017-01-01

    TGF-β1 is the main mediator of epithelial-to-mesenchymal transition (EMT). Hyperoxaluria induces crystalluria, interstitial fibrosis, and progressive renal failure. This study analyzed whether hyperoxaluria is associated with TGF-β1 production and kidney fibrosis in mice and if oxalate or calcium oxalate (CaOx) could induce EMT in proximal tubule cells (HK2) and therefore contribute to the fibrotic process. Hyperoxaluria was induced by adding hydroxyproline and ethylene glycol to the mice’s drinking water for up to 60 days. Renal function and oxalate and urinary crystals were evaluated. Kidney collagen production and TGF-β1 expression were assessed. EMT was analyzed in vitro according to TGF-β1 production, phenotypic characterization, invasion, cell migration, gene and protein expression of epithelial and mesenchymal markers. Hyperoxaluric mice showed a decrease in renal function and an increase in CaOx crystals and Ox urinary excretion. The deposition of collagen in the renal interstitium was observed. HK2 cells stimulated with Ox and CaOx exhibited a decreased expression of epithelial as well as increased expression mesenchymal markers; these cells presented mesenchymal phenotypic changes, migration, invasiveness capability and TGF-β1 production, characterizing EMT. Treatment with BMP-7 or its overexpression in HK2 cells was effective at preventing it. This mechanism may contribute to the fibrosis observed in hyperoxaluria. PMID:28387228

  2. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD.

    PubMed

    Milara, Javier; Peiró, Teresa; Serrano, Adela; Guijarro, Ricardo; Zaragozá, Cristóbal; Tenor, Herman; Cortijo, Julio

    2014-08-01

    Epithelial to mesenchymal transition (EMT) is under discussion as a potential mechanism of small airway remodelling in COPD. In bronchial epithelium of COPD and smokers markers of EMT were described. In vitro, EMT may be reproduced by exposing well-differentiated human bronchial epithelial cells (WD-HBEC) to cigarette smoke extract (CSE). EMT may be mitigated by an increase in cellular cAMP. This study explored the effects of roflumilast N-oxide, a PDE4 inhibitor on CSE-induced EMT in WD-HBEC and in primary bronchial epithelial cells from smokers and COPD in vitro. WD-HBEC from normal donors were stimulated with CSE (2.5%) for 72 h in presence of roflumilast N-oxide (2 nM or 1 μM) or vehicle. mRNA and protein of EMT markers αSMA, vimentin, collagen-1, E-cadherin, ZO-1, KRT5 as well as NOX4 were quantified by real-time quantitative PCR or protein array, respectively. Phosphorylated and total ERK1/2 and Smad3 were assessed by protein array. cAMP and TGFβ1 were measured by ELISA. Reactive oxygen species (ROS) were determined by DCF fluorescence, after 30 min CSE (2.5%). Apoptosis was measured with Annexin V/PI labelling. In some experiments, EMT markers were determined in monolayers of bronchial epithelial cells from smokers, COPD versus controls. Roflumilast N-oxide protected from CSE-induced EMT in WD-HBEC. The PDE4 inhibitor reversed both the increase in mesenchymal and the loss in epithelial EMT markers. Roflumilast N-oxide restored the loss in cellular cAMP following CSE, reduced ROS, NOX4 expression, the increase in TGFβ1 release, phospho ERK1/2 and Smad3. The PDE4 inhibitor partly protected from the increment in apoptosis with CSE. Finally the PDE4 inhibitor decreased mesenchymal yet increased epithelial phenotype markers in HBEC of COPD and smokers. Roflumilast N-oxide may mitigate epithelial-mesenchymal transition in bronchial epithelial cells in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Inhibition of Proliferation and Epithelial Mesenchymal Transition in Retinal Pigment Epithelial Cells by Heavy Chain-Hyaluronan/Pentraxin 3

    PubMed Central

    He, Hua; Kuriyan, Ajay E.; Su, Chen-Wei; Mahabole, Megha; Zhang, Yuan; Zhu, Ying-Ting; Flynn, Harry W.; Parel, Jean-Marie; Tseng, Scheffer C. G.

    2017-01-01

    Proliferative vitreoretinopathy (PVR) is mediated by proliferation and epithelial mesenchymal transition (EMT) of retinal pigment epithelium (RPE). Because heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) purified from human amniotic membrane exerts anti-inflammatory and anti-scarring actions, we hypothesized that HC-HA/PTX3 could inhibit these PVR-related processes in vitro. In this study, we first optimized an ARPE-19 cell culture model to mimic PVR by defining cell density, growth factors, and cultivation time. Using this low cell density culture model and HA as a control, we tested effects of HC-HA/PTX3 on the cell viability (cytotoxicity), proliferation (EGF + FGF-2) and EMT (TGF-β1). Furthermore, we determined effects of HC-HA/PTX3 on cell migration (EGF + FGF-2 + TGF-β1) and collagen gel contraction (TGF-β1). We found both HA and HC-HA/PTX3 were not toxic to unstimulated RPE cells. Only HC-HA/PTX3 dose-dependently inhibited proliferation and EMT of stimulated RPE cells by down-regulating Wnt (β-catenin, LEF1) and TGF-β (Smad2/3, collagen type I, α-SMA) signaling, respectively. Additionally, HA and HC-HA/PTX3 inhibited migration but only HC-HA/PTX3 inhibited collagen gel contraction. These results suggest HC-HA/PTX3 is a non-toxic, potent inhibitor of proliferation and EMT of RPE in vitro, and HC-HA/PTX3’s ability to inhibit PVR formation warrants evaluation in an animal model. PMID:28252047

  4. Targeted Deletion of Prkar1a Reveals a Role for Protein Kinase A in Mesenchymal-to-Epithelial Transition

    PubMed Central

    Nadella, Kiran S.; Jones, Georgette N.; Trimboli, Anthony; Stratakis, Constantine A.; Leone, Gustavo; Kirschner, Lawrence S.

    2011-01-01

    Dysregulation of protein kinase A (PKA) activity, caused by loss of function mutations in PRKAR1A, is known to induce tumor formation in the inherited tumor syndrome Carney complex (CNC) and is also associated with sporadic tumors of the thyroid and adrenal. We have previously shown that Prkar1a+/− mice develop schwannomas reminiscent of those seen in CNC and that similar tumors are observed in tissue-specific knockouts (KO) of Prkar1a targeted to the neural crest. Within these tumors, we have previously described the presence of epithelial islands, although the nature of these structures was unclear. In this article, we report that these epithelial structures are derived from KO cells originating in the neural crest. Analysis of the mesenchymal marker vimentin revealed that this protein was markedly down-regulated not only from the epithelial islands, but also from the tumor as a whole, consistent with mesenchymal-to-epithelial transition (MET). In vitro, Prkar1a null primary mouse embryonic fibroblasts, which display constitutive PKA signaling, also showed evidence for MET, with a loss of vimentin and up-regulation of the epithelial marker E-cadherin. Reduction of vimentin protein occurred at the posttranslational level and was rescued by proteasomal inhibition. Finally, this down-regulation of vimentin was recapitulated in the adrenal nodules of CNC patients, confirming an unexpected and previously unrecognized role for PKA in MET. PMID:18413734

  5. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells.

    PubMed

    Nagahara, Teruya; Shiraha, Hidenori; Sawahara, Hiroaki; Uchida, Daisuke; Takeuchi, Yasuto; Iwamuro, Masaya; Kataoka, Junro; Horiguchi, Shigeru; Kuwaki, Takeshi; Onishi, Hideki; Nakamura, Shinichiro; Takaki, Akinobu; Nouso, Kazuhiro; Yamamoto, Kazuhide

    2015-09-01

    Microenvironment plays an important role in epithelial-mesenchymal transition (EMT) and stemness of cells in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) is known as a tumor stemness marker of HCC. To investigate the relationship between microenvironment and stemness, we performed an in vitro co-culture assay. Four HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) were co-cultured with the TWNT-1 immortalized hepatic stellate cells (HSCs), which create a microenvironment with HCC. Cell proliferation ability was analyzed by flow cytometry (FCM) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while migration ability was assessed by a wound healing assay. Expression of EpCAM was analyzed by immunoblotting and FCM. HCC cell lines were co-cultured with TWNT-1 treated with small interfering RNA (siRNA) for TGF-β and HB-EGF; we then analyzed proliferation, migration ability and protein expression using the methods described above. Proliferation ability was unchanged in HCC cell lines co-cultured with TWNT-1. Migration ability was increased in HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) directly (216.2±67.0, 61.0±22.0, 124.0±66.2 and 51.5±40.3%) and indirectly (102.5±22.0, 84.6±30.9, 86.1±25.7 and 73.9±29.7%) co-cultured with TWNT-1 compared with the HCC uni-culture. Immunoblot analysis revealed increased EpCAM expression in the HCC cell lines co-cultured with TWNT-1. Flow cytometry revealed that the population of E-cadherin-/N-cadherin+ and EpCAM-positive cells increased and accordingly, EMT and stemness in the HCC cell line were activated. These results were similar in the directly and indirectly co-cultured samples, indicating that humoral factors were at play. Conversely, HCC cell lines co-cultured with siRNA‑treated TWNT-1 showed decreased migration ability, a decreased population of EpCAM-positive and E-cadherin-/N-cadherin+ cells. Taken together, humoral factors secreted from TWNT-1

  6. Revisiting Epithelial-to-Mesenchymal Transition in Liver Fibrosis: Clues for a Better Understanding of the “Reactive” Biliary Epithelial Phenotype

    PubMed Central

    Fabris, Luca; Brivio, Simone; Cadamuro, Massimiliano; Strazzabosco, Mario

    2016-01-01

    Whether liver epithelial cells contribute to the development of hepatic scarring by undergoing epithelial-to-mesenchymal transition (EMT) is a controversial issue. Herein, we revisit the concept of EMT in cholangiopathies, a group of severe hepatic disorders primarily targeting the bile duct epithelial cell (cholangiocyte), leading to progressive portal fibrosis, the main determinant of liver disease progression. Unfortunately, therapies able to halt this process are currently lacking. In cholangiopathies, fibrogenesis is part of ductular reaction, a reparative complex involving epithelial, mesenchymal, and inflammatory cells. Ductular reactive cells (DRC) are cholangiocytes derived from the activation of the hepatic progenitor cell compartment. These cells are arranged into irregular strings and express a “reactive” phenotype, which enables them to extensively crosstalk with the other components of ductular reaction. We will first discuss EMT in liver morphogenesis and then highlight how some of these developmental programs are partly reactivated in DRC. Evidence for “bona fide” EMT changes in cholangiocytes is lacking, but expression of some mesenchymal markers represents a fundamental repair mechanism in response to chronic biliary damage with potential harmful fibrogenetic effects. Understanding microenvironmental cues and signaling perturbations promoting these changes in DRC may help to identify potential targets for new antifibrotic therapies in cholangiopathies. PMID:26880950

  7. Regorafenib (Stivarga) pharmacologically targets epithelial-mesenchymal transition in colorectal cancer

    PubMed Central

    Fan, Li-Ching; Teng, Hao-Wei; Shiau, Chung-Wai; Tai, Wei-Tien; Hung, Man-Hsin; Yang, Shung-Haur; Jiang, Jeng-Kai; Chen, Kuen-Feng

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) is well-known to evoke cancer invasion/metastasis, leading to a high frequency of mortality in patients with metastatic colorectal cancer (mCRC). Protein tyrosine phosphatase (PTPase)-targeted therapy has been identified as a novel cancer therapeutic. Previously, we proved that sorafenib with anti-EMT potency prevents TGF-β1-induced EMT/invasion by directly activating SH2-domain-containing phosphatase 1 (SHP-1)-dependent p-STAT3Tyr705 suppression in hepatocellular carcinoma. Regorafenib has a closely related chemical structure as sorafenib and is approved for the pharmacotherapy of mCRC. Herein, we evaluate whether regorafenib activates PTPase SHP-1 in the same way as sorafenib to abolish EMT-related invasion/metastasis in CRC. Notably, regorafenib exerted potent anti-EMT activity to curb TGF-β1-induced EMT/invasion in vitro as well inhibited lung metastatic outgrowth of SW480 mesenchymal cells in vivo. Mechanistically, regorafenib-enhanced SHP-1 activity significantly impeded TGF-β1-induced EMT/invasion via low p-STAT3Tyr705 level as proved by a SHP-1 inhibitor or siRNA-mediated SHP-1 depletion. Conversely, overexpression of SHP-1 further enhanced the inhibitory effects of regorafenib on TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Regorafenib directly activates SHP-1 by potently relieving the autoinhibited N-SH2 domain of SHP-1 to inhibit TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Importantly, the clinical evidence indicated that SHP-1 was positively correlated with E-cadherin and that significantly determined the overall survival of CRC patients. This result further confirms our in vitro data that SHP-1 is a negative regulatory PTPase in EMT regulation and serves as a pharmacological target for mCRC therapy. Collectively, activating PTPase SHP-1 by regorafenib focusing on its anti-EMT activity might be a useful pharmacotherapy for mCRC. PMID:27580057

  8. Novel cancer stem cell targets during epithelial to mesenchymal transition in PTEN-deficient trastuzumab-resistant breast cancer

    PubMed Central

    Gasparyan, Mari; Xu, Fangying; Jiang, Hui; Lin, Chang-Ching; Myers, Ila; Korkaya, Hasan; Liu, Yajing; Connarn, Jamie; He, Huining; Zhang, Ning; Wicha, Max S.; Sun, Duxin

    2016-01-01

    Continued use of trastuzumab in PTEN-deficient HER2+ breast cancer induces the epithelial-to-mesenchymal transition (EMT), transforms HER2+ to triple negative breast cancer, and expands breast cancer stem cells (BCSCs). Using cancer cell lines with two distinct states, epithelial and mesenchymal, we identified novel targets during EMT in PTEN-deficient trastuzumab-resistant breast cancer. Differential gene expression and distinct responses to a small molecule in BT474 (HER2+ trastuzumab-sensitive) and the PTEN-deficient trastuzumab-resistant derivative (BT474-PTEN-LTT) provided the selection tools to identify targets during EMT. siRNA knockdown and small molecule inhibition confirmed MEOX1 as one of the critical molecular targets to regulate both BCSCs and mesenchymal-like cell proliferation. MEOX1 was associated with poor survival, lymph node metastasis, and stage of breast cancer patients. These findings suggest that MEOX1 is a clinically relevant novel target in BCSCs and mesenchymal-like cancer cells in PTEN-deficient trastuzumab resistant breast cancer and may serve as target for future drug development. PMID:27285982

  9. Upregulation of minichromosome maintenance complex component 3 during epithelial-to-mesenchymal transition in human prostate cancer.

    PubMed

    Stewart, Paul A; Khamis, Zahraa I; Zhau, Haiyen E; Duan, Peng; Li, Quanlin; Chung, Leland W K; Sang, Qing-Xiang Amy

    2017-06-13

    Metastasis is often associated with epithelial-to-mesenchymal transition (EMT). To understand the molecular mechanisms of this process, we conducted proteomic analysis of androgen-repressed cancer of the prostate (ARCaP), an experimental model of metastatic human prostate cancer. The protein signatures of epithelial (ARCaPE) and mesenchymal (ARCaPM) cells were consistent with their phenotypes. Importantly, the expression of mini-chromosome maintenance 3 (MCM3) protein, a crucial subunit of DNA helicase, was significantly higher in ARCaPM cells than that of ARCaPE cells. This increased MCM3 protein expression level was verified using Western blot analysis of the ARCaP cell lineages. Furthermore, immunohistochemical analysis of MCM3 protein levels in human prostate tissue specimens showed elevated expression in bone metastasis and advanced human prostate cancer tissue samples. Subcutaneous injection experiments using ARCaPE and ARCaPM cells in a mouse model also revealed increased MCM3 protein levels in mesenchymal-derived tumors. This study identifies MCM3 as an upregulated molecule in mesenchymal phenotype of human prostate cancer cells and advanced human prostate cancer specimens, suggesting MCM3 may be a new potential drug target for prostate cancer treatment.

  10. The mechanism of epithelial-mesenchymal transition induced by TGF-β1 in neuroblastoma cells.

    PubMed

    Shao, Jing-Bo; Gao, Zhi-Mei; Huang, Wen-Yan; Lu, Zhi-Bao

    2017-05-01

    Neuroblastoma is the second most common extracranial malignant solid tumor that occurs in childhood, and metastasis is one of the major causes of death in neuroblastoma patients. The epithelial-mesenchymal transition (EMT) is an important mechanism for both the initiation of tumor invasion and subsequent metastasis. Therefore, this study investigated the mechanism by which transforming growth factor (TGF)-β1 induces EMT in human neuroblastoma cells. Using quantitative RT-qPCR and western blot analyses, we found that the mRNA and protein expression levels of E-cadherin were significantly decreased, whereas that of α-SMA was significantly increased after neuroblastoma cells were treated with different concentrations of TGF-β1. A scratch test and Transwell migration assay revealed that cell migration significantly and directly correlated with the concentration of TGF-β1 indicating that TGF-β1 induced EMT in neuroblastoma cells and led to their migration. Inhibiting Smad2/3 expression did not affect the expression of the key molecules involved in EMT. Further investigation found that the expression of the glioblastoma transcription factor (Gli) significantly increased in TGF-β1-stimulated neuroblastoma cells undergoing EMT, accordingly, interfering with Gli1/2 expression inhibited TGF-β1-induced EMT in neuroblastoma cells. GANT61, which is a targeted inhibitor of Gli1 and Gli2, decreased cell viability and promoted cell apoptosis. Thus, TGF-β1 induced EMT in neuroblastoma cells to increase their migration. Specifically, EMT induced by TGF-β1 in neuroblastoma cells did not depend on the Smad signaling pathway, and the transcription factor Gli participated in TGF-β1-induced EMT independent of Smad signaling.

  11. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition

    PubMed Central

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson’s trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson’s and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling. PMID:27607429

  12. Interaction Between Ezrin and Cortactin in Promoting Epithelial to Mesenchymal Transition in Breast Cancer Cells

    PubMed Central

    He, Jing; Ma, Ge; Qian, Jiayi; Zhu, Yichao; Liang, Mengdi; Yao, Na; Ding, Qiang; Chen, Lin; Liu, Xiaoan; Xia, Tiansong; Wang, Shui

    2017-01-01

    Background Epithelial to mesenchymal transition (EMT) contributes to metastases in various types of tumors, and is also the key step in the breast cancer metastatic cascade. In our previous study, a mouse model containing human-derived normal breast tissue was established and allowed EMT/MET process of human breast cancer cells to be mimicked in a humanized mammary microenvironment. Material/Methods Two-dimensional electrophoresis (2-DE) and mass spectrometry were used to detect different proteins between parental MDA-MB-231 and its variant sub-line obtained from tumors grown in transplanted normal human breast tissue (MDA-MB-231br). We knocked down the ezrin in 2 cell lines (MDA-MB-231 and SUM1315). The migration and invasion ability was assessed. EMT markers were examined by real-time reverse transcription PCR analysis and Western blot analysis. The relationship of ezrin with cortactin was tested by tissue microarray and co-immunoprecipitation. Results Proteomic analysis revealed 81 differentially expressed proteins between parental MDA-MB-231 and MDA-MB-231br. Among these proteins, the expression of ezrin and cortactin and the phosphorylation of ezrin were significantly correlated, accompanied with a group of classic EMT makers. Knockdown of ezrin reversed the expression of EMT markers and downregulated cortactin and EMT transcription factors. Ezrin silencing inhibited tumor cell migration and invasion. Breast cancer tissue microarray and immunohistochemistry showed a significant positive association between ezrin and cortactin. Conclusions These findings indicate that ezrin is correlated with cortactin in facilitating EMT in breast cancer. The interaction between ezrin and cortactin is a novel mechanism contributing to the EMT process in cancer metastases. PMID:28364518

  13. Claudin-7 promotes the epithelialmesenchymal transition in human colorectal cancer

    PubMed Central

    Philip, Rahel; Heiler, Sarah; Mu, Wei; Büchler, Markus W.; Zöller, Margot; Thuma, Florian

    2015-01-01

    In colorectal cancer (CoCa) EpCAM is frequently associated with claudin-7. There is evidence that tumor-promoting EpCAM activities are modulated by the association with claudin-7. To support this hypothesis, claudin-7 was knocked-down (kd) in HT29 and SW948 cells. HT29-cld7kd and SW948-cld7kd cells display decreased anchorage-independent growth and the capacity for holoclone-, respectively, sphere-formation is reduced. Tumor growth is delayed and cld7kd cells poorly metastasize. In line with this, migratory and invasive potential of cld7kd clones is strongly impaired, migration being inhibited by anti-CD49c, but not anti-EpCAM, although motility is reduced in EpCAM siRNA-treated cells. This is due to claudin-7 recruiting EpCAM in glycolipid-enriched membrane fractions towards claudin-7-associated TACE and presenilin2, which cleave EpCAM. The cleaved intracellular domain, EpIC, promotes epithelial-mesenchymal transition (EMT)-associated transcription factor expression, which together with fibronectin and vimentin are reduced in claudin-7kd cells. But, uptake of HT29wt and SW948wt exosomes by the claudin-7kd lines sufficed for transcription factor upregulation and for restoring motility. Thus, claudin-7 contributes to motility and invasion and is required for recruiting EpCAM towards TACE/presenilin2. EpIC generation further supports motility by promoting a shift towards EMT. Notably, EMT features of cld7-competent metastatic CoCa cells can be transferred via exosomes to poorly metastatic cells. PMID:25514462

  14. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition

    PubMed Central

    Roy, Lopamudra Das; Sahraei, Mahnaz; Subramani, Durai B.; Besmer, Dahlia; Nath, Sritama; Tinder, Teresa L.; Bajaj, Ekta; Shanmugam, Kandavel; Lee, Yong Yook; Hwang, Sun IL; Gendler, Sandra J.; Mukherjee, Pinku

    2010-01-01

    Increased motility and invasiveness of pancreatic cancer cells are associated with epithelial to mesenchymal transition (EMT). Snai1 and Slug are zinc-finger transcription factors that trigger this process by repressing E-cadherin and enhancing vimentin and N-Cadherin protein expression. However, the mechanisms that regulate this activation in pancreatic tumors remain elusive. MUC1, a transmembrane mucin glycoprotein, is associated with the most invasive forms of pancreatic adenocarcinomas (PDA). In this study, we show that over expression of MUC1 in pancreatic cancer cells triggers the molecular process of EMT which translates to increased invasiveness and metastasis. EMT was significantly reduced when Muc1 was genetically deleted in a mouse model of PDA or when all seven tyrosines in the cytoplasmic tail of MUC1 were mutated to phenylalanine (mutated MUC1 CT). Using proteomics, RT-PCR, and Western blotting, we revealed a significant increase in vimentin, Slug and Snail expression with repression of E-Cadherin in MUC1-expressing cells compared to cells expressing the mutated MUC1 CT. In the cells that carried the mutated MUC1 CT, MUC1 failed to co-immunoprecipitate with β-catenin and translocate to the nucleus thereby blocking transcription of the genes associated with EMT and metastasis. Thus, functional tyrosines are critical in stimulating the interactions between MUC1 and β-catenin and their nuclear translocation to initiate the process of EMT. This study signifies the oncogenic role of MUC1 CT and is the first to identify a direct role of the MUC1 in initiating EMT during pancreatic cancer. The data may have implications in future design of MUC1-targeted therapies for pancreatic cancer. PMID:21102519

  15. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition.

    PubMed

    Roy, L D; Sahraei, M; Subramani, D B; Besmer, D; Nath, S; Tinder, T L; Bajaj, E; Shanmugam, K; Lee, Y Y; Hwang, S I L; Gendler, S J; Mukherjee, P

    2011-03-24

    Increased motility and invasiveness of pancreatic cancer cells are associated with epithelial to mesenchymal transition (EMT). Snai1 and Slug are zinc-finger transcription factors that trigger this process by repressing E-cadherin and enhancing vimentin and N-cadherin protein expression. However, the mechanisms that regulate this activation in pancreatic tumors remain elusive. MUC1, a transmembrane mucin glycoprotein, is associated with the most invasive forms of pancreatic ductal adenocarcinomas (PDA). In this study, we show that over expression of MUC1 in pancreatic cancer cells triggers the molecular process of EMT, which translates to increased invasiveness and metastasis. EMT was significantly reduced when MUC1 was genetically deleted in a mouse model of PDA or when all seven tyrosines in the cytoplasmic tail of MUC1 were mutated to phenylalanine (mutated MUC1 CT). Using proteomics, RT-PCR and western blotting, we revealed a significant increase in vimentin, Slug and Snail expression with repression of E-Cadherin in MUC1-expressing cells compared with cells expressing the mutated MUC1 CT. In the cells that carried the mutated MUC1 CT, MUC1 failed to co-immunoprecipitate with β-catenin and translocate to the nucleus, thereby blocking transcription of the genes associated with EMT and metastasis. Thus, functional tyrosines are critical in stimulating the interactions between MUC1 and β-catenin and their nuclear translocation to initiate the process of EMT. This study signifies the oncogenic role of MUC1 CT and is the first to identify a direct role of the MUC1 in initiating EMT during pancreatic cancer. The data may have implications in future design of MUC1-targeted therapies for pancreatic cancer.

  16. Extracellular HSP70/HSP70-PCs Promote Epithelial-Mesenchymal Transition of Hepatocarcinoma Cells

    PubMed Central

    Li, Hangyu; Li, Yan; Liu, Dan; Sun, Hongzhi; Su, Dongming; Yang, Fuquan; Liu, Jingang

    2013-01-01

    Background Extracellular heat shock protein 70 and peptide complexes (eHSP70/HSP70-PCs) regulate a variety of biological behaviors in tumor cells. Whether eHSP70/HSP70-PCs are involved in the epithelial-mesenchymal transition (EMT) of tumor cells remains unclear. Aims To determine the effects of eHSP70/HSP70-PCs on EMT of hepatocarcinoma cells. Methods The expressions of E-cadherin, HSP70, α-smooth muscle actin protein (α-SMA) and p-p38 were detected immunohistochemically in liver cancer samples. Immunofluorescence, western blotting and real-time RT-PCR methods were used to analyze the effects of eHSP70/HSP70-PCs on the expressions of E-cadherin, α-SMA and p38/MAPK in vivo. Results HSP70, E-cadherin, α-SMA and p-p38 were elevated in hepatocellular carcinoma tissues. The expression of HSP70 was positively correlated with malignant differentiated liver carcinoma. The expressions of HSP70, α-SMA and p-p38 correlated with recurrence-free survival after resection. eHSP70/HSP70-PCs significantly promoted the expressions of α-SMA and p-p38 and reduced the expressions of E-cadherin in vivo. The effect was inhibited by SB203580. Conclusion The expressions of HSP70, E-cadherin, α-SMA and p-p38 may represent indicators of malignant potential and could discriminate the malignant degree of liver cancer. eHSP70/HSP70-PCs play an important role in the EMT of hepatocellular carcinoma via the p38/MAPK pathway. PMID:24386414

  17. Soluble Dietary Fiber Ameliorates Radiation-Induced Intestinal Epithelial-to-Mesenchymal Transition and Fibrosis.

    PubMed

    Yang, Jianbo; Ding, Chao; Dai, Xujie; Lv, Tengfei; Xie, Tingbing; Zhang, Tenghui; Gao, Wen; Gong, Jianfeng; Zhu, Weiming; Li, Ning; Li, Jieshou

    2016-09-22

    Intestinal fibrosis is a late complication of pelvic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue fibrosis. The aim of this study was to examine the effect of soluble dietary fiber on radiation-induced intestinal EMT and fibrosis in a mouse model. Apple pectin (4% wt/wt in drinking water) was administered to wild-type and pVillin-Cre-EGFP transgenic mice with intestinal fibrosis induced by a single dose of abdominal irradiation of 10 Gy. The effects of pectin on intestinal EMT and fibrosis, gut microbiota, and short-chain fatty acid (SCFA) concentration were evaluated. Intestinal fibrosis in late radiation enteropathy showed increased submucosal thickness and subepithelial collagen deposition. Enhanced green fluorescent protein (EGFP)(+)/vimentin(+) and EGFP(+)/α-smooth muscle actin (SMA)(+) coexpressing cells were most clearly observed at 2 weeks after irradiation and gradually decreased at 4 and 12 weeks. Pectin significantly attenuated the thickness of submucosa and collagen deposition at 12 weeks (24.3 vs 27.6 µm in the pectin + radiation-treated group compared with radiation-alone group, respectively, P < .05; 69.0% vs 57.1%, P < .001) and ameliorated EMT at 2 and 4 weeks. Pectin also modulated the intestinal microbiota composition and increased the luminal SCFA concentration. The soluble dietary fiber pectin protected the terminal ileum against radiation-induced fibrosis. This effect might be mediated by altered SCFA concentration in the intestinal lumen and reduced EMT in the ileal epithelium. © 2016 American Society for Parenteral and Enteral Nutrition.

  18. Epithelial Mesenchymal Transition Induces Aberrant Glycosylation through Hexosamine Biosynthetic Pathway Activation.

    PubMed

    Lucena, Miguel C; Carvalho-Cruz, Patricia; Donadio, Joana L; Oliveira, Isadora A; de Queiroz, Rafaela M; Marinho-Carvalho, Monica M; Sola-Penna, Mauro; de Paula, Iron F; Gondim, Katia C; McComb, Mark E; Costello, Catherine E; Whelan, Stephen A; Todeschini, Adriane R; Dias, Wagner B

    2016-06-17

    Deregulated cellular metabolism is a hallmark of tumors. Cancer cells increase glucose and glutamine flux to provide energy needs and macromolecular synthesis demands. Several studies have been focused on the importance of glycolysis and pentose phosphate pathway. However, a neglected but very important branch of glucose metabolism is the hexosamine biosynthesis pathway (HBP). The HBP is a branch of the glucose metabolic pathway that consumes ∼2-5% of the total glucose, generating UDP-GlcNAc as the end product. UDP-GlcNAc is the donor substrate used in multiple glycosylation reactions. Thus, HBP links the altered metabolism with aberrant glycosylation providing a mechanism for cancer cells to sense and respond to microenvironment changes. Here, we investigate the changes of glucose metabolism during epithelial mesenchymal transition (EMT) and the role of O-GlcNAcylation in this process. We show that A549 cells increase glucose uptake during EMT, but instead of increasing the glycolysis and pentose phosphate pathway, the glucose is shunted through the HBP. The activation of HBP induces an aberrant cell surface glycosylation and O-GlcNAcylation. The cell surface glycans display an increase of sialylation α2-6, poly-LacNAc, and fucosylation, all known epitopes found in different tumor models. In addition, modulation of O-GlcNAc levels was demonstrated to be important during the EMT process. Taken together, our results indicate that EMT is an applicable model to study metabolic and glycophenotype changes during carcinogenesis, suggesting that cell glycosylation senses metabolic changes and modulates cell plasticity.

  19. Induction of epithelial-mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent.

    PubMed

    Davis, F M; Azimi, I; Faville, R A; Peters, A A; Jalink, K; Putney, J W; Goodhill, G J; Thompson, E W; Roberts-Thomson, S J; Monteith, G R

    2014-05-01

    Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of

  20. Evaluating markers of epithelial-mesenchymal transition to identify cancer patients at risk for metastatic disease

    PubMed Central

    Busch, Evan L.; Keku, Temitope O.; Richardson, David B.; Cohen, Stephanie M.; Eberhard, David A.; Avery, Christy L.; Sandler, Robert S.

    2015-01-01

    Most cancer deaths are due to metastases. Markers of epithelial-mesenchymal transition (EMT) measured in primary tumor cancer cells could be helpful to assess patient risk of metastatic disease, even among those otherwise diagnosed with local disease. Previous studies of EMT markers and patient outcomes used inconsistent methods and did not compare the clinical impact of different expression cut points for the same marker. Using digital image analysis, we measured the EMT markers Snail and E-cadherin in primary tumor specimens from 190 subjects in tissue microarrays from a population-based prospective cohort of colorectal cancer patients and estimated their associations with time-to-death. After measuring continuous marker expression data, we performed a systematic search for the cut point for each marker with the best model fit between dichotomous marker expression and time-to-death. We also assessed the potential clinical impact of different cut points for the same marker. After dichotomizing expression status at the statistically-optimal cut point, we found that Snail expression was not associated with time-to-death. When measured as a weighted average of tumor cores, low E-cadherin expression was associated with a greater risk of dying within 5 years of surgery than high expression (risk difference = 33 %, 95 % confidence interval 3–62 %). Identifying a clinically-optimal cut point for an EMT marker requires trade-offs between strength and precision of the association with patient outcomes, as well as consideration of the number of patients whose treatments might change based on using the marker at a given cut point. PMID:26507436

  1. A Novel Network Profiling Analysis Reveals System Changes in Epithelial-Mesenchymal Transition

    PubMed Central

    Shimamura, Teppei; Imoto, Seiya; Shimada, Yukako; Hosono, Yasuyuki; Niida, Atsushi; Nagasaki, Masao; Yamaguchi, Rui; Takahashi, Takashi; Miyano, Satoru

    2011-01-01

    Patient-specific analysis of molecular networks is a promising strategy for making individual risk predictions and treatment decisions in cancer therapy. Although systems biology allows the gene network of a cell to be reconstructed from clinical gene expression data, traditional methods, such as Bayesian networks, only provide an averaged network for all samples. Therefore, these methods cannot reveal patient-specific differences in molecular networks during cancer progression. In this study, we developed a novel statistical method called NetworkProfiler, which infers patient-specific gene regulatory networks for a specific clinical characteristic, such as cancer progression, from gene expression data of cancer patients. We applied NetworkProfiler to microarray gene expression data from 762 cancer cell lines and extracted the system changes that were related to the epithelial-mesenchymal transition (EMT). Out of 1732 possible regulators of E-cadherin, a cell adhesion molecule that modulates the EMT, NetworkProfiler, identified 25 candidate regulators, of which about half have been experimentally verified in the literature. In addition, we used NetworkProfiler to predict EMT-dependent master regulators that enhanced cell adhesion, migration, invasion, and metastasis. In order to further evaluate the performance of NetworkProfiler, we selected Krueppel-like factor 5 (KLF5) from a list of the remaining candidate regulators of E-cadherin and conducted in vitro validation experiments. As a result, we found that knockdown of KLF5 by siRNA significantly decreased E-cadherin expression and induced morphological changes characteristic of EMT. In addition, in vitro experiments of a novel candidate EMT-related microRNA, miR-100, confirmed the involvement of miR-100 in several EMT-related aspects, which was consistent with the predictions obtained by NetworkProfiler. PMID:21687740

  2. Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial--mesenchymal transition.

    PubMed

    Chen, San-Cher; Kung, Mei-Lang; Hu, Tsung-Hui; Chen, Hsuan-Yu; Wu, Jian-Ching; Kuo, Hsiao-Mei; Tsai, Han-En; Lin, Yu-Wei; Wen, Zhi-Hong; Liu, Jong-Kang; Yeh, Ming-Hsin; Tai, Ming-Hong

    2012-10-01

    Hepatoma-derived growth factor (HDGF) participates in tumourigenesis but its role in breast cancer is unclear. We set out to elucidate the expression profile and function of HDGF during breast carcinogenesis. Immunoblot and immunohistochemical studies revealed elevated HDGF expression in human breast cancer cell lines and tissues. Nuclear HDGF labelling index was positively correlated with tumour grade, stage and proliferation index, but negatively correlated with survival rate in breast cancer patients. HDGF over-expression was associated with lymph node metastasis and represented an independent prognostic factor for tumour recurrence. Gene transfer studies were performed to elucidate the influence of cellular HDGF level on the malignant behaviour and epithelial-mesenchymal transition (EMT) of breast cancer cells. Adenovirus-mediated HDGF over-expression stimulated the invasiveness and colony formation of MCF-7 cells. Moreover, HDGF over-expression promoted breast cancer cell EMT by E-cadherin down-regulation and vimentin up-regulation. Conversely, HDGF knockdown by RNA interference in MDA-MB-231 cells attenuated the malignant behaviour and elicited EMT reversal by enhancing E-cadherin expression while depleting vimentin expression. Because HDGF is a secreted protein, we evaluated the cellular function of recombinant HDGF and found that exogenously supplied HDGF enhanced the invasiveness of breast cancer cells by down-regulating E-cadherin and up-regulating vimentin at transcriptional and translational levels. In contrast, blockade of HDGF secretion with an HDGF antibody inhibited the malignant behaviours and EMT. Finally, exogenous HDGF partially reversed benzyl isothiocyanate (BITC)-induced EMT suppression. HDGF over-expression may exert a prognostic role for tumour metastasis and recurrence in breast cancer by modulating EMT. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition.

    PubMed

    Cho, Jang-Hee; Ryu, Hye-Myung; Oh, Eun-Joo; Yook, Ju-Min; Ahn, Ji-Sun; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kwak, Ihm Soo; Kim, Chan-Duck

    2016-01-01

    Alpha1-antitrypsin (AAT) exerts its anti-inflammatory effect through regulating the activity of serine proteinases. This study evaluated the inhibitory effects of AAT against the transforming growth factor (TGF)-β1 induced epithelial-to-mesenchymal transition (EMT) in unilateral ureter obstruction (UUO) mice and Madin-Darby canine kidney (MDCK) cells. C57BL/6 mice with induced UUO were injected intraperitoneally with AAT (80 mg/Kg) or vehicle for 7 days. MDCK cells were treated with TGF-β1 (2 ng/mL) for 48 hours to induce EMT, and co-treated with AAT (10 mg/mL) to inhibit the EMT. Masson's trichrome and Sirius red staining was used to estimate the extent of renal fibrosis in UUO mice. The expression of alpha-smooth muscle actin (α-SMA), vimentin, fibronectin, collagen I, and E-cadherin in MDCK cells and kidney tissue were evaluated. Masson's and Sirius red staining revealed that the area of renal fibrosis was significantly smaller in AAT treated UUO group compared with that of UUO and vehicle treated UUO groups. AAT treatment attenuated upregulation of Smad2/3 phosphorylation in UUO mouse model. Co-treatment of MDCK cells with TGF-β1 and AAT significantly attenuated the changes in the expression of α-SMA, vimentin, fibronectin, collagen I, and E-cadherin. AAT also decreased the phosphorylated Smad3 expression and the phosphorylated Smad3/Smad3 ratio in MDCK cells. AAT treatment inhibited EMT induced by TGF-β1 in MDCK cells and attenuated renal fibrosis in the UUO mouse model. The results of this work suggest that AAT could inhibit the process of EMT through the suppression of TGF-β/Smad3 signaling.

  4. Interaction Between Ezrin and Cortactin in Promoting Epithelial to Mesenchymal Transition in Breast Cancer Cells.

    PubMed

    He, Jing; Ma, Ge; Qian, Jiayi; Zhu, Yichao; Liang, Mengdi; Yao, Na; Ding, Qiang; Chen, Lin; Liu, Xiaoan; Xia, Tiansong; Wang, Shui

    2017-04-01

    BACKGROUND Epithelial to mesenchymal transition (EMT) contributes to metastases in various types of tumors, and is also the key step in the breast cancer metastatic cascade. In our previous study, a mouse model containing human-derived normal breast tissue was established and allowed EMT/MET process of human breast cancer cells to be mimicked in a humanized mammary microenvironment. MATERIAL AND METHODS Two-dimensional electrophoresis (2-DE) and mass spectrometry were used to detect different proteins between parental MDA-MB-231 and its variant sub-line obtained from tumors grown in transplanted normal human breast tissue (MDA-MB-231br). We knocked down the ezrin in 2 cell lines (MDA-MB-231 and SUM1315). The migration and invasion ability was assessed. EMT markers were examined by real-time reverse transcription PCR analysis and Western blot analysis. The relationship of ezrin with cortactin was tested by tissue microarray and co-immunoprecipitation. RESULTS Proteomic analysis revealed 81 differentially expressed proteins between parental MDA-MB-231 and MDA-MB-231br. Among these proteins, the expression of ezrin and cortactin and the phosphorylation of ezrin were significantly correlated, accompanied with a group of classic EMT makers. Knockdown of ezrin reversed the expression of EMT markers and downregulated cortactin and EMT transcription factors. Ezrin silencing inhibited tumor cell migration and invasion. Breast cancer tissue microarray and immunohistochemistry showed a significant positive association between ezrin and cortactin. CONCLUSIONS These findings indicate that ezrin is correlated with cortactin in facilitating EMT in breast cancer. The interaction between ezrin and cortactin is a novel mechanism contributing to the EMT process in cancer metastases.

  5. Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells.

    PubMed

    Lee, YuKyung; Jung, Woo Hee; Koo, Ja Seung

    2015-09-01

    Adipocytes are known to be involved in epithelial-mesenchymal transition (EMT) in several cancers. However, the role of adipocytes in the EMT of breast cancer cells is poorly understood. The purpose of this study was to investigate the involvement of adipocytes in the EMT in breast cancer. Breast cancer cell lines MCF-7, MDA-MB-453, MDA-MB-435S, MDA-MB-231, and MDA-MB-468 were co-cultured with adipocytes and analyzed for morphological changes, proliferation activity, EMT markers, migration, and invasion. In addition, 296 human breast cancer specimens were classified according to the presence of the fibrous or adipose stroma and analyzed by immunohistochemistry for the expression of estrogen and progesterone receptors, human epidermal growth factor receptor 2, antigen Ki-67, N-cadherin, Twist-related protein 1 (TWIST1), high-mobility group AT-hook 2, TGFβ, and S100 calcium-binding protein A4 using tissue microarray. After co-culture with adipocytes, MCF-7, MDA-MB-435S, and MDA-MB-231 cells exhibited elongated spindle-like morphology and increased proliferation; MDA-MB-435S and MDA-MB-231 cells also showed increased dispersion. In all tested breast cancer cells, adipocytes induced migration and invasion. The EMT-like phenotypic changes and increased cell migration and invasion were accompanied by the upregulation of matrix metallopeptidase 9 and TWIST1. Consistently, breast cancer tumors with the adipose stroma showed higher TWIST1 expression than those with the adipose stroma; however, no difference was observed in the levels of other EMT-related proteins. Adipocytes stimulate breast cancer cells to acquire aggressive tumor phenotype by inducing EMT-associated traits, and breast cancer with the adipose stroma expresses EMT markers as breast cancer with the fibrous stroma.

  6. NDRG1 attenuates epithelial-mesenchymal transition of nasopharyngeal cancer cells via blocking Smad2 signaling.

    PubMed

    Hu, Zhi-Yan; Xie, Wei-Bing; Yang, Fang; Xiao, Li-Wei; Wang, Xiao-Yan; Chen, Shi-You; Li, Zu-Guo

    2015-09-01

    N-myc downstream-regulated gene 1 (NDRG1) has been implicated in tumorigenesis and metastasis in different cancers. However, its role in nasopharyngeal carcinoma remains unknown. We found that NDRG1 expression level was high in nasopharyngeal cancer 5-8F cells but low in 5-8F-LN cells with lymphatic metastasis potential. Knockdown of NDRG1 by shRNA promoted 5-8F cell proliferation, migration, and invasion in vitro and its tumorigenesis in vivo. Moreover, NDRG1 deficiency induced an epithelial-mesenchymal transition (EMT) of 5-8F cells as shown by an attenuation of E-cadherin and an induction of N-cadherin and vimentin expression. NDRG1 knockdown also enhanced Smad2 expression and phosphorylation. Smad2 signaling was attenuated in 5-8F cells but was significantly activated in 5-8F-LN cells. Knockdown of Smad2 restored E-cadherin but attenuated N-cadherin expression in NDRG1-deficient 5-8F cells, suggesting a reduction of EMT. Consistently, blockade of Smad2 in 5-8F-LN cells increased E-cadherin while diminishing N-cadherin and vimentin expression. These data indicate that Smad2 mediates the NDRG1 deficiency-induced EMT of 5-8F cells. In tumors derived from NDRG1-deficient 5-8F cells, E-cadherin expression was inhibited while vimentin and Smad2 were increased in a large number of cancer cells. Most importantly, NDRG1 expression was attenuated in human nasopharyngeal carcinoma tissues, resulted in a lower survival rate in patients. The NDRG1 was further decreased in the detached nasopharyngeal cancer cells, which was associated with a further reduced survival rate in patients with lymphatic metastasis. Taken together, these results demonstrated that NDRG1 prevents nasopharyngeal tumorigenesis and metastasis via inhibiting Smad2-mediated EMT of nasopharyngeal cells.

  7. Epithelial-mesenchymal transition, proliferation, and angiogenesis in locally advanced cervical cancer treated with chemoradiotherapy.

    PubMed

    Rojas-Puentes, Leonardo; Cardona, Andrés F; Carranza, Hernán; Vargas, Carlos; Jaramillo, Luis F; Zea, Delma; Cetina, Lucely; Wills, Beatriz; Ruiz-Garcia, Erika; Arrieta, Oscar

    2016-08-01

    We evaluated the association between epithelial-mesenchymal transition (EMT)-derived markers and expression of proteins associated with cell proliferation and tumor growth, as well as their prognostic roles, in 61 patients (mean age 52 ± 10 years) with locally advanced cervical cancer, all of whom were treated with chemoradiation and intracavitary brachytherapy. We used immunohistochemical analysis to assess the expression of proteins targeted in our investigation. Various statistical analyses were then conducted to assess protein marker associations with survival outcomes. Forty-six percent of the patients were positive for human papilloma virus. Median progression-free survival (PFS) was 6.6 months (95% confidence interval [CI]: 4.0-9.1, whereas overall survival (OS) was 30.0 months (95% CI: 11-48). Multivariate analysis demonstrated that vascular endothelial growth factor (VEGF) (P = 0.002), epidermal growth factor receptor (EGFR) (P = 0.001), and TWIST2 (P = 0.001) expression levels, as well as a tumor size <6 cm (P = 0.02), influenced OS. Changes in TWIST2 levels and loss of E-cadherin expression were correlated with VEGF and EGFR levels; furthermore, patients with high TWIST2 expression had shorter OS (P = 0.0001), as those with loss of E-cadherin (P = 0.02). OS was even shorter when positive EGFR or VEGF expression was related with EMT markers (positive EGFR + negative E-cadherin: median 14 months, 95% CI: 3-24; negative EGFR + positive E-cadherin: median 31 months, 95% CI: 14-NA; P = 0.02.). The presence of EMT markers was associated with proliferative and pro-angiogenic protein expression and influenced the prognosis of locally advanced cervical cancer. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. Cripto-1 promotes epithelial-mesenchymal transition in prostate cancer via Wnt/β-catenin signaling.

    PubMed

    Liu, Yan; Qin, Zhenbang; Yang, Kuo; Liu, Ranlu; Xu, Yong

    2017-03-01

    The Cripto-1 (CR-1) derived EGF-CFC family was overexpressed in tumor development enhancing proliferation, epithelial-mesenchymal transition (EMT) and migration of tumor cells. However, correlation between CR-1 and prostate cancer (PCa) remains still unclear. In the present study, we proved that CR-1 was expressed in PCa and its function was in the progression of PCa. Compared with benign prostatic hyperplasia (BPH) tissues, we confirmed that PCa tissues had high expression of CR-1 by immunohistochemistry and statistical data showed that CR-1 promoted properties of EMT in PCa tissues, including the downregulation of the cell adhesion molecules β-catenin (membrane) and E-cadherin while upregulating transcription factors β-catenin. Overexpression of CR-1 had close relationship with PSA, Gleason, clinical staging and lymph node metastasis in PCa patients. Then, we found that PC-3 cells transfected with CR-1-shRNA inhibited EMT using RT-PCR, RT-qPCR, western blotting and immunofluorescence. Also, we evaluated cell invasive ability in vitro by transwell and wound-healing assay. Our data showed that transfected CR-1-shRNA altered EMT including β-catenin, E-cadherin, c-myc, GSK-3, p-GSK and Wnt/β-catenin pathway in PC-3. It also suppressed PC-3 cell migration. Additionally, our results displayed that Licl had antitumor activity against PC-3 through the inhibition of Wnt/β-catenin pathway. Inhibition of cell viability was dose-time dependent. The present study proved that CR-1 regulates EMT of PCa by Wnt/β-catenin pathway. Hence, CR-1 may provide a new biological marker, and possibly contributes to clinical treatment against PCa.

  9. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition

    PubMed Central

    Zhang, Q; Liu, S; Parajuli, KR; Zhang, W; Zhang, K; Mo, Z; Liu, J; Chen, Z; Yang, S; Wang, AR; Myers, L; You, Z

    2016-01-01

    Chronic inflammation has been associated with a variety of human cancers including prostate cancer. Interleukin-17 (IL-17) is a critical pro-inflammatory cytokine, which has been demonstrated to promote development of prostate cancer, colon cancer, skin cancer, breast cancer, lung cancer, and pancreas cancer. IL-17 promotes prostate adenocarcinoma with a concurrent increase of matrix metalloproteinase 7 (MMP7) expression in mouse prostate. Whether MMP7 mediates IL-17’s action and the underlying mechanisms remain unknown. We generated Mmp7 and Pten double knockout (Mmp7−/− in abbreviation) mouse model and demonstrated that MMP7 promotes prostate adenocarcinoma through induction of epithelial-to-mesenchymal transition (EMT) in Pten-null mice. MMP7 disrupted E-cadherin/β-catenin complex to up-regulate EMT transcription factors in mouse prostate tumors. IL-17 receptor C and Pten double knockout mice recapitulated the weak EMT characteristics observed in Mmp7−/− mice. IL-17 induced MMP7 and EMT in human prostate cancer LNCaP, C4-2B, and PC-3 cell lines, while siRNA knockdown of MMP7 inhibited IL-17-induced EMT. Compound III, a selective MMP7 inhibitor, decreased development of invasive prostate cancer in Pten single knockout mice. In human normal prostates and prostate tumors, IL-17 mRNA levels were positively correlated with MMP7 mRNA levels. These findings demonstrate that MMP7 mediates IL-17’s function in promoting prostate carcinogenesis through induction of EMT, indicating IL-17-MMP7-EMT axis as potential targets for developing new strategies in the prevention and treatment of prostate cancer. PMID:27375020

  10. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer.

    PubMed

    Marín-Aguilera, Mercedes; Codony-Servat, Jordi; Reig, Òscar; Lozano, Juan José; Fernández, Pedro Luis; Pereira, María Verónica; Jiménez, Natalia; Donovan, Michael; Puig, Pere; Mengual, Lourdes; Bermudo, Raquel; Font, Albert; Gallardo, Enrique; Ribal, María José; Alcaraz, Antonio; Gascón, Pere; Mellado, Begoña

    2014-05-01

    Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel + androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF-κB transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44(+) subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44(+) subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evidence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer.

  11. Fourier transform infra-red spectroscopic signatures for lung cells' epithelial mesenchymal transition: A preliminary report

    NASA Astrophysics Data System (ADS)

    Sarkar, Atasi; Sengupta, Sanghamitra; Mukherjee, Anirban; Chatterjee, Jyotirmoy

    2017-02-01

    Infra red (IR) spectral characterization can provide label-free cellular metabolic signatures of normal and diseased circumstances in a rapid and non-invasive manner. Present study endeavoured to enlist Fourier transform infra red (FTIR) spectroscopic signatures for lung normal and cancer cells during chemically induced epithelial mesenchymal transition (EMT) for which global metabolic dimension is not well reported yet. Occurrence of EMT was validated with morphological and immunocytochemical confirmation. Pre-processed spectral data was analyzed using ANOVA and principal component analysis-linear discriminant analysis (PCA-LDA). Significant differences observed in peak area corresponding to biochemical fingerprint (900-1800 cm- 1) and high wave-number (2800-3800 cm- 1) regions contributed to adequate PCA-LDA segregation of cells undergoing EMT. The findings were validated by re-analysis of data using another in-house built binary classifier namely vector valued regularized kernel approximation (VVRKFA), in order to understand EMT progression. To improve the classification accuracy, forward feature selection (FFS) tool was employed in extracting potent spectral signatures by eliminating undesirable noise. Gradual increase in classification accuracy with EMT progression of both cell types indicated prominence of the biochemical alterations. Rapid changes in cellular metabolome noted in cancer cells within first 24 h of EMT induction along with higher classification accuracy for cancer cell groups in comparison to normal cells might be attributed to inherent differences between them. Spectral features were suggestive of EMT triggered changes in nucleic acid, protein, lipid and bound water contents which can emerge as the useful markers to capture EMT related cellular characteristics.

  12. Schisandrin B Attenuates Cancer Invasion and Metastasis Via Inhibiting Epithelial-Mesenchymal Transition

    PubMed Central

    Liu, Kun; Ding, Zonghui; Hu, Xun

    2012-01-01

    Background Metastasis is the major cause of cancer related death and targeting the process of metastasis has been proposed as a strategy to combat cancer. Therefore, to develop candidate drugs that target the process of metastasis is very important. In the preliminary studies, we found that schisandrin B (Sch B), a naturally-occurring dibenzocyclooctadiene lignan with very low toxicity, could suppress cancer metastasis. Methodology BALB/c mice were inoculated subcutaneously or injected via ta