Science.gov

Sample records for epithelial subpopulations identifies

  1. Identification of a Human Airway Epithelial Cell Subpopulation with Altered Biophysical, Molecular, and Metastatic Properties.

    PubMed

    Pagano, Paul C; Tran, Linh M; Bendris, Nawal; O'Byrne, Sean; Tse, Henry T; Sharma, Shivani; Hoech, Jonathan W; Park, Stacy J; Liclican, Elvira L; Jing, Zhe; Li, Rui; Krysan, Kostyantyn; Paul, Manash K; Fontebasso, Yari; Larsen, Jill E; Hakimi, Shaina; Seki, Atsuko; Fishbein, Michael C; Gimzewski, James K; Carlo, Dino Di; Minna, John D; Walser, Tonya C; Dubinett, Steven M

    2017-09-01

    Lung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant airway epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of the unselected immortalized epithelial cell lines. This enhanced migratory capacity was found to be Rac1-dependent and heritable, as evidenced by maintenance of the phenotype through multiple cell divisions continuing more than 8 weeks after selection. The morphology of this lung epithelial subpopulation was characterized by increased cell protrusion intensity. In a murine model of micrometastatic seeding and pulmonary colonization, the motility-selected premalignant cells exhibit both enhanced survival in short-term assays and enhanced outgrowth of premalignant lesions in longer-term assays, thus overcoming important aspects of "metastatic inefficiency." Overall, our findings indicate that among immortalized premalignant airway epithelial cell lines, subpopulations with heritable motility-related biophysical properties exist, and these may explain micrometastatic seeding occurring early in the pathogenesis of lung cancer. Understanding, targeting, and preventing these critical biophysical traits and their underlying molecular mechanisms may provide a new approach to prevent metastatic behavior. Cancer Prev Res; 10(9); 514-24. ©2017 AACRSee related editorial by Hynds and Janes, p. 491. ©2017 American Association for Cancer Research.

  2. Combinations of differentiation markers distinguish subpopulations of alveolar epithelial cells in adult lung

    PubMed Central

    Marconett, Crystal N.; Juul, Nicholas; Wang, Hongjun; Liu, Yixin; Flodby, Per; Laird-Offringa, Ite A.; Minoo, Parviz

    2015-01-01

    Distal lung epithelium is maintained by proliferation of alveolar type II (AT2) cells and, for some daughter AT2 cells, transdifferentiation into alveolar type I (AT1) cells. We investigated if subpopulations of alveolar epithelial cells (AEC) exist that represent various stages in transdifferentiation from AT2 to AT1 cell phenotypes in normal adult lung and if they can be identified using combinations of cell-specific markers. Immunofluorescence microscopy showed that, in distal rat and mouse lungs, ∼20–30% of NKX2.1+ (or thyroid transcription factor 1+) cells did not colocalize with pro-surfactant protein C (pro-SP-C), a highly specific AT2 cell marker. In distal rat lung, NKX2.1+ cells coexpressed either pro-SP-C or the AT1 cell marker homeodomain only protein x (HOPX). Not all HOPX+ cells colocalize with the AT1 cell marker aquaporin 5 (AQP5), and some AQP5+ cells were NKX2.1+. HOPX was expressed earlier than AQP5 during transdifferentiation in rat AEC primary culture, with robust expression of both by day 7. We speculate that NKX2.1 and pro-SP-C colocalize in AT2 cells, NKX2.1 and HOPX or AQP5 colocalize in intermediate or transitional cells, and HOPX and AQP5 are expressed without NKX2.1 in AT1 cells. These findings suggest marked heterogeneity among cells previously identified as exclusively AT1 or AT2 cells, implying the presence of subpopulations of intermediate or transitional AEC in normal adult lung. PMID:26545903

  3. Biomarker classifiers for identifying susceptible subpopulations for treatment decisions.

    PubMed

    Lin, Wei-Jiun; Chen, James J

    2012-01-01

    A main goal of pharmacogenomics is to develop genomic signatures to predict patients' responses to a drug or therapy for treatment decisions. Identification of patients who would have no beneficial effect or have the risk of developing adverse effects from an unnecessary treatment could save enormous cost in the healthcare system and clinical trials. This article presents an approach for developing a biomarker classifier for identifying a fraction of susceptible patients, who should be spared unnecessary treatment prior to treatment. The identification of susceptible patients involves two steps. The first step is to identify biomarkers of susceptibility from a mixture of biomarkers of susceptibility and biomarkers of response; the second step is to develop a classifier using an ensemble classification algorithm, as the number of susceptible patients is generally much smaller than the number of nonsusceptible patients. Selection of the biomarkers of susceptibility is essential to achieve good prediction accuracy. The ensemble algorithm significantly improves the prediction accuracy compared with the standard classifiers. The study shows that classifiers developed based on the biomarkers obtained by comparing the genomic profiles of responders to those of nonresponders may lead to a high misclassification error rate. Classifiers to identify a small fraction of the subpopulation should take imbalanced class sizes into consideration. A large sample size may be needed in order to ensure detection of a sufficient number of biomarkers and a sufficient number of susceptible subjects for classifier development and validation.

  4. Ensemble survival trees for identifying subpopulations in personalized medicine.

    PubMed

    Chen, Yu-Chuan; Chen, James J

    2016-09-01

    Recently, personalized medicine has received great attention to improve safety and effectiveness in drug development. Personalized medicine aims to provide medical treatment that is tailored to the patient's characteristics such as genomic biomarkers, disease history, etc., so that the benefit of treatment can be optimized. Subpopulations identification is to divide patients into several different subgroups where each subgroup corresponds to an optimal treatment. For two subgroups, traditionally the multivariate Cox proportional hazards model is fitted and used to calculate the risk score when outcome is survival time endpoint. Median is commonly chosen as the cutoff value to separate patients. However, using median as the cutoff value is quite subjective and sometimes may be inappropriate in situations where data are imbalanced. Here, we propose a novel tree-based method that adopts the algorithm of relative risk trees to identify subgroup patients. After growing a relative risk tree, we apply k-means clustering to group the terminal nodes based on the averaged covariates. We adopt an ensemble Bagging method to improve the performance of a single tree since it is well known that the performance of a single tree is quite unstable. A simulation study is conducted to compare the performance between our proposed method and the multivariate Cox model. The applications of our proposed method to two public cancer data sets are also conducted for illustration.

  5. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.

    PubMed

    Bath, Chris

    2013-06-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity. Since the first successful treatment of LSCD by transplantation of ex vivo expanded LESCs in 1997, many attempts have been carried out to optimize culture conditions to improve the outcome of surgery. To date, progress in this field of bioengineering is substantially hindered by both the lack of specific biomarkers of LESCs and the lack of a precise molecular characterization of in situ epithelial subpopulations. The aim of this dissertation was to optimize culture systems with regard to the environmental oxygen concentration for selective ex vivo expansion of LESCs and to analyse in situ subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum-free EpiLife medium, using a range of physiologically relevant oxygen concentrations (2%, 5%, 10%, 15% and 20%). Using immunocytochemistry and advanced fluorescence microscopy, cells were characterized regarding growth, cell cycle distribution, colony-forming efficiency (CFE), phenotypes and cytomorphometry. Limbal epithelial cells expanded in 2% O2 exhibited slow growth, low fraction of cells in S/G2 , high CFE, high expression of stem cell markers ABCG2 and p63α, and low fraction of differentiation marker CK3 resembling a LESC phenotype. The effect of hypoxia to maintain LESCs in culture was not dependent on the system used for propagation (Bath et al. 2013a). Laser capture microdissection was used to isolate cellular subpopulations in situ from the spatially defined

  6. FSP1+ fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells

    PubMed Central

    Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong

    2015-01-01

    Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45-FSP1+ cells represent a unique Fibroblast specific protein 1 (FSP1)—fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCIIhigh, CD80+ and Aire+). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45-FSP1+ fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1+ fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1- counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45-FSP1+ cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1. PMID:26445893

  7. Cytokeratin 5 positive cells represent a therapy resistant subpopulation in epithelial ovarian cancer

    PubMed Central

    Corr, Bradley R.; Finlay-Schultz, Jessica; Rosen, Rachel B.; Qamar, Lubna; Post, Miriam D.; Behbakht, Kian; Spillman, Monique A.; Sartorius, Carol A.

    2015-01-01

    Objective Cytokeratin 5 (CK5) is an epithelial cell marker implicated in stem and progenitor cell activity in glandular reproductive tissues and endocrine and chemotherapy resistance in estrogen receptor (ER)+ breast cancer. The goal of this study was to determine the prevalence of CK5 expression in ovarian cancer and the response of CK5+ cell populations to cisplatin therapy. Materials and Methods CK5 expression was evaluated in two ovarian tissue microarrays, representing 137 neoplasms, and six ovarian cancer cell lines. Cell lines were treated with IC50 cisplatin and the prevalence of CK5+ cells pre- and post-treatment determined. Proliferation of CK5+ vs. CK5− cell populations was determined using bromodeoxyuridine (BrdU) incorporation. Chemotherapy induced apoptosis in CK5+ vs. CK5− cells was measured using immunohistochemical staining for cleaved caspase-3. Results CK5 was expressed in 39.3% (42/107) of epithelial ovarian cancers with a range of 1-80% positive cells. Serous and endometrioid histologic subtypes had the highest percentage of CK5+ specimens. CK5 expression correlated with ER positivity (38/42 CK5+ tumors were also ER+). CK5 was expressed in 5/6 overall and 4/4 ER+ epithelial ovarian cancer cell lines ranging from 2.4-52.7% positive cells. CK5+ compared to CK5− cells were slower proliferating. The prevalence of CK5+ cells increased following 48 hour cisplatin treatment in 4/5 cell lines tested. CK5+ compared to CK5− ovarian cancer cells were more resistant to cisplatin induced apoptosis. Conclusions CK5 is expressed in a significant proportion of epithelial ovarian cancers and represents a slower proliferating, chemoresistant subpopulation that may warrant co-targeting in combination therapy. PMID:26495758

  8. Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers.

    PubMed

    Pearson, Joseph C; McKay, Daniel J; Lieb, Jason D; Crews, Stephen T

    2016-10-15

    One of the key issues in studying transcriptional regulation during development is how to employ genome-wide assays that reveals sites of open chromatin and transcription factor binding to efficiently identify biologically relevant genes and enhancers. Analysis of Drosophila CNS midline cell development provides a useful system for studying transcriptional regulation at the genomic level due to a large, well-characterized set of midline-expressed genes and in vivo validated enhancers. In this study, FAIRE-seq on FACS-purified midline cells was performed and the midline FAIRE data were compared with whole-embryo FAIRE data. We find that regions of the genome with a strong midline FAIRE peak and weak whole-embryo FAIRE peak overlap with known midline enhancers and provide a useful predictive tool for enhancer identification. In a complementary analysis, we compared a large dataset of fragments that drive midline expression in vivo with the FAIRE data. Midline enhancer fragments with a midline FAIRE peak tend to be near midline-expressed genes, whereas midline enhancers without a midline FAIRE peak were often distant from midline-expressed genes and unlikely to drive midline transcription in vivo.

  9. Differential expression of living mammary epithelial cell subpopulations in milk during lactation in dairy cows.

    PubMed

    Baratta, M; Volpe, M G; Nucera, D; Gabai, G; Guzzo, N; Fustini, M; Faustini, M; Martignani, E

    2015-10-01

    Epithelial cells are shed into milk during lactation, and although they generally reflect the cellular characteristics of terminally differentiated luminal cells, previously the detection of more primitive cells was described in human milk where a cell population of epithelial lineage was detected expressing markers typical of progenitor cells. In this investigation, we report the development of flow cytometry analysis to allow multiparametric assessment of mammary epithelial cells observed in milk. Cells collected from milk samples of 10 healthy dairy cows were directly analyzed for 6 different markers: CD45, CD49f, cytokeratin 14, cytokeratin 18, presence of nucleus, and cell viability. Milk samples were collected in 3 different periods of lactation: early lactation (EL=d 0-30), mid-lactation (ML=d 90-120), and late lactation (LL=210-250). Here we identify the differential expression of precursor or differentiated cell markers (or both) in mammary epithelial cells present in bovine milk. Myoepithelial cells, as indicated by cells staining positively for cytokeratin 14(+)/cytokeratin 18(-), were observed to increase from EL to LL with a high correlation with nuclear staining inferring potential proliferative activity. Furthermore, a significant increase in CD49f(+) and cytokeratin 14(+)/cytokeratin 18(+) positive cells was observed in LL. This assay is a sensitive approach for evaluating the variations in the frequency and features of living epithelial cells, whose reciprocal balance may be significant in understanding mammary gland cellular function throughout lactation. These observations suggest that mammary epithelial cell immunophenotypes could be investigated as biomarkers for mammary gland function in dairy cows.

  10. Distinct subpopulations of epithelial ovarian cancer cells can differentially induce macrophages and T regulatory cells toward a pro-tumor phenotype.

    PubMed

    Alvero, Ayesha B; Montagna, Michele K; Craveiro, Vinicius; Liu, Lanzhen; Mor, Gil

    2012-03-01

    Presence of immune infiltrates in the tumor does not always correlate with an anti-tumoral immune response. We previously identified two subpopulations of epithelial ovarian cancer (EOC) cells with differential cytokine profile. We hypothesize that these two subpopulations of EOC cells may differentially regulate the immune phenotype in the tumor microenvironment and therefore affect the immune response. Macrophages derived from CD14+ monocytes and naive CD4+T cells were treated with conditioned media from two subpopulations of EOC cells. Differentiation markers and phagocytic activity were measured by western blot analysis and flow cytometry. Cytokine levels were quantified using xMAP technology. Type I EOC cells are able to enhance macrophages' capacity for tumor repair and renewal by enhancing expression of scavenger receptors and by promoting the secretion of cytokines associated with tissue repair. On the other hand, type II EOC cells are able to create a tolerant microenvironment and prevent an immune response by inducing macrophages' to secrete IL-10 and by promoting the generation of T regs. We demonstrate that each ovarian cancer cell subpopulation can induce a unique phenotype of macrophages and T cells, both associated with tumor-supportive function. © 2011 John Wiley & Sons A/S.

  11. Identifying treatment effect heterogeneity in clinical trials using subpopulations of events: STEPP.

    PubMed

    Lazar, Ann A; Bonetti, Marco; Cole, Bernard F; Yip, Wai-Ki; Gelber, Richard D

    2016-04-01

    Investigators conducting randomized clinical trials often explore treatment effect heterogeneity to assess whether treatment efficacy varies according to patient characteristics. Identifying heterogeneity is central to making informed personalized healthcare decisions. Treatment effect heterogeneity can be investigated using subpopulation treatment effect pattern plot (STEPP), a non-parametric graphical approach that constructs overlapping patient subpopulations with varying values of a characteristic. Procedures for statistical testing using subpopulation treatment effect pattern plot when the endpoint of interest is survival remain an area of active investigation. A STEPP analysis was used to explore patterns of absolute and relative treatment effects for varying levels of a breast cancer biomarker, Ki-67, in the phase III Breast International Group 1-98 randomized clinical trial, comparing letrozole to tamoxifen as adjuvant therapy for postmenopausal women with hormone receptor-positive breast cancer. Absolute treatment effects were measured by differences in 4-year cumulative incidence of breast cancer recurrence, while relative effects were measured by the subdistribution hazard ratio in the presence of competing risks using O-E (observed-minus-expected) methodology, an intuitive non-parametric method. While estimation of hazard ratio values based on O-E methodology has been shown, a similar development for the subdistribution hazard ratio has not. Furthermore, we observed that the subpopulation treatment effect pattern plot analysis may not produce results, even with 100 patients within each subpopulation. After further investigation through simulation studies, we observed inflation of the type I error rate of the traditional test statistic and sometimes singular variance-covariance matrix estimates that may lead to results not being produced. This is due to the lack of sufficient number of events within the subpopulations, which we refer to as instability of

  12. Functional characterization of mouse lymphocyte subpopulations identified by their natural binding of bacteria. I. Identification of the Ig-secreting cell subpopulation.

    PubMed

    Chen, W Y; Teodorescu, M; Mayer, E P

    1979-12-01

    Three mouse B cell subpopulations (B1, B2 and B3) can be identified by their natural binding of bacteria. To determine whether these subpopulations have unique functions, we assayed the number of anti-SRBC-secreting cells and the number of Ig-secreting cells in unseparated populations and in populations in which the B2 and B3 cells were removed by immobilized monolayers of Escherichia coli-2, a bacteria that binds B2 and B3 cells. Essentially all of the plaque forming cells present in the unseparated population were found in the B1-enriched population, suggesting that most of the antibody-secreting and Ig-secreting cells were in the B1 subpopulation. To show conclusively that the anti-SRBC-secreting cells resided in the B1 subpopulation, the Jerne plaque assay was performed on slides by using lymphocytes prelabeled with various bacteria and the cells that gave rise to the plaques were directly examined. Essentially all of the secreting cells were labeled with Corynebacterium xerosis, which binds to the B1 and B2 cells, whereas very few of the secreting cells were labelled with Arizona hinshawii, which binds to the B2 cells, or with Escherichia coli-2, which binds to the B2 and B3 cells. Thus, the B1 subpopulation contained essentially all of the antibody-secreting cells, which indicates that the B cell subpopulations identified by bacteria are functionally different.

  13. Functionally identifiable apoptosis-insensitive subpopulations determine chemoresistance in acute myeloid leukemia

    PubMed Central

    Bhola, Patrick D.; Mar, Brenton G.; Lindsley, R. Coleman; Ryan, Jeremy A.; Hogdal, Leah J.; Vo, Thanh Trang; DeAngelo, Daniel J.; Galinsky, Ilene; Ebert, Benjamin L.

    2016-01-01

    Upfront resistance to chemotherapy and relapse following remission are critical problems in leukemia that are generally attributed to subpopulations of chemoresistant tumor cells. There are, however, limited means for prospectively identifying these subpopulations, which hinders an understanding of therapeutic resistance. BH3 profiling is a functional single-cell analysis using synthetic BCL-2 BH3 domain–like peptides that measures mitochondrial apoptotic sensitivity or “priming.” Here, we observed that the extent of apoptotic priming is heterogeneous within multiple cancer cell lines and is not the result of experimental noise. Apoptotic priming was also heterogeneous in treatment-naive primary human acute myeloid leukemia (AML) myeloblasts, and this heterogeneity decreased in chemotherapy-treated AML patients. The priming of the most apoptosis-resistant tumor cells, rather than the median priming of the population, best predicted patient response to induction chemotherapy. For several patients, these poorly primed subpopulations of AML tumor cells were enriched for antiapoptotic proteins. Developing techniques to identify and understand these apoptosis-insensitive subpopulations of tumor cells may yield insights into clinical chemoresistance and potentially improve therapeutic outcomes in AML. PMID:27599292

  14. Identifying vulnerable subpopulations for climate change health effects in the United States.

    PubMed

    Balbus, John M; Malina, Catherine

    2009-01-01

    Climate change can be expected to have differential effects on different subpopulations. Biological sensitivity, socioeconomic factors, and geography may each contribute to heightened risk for climate-sensitive health outcomes, which include heat stress, air pollution health effects, extreme weather event health effects, water-, food-, and vector-borne illnesses. Particularly vulnerable subpopulations include children, pregnant women, older adults, impoverished populations, people with chronic conditions and mobility and cognitive constraints, outdoor workers, and those in coastal and low-lying riverine zones. For public health planning, it is critical to identify populations that may experience synergistic effects of multiple risk factors for health problems, both related to climate change and to other temporal trends, with specific geographic factors that convey climate-related risks.

  15. Bovine CD49 positive-cell subpopulation remarkably increases in mammary epithelial cells that retain a stem-like phenotype.

    PubMed

    Cravero, Diego; Martignani, Eugenio; Miretti, Silvia; Accornero, Paolo; Baratta, Mario

    2015-10-01

    We previously proved that adult stem cells reside in the bovine mammary gland and possess an intrinsic potential to generate a functional mammary outgrowth. The aim of this study was to investigate on the immunophenotyping features retained by mammary stem-like cells detected in long term culture. Flow cytometry analysis showed different subpopulations of mammary epithelial cells emerging according to the timing of cell culture. CD49f(+)-cells significantly increased during the culture (p<0.01) and a similar trend was observed, even if less regular, for CD29(+) and ALDH1 positive cell populations. No difference during the culture was observed for CD24 positive cells but after 35 days of culture a subset of cells, CD49f positive, still retained regenerative capabilities in in vivo xenotransplants. These cells were able to form organized pseudo-alveoli when transplanted in immunodeficient mice. These results prove the presence of a multipotent cell subpopulation that retain a strong epithelial induction, confirmed in in vivo xenotransplants with a presumable in vitro expansion of the primitive population of adult mammary stem cells.

  16. Identifying Treatment Effect Heterogeneity in Clinical Trials Using Subpopulations of Events: STEPP

    PubMed Central

    Lazar, Ann A.; Bonetti, Marco; Cole, Bernard F.; Yip, Wai-ki; Gelber, Richard D.

    2016-01-01

    Background Investigators conducting randomized clinical trials (RCTs) often explore treatment effect heterogeneity to assess whether treatment efficacy varies according to patient characteristics. Identifying heterogeneity is central to making informed personalized health care decisions. Treatment effect heterogeneity can be investigated using subpopulation treatment effect pattern plot (STEPP), a non-parametric graphical approach that constructs overlapping patient subpopulations with varying values of a characteristic. Procedures for statistical testing using STEPP when the endpoint of interest is survival remain an area of active investigation. Motivating Data A STEPP analysis was used to explore patterns of absolute and relative treatment effects for varying levels of a breast cancer biomarker, Ki-67, in the phase III BIG (Breast International Group) 1-98 RCT, comparing letrozole to tamoxifen as adjuvant therapy for postmenopausal women with hormone receptor-positive breast cancer. Absolute treatment effects were measured by differences in 4-year cumulative incidence of breast cancer recurrence, while relative effects were measured by the subdistribution hazard ratio in the presence of competing risks using O − E (observed-minus-expected) methodology, an intuitive non-parametric method. While estimation of hazard ratio values based on O − E methodology has been shown, a similar development for the subdistribution hazard ratio has not. Furthermore, we observed that the STEPP analysis, may not produce results, even with 100 patients within each subpopulation. After further investigation through simulation studies, we observed inflation of the type I error rate of the traditional test statistic and sometimes singular variance-covariance matrix estimates that may lead to results not being produced. This is due to the lack of a sufficient number of events within the subpopulations, which we refer to as instability of a STEPP analysis. Methods We introduce

  17. A CD44high/EGFRlow subpopulation within head and neck cancer cell lines shows an epithelial-mesenchymal transition phenotype and resistance to treatment.

    PubMed

    La Fleur, Linnea; Johansson, Ann-Charlotte; Roberg, Karin

    2012-01-01

    Mortality in head and neck squamous cell carcinoma (HNSCC) is high due to emergence of therapy resistance which results in local and regional recurrences that may have their origin in resistant cancer stem cells (CSCs) or cells with an epithelial-mesenchymal transition (EMT) phenotype. In the present study, we investigate the possibility of using the cell surface expression of CD44 and epidermal growth factor receptor (EGFR), both of which have been used as stem cell markers, to identify subpopulations within HNSCC cell lines that differ with respect to phenotype and treatment sensitivity. Three subpopulations, consisting of CD44(high)/EGFR(low), CD44(high)/EGFR(high) and CD44(low) cells, respectively, were collected by fluorescence-activated cell sorting. The CD44(high)/EGFR(low) population showed a spindle-shaped EMT-like morphology, while the CD44(low) population was dominated by cobblestone-shaped cells. The CD44(high)/EGFR(low) population was enriched with cells in G0/G1 and showed a relatively low proliferation rate and a high plating efficiency. Using a real time PCR array, 27 genes, of which 14 were related to an EMT phenotype and two with stemness, were found to be differentially expressed in CD44(high)/EGFR(low) cells in comparison to CD44(low) cells. Moreover, CD44(high)/EGFR(low) cells showed a low sensitivity to radiation, cisplatin, cetuximab and gefitinib, and a high sensitivity to dasatinib relative to its CD44(high)/EGFR(high) and CD44(low) counterparts. In conclusion, our results show that the combination of CD44 (high) and EGFR (low) cell surface expression can be used to identify a treatment resistant subpopulation with an EMT phenotype in HNSCC cell lines.

  18. High content screening application for cell-type specific behaviour in heterogeneous primary breast epithelial subpopulations.

    PubMed

    Johnston, Rebecca L; Wockner, Leesa; McCart Reed, Amy E; Wiegmans, Adrian; Chenevix-Trench, Georgia; Khanna, Kum Kum; Lakhani, Sunil R; Smart, Chanel E

    2016-02-09

    The complex interaction between multiple cell types and the microenvironment underlies the diverse pathways to carcinogenesis and necessitates sophisticated approaches to in vitro hypotheses testing. The combination of mixed culture format with high content immunofluorescence screening technology provides a powerful platform for observation of cell type specific behavior. We have developed a versatile, high-throughput method for assessing cell-type specific responses. In addition to the specificity and sensitivity offered traditionally by immunofluorescent detection in flow cytometry, the 'in-cell' analysis method we describe provides the added benefits of higher throughput and the ability to analyse protein subcellular localisation in situ. Furthermore, elimination of the cell dissociation step allows for more immediate analysis of responses to specific extrinsic stimuli. We applied this method to investigate ionising radiation treatment response in normal breast epithelial cells, measuring growth rate, cell cycle response and double-strand DNA breaks. The 'in-cell' analysis approach elucidated several interesting donor and cell-type specific differences. Notably, in response to ionizing radiation we observed differential expression in luminal and basal-like cells of a member of the APOBEC enzyme family, recently identified as a critical driver of an oncogenic signature. Our findings suggest that this enzyme is active in the normal breast epithelium during DNA damage response. We demonstrate the practical application of a new method for assessing cell-type specific change in mixed cultures, especially the analysis of normal primary cultures, overcoming a major technical issue of dissecting the response of multiple cell types in a heterogeneous population.

  19. Aldehyde dehydrogenase activity identifies a subpopulation of canine adipose-derived stem cells with higher differentiation potential.

    PubMed

    Itoh, Harumichi; Nishikawa, Shimpei; Haraguchi, Tomoya; Arikawa, Yu; Hiyama, Masato; Eto, Shotaro; Iseri, Toshie; Itoh, Yoshiki; Tani, Kenji; Nakaichi, Munekazu; Taura, Yasuho; Itamoto, Kazuhito

    2017-09-12

    Adipose-derived stem cells (ADSCs) are abundant and readily obtained, and have been studied for their clinical applicability in regenerative medicine. Some surface antigens have been identified as markers of different ADSC subpopulations in mice and humans. However, it is unclear whether functionally distinct subpopulations exist in dogs. To address this issue, we evaluated aldehyde dehydrogenase (ALDH) activity-a widely used stem cell marker in mice and humans-by flow cytometry. Approximately 20% of bulk ADSCs showed high ALDH activity. Compared to cells with low activity (ALDH(Lo)), the high-activity (ALDH(Hi)) subpopulation exhibited a higher capacity for adipogenic and osteogenic differentiation. This is the first report of distinct ADSC subpopulations in dogs that differ in terms of adipogenic and osteogenic differentiation potential.

  20. Two distinct subpopulations of neurons in the thalamic intergeniculate leaflet identified by subthreshold currents.

    PubMed

    Chrobok, Lukasz; Palus, Katarzyna; Lewandowski, Marian Henryk

    2016-08-04

    The intergeniculate leaflet (IGL) is a flat retinorecipient thalamic structure implicated in orchestrating circadian rhythm, historically considered to be a subdivision of the neighboring ventrolateral geniculate nucleus (VLG). IGL consists of two main neuronal subpopulations: enkephalinergic and neuropeptide Y (NPY)-synthesizing cells. These cell types have different functions, connectivity and firing pattern in vivo, which suggest that they have different membrane currents to support their functional differences. We therefore performed patch-clamp experiments combined with immunohistochemical staining to clarify possible differences in the subthreshold currents of IGL neurons. Our results suggest that IGL neurons can be divided into two subpopulations based on two ionic currents. A T-type calcium current (IT) was identified in neurons that do not synthesise NPY, whereas all NPY-positive neurons were found to express a marked A-type potassium current (IA). Due to the fact that the clear electrophysiological discriminants between IGL and VLG are lacking, we decided to compare the amplitudes of the identified currents between those two structures. Our data suggest that VLG neurons can be characterized by a high amplitude IT and a low IA. Finally, we compared both currents with WAG/Rij rats, a well-established model of absence epilepsy, with co-occurring retinal pathologies, sleep-onset disturbances, and seizures exhibiting circadian rhythmicity. Data presented in this study uncovered pathologies in the IT exhibiting neurons of the IGL and VLG. In conclusion, the data presented here suggest that different subthreshold current expression supports the functional differences of thalamic nuclei. Those differences are promising for possible pharmacological manipulations of specified cell types in pathophysiologies including absence epilepsy. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Glycosaminoglycan synthesis by subpopulations of epithelial cells from a mammary adenocarcinoma

    SciTech Connect

    Angello, J.C.; Danielson, K.G.; Anderson, L.W.; Hosick, H.L.

    1982-06-01

    Glycosaminoglycan synthesis by two subpopulations of a mouse mammary tumor cell line was compared. The two sublines express distinctly different growth characteristics in vitro and in vivo which indicate differences in growth regulation. Newly made glycosaminoglycans were recovered from the culture media, the cell surfaces, and residual cellular material. The cell population which grows more aggressively in vivo (+SA subline, a subline that grows in soft agarose) incorporated about 8 times more (/sup 14/C)glucosamine per cell into total glycosaminoglycans than did the slower-growing population (-SA subline, which does not grow in soft agarose). Appropriate control experiments indicated that the apparent difference in rates of synthesis was not due to discrepancies in glucosamine uptake. The main residual cellular molecule labeled was heparan sulfate, but the predominant molecule at the cell surface and in the culture fluid was hyaluronic acid. Overall, +SA cells synthesized more hyaluronic acid and -SA cells synthesized more heparan sulfate; in both cell populations, these two molecules accounted for about 90% of total glycosaminoglycans produced.

  2. Genome-wide association study identifies novel type II diabetes risk loci in Jordan subpopulations

    PubMed Central

    Wei, Zhi; March, Michael E.; Xia, Qianghua; Khader, Yousef; Hakooz, Nancy; Fatahallah, Raja; El-Khateeb, Mohammed; Arafat, Ala; Saleh, Tareq; Dajani, Abdel Rahman; Al-Abbadi, Zaid; Abdul Qader, Mohamed; Shiyab, Abdel Halim; Bateiha, Anwar; Ajlouni, Kamel

    2017-01-01

    The prevalence of Type II Diabetes (T2D) has been increasing and has become a disease of significant public health burden in Jordan. None of the previous genome-wide association studies (GWAS) have specifically investigated the Middle East populations. The Circassian and Chechen communities in Jordan represent unique populations that are genetically distinct from the Arab population and other populations in the Caucasus. Prevalence of T2D is very high in both the Circassian and Chechen communities in Jordan despite low obesity prevalence. We conducted GWAS on T2D in these two populations and further performed meta-analysis of the results. We identified a novel T2D locus at chr20p12.2 at genome-wide significance (rs6134031, P = 1.12 × 10−8) and we replicated the results in the Wellcome Trust Case Control Consortium (WTCCC) dataset. Another locus at chr12q24.31 is associated with T2D at suggestive significance level (top SNP rs4758690, P = 4.20 × 10−5) and it is a robust eQTL for the gene, MLXIP (P = 1.10 × 10−14), and is significantly associated with methylation level in MLXIP, the functions of which involves cellular glucose response. Therefore, in this first GWAS of T2D in Jordan subpopulations, we identified novel and unique susceptibility loci which may help inform the genetic underpinnings of T2D in other populations. PMID:28828242

  3. Use of stable isotopes to identify dietary differences across subpopulations and sex for a free-ranging generalist herbivore.

    PubMed

    Walter, W David

    2014-01-01

    Carbon and nitrogen isotopes in tissues can be used to understand plants consumed by various taxa, but can they provide additional information about consumers? Values of δ(13)C and δ(15)N were assessed from tissue of free-ranging elk (Cervus elaphus) occupying disparate habitats of mixed prairie-oak savannah that contained C3 agricultural crops in a C4-dominated landscape and in key plants consumed by elk. Muscle and hoof samples were collected from female and male elk in two subpopulations (forested land and grassland) from private land and one subpopulation from the Wichita Mountains Wildlife Refuge (refuge) in 2001-2006. Previous research identified differences between mean muscle δ(13)C and δ(15)N and mean hoof δ(13)C and δ(15)N indicating that isotopes differed between tissues of varying metabolic activity. Mean δ(13)C in hoof of elk on forested land and grassland were lower than hoof δ(13)C from elk in the refuge indicating greater long-term consumption of C3 plants by elk on forested land and grassland subpopulations. The δ(15)N in hoof was greater for elk outside the refuge than that for elk in the refuge. Interaction of sex and subpopulation only occurred for hoof δ(15)N suggesting that factors such as tissue type, sex, and habitat need to be considered to understand free-ranging ecology of generalist herbivores using stable isotopes. Availability of C3 agricultural crops high in percent nitrogen on a nearly annual basis in a C4-dominated landscape was likely driving differences in tissue δ(13)C and δ(15)N among subpopulations of free-ranging elk. An increase in tissue δ(15)N resulted from an increase in the consumption of higher δ(15)N in forage for sexes and subpopulations of a free-ranging ungulate in North America but δ(15)N should be further evaluated as an index of nutrition for subpopulations of generalist herbivores.

  4. A Discrete Subpopulation of Dendritic Cells Transports Apoptotic Intestinal Epithelial Cells to T Cell Areas of Mesenteric Lymph Nodes

    PubMed Central

    Huang, Fang-Ping; Platt, Nicholas; Wykes, Michelle; Major, James R.; Powell, Timothy J.; Jenkins, Christopher D.; MacPherson, G. Gordon

    2000-01-01

    This study identifies a dendritic cell (DC) subset that constitutively transports apoptotic intestinal epithelial cell remnants to T cell areas of mesenteric lymph nodes in vivo. Rat intestinal lymph contains two DC populations. Both populations have typical DC morphology, are major histocompatibility complex class IIhi, and express OX62, CD11c, and B7. CD4+/OX41+ DCs are strong antigen-presenting cells (APCs). CD4−/OX41− DCs are weak APCs and contain cytoplasmic apoptotic DNA, epithelial cell–restricted cytokeratins, and nonspecific esterase (NSE)+ inclusions, not seen in OX41+ DCs. Identical patterns of NSE electrophoretic variants exist in CD4−/OX41− DCs, intestinal epithelial cells, and mesenteric node DCs but not in other DC populations, macrophages, or tissues. Terminal deoxynucleotidyl transferase–mediated dUTP-biotin nick-end labeling (TUNEL)-positive DCs and strongly NSE+ DCs are present in intestinal lamina propria. Peyer's patches and mesenteric but not other lymph nodes contain many strongly NSE+ DCs in interfollicular and T cell areas. Similar DCs are seen in the ileum and in T cell areas of mesenteric nodes in gnotobiotic rats. These results show that a distinct DC subset constitutively endocytoses and transports apoptotic cells to T cell areas and suggest a role for these DCs in inducing and maintaining peripheral self-tolerance. PMID:10662789

  5. An activation antigen on a subpopulation of B lymphocytes identified by the monoclonal antibody CMRF-17.

    PubMed Central

    Peach, S F; Davidson, S E; McKenzie, J L; Nimmo, J C; Hart, D N

    1989-01-01

    The identification of membrane molecules expressed on subpopulations of B lymphocytes is of potential significance because these molecules may be candidates for regulating the activation, proliferation and differentiation of B cells. A new monoclonal antibody, CMRF-17, which reacts with a subpopulation of tonsil B lymphocytes has been produced. The antibody did not react with T lymphocytes in tonsil or peripheral blood nor most peripheral blood B lymphocytes but did label erythrocytes and some platelets. In tonsil, the germinal centre cells, cells in the interfollicular region and endothelial cells were positive, but mantle zone B cells were negative. Double labelling experiments showed that CMRF-17 reacted with activated tonsillar lymphocytes. The antigen recognized by CMRF-17 was heat stable, resistant to treatment with proteolytic enzymes and neuraminidase and was shown to be a carbohydrate determinant on one or more glycolipids. These characteristics of the antigen recognized by CMRF-17 and its pattern of reactivity distinguish this antibody from other monoclonal antibodies recognizing B-cell activation markers. It was notable that of the B-lymphoid malignancies tested to date, including those of probable follicular origin, few stained with CMRF-17. Images Figure 1 Figure 3 PMID:2474491

  6. Annexin A8 Identifies a Subpopulation of Transiently Quiescent c-Kit Positive Luminal Progenitor Cells of the Ductal Mammary Epithelium

    PubMed Central

    Iglesias, Juan Manuel; Cairney, Claire J.; Ferrier, Roderick K.; McDonald, Laura; Soady, Kelly; Kendrick, Howard; Pringle, Marie-Anne; Morgan, Reginald O.; Martin, Finian; Smalley, Matthew J.; Blyth, Karen; Stein, Torsten

    2015-01-01

    We have previously shown that Annexin A8 (ANXA8) is strongly associated with the basal-like subgroup of breast cancers, including BRCA1-associated breast cancers, and poor prognosis; while in the mouse mammary gland AnxA8 mRNA is expressed in low-proliferative isolated pubertal mouse mammary ductal epithelium and after enforced involution, but not in isolated highly proliferative terminal end buds (TEB) or during pregnancy. To better understand ANXA8’s association with this breast cancer subgroup we established ANXA8’s cellular distribution in the mammary gland and ANXA8’s effect on cell proliferation. We show that ANXA8 expression in the mouse mammary gland was strong during pre-puberty before the expansion of the rudimentary ductal network and was limited to a distinct subpopulation of ductal luminal epithelial cells but was not detected in TEB or in alveoli during pregnancy. Similarly, during late involution its expression was found in the surviving ductal epithelium, but not in the apoptotic alveoli. Double-immunofluorescence (IF) showed that ANXA8 positive (+ve) cells were ER-alpha negative (−ve) and mostly quiescent, as defined by lack of Ki67 expression during puberty and mid-pregnancy, but not terminally differentiated with ∼15% of ANXA8 +ve cells re-entering the cell cycle at the start of pregnancy (day 4.5). RT-PCR on RNA from FACS-sorted cells and double-IF showed that ANXA8+ve cells were a subpopulation of c-kit +ve luminal progenitor cells, which have recently been identified as the cells of origin of basal-like breast cancers. Over expression of ANXA8 in the mammary epithelial cell line Kim-2 led to a G0/G1 arrest and suppressed Ki67 expression, indicating cell cycle exit. Our data therefore identify ANXA8 as a potential mediator of quiescence in the normal mouse mammary ductal epithelium, while its expression in basal-like breast cancers may be linked to ANXA8’s association with their specific cells of origin. PMID:25803307

  7. Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium. I. Growth conditions and morphology of murine thymic epithelial and mesenchymal cells.

    PubMed

    Eshel, I; Savion, N; Shoham, J

    1990-03-01

    We report here the successful selective cultivation of murine thymic mesenchymal reticular cells (MTMC) and murine thymic epithelial cells (MTEC) grown on extracellular matrix in the presence of defined medium. The selective growth of these two cell types was based on 1) conditions of tissue disruption and 2) differential growth requirements. Both cell types were dependent on transferrin, high density lipoproteins, insulin, hydrocortisone, and epidermal growth factor, whereas MTMC was dependent also on selenium and 3,5,3'-triiodothyronine. The elimination of single factors or extracellular matrix resulted in specific and different changes in the growth pattern of each cell subpopulation. Cells of both types exhibited the ultrastructural features of high metabolic activity. The epithelial nature of MTEC cultures was defined by bundles of tonofilaments and desmosomes and by positive staining to keratins and negative to vimentin. In addition MTEC were positively stained with mAb to thymic medullary epithelial cells and by Ulex europeus agglutinin, and were able to form Hassall's corpuscles, suggesting their medullary origin. MTEC were also H-2 and Ia positive. In contrast MTMC were positive for vimentin and periodic acid-Schiff, low positive for H-2, and negative for keratin and Ia. Both cells did not contain nonspecific esterase, nor did they phagocytize latex beads. With the use of all these criteria we classified MTEC as epithelial cells from the medullary compartment of the thymus and MTMC as reticular cells of mesenchymal origin.

  8. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells.

    PubMed

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A; Entrena, José M; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A

    2016-01-11

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.

  9. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells

    PubMed Central

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A.; Entrena, José M.; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A.

    2016-01-01

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies. PMID:26752044

  10. Intermediate expression of CCRL1 reveals novel subpopulations of medullary thymic epithelial cells that emerge in the postnatal thymus.

    PubMed

    Ribeiro, Ana R; Meireles, Catarina; Rodrigues, Pedro M; Alves, Nuno L

    2014-10-01

    Cortical and medullary thymic epithelial cells (cTECs and mTECs, respectively) provide inductive microenvironments for T-cell development and selection. The differentiation pathway of cTEC/mTEC lineages downstream of common bipotent progenitors at discrete stages of development remains unresolved. Using IL-7/CCRL1 dual reporter mice that identify specialized TEC subsets, we show that the stepwise acquisition of chemokine (C-C motif) receptor-like 1 (CCRL1) is a late determinant of cTEC differentiation. Although cTECs expressing high CCRL1 levels (CCRL1(hi) ) develop normally in immunocompetent and Rag2(-/-) thymi, their differentiation is partially blocked in Rag2(-/-) Il2rg(-/-) counterparts. These results unravel a novel checkpoint in cTEC maturation that is regulated by the cross-talk between TECs and immature thymocytes. Additionally, we identify new Ulex europaeus agglutinin 1 (UEA)(+) mTEC subtypes expressing intermediate CCRL1 levels (CCRL1(int) ) that conspicuously emerge in the postnatal thymus and differentially express Tnfrsf11a, Ccl21, and Aire. While rare in fetal and in Rag2(-/-) thymi, CCRL1(int) mTECs are restored in Rag2(-/-) Marilyn TCR-Tg mice, indicating that the appearance of postnatal-restricted mTECs is closely linked with T-cell selection. Our findings suggest that alternative temporally restricted routes of new mTEC differentiation contribute to the establishment of the medullary niche in the postnatal thymus.

  11. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice

    PubMed Central

    Chapman, Harold A.; Li, Xiaopeng; Alexander, Jonathan P.; Brumwell, Alexis; Lorizio, Walter; Tan, Kevin; Sonnenberg, Arnoud; Wei, Ying; Vu, Thiennu H.

    2011-01-01

    Laminins and their integrin receptors are implicated in epithelial cell differentiation and progenitor cell maintenance. We report here that a previously unrecognized subpopulation of mouse alveolar epithelial cells (AECs) expressing the laminin receptor α6β4, but little or no pro–surfactant C (pro-SPC), is endowed with regenerative potential. Ex vivo, this subpopulation expanded clonally as progenitors but also differentiated toward mature cell types. Integrin β4 itself was not required for AEC proliferation or differentiation. An in vivo embryonic lung organoid assay, which we believe to be novel, was used to show that purified β4+ adult AECs admixed with E14.5 lung single-cell suspensions and implanted under kidney capsules self-organized into distinct Clara cell 10-kDa secretory protein (CC10+) airway-like and SPC+ saccular structures within 6 days. Using a bleomycin model of lung injury and an SPC-driven inducible cre to fate-map AECs, we found the majority of type II AECs in fibrotic areas were not derived from preexisting type II AECs, demonstrating that SPC– progenitor cells replenished type II AECs during repair. Our findings support the idea that there is a stable AEC progenitor population in the adult lung, provide in vivo evidence of AEC progenitor cell differentiation after parenchymal injury, and identify a strong candidate progenitor cell for maintenance of type II AECs during lung repair. PMID:21701069

  12. Analysis of the hormone receptor status of circulating tumor cell subpopulations based on epithelial-mesenchymal transition: a proof-of-principle study on the heterogeneity of circulating tumor cells

    PubMed Central

    Guan, Xiuwen; Ma, Fei; Liu, Suyan; Wu, Shiyang; Xiao, Rong; Yuan, Lifang; Sun, Xiaoying; Yi, Zongbi; Yang, Huiyi; Xu, Binghe

    2016-01-01

    Although the enumeration of circulating tumor cells (CTCs) has been demonstrated to be a prognostic indicator in metastatic breast cancer, the heterogeneous characteristics of CTCs, such as variations in the epithelial-mesenchymal transition (EMT), may limit its broad clinical application. To investigate an uncomplicated and practicable detection approach based on the potential utility of the heterogeneity of CTCs from the standpoint of the EMT phenotype and ER/PR status of CTCs, an analysis was conducted using peripheral blood samples obtained from 28 metastatic breast cancer patients. The CanPatrol CTC enrichment technique was used to identify different CTC subpopulations, including epithelial-dominated CTCs, biophenotypic epithelial/mesenchymal CTCs, and mesenchymal-dominated CTCs, according to epithelial and mesenchymal markers. Furthermore, the hormone receptor (HR) status of each CTC was determined based on the expression levels of three reference genes and was characterized by four levels, which ranged from high-level expression to non-expression. We subsequently concluded that based on EMT phenotypes, the order of different CTC subgroups differed according to the HR expression status of the primary tumor. With respect to the HR status between tissues and CTCs, the variation tendency from high-level expression to non-expression of HR in CTCs was significantly correlated with the HR status of the primary tumor. The findings could provide evidence for the potential application of this uncomplicated and practicable detection approach for prognostic analysis and individualized endocrine therapeutic direction in a real-time manner via confirmation in further large-scale trials. PMID:27602758

  13. Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium. II. Cytokine activities in murine thymic epithelial and mesenchymal cell culture supernatants.

    PubMed

    Eshel, I; Savion, N; Shoham, J

    1990-03-01

    Two morphologically distinct primary cultures of murine thymic stroma were established and found to be of epithelial (MTEC) and mesenchymal (MTMC) origin. These cultures were generated by selective conditions of tissue disruption and were maintained on extracellular matrix in defined medium. Culture supernatants (CS) from these cultures (EC-CS and MC-CS respectively), were tested for cytokine production and for effects on thymocyte maturation. Both supernatants displayed the activities of IL-3 and of granulocyte/macrophage-CSF and not of IL-1, -2, -4, or IFN. In addition they were found to be mitogenic to murine thymocytes in a "spontaneous" [3H]TdR incorporation assay. The two supernatants differed, however, in their effect on Con A stimulation. EC-CS had a strong enhancing effect, both when used for preincubation (18 h) before Con A stimulation or when present simultaneously with it. MC-CS had a small inconsistent effect under these conditions. Also EC-CS enhanced IL-2 and IL-3 production by thymocytes. The responsive thymocyte subpopulation was the one that does not bind peanut agglutinin. CS of an established thymic epithelial cell line displayed only part of these activities at a considerably lower level. CS from primary kidney cell culture was completely devoid of activity. The results suggest that primary thymic stromal cell cultures, cultivated under the defined conditions described here, may better preserve physiologic secretory activities, and probably also other cell functions, compared with established cell lines. Furthermore, the results are compatible with the hypothesis that the soluble factors, secreted by thymic stromal cells, are active on either very early or late stages of thymic differentiation, whereas the main intrathymic stages of differentiation are conceivable dependent primarily on direct contact with stromal cells.

  14. c-Kit identifies a subpopulation of mesenchymal stem cells in adipose tissue with higher telomerase expression and differentiation potential.

    PubMed

    Blazquez-Martinez, A; Chiesa, M; Arnalich, F; Fernandez-Delgado, J; Nistal, M; De Miguel, M P

    2014-01-01

    The stromal vascular fraction (SVF) of adipose tissue is an easy to obtain source of adipose tissue-derived stem cells (ADSCs). We and others have achieved significant but suboptimal therapeutic effects with ADSCs in various settings, mainly due to low rates of differentiation into specific cell types and with the downside of undesired side effects as a consequence of the undifferentiated ADSCs. These data prompted us to find new stem cell-specific markers for ADSCs and/or subpopulations with higher differentiation potential to specific lineages. We found a subpopulation of human ADSCs, marked by c-Kit positiveness, resides in a perivascular location, and shows higher proliferative activity and self-renewal capacity, higher telomerase activity and expression, higher in vitro adipogenic efficiency, a higher capacity for the maintenance of cardiac progenitors, and higher pancreatogenic and hepatogenic efficiency independently of CD105 expression. Our data suggests that the isolation of ADSC subpopulations with anti-c-Kit antibodies allows for the selection of a more homogeneous subpopulation with increased cardioprotective properties and increased adipogenic and endodermal differentiation potential, providing a useful tool for specific therapies in regenerative medicine applications.

  15. T-cell receptor expression in intestinal intra-epithelial lymphocyte subpopulations of normal and athymic mice.

    PubMed Central

    Viney, J L; MacDonald, T T; Kilshaw, P J

    1989-01-01

    Intra-epithelial lymphocytes (IEL) in murine small intestine were analysed for the presence of cell-surface antigens and T-cell receptor allotype in normal and athymic BALB/c mice by immunoperoxidase histochemistry on frozen sections and immunofluorescence on isolated IEL. In frozen sections, IEL of normal mice were 97.7% CD45+, 93.5% CD3+, 46.2% Thy-1+, 91.1% CD8+, 10.7% CD4+ and 21.1% KJ16+ (V beta 8.1 and 8.2). FACS analysis of isolated IEL confirmed the level of KJ16 expression and also demonstrated that 25% of IEL were F23.1+ (V beta 8.1-8.3). Immunofluorescent double-staining revealed a skewed distribution of T-cell receptor (TcR) expression on Thy-1+ and Thy-1- IEL. KJ16 and F23.1 were expressed on 25.9% and 32.7% of Thy-1+ IEL, respectively; however, the frequency of V beta 8 expression was diminished on Thy-1- IEL (4.1% KJ16+ and 12.1% F23.1+). IEL are present in athymic mice, but at reduced levels. In frozen sections these cells were 91.9% CD45+, 69.5% CD3+, less than 1% Thy-1+, 83.6% CD8+, less than 1% CD4+ and less than 1% KJ16+. Thus it appears that in normal mice there may be two distinct lineages of IEL, a thymus-dependent Thy-1+ population which utilizes the alpha beta T-cell receptor and a thymus-independent Thy-1- population (represented in athymic mice), which may possibly utilize the alternative gamma delta TcR. Images Figure 1 PMID:2565884

  16. The Hemoglobin Glycation Index Identifies Subpopulations With Harms or Benefits From Intensive Treatment in the ACCORD Trial

    PubMed Central

    Liu, Shuqian; Myers, Leann; McCarter, Robert J.; Buse, John B.; Fonseca, Vivian

    2015-01-01

    OBJECTIVE This study tested the hypothesis that intensive treatment in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial disproportionately produced adverse outcomes in patients with diabetes with a high hemoglobin glycation index (HGI = observed HbA1c − predicted HbA1c). RESEARCH DESIGN AND METHODS ACCORD was a randomized controlled trial of 10,251 patients with type 2 diabetes assigned to standard or intensive treatment with HbA1c goals of 7.0% to 7.9% (53 to 63 mmol/mol) and less than 6% (42 mmol/mol), respectively. In this ancillary study, a linear regression equation (HbA1c = 0.009 × fasting plasma glucose [FPG] [mg/dL] + 6.8) was derived from 1,000 randomly extracted participants at baseline. Baseline FPG values were used to calculate predicted HbA1c and HGI for the remaining 9,125 participants. Kaplan-Meier and Cox regression were used to assess the effects of intensive treatment on outcomes in patients with a low, moderate, or high HGI. RESULTS Intensive treatment was associated with improved primary outcomes (composite of cardiovascular events) in the low (hazard ratio [HR] 0.75 [95% CI 0.59–0.95]) and moderate (HR 0.77 [95% CI 0.61–0.97]) HGI subgroups but not in the high HGI subgroup (HR 1.14 [95% CI 0.93–1.40]). Higher total mortality in intensively treated patients was confined to the high HGI subgroup (HR 1.41 [95% CI 1.10–1.80]). A high HGI was associated with a greater risk for hypoglycemia in the standard and intensive treatment groups. CONCLUSIONS HGI calculated at baseline identified subpopulations in ACCORD with harms or benefits from intensive glycemic control. HbA1c is not a one-size-fits-all indicator of blood glucose control, and taking this into account when making management decisions could improve diabetes care. PMID:25887355

  17. TaqMan Real-Time PCR Assays for Single-Nucleotide Polymorphisms Which Identify Francisella tularensis and Its Subspecies and Subpopulations

    PubMed Central

    Birdsell, Dawn N.; Vogler, Amy J.; Buchhagen, Jordan; Clare, Ashley; Kaufman, Emily; Naumann, Amber; Driebe, Elizabeth; Wagner, David M.; Keim, Paul S.

    2014-01-01

    Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs) that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup) isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis), therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays would be very

  18. Dietary suppression of the mammary CD29(hi)CD24(+) epithelial subpopulation and its cytokine/chemokine transcriptional signatures modifies mammary tumor risk in MMTV-Wnt1 transgenic mice.

    PubMed

    Rahal, Omar M; Machado, Heather L; Montales, Maria Theresa E; Pabona, John Mark P; Heard, Melissa E; Nagarajan, Shanmugam; Simmen, Rosalia C M

    2013-11-01

    Diet is highly linked to breast cancer risk, yet little is known about its influence on mammary epithelial populations with distinct regenerative and hence, tumorigenic potential. To investigate this, we evaluated the relative frequency of lineage-negative CD29(hi)CD24(+), CD29(lo)CD24(+) and CD29(hi)Thy1(+)CD24(+) epithelial subpopulations in pre-neoplastic mammary tissue of adult virgin MMTV-Wnt1-transgenic mice fed either control (Casein) or soy-based diets. We found that mammary epithelial cells exposed to soy diet exhibited a lower percentage of CD29(hi)CD24(+)Lin(-) population, decreased ability to form mammospheres in culture, lower mammary outgrowth potential when transplanted into cleared fat pads, and reduced appearance of tumor-initiating CD29(hi)Thy1(+)CD24(+) cells, than in those of control diet-fed mice. Diet had no comparable influence on the percentage of the CD29(lo)CD24(+)Lin(-) population. Global gene expression profiling of the CD29(hi)CD24(+)subpopulation revealed markedly altered expression of genes important to inflammation, cytokine and chemokine signaling, and proliferation. Soy-fed relative to casein-fed mice showed lower mammary tumor incidence, shorter tumor latency, and reduced systemic levels of estradiol 17-β, progesterone and interleukin-6. Our results provide evidence for the functional impact of diet on specific epithelial subpopulations that may relate to breast cancer risk and suggest that diet-regulated cues can be further explored for breast cancer risk assessment and prevention.

  19. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant.

    PubMed

    Farnie, Gillian; Sotgia, Federica; Lisanti, Michael P

    2015-10-13

    Chemo-resistance is a clinical barrier to more effective anti-cancer therapy. In this context, cancer stem-like cells (CSCs) are thought to be chemo-resistant, resulting in tumor recurrence and distant metastasis. Our hypothesis is that chemo-resistance in CSCs is driven, in part, by enhanced mitochondrial function. Here, we used breast cell lines and metastatic breast cancer patient samples to begin to dissect the role of mitochondrial metabolism in conferring the CSC phenotype. More specifically, we employed fluorescent staining with MitoTracker (MT) to metabolically fractionate these cell lines into mito-high and mito-low sub-populations, by flow-cytometry. Interestingly, cells with high mitochondrial mass (mito-high) were specifically enriched in a number of known CSC markers, such as aldehyde dehydrogenase (ALDH) activity, and they were ESA+/CD24-/low and formed mammospheres with higher efficiency. Large cell size is another independent characteristic of the stem cell phenotype; here, we observed a >2-fold increase in mitochondrial mass in large cells (>12-μm), relative to the smaller cell population (4-8-μm). Moreover, the mito-high cell population showed a 2.4-fold enrichment in tumor-initiating cell activity, based on limiting dilution assays in murine xenografts. Importantly, primary human breast CSCs isolated from patients with metastatic breast cancer or a patient derived xenograft (PDX) also showed the co-enrichment of ALDH activity and mitochondrial mass. Most significantly, our investigations demonstrated that mito-high cells were resistant to paclitaxel, resulting in little or no DNA damage, as measured using the comet assay. In summary, increased mitochondrial mass in a sub-population of breast cancer cells confers a stem-like phenotype and chemo-resistance. As such, our current findings have important clinical implications for over-coming drug resistance, by therapeutically targeting the mito-high CSC population.

  20. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant

    PubMed Central

    Farnie, Gillian; Sotgia, Federica; Lisanti, Michael P.

    2015-01-01

    Chemo-resistance is a clinical barrier to more effective anti-cancer therapy. In this context, cancer stem-like cells (CSCs) are thought to be chemo-resistant, resulting in tumor recurrence and distant metastasis. Our hypothesis is that chemo-resistance in CSCs is driven, in part, by enhanced mitochondrial function. Here, we used breast cell lines and metastatic breast cancer patient samples to begin to dissect the role of mitochondrial metabolism in conferring the CSC phenotype. More specifically, we employed fluorescent staining with MitoTracker (MT) to metabolically fractionate these cell lines into mito-high and mito-low sub-populations, by flow-cytometry. Interestingly, cells with high mitochondrial mass (mito-high) were specifically enriched in a number of known CSC markers, such as aldehyde dehydrogenase (ALDH) activity, and they were ESA+/CD24-/low and formed mammospheres with higher efficiency. Large cell size is another independent characteristic of the stem cell phenotype; here, we observed a >2-fold increase in mitochondrial mass in large cells (>12-μm), relative to the smaller cell population (4–8-μm). Moreover, the mito-high cell population showed a 2.4-fold enrichment in tumor-initiating cell activity, based on limiting dilution assays in murine xenografts. Importantly, primary human breast CSCs isolated from patients with metastatic breast cancer or a patient derived xenograft (PDX) also showed the co-enrichment of ALDH activity and mitochondrial mass. Most significantly, our investigations demonstrated that mito-high cells were resistant to paclitaxel, resulting in little or no DNA damage, as measured using the comet assay. In summary, increased mitochondrial mass in a sub-population of breast cancer cells confers a stem-like phenotype and chemo-resistance. As such, our current findings have important clinical implications for over-coming drug resistance, by therapeutically targeting the mito-high CSC population. PMID:26421710

  1. CD24 Expression Identifies Teratogen-Sensitive Fetal Neural Stem Cell Subpopulations: Evidence from Developmental Ethanol Exposure and Orthotopic Cell Transfer Models

    PubMed Central

    Tingling, Joseph D.; Bake, Shameena; Holgate, Rhonda; Rawlings, Jeremy; Nagsuk, Phillips P.; Chandrasekharan, Jayashree; Schneider, Sarah L.; Miranda, Rajesh C.

    2013-01-01

    Background Ethanol is a potent teratogen. Its adverse neural effects are partly mediated by disrupting fetal neurogenesis. The teratogenic process is poorly understood, and vulnerable neurogenic stages have not been identified. Identifying these is a prerequisite for therapeutic interventions to mitigate effects of teratogen exposures. Methods We used flow cytometry and qRT-PCR to screen fetal mouse-derived neurosphere cultures for ethanol-sensitive neural stem cell (NSC) subpopulations, to study NSC renewal and differentiation. The identity of vulnerable NSC populations was validated in vivo, using a maternal ethanol exposure model. Finally, the effect of ethanol exposure on the ability of vulnerable NSC subpopulations to integrate into the fetal neurogenic environment was assessed following ultrasound guided, adoptive transfer. Results Ethanol decreased NSC mRNAs for c-kit, Musashi-1and GFAP. The CD24+ NSC population, specifically the CD24+CD15+ double-positive subpopulation, was selectively decreased by ethanol. Maternal ethanol exposure also resulted in decreased fetal forebrain CD24 expression. Ethanol pre-exposed CD24+ cells exhibited increased proliferation, and deficits in cell-autonomous and cue-directed neuronal differentiation, and following orthotopic transplantation into naïve fetuses, were unable to integrate into neurogenic niches. CD24depleted cells retained neurosphere regeneration capacity, but following ethanol exposure, generated increased numbers of CD24+ cells relative to controls. Conclusions Neuronal lineage committed CD24+ cells exhibit specific vulnerability, and ethanol exposure persistently impairs this population’s cell-autonomous differentiation capacity. CD24+ cells may additionally serve as quorum sensors within neurogenic niches; their loss, leading to compensatory NSC activation, perhaps depleting renewal capacity. These data collectively advance a mechanistic hypothesis for teratogenesis leading to microencephaly. PMID:23894503

  2. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  3. Phenotypic screening identifies Axl kinase as a negative regulator of an alveolar epithelial cell phenotype.

    PubMed

    Fujino, Naoya; Kubo, Hiroshi; Maciewicz, Rose A

    2017-09-01

    Loss of epithelial barrier integrity is implicated in a number of human lung diseases. However, the molecular pathways underlying this process are poorly understood. In a phenotypic screen, we identified Axl kinase as a negative regulator of epithelial phenotype and function. Furthermore, suppression of Axl activity by a small molecule kinase inhibitor or downregulation of Axl expression by small interfering RNA led to: (1) the increase in epithelial surfactant protein expression; (2) a cell morphology transition from front-rear polarity to cuboidal shape; (3) the cytoskeletal re-organization resulting in decreased cell mobility; and (4) the acquisition of epithelial junctions. Loss of Axl activity reduced activation of the Axl canonical pathway members, Akt and extracellular signal-regulated kinase-1/2 and resulted in the loss of gene expression of a unique profile of epithelial-to-mesenchymal transition transcription factors including SNAI2, HOXA5, TBX2 or TBX3. Finally, we observed that Axl was activated in hyperplasia of epithelial cells in idiopathic pulmonary fibrosis where epithelial barrier integrity was lost. These results suggest that the Axl kinase signaling pathway is associated with the loss integrity of alveolar epithelium in pathological remodeling of human lung diseases.

  4. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas.

    PubMed

    Van de Laar, Emily; Clifford, Monica; Hasenoeder, Stefan; Kim, Bo Ram; Wang, Dennis; Lee, Sharon; Paterson, Josh; Vu, Nancy M; Waddell, Thomas K; Keshavjee, Shaf; Tsao, Ming-Sound; Ailles, Laurie; Moghal, Nadeem

    2014-12-31

    The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. This work provides the largest description to date of

  5. Genetic screening test for psoriatic arthritis and UVB irradiation potential responders: A new tool to identify psoriasis subpopulation patients?

    PubMed Central

    Lotti, Torello; Tognetti, Linda; Galeone, Massimiliano; Bruscino, Nicola; Moretti, Silvia; Giorgini, Simonetta

    2011-01-01

    Psoriatic arthritis (PsA) is a psoriasis-associated inflammatory disease of the joints and enthuses. The occurrence of PsA is linked to the complex interplay of gene environment, and immune system. Genetic factors have long been recognized to play an important role in PsA. Genes within the major histocompatibility complex (MHC) region have been shown to be associated with PsA. These include genes coded in the HLA region, (especially Class I antigens) and non-HLA genes (i.e., MHC class I chain-related antigen A, MICA, and TNF-α genes). Association studies in PsA have also identified a number of genes outside MHC region, including interleukin-1 (IL-1) gene cluster, killer-cell immunoglobulin-like receptors (KIRs), and IL-23R genes. Established systemic treatments for moderate-severe psoriasis and PsA may be potentially dangerous and usually time consuming for the patient and often expensive for the National Health Systems. Tests which could predict which subset of psoriatic patients could develop the most severe forms of the disease (i.e., PsA) or will respond to well-established (UVB irradiation) or other systemic treatments are now required. The goal of genetic test screening is to rapidly and safely identify subjects for preventive or early treatment or extended surveillance prior to the onset of signs and symptoms. Genetic tests today represent a reliable investigation procedure which could rapidly and consistently improve the diagnostic ability of the dermatologist and contribute to the early and correct treatment of the different subsets of PsA. PMID:23130225

  6. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-Vibrio association.

    PubMed

    Koropatnick, Tanya; Goodson, Michael S; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret

    2014-02-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.

  7. Griffonia simplicifolia Isolectin B4 Identifies a Specific Subpopulation of Angiogenic Blood Vessels Following Contusive Spinal Cord Injury in the Adult Mouse

    PubMed Central

    BENTON, RICHARD L.; MADDIE, MELISSA A.; MINNILLO, DANIELLE R.; HAGG, THEO; WHITTEMORE, SCOTT R.

    2009-01-01

    After traumatic spinal cord injury (SCI), disruption and plasticity of the microvasculature within injured spinal tissue contribute to the pathological cascades associated with the evolution of both primary and secondary injury. Conversely, preserved vascular function most likely results in tissue sparing and subsequent functional recovery. It has been difficult to identify subclasses of damaged or regenerating blood vessels at the cellular level. Here, adult mice received a single intravenous injection of the Griffonia simplicifolia isolectin B4 (IB4) at 1–28 days following a moderate thoracic (T9) contusion. Vascular binding of IB4 was maximally observed 7 days following injury, a time associated with multiple pathologic aspects of the intrinsic adaptive angiogenesis, with numbers of IB4 vascular profiles decreasing by 21 days postinjury. Quantitative assessment of IB4 binding shows that it occurs within the evolving lesion epicenter, with affected vessels expressing a temporally specific dysfunctional tight junctional phenotype as assessed by occludin, claudin-5, and ZO-1 immunoreactivities. Taken together, these results demonstrate that intravascular lectin delivery following SCI is a useful approach not only for observing the functional status of neovascular formation but also for definitively identifying specific subpopulations of reactive spinal microvascular elements. PMID:18092342

  8. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse.

    PubMed

    Benton, Richard L; Maddie, Melissa A; Minnillo, Danielle R; Hagg, Theo; Whittemore, Scott R

    2008-03-01

    After traumatic spinal cord injury (SCI), disruption and plasticity of the microvasculature within injured spinal tissue contribute to the pathological cascades associated with the evolution of both primary and secondary injury. Conversely, preserved vascular function most likely results in tissue sparing and subsequent functional recovery. It has been difficult to identify subclasses of damaged or regenerating blood vessels at the cellular level. Here, adult mice received a single intravenous injection of the Griffonia simplicifolia isolectin B4 (IB4) at 1-28 days following a moderate thoracic (T9) contusion. Vascular binding of IB4 was maximally observed 7 days following injury, a time associated with multiple pathologic aspects of the intrinsic adaptive angiogenesis, with numbers of IB4 vascular profiles decreasing by 21 days postinjury. Quantitative assessment of IB4 binding shows that it occurs within the evolving lesion epicenter, with affected vessels expressing a temporally specific dysfunctional tight junctional phenotype as assessed by occludin, claudin-5, and ZO-1 immunoreactivities. Taken together, these results demonstrate that intravascular lectin delivery following SCI is a useful approach not only for observing the functional status of neovascular formation but also for definitively identifying specific subpopulations of reactive spinal microvascular elements.

  9. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells.

    PubMed

    Ferrell, Patrick I; Xi, Jiafei; Ma, Chao; Adlakha, Mitali; Kaufman, Dan S

    2015-04-01

    Derivation of hematopoietic stem cells (HSCs) from human pluripotent stem cells remains a key goal for the fields of developmental biology and regenerative medicine. Here, we use a novel genetic reporter system to prospectively identify and isolate early hematopoietic cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (iPSCs). Cloning the human RUNX1c P1 promoter and +24 enhancer to drive expression of tdTomato (tdTom) in hESCs and iPSCs, we demonstrate that tdTom expression faithfully enriches for RUNX1c-expressing hematopoietic progenitor cells. Time-lapse microscopy demonstrated the tdTom(+) hematopoietic cells to emerge from adherent cells. Furthermore, inhibition of primitive hematopoiesis by blocking Activin/Nodal signaling promoted the expansion and/or survival of the tdTom(+) population. Notably, RUNX1c/tdTom(+) cells represent only a limited subpopulation of the CD34(+) CD45(+) and CD34(+) CD43(+) cells with a unique genetic signature. Using gene array analysis, we find significantly lower expression of Let-7 and mir181a microRNAs in the RUNX1c/tdTom(+) cell population. These phenotypic and genetic analyses comparing the RUNX1c/tdTom(+) population to CD34(+) CD45(+) umbilical cord blood and fetal liver demonstrate several key differences that likely impact the development of HSCs capable of long-term multilineage engraftment from hESCs and iPSCs. © 2014 AlphaMed Press.

  10. Exploratory analysis of a phase III trial of pirfenidone identifies a subpopulation of patients with idiopathic pulmonary fibrosis as benefiting from treatment.

    PubMed

    Azuma, Arata; Taguchi, Yoshio; Ogura, Takashi; Ebina, Masahito; Taniguchi, Hiroyuki; Kondoh, Yasuhiro; Suga, Moritaka; Takahashi, Hiroki; Nakata, Koichiro; Sato, Atsuhiko; Kudoh, Shoji; Nukiwa, Toshihiro

    2011-10-28

    A phase III trial in Japan showed that pirfenidone is effective for idiopathic pulmonary fibrosis (IPF). To find out which patients specifically benefit from pirfenidone, we analyzed in an exploratory manner the data from the phase III trial. The patients in the phase III trial were stratified by baseline percentage predicted vital capacity (%VC), arterial oxygen partial pressure (PaO(2)), and the lowest oxygen saturation by pulse oximetry (SpO(2)) during the 6-minute steady-state exercise test (6MET). In the subpopulations, changes in VC and subjective symptoms (cough and dyspnea on the Fletcher, Hugh-Jones [F, H-J] Classification scale) were evaluated in patients treated with high-dose (1800 mg/day) pirfenidone, low-dose (1200 mg/day) pirfenidone, and placebo at week 52. Significant efficacy of pirfenidone in reducing the decline in VC could be seen in a subpopulation having %VC ≥ 70% and SpO(2) < 90% at baseline. This favorable effect was accompanied by categorical change in VC and progression-free survival time. In the subpopulation, pirfenidone significantly suppressed cough and dyspnea. IPF patients having %VC ≥ 70% and SpO(2) < 90% at baseline will most likely benefit from pirfenidone when evaluated using changes in VC (and %VC), and cough and dyspnea symptoms. This subpopulation could expect to benefit most from pirfenidone treatment. This clinical trial was registered with the Japan Pharmaceutical Information Center (JAPIC) on September 13th, 2005 (REGISTRATION NUMBER: JAPICCTI-050121).

  11. Identifying Epithelial Endocytotic Mechanisms of the Peanut Allergens Ara h 1 and Ara h 2.

    PubMed

    Price, Dwan; Ackland, M Leigh; Suphioglu, Cenk

    2017-01-01

    Peanuts are still one of the highest contributors to anaphylactic deaths after ingestion of a food allergen. At the molecular level, interactions between peanut allergens and the intestinal epithelium are largely unexplored. Previous findings by our research group demonstrated that the major peanut allergens, i.e., Ara h 1, Ara h 2, Ara h 3, and Ara h 6, were able to cross the Caco-2 human cell culture model of the intestinal epithelium. This research broadened our investigation to identify the mechanisms by which the Caco-2 monolayers uptake peanut allergens, specifically by endocytosis. Here, we aim to increase our understanding of allergen-epithelial interactions and, more broadly, the pathway from allergen to allergy. The human Caco-2 cell culture model was exposed to peanut extract and a combination of confocal microscopy and inhibition studies were used to identify the endocytotic mechanisms of peanut allergens in intestinal epithelia. Our findings demonstrate that the peanut allergens Ara h 1 and Ara h 2 are transported through intestinal epithelia initially via early endosomes using multiple endocytotic mechanisms. From there, they are then transported to late endosomes and ultimately to lysosomes. These novel findings provide insight into the allergen-epithelial interactions of peanut allergens with the intestinal epithelium. Consequently, this opens the possibility of the use of these endocytotic pathways as targets for inhibitors in therapeutic development and preventative measures for peanut allergy in the future. © 2017 S. Karger AG, Basel.

  12. Using cluster analysis to identify a homogeneous subpopulation of women with polycystic ovarian morphology in a population of non-hyperandrogenic women with regular menstrual cycles.

    PubMed

    Dewailly, D; Alebić, M Š; Duhamel, A; Stojanović, N

    2014-11-01

    Can cluster analysis can be used to identify a homogeneous subpopulation of women with polycystic ovarian morphology (PCOM) within a very large population of control women in a non-subjective way? Identification and exclusion of the cluster corresponding to women with PCOM from controls improved the diagnostic power of serum anti-Müllerian hormone (AMH) level and follicle number per ovary (FNPO) in discriminating between women with or without polycystic ovary syndrome (PCOS). There is disagreement as to whether women with PCOM should be excluded from the control population when establishing FNPO and AMH diagnostic thresholds for the definition of PCOS and how to identify such women. It has been demonstrated that cluster analysis can detect women with PCOM within the control population through a set of classifying variables among which the most relevant was AMH. The adequacy of this approach has not been confirmed in other clinical settings. This was a retrospective study using clinical and laboratory data derived from the computerized database. The data were collected from March 2011 to May 2013. The study included 893 patients referred for routine infertility evaluation and treatment. The patients were divided into three groups: (i) the control group (n = 621) included women with regular menstrual cycles and no signs of hyperandrogenism (HA), (ii) the full-blown PCOS group (n = 95) consisted of women who were diagnosed as having PCOS based on the presence of both HA and oligo/amenorrhoea (OA), (iii) the mild PCOS group included women with only two items of the Rotterdam classification, i.e. PCOM at ultrasonography according to the FNPO threshold of 12 or more and either OA (n = 110) or HA (n = 67). After exclusion of women with PCOM from the controls, the AMH threshold of 28 pmol/l with specificity 97.5% and sensitivity 84.2% [area under the curve (AUC) 0.948 (95% confidence interval (CI) 0.915-0.982)] and FNPO threshold of 12 with specificity 92.5% and

  13. Identifying post-menopausal women at elevated risk for epithelial ovarian cancer

    PubMed Central

    Urban, Nicole; Hawley, Sarah; Janes, Holly; Karlan, Beth Y.; Berg, Christine D.; Drescher, Charles W.; Manson, JoAnn E.; Palomares, Melanie R.; Daly, Mary B.; Wactawski-Wende, Jean; O’Sullivan, Mary J.; Thorpe, Jason; Robinson, Randal D.; Lane, Dorothy; Li, Christopher I.; Anderson, Garnet L.

    2015-01-01

    OBJECTIVE We developed and validated a hybrid risk classifier combining serum markers and epidemiologic risk factors to identify post-menopausal women at elevated risk for invasive fallopian tube, primary peritoneal, and ovarian epithelial carcinoma. METHODS To select epidemiologic risk factors for use in the classifier, Cox proportional hazards analyses were conducted using 74,786 Women’s Health Initiative (WHI) Observational Study (OS) participants. To construct a combination classifier, 210 WHI OS cases and 536 matched controls with serum marker measurements were analyzed; validation employed 143 cases and 725 matched controls from the WHI Clinical Trial (CT) with similar data. RESULTS Analyses identified a combination risk classifier composed of two elevated-risk groups: 1) women with CA125 or HE4 exceeding a 98% specificity threshold; and 2) women with intact fallopian tubes, prior use of menopausal hormone therapy for at least two years, and either a first degree relative with breast or ovarian cancer or a personal history of breast cancer. In the WHI OS population, it classified 13% of women as elevated risk, identifying 30% of ovarian cancers diagnosed up to 7.8 years post-enrollment (Hazard Ratio [HR]=2.6, p<0.001). In the WHI CT validation population, it classified 8% of women as elevated risk, identifying 31% of cancers diagnosed within 7 years of enrollment (HR=4.6, p<0.001). CONCLUSION CA125 and HE4 contributed significantly to a risk prediction classifier combining serum markers with epidemiologic risk factors. The hybrid risk classifier may be useful to identify post-menopausal women who would benefit from timely surgical intervention to prevent epithelial ovarian cancer. PMID:26343159

  14. Transposon mutagenesis identifies genes and cellular processes driving epithelial-mesenchymal transition in hepatocellular carcinoma

    PubMed Central

    Kodama, Takahiro; Newberg, Justin Y.; Kodama, Michiko; Rangel, Roberto; Yoshihara, Kosuke; Tien, Jean C.; Parsons, Pamela H.; Wu, Hao; Finegold, Milton J.; Copeland, Neal G.; Jenkins, Nancy A.

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is thought to contribute to metastasis and chemoresistance in patients with hepatocellular carcinoma (HCC), leading to their poor prognosis. The genes driving EMT in HCC are not yet fully understood, however. Here, we show that mobilization of Sleeping Beauty (SB) transposons in immortalized mouse hepatoblasts induces mesenchymal liver tumors on transplantation to nude mice. These tumors show significant down-regulation of epithelial markers, along with up-regulation of mesenchymal markers and EMT-related transcription factors (EMT-TFs). Sequencing of transposon insertion sites from tumors identified 233 candidate cancer genes (CCGs) that were enriched for genes and cellular processes driving EMT. Subsequent trunk driver analysis identified 23 CCGs that are predicted to function early in tumorigenesis and whose mutation or alteration in patients with HCC is correlated with poor patient survival. Validation of the top trunk drivers identified in the screen, including MET (MET proto-oncogene, receptor tyrosine kinase), GRB2-associated binding protein 1 (GAB1), HECT, UBA, and WWE domain containing 1 (HUWE1), lysine-specific demethylase 6A (KDM6A), and protein-tyrosine phosphatase, nonreceptor-type 12 (PTPN12), showed that deregulation of these genes activates an EMT program in human HCC cells that enhances tumor cell migration. Finally, deregulation of these genes in human HCC was found to confer sorafenib resistance through apoptotic tolerance and reduced proliferation, consistent with recent studies showing that EMT contributes to the chemoresistance of tumor cells. Our unique cell-based transposon mutagenesis screen appears to be an excellent resource for discovering genes involved in EMT in human HCC and potentially for identifying new drug targets. PMID:27247392

  15. Open chromatin mapping identifies transcriptional networks regulating human epididymis epithelial function.

    PubMed

    Browne, James A; Yang, Rui; Song, Lingyun; Crawford, Gregory E; Leir, Shih-Hsing; Harris, Ann

    2014-12-01

    The epithelium lining the epididymis in the male reproductive tract maintains a luminal environment that promotes sperm cell maturation. This process is dependent on the coordinated expression of many genes that encode proteins with a role in epithelial transport. We previously generated genome-wide maps of open chromatin in primary human epididymis epithelial (HEE) cells to identify potential regulatory elements controlling coordinated gene expression in the epididymis epithelium. Subsequent in silico analysis identified transcription factor-binding sites (TFBS) that were over-represented in the HEE open chromatin, including the motif for paired box 2 (PAX2). PAX2 is a critical transcriptional regulator of urogenital tract development, which has been well studied in the kidney but is unexplored in the epididymis. Due to the limited lifespan of primary HEE cells in culture, we investigated the role of PAX2 in an immortalized HEE cell line (REP). First, REP cells were evaluated by DNase I digestion followed by high-throughput sequencing and the PAX2-binding motif was again identified as an over-represented TFBS within intergenic open chromatin, though on fewer chromosomes than in the primary HEE cells. To identify PAX2-target genes in REP cells, RNA-seq analysis was performed after siRNA-mediated depletion of PAX2 and compared with that with a non-targeting siRNA. In response to PAX2-repression, 3135 transcripts were differentially expressed (1333 up-regulated and 1802 down-regulated). Novel PAX2 targets included multiple genes encoding proteins with predicted functions in the epididymis epithelium.

  16. α-Amanitin Restrains Cancer Relapse from Drug-Tolerant Cell Subpopulations via TAF15

    PubMed Central

    Kume, Kohei; Ikeda, Miyuki; Miura, Sawako; Ito, Kohei; Sato, Kei A.; Ohmori, Yukimi; Endo, Fumitaka; Katagiri, Hirokatsu; Ishida, Kaoru; Ito, Chie; Iwaya, Takeshi; Nishizuka, Satoshi S.

    2016-01-01

    Cancer relapse occurs with substantial frequency even after treatment with curative intent. Here we studied drug-tolerant colonies (DTCs), which are subpopulations of cancer cells that survive in the presence of drugs. Proteomic characterization of DTCs identified stemness- and epithelial-dominant subpopulations, but functional screening suggested that DTC formation was regulated at the transcriptional level independent from protein expression patterns. We consistently found that α-amanitin, an RNA polymerase II (RNAPII) inhibitor, effectively inhibited DTCs by suppressing TAF15 expression, which binds to RNA to modulate transcription and RNA processing. Sequential administration of α-amanitin and cisplatin extended overall survival in a cancer-relapse mouse model, namely peritonitis carcinomatosa. Therefore, post-treatment cancer relapse may occur through non-distinct subpopulations and may be effectively prevented by α-amanitin to disrupt transcriptional machinery, including TAF15. PMID:27181033

  17. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  18. Novel flow cytometry approach to identify bronchial epithelial cells from healthy human airways

    PubMed Central

    Maestre-Batlle, Danay; Pena, Olga M.; Hirota, Jeremy A.; Gunawan, Evelyn; Rider, Christopher F.; Sutherland, Darren; Alexis, Neil E.; Carlsten, Chris

    2017-01-01

    Sampling various compartments within the lower airways to examine human bronchial epithelial cells (HBEC) is essential for understanding numerous lung diseases. Conventional methods to identify HBEC in bronchoalveolar lavage (BAL) and wash (BW) have throughput limitations in terms of efficiency and ensuring adequate cell numbers for quantification. Flow cytometry can provide high-throughput quantification of cell number and function in BAL and BW samples, while requiring low cell numbers. To date, a flow cytometric method to identify HBEC recovered from lower human airway samples is unavailable. In this study we present a flow cytometric method identifying HBEC as CD45 negative, EpCAM/pan-cytokeratin (pan-CK) double-positive population after excluding debris, doublets and dead cells from the analysis. For validation, the HBEC panel was applied to primary HBEC resulting in 98.6% of live cells. In healthy volunteers, HBEC recovered from BAL (2.3% of live cells), BW (32.5%) and bronchial brushing samples (88.9%) correlated significantly (p = 0.0001) with the manual microscopy counts with an overall Pearson correlation of 0.96 across the three sample types. We therefore have developed, validated, and applied a flow cytometric method that will be useful to interrogate the role of the respiratory epithelium in multiple lung diseases. PMID:28165060

  19. In vitro model for studying esophageal epithelial differentiation and allergic inflammatory responses identifies keratin involvement in eosinophilic esophagitis.

    PubMed

    Kc, Kiran; Rothenberg, Marc E; Sherrill, Joseph D

    2015-01-01

    Epithelial differentiation is an essential physiological process that imparts mechanical strength and barrier function to squamous epithelia. Perturbation of this process can give rise to numerous human diseases, such as atopic dermatitis, in which antigenic stimuli can penetrate the weakened epithelial barrier to initiate the allergic inflammatory cascade. We recently described a simplified air-liquid interface (ALI) culture system that facilitates the study of differentiated squamous epithelia in vitro. Herein, we use RNA sequencing to define the genome-wide transcriptional changes that occur within the ALI system during epithelial differentiation and in response to allergic inflammation. We identified 2,191 and 781 genes that were significantly altered upon epithelial differentiation or dysregulated in the presence of interleukin 13 (IL-13), respectively. Notably, 286 genes that were modified by IL-13 in the ALI system overlapped with the gene signature present within the inflamed esophageal tissue from patients with eosinophilic esophagitis (EoE), an allergic inflammatory disorder of the esophagus that is characterized by elevated IL-13 levels, altered epithelial differentiation, and pro-inflammatory gene expression. Pathway analysis of these overlapping genes indicated enrichment in keratin genes; for example, the gene encoding keratin 78, an uncharacterized type II keratin, was upregulated during epithelial differentiation (45-fold) yet downregulated in response to IL-13 and in inflamed esophageal tissue from patients. Thus, our findings delineate an in vitro experimental system that models epithelial differentiation that is dynamically regulated by IL-13. Using this system and analyses of patient tissues, we identify an altered expression profile of novel keratin differentiation markers in response to IL-13 and disease activity, substantiating the potential of this combined approach to identify relevant molecular processes that contribute to human allergic

  20. Functional differences between two morphologically distinct cell subpopulations within a human colorectal carcinoma cell line.

    PubMed

    Solimene, A C; Carneiro, C R; Melati, I; Lopes, J D

    2001-05-01

    The LISP-I human colorectal adenocarcinoma cell line was isolated from a hepatic metastasis at the Ludwig Institute, São Paulo, SP, Brazil. The objective of the present study was to isolate morphologically different subpopulations within the LISP-I cell line, and characterize some of their behavioral aspects such as adhesion to and migration towards extracellular matrix components, expression of intercellular adhesion molecules and tumorigenicity in vitro. Once isolated, the subpopulations were submitted to adhesion and migration assays on laminin and fibronectin (crucial proteins to invasion and metastasis), as well as to anchorage-independent growth. Two morphologically different subpopulations were isolated: LISP-A10 and LISP-E11. LISP-A10 presents a differentiated epithelial pattern, and LISP-E11 is fibroblastoid, suggesting a poorly differentiated pattern. LISP-A10 expressed the two intercellular adhesion molecules tested, carcinoembryonic antigen (CEA) and desmoglein, while LISP-E11 expressed only low amounts of CEA. On the other hand, adhesion to laminin and fibronectin as well as migration towards these extracellular matrix proteins were higher in LISP-E11, as expected from its poorly differentiated phenotype. Both subpopulations showed anchorage-independent growth on a semi-solid substrate. These results raise the possibility that the heterogeneity found in the LISP-I cell line, which might have contributed to its ability to metastasize, was due to at least two different subpopulations herein identified.

  1. Novel radiation response genes identified in gene-trapped MCF10A mammary epithelial cells.

    PubMed

    Malone, Jennifer; Ullrich, Robert

    2007-02-01

    We have used a gene-trapping strategy to screen human mammary epithelial cells for radiation response genes. Relative mRNA expression levels of five candidate genes in MCF10A cells were analyzed, both with and without exposure to radiation. In all five cases, the trapped genes were significantly down-regulated after radiation treatment. Sequence analysis of the fusion transcripts identified the trapped genes: (1) the human androgen receptor, (2) the uncharacterized DREV1 gene, which has known homology to DNA methyltransferases, (3) the human creatine kinase gene, (4) the human eukaryotic translation elongation factor 1 beta 2, and (5) the human ribosomal protein L27. All five genes were down-regulated significantly after treatment with varying doses of ionizing radiation (0.10 to 4.0 Gy) and at varying times (2-30 h after treatment). The genes were also analyzed in human fibroblast and lymphoblastoid cell lines to determine whether the radiation response being observed was cell-type specific. The results verified that the observed radiation response was not a cell-type-specific phenomenon, suggesting that the genes play essential roles in the radiation damage control pathways. This study demonstrates the potential of the gene-trap approach for the identification and functional analysis of novel radiation response genes.

  2. Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population.

    PubMed

    Metzger, Todd C; Khan, Imran S; Gardner, James M; Mouchess, Maria L; Johannes, Kellsey P; Krawisz, Anna K; Skrzypczynska, Katarzyna M; Anderson, Mark S

    2013-10-17

    Thymic epithelial cells in the medulla (mTECs) play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs) and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire), a transcriptional activator present in a subset of mTECs characterized by high CD80 and major histocompatibility complex II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire(+) mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire(-) mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates toward the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Lineage tracing and cell ablation identifies a post-Aire expressing thymic epithelial cell population

    PubMed Central

    Metzger, Todd C.; Khan, Imran S.; Gardner, James M.; Mouchess, Maria L.; Johannes, Kellsey P.; Krawisz, Anna K.; Skrzypczynska, Katarzyna M.; Anderson, Mark S.

    2013-01-01

    Thymic epithelial cells in the medulla (mTECs) play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs) and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire), a transcriptional activator present in a subset of mTECs characterized by high CD80 and MHC II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire+ mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire− mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates towards the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance. PMID:24095736

  4. Human airway epithelial cell culture to identify new respiratory viruses: coronavirus NL63 as a model.

    PubMed

    S Banach, Bridget; Orenstein, Jan M; Fox, Linda M; Randell, Scott H; Rowley, Anne H; Baker, Susan C

    2009-03-01

    Propagation of new human respiratory virus pathogens in established cell lines is hampered by a lack of predictability regarding cell line permissivity and by availability of suitable antibody reagents to detect infection in cell lines that do not exhibit significant cytopathic effect. Recently, molecular methods have been used to amplify and identify novel nucleic acid sequences directly from clinical samples, but these methods may be hampered by the quantity of virus present in respiratory secretions at different time points following the onset of infection. Human airway epithelial (HAE) cultures, which effectively mimic the human bronchial environment, allow for cultivation of a wide variety of human respiratory viral pathogens. The goal of the experiments described here was to determine if propagation and identification of a human respiratory virus may be achieved through inoculation of HAE cultures followed by whole transcriptome amplification (WTA) and sequence analysis. To establish proof-of-principle human coronavirus NL63 (HCoV-NL63) was evaluated, and the first visualization of HCoV-NL63 virus by transmission electron microscopy (TEM) is reported. Initial propagation of human respiratory secretions onto HAE cultures followed by TEM and WTA of culture supernatant may be a useful approach for visualization and detection of new human respiratory pathogens that have eluded identification by traditional approaches.

  5. Optimal strategies to identify aberrant intra-epithelial lymphocytes in refractory coeliac disease.

    PubMed

    van Wanrooij, R L J; Müller, D M J; Neefjes-Borst, E A; Meijer, J; Koudstaal, L G; Heideman, D A M; Bontkes, H J; von Blomberg, B M E; Bouma, G; Mulder, C J J

    2014-10-01

    Different strategies have been developed to identify those refractory celiac disease (RCD) patients who are at risk to develop an enteropathy associated T-cell lymphoma (EATL). Flow cytometric analysis of intra-epithelial lymphocytes (IEL) with an aberrant phenotype is considered the golden standard but is not widely available. Immunohistochemistry (IHC) and T-cell receptor (TCR) rearrangement studies are commonly available but may lack sensitivity and specificity. Here, we compared the three different methods in the workup of patients suspected for RCD. Duodenal biopsies from control patient (n = 5), RCD patients with moderately increased aberrant IEL populations (20-50 %: n = 14), and RCD patients with high numbers of aberrant IEL (>50 %: n = 5) as determined by flow cytometry were analysed by IHC and TCR-γ chain rearrangement analysis. Three pathologists scored the slides independently. Sensitivity of IHC and TCR-γ rearrangement analysis in RCD patients with high numbers of aberrant IELs was 100 and 71 %, respectively. RCD patients with aberrant cells between 25 and 50 % however, were missed by IHC and TCR in 50 and 57 % of cases, respectively. In addition, inter-rater reliability analysis of the IHC scoring revealed coder-pair Kappa coefficients between 0.28 and 0.85. Immunohistochemistry and to a lesser extent TCR-γ clonality analysis are sensitive in identifying patients with high numbers of aberrant IEL populations, yet miss half of RCD patients with moderately increased numbers. In addition, IHC has a high inter-observer variability. Therefore, patients suspected for RCD should undergo flow cytometric analysis of the duodenum.

  6. Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk.

    PubMed

    Permuth, Jennifer B; Pirie, Ailith; Ann Chen, Y; Lin, Hui-Yi; Reid, Brett M; Chen, Zhihua; Monteiro, Alvaro; Dennis, Joe; Mendoza-Fandino, Gustavo; Anton-Culver, Hoda; Bandera, Elisa V; Bisogna, Maria; Brinton, Louise; Brooks-Wilson, Angela; Carney, Michael E; Chenevix-Trench, Georgia; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; D'Aloisio, Aimee A; Anne Doherty, Jennifer; Earp, Madalene; Edwards, Robert P; Fridley, Brooke L; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Goodman, Marc T; Gronwald, Jacek; Hogdall, Estrid; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Karlan, Beth Y; Kelemen, Linda E; Kjaer, Suzanne K; Kraft, Peter; Le, Nhu D; Levine, Douglas A; Lissowska, Jolanta; Lubinski, Jan; Matsuo, Keitaro; Menon, Usha; Modugno, Rosemary; Moysich, Kirsten B; Nakanishi, Toru; Ness, Roberta B; Olson, Sara; Orlow, Irene; Pearce, Celeste L; Pejovic, Tanja; Poole, Elizabeth M; Ramus, Susan J; Anne Rossing, Mary; Sandler, Dale P; Shu, Xiao-Ou; Song, Honglin; Taylor, Jack A; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Tworoger, Shelley S; Webb, Penelope M; Wentzensen, Nicolas; Wilkens, Lynne R; Winham, Stacey; Woo, Yin-Ling; Wu, Anna H; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Phelan, Catherine M; Schildkraut, Joellen M; Berchuck, Andrew; Goode, Ellen L; Pharoah, Paul D P; Sellers, Thomas A

    2016-08-15

    Rare and low frequency variants are not well covered in most germline genotyping arrays and are understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from the international Ovarian Cancer Association Consortium (OCAC). Pooled association analyses were conducted at the variant and gene level for 98,543 variants directly genotyped through two exome genotyping projects. Only common variants that represent or are in strong linkage disequilibrium (LD) with previously-identified signals at established loci reached traditional thresholds for exome-wide significance (P < 5.0 × 10 (-)  (7)). One of the most significant signals (Pall histologies = 1.01 × 10 (-)  (13);Pserous = 3.54 × 10 (-)  (14)) occurred at 3q25.31 for rs62273959, a missense variant mapping to the LEKR1 gene that is in LD (r(2 )=( )0.90) with a previously identified 'best hit' (rs7651446) mapping to an intron of TIPARP. Suggestive associations (5.0 × 10 (-)  (5 )>( )P≥5.0 ×10 (-)  (7)) were detected for rare and low-frequency variants at 16 novel loci. Four rare missense variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), KRT13 rs150321809 (17q21.2) and MC2R rs104894658 (18p11.21)), but only MC2R rs104894668 had a large effect size (OR = 9.66). Genes most strongly associated with EOC risk included ACTBL2 (PAML = 3.23 × 10 (-)  (5); PSKAT-o = 9.23 × 10 (-)  (4)) and KRT13 (PAML = 1.67 × 10 (-)  (4); PSKAT-o = 1.07 × 10 (-)  (5)), reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future studies that integrate epidemiology, sequencing, and functional assays are needed to further

  7. Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk

    PubMed Central

    Permuth, Jennifer B.; Pirie, Ailith; Ann Chen, Y.; Lin, Hui-Yi; Reid, Brett M.; Chen, Zhihua; Monteiro, Alvaro; Dennis, Joe; Mendoza-Fandino, Gustavo; Anton-Culver, Hoda; Bandera, Elisa V.; Bisogna, Maria; Brinton, Louise; Brooks-Wilson, Angela; Carney, Michael E.; Chenevix-Trench, Georgia; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; D’Aloisio, Aimee A.; Anne Doherty, Jennifer; Earp, Madalene; Edwards, Robert P.; Fridley, Brooke L.; Gayther, Simon A.; Gentry-Maharaj, Aleksandra; Goodman, Marc T.; Gronwald, Jacek; Hogdall, Estrid; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Karlan, Beth Y.; Kelemen, Linda E.; Kjaer, Suzanne K.; Kraft, Peter; Le, Nhu D.; Levine, Douglas A.; Lissowska, Jolanta; Lubinski, Jan; Matsuo, Keitaro; Menon, Usha; Modugno, Rosemary; Moysich, Kirsten B.; Nakanishi, Toru; Ness, Roberta B.; Olson, Sara; Orlow, Irene; Pearce, Celeste L.; Pejovic, Tanja; Poole, Elizabeth M.; Ramus, Susan J.; Anne Rossing, Mary; Sandler, Dale P.; Shu, Xiao-Ou; Song, Honglin; Taylor, Jack A.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Tworoger, Shelley S.; Webb, Penelope M.; Wentzensen, Nicolas; Wilkens, Lynne R.; Winham, Stacey; Woo, Yin-Ling; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Phelan, Catherine M.; Schildkraut, Joellen M.; Berchuck, Andrew; Goode, Ellen L.; Pharoah, Paul D. P.; Sellers, Thomas A.

    2016-01-01

    Rare and low frequency variants are not well covered in most germline genotyping arrays and are understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from the international Ovarian Cancer Association Consortium (OCAC). Pooled association analyses were conducted at the variant and gene level for 98,543 variants directly genotyped through two exome genotyping projects. Only common variants that represent or are in strong linkage disequilibrium (LD) with previously-identified signals at established loci reached traditional thresholds for exome-wide significance (P < 5.0 × 10 − 7). One of the most significant signals (Pall histologies = 1.01 × 10 − 13;Pserous = 3.54 × 10 − 14) occurred at 3q25.31 for rs62273959, a missense variant mapping to the LEKR1 gene that is in LD (r2 = 0.90) with a previously identified ‘best hit’ (rs7651446) mapping to an intron of TIPARP. Suggestive associations (5.0 × 10 − 5 > P≥5.0 ×10 − 7) were detected for rare and low-frequency variants at 16 novel loci. Four rare missense variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), KRT13 rs150321809 (17q21.2) and MC2R rs104894658 (18p11.21)), but only MC2R rs104894668 had a large effect size (OR = 9.66). Genes most strongly associated with EOC risk included ACTBL2 (PAML = 3.23 × 10 − 5; PSKAT-o = 9.23 × 10 − 4) and KRT13 (PAML = 1.67 × 10 − 4; PSKAT-o = 1.07 × 10 − 5), reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future studies that integrate epidemiology, sequencing, and functional assays are needed to further unravel the unexplained

  8. Evaluating markers of epithelial-mesenchymal transition to identify cancer patients at risk for metastatic disease

    PubMed Central

    Busch, Evan L.; Keku, Temitope O.; Richardson, David B.; Cohen, Stephanie M.; Eberhard, David A.; Avery, Christy L.; Sandler, Robert S.

    2015-01-01

    Most cancer deaths are due to metastases. Markers of epithelial-mesenchymal transition (EMT) measured in primary tumor cancer cells could be helpful to assess patient risk of metastatic disease, even among those otherwise diagnosed with local disease. Previous studies of EMT markers and patient outcomes used inconsistent methods and did not compare the clinical impact of different expression cut points for the same marker. Using digital image analysis, we measured the EMT markers Snail and E-cadherin in primary tumor specimens from 190 subjects in tissue microarrays from a population-based prospective cohort of colorectal cancer patients and estimated their associations with time-to-death. After measuring continuous marker expression data, we performed a systematic search for the cut point for each marker with the best model fit between dichotomous marker expression and time-to-death. We also assessed the potential clinical impact of different cut points for the same marker. After dichotomizing expression status at the statistically-optimal cut point, we found that Snail expression was not associated with time-to-death. When measured as a weighted average of tumor cores, low E-cadherin expression was associated with a greater risk of dying within 5 years of surgery than high expression (risk difference = 33 %, 95 % confidence interval 3–62 %). Identifying a clinically-optimal cut point for an EMT marker requires trade-offs between strength and precision of the association with patient outcomes, as well as consideration of the number of patients whose treatments might change based on using the marker at a given cut point. PMID:26507436

  9. Development of an in vitro test to identify respiratory sensitizers in bronchial epithelial cells using gene expression profiling.

    PubMed

    Dik, Sander; Pennings, Jeroen L A; van Loveren, Henk; Ezendam, Janine

    2015-12-25

    Chemicals that induce asthma at the workplace are substances of concern. At present, there are no widely accepted methods to identify respiratory sensitizers, and classification of these substances is based on human occupational data. Several studies have contributed to understanding the mechanisms involved in respiratory sensitization, although uncertainties remain. One point of interest for respiratory sensitization is the reaction of the epithelial lung barrier to respiratory sensitizers. To elucidate potential molecular effects of exposure of the epithelial lung barrier, a gene expression profile was created based on a DNA microarray experiment using the bronchial epithelial cell line 16 HBE14o(-). The cells were exposed to 12 respiratory sensitizers and 10 non-sensitizers. For statistical analysis, we used a class prediction approach that combined three machine learning algorithms, leave-one-compound-out cross validation, and majority voting per tested compound. This approach allowed for a prediction accuracy of 95%. Identified predictive genes were mainly associated with the cytoskeleton and barrier function of the epithelial cell. Several of these genes were reported to be associated with asthma as well. Taken together, this indicates that pulmonary barrier function is an important target for respiratory sensitizers and associated genes can be used to predict the respiratory sensitization potential of chemicals.

  10. Surgical excision of pure flat epithelial atypia identified on core needle breast biopsy.

    PubMed

    Prowler, Vanessa L; Joh, Jennifer E; Acs, Geza; Kiluk, John V; Laronga, Christine; Khakpour, Nazanin; Lee, M Catherine

    2014-08-01

    The biology of flat epithelial atypia (FEA) is still being investigated as its presence becomes more frequent on biopsy specimens. FEA is more commonly associated with malignancy when found in association with ADH, ALH or LCIS. Pure FEA is only upgraded to cancer in 3.2% of patients. Surgical excision of pure FEA found on core needle biopsy results in overtreatment in the vast majority of breast patients and may not be necessary. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Ultrastructural characteristics of novel epithelial cell types identified in human pathologic liver specimens with chronic ductular reaction.

    PubMed

    De Vos, R; Desmet, V

    1992-06-01

    Previous immunohistochemical studies on human liver biopsies with chronic ductular reaction revealed the presence of "small cells" with bile-duct type cytokeratin profile in the periportal area. This study identified similar cells by electron microscopy. The authors studied 13 human liver specimens with various liver diseases, but all characterized by chronic ductular reaction. In all specimens, variable numbers of "small cells" with common epithelial characteristics were identified in the periportal area. They could be classified into three types. Type I cells showed an oval cell shape and oval nucleus, early or established formation of junctional complexes with adjacent cells, a full assortment of cytoplasmic organelles, and bundles of tonofilaments. Type II cells showed features of bile-duct cell differentiation, including lateral interdigitations, apical microvilli, basal pinocytotic vacuoles, and basement membrane formation. In contrast, type III cells displayed additional features indicating hepatocellular differentiation, such as a more prominent nucleus, formation of a hemicanaliculus, and glycogen rosettes. It is concluded that these small cells of epithelial nature display variable differentiation characteristics of either bile-duct type cells or hepatocytes. These findings support the existence of bipotential progenitor epithelial cells in human liver. They may have implications for liver regeneration and carcinogenesis.

  12. The human thymus microenvironment: heterogeneity detected by monoclonal anti-epithelial cell antibodies.

    PubMed Central

    de Maagd, R A; MacKenzie, W A; Schuurman, H J; Ritter, M A; Price, K M; Broekhuizen, R; Kater, L

    1985-01-01

    Monoclonal antibodies were raised against human thymus stromal cells and their specificity for the epithelial component of thymus stroma assessed by double immunofluorescence using anti-keratin antibodies to identify epithelium. Our monoclonal antibodies identify six distinct patterns of epithelial cell antigen expression within the thymus: pan epithelial (antibody IP1); cortex (MR3 and MR6); cortical/medullary junction (IP2); subcapsule and subpopulation of medulla (MR10/MR14); Hassall's corpuscles and adjacent subpopulation of medulla (IP3); Hassall's corpuscles only (MR13/IP4). This heterogeneity of antigen expression suggests that many different epithelial microenvironments exist within the human thymus. Images Figure 1 Figure 1 Cont Figure 2 PMID:3884494

  13. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients

    PubMed Central

    van der Pouw Kraan, T C T M; Wijbrandts, C A; van Baarsen, L G M; Voskuyl, A E; Rustenburg, F; Baggen, J M; Ibrahim, S M; Fero, M; Dijkmans, B A C; Tak, P P; Verweij, C L

    2007-01-01

    Background Rheumatoid arthritis (RA) is a heterogeneous disease with unknown cause. Aim To identify peripheral blood (PB) gene expression profiles that may distinguish RA subtypes. Methods Large‐scale expression profiling by cDNA microarrays was performed on PB from 35 patients and 15 healthy individuals. Differential gene expression was analysed by significance analysis of microarrays (SAM), followed by gene ontology analysis of the significant genes. Gene set enrichment analysis was applied to identify pathways relevant to disease. Results A substantially raised expression of a spectrum of genes involved in immune defence was found in the PB of patients with RA compared with healthy individuals. SAM analysis revealed a highly significant elevated expression of interferon (IFN) type I regulated genes in patients with RA compared with healthy individuals, which was confirmed by gene ontology and pathway analysis, suggesting that this pathway was activated systemically in RA. A quantitative analysis revealed that increased expression of IFN‐response genes was characteristic of approximately half of the patients (IFNhigh patients). Application of pathway analysis revealed that the IFNhigh group was largely different from the controls, with evidence for upregulated pathways involved in coagulation and complement cascades, and fatty acid metabolism, while the IFNlow group was similar to the controls. Conclusion The IFN type I signature defines a subgroup of patients with RA, with a distinct biomolecular phenotype, characterised by increased activity of the innate defence system, coagulation and complement cascades, and fatty acid metabolism. PMID:17223656

  14. Integrated analyses identify the involvement of microRNA-26a in epithelial-mesenchymal transition during idiopathic pulmonary fibrosis.

    PubMed

    Liang, H; Gu, Y; Li, T; Zhang, Y; Huangfu, L; Hu, M; Zhao, D; Chen, Y; Liu, S; Dong, Y; Li, X; Lu, Y; Yang, B; Shan, H

    2014-05-22

    Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and highly lethal fibrotic lung disease with poor treatment and unknown etiology. Emerging evidence suggests that epithelial-mesenchymal transition (EMT) has an important role in repair and scar formation following epithelial injury during pulmonary fibrosis. Although some miRNAs have been shown to be dysregulated in the pathophysiological processes of IPF, limited studies have payed attention on the participation of miRNAs in EMT in lung fibrosis. In our study, we identified and constructed a regulation network of differentially expressed IPF miRNAs and EMT genes. Additionally, we found the downregulation of miR-26a in mice with experimental pulmonary fibrosis. Further studies showed that miR-26a regulated HMGA2, which is a key factor in the process of EMT and had the maximum number of regulating miRNAs in the regulation network. More importantly, inhibition of miR-26a resulted in lung epithelial cells transforming into myofibroblasts in vitro and in vivo, whereas forced expression of miR-26a alleviated TGF-β1- and BLM-induced EMT in A549 cells and in mice, respectively. Taken together, our study deciphered the essential role of miR-26a in the pathogenesis of EMT in pulmonary fibrosis, and suggests that miR-26a may be a potential therapeutic target for IPF.

  15. Identifying contact-mediated, localized toxic effects of MWCNT aggregates on epithelial monolayers: a single-cell monitoring toxicity assay.

    PubMed

    Rotoli, Bianca M; Gatti, Rita; Movia, Dania; Bianchi, Massimiliano G; Di Cristo, Luisana; Fenoglio, Ivana; Sonvico, Fabio; Bergamaschi, Enrico; Prina-Mello, Adriele; Bussolati, Ovidio

    2015-03-01

    Aggregates of multiwalled carbon nanotubes (MWCNT) impair the barrier properties of human airway cell monolayers. To resolve the mechanism of the barrier alteration, monolayers of Calu-3 human airway epithelial cells were exposed to aggregated MWCNT. At the cell-population level, trans-epithelial electrical resistance (TEER) was used as an indicator of barrier competence, caspase activity was assessed with standard biochemical assays, and cell viability was investigated by biochemical techniques and high-throughput screening (HTS) technique based on automated epifluorescence microscopy. At cell level, the response to MWCNT was investigated with confocal microscopy, by evaluating cell death (calcein/propidium iodide (PI)), proliferation (Ki-67), and apoptosis (caspase activity). At the cell-population level, exposure to aggregated MWCNT caused a decrease in TEER, which was not associated with a decrease in cell viability or onset of apoptosis even after an 8-d exposure. In contrast, confocal imaging demonstrated contact with MWCNT aggregates triggered cell death after 24 h of exposure. In the presence of a natural surfactant, both TEER decrease and contact-mediated toxicity were mitigated. With confocal imaging, increased proliferation and apoptosis were detected in Calu-3 cells next to the aggregates. Contact-mediated cytotoxicity was recorded in two additional cell lines (BEAS-2B and A549) derived from human airways. Similar results were confirmed by adopting two additional MWCNT preparations with different physico-chemical features. This indicates MWCNT caused localized damage to airway epithelial monolayers in vitro and altered the apoptotic and proliferative rate of epithelial cells in close proximity to the aggregates. These findings provide evidence on the pathway by which MWCNT aggregates impair airway barrier function, and support the use of imaging techniques as a possible regulatory-decision supporting tool to identify effects of aggregated nanomaterials

  16. Alcohol Consumption in Demographic Subpopulations

    PubMed Central

    Delker, Erin; Brown, Qiana; Hasin, Deborah S.

    2016-01-01

    Alcohol consumption is common across subpopulations in the United States. However, the health burden associated with alcohol consumption varies across groups, including those defined by demographic characteristics such as age, race/ethnicity, and gender. Large national surveys, such as the National Epidemiologic Survey on Alcohol and Related Conditions and the National Survey on Drug Use and Health, found that young adults ages 18–25 were at particularly high risk of alcohol use disorder and unintentional injury caused by drinking. These surveys furthermore identified significant variability in alcohol consumption and its consequences among racial/ethnic groups. White respondents reported the highest prevalence of current alcohol consumption, whereas alcohol abuse and dependence were most prevalent among Native Americans. Native Americans and Blacks also were most vulnerable to alcohol-related health consequences. Even within ethnic groups, there was variability between and among different subpopulations. With respect to gender, men reported more alcohol consumption and binge drinking than women, especially in older cohorts. Men also were at greater risk of alcohol abuse and dependence, liver cirrhosis, homicide after alcohol consumption, and drinking and driving. Systematic identification and measurement of the variability across demographics will guide prevention and intervention efforts, as well as future research. PMID:27159807

  17. Can Villin be Used to Identify Malignant and Undifferentiated Normal Digestive Epithelial Cells?

    NASA Astrophysics Data System (ADS)

    Robine, S.; Huet, C.; Moll, R.; Sahuquillo-Merino, C.; Coudrier, E.; Zweibaum, A.; Louvard, D.

    1985-12-01

    We have investigated the presence of villin (a Ca2+-regulated actin binding protein) in various tissues (normal or malignant) and in established cell lines by using sensitive immunochemical techniques on cell extracts and immunofluorescence analysis on frozen sections. Our results show that villin is a marker that can be used to distinguish normal differentiated epithelial cells from the simple epithelia lining the gastrointestinal tract and renal tubules. Villin is found in the absorptive cells of the small and large intestines, in the duct cells of pancreas and biliary system, and in the cells of kidney proximal tubules. Furthermore, undifferentiated normal and tumoral cells of intestinal origin in vivo and in cell culture express villin. Therefore, expression of villin is seen in cells that do not necessarily display the morphological features characteristic of their terminally differentiated state, such as the microvilli-lined brush border. We suggest the possible clinical implications of using villin as a marker in the diagnosis of metastatic adenocarcinomas.

  18. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    PubMed Central

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.

    2016-01-01

    ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  19. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    PubMed

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. © 2016. Published by The Company of Biologists Ltd.

  20. Collective Invasion in Breast Cancer Requires a Conserved Basal Epithelial Program

    PubMed Central

    Cheung, Kevin J.; Gabrielson, Edward; Werb, Zena; Ewald, Andrew J.

    2014-01-01

    SUMMARY Carcinomas typically invade as a cohesive multicellular unit, a process termed collective invasion. It remains unclear how different subpopulations of cancer cells contribute to this process. We developed three-dimensional (3D) organoid assays to identify the most invasive cancer cells in primary breast tumors. Collective invasion was led by specialized cancer cells that were defined by their expression of basal epithelial genes, such as cytokeratin-14 (K14) and p63. Furthermore, K14+ cells led collective invasion in the major human breast cancer subtypes. Importantly, luminal cancer cells were observed to convert phenotypically to invasive leaders following induction of basal epithelial genes. Although only a minority of cells within luminal tumors expressed basal epithelial genes, knockdown of either K14 or p63 was sufficient to block collective invasion. Our data reveal that heterotypic interactions between epithelial subpopulations are critical to collective invasion. We suggest that targeting the basal invasive program could limit metastatic progression. PMID:24332913

  1. Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production.

    PubMed

    Xiang, Ruidong; McNally, Jody; Rowe, Suzanne; Jonker, Arjan; Pinares-Patino, Cesar S; Oddy, V Hutton; Vercoe, Phil E; McEwan, John C; Dalrymple, Brian P

    2016-12-14

    Ruminants obtain nutrients from microbial fermentation of plant material, primarily in their rumen, a multilayered forestomach. How the different layers of the rumen wall respond to diet and influence microbial fermentation, and how these process are regulated, is not well understood. Gene expression correlation networks were constructed from full thickness rumen wall transcriptomes of 24 sheep fed two different amounts and qualities of a forage and measured for methane production. The network contained two major negatively correlated gene sub-networks predominantly representing the epithelial and muscle layers of the rumen wall. Within the epithelium sub-network gene clusters representing lipid/oxo-acid metabolism, general metabolism and proliferating and differentiating cells were identified. The expression of cell cycle and metabolic genes was positively correlated with dry matter intake, ruminal short chain fatty acid concentrations and methane production. A weak correlation between lipid/oxo-acid metabolism genes and methane yield was observed. Feed consumption level explained the majority of gene expression variation, particularly for the cell cycle genes. Many known stratified epithelium transcription factors had significantly enriched targets in the epithelial gene clusters. The expression patterns of the transcription factors and their targets in proliferating and differentiating skin is mirrored in the rumen, suggesting conservation of regulatory systems.

  2. Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production

    PubMed Central

    Xiang, Ruidong; McNally, Jody; Rowe, Suzanne; Jonker, Arjan; Pinares-Patino, Cesar S.; Oddy, V. Hutton; Vercoe, Phil E.; McEwan, John C.; Dalrymple, Brian P.

    2016-01-01

    Ruminants obtain nutrients from microbial fermentation of plant material, primarily in their rumen, a multilayered forestomach. How the different layers of the rumen wall respond to diet and influence microbial fermentation, and how these process are regulated, is not well understood. Gene expression correlation networks were constructed from full thickness rumen wall transcriptomes of 24 sheep fed two different amounts and qualities of a forage and measured for methane production. The network contained two major negatively correlated gene sub-networks predominantly representing the epithelial and muscle layers of the rumen wall. Within the epithelium sub-network gene clusters representing lipid/oxo-acid metabolism, general metabolism and proliferating and differentiating cells were identified. The expression of cell cycle and metabolic genes was positively correlated with dry matter intake, ruminal short chain fatty acid concentrations and methane production. A weak correlation between lipid/oxo-acid metabolism genes and methane yield was observed. Feed consumption level explained the majority of gene expression variation, particularly for the cell cycle genes. Many known stratified epithelium transcription factors had significantly enriched targets in the epithelial gene clusters. The expression patterns of the transcription factors and their targets in proliferating and differentiating skin is mirrored in the rumen, suggesting conservation of regulatory systems. PMID:27966600

  3. Analysis of thymic stromal cell subpopulations grown in vitro on extracellular matrix in defined medium. III. Growth conditions of human thymic epithelial cells and immunomodulatory activities in their culture supernatant.

    PubMed Central

    Schreiber, L; Eshel, I; Meilin, A; Sharabi, Y; Shoham, J

    1991-01-01

    We report here on a new approach to the cultivation of human thymic epithelial (HTE) cells, which apparently allows more faithful preservation of cell function. This approach, previously developed by us for mouse thymic epithelial (MTE) cells, is based on the use of culture plates coated with extracellular matrix (ECM), and on the use of serum-free, growth factor-supplemented medium. The nutritional requirements of HTE and MTE are somewhat different. Although both are critically dependent on ECM and insulin, they differ in their dependency on other growth factors: selenium and transferrin are much more important for HTE cells, whereas epidermal growth factor and hydrocortisone play a more essential role in MTE cultures. The epithelial nature of the cultured cells is indicated by positive staining with anti-keratin antibodies and by the presence of desmosomes and tonofilaments. The ultrastructural appearance of the cells further suggests high metabolic and secretory activities, not usually found in corresponding cell lines. The culture supernatant (CS) of HTE cells exhibited a strong enhancing effect on thymocyte response to Con A stimulation, as measured by cell proliferation and lymphokine production. The effect was observed on both human and mouse thymocytes, but was much stronger in the homologous combination. Thymic factors tested in parallel did not have such a differential effect. The dose-effect relationships were in the form of a bell-shaped curve, with fivefold enhancement of response at the peak and a measurable effect even with 1:1000 dilution, when human thymocytes were used. The responding thymocytes were those which do not bind peanut agglutinin and are resistant to hydrocortisone. The culture system described here may have advantages for the in vitro study of thymic stromal cell function. Images Figure 1 Figure 3 Figure 4 PMID:1783421

  4. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors

    PubMed Central

    Cho, Edward H.; Wendel, Marco; Luttgen, Madelyn; Yoshioka, Craig; Marrinucci, Dena; Lazar, Daniel; Schram, Ethan; Nieva, Jorge; Bazhenova, Lyudmila; Morgan, Alison; Ko, Andrew H.; Korn, W. Michael; Kolatkar, Anand; Bethel, Kelly; Kuhn, Peter

    2012-01-01

    Circulating tumor cells (CTCs) have been implicated as a population of cells that may seed metastasis and venous thromboembolism (VTE), two major causes of mortality in cancer patients. Thus far, existing CTC detection technologies have been unable to reproducibly detect CTC aggregates in order to address what contribution CTC aggregates may have on metastasis or VTE. We report here an enrichment-free immunofluorescence detection method that can reproducibly detect and enumerate homotypic CTC aggregates in patient samples. We identified CTC aggregates in 43% of 86 patient samples. The fraction of CTC aggregation was investigated in blood draws from 24 breast, 14 non-small cell lung (NSCLC), 18 pancreatic, 15 prostate stage IV cancer patients, and 15 normal blood donors (NBD). Both single CTCs and CTC aggregates were measured to determine whether differences exist in the physical characteristics of these two populations. Cells contained in CTC aggregates had less area and length, on average, than single CTCs. Nuclear to cytoplasmic (N/C) ratio between single CTCs and CTC aggregates were similar. This detection method may assist future studies in determining which population of cells is more physically likely to contribute to metastasis and VTE. PMID:22306705

  5. A Screening Approach for Identifying Gliadin Neutralizing Antibodies on Epithelial Intestinal Caco-2 Cells.

    PubMed

    Hundsberger, Harald; Koppensteiner, Anita; Hofmann, Elisabeth; Ripper, Doris; Pflüger, Maren; Stadlmann, Valerie; Klein, Christian Theodor; Kreiseder, Birgit; Katzlinger, Michael; Eger, Andreas; Forster, Florian; Missbichler, Albert; Wiesner, Christoph

    2017-09-01

    Celiac disease (CD) is a chronic inflammatory condition caused by the ingestion of gliadin-containing food in genetically susceptible individuals. Undigested peptides of gliadin exert various effects, including increased intestinal permeability and inflammation in the small intestine. Although many therapeutic approaches are in development, a gluten-free diet is the only effective treatment for CD. Affecting at least 1% of the population in industrialized countries, it is important to generate therapeutic options against CD. Here, we describe the establishment of a high-throughput screening (HTS) platform based on AlphaLISA and electrical cell-substrate impedance sensing (ECIS) technology for the identification of anti-inflammatory and barrier-protective compounds in human enterocytes after pepsin-trypsin-digested gliadin (PT-gliadin) treatment. Our results show that the combination of these HTS technologies enables fast, reliable, simple, and label-free screening of IgY antibodies against PT-gliadin. Using this platform, we have identified a new chicken anti-PT-gliadin IgY antibody as a potential anti-CD agent.

  6. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors

    NASA Astrophysics Data System (ADS)

    Cho, Edward H.; Wendel, Marco; Luttgen, Madelyn; Yoshioka, Craig; Marrinucci, Dena; Lazar, Daniel; Schram, Ethan; Nieva, Jorge; Bazhenova, Lyudmila; Morgan, Alison; Ko, Andrew H.; Korn, W. Michael; Kolatkar, Anand; Bethel, Kelly; Kuhn, Peter

    2012-02-01

    Circulating tumor cells (CTCs) have been implicated as a population of cells that may seed metastasis and venous thromboembolism (VTE), two major causes of mortality in cancer patients. Thus far, existing CTC detection technologies have been unable to reproducibly detect CTC aggregates in order to address what contribution CTC aggregates may make to metastasis or VTE. We report here an enrichment-free immunofluorescence detection method that can reproducibly detect and enumerate homotypic CTC aggregates in patient samples. We identified CTC aggregates in 43% of 86 patient samples. The fraction of CTC aggregation was investigated in blood draws from 24 breast, 14 non-small cell lung, 18 pancreatic, 15 prostate stage IV cancer patients and 15 normal blood donors. Both single CTCs and CTC aggregates were measured to determine whether differences exist in the physical characteristics of these two populations. Cells contained in CTC aggregates had less area and length, on average, than single CTCs. Nuclear to cytoplasmic ratios between single CTCs and CTC aggregates were similar. This detection method may assist future studies in determining which population of cells is more physically likely to contribute to metastasis and VTE.

  7. Microarray identifies ADAM family members as key responders to TGF-beta1 in alveolar epithelial cells.

    PubMed

    Keating, Dominic T; Sadlier, Denise M; Patricelli, Andrea; Smith, Sinead M; Walls, Dermot; Egan, Jim J; Doran, Peter P

    2006-09-01

    The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-beta1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-beta1, IL-4 and IL-13 and Epstein Barr virus. A549 cells were exposed to 10 ng/ml TGF-beta1, IL-4 and IL-13 at serial time points. Total RNA was used for hybridisation to Affymetrix Human Genome U133A microarrays. Each in vitro time-point was studied in duplicate and an average RMA value computed. Expression data for each time point was compared to control and a signal log ratio of 0.6 or greater taken to identify significant differential regulation. Using normalised RMA values and unsupervised Average Linkage Hierarchical Cluster Analysis, a list of 312 extracellular matrix (ECM) proteins or modulators of matrix turnover was curated via Onto-Compare and Gene-Ontology (GO) databases for baited cluster analysis of ECM associated genes. Interrogation of the dataset using ontological classification focused cluster analysis revealed coordinate differential expression of a large cohort of extracellular matrix associated genes. Of this grouping members of the ADAM (A disintegrin and Metalloproteinase domain containing) family of genes were differentially expressed. ADAM gene expression was also identified in EBV infected A549 cells as well as IL-13 and IL-4 stimulated cells. We probed pathologenomic activities (activation and functional activity) of ADAM19 and ADAMTS9 using siRNA and collagen assays. Knockdown of these genes resulted in diminished production of collagen in A549 cells exposed to TGF-beta1, suggesting a potential role for these molecules in ECM accumulation in IPF.

  8. Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer

    PubMed Central

    Tan, Tuan Zea; Miow, Qing Hao; Huang, Ruby Yun-Ju; Wong, Meng Kang; Ye, Jieru; Lau, Jieying Amelia; Wu, Meng Chu; Bin Abdul Hadi, Luqman Hakim; Soong, Richie; Choolani, Mahesh; Davidson, Ben; Nesland, Jahn M; Wang, Ling-Zhi; Matsumura, Noriomi; Mandai, Masaki; Konishi, Ikuo; Goh, Boon-Cher; Chang, Jeffrey T; Thiery, Jean Paul; Mori, Seiichi

    2013-01-01

    Epithelial ovarian cancer (EOC) is hallmarked by a high degree of heterogeneity. To address this heterogeneity, a classification scheme was developed based on gene expression patterns of 1538 tumours. Five, biologically distinct subgroups — Epi-A, Epi-B, Mes, Stem-A and Stem-B — exhibited significantly distinct clinicopathological characteristics, deregulated pathways and patient prognoses, and were validated using independent datasets. To identify subtype-specific molecular targets, ovarian cancer cell lines representing these molecular subtypes were screened against a genome-wide shRNA library. Focusing on the poor-prognosis Stem-A subtype, we found that two genes involved in tubulin processing, TUBGCP4 and NAT10, were essential for cell growth, an observation supported by a pathway analysis that also predicted involvement of microtubule-related processes. Furthermore, we observed that Stem-A cell lines were indeed more sensitive to inhibitors of tubulin polymerization, vincristine and vinorelbine, than the other subtypes. This subtyping offers new insights into the development of novel diagnostic and personalized treatment for EOC patients. PMID:23666744

  9. A method to identify tissue cell subpopulations with distinct multi-molecular profiles from data on co-localization of two markers at a time: the case of sensory ganglia.

    PubMed

    Catacuzzeno, Lugi; Sforna, Luigi; D'Adamo, Maria Cristina; Pessia, Mauro; Franciolini, Fabio

    2014-03-15

    Most biological tissues are characterized by high morphological and functional cell heterogeneity. To investigate this heterogeneity at the molecular level, scientists have tried to associate specific sets of molecular markers (molecular profiles) to functionally distinct cell subpopulations, evaluating their expression using immunochemistry and in situ hybridization techniques. We propose here a novel analysis that allows the estimation of the frequency of cells expressing distinct molecular profiles starting from data on the co-expression of two markers at a time. In order to facilitate the application of the proposed analysis, we developed and make available a user-friendly window-based software. We successfully applied the analytical method to experimental data from adult rat sensory neurons. In a first application we subgrouped DRG neurons in 11 subpopulations on the basis of the co-expression of 6 molecular markers (the TRPs type V1, A1, and M8 and the trks type A, B, and C). In a second application we found that while rat DRG have significant frequencies of peptidergic/IB4-negative and non-peptidergic/IB4-positive nociceptors, rat TG neurons lack almost completely these two subpopulations. The analytical method here proposed overcomes the limitations of the presently available experimental techniques, most of which can assess the co-expression of only few molecular markers at a time. This new method will allow a better understanding of the molecular and cellular heterogeneity of tissues in normal and pathological conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Expression profiling during mammary epithelial cell three-dimensional morphogenesis identifies PTPRO as a novel regulator of morphogenesis and ErbB2-mediated transformation.

    PubMed

    Yu, Min; Lin, Guang; Arshadi, Niloofar; Kalatskaya, Irina; Xue, Bin; Haider, Syed; Nguyen, Francis; Boutros, Paul C; Elson, Ari; Muthuswamy, Lakshmi B; Tonks, Nicholas K; Muthuswamy, Senthil K

    2012-10-01

    Identification of genes that are upregulated during mammary epithelial cell morphogenesis may reveal novel regulators of tumorigenesis. We have demonstrated that gene expression programs in mammary epithelial cells grown in monolayer cultures differ significantly from those in three-dimensional (3D) cultures. We identify a protein tyrosine phosphate, PTPRO, that was upregulated in mature MCF-10A mammary epithelial 3D structures but had low to undetectable levels in monolayer cultures. Downregulation of PTPRO by RNA interference inhibited proliferation arrest during morphogenesis. Low levels of PTPRO expression correlated with reduced survival for breast cancer patients, suggesting a tumor suppressor function. Furthermore, we showed that the receptor tyrosine kinase ErbB2/HER2 is a direct substrate of PTPRO and that loss of PTPRO increased ErbB2-induced cell proliferation and transformation, together with tyrosine phosphorylation of ErbB2. Moreover, in patients with ErbB2-positive breast tumors, low PTPRO expression correlated with poor clinical prognosis compared to ErbB2-positive patients with high levels of PTPRO. Thus, PTPRO is a novel regulator of ErbB2 signaling, a potential tumor suppressor, and a novel prognostic marker for patients with ErbB2-positive breast cancers. We have identified the protein tyrosine phosphatase PTPRO as a regulator of three-dimensional epithelial morphogenesis of mammary epithelial cells and as a regulator of ErbB2-mediated transformation. In addition, we demonstrated that ErbB2 is a direct substrate of PTPRO and that decreased expression of PTPRO predicts poor prognosis for ErbB2-positive breast cancer patients. Thus, our results identify PTPRO as a novel regulator of mammary epithelial transformation, a potential tumor suppressor, and a predictive biomarker for breast cancer.

  11. RNAi Screen for NRF2 Inducers Identifies Targets That Rescue Primary Lung Epithelial Cells from Cigarette Smoke Induced Radical Stress

    PubMed Central

    Schumacher, Frances-Rose; Schubert, Steffen; Hannus, Michael; Sönnichsen, Birte; Ittrich, Carina; Kreideweiss, Stefan; Rippmann, Jörg F.

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is a highly prevalent condition characterized by inflammation and progressive obstruction of the airways. At present, there is no treatment that suppresses the chronic inflammation of the disease, and COPD patients often succumb to the condition. Excessive oxidative stress caused by smoke inhalation is a major driving force of the disease. The transcription factor NRF2 is a critical player in the battle against oxidative stress and its function is impaired in COPD. Increasing NRF2 activity may therefore be a viable therapeutic option for COPD treatment. We show that down regulation of KEAP1, a NRF2 inhibitor, protects primary human lung epithelial cells from cigarette-smoke-extract (CSE) induced cell death in an established in vitro model of radical stress. To identify new potential drug targets with a similar effect, we performed a siRNA screen of the ‘druggable’ genome using a NRF2 transcriptional reporter cell line. This screen identified multiple genes that when down regulated increased NRF2 transcriptional activity and provided a survival benefit in the in vitro model. Our results suggest that inhibiting components of the ubiquitin-proteasome system will have the strongest effects on NRF2 transcriptional activity by increasing NRF2 levels. We also find that down regulation of the small GTPase Rab28 or the Estrogen Receptor ESRRA provide a survival benefit. Rab28 knockdown increased NRF2 protein levels, indicating that Rab28 may regulate NRF2 proteolysis. Conversely ESRRA down regulation increased NRF2 transcriptional activity without affecting NRF2 levels, suggesting a proteasome-independent mechanism. PMID:27832175

  12. Chemodynamic subpopulations of the Carina dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Kordopatis, G.; Amorisco, N. C.; Evans, N. W.; Gilmore, G.; Koposov, S. E.

    2016-04-01

    We study the chemodynamical properties of the Carina dwarf spheroidal by combining an intermediate spectroscopic resolution data set of more than 900 red giant and red clump stars, with high-precision photometry to derive the atmospheric parameters, metallicities and age estimates for our targets. Within the red giant branch population, we find evidence for the presence of three distinct stellar subpopulations with different metallicities, spatial distributions, kinematics and ages. As in the Fornax and Sculptor dwarf spheroidals, the subpopulation with the lowest average metallicity is more extended and kinematically hotter than all other populations. However, we identify an inversion in the parallel ordering of metallicity, kinematics and characteristic length-scale in the two most metal-rich subpopulations, which therefore do not contribute to a global negative chemical gradient. Contrary to common trends in the chemical properties with radius, the metal richest population is more extended and mildly kinematically hotter than the main component of intermediate metallicity. More investigations are required to ascertain the nature of this inversion, but we comment on the mechanisms that might have caused it.

  13. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  14. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    PubMed

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  15. KLF4 and PCNA identify stages of tumor initiation in a conditional model of cutaneous squamous epithelial neoplasia

    PubMed Central

    Huang MD, Conway C.; Liu, Zhaoli; Li, Xingnan; Bailey, Sarah K.; Nail, Clinton D.; Foster, K. Wade; Frost, Andra R.; Ruppert, J. Michael; Lobo-Ruppert, Susan M.

    2006-01-01

    KLF4 is induced upon growth-arrest in vitro and during epithelial maturation in vivo, and is essential for proper cell fate specification of post-mitotic cells. In spite of a normal role in post-mitotic cells, expression is upregulated and constitutive in certain tumor types. KLF4 functions as an oncogene in vitro, and enforced expression in basal cells of mouse skin rapidly induces lesions similar to hyperplasia, dysplasia and squamous cell carcinoma (SCC). Here we used conditional expression to characterize early steps in KLF4-mediated tumor initiation. In contrast to SCC-like lesions that result when using a conditional, keratin 14 promoter-dependent strategy, lower conditional expression achieved using a MMTV promoter induced only epidermal cycling within morphologically normal skin, a process we termed occult cell turnover. Surprisingly, KLF4-induced hyperplastic lesions showed increased transgene-derived mRNA and protein in maturing, PCNA-negative cells, a property of endogenous KLF4. In contrast, hyperplastic lesions induced by GLI1, a control, showed uniform transgene expression. In KLF4-induced dysplasia and SCC the complementarity of KLF4 and PCNA was replaced by concordance of the two proteins. These studies show that KLF4 transcripts are normally suppressed in cycling cells in a promoter-independent fashion, consistent with a post-transcriptional control, and reveal loss of this control in the transition from hyperplasia to dysplasia. Like the mouse tumors, human cutaneous SCCs and adjacent dysplasias frequently showed maturation-independence of KLF4, with co-expression of KLF4 and PCNA. A smaller subset of human SCCs showed complementarity of KLF4 and PCNA, similar to hyperplastic mouse skin. The results identify parallels between a mouse model and human primary tumors, and show that successive increases of KLF4 in the nuclei of basal keratinocytes leads to occult cell turnover followed by hyperplasia, dysplasia, and invasive SCC. PMID:16357510

  16. KLF4 and PCNA identify stages of tumor initiation in a conditional model of cutaneous squamous epithelial neoplasia.

    PubMed

    Huang, Conway C; Liu, Zhaoli; Li, Xingnan; Bailey, Sarah K; Nail, Clinton D; Foster, K Wade; Frost, Andra R; Ruppert, J Michael; Lobo-Ruppert, Susan M

    2005-12-01

    KLF4 is induced upon growth-arrest in vitro and during epithelial maturation in vivo, and is essential for proper cell fate specification of post-mitotic cells. In spite of a normal role in post-mitotic cells, expression is upregulated and constitutive in certain tumor types. KLF4 functions as an oncogene in vitro, and enforced expression in basal cells of mouse skin rapidly induces lesions similar to hyperplasia, dysplasia and squamous cell carcinoma (SCC). Here we used conditional expression to characterize early steps in KLF4-mediated tumor initiation. In contrast to SCC-like lesions that result when using a conditional, keratin 14 promoter-dependent strategy, lower conditional expression achieved using a MMTV promoter induced only epidermal cycling within morphologically normal skin, a process we termed occult cell turnover. Surprisingly, KLF4-induced hyperplastic lesions showed increased transgene-derived mRNA and protein in maturing, PCNA-negative cells, a property of endogenous KLF4. In contrast, hyperplastic lesions induced by GLI1, a control, showed uniform transgene expression. In KLF4-induced dysplasia and SCC the complementarity of KLF4 and PCNA was replaced by concordance of the two proteins. These studies show that KLF4 transcripts are normally suppressed in cycling cells in a promoter-independent fashion, consistent with a post-transcriptional control, and reveal loss of this control in the transition from hyperplasia to dysplasia. Like the mouse tumors, human cutaneous SCCs and adjacent dysplasias frequently showed maturation-independence of KLF4, with co-expression of KLF4 and PCNA. A smaller subset of human SCCs showed complementarity of KLF4 and PCNA, similar to hyperplastic mouse skin. The results identify parallels between a mouse model and human primary tumors, and show that successive increases of KLF4 in the nuclei of basal keratinocytes leads to occult cell turnover followed by hyperplasia, dysplasia, and invasive SCC.

  17. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells

    PubMed Central

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antzack, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J.; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-01-01

    Abstract The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication

  18. Identification of miRNA Signatures Associated with Epithelial Ovarian Cancer Chemoresistance with Further Biological and Functional Validation of Identified Key miRNAs

    DTIC Science & Technology

    2012-08-01

    physiological conditions, including pregnancy [2], diabetes [3], radiation sickness [4], and numerous forms of cancer [5]. In cancer , circulating miRNAs will...undetectable by RT-PCR (Ct > 40, data not shown). Figure 6. ARIA tests on ovarian cancer cell lines. (A) Relative fold change comparing...Epithelial Ovarian Cancer Chemoresistance with Further Biological and Functional Validation of Identified Key miRNAs PRINCIPAL INVESTIGATOR: Analisa

  19. The caM kinase, Pnck, is spatially and temporally regulated during murine mammary gland development and may identify an epithelial cell subtype involved in breast cancer.

    PubMed

    Gardner, H P; Ha, S I; Reynolds, C; Chodosh, L A

    2000-10-01

    While screening for protein kinases expressed in the murine mammary gland, we identified previously a Ca2+/calmodulin-dependent kinase, Pnck, that is most closely related to CaMKI. In this report, we show that Pnck is temporally regulated during murine mammary development with highest levels of expression observed late in pregnancy, concomitant with the decreased cellular proliferation and terminal differentiation of the mammary epithelium. Consistent with this finding, Pnck is up-regulated in confluent mammary epithelial cells and is down-regulated as serum-starved cells are stimulated to reenter the cell cycle. In the mammary gland, Pnck is expressed in an epithelial-specific and markedly heterogeneous manner, suggesting that the expression of this kinase may be restricted to a particular mammary epithelial cell type. Potentially related to its heterogeneous in vivo expression pattern, Pnck expression is oncogene-associated in murine epithelial cell lines derived from mammary tumors arising in different transgenic mouse models of breast cancer; cell lines derived from mammary tumors initiated by c-myc or int-2/Fgf3 express Pnck, whereas cell lines initiated by neu or H-ras do not. In an analogous manner, expression of the human homologue of Pnck is restricted to a subset of human breast cancer cell lines. Moreover, PNCK was found to be highly overexpressed in a subset of human primary human breast cancers compared with benign mammary tissue. Together, our data suggest that Pnck may play a role in mammary development, and that expression of this kinase may be restricted to a mammary epithelial cell type that is transformed in a subset of human breast cancers.

  20. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells.

    PubMed

    Dória, M Luísa; Cotrim, Zita; Macedo, Bárbara; Simões, Cláudia; Domingues, Pedro; Helguero, Luisa; Domingues, M Rosário

    2012-06-01

    Breast cancer is the leading cause of cancer-related deaths in women. Altered cellular functions of cancer cells lead to uncontrolled cellular growth and morphological changes. Cellular biomembranes are intimately involved in the regulation of cell signaling; however, they remain largely understudied. Phospholipids (PLs) are the main constituents of biological membranes and play important functional, structural and metabolic roles. The aim of this study was to establish if patterns in the PL profiles of mammary epithelial cells and breast cancer cells differ in relation to degree of differentiation and metastatic potential. For this purpose, PLs were analyzed using a lipidomic approach. In brief, PLs were extracted using Bligh and Dyer method, followed by a separation of PL classes by thin layer chromatography, and subsequent analysis by mass spectrometry (MS). Differences and similarities were found in the relative levels of PL content between mammary epithelial and breast cancer cells and between breast cancer cells with different levels of aggressiveness. When compared to the total PL content, phosphatidylcholine levels were reduced and lysophosphatydilcholines increased in the more aggressive cancer cells; while phosphatidylserine levels remained unchanged. MS analysis showed alterations in the classes of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, and phosphatidylinositides. In particular, the phosphatidylinositides, which are signaling molecules that affect proliferation, survival, and migration, showed dramatic alterations in their profile, where an increase of phosphatdylinositides saturated fatty acids chains and a decrease in C20 fatty acids in cancer cells compared with mammary epithelial cells was observed. At present, information about PL changes in cancer progression is lacking. Therefore, these data will be useful as a starting point to define possible PLs with prospective as biomarkers and disclose metabolic pathways with potential

  1. Effects of cryopreservation on the motile sperm subpopulations in semen from Asturiana de los Valles bulls.

    PubMed

    Muiño, R; Peña, A I; Rodríguez, A; Tamargo, C; Hidalgo, C O

    2009-10-01

    The aim of this study was to identify different motile sperm subpopulations in ejaculates from an autochthonous bull breed (Bos taurus) and to determine possible modifications in these subpopulations resulting from cryopreservation. Ejaculates were collected and cryopreserved following a conventional protocol. The overall sperm motility and the kinematic parameters of individual spermatozoa were evaluated in fresh ejaculates, after 4h at 5 degrees C, and at 0 and 2h postthaw. A multivariate clustering procedure separated 23,585 motile spermatozoa into four subpopulations: Subpopulation 1 showed medium velocity (VCL: 99.4+/-17.8 microm/sec) and high progressiveness (LIN: 65.1+/-14.0%); Subpopulation 2 included spermatozoa with high velocity (VCL: 148.7+/-25.6 microm/sec) but a nonprogressive trajectory (LIN: 33.1+/-10.5%); Subpopulation 3 represented slowly motile (VCL: 58.3+/-24.3 microm/sec) and nonprogressive sperm (LIN: 39.6+/-18.3%); and Subpopulation 4 included very rapid (VCL: 152.8+/-25.7 microm/sec) and highly progressive sperm (LIN: 70.9+/-13.7%). Subpopulation 4 was present in the greatest quantity in fresh ejaculates (36%), but after cooling, it significantly decreased (21%) concomitantly with an increase (P<0.001) in Subpopulation 2 (from 21% in fresh to 34% in postcooled semen). After freezing and thawing, the overall sperm motility was reduced, mainly due to Subpopulation 2 decreasing from 34% after cooling to 14% after thawing. Differences among bulls in the frequency distribution of spermatozoa within subpopulations were evidenced after thawing by different proportions of spermatozoa in Subpopulations 2 and 4. The current results indicate that a structure of four sperm subpopulations may be a common characteristic of bovine ejaculates and that the cooling phase of cryopreservation seems to be the determinant of postthaw semen quality.

  2. Housekeeping Gene Sequencing and Multilocus Variable-Number Tandem-Repeat Analysis To Identify Subpopulations within Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. tomato That Correlate with Host Specificity

    PubMed Central

    Gironde, S.

    2012-01-01

    Pseudomonas syringae pv. maculicola causes bacterial spot on Brassicaceae worldwide, and for the last 10 years severe outbreaks have been reported in the Loire Valley, France. P. syringae pv. maculicola resembles P. syringae pv. tomato in that it is also pathogenic for tomato and causes the same types of symptoms. We used a collection of 106 strains of P. syringae to characterize the relationships between P. syringae pv. maculicola and related pathovars, paying special attention to P. syringae pv. tomato. Phylogenetic analysis of gyrB and rpoD gene sequences showed that P. syringae pv. maculicola, which causes diseases in Brassicaceae, forms six genetic lineages within genomospecies 3 of P. syringae strains as defined by L. Gardan et al. (Int. J. Syst. Bacteriol. 49[Pt 2]:469–478, 1999), whereas P. syringae pv. tomato forms two distinct genetic lineages. A multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) conducted with eight minisatellite loci confirmed the genetic structure obtained with rpoD and gyrB sequence analyses. These results provide promising tools for fine-scale epidemiological studies on diseases caused by P. syringae pv. maculicola and P. syringae pv. tomato. The two pathovars had distinct host ranges; only P. syringae pv. maculicola strains were pathogenic for Brassicaceae. A subpopulation of P. syringae pv. maculicola strains that are pathogenic for Pto-expressing tomato plants were shown to lack avrPto1 and avrPtoB or to contain a disrupted avrPtoB homolog. Taking phylogenetic and pathological features into account, our data suggest that the DC3000 strain belongs to P. syringae pv. maculicola. This study shows that P. syringae pv. maculicola and P. syringae pv. tomato appear multiclonal, as they did not diverge from a single common ancestral group within the ancestral P. syringae genomospecies 3, and suggests that pathovar specificity within P. syringae may be due to independent genetic events. PMID:22389364

  3. Demographic and traditional knowledge perspectives on the current status of Canadian polar bear subpopulations.

    PubMed

    York, Jordan; Dowsley, Martha; Cornwell, Adam; Kuc, Miroslaw; Taylor, Mitchell

    2016-05-01

    Subpopulation growth rates and the probability of decline at current harvest levels were determined for 13 subpopulations of polar bears (Ursus maritimus) that are within or shared with Canada based on mark-recapture estimates of population numbers and vital rates, and harvest statistics using population viability analyses (PVA). Aboriginal traditional ecological knowledge (TEK) on subpopulation trend agreed with the seven stable/increasing results and one of the declining results, but disagreed with PVA status of five other declining subpopulations. The decline in the Baffin Bay subpopulation appeared to be due to over-reporting of harvested numbers from outside Canada. The remaining four disputed subpopulations (Southern Beaufort Sea, Northern Beaufort Sea, Southern Hudson Bay, and Western Hudson Bay) were all incompletely mark-recapture (M-R) sampled, which may have biased their survival and subpopulation estimates. Three of the four incompletely sampled subpopulations were PVA identified as nonviable (i.e., declining even with zero harvest mortality). TEK disagreement was nonrandom with respect to M-R sampling protocols. Cluster analysis also grouped subpopulations with ambiguous demographic and harvest rate estimates separately from those with apparently reliable demographic estimates based on PVA probability of decline and unharvested subpopulation growth rate criteria. We suggest that the correspondence between TEK and scientific results can be used to improve the reliability of information on natural systems and thus improve resource management. Considering both TEK and scientific information, we suggest that the current status of Canadian polar bear subpopulations in 2013 was 12 stable/increasing and one declining (Kane Basin). We do not find support for the perspective that polar bears within or shared with Canada are currently in any sort of climate crisis. We suggest that monitoring the impacts of climate change (including sea ice decline) on polar bear

  4. Subpopulation structure of caribou (Rangifer tarandus L.) in arctic and subarctic Canada.

    PubMed

    Nagy, John A; Johnson, Deborah L; Larter, Nicholas C; Campbell, Mitch W; Derocher, Andrew E; Kelly, Allicia; Dumond, Mathieu; Allaire, Danny; Croft, Bruno

    2011-09-01

    Effective management and conservation of species, subspecies, or ecotypes require an understanding of how populations are structured in space. We used satellite-tracking locations and hierarchical and fuzzy clustering to quantify subpopulations within the behaviorally different barren-ground caribou (Rangifer tarandus groenlandicus), Dolphin and Union island caribou (R. t. groenlandicus x pearyi), and boreal (R. t. caribou) caribou ecotypes in the Northwest Territories and Nunavut, Canada. Using a novel approach, we verified that the previously recognized Cape Bathurst, Bluenose-West, Bluenose-East, Bathurst, Beverly, Qamanirjuaq, and Lorillard barren-ground subpopulations were robust and that the Queen Maude Gulf and Wager Bay barren-ground subpopulations were organized as individuals. Dolphin and Union island and boreal caribou formed one and two distinct subpopulation, respectively, and were organized as individuals. Robust subpopulations were structured by strong annual spatial affiliation among females; subpopulations organized as individuals were structured by migratory connectivity, barriers to movement, and/or habitat discontinuity. One barren-ground subpopulation used two calving grounds, and one calving ground was used by two barren-ground subpopulations, indicating that these caribou cannot be reliably assigned to subpopulations solely by calving-ground use. They should be classified by annual spatial affiliation among females. Annual-range size and path lengths varied significantly among ecotypes, including mountain woodland caribou (R. t. caribou), and reflected behavioral differences. An east-west cline in annual-range sizes and path lengths among migratory barren-ground subpopulations likely reflected differences in subpopulation size and habitat conditions and further supported the subpopulation structure identified.

  5. Cytoskeletal proteins in thymic epithelial cells of the Australian lungfish Neoceratodus forsteri

    PubMed Central

    Mohammad, Mohammad G; Raftos, David A; Joss, Jean

    2009-01-01

    The vertebrate thymus consists of distinctive subpopulations of epithelial cells that contain a diverse repertoire of cytoskeletal proteins. In this study of the thymus in the Australian lungfish, Neoceratodus forsteri, immunohistochemistry was used to distinguish the cytoskeletal proteins present in each class of thymic epithelial cell. A panel of antibodies (Abs), each specific for a different cytoskeletal polypeptide (keratins, vimentin, desmin, actin and tubulins), was used on paraffin and ultrathin resin sections of thymus. Ab AE I (reactive against human type I cytokeratins (CK) 14, 16 and 19) selectively stained the cytoplasm of capsular, trabecular and the outermost epithelial cells of Hassall's corpuscles. Anti-CK 10 Abs strongly labelled the capsular epithelial cells and less than 20% of cortical and medullary epithelial cells. The anti-50-kDa desmin Ab did not react with any thymic cells, whereas the anti-53-kDa desmin Ab labelled some capsular, cortical and medullary thymic epithelial cells. The anti-vimentin Ab stained most of the capsular and ∼60% of the cortical epithelium. Thymic nurse cells and Hassall's corpuscles were found to be devoid of actin, which was strongly detected in medullary and perivascular epithelium. Both α and β tubulins were detected in all thymic cells. This study extends the concept of thymic epithelial heterogeneity. The complexity of thymic epithelium in N. forsteri may indicate a relationship between thymic epithelial subpopulations and the thymic microenvironment. These data identify anti-keratin Abs as a valuable tool for studying differentiation and ontogeny of the thymic epithelium in N. forsteri. PMID:19166477

  6. Genetic differentiation of sockeye salmon subpopulations from a geologically young Alaskan lake system

    USGS Publications Warehouse

    Burger, C.V.; Spearman, William J.; Cronin, M.A.

    1997-01-01

    The Tustumena lake drainage in southcentral Alaska is glacially turbid and geologically young (<2,000 years old). Previous field studies identified at least three subpopulations of sockeye salmon Oncorhynchus nerka at Tustumena Lake, based on the distribution and timing of spawners. The subpopulations included early-run salmon that spawned in six clearwater tributaries of the lake (mid August), lake shoreline spawners (late August), and late-run fish that spawned in the lake's outlet, the Kasilof River (late September). Our objective was to determine the degree of genetic differentiation among these subpopulations based on restriction enzyme analyses of the cytochrome b gene of mitochondrial DNA and analyses of four polymorphic allozyme loci. Mitochondrial DNA haplotype frequencies for outlet-spawning sockeye salmon differed significantly from those of all other subpopulations. The most common (36%) haplotype in the outlet subpopulation did not occur elsewhere, thus suggesting little or no gene flow between outlet spawners and other spatially close subpopulations at Tustumena Lake. Allele frequencies at two allozyme loci also indicated a degree of differentiation of the outlet subpopulation from the shoreline and tributary subpopulations. Allele frequencies for three tributary subpopulations were temporally stable over approximately 20 years (based on a comparison to previously published results) despite initiation of a hatchery program in two of the tributaries during the intervening period. Collectively, our results are consistent with the hypothesis that significant genetic differentiation has occurred within the Tustumena Lake drainage since deglaciation approximately 2,000 years ago.

  7. Keratin 79 identifies a novel population of migratory epithelial cells that initiates hair canal morphogenesis and regeneration

    PubMed Central

    Veniaminova, Natalia A.; Vagnozzi, Alicia N.; Kopinke, Daniel; Do, Thy Thy; Murtaugh, L. Charles; Maillard, Ivan; Dlugosz, Andrzej A.; Reiter, Jeremy F.; Wong, Sunny Y.

    2013-01-01

    The formation of epithelial tubes underlies the development of diverse organs. In the skin, hair follicles resemble tube-like structures with lumens that are generated through poorly understood cellular rearrangements. Here, we show that creation of the hair follicle lumen is mediated by early outward movement of keratinocytes from within the cores of developing hair buds. These migratory keratinocytes express keratin 79 (K79) and stream out of the hair germ and into the epidermis prior to lumen formation in the embryo. Remarkably, this process is recapitulated during hair regeneration in the adult mouse, when K79+ cells migrate out of the reactivated secondary hair germ prior to formation of a new hair canal. During homeostasis, K79+ cells line the hair follicle infundibulum, a domain we show to be multilayered, biochemically distinct and maintained by Lrig1+ stem cell-derived progeny. Upward movement of these cells sustains the infundibulum, while perturbation of this domain during acne progression is often accompanied by loss of K79. Our findings uncover previously unappreciated long-distance cell movements throughout the life cycle of the hair follicle, and suggest a novel mechanism by which the follicle generates its hollow core through outward cell migration. PMID:24198274

  8. Psychometric Consequences of Subpopulation Item Parameter Drift

    ERIC Educational Resources Information Center

    Huggins-Manley, Anne Corinne

    2017-01-01

    This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…

  9. Psychometric Consequences of Subpopulation Item Parameter Drift

    ERIC Educational Resources Information Center

    Huggins-Manley, Anne Corinne

    2017-01-01

    This study defines subpopulation item parameter drift (SIPD) as a change in item parameters over time that is dependent on subpopulations of examinees, and hypothesizes that the presence of SIPD in anchor items is associated with bias and/or lack of invariance in three psychometric outcomes. Results show that SIPD in anchor items is associated…

  10. Subpopulations in purified platelets adhering on glass.

    PubMed

    Donati, Alessia; Gupta, Swati; Reviakine, Ilya

    2016-06-22

    Understanding how platelet activation is regulated is important in the context of cardiovascular disorders and their management with antiplatelet therapy. Recent evidence points to different platelet subpopulations performing different functions. In particular, procoagulant and aggregating subpopulations have been reported in the literature in platelets treated with the GPVI agonists. How the formation of platelet subpopulations upon activation is regulated remains unclear. Here, it is shown that procoagulant and aggregating platelet subpopulations arise spontaneously upon adhesion of purified platelets on clean glass surfaces. Calcium ionophore treatment of the adhering platelets resulted in one platelet population expressing both the procoagulant and the adherent population markers phosphatidylserine and the activated form of GPIIb/IIIa, while all of the platelets expressed CD62P independently of the ionophore treatment. Therefore, all platelets have the capacity to express all three activation markers. It is concluded that platelet subpopulations observed in various studies reflect the dynamics of the platelet activation process.

  11. EGFR-Based Immunoisolation as a Recovery Target for Low-EpCAM CTC Subpopulation

    PubMed Central

    Vila, Ana; Abal, Miguel; Muinelo-Romay, Laura; Rodriguez-Abreu, Carlos; Rivas, José; López-López, Rafael; Costa, Clotilde

    2016-01-01

    Circulating tumour cells (CTCs) play a key role in the metastasis process, as they are responsible for micrometastasis and are a valuable tool for monitoring patients in real-time. Moreover, efforts to develop new strategies for CTCs isolation and characterisation, and the translation of CTCs into clinical practice needs to overcome the limitation associated with the sole use of Epithelial Cell Adhesion Molecule (EpCAM) expression to purify this tumour cell subpopulation. CTCs are rare events in the blood of patients and are believed to represent the epithelial population from a primary tumour of epithelial origin, thus EpCAM immunoisolation is considered an appropriate strategy. The controversy stems from the impact that the more aggressive mesenchymal tumour phenotypes might have on the whole CTC population. In this work, we first characterised a panel of cell lines representative of tumour heterogeneity, confirming the existence of tumour cell subpopulations with restricted epithelial features and supporting the limitations of EpCAM-based technologies. We next developed customised polystyrene magnetic beads coated with antibodies to efficiently isolate the phenotypically different subpopulations of CTCs from the peripheral blood mononuclear cells (PBMCs) of patients with metastatic cancer. Besides EpCAM, we propose Epidermal Growth Factor Receptor (EGFR) as an additional isolation marker for efficient CTCs detection. PMID:27711186

  12. Characterisation of lung macrophage subpopulations in COPD patients and controls.

    PubMed

    Dewhurst, Jennifer A; Lea, Simon; Hardaker, Elizabeth; Dungwa, Josiah V; Ravi, Arjun K; Singh, Dave

    2017-08-02

    Lung macrophage subpopulations have been identified based on size. We investigated characteristics of small and large macrophages in the alveolar spaces and lung interstitium of COPD patients and controls. Alveolar and interstitial cells were isolated from lung resection tissue from 88 patients. Macrophage subpopulation cell-surface expression of immunological markers and phagocytic ability were assessed by flow cytometry. Inflammatory related gene expression was measured. Alveolar and interstitial macrophages had subpopulations of small and large macrophages based on size and granularity. Alveolar macrophages had similar numbers of small and large cells; interstitial macrophages were mainly small. Small macrophages expressed significantly higher cell surface HLA-DR, CD14, CD38 and CD36 and lower CD206 compared to large macrophages. Large alveolar macrophages showed lower marker expression in COPD current compared to ex-smokers. Small interstitial macrophages had the highest pro-inflammatory gene expression levels, while large alveolar macrophages had the lowest. Small alveolar macrophages had the highest phagocytic ability. Small alveolar macrophage CD206 expression was lower in COPD patients compared to smokers. COPD lung macrophages include distinct subpopulations; Small interstitial and small alveolar macrophages with more pro-inflammatory and phagocytic function respectively, and large alveolar macrophages with low pro-inflammatory and phagocytic ability.

  13. Morphometric and kinematic sperm subpopulations in split ejaculates of normozoospermic men

    PubMed Central

    Santolaria, Pilar; Soler, Carles; Recreo, Pilar; Carretero, Teresa; Bono, Araceli; Berné, José M; Yániz, Jesús L

    2016-01-01

    This study was designed to analyze the sperm kinematic and morphometric subpopulations in the different fractions of the ejaculate in normozoospermic men. Ejaculates from eight normozoospermic men were collected by masturbation in three fractions after 3–5 days of sexual abstinence. Analyses of sperm motility by computer-assisted sperm analysis (CASA-Mot), and of sperm morphometry by computer-assisted sperm morphometry analysis (CASA-Morph) using fluorescence were performed. Clustering and discriminant procedures were performed to identify sperm subpopulations in the kinematic and morphometric data obtained. Clustering procedures resulted in the classification of spermatozoa into three kinematic subpopulations (slow with low ALH [35.6% of all motile spermatozoa], with circular trajectories [32.0%], and rapid with high ALH [32.4%]), and three morphometric subpopulations (large-round [33.9% of all spermatozoa], elongated [32.0%], and small [34.10%]). The distribution of kinematic sperm subpopulations was different among ejaculate fractions (P < 0.001), with higher percentages of spermatozoa exhibiting slow movements with low ALH in the second and third portions, and with a more homogeneous distribution of kinematic sperm subpopulations in the first portion. The distribution of morphometric sperm subpopulations was also different among ejaculate fractions (P < 0.001), with more elongated spermatozoa in the first, and of small spermatozoa in the third, portion. It is concluded that important variations in the distribution of kinematic and morphometric sperm subpopulations exist between ejaculate fractions, with possible functional implications. PMID:27624985

  14. Comprehensive N-glycome profiling of cultured human epithelial breast cells identifies unique secretome N-glycosylation signatures enabling tumorigenic subtype classification.

    PubMed

    Lee, Ling Y; Thaysen-Andersen, Morten; Baker, Mark S; Packer, Nicolle H; Hancock, William S; Fanayan, Susan

    2014-11-07

    The secreted cellular sub-proteome (secretome) is a rich source of biologically active glycoproteins. N-Glycan profiling of secretomes of cultured cancer cells provides an opportunity to investigate the link between protein N-glycosylation and tumorigenesis. Utilizing carbon-LC-ESI-CID-MS/MS of protein released native N-glycans, we accurately profiled the secretome N-glycosylation of six human epithelial breast cells including normal mammary epithelial cells (HMEC) and breast cancer cells belonging to luminal A subtype (MCF7), HER2-overexpressing subtype (SKBR3), and basal B subtype (MDA-MB157, MDA-MB231, HS578T). On the basis of intact molecular mass, LC retention time, and MS/MS fragmentation, a total of 74 N-glycans were confidently identified and quantified. The secretomes comprised significant levels of highly sialylated and fucosylated complex type N-glycans, which were elevated in all cancer cells relative to HMEC (57.7-87.2% vs 24.9%, p < 0.0001 and 57.1-78.0% vs 38.4%, p < 0.0001-0.001, respectively). Similarly, other glycan features were found to be altered in breast cancer secretomes including paucimannose and complex type N-glycans containing bisecting β1,4-GlcNAc and LacdiNAc determinants. Subtype-specific glycosylation were observed, including the preferential expression of α2,3-sialylation in the basal B breast cancer cells. Pathway analysis indicated that the regulated N-glycans were biosynthetically related. Tight clustering of the breast cancer subtypes based on N-glycome signatures supported the involvement of N-glycosylation in cancer. In conclusion, we are the first to report on the secretome N-glycosylation of a panel of breast epithelial cell lines representing different subtypes. Complementing proteome and lipid profiling, N-glycome mapping yields important pieces of structural information to help understand the biomolecular deregulation in breast cancer development and progression, knowledge that may facilitate the discovery of candidate

  15. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues

    PubMed Central

    Parsons, Linda M.; Grzeschik, Nicola A.; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M.; Richardson, Helena E.

    2017-01-01

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila “cell polarity” eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the “nutrient sensing” kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. PMID:28611255

  16. Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma

    PubMed Central

    Bartel, Sabine; Schulz, Nikola; Alessandrini, Francesca; Schamberger, Andrea C.; Pagel, Philipp; Theis, Fabian J.; Milger, Katrin; Noessner, Elfriede; Stick, Stephen M.; Kicic, Anthony; Eickelberg, Oliver; Freishtat, Robert J.; Krauss-Etschmann, Susanne

    2017-01-01

    Asthma is highly prevalent, but current therapies cannot influence the chronic course of the disease. It is thus important to understand underlying early molecular events. In this study, we aimed to use microRNAs (miRNAs) - which are critical regulators of signaling cascades - to identify so far uncharacterized asthma pathogenesis pathways. Therefore, deregulation of miRNAs was assessed in whole lungs from mice with ovalbumin (OVA)-induced allergic airway inflammation (AAI). In silico predicted target genes were confirmed in reporter assays and in house-dust-mite (HDM) induced AAI and primary human bronchial epithelial cells (NHBE) cultured at the air-liquid interface. We identified and validated the transcription factor cAMP-responsive element binding protein (Creb1) and its transcriptional co-activators (Crtc1-3) as targets of miR-17, miR-144, and miR-21. Sec14-like 3 (Sec14l3) - a putative target of Creb1 - was down-regulated in both asthma models and in NHBE cells upon IL13 treatment, while it’s expression correlated with ciliated cell development and decreased along with increasing goblet cell metaplasia. Finally, we propose that Creb1/Crtc1-3 and Sec14l3 could be important for early responses of the bronchial epithelium to Th2-stimuli. This study shows that miRNA profiles can be used to identify novel targets that would be overlooked in mRNA based strategies. PMID:28383034

  17. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues.

    PubMed

    Parsons, Linda M; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-08-07

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila "cell polarity" eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the "nutrient sensing" kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development. Copyright © 2017 Parsons et al.

  18. Crosstalk between the mitochondrial fission protein, Drp1, and the cell cycle is identified across various cancer types and can impact survival of epithelial ovarian cancer patients

    PubMed Central

    Tanwar, Deepak Kumar; Parker, Danitra J.; Gupta, Priyanka; Spurlock, Brian; Alvarez, Ronald D.; Basu, Malay Kumar; Mitra, Kasturi

    2016-01-01

    Mitochondrial metabolic reprogramming is a hallmark of tumorigenesis. Although mitochondrial function can impact cell cycle regulation it has been an understudied area in cancer research. Our study highlights a specific involvement of mitochondria in cell cycle regulation across cancer types. The mitochondrial fission process, which is regulated at the core by Drp1, impacts various cellular functions. Drp1 has been implicated in various cancer types with no common mechanism reported. Our Drp1-directed large-scale analyses of the publically available cancer genomes reveal a robust correlation of Drp1 with cell-cycle genes in 29 of the 31 cancer types examined. Hypothesis driven investigation on epithelial ovarian cancer (EOC) revealed that Drp1 co-expresses specifically with the cell-cycle module responsible for mitotic transition. Repression of Drp1 in EOC cells can specifically attenuate mitotic transition, establishing a potential casual role of Drp1 in mitotic transition. Interestingly, Drp1-Cell-Cycle co-expression module is specifically detected in primary epithelial ovarian tumors that robustly responded to chemotherapy, suggesting that Drp1 driven mitosis may underlie chemo-sensitivity of the primary tumors. Analyses of matched primary and relapsed EOC samples revealed a Drp1-based-gene-expression-signature that could identify patients with poor survival probabilities from their primary tumors. Our results imply that around 60% of platinum-sensitive EOC patients undergoing relapse show poor survival, potentially due to further activation of a mitochondria driven cell-cycle regime in their recurrent disease. We speculate that this patient group could possibly benefit from mitochondria directed therapies that are being currently evaluated at various levels, thus enabling targeted or personalized therapy based cancer management. PMID:27509055

  19. Crosstalk between the mitochondrial fission protein, Drp1, and the cell cycle is identified across various cancer types and can impact survival of epithelial ovarian cancer patients.

    PubMed

    Tanwar, Deepak Kumar; Parker, Danitra J; Gupta, Priyanka; Spurlock, Brian; Alvarez, Ronald D; Basu, Malay Kumar; Mitra, Kasturi

    2016-09-13

    Mitochondrial metabolic reprogramming is a hallmark of tumorigenesis. Although mitochondrial function can impact cell cycle regulation it has been an understudied area in cancer research. Our study highlights a specific involvement of mitochondria in cell cycle regulation across cancer types. The mitochondrial fission process, which is regulated at the core by Drp1, impacts various cellular functions. Drp1 has been implicated in various cancer types with no common mechanism reported. Our Drp1-directed large-scale analyses of the publically available cancer genomes reveal a robust correlation of Drp1 with cell-cycle genes in 29 of the 31 cancer types examined. Hypothesis driven investigation on epithelial ovarian cancer (EOC) revealed that Drp1 co-expresses specifically with the cell-cycle module responsible for mitotic transition. Repression of Drp1 in EOC cells can specifically attenuate mitotic transition, establishing a potential casual role of Drp1 in mitotic transition. Interestingly, Drp1-Cell-Cycle co-expression module is specifically detected in primary epithelial ovarian tumors that robustly responded to chemotherapy, suggesting that Drp1 driven mitosis may underlie chemo-sensitivity of the primary tumors. Analyses of matched primary and relapsed EOC samples revealed a Drp1-based-gene-expression-signature that could identify patients with poor survival probabilities from their primary tumors. Our results imply that around 60% of platinum-sensitive EOC patients undergoing relapse show poor survival, potentially due to further activation of a mitochondria driven cell-cycle regime in their recurrent disease. We speculate that this patient group could possibly benefit from mitochondria directed therapies that are being currently evaluated at various levels, thus enabling targeted or personalized therapy based cancer management.

  20. Cigarette smoking and leukocyte subpopulations in men.

    PubMed

    Freedman, D S; Flanders, W D; Barboriak, J J; Malarcher, A M; Gates, L

    1996-07-01

    Because of previously reported associations among the total leukocyte count, cigarette smoking, and risk of cardiovascular disease, we examined the relation of cigarette smoking to various leukocyte subpopulations among 3467 men aged 31 to 45 years. The median total leukocyte count was 36% higher (7840 vs. 5760 cells/mL) among current cigarette smokers than among men who had never smoked, and both stratification and regression analyses were used to examine independent associations with leukocyte subpopulations. At equivalent counts of other subpopulations, CD4+ lymphocytes and neutrophils were the cell types most strongly associated with cigarette smoking; each standard deviation change in counts of these subpopulations increased the odds of current (vs. never) smoking by approximately threefold. Furthermore, whereas 15% of the 238 men with relatively low (< 25 percentile) counts of both neutrophils and CD4+ lymphocytes were cigarette smokers, 96% of the 249 men with relatively high counts of both subpopulations were current smokers. Counts of T lymphocytes also tended to be higher among the 32 men with self-reported ischemic heart disease than among other men. These results, along with previous reports of immunologically active T lymphocytes in atherosclerotic plaques, suggest that this subpopulation may be of particular interest in studies examining the relation of leukocytes to cardiovascular disease.

  1. Localization of GABA(B) (R1) receptors in the rat hippocampus by immunocytochemistry and high resolution autoradiography, with specific reference to its localization in identified hippocampal interneuron subpopulations.

    PubMed

    Sloviter, R S; Ali-Akbarian, L; Elliott, R C; Bowery, B J; Bowery, N G

    1999-11-01

    immunocytochemically identified receptor protein and potentially functional receptors, indicating that GBR1-LI reflects both non-functional cytoplasmic GBR1 and the ligand-bindable form of the protein, both before dimerization with GBR2 and after translocation to functional sites within cells. The staining and binding patterns further suggest that GBR1 is constitutively expressed in specific neuronal populations, and may exist in higher concentration in the axons of inhibitory hippocampal pathways that innervate dendritic zones, than in axo-somatic inhibitory terminals. Whether GBR1 is inducible in cells that contain GBR1 mRNA, but no detectable constitutive protein, remains to be determined in experimental studies.

  2. Detailed analysis of epithelial-mesenchymal transition and tumor budding identifies predictors of long-term survival in pancreatic ductal adenocarcinoma.

    PubMed

    Kohler, Ilona; Bronsert, Peter; Timme, Sylvia; Werner, Martin; Brabletz, Thomas; Hopt, Ulrich Theodor; Schilling, Oliver; Bausch, Dirk; Keck, Tobias; Wellner, Ulrich Friedrich

    2015-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive biology and poor prognosis even after resection. Long-term survival is very rare and cannot be reliably predicted. Experimental data suggest an important role of epithelial-mesenchymal transition (EMT) in invasion and metastasis of PDAC. Tumor budding is regarded as the morphological correlate of local invasion and cancer cell dissemination. The aim of this study was to evaluate the biological and prognostic implications of EMT and tumor budding in PDAC of the pancreatic head. Patients were identified from a prospectively maintained database, and baseline, operative, histopathological, and follow-up data were extracted. Serial tissue slices stained for Pan-Cytokeratin served for analysis of tumor budding, and E-Cadherin, Beta-Catenin, and Vimentin staining for analysis of EMT. Baseline, operative, standard pathology, and immunohistochemical parameters were evaluated for prediction of long-term survival (≥ 30 months) in uni- and multivariate analysis. Intra- and intertumoral patterns of EMT marker expression and tumor budding provide evidence of partial EMT induction at the tumor-host interface. Lymph node ratio and E-Cadherin expression in tumor buds were independent predictors of long-term survival in multivariate analysis. Detailed immunohistochemical assessment confirms a relationship between EMT and tumor budding at the tumor-host interface. A small group of patients with favorable prognosis can be identified by combined assessment of lymph node ratio and EMT in tumor buds. © 2015 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  3. Identification of mouse mammary epithelial cells by immunofluorescence with rabbit and guinea pig antikeratin antisera.

    PubMed Central

    Asch, B B; Burstein, N A; Vidrich, A; Sun, T T

    1981-01-01

    Few markers are available to identify the three types of mammary epithelial cells--ductal, alveolar, and myoepithelial--especially in pathological conditions and in cell cultures. We have used antisera to human keratins in immunofluorescence to facilitate the identification of the three mouse mammary epithelial cell types. In frozen tissue sections and primary cell cultures, a rabbit antikeratin antiserum specifically stained cytoplasmic filaments in all three types of epithelial cells. A guinea pig antiserum against the same keratin preparation, however, reacted preferentially with filaments in myoepithelial cells and readily detected this cell type in normal, dysplastic, and malignant mammary tissues and cell cultures. Neither antisera reacted with fibroblasts or any other mesenchymal cells. The combined use of the two antikeratin antisera thereby permits rapid surveys of tissue sections and cultures for the localization of not only all epithelial cells but also the subpopulation of myoepithelial cells. Moreover, when mammary cultures established from late-pregnant or lactating mice were stained simultaneously with guinea pig antikeratin and rabbit anticasein antisera, three populations of epithelial cells were mutually exclusive: those stained by anticasein antiserum, those stained by guinea pig antikeratin antiserum, and those stained by neither, consistent with properties of alveolar, myoepithelial, and ductal cells, respectively. These antisera thus offer a tool for studying different epithelial cell types during mammary development, tumorigenesis, and malignant progression. Images PMID:6170984

  4. Connectivity among subpopulations of Louisiana black bears as estimated by a step selection function

    USGS Publications Warehouse

    Clark, Joseph D.; Jared S. Laufenberg,; Maria Davidson,; Jennifer L. Murrow,

    2015-01-01

    Habitat fragmentation is a fundamental cause of population decline and increased risk of extinction for many wildlife species; animals with large home ranges and small population sizes are particularly sensitive. The Louisiana black bear (Ursus americanus luteolus) exists only in small, isolated subpopulations as a result of land clearing for agriculture, but the relative potential for inter-subpopulation movement by Louisiana black bears has not been quantified, nor have characteristics of effective travel routes between habitat fragments been identified. We placed and monitored global positioning system (GPS) radio collars on 8 female and 23 male bears located in 4 subpopulations in Louisiana, which included a reintroduced subpopulation located between 2 of the remnant subpopulations. We compared characteristics of sequential radiolocations of bears (i.e., steps) with steps that were possible but not chosen by the bears to develop step selection function models based on conditional logistic regression. The probability of a step being selected by a bear increased as the distance to natural land cover and agriculture at the end of the step decreased and as distance from roads at the end of a step increased. To characterize connectivity among subpopulations, we used the step selection models to create 4,000 hypothetical correlated random walks for each subpopulation representing potential dispersal events to estimate the proportion that intersected adjacent subpopulations (hereafter referred to as successful dispersals). Based on the models, movement paths for males intersected all adjacent subpopulations but paths for females intersected only the most proximate subpopulations. Cross-validation and genetic and independent observation data supported our findings. Our models also revealed that successful dispersals were facilitated by a reintroduced population located between 2 distant subpopulations. Successful dispersals for males were dependent on natural land

  5. Identifying Metabolic Subpopulations from Population Level Mass Spectrometry

    PubMed Central

    Springer, Michael

    2016-01-01

    Metabolism underlies many important cellular decisions, such as the decisions to proliferate and differentiate, and defects in metabolic signaling can lead to disease and aging. In addition, metabolic heterogeneity can have biological consequences, such as differences in outcomes and drug susceptibilities in cancer and antibiotic treatments. Many approaches exist for characterizing the metabolic state of a population of cells, but technologies for measuring metabolism at the single cell level are in the preliminary stages and are limited. Here, we describe novel analysis methodologies that can be applied to established experimental methods to measure metabolic variability within a population. We use mass spectrometry to analyze amino acid composition in cells grown in a mixture of 12C- and 13C-labeled sugars; these measurements allow us to quantify the variability in sugar usage and thereby infer information about the behavior of cells within the population. The methodologies described here can be applied to a large range of metabolites and macromolecules and therefore have the potential for broad applications. PMID:26986964

  6. Systematic CpG Islands Methylation Profiling of Genes in the Wnt Pathway in Epithelial Ovarian Cancer Identifies Biomarkers of Progression-Free Survival

    PubMed Central

    Dai, Wei; Teodoridis, Jens M.; Zeller, Constanze; Graham, Janet; Hersey, Jenny; Flanagan, James M.; Stronach, Euan; Millan, David W.; Siddiqui, Nadeem; Paul, Jim; Brown, Robert

    2011-01-01

    Purpose Wnt pathways control key biological processes that potentially impact on tumour progression and patient survival. We aimed to evaluate DNA methylation at promoter CpG islands (CGIs) of Wnt pathway genes in ovarian tumours at presentation and identify biomarkers of patient progression-free survival (PFS). Experimental Design Epithelial ovarian tumours (screening study n=120, validation study n=61) prospectively collected through a cohort study, were analysed by differential methylation hybridisation (DMH) at 302 loci spanning 189 promoter CGIs at 137 genes in Wnt pathways. The association of methylation and progression free survival was examined by Cox proportional hazards model. Results DNA methylation is associated with PFS at 20/302 loci (p<0.05, n=111), with 5 loci significant at FDR<10%. 11/20 loci retain significance in an independent validation cohort (n=48,p≤0.05,FDR≤10%), and 7 of these loci, at FZD4, DVL1, NFATC3, ROCK1, LRP5, AXIN1 and NKD1 genes, are independent from clinical parameters (adjusted p<0.05). Increased methylation at these loci associates with increased hazard of disease progression. A multivariate Cox model incorporates only NKD1 and DVL1, identifying two groups differing in PFS (HR=2.09; 95%CI (1.39, 3.15); permutation test p<0.005). Methylation at DVL1 and NFATC3 show significant association with response. Consistent with their epigenetic regulation, reduced expression of FZD4, DVL1 and ROCK1 is an indicator of early disease relapse in an independent ovarian tumour cohort (n=311, adjusted p<0.05). Conclusions The data highlights the importance of epigenetic regulation of multiple promoter CGIs of Wnt pathway genes in ovarian cancer and identifies methylation at NKD1 and DVL1 as independent predictors of PFS. PMID:21459799

  7. Comparative Transcript Profiling of Candida albicans and Candida dubliniensis Identifies SFL2, a C. albicans Gene Required for Virulence in a Reconstituted Epithelial Infection Model ▿ †

    PubMed Central

    Spiering, Martin J.; Moran, Gary P.; Chauvel, Murielle; MacCallum, Donna M.; Higgins, Judy; Hokamp, Karsten; Yeomans, Tim; d'Enfert, Christophe; Coleman, David C.; Sullivan, Derek J.

    2010-01-01

    Candida albicans and Candida dubliniensis are closely related species displaying differences in virulence and genome content, therefore providing potential opportunities to identify novel C. albicans virulence genes. C. albicans gene arrays were used for comparative analysis of global gene expression in the two species in reconstituted human oral epithelium (RHE). C. albicans (SC5314) showed upregulation of hypha-specific and virulence genes within 30 min postinoculation, coinciding with rapid induction of filamentation and increased RHE damage. C. dubliniensis (CD36) showed no detectable upregulation of hypha-specific genes, grew as yeast, and caused limited RHE damage. Several genes absent or highly divergent in C. dubliniensis were upregulated in C. albicans. One such gene, SFL2 (orf19.3969), encoding a putative heat shock factor, was deleted in C. albicans. ΔΔsfl2 cells failed to filament under a range of hypha-inducing conditions and exhibited greatly reduced RHE damage, reversed by reintroduction of SFL2 into the ΔΔsfl2 strain. Moreover, SFL2 overexpression in C. albicans triggered hyphal morphogenesis. Although SFL2 deletion had no apparent effect on host survival in the murine model of systemic infection, ΔΔsfl2 strain-infected kidney tissues contained only yeast cells. These results suggest a role for SFL2 in morphogenesis and an indirect role in C. albicans pathogenesis in epithelial tissues. PMID:20023067

  8. T and B Lymphocyte Subpopulations

    ERIC Educational Resources Information Center

    Seeger, Robert C.; Stiehm, E. Richard

    1975-01-01

    Reviewed are diagnostic tests of symphocyte subgroups which identify immuno deficiency disorders (such as DiGeorge's Syndrome) and malignant cells in lymphoproliferative disorders (such as lumphoid leukemia). (CL)

  9. T and B Lymphocyte Subpopulations

    ERIC Educational Resources Information Center

    Seeger, Robert C.; Stiehm, E. Richard

    1975-01-01

    Reviewed are diagnostic tests of symphocyte subgroups which identify immuno deficiency disorders (such as DiGeorge's Syndrome) and malignant cells in lymphoproliferative disorders (such as lumphoid leukemia). (CL)

  10. Transcriptional regulators transforming growth factor-beta 1 and estrogen-related receptor-alpha identified as putative mediators of calf rumen epithelial tissue development and function during weaning

    USDA-ARS?s Scientific Manuscript database

    Molecular mechanisms controlling rumen epithelial development at weaning remain largely unknown. To identify gene networks and regulatory factors responsive to concentrate versus forage feeding at weaning, Holstein bull calves (n = 18) were fed commercial milk replacer only (MRO) until 42 d of age. ...

  11. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion

    PubMed Central

    Westcott, Jill M.; Prechtl, Amanda M.; Maine, Erin A.; Dang, Tuyen T.; Esparza, Matthew A.; Sun, Han; Zhou, Yunyun; Xie, Yang; Pearson, Gray W.

    2015-01-01

    Tumor cells can engage in a process called collective invasion, in which cohesive groups of cells invade through interstitial tissue. Here, we identified an epigenetically distinct subpopulation of breast tumor cells that have an enhanced capacity to collectively invade. Analysis of spheroid invasion in an organotypic culture system revealed that these “trailblazer” cells are capable of initiating collective invasion and promote non-trailblazer cell invasion, indicating a commensal relationship among subpopulations within heterogenous tumors. Canonical mesenchymal markers were not sufficient to distinguish trailblazer cells from non-trailblazer cells, suggesting that defining the molecular underpinnings of the trailblazer phenotype could reveal collective invasion-specific mechanisms. Functional analysis determined that DOCK10, ITGA11, DAB2, PDFGRA, VASN, PPAP2B, and LPAR1 are highly expressed in trailblazer cells and required to initiate collective invasion, with DOCK10 essential for metastasis. In patients with triple-negative breast cancer, expression of these 7 genes correlated with poor outcome. Together, our results indicate that spontaneous conversion of the epigenetic state in a subpopulation of cells can promote a transition from in situ to invasive growth through induction of a cooperative form of collective invasion and suggest that therapeutic inhibition of trailblazer cell invasion may help prevent metastasis. PMID:25844900

  12. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion.

    PubMed

    Westcott, Jill M; Prechtl, Amanda M; Maine, Erin A; Dang, Tuyen T; Esparza, Matthew A; Sun, Han; Zhou, Yunyun; Xie, Yang; Pearson, Gray W

    2015-05-01

    Tumor cells can engage in a process called collective invasion, in which cohesive groups of cells invade through interstitial tissue. Here, we identified an epigenetically distinct subpopulation of breast tumor cells that have an enhanced capacity to collectively invade. Analysis of spheroid invasion in an organotypic culture system revealed that these "trailblazer" cells are capable of initiating collective invasion and promote non-trailblazer cell invasion, indicating a commensal relationship among subpopulations within heterogenous tumors. Canonical mesenchymal markers were not sufficient to distinguish trailblazer cells from non-trailblazer cells, suggesting that defining the molecular underpinnings of the trailblazer phenotype could reveal collective invasion-specific mechanisms. Functional analysis determined that DOCK10, ITGA11, DAB2, PDFGRA, VASN, PPAP2B, and LPAR1 are highly expressed in trailblazer cells and required to initiate collective invasion, with DOCK10 essential for metastasis. In patients with triple-negative breast cancer, expression of these 7 genes correlated with poor outcome. Together, our results indicate that spontaneous conversion of the epigenetic state in a subpopulation of cells can promote a transition from in situ to invasive growth through induction of a cooperative form of collective invasion and suggest that therapeutic inhibition of trailblazer cell invasion may help prevent metastasis.

  13. Aptamer and Antisense-Mediated Two-Dimensional Isolation of Specific Cancer Cell Subpopulations.

    PubMed

    Labib, Mahmoud; Green, Brenda; Mohamadi, Reza M; Mepham, Adam; Ahmed, Sharif U; Mahmoudian, Laili; Chang, I-Hsin; Sargent, Edward H; Kelley, Shana O

    2016-03-02

    Cancer cells, and in particular those found circulating in blood, can have widely varying phenotypes and molecular profiles despite a common origin. New methods are needed that can deconvolute the heterogeneity of cancer cells and sort small numbers of cells to aid in the characterization of cancer cell subpopulations. Here, we describe a new molecular approach to capturing cancer cells that isolates subpopulations using two-dimensional sorting. Using aptamer-mediated capture and antisense-triggered release, the new strategy sorts cells according to levels of two different markers and thereby separates them into their corresponding subpopulations. Using a phenotypic assay, we demonstrate that the subpopulations isolated have markedly different properties. This system provides an important new tool for identifying circulating tumor cell subtypes.

  14. The use of Salmonella schottmulleri for mapping and separation of human lymphocyte subpopulations.

    PubMed

    DeBoer, K P; Bratescu, A; Teodorescu, M

    1981-01-01

    Human lymphocyte subpopulations (B cells, B1, B2, T1, T2, T3, and T4 cells; our denomination) have been previously identified and isolated by bacterial adherence and functional differences between them have been demonstrated. Here we examined the binding properties of Salmonella schottmulleri to human lymphocytes in peripheral blood smears and found that it binds to more lymphocyte subpopulations, namely B, T1, T2 and T3 cells, than any bacteria previously tested. Thus, using only four bacteria: Salmonella schottmulleri, Brucella melitensis, Arizona hinshawii and Bacillus globigii we identified in blood smears B cells, two B and four T cell subpopulations. When we used gelatin-coupled monolayers of Sal. schottmulleri to isolate lymphocyte subpopulations, we showed that the nonadherent (T4) cells could be efficiently separated from the adherent cells. Furthermore, we tested the isolated subpopulations for natural killing (NK) activity and for antibody-dependent cell-mediated cytotoxicity (ADCC). Using both NK and ADCC assays, we observed a significantly higher cytotoxic activity in the nonadherent cell population than in the unseparated or adherent cell populations. Also the nonadherent cells contained most of the lymphocytes that have receptors for the Fc portion of IgG and those cells described as large granular lymphocytes. We concluded that Sal. schottmulleri is a valuable new reagent for the identification and separation of human lymphocyte subpopulations.

  15. Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations

    PubMed Central

    Pardo-Saganta, Ana; Law, Brandon M; Tata, Purushothama Rao; Villoria, Jorge; Saez, Borja; Mou, Hongmei; Zhao, Rui; Rajagopal, Jayaraj

    2015-01-01

    Summary Following injury, stem cells restore normal tissue architecture by producing the proper number and proportions of differentiated cells. Current models of airway epithelial regeneration propose that distinct cytokeratin 8-expressing progenitor cells, arising from p63+ basal stem cells, subsequently differentiate into secretory and ciliated cell lineages. We now show that immediately following injury, discrete subpopulations of p63+ airway basal stem/progenitor cells themselves express Notch pathway components associated with either secretory or ciliated cell fate commitment. One basal cell population displays intracellular Notch2 activation and directly generates secretory cells; the other expresses c-myb and directly yields ciliated cells. Furthermore, disrupting Notch ligand activity within the basal cell population at large disrupts the normal pattern of lineage segregation. These non-cell autonomous effects demonstrate that effective airway epithelial regeneration requires intercellular communication within the broader basal stem/progenitor cell population. These findings have broad implications for understanding epithelial regeneration and stem cell heterogeneity. PMID:25658372

  16. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines

    PubMed Central

    2011-01-01

    Background Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. Methods The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR. Results The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. Conclusions These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients. PMID:21496221

  17. A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition.

    PubMed

    Mak, Milena P; Tong, Pan; Diao, Lixia; Cardnell, Robert J; Gibbons, Don L; William, William N; Skoulidis, Ferdinandos; Parra, Edwin R; Rodriguez-Canales, Jaime; Wistuba, Ignacio I; Heymach, John V; Weinstein, John N; Coombes, Kevin R; Wang, Jing; Byers, Lauren Averett

    2016-02-01

    We previously demonstrated the association between epithelial-to-mesenchymal transition (EMT) and drug response in lung cancer using an EMT signature derived in cancer cell lines. Given the contribution of tumor microenvironments to EMT, we extended our investigation of EMT to patient tumors from 11 cancer types to develop a pan-cancer EMT signature. Using the pan-cancer EMT signature, we conducted an integrated, global analysis of genomic and proteomic profiles associated with EMT across 1,934 tumors including breast, lung, colon, ovarian, and bladder cancers. Differences in outcome and in vitro drug response corresponding to expression of the pan-cancer EMT signature were also investigated. Compared with the lung cancer EMT signature, the patient-derived, pan-cancer EMT signature encompasses a set of core EMT genes that correlate even more strongly with known EMT markers across diverse tumor types and identifies differences in drug sensitivity and global molecular alterations at the DNA, RNA, and protein levels. Among those changes associated with EMT, pathway analysis revealed a strong correlation between EMT and immune activation. Further supervised analysis demonstrated high expression of immune checkpoints and other druggable immune targets, such as PD1, PD-L1, CTLA4, OX40L, and PD-L2, in tumors with the most mesenchymal EMT scores. Elevated PD-L1 protein expression in mesenchymal tumors was confirmed by IHC in an independent lung cancer cohort. This new signature provides a novel, patient-based, histology-independent tool for the investigation of EMT and offers insights into potential novel therapeutic targets for mesenchymal tumors, independent of cancer type, including immune checkpoints. ©2015 American Association for Cancer Research.

  18. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial to mesenchymal transition

    PubMed Central

    Mak, Milena P.; Tong, Pan; Diao, Lixia; Cardnell, Robert J.; Gibbons, Don L.; William, William N.; Skoulidis, Ferdinandos; Parra, Edwin R.; Rodriguez-Canales, Jaime; Wistuba, Ignacio I.; Heymach, John V.; Weinstein, John N.; Coombes, Kevin R.; Wang, Jing; Byers, Lauren Averett

    2015-01-01

    Purpose We previously demonstrated the association between epithelial-to-mesenchymal transition (EMT) and drug response in lung cancer using an EMT signature derived in cancer cell lines. Given the contribution of tumor microenvironments to EMT, we extended our investigation of EMT to patient tumors from 11 cancer types to develop a pan-cancer EMT signature. Experimental Design Using the pan-cancer EMT signature, we conducted an integrated, global analysis of genomic and proteomic profiles associated with EMT across 1,934 tumors including breast, lung, colon, ovarian, and bladder cancers. Differences in outcome and in vitro drug response corresponding to expression of the pan-cancer EMT signature were also investigated. Results Compared to the lung cancer EMT signature, the patient-derived, pan-cancer EMT signature encompasses a set of core EMT genes that correlate even more strongly with known EMT markers across diverse tumor types and identifies differences in drug sensitivity and global molecular alterations at the DNA, RNA, and protein levels. Among those changes associated with EMT, pathway analysis revealed a strong correlation between EMT and immune activation. Further supervised analysis demonstrated high expression of immune checkpoints and other druggable immune targets such as PD1, PD-L1, CTLA4, OX40L, and PDL2, in tumors with the most mesenchymal EMT scores. Elevated PD-L1 protein expression in mesenchymal tumors was confirmed by immunohistochemistry in an independent lung cancer cohort. Conclusions This new signature provides a novel, patient-based, histology-independent tool for the investigation of EMT and offers insights into potential novel therapeutic targets for mesenchymal tumors, independent of cancer type, including immune checkpoints. PMID:26420858

  19. Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6.

    PubMed

    Ma'ayeh, Showgy Yasir; Brook-Carter, Phillip Thomas

    2012-05-01

    Giardia duodenalis is a re-emerging protozoan parasite that causes diarrhoea in humans, significantly affecting the health of many people globally. To date, little is known about the genetic events underpinning the establishment of infection in host cells; however, the parasite's ventral disc, proteases and variable surface proteins (VSPs) are recognised as important pathogenic factors. In this study, representational difference analysis (RDA) was used to identify differentially expressed genes in four different Giardia isolates (WB, P-1, NF and GS/M) during the first 2h of in vitro interaction with the rat intestinal epithelial cell line, IEC-6. RDA showed that more than 40 genes were differentially expressed in each of the four Giardia isolates upon IEC-6 cells infection. Most of the up-regulated genes were common to the four isolates except for those encoding proteins possibly involved in immune evasion such as VSPs, high cysteine membrane proteins (HCMp), hypothetical proteins, and oxygen defence proteins (e.g., thioredoxin, peroxiredoxin 1). Differences in the expressed VSPs and HCMp may account for the variation in symptoms during giardiasis. Interestingly, the NF isolate solely expressed genes involved in encystation during interaction with IEC-6 (e.g., glucosamine 6-phosphate isomerase, dynamin, acid sphingomyelinase-like phosphodiesterase) suggesting that encystation signals could be different for this isolate. Common to the four isolates, transcripts for genes involved in glycolysis (e.g., glucose-6-phosphate dehydrogenase, fructose bisphosphate aldolase, enolase), attachment (γ and α1 giardins) and cysteine proteases were frequently detected. Genes involved in transcription, translation, signalling and cell cycle control were also up-regulated. This study shows that the RDA technique has selectively isolated genes involved in host-parasite interactions and complements previous microarray data. Some of the detected genes are also discussed as potential

  20. New Model for Population-Subpopulation Differences

    DTIC Science & Technology

    2007-02-01

    compares the previous and new models. 15. SUBJECT TERMS Lognormal distribution Risk assessment Normal distribution Demographics Conversion factor ...difference by applying an uncertainty factor ; the default uncertainty factor for the difference between a population and a subpopulation is 10-see, for...example, Whalan, Foureman, and Vandenberg (2006). Uncertainty factors are typically applied to a low percentile of a distribution to estimate a safe

  1. Subpopulations of B lymphocytes in germinal centers.

    PubMed

    Fyfe, G; Cebra-Thomas, J A; Mustain, E; Davie, J M; Alley, C D; Nahm, M H

    1987-10-01

    With two new monoclonal antibodies and flow cytometry, we defined three subpopulations among B cells expressing binding sites for peanut agglutinin (i.e., B cells of the germinal center). On monoclonal antibody (5B5) binds globotriaosyl ceramide. The B lymphocytes binding 5B5 have binding sites for peanut agglutinin on the surface and express only small amounts of sIgD and sIgM. When tested against a panel of B cell lines, only Burkitt's lymphoma cells were 5B5+. Moreover, the 5B5+ cells have larger average sizes and a large fraction of proliferating cells. The other monoclonal antibody (HK23) binds a 90,000 protein. Lymphocytes binding HK23 are 5B5- and include T cells and a subpopulation of B cells. In contrast to 5B5+ cells, the HK23+ and peanut agglutinin positive B cells express a large amount of sIgM. These two subpopulations of germinal centers are distinct from the germinal center B cell subpopulation expressing the CD23 (Blast-2) antigen. The CD23+ B cells are 5B5- and express an intermediate level of HK23 antigen. In addition, CD23+ B cells are highly variable in number, whereas the proportions of HK23+ and 5B5+ cells are relatively stable.

  2. Morphologically and Functionally Distinct Lipid Droplet Subpopulations

    PubMed Central

    Zhang, Shuyan; Wang, Yang; Cui, Liujuan; Deng, Yaqin; Xu, Shimeng; Yu, Jinhai; Cichello, Simon; Serrero, Ginette; Ying, Yunshu; Liu, Pingsheng

    2016-01-01

    Lipid droplet (LD), a multi-functional organelle, is often found to associate with other cellular membranous structures and vary in size in a given cell, which may be related to their functional diversity. Here we established a method to separate LD subpopulations from isolated CHO K2 LDs into three different size categories. The subpopulation with smallest LDs was nearly free of ER and other membranous structures while those with larger LDs contained intact ER. These distinct subpopulations of LDs differed in their protein composition and ability to recruit proteins. This method was also applicable to LDs obtained from other sources, such as Huh7 cells, mouse liver and brown adipose tissue, et al. We developed an in vitro assay requiring only isolated LDs, Coenzyme A, and ATP to drive lipid synthesis. The LD subpopulation nearly depleted of ER was able to incorporate fatty acids into triacylglycerol and phospholipids. Together, our data demonstrate that LDs in a given cell are heterogeneous in size and function, and suggest that LDs are one of cellular lipid synthetic organelles. PMID:27386790

  3. STR profiling of epithelial cells identified by X/Y-FISH labelling and laser microdissection using standard and elevated PCR conditions.

    PubMed

    Lynch, Laura; Gamblin, Amelia; Vintiner, Sue; Simons, Joanne L

    2015-05-01

    During the investigation of allegations of sexual assault, samples are frequently encountered that contain DNA from a female and a male donor. These may represent contributions of DNA from the complainant and potentially, the offender. Many semen stained samples successfully undergo DNA analysis and interpretation using a differential extraction method that separates sperm from the epithelial cells present in the stain. However, for those mixed cell samples that contain only epithelial cells, separation of any male cells from female cells is problematic. This paper describes the application of fluorescent in situ hybridisation (FISH) for the gender identification of epithelial cells and subsequent recovery of target cells using laser microdissection (LMD). The profiling results obtained from samples of known cell numbers using the Identifiler™ multiplex at standard 28-cycle PCR conditions and, when cell numbers are low, the SGM Plus™ multiplex at elevated 34-cycle PCR conditions (also known as Low Copy Number DNA analysis (LCN)) are described.

  4. Proteome profiling of immortalization-to-senescence transition of human breast epithelial cells identified MAP2K3 as a senescence-promoting protein which is downregulated in human breast cancer.

    PubMed

    Jia, Min; Souchelnytskyi, Nazariy; Hellman, Ulf; O'Hare, Michael; Jat, Parmjit S; Souchelnytskyi, Serhiy

    2010-11-01

    immortalization is one of the first changes in cells undergoing carcinogenic transformation. Proteome profiling of the immortalization-senescence transition is expected to provide insights into the molecular mechanisms of early tumorigenesis. 2-DE and MALDI-MS were used to identify proteins in primary human breast epithelial cells, relevant to the immortalization-senescence transition. Cell and molecular biology and immunohistochemistry were used to validate involvement of mitogen-activated protein kinase kinase 3 (MAP2K3) in the immortalization-senescence transition. we identified 71 proteins whose expression changed upon induction of senescence. The identified proteins include regulators of cell growth, death, cell assembly and organization. Analysis of the network formed by the identified proteins suggested that the immortalization-to-senescence transition could affect regulators of the cell cycle, protein synthesis, transport, post-translational modifications, DNA recombination and repair, and lipid and amino acid metabolism. We observed that MAP2K3 was downregulated in immortal human breast epithelial cells and that upregulation of MAP2K3 expression promoted cell senescence. Decreased expression of MAP2K3 was observed in human breast infiltrating ductal carcinomas, as compared to non-cancerous human breast tissues. we described a proteome profile of the immortalization-to-senescence transition for human breast epithelial cells, and identified MAP2K3 as a protein that promotes senescence in these cells.

  5. Using multiple online databases to help identify microRNAs regulating the airway epithelial cell response to a virus-like stimulus.

    PubMed

    Herbert, Cristan; Sebesfi, Michelle; Zeng, Qing-Xiang; Oliver, Brian G; Foster, Paul S; Kumar, Rakesh K

    2015-11-01

    Exacerbations of allergic asthma are often triggered by respiratory viral infections. We have previously shown that in a T-helper type 2 (Th2)-biased cytokine environment, mouse and human airway epithelial cells (AEC) exhibit increased expression of pro-inflammatory and anti-viral genes in response to synthetic double-stranded ribonucleic acid (dsRNA), a virus-like stimulus. This implies coordinated regulation of gene expression, suggesting possible involvement of microRNA. To investigate this, we developed a novel approach to identifying candidate microRNA using online databases, then confirmed their expression by quantitative real-time polymerase chain reaction (qRT-PCR). Using a list of genes of interest, defined on the basis of the previous study as being up-regulated in a Th2 environment, we searched mouse and human microRNA databases for possible regulatory microRNA, and selected 10 candidates that were conserved across species or predicted by more than one human database. Expression of these microRNA was tested by qRT-PCR, in primary human AEC pre-treated with Th2 cytokines and exposed to dsRNA. Expression of hsa-miR-139-5p, miR-423-5p and miR-542-3p was significantly decreased in Th2 pre-treated AEC, and miR-135a-5p exhibited a trend towards decreased expression. Further database searches confirmed that these microRNA regulated additional pro-inflammatory and anti-viral response genes for which expression had previously been shown to be up-regulated, confirming the validity of this approach. Our study demonstrates the value of using multiple online databases to identify candidate regulatory microRNA and provides the first evidence that in an allergic environment, microRNA may be important in altering the pro-inflammatory and anti-viral responses of human AEC during exacerbations of asthma. © 2015 Asian Pacific Society of Respirology.

  6. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts.

    PubMed

    Gerloff, Janice; Sundar, Isaac K; Freter, Robert; Sekera, Emily R; Friedman, Alan E; Robinson, Risa; Pagano, Todd; Rahman, Irfan

    2017-03-01

    Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography-mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell surface

  7. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography–Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts

    PubMed Central

    Gerloff, Janice; Sundar, Isaac K.; Freter, Robert; Sekera, Emily R.; Friedman, Alan E.; Robinson, Risa; Pagano, Todd

    2017-01-01

    Abstract Recent studies suggest that electronic cigarette (e-cig) flavors can be harmful to lung tissue by imposing oxidative stress and inflammatory responses. The potential inflammatory response by lung epithelial cells and fibroblasts exposed to e-cig flavoring chemicals in addition to other risk-anticipated flavor enhancers inhaled by e-cig users is not known. The goal of this study was to evaluate the release of the proinflammatory cytokine (interleukin-8 [IL-8]) and epithelial barrier function in response to different e-cig flavoring chemicals identified in various e-cig e-liquid flavorings and vapors by chemical characterization using gas chromatography–mass spectrometry analysis. Flavorings, such as acetoin (butter), diacetyl, pentanedione, maltol (malt), ortho-vanillin (vanilla), coumarin, and cinnamaldehyde in comparison with tumor necrosis factor alpha (TNFα), were used in this study. Human bronchial epithelial cells (Beas2B), human mucoepidermoid carcinoma epithelial cells (H292), and human lung fibroblasts (HFL-1) were treated with each flavoring chemical for 24 hours. The cells and conditioned media were then collected and analyzed for toxicity (viability %), lung epithelial barrier function, and proinflammatory cytokine IL-8 release. Cell viability was not significantly affected by any of the flavoring chemicals tested at a concentration of 10 μM to 1 mM. Acetoin and diacetyl treatment induced IL-8 release in Beas2B cells. Acetoin- and pentanedione-treated HFL-1 cells produced a differential, but significant response for IL-8 release compared to controls and TNFα. Flavorings, such as ortho-vanillin and maltol, induced IL-8 release in Beas2B cells, but not in H292 cells. Of all the flavoring chemicals tested, acetoin and maltol were more potent inducers of IL-8 release than TNFα in Beas2B and HFL-1 cells. Flavoring chemicals rapidly impaired epithelial barrier function in human bronchial epithelial cells (16-HBE) as measured by electric cell

  8. Subpopulation-proteomics in prokaryotic populations.

    PubMed

    Jahn, Michael; Seifert, Jana; von Bergen, Martin; Schmid, Andreas; Bühler, Bruno; Müller, Susann

    2013-02-01

    Clonal microbial cells do not behave in an identical manner and form subpopulations during cultivation. Besides varying micro-environmental conditions, cell inherent features like cell cycle dependent localization and concentration of regulatory proteins as well as epigenetic properties are well accepted mechanisms creating cell heterogeneity. Another suspected reason is molecular noise on the transcriptional and translational level. A promising tool to unravel reasons for cell heterogeneity is the combination of cell sorting and subpopulation proteomics. This review summarizes recent developments in prokaryotic single-cell analytics and provides a workflow for selection of single cells, low cell number mass spectrometry, and proteomics evaluation. This approach is useful for understanding the dependency of individual cell decisions on inherent protein profiles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Differential detergent sensitivity of extracellular vesicle subpopulations.

    PubMed

    Osteikoetxea, Xabier; Sódar, Barbara; Németh, Andrea; Szabó-Taylor, Katalin; Pálóczi, Krisztina; Vukman, Krisztina V; Tamási, Viola; Balogh, Andrea; Kittel, Ágnes; Pállinger, Éva; Buzás, Edit Irén

    2015-10-14

    Extracellular vesicles (including exosomes, microvesicles and apoptotic bodies) are currently attracting rapidly increasing attention from various fields of biology due to their ability to carry complex information and act as autocrine, paracrine and even endocrine intercellular messengers. In the present study we investigated the sensitivity of size-based subpopulations of extracellular vesicles to different concentrations of detergents including sodium dodecyl sulphate, Triton X-100, Tween 20 and deoxycholate. We determined the required detergent concentration that lysed each of the vesicle subpopulations secreted by Jurkat, THP-1, MiaPaCa and U937 human cell lines. We characterized the vesicles by tunable resistive pulse sensing, flow cytometry and transmission electron microscopy. Microvesicles and apoptotic bodies were found to be more sensitive to detergent lysis than exosomes. Furthermore, we found evidence that sodium dodecyl sulphate and Triton X-100 were more effective in vesicle lysis at low concentrations than deoxycholate or Tween 20. Taken together, our data suggest that a combination of differential detergent lysis with tunable resistive pulse sensing or flow cytometry may prove useful for simple and fast differentiation between exosomes and other extracellular vesicle subpopulations as well as between vesicular and non-vesicular structures.

  10. Classification of circulating tumor cells by epithelial-mesenchymal transition markers.

    PubMed

    Wu, Shiyang; Liu, Suyan; Liu, Zhiming; Huang, Jiefeng; Pu, Xiaoyu; Li, Jing; Yang, Dinghua; Deng, Haijun; Yang, Ning; Xu, Jiasen

    2015-01-01

    In cancer, epithelial-mesenchymal transition (EMT) is associated with metastasis. Characterizing EMT phenotypes in circulating tumor cells (CTCs) has been challenging because epithelial marker-based methods have typically been used for the isolation and detection of CTCs from blood samples. The aim of this study was to use the optimized CanPatrol CTC enrichment technique to classify CTCs using EMT markers in different types of cancers. The first step of this technique was to isolate CTCs via a filter-based method; then, an RNA in situ hybridization (RNA-ISH) method based on the branched DNA signal amplification technology was used to classify the CTCs according to EMT markers. Our results indicated that the efficiency of tumor cell recovery with this technique was at least 80%. When compared with the non-optimized method, the new method was more sensitive and more CTCs were detected in the 5-ml blood samples. To further validate the new method, 164 blood samples from patients with liver, nasopharyngeal, breast, colon, gastric cancer, or non-small-cell lung cancer (NSCLC) were collected for CTC isolation and characterization. CTCs were detected in 107 (65%) of 164 blood samples, and three CTC subpopulations were identified using EMT markers, including epithelial CTCs, biophenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. Compared with the earlier stages of cancer, mesenchymal CTCs were more commonly found in patients in the metastatic stages of the disease in different types of cancers. Circulating tumor microemboli (CTM) with a mesenchymal phenotype were also detected in the metastatic stages of cancer. Classifying CTCs by EMT markers helps to identify the more aggressive CTC subpopulation and provides useful evidence for determining an appropriate clinical approach. This method is suitable for a broad range of carcinomas.

  11. Differential In Vivo Tumorigenicity of Distinct Subpopulations from a Luminal-Like Breast Cancer Xenograft

    PubMed Central

    Skrbo, Nirma; Hjortland, Geir-Olav; Kristian, Alexandr; Holm, Ruth; Nord, Silje; Prasmickaite, Lina; Engebraaten, Olav; Mælandsmo, Gunhild M.; Sørlie, Therese; Andersen, Kristin

    2014-01-01

    Intratumor heterogeneity caused by genetic, phenotypic or functional differences between cancer cell subpopulations is a considerable clinical challenge. Understanding subpopulation dynamics is therefore central for both optimization of existing therapy and for development of new treatment. The aim of this study was to isolate subpopulations from a primary tumor and by comparing molecular characteristics of these subpopulations, find explanations to their differing tumorigenicity. Cell subpopulations from two patient derived in vivo models of primary breast cancer, ER+ and ER-, were identified. EpCAM+ cells from the ER+ model gave rise to tumors independently of stroma cell support. The tumorigenic fraction was further divided based on SSEA-4 and CD24 expression. Both markers were expressed in ER+ breast cancer biopsies. FAC-sorted cells based on EpCAM, SSEA-4 and CD24 expression were subsequently tested for differences in functionality by in vivo tumorigenicity assay. Three out of four subpopulations of cells were tumorigenic and showed variable ability to recapitulate the marker expression of the original tumor. Whole genome expression analysis of the sorted populations disclosed high similarity in the transcriptional profiles between the tumorigenic populations. Comparing the non-tumorigenic vs the tumorigenic populations, 44 transcripts were, however, significantly differentially expressed. A subset of these, 26 identified and named genes, highly expressed in the non-tumorigenic population, predicted longer overall survival (N = 737, p<0.0001) and distant metastasis free survival (DMFS) (N = 1379, p<0.0001) when performing Kaplan-Meier survival analysis using the GOBO online database. The 26 gene set correlated with longer DMFS in multiple breast cancer subgroups. Copy number profiling revealed no aberrations that could explain the observed differences in tumorigenicity. This study emphasizes the functional variability among cell populations that are

  12. Epcam, CD44, and CD49f Distinguish Sphere-Forming Human Prostate Basal Cells from a Subpopulation with Predominant Tubule Initiation Capability

    PubMed Central

    Guo, Changyong; Liu, Haibo; Zhang, Bao-Hui; Cadaneanu, Radu M.; Mayle, Aqila M.; Garraway, Isla P.

    2012-01-01

    Background Human prostate basal cells expressing alpha-6 integrin (CD49fHi) and/or CD44 form prostaspheres in vitro. This functional trait is often correlated with stem/progenitor (S/P) activity, including the ability to self-renew and induce differentiated tubules in vivo. Antigenic profiles that distinguish tubule-initiating prostate stem cells (SCs) from progenitor cells (PCs) and mature luminal cells (LCs) with less regenerative potential are unknown. Methodology/Principle Findings Prostasphere assays and RT-PCR analysis was performed following FACS separation of total benign prostate cells based upon combinations of Epcam, CD44, and/or CD49f expression. Epithelial cell fractions were isolated, including Epcam+CD44+ and Epcam+CD44+CD49fHi basal cells that formed abundant spheres. When non-sphere-forming Epcam+CD44− cells were fractionated based upon CD49f expression, a distinct subpopulation (Epcam+CD44−CD49fHi) was identified that possessed a basal profile similar to Epcam+CD44+CD49fHi sphere-forming cells (p63+ARLoPSA−). Evaluation of tubule induction capability of fractionated cells was performed, in vivo, via a fully humanized prostate tissue regeneration assay. Non-sphere-forming Epcam+CD44− cells induced significantly more prostate tubular structures than Epcam+CD44+ sphere-forming cells. Further fractionation based upon CD49f co-expression identified Epcam+CD44−CD49fHi (non-sphere-forming) basal cells with significantly increased tubule induction activity compared to Epcam+CD44−CD49fLo (true) luminal cells. Conclusions/Significance Our data delineates antigenic profiles that functionally distinguish human prostate epithelial subpopulations, including putative SCs that display superior tubule initiation capability and induce differentiated ductal/acini structures, sphere-forming PCs with relatively decreased tubule initiation activity, and terminally differentiated LCs that lack both sphere–forming and tubule-initiation activity. The results

  13. [High-Content siRNA Screen of the Kinome Identifies Kinases Involved in Git2-Induced Mesenchymal-Epithelial Transition].

    PubMed

    Cao, M G; Xu, J; Yang, Q F; Guo, Z P; Zhang, K B; Li, X-B; Wu, S Q; Zhou, W

    2017-01-01

    Epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET) programs are involced in the metastatic process. More and more evidence confirms that EMT is vital for the initiation and dissemination of cancer cells whereas MET is critical for successful metastatic colonization of a secondary organ. The regulating mechanism of EMT mediated cancer progression and metastasis has been deeply investigated. However, what processes are dependent on MET in metastatic cascades remains unclear. Here, we created a cell based high-content siRNA screen using the breast cancer cell line 4TO7 to search for kinases that were involved in Git2-induced MET. Our results revealed that 58 kinases including transferase, phosphorylation regulators, ATP/nucleotide partners potentially participate in Git2-induced MET. Our preliminary data is expected to facilitate elucidation of the mechanism on how MET is initiated during cancer metastasis.

  14. Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm.

    PubMed

    Garson, Kenneth; Vanderhyden, Barbara C

    2015-02-01

    The lack of significant progress in the treatment of epithelial ovarian cancer (EOC) underscores the need to gain a better understanding of the processes that lead to chemoresistance and recurrence. The cancer stem cell (CSC) hypothesis offers an attractive explanation of how a subpopulation of cells within a patient's tumour might remain refractory to treatment and subsequently form the basis of recurrent chemoresistant disease. This review examines the literature defining somatic stem cells of the ovary and fallopian tube, two tissues that give rise to EOC. In addition, considerable research has been reviewed, that has identified subpopulations of EOC cells, based on marker expression (CD133, CD44, CD117, CD24, epithelial cell adhesion molecule, LY6A, ALDH1 and side population (SP)), which are enriched for tumour initiating cells (TICs). While many studies identified either CD133 or CD44 as markers useful for enriching for TICs, there is little consensus. This suggests that EOC cells may have a phenotypic plasticity that may preclude the identification of universal markers defining a CSC. The assay that forms the basis of quantifying TICs is the xenograft assay. Considerable controversy surrounds the xenograft assay and it is essential that some of the potential limitations be examined in this review. Highlighting such limitations or weaknesses is required to properly evaluate data and broaden our interpretation of potential mechanisms that might be contributing to the pathogenesis of ovarian cancer.

  15. Characteristics and Travel Patterns of New York Residents: Subpopulations of Persons with a Disability in 2009

    SciTech Connect

    Hwang, Ho-Ling; Reuscher, Tim; Wilson, Daniel W.

    2016-08-01

    In this study, Oak Ridge National Laboratory (ORNL) was tasked by the NYS Department of Transportation (DOT) to conduct a detailed examination of travel behaviors, and identify patterns and trends, on several NYS subpopulations, including disabled persons. Unlike other studies that concentrated on national level statistics, this research is focused on examining issues associated with travelers among NYS residents only. For each special subpopulation group, ORNL will identify differences, if any, in travel patterns that are attributable to demographic characteristics, household characteristics, modal characteristics, geographic location, and other concepts. Focus will be given to trip frequency, trip chaining, as well as travel by time of day, trip purpose, and mode choice.

  16. A novel Foxn1(eGFP/+) mouse model identifies Bmp4-induced maintenance of Foxn1 expression and thymic epithelial progenitor populations.

    PubMed

    Barsanti, Marco; Lim, Joanna M C; Hun, Michael L; Lister, Natalie; Wong, Kahlia; Hammett, Maree V; Lepletier, Ailin; Boyd, Richard L; Giudice, Antonietta; Chidgey, Ann P

    2017-02-01

    Although forkhead-box n1 (Foxn1) is a critical thymic epithelial cell regulator in thymus organogenesis, its association with epithelial differentiation and homeostasis in the postnatal and aged thymic microenvironment remains conflicting. Consequently, we have generated a Foxn1(eGFP/+) knock-in mouse model that allows for refined investigation of the aging thymic epithelium. This reporter line differs from those previously published in that concomitant expression of enhanced green fluorescent protein enables live cell sorting of Foxn1(+) cell populations. Our heterozygotes did not exhibit haploinsufficiency, with Foxn1 expression resembling that of wild-type mice. Comparative analysis between Foxn1 and enhanced green fluorescent protein at both the transcriptional and translational levels revealed co-localization, with progressive down-regulation observed predominantly in the aging cortical epithelium. Supplementation with bone morphogenetic protein (Bmp)-4 enhanced Foxn1 expression and colony forming efficiency in both embryonic and adult progenitor 3D cultures. Strikingly, selective maintenance of immature cortical and medullary epithelial cells was observed which is consistent with the higher Bmp receptor 2 expression levels seen in these progenitor populations. This study demonstrates the significance of our mouse model in unraveling the role of this master regulator in thymus development, homeostasis and aging, providing a faithful reporter system for phenotypic and functional investigations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Redox subpopulations and the risk of cancer progression: a new method for characterizing redox heterogeneity

    NASA Astrophysics Data System (ADS)

    Xu, He N.; Li, Lin Z.

    2016-02-01

    It has been shown that a malignant tumor is akin to a complex organ comprising of various cell populations including tumor cells that are genetically, metabolically and functionally different. Our redox imaging data have demonstrated intra-tumor redox heterogeneity in all mouse xenografts derived from human melanomas, breast, prostate, and colon cancers. Based on the signals of NADH and oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD)) and their ratio, i.e., the redox ratio, which is an indicator of mitochondrial metabolic status, we have discovered several distinct redox subpopulations in xenografts of breast tumors potentially recapitulating functional/metabolic heterogeneity within the tumor. Furthermore, xenografts of breast tumors with higher metastatic potential tend to have a redox subpopulation whose redox ratio is significantly different from that of tumors with lower metastatic potential and usually have a bi-modal distribution of the redox ratio. The redox subpopulations from human breast cancer samples can also be very complex with multiple subpopulations as determined by fitting the redox ratio histograms with multi- Gaussian functions. In this report, we present a new method for identifying the redox subpopulations within individual breast tumor xenografts and human breast tissues, which may be used to differentiate between breast cancer and normal tissue and among breast cancer with different risks of progression.

  18. Subpopulations of rat B2(+) neuroblasts exhibit differential neurotrophin responsiveness during sympathetic development.

    PubMed

    Goldhawk, D E; Meakin, S O; Verdi, J M

    2000-02-15

    Sympathetic neurons comprise a population of postmitotic, tyrosine hydroxylase expressing cells whose survival is dependent upon nerve growth factor (NGF) both in vivo and in vitro. However, during development precursors to rat sympathetic neurons in the thoracolumbar region are not responsive to NGF because they lack the signal transducing NGF receptor, trkA. We have previously shown that acquisition of trkA expression is sufficient to confer a functional response to NGF. Here we describe four subpopulations of thoracolumbar sympathetic neuroblasts which are mitotically active and unresponsive to NGF at E13.5 of rat gestation, but differ based upon their neurotrophic responsiveness in vitro. The survival in culture of the largest sympathetic subpopulation is mediated by neurotrophin-3 (NT-3) or glial-derived neurotrophic factor (GDNF), whereas the cell survival of two smaller subpopulations of neuroblasts are mediated by either solely GDNF or solely NT-3. Finally, we identify a subpopulation of sympathetic neuroblasts in the thoracolumbar region whose survival, exit from the cell cycle, induction of trkA expression, and consequent acquisition of NGF responsiveness in culture appear to be neurotrophin independent and cell autonomous. These subpopulations reflect the diversity of neurotrophic actions that occur in the proper development of sympathetic neurons.

  19. A cluster analysis method for identification of subpopulations of cells in flow cytometric list-mode arrays

    NASA Technical Reports Server (NTRS)

    Li, Z. K.

    1985-01-01

    A specialized program was developed for flow cytometric list-mode data using an heirarchical tree method for identifying and enumerating individual subpopulations, the method of principal components for a two-dimensional display of 6-parameter data array, and a standard sorting algorithm for characterizing subpopulations. The program was tested against a published data set subjected to cluster analysis and experimental data sets from controlled flow cytometry experiments using a Coulter Electronics EPICS V Cell Sorter. A version of the program in compiled BASIC is usable on a 16-bit microcomputer with the MS-DOS operating system. It is specialized for 6 parameters and up to 20,000 cells. Its two-dimensional display of Euclidean distances reveals clusters clearly, as does its 1-dimensional display. The identified subpopulations can, in suitable experiments, be related to functional subpopulations of cells.

  20. Elevated T cell subpopulations in dental students

    SciTech Connect

    Eedy, D.J.; Burrows, D.; Clifford, T.; Fay, A. )

    1990-05-01

    The absolute numbers of circulating white cells and lymphocyte subpopulations were studied in 25 final-year dental students and compared with a control group of 28 medical students. The total lymphocyte count, total T cell numbers (CD3), T helper/inducer (CD4), and T suppressor/cytotoxic (CD8) numbers were significantly elevated in the dental students as compared with the control group. There was no significant difference in the T helper/inducer to T suppressor/cytotoxic cell ratios or the circulating B cell (CD21) and natural killer cell (CD16) numbers between the study and control groups. Patch testing to mercury and mercuric compounds in both the study and control groups showed no evidence of cutaneous hypersensitivity to mercury. The reason for the observed elevations in T cell subpopulations in dental students is not clear. However, one possible explanation is the dental student's occupational exposure to mercury. Further work is underway to examine this possible relationship and it is suggested that dental personnel take adequate measures to reduce their exposure to mercury until the results of these studies are available.

  1. The Gulliver Effect: The Impact of Error in an Elephantine Subpopulation on Estimates for Lilliputian Subpopulations

    ERIC Educational Resources Information Center

    Micceri, Theodore; Parasher, Pradnya; Waugh, Gordon W.; Herreid, Charlene

    2009-01-01

    An extensive review of the research literature and a study comparing over 36,000 survey responses with archival true scores indicated that one should expect a minimum of at least three percent random error for the least ambiguous of self-report measures. The Gulliver Effect occurs when a small proportion of error in a sizable subpopulation exerts…

  2. Improving removal-based estimates of abundance by sampling a population of spatially distinct subpopulations

    USGS Publications Warehouse

    Dorazio, R.M.; Jelks, H.L.; Jordan, F.

    2005-01-01

     A statistical modeling framework is described for estimating the abundances of spatially distinct subpopulations of animals surveyed using removal sampling. To illustrate this framework, hierarchical models are developed using the Poisson and negative-binomial distributions to model variation in abundance among subpopulations and using the beta distribution to model variation in capture probabilities. These models are fitted to the removal counts observed in a survey of a federally endangered fish species. The resulting estimates of abundance have similar or better precision than those computed using the conventional approach of analyzing the removal counts of each subpopulation separately. Extension of the hierarchical models to include spatial covariates of abundance is straightforward and may be used to identify important features of an animal's habitat or to predict the abundance of animals at unsampled locations.

  3. A “Rice Diversity Panel” evaluated for genetic and agro-morphological variation between subpopulations

    USDA-ARS?s Scientific Manuscript database

    Since ancient times, Indica and Japonica have been recognized as the two major subspecies of Asian rice (Oryza sativa L.). First with isozymes and subsequently with DNA markers, five subpopulations indica, aus, temperate japonica, tropical japonica and aromatic/GroupV were identified. A “Rice Diver...

  4. Morphological characteristics of the limbal epithelial crypt.

    PubMed

    Shanmuganathan, Vijay A; Foster, Toshana; Kulkarni, Bina B; Hopkinson, Andrew; Gray, Trevor; Powe, Des G; Lowe, James; Dua, Harminder S

    2007-04-01

    In 2005 we reported the discovery of a novel anatomical structure at the limbus, which we termed the limbal epithelial crypt (LEC). The purpose of this study was to further evaluate the distribution, immunophenotypical, and ultra structural characteristics of the LEC as a putative niche of stem cells. Sequential histological sections of human corneo-scleral limbal rims were examined for the presence and distribution of the LEC. Immunophenotypical characterisation of the LEC cells using a panel of antibodies of interest was undertaken. Transmission electron microscopy of the LEC was used to examine the ultra structural and morphometric features of cells within the LEC and adjacent limbus. A total of 74 LECs were identified in eight corneo-scleral rims. These varied in number, size and distribution within rims. Cells within the crypt demonstrated the following phenotype: CK3-/CK19+/CD 34-/Vimentin+/p63+/Connexin 43+/MIB1 (Ki67)-. Presence of Cx43 was also demonstrated in the rete pegs adjacent to the LEC. Basal cells of the LEC were significantly smaller than basal cells found in adjacent rete pegs and also smaller than suprabasal limbal and central corneal epithelial cells (p<0.05). Morphologically they had a high nuclear:cytoplasmic ratio and were adherent to the underlying basement membrane by means of complex convolutions of cytoplasmic processes. LECs are sparse but a consistent finding in the human corneo-scleral limbus. The LEC contains a unique sub-population of cells expressing several characteristics that are consistent with it representing a putative stem cell niche.

  5. Subpopulation triage: how to allocate conservation effort among populations.

    PubMed

    McDonald-Madden, Eve; Baxter, Peter W J; Possingham, Hugh P

    2008-06-01

    Threatened species often exist in a small number of isolated subpopulations. Given limitations on conservation spending, managers must choose from strategies that range from managing just one subpopulation and risking all other subpopulations to managing all subpopulations equally and poorly, thereby risking the loss of all subpopulations. We took an economic approach to this problem in an effort to discover a simple rule of thumb for optimally allocating conservation effort among subpopulations. This rule was derived by maximizing the expected number of extant subpopulations remaining given n subpopulations are actually managed. We also derived a spatiotemporally optimized strategy through stochastic dynamic programming. The rule of thumb suggested that more subpopulations should be managed if the budget increases or if the cost of reducing local extinction probabilities decreases. The rule performed well against the exact optimal strategy that was the result of the stochastic dynamic program and much better than other simple strategies (e.g., always manage one extant subpopulation or half of the remaining subpopulation). We applied our approach to the allocation of funds in 2 contrasting case studies: reduction of poaching of Sumatran tigers (Panthera tigris sumatrae) and habitat acquisition for San Joaquin kit foxes (Vulpes macrotis mutica). For our estimated annual budget for Sumatran tiger management, the mean time to extinction was about 32 years. For our estimated annual management budget for kit foxes in the San Joaquin Valley, the mean time to extinction was approximately 24 years. Our framework allows managers to deal with the important question of how to allocate scarce conservation resources among subpopulations of any threatened species.

  6. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    PubMed

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties.

  7. Quantifying landscape linkages among giant panda subpopulations in regional scale conservation.

    PubMed

    Qi, Dunwu; Hu, Yibo; Gu, Xiaodong; Yang, Xuyi; Yang, Guang; Wei, Fuwen

    2012-06-01

    Understanding habitat requirements and identifying landscape linkages are essential for the survival of isolated populations of endangered species. Currently, some of the giant panda populations are isolated, which threatens their long-term survival, particularly in the Xiaoxiangling mountains. In the present study, we quantified niche requirements and then identified potential linkages of giant panda subpopulations in the most isolated region, using ecological niche factor analysis and a least-cost path model. Giant pandas preferred habitat with conifer forest and gentle slopes (>20 to ≤30°). Based on spatial distribution of suitable habitat, linkages were identified for the Yele subpopulation to 4 other subpopulations (Liziping, Matou, Xinmin and Wanba). Their lengths ranged from 15 to 54 km. The accumulated cost ranged from 693 to 3166 and conifer forest covered over 31%. However, a variety of features (e.g. major roads, human settlements and large unforested areas) might act as barriers along the linkages for giant panda dispersal. Our analysis quantified giant panda subpopulation connectivity to ensure long-term survival.

  8. Characterisation of lymphocyte subpopulations in infantile haemangioma.

    PubMed

    Tan, Elysia M S; Itinteang, Tinte; Chudakova, Daria A; Dunne, Jonathan C; Marsh, Reginald; Brasch, Helen D; Davis, Paul F; Tan, Swee T

    2015-10-01

    Interstitial CD45+ cells and T lymphocytes have previously been demonstrated within infantile haemangioma (IH). This study investigated the expression of B and T lymphocyte markers by the CD45+ population, and the expression of Thy-1, a marker of thymocyte progenitors, which have the ability to give rise to both B and T cells. Immunohistochemical (IHC) staining was performed on proliferating and involuted IHs for the expression of CD45, CD3, CD20, CD79a, Thy-1 and CD34. The presence of mRNA corresponding to CD45, CD3G, CD20 and Thy-1 was confirmed by reverse transcriptase-polymerase chain reaction in snap-frozen IH tissues. Cell counting of 3,3-diaminobenzidine IHC-stained slides was performed on CD45+ only cells and dually stained CD45+/CD3+ cells or CD45+/CD20+ cells and analysed statistically. In situ hybridisation and mass spectrometry were also performed to confirm the presence and abundance of Thy-1, respectively. IHC staining showed a subpopulation of CD45+ interstitial cells that expressed the T lymphocyte marker, CD3, and another subpopulation that expressed the B lymphocyte marker, CD20, in proliferating and diminished in involuted IHs. The abundant expression of Thy-1 on the endothelium of proliferating, but not involuted IH, was demonstrated by IHC staining and confirmed by in situ hybridisation and mass spectrometry. Both B and T lymphocytes are present within the interstitium of proliferating and involuted IH. The expression of Thy-1 by the endothelium suggests that B and T cells in IH may have originated from within the lesion, rather than migrating from the peripheral circulation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Multimodal Optimization by Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations.

    PubMed

    Ahrari, Ali; Deb, Kalyanmoy; Preuss, Mike

    2017-01-01

    During the recent decades, many niching methods have been proposed and empirically verified on some available test problems. They often rely on some particular assumptions associated with the distribution, shape, and size of the basins, which can seldom be made in practical optimization problems. This study utilizes several existing concepts and techniques, such as taboo points, normalized Mahalanobis distance, and the Ursem's hill-valley function in order to develop a new tool for multimodal optimization, which does not make any of these assumptions. In the proposed method, several subpopulations explore the search space in parallel. Offspring of a subpopulation are forced to maintain a sufficient distance to the center of fitter subpopulations and the previously identified basins, which are marked as taboo points. The taboo points repel the subpopulation to prevent convergence to the same basin. A strategy to update the repelling power of the taboo points is proposed to address the challenge of basins of dissimilar size. The local shape of a basin is also approximated by the distribution of the subpopulation members converging to that basin. The proposed niching strategy is incorporated into the covariance matrix self-adaptation evolution strategy (CMSA-ES), a potent global optimization method. The resultant method, called the covariance matrix self-adaptation with repelling subpopulations (RS-CMSA), is assessed and compared to several state-of-the-art niching methods on a standard test suite for multimodal optimization. An organized procedure for parameter setting is followed which assumes a rough estimation of the desired/expected number of minima available. Performance sensitivity to the accuracy of this estimation is also studied by introducing the concept of robust mean peak ratio. Based on the numerical results using the available and the introduced performance measures, RS-CMSA emerges as the most successful method when robustness and efficiency are

  10. A Multi-Omics Approach Identifies Key Hubs Associated with Cell Type-Specific Responses of Airway Epithelial Cells to Staphylococcal Alpha-Toxin

    PubMed Central

    Richter, Erik; Harms, Manuela; Ventz, Katharina; Gierok, Philipp; Chilukoti, Ravi Kumar; Hildebrandt, Jan-Peter; Mostertz, Jörg; Hochgräfe, Falko

    2015-01-01

    Responsiveness of cells to alpha-toxin (Hla) from Staphylococcus aureus appears to occur in a cell-type dependent manner. Here, we compare two human bronchial epithelial cell lines, i.e. Hla-susceptible 16HBE14o- and Hla-resistant S9 cells, by a quantitative multi-omics strategy for a better understanding of Hla-induced cellular programs. Phosphoproteomics revealed a substantial impact on phosphorylation-dependent signaling in both cell models and highlights alterations in signaling pathways associated with cell-cell and cell-matrix contacts as well as the actin cytoskeleton as key features of early rHla-induced effects. Along comparable changes in down-stream activity of major protein kinases significant differences between both models were found upon rHla-treatment including activation of the epidermal growth factor receptor EGFR and mitogen-activated protein kinases MAPK1/3 signaling in S9 and repression in 16HBE14o- cells. System-wide transcript and protein expression profiling indicate induction of an immediate early response in either model. In addition, EGFR and MAPK1/3-mediated changes in gene expression suggest cellular recovery and survival in S9 cells but cell death in 16HBE14o- cells. Strikingly, inhibition of the EGFR sensitized S9 cells to Hla indicating that the cellular capacity of activation of the EGFR is a major protective determinant against Hla-mediated cytotoxic effects. PMID:25816343

  11. A comparative study of sperm morphometric subpopulations in cattle, goat, sheep and pigs using a computer-assisted fluorescence method (CASMA-F).

    PubMed

    Vicente-Fiel, S; Palacín, I; Santolaria, P; Yániz, J L

    2013-06-01

    This study was designed to compare the sperm nuclear morphometric subpopulations of four species of domestic artiodactyls (cattle, sheep, goat and pigs). Samples from 20 males of each species were collected. After semen collection, sperm concentration and motility were measured and samples prepared for morphometric determinations. Smears were fixed with 2% glutaraldehyde, stained with Hoechst 33342 and photographed. At least 200 spermatozoa per sample were processed using the Image J analysis open software. Clustering procedures were performed to identify sperm subpopulations using the morphometric data obtained from each species. Results of the present study show that, applying the computer-assisted sperm morphometry analyisis-fluorescence (CASMA-F) technology and multivariate cluster analyses, it was possible to determine the subpopulations of spermatozoa with different morphometric characteristics in the four species studied. Bulls and boars had two clearly differentiated size categories: large and small. However, the final sperm subpopulations were four in the bull (large-round, large-elongated, small-round, and small-elongated) and only three in the boar (large, small-elongated and small-round). In small ruminant species, three sperm nuclei size categories were established: large, average sized and small. Two of these subpopulations were also elongated in goat bucks, with three subpopulations (large-round, small-elongated and average size-elongated). In the ram three morphometric subpopulations were also obtained (large, small and average size-round), but none was elongated. When comparing among species, sperm subpopulations were smaller in the buck and less elliptical and elongated in the ram than those in the other species studied. Male variability was identified in the distribution of sperm subpopulations described in the four species studied. It was concluded that the combination of CASMA-F technology with multivariate cluster analyses allow the study of

  12. CHILDREN AS A SENSITIVE SUBPOPULATION FOR THE RISK ASSESSMENT PROCESS

    EPA Science Inventory

    Children as a sensitive subpopulation for the risk assessment process
    Abstract
    For cancer risk assessment purposes, it is necessary to consider how to incorporate sensitive subpopulations into the process to ensure that they are appropriately protected. Children represent o...

  13. Respiratory and physiological characteristics in subpopulations of Great Basin cheatgrass

    Treesearch

    V. Wallace McCarlie; Lee D. Hansen; Bruce N. Smith

    2001-01-01

    Cheatgrass (Bromus tectorum L.) is a dominant weed that has increased the frequency of wildfire in the Great Basin since its introduction approximately 106 years ago. Characteristics of respiratory metabolism were examined in eleven subpopulations from different habitats. Seeds from each subpopulation were germinated (4mm radicle) and metabolic heat rates (q) and...

  14. CHILDREN AS A SENSITIVE SUBPOPULATION FOR THE RISK ASSESSMENT PROCESS

    EPA Science Inventory

    Children as a sensitive subpopulation for the risk assessment process
    Abstract
    For cancer risk assessment purposes, it is necessary to consider how to incorporate sensitive subpopulations into the process to ensure that they are appropriately protected. Children represent o...

  15. Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties

    PubMed Central

    Bragado, Paloma; Estrada, Yeriel; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Cannan, David; Genden, Eric; Teng, Marita; Ranganathan, Aparna C.; Wen, Huei-Chi; Kapoor, Avnish; Bernstein, Emily; Aguirre-Ghiso, Julio A.

    2012-01-01

    Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more

  16. A computational strategy for predicting lineage specifiers in stem cell subpopulations.

    PubMed

    Okawa, Satoshi; del Sol, Antonio

    2015-09-01

    Stem cell differentiation is a complex biological event. Our understanding of this process is partly hampered by the co-existence of different cell subpopulations within a given population, which are characterized by different gene expression states driven by different underlying transcriptional regulatory networks (TRNs). Such cellular heterogeneity has been recently explored with the modern single-cell gene expression profiling technologies, such as single-cell RT-PCR and RNA-seq. However, the identification of cell subpopulation-specific TRNs and genes determining specific lineage commitment (i.e., lineage specifiers) remains a challenge due to the slower development of appropriate computational and experimental workflows. Here, we propose a computational method for predicting lineage specifiers for different cell subpopulations in binary-fate differentiation events. Our method first reconstructs subpopulation-specific TRNs, which is more realistic than reconstructing a single TRN representing multiple cell subpopulations. Then, it predicts lineage specifiers based on a model that assumes that each parental stem cell subpopulation is in a stable state maintained by its specific TRN stability core. In addition, this stable state is maintained in the parental cell subpopulation by the balanced gene expression pattern of pairs of opposing lineage specifiers for mutually exclusive different daughter cell subpopulations. To this end, we devised a statistical metric for identifying opposing lineage specifier pairs that show a significant ratio change upon differentiation. Application of this computational method to three different stem cell systems predicted known and putative novel lineage specifiers, which could be experimentally tested. Our method does not require pre-selection of putative candidate genes, and can be applied to any binary-fate differentiation system for which single-cell gene expression data are available. Furthermore, this method is compatible

  17. Transcriptional regulators transforming growth factor-β1 and estrogen-related receptor-α identified as putative mediators of calf rumen epithelial tissue development and function during weaning.

    PubMed

    Connor, E E; Baldwin, R L; Walker, M P; Ellis, S E; Li, C; Kahl, S; Chung, H; Li, R W

    2014-07-01

    Molecular mechanisms regulating rumen epithelial development remain largely unknown. To identify gene networks and regulatory factors controlling rumen development, Holstein bull calves (n=18) were fed milk replacer only (MRO) until 42 d of age. Three calves each were euthanized at 14 and 42 d of age for tissue collection to represent preweaning, and the remaining calves were provided diets of either milk replacer + orchard grass hay (MH; n=6) to initiate weaning without development of rumen papillae, or milk replacer + calf starter (MG; n=6) to initiate weaning and development of rumen papillae. At 56 and 70 d of age, 3 calves from the MH and MG groups were euthanized for collection of rumen epithelium. Total RNA and protein were extracted for microarray analysis and to validate detected changes in selected protein expression, respectively. As expected, calves fed MRO had no rumen papillae and development of papillae was greater in MG versus MH calves. Differentially expressed genes between the MRO diet at d 42 (preweaning) versus the MG or MH diets at d 56 (during weaning) were identified using permutation analysis of differential expression. Expression of 345 and 519 transcripts was uniquely responsive to MG and MH feeding, respectively. Ingenuity Pathway Analysis (Qiagen, Redwood City, CA) indicated that the top-ranked biological function affected by the MG diet was the cell cycle, and TFGB1, FBOX01, and PPARA were identified as key transcriptional regulators of genes responsive to the MG diet and associated with development of rumen papillae. Increased expressions of TGFB1 mRNA and protein in response to the MG diet were confirmed by subsequent analyses. The top-ranking biological function affected by the MH diet was energy production. Receptors for IGF-1 and insulin, ESRRA, and PPARD were identified by ingenuity pathway analysis as transcriptional regulators of genes responsive to the MH diet. Further analysis of TGFB1 and ESRRA mRNA expression in rumen

  18. Different requirements for Wnt signaling in tongue myogenic subpopulations.

    PubMed

    Zhong, Z; Zhao, H; Mayo, J; Chai, Y

    2015-03-01

    The tongue is a muscular organ that is essential in vertebrates for important functions, such as food intake and communication. Little is known about regulation of myogenic progenitors during tongue development when compared with the limb or trunk region. In this study, we investigated the relationship between different myogenic subpopulations and the function of canonical Wnt signaling in regulating these subpopulations. We found that Myf5- and MyoD-expressing myogenic subpopulations exist during embryonic tongue myogenesis. In the Myf5-expressing myogenic progenitors, there is a cell-autonomous requirement for canonical Wnt signaling for cell migration and differentiation. In contrast, the MyoD-expressing subpopulation does not require canonical Wnt signaling during tongue myogenesis. Taken together, our results demonstrate that canonical Wnt signaling differentially regulates the Myf5- and MyoD-expressing subpopulations during tongue myogenesis. © International & American Associations for Dental Research 2015.

  19. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

    PubMed

    Band, Victor I; Crispell, Emily K; Napier, Brooke A; Herrera, Carmen M; Tharp, Greg K; Vavikolanu, Kranthi; Pohl, Jan; Read, Timothy D; Bosinger, Steven E; Trent, M Stephen; Burd, Eileen M; Weiss, David S

    2016-05-09

    Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics.

  20. Differential radiosensitivity among B cell subpopulations

    SciTech Connect

    Riggs, J.E.; Lussier, A.M.; Lee, S.K.; Appel, M.C.; Woodland, R.T.

    1988-09-15

    We have previously shown that low doses of ionizing radiation selectively impair a functionally defined B cell subpopulation. Normal mice, after exposure to 200 rad of ionizing radiation, have normal or near normal splenic plaque-forming cell responses to thymus-independent type 1 Ag, but reduced responses to thymus-independent type 2 Ag. Here, we confirm and extend the original findings by using hapten-specific serum RIA to demonstrate this differential radiosensitivity is systemic. We also examined splenocytes stained with a panel of lymphocyte surface Ag by FACS analysis to determine if these functional changes are accompanied by a physical alteration of the B cell pool of irradiated mice. Single-parameter FACS analyses demonstrate a diminution in both B cell number and the heterogeneity of membrane Ag expression within the surviving B cell pool after irradiation. In contrast, T cells are relatively radioresistant as the relative percentage of T cells in the irradiated splenocyte pool increases, whereas the heterogeneity of membrane Ag expression remains constant. Multiparameter FACS analyses indicate that B cells with the sIgM much greater than sIgD phenotype are more radiosensitive than B cells of the sIgM much less than sIgD phenotype. In addition, immunohistochemical analysis of splenic sections stained with anti-IgM or anti-IgD reveal the enhanced radiosensitivity of marginal zone B cells.

  1. Differential radiosensitivity among B cell subpopulations

    SciTech Connect

    Riggs, J.E.

    1988-01-01

    The selective radiosensitivity of sIgM >> sIgD marginal zone B cells is associated with the selective loss of B cell function. The simultaneous restoration of impaired function and recovery of these cells with time supports this premise. B cell recovery, delayed one week after irradiation, is in progress at two weeks, and virtually complete by three weeks. XID mice reveal similar recovery kinetics although there are fewer recovering cells and these bear reduced levels of Ia. This observation represents additional evidence that xid B cells are distinct from those of normal mice. The simultaneous loss, and concurrent recovery, of sIgM >> sIgD B cells and TI-2 responsiveness in irradiated mice suggests the existence of a unique B cell subpopulation possessing both phenotypes. Additional support for this hypothesis is provided by demonstrating that splenocytes, depleted of IgD{sup +} cells adoptively reconstitute this response in XID mice. The peritoneal B cell pool, which, compared to the spleen, consist of increased numbers of sIgM >> sIgD B cells, is shown to be a source of radiosensitive B cells that are TI-2 responsive. These observations represent additional evidence for an association between sIgM >> sIgD B cells and TI-2 responsiveness.

  2. The Rotation of Subpopulations in ω Centauri

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Galfo, A.; Ferraro, F. R.; Bellazzini, M.

    2007-06-01

    We present the first result of the Ital-FLAMES survey of red giant branch (RGB) stars in ω Cen. Radial velocities with a precision of ~0.5 km s-1 are presented for 650 members of ω Cen observed with FLAMES-GIRAFFE at the Very Large Telescope. We found that stars belonging to the metal-poor (RGB-MP), metal-intermediate (RGB-MInt), and metal-rich (RGB-a) subpopulations of ω Cen are all compatible with having the same rotational pattern. Our results appear to contradict past findings by Norris et al., who could not detect any rotational signature for metal-rich stars. The slightly higher precision of the present measurements and the much larger sample size, especially for the stars richer in metals, appear as the most likely explanations for this discrepancy. The result presented here weakens the body of evidence in favor of a merger event in the past history of ω Cen. Based on data obtained with the Giraffe-FLAMES facility of ESO Very Large Telescope during the Ital-FLAMES GTO program 71.D-0217(A). Also based on data from the VALD and GEISA databases.

  3. Macrophage subpopulations in systemic lupus erythematosus.

    PubMed

    Orme, Jacob; Mohan, Chandra

    2012-02-01

    Systemic lupus erythematosus (SLE) is a heterogeneous group of autoimmune disorders defined by a consensus of clinical and laboratory criteria. Much of the pathophysiology and therapy of SLE has focused on autoimmune B and T cells of the adaptive immune system. Recently, the role of macrophages, part of the innate immune system, in SLE pathogenesis has gained attention. The field of immunology in general has recently changed in the way that it approaches macrophages. Rather than viewing them as a single, concrete whole, it has become clear that different subpopulations of macrophages contribute to various immune and non-immune processes. Such a nomenclature may provide an ideal framework from which to study macrophage pathogenesis in SLE. Studies suggest that M1 subtype macrophages play an important inflammatory role in SLE pathogenesis. Further, apparently reduced populations of M2a and M2c subtype macrophages may contribute to the lack of anti-inflammatory activity apparent in the disease. M2b subtype macrophages may actually have a role in causing disease directly. Regulatory macrophages have yet to be explored thoroughly in SLE, though the presence of a few of their markers may mean that they are active in suppressing SLE-related inflammation.

  4. Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy.

    PubMed

    Ding, Liang-Hao; Park, Seongmi; Peyton, Michael; Girard, Luc; Xie, Yang; Minna, John D; Story, Michael D

    2013-06-01

    Ionizing radiation composed of accelerated ions of high atomic number (Z) and energy (HZE) deposits energy and creates damage in cells in a discrete manner as compared to the random deposition of energy and damage seen with low energy radiations such as γ- or x-rays. Such radiations can be highly effective at cell killing, transformation, and oncogenesis, all of which are concerns for the manned space program and for the burgeoning field of HZE particle radiotherapy for cancer. Furthermore, there are differences in the extent to which cells or tissues respond to such exposures that may be unrelated to absorbed dose. Therefore, we asked whether the energy deposition patterns produced by different radiation types would cause different molecular responses. We performed transcriptome profiling using human bronchial epithelial cells (HBECs) after exposure to γ-rays and to two different HZE particles (28Si and 56Fe) with different energy transfer properties to characterize the molecular response to HZE particles and γ-rays as a function of dose, energy deposition pattern, and time post-irradiation. Clonogenic assay indicated that the relative biological effectiveness (RBE) for 56Fe was 3.91 and for 28Si was 1.38 at 34% cell survival. Unsupervised clustering analysis of gene expression segregated samples according to the radiation species followed by the time after irradiation, whereas dose was not a significant parameter for segregation of radiation response. While a subset of genes associated with p53-signaling, such as CDKN1A, TRIM22 and BTG2 showed very similar responses to all radiation qualities, distinct expression changes were associated with the different radiation species. Gene enrichment analysis categorized the differentially expressed genes into functional groups related to cell death and cell cycle regulation for all radiation types, while gene pathway analysis revealed that the pro-inflammatory Acute Phase Response Signaling was specifically induced

  5. miRNA and mRNA expression profiling identifies members of the miR-200 family as potential regulators of epithelial-mesenchymal transition in pterygium

    PubMed Central

    Engelsvold, David H.; Utheim, Tor P.; Olstad, Ole K.; Gonzalez, Pedro; Eidet, Jon R.; Lyberg, Torstein; Trøseid, Anne-Marie S.; Dartt, Darlene A.; Raeder, Sten

    2014-01-01

    The current study investigates whether microRNA (miRNA) regulators of epithelial-mesenchymal transition (EMT), tissue fibrosis, and angiogenesis are differentially expressed in human primary pterygium. Genome-wide miRNA and mRNA expression profiling of paired pterygium and normal conjunctiva was performed in the context of conventional excision of pterygium with autotransplantation of conjunctiva (n=8). Quantitative real time polymerase chain reaction (qRT-PCR) was used to validate the expression of key molecules previously detected by microarray. In pterygium, 25 miRNAs and 31 mRNAs were significantly differentially expressed by more than two-fold compared to normal conjunctiva. 14 miRNAs were up-regulated (miR-1246, −486, −451, −3172, −3175, −1308, −1972, −143, −211, −665, −1973, −18a, 143, and −663b), whereas 11 were down-regulated (miR-675, −200b-star, −200a-star, −29b, −200b, −210, −141, −31, −200a, −934, and −375). Unsupervised hierarchical cluster analysis demonstrated that members of the miR-200 family were coexpressed and down-regulated in pterygium. The molecular and cellular functions that were most significant to the miRNA data sets were cellular development, cellular growth and proliferation, and cellular movement. qRT-PCR confirmed the expression of 15 of the 16 genes tested and revealed that miR-429 was down-regulated by more than two-fold in pterygium. The concerted down-regulation of four members from both clusters of the miR-200 family (miR-200a/−200b/−429 and miR-200c/−141), which are known to regulate EMT, and up-regulation of the predicted target and mesenchymal marker fibronectin (FN1), suggest that EMT could potentially play a role in the pathogenesis of pterygium and might constitute promising new targets for therapeutic intervention in pterygium. PMID:23872359

  6. Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells

    PubMed Central

    Ramgolam, Kiran; Favez, Olivier; Cachier, Hélène; Gaudichet, Annie; Marano, Francelyne; Martinon, Laurent; Baeza-Squiban, Armelle

    2009-01-01

    Background The contribution of air particles in human cardio-respiratory diseases has been enlightened by several epidemiological studies. However the respective involvement of coarse, fine and ultrafine particles in health effects is still unclear. The aim of the present study is to determine which size fraction from a chemically characterized background aerosol has the most important short term biological effect and to decipher the determinants of such a behaviour. Results Ambient aerosols were collected at an urban background site in Paris using four 13-stage low pressure cascade impactors running in parallel (winter and summer 2005) in order to separate four size-classes (PM0.03–0.17 (defined here as ultrafine particles), PM0.17–1 (fine), PM1–2.5(intermediate) and PM2.5–10 (coarse)). Accordingly, their chemical composition and their pro-inflammatory potential on human airway epithelial cells were investigated. Considering isomass exposures (same particle concentrations for each size fractions) the pro-inflammatory response characterized by Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) release was found to decrease with aerosol size with no seasonal dependency. When cells were exposed to isovolume of particle suspensions in order to respect the particle proportions observed in ambient air, the GM-CSF release was maximal with the fine fraction. In presence of a recombinant endotoxin neutralizing protein, the GM-CSF release induced by particles is reduced for all size-fractions, with exception of the ultra-fine fraction which response is not modified. The different aerosol size-fractions were found to display important chemical differences related to the various contributing primary and secondary sources and aerosol age. The GM-CSF release was correlated to the organic component of the aerosols and especially its water soluble fraction. Finally, Cytochrome P450 1A1 activity that reflects PAH bioavailability varied as a function of the season

  7. Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy

    PubMed Central

    2013-01-01

    Background Ionizing radiation composed of accelerated ions of high atomic number (Z) and energy (HZE) deposits energy and creates damage in cells in a discrete manner as compared to the random deposition of energy and damage seen with low energy radiations such as γ- or x-rays. Such radiations can be highly effective at cell killing, transformation, and oncogenesis, all of which are concerns for the manned space program and for the burgeoning field of HZE particle radiotherapy for cancer. Furthermore, there are differences in the extent to which cells or tissues respond to such exposures that may be unrelated to absorbed dose. Therefore, we asked whether the energy deposition patterns produced by different radiation types would cause different molecular responses. We performed transcriptome profiling using human bronchial epithelial cells (HBECs) after exposure to γ-rays and to two different HZE particles (28Si and 56Fe) with different energy transfer properties to characterize the molecular response to HZE particles and γ-rays as a function of dose, energy deposition pattern, and time post-irradiation. Results Clonogenic assay indicated that the relative biological effectiveness (RBE) for 56Fe was 3.91 and for 28Si was 1.38 at 34% cell survival. Unsupervised clustering analysis of gene expression segregated samples according to the radiation species followed by the time after irradiation, whereas dose was not a significant parameter for segregation of radiation response. While a subset of genes associated with p53-signaling, such as CDKN1A, TRIM22 and BTG2 showed very similar responses to all radiation qualities, distinct expression changes were associated with the different radiation species. Gene enrichment analysis categorized the differentially expressed genes into functional groups related to cell death and cell cycle regulation for all radiation types, while gene pathway analysis revealed that the pro-inflammatory Acute Phase Response Signaling was

  8. Transcriptome Sequencing of Tumor Subpopulations Reveals a Spectrum of Therapeutic Options for Squamous Cell Lung Cancer

    PubMed Central

    Barrett, Christian L.; Schwab, Richard B.; Jung, HyunChul; Crain, Brian; Goff, Daniel J.; Jamieson, Catriona H. M.; Thistlethwaite, Patricia A.; Harismendy, Olivier; Carson, Dennis A.; Frazer, Kelly A.

    2013-01-01

    Background The only therapeutic options that exist for squamous cell lung carcinoma (SCC) are standard radiation and cytotoxic chemotherapy. Cancer stem cells (CSCs) are hypothesized to account for therapeutic resistance, suggesting that CSCs must be specifically targeted. Here, we analyze the transcriptome of CSC and non-CSC subpopulations by RNA-seq to identify new potential therapeutic strategies for SCC. Methods We sorted a SCC into CD133− and CD133+ subpopulations and then examined both by copy number analysis (CNA) and whole genome and transcriptome sequencing. We analyzed The Cancer Genome Atlas (TCGA) transcriptome data of 221 SCCs to determine the generality of our observations. Results Both subpopulations highly expressed numerous mRNA isoforms whose protein products are active drug targets for other cancers; 31 (25%) correspond to 18 genes under active investigation as mAb targets and an additional 4 (3%) are of therapeutic interest. Moreover, we found evidence that both subpopulations were proliferatively driven by very high levels of c-Myc and the TRAIL long isoform (TRAILL) and that normal apoptotic responses to high expression of these genes was prevented through high levels of Mcl-1L and Bcl-xL and c-FlipL—isoforms for which drugs are now in clinical development. SCC RNA-seq data (n = 221) from TCGA supported our findings. Our analysis is inconsistent with the CSC concept that most cells in a cancer have lost their proliferative potential. Furthermore, our study suggests how to target both the CSC and non-CSC subpopulations with one treatment strategy. Conclusions Our study is relevant to SCC in particular for it presents numerous potential options to standard therapy that target the entire tumor. In so doing, it demonstrates how transcriptome sequencing provides insights into the molecular underpinnings of cancer propagating cells that, importantly, can be leveraged to identify new potential therapeutic options for cancers beyond what is

  9. Classification of subpopulations of cells within human primary brain tumors by single cell gene expression profiling.

    PubMed

    Möllerström, Elin; Rydenhag, Bertil; Andersson, Daniel; Lebkuechner, Isabell; Puschmann, Till B; Chen, Meng; Wilhelmsson, Ulrika; Ståhlberg, Anders; Malmgren, Kristina; Pekny, Milos

    2015-02-01

    Brain tumors are heterogeneous with respect to genetic and histological properties of cells within the tumor tissue. To study subpopulations of cells, we developed a protocol for obtaining viable single cells from freshly isolated human brain tissue for single cell gene expression profiling. We evaluated this technique for characterization of cell populations within brain tumor and tumor penumbra. Fresh tumor tissue was obtained from one astrocytoma grade IV and one oligodendroglioma grade III tumor as well as the tumor penumbra of the latter tumor. The tissue was dissociated into individual cells and the expression of 36 genes was assessed by reverse transcription quantitative PCR followed by data analysis. We show that tumor cells from both the astrocytoma grade IV and oligodendroglioma grade III tumor constituted cell subpopulations defined by their gene expression profiles. Some cells from the oligodendroglioma grade III tumor proper shared molecular characteristics with the cells from the penumbra of the same tumor suggesting that a subpopulation of cells within the oligodendroglioma grade III tumor consisted of normal brain cells. We conclude that subpopulations of tumor cells can be identified by using single cell gene expression profiling.

  10. Activation of phenotypic subpopulations in response to ciprofloxacin treatment in Acinetobacter baumannii.

    PubMed

    Macguire, Ashley E; Ching, Meining Carly; Diamond, Brett H; Kazakov, Alexey; Novichkov, Pavel; Godoy, Veronica G

    2014-04-01

    The multidrug-resistant, opportunistic pathogen, Acinetobacter baumannii, has spread swiftly through hospitals worldwide. Previously, we demonstrated that A. baumannii regulates the expression of various genes in response to DNA damage. Some of these regulated genes, especially those encoding the multiple error-prone DNA polymerases, can be implicated in induced mutagenesis, leading to antibiotic resistance. Here, we further explore the DNA damage-inducible system at the single cell level using chromosomal transcriptional reporters for selected DNA damage response genes. We found the genes examined respond in a bimodal fashion to ciprofloxacin treatment, forming two phenotypic subpopulations: induced and uninduced. This bimodal response to ciprofloxacin treatment in A. baumannii is unique and quite different than the Escherichia coli paradigm. The subpopulations are not genetically different, with each subpopulation returning to a starting state and differentiating with repeated treatment. We then identified a palindromic motif upstream of certain DNA damage response genes, and have shown alterations to this sequence to diminish the bimodal induction in response to DNA damaging treatment. Lastly, we are able to show a biological advantage for a bimodal response, finding that one subpopulation survives ciprofloxacin treatment better than the other. © 2014 John Wiley & Sons Ltd.

  11. Activation of Phenotypic Subpopulations in Response to Ciprofloxacin Treatment in Acinetobacter baumannii

    PubMed Central

    MacGuire, Ashley E.; Ching, Meining Carly; Diamond, Brett H.; Kazakov, Alexey; Novichkov, Pavel; Godoy, Veronica G.

    2014-01-01

    Summary The multidrug-resistant, opportunistic pathogen, Acinetobacter baumannii, has spread swiftly through hospitals worldwide. Previously, we demonstrated that A. baumannii regulates the expression of various genes in response to DNA damage. Some of these regulated genes, especially those encoding the multiple error-prone DNA polymerases, can be implicated in induced mutagenesis, leading to antibiotic resistance. Here, we further explore the DNA damage-inducible system at the single cell level using chromosomal transcriptional reporters for selected DNA damage response genes. We found the genes examined respond in a bimodal fashion to ciprofloxacin treatment, forming two phenotypic subpopulations: induced and uninduced. This bimodal response to ciprofloxacin treatment in A. baumannii is unique and quite different than the Escherichia coli paradigm. The subpopulations are not genetically different, with each subpopulation returning to a starting state and differentiating with repeated treatment. We then identified a palindromic motif upstream of certain DNA damage response genes, and have shown alterations to this sequence to diminish the bimodal induction in response to DNA damaging treatment. Lastly, we are able to show a biological advantage for a bimodal response, finding that one subpopulation survives ciprofloxacin treatment better than the other. PMID:24612352

  12. Screening of an E. coli O157:H7 Bacterial Artificial Chromosome Library by Comparative Genomic Hybridization to Identify Genomic Regions Contributing to Growth in Bovine Gastrointestinal Mucus and Epithelial Cell Colonization

    PubMed Central

    Bai, Jianing; McAteer, Sean P.; Paxton, Edith; Mahajan, Arvind; Gally, David L.; Tree, Jai J.

    2011-01-01

    Enterohemorrhagic E. coli (EHEC) O157:H7 can cause serious gastrointestinal and systemic disease in humans following direct or indirect exposure to ruminant feces containing the bacterium. The main colonization site of EHEC O157:H7 in cattle is the terminal rectum where the bacteria intimately attach to the epithelium and multiply in the intestinal mucus. This study aimed to identify genomic regions of EHEC O157:H7 that contribute to colonization and multiplication at this site. A bacterial artificial chromosome (BAC) library was generated from a derivative of the sequenced E. coli O157:H7 Sakai strain. The library contains 1152 clones averaging 150 kbp. To verify the library, clones containing a complete locus of enterocyte effacement (LEE) were identified by DNA hybridization. In line with a previous report, these did not confer a type III secretion (T3S) capacity to the K-12 host strain. However, conjugation of one of the BAC clones into a strain containing a partial LEE deletion restored T3S. Three hundred eighty-four clones from the library were subjected to two different selective screens; one involved three rounds of adherence assays to bovine primary rectal epithelial cells while the other competed the clones over three rounds of growth in bovine rectal mucus. The input strain DNA was then compared with the selected strains using comparative genomic hybridization (CGH) on an E. coli microarray. The adherence assay enriched for pO157 DNA indicating the importance of this plasmid for colonization of rectal epithelial cells. The mucus assay enriched for multiple regions involved in carbohydrate utilization, including hexuronate uptake, indicating that these regions provide a competitive growth advantage in bovine mucus. This BAC-CGH approach provides a positive selection screen that complements negative selection transposon-based screens. As demonstrated, this may be of particular use for identifying genes with redundant functions such as adhesion and carbon

  13. Sub-populations among the Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Wong, I.; Brown, M.

    2014-07-01

    observed bimodalities are self-consistent and categorize 220 of the 842 Trojans with absolute magnitudes in the range H<12.3 into the two color populations. We demonstrate that the magnitude distributions of the two color populations are distinct to a high confidence level, suggesting that the red and less-red Trojans were created in different locations and/or experienced different evolutionary histories. This observation has broad implications for the formation and composition of the Trojans as well as the details of their purported inward migration. Much can be learned about the evolution of the Trojans since formation by examining the faint objects, which have undergone significant collisional alteration. To explore this, we have collected color measurements of a large number of Trojans using the Suprime-Cam instrument on the Subaru telescope. The new data extend the known magnitude-color distributions of both Trojan sub-populations to much smaller sizes. This enables a fuller comparison between the two sub- populations as well as with attested sub-populations within the Kuiper Belt, thereby giving insight into the formation and evolutionary history of minor bodies in the outer Solar System.

  14. Telomere shortening in leukocyte subpopulations in depression

    PubMed Central

    2014-01-01

    Background Telomere shortening is a normal age-related process. However, premature shortening of telomeres in leukocytes – as has been reported in depression – may increase the risk for age-related diseases. While previous studies investigated telomere length in peripheral blood mononuclear cells (PBMCs) as a whole, this study investigated specific changes in the clonal composition of white blood cells of the adaptive immune system (CD4+ helper and CD8+ cytotoxic T lymphocytes, and CD20+ B lymphocytes). Methods Forty-four females with a history of unipolar depression were investigated and compared to fifty age-matched female controls. Telomere lengths were compared between three groups: 1) individuals with a history of depression but currently no clinically relevant depressive symptoms, 2) individuals with a history of depression with relevant symptoms of depression, and 3) healthy age-matched controls. Telomere length was assessed using quantitative fluorescence in situ hybridization (qFISH). Results Both groups with a history of unipolar depression (with and without current depressive symptoms) showed significantly shorter telomeres in all three lymphocyte subpopulations. The effect was stronger in CD8+ and CD20+ cells than in CD4+ cells. Individuals with a history of depression and with (without) current symptoms exhibited a CD8+ telomere length shortening corresponding to an age differential of 27.9 (25.3) years. Conclusions A history of depression is associated with shortened telomeres in the main effector populations of the adaptive immune system. Shorter telomeres seem to persist in individuals with lifetime depression independently of the severity of depressive symptoms. CD8+ cytotoxic T cells and CD20+ B cells seem to be particularly affected in depression. The total number of depressive episodes did not influence telomere length in the investigated adaptive immune cell populations. PMID:24996455

  15. Relationship between Fosfomycin Exposure and Amplification of Escherichia coli Subpopulations with Reduced Susceptibility in a Hollow-Fiber Infection Model

    PubMed Central

    VanScoy, Brian; McCauley, Jennifer; Bhavnani, Sujata M.; Ellis-Grosse, Evelyn J.

    2016-01-01

    Understanding the relationship between antibiotic exposure and amplification of bacterial subpopulations with reduced drug susceptibility over time is important for evaluating the adequacy of dosing regimens. We utilized a hollow-fiber infection model to identify the fosfomycin intravenous dosing regimens that prevented the amplification of Escherichia coli bacterial subpopulations with reduced fosfomycin susceptibility. The challenge isolate was E. coli ATCC 25922 (agar MIC with glucose-6-phosphate, 1 mg/liter; agar MIC without glucose-6-phosphate, 32 mg/liter). The fosfomycin dosing regimens studied were 1 to 12 g every 8 h for 10 days to approximate that planned for clinical use. The studies included a no-treatment control regimen. Two bacterial subpopulations were identified, one with reduced susceptibility with agar MIC values ranging from 32 to 128 mg/liter and the other resistant with agar MIC values of 256 to >1,024 mg/liter on plates containing 5× and 256× the baseline MIC value, respectively. An inverted-U-shaped function best described the relationship between the amplification of the two bacterial subpopulations and drug exposure. The lowest fosfomycin dosing regimen that did not amplify a bacterial subpopulation with reduced susceptibility was 4 g administered every 8 h. Nearly immediate amplification of bacterial subpopulations with reduced susceptibility was observed with fosfomycin dosing regimens consisting of 1 to 2 g every 8 h. These data will be useful to support the selection of fosfomycin dosing regimens that minimize the potential for on-therapy amplification of bacterial subpopulations with reduced susceptibility. PMID:27270274

  16. Comparison of different statistical approaches to evaluate morphometric sperm subpopulations in men

    PubMed Central

    Yániz, Jesús L; Vicente-Fiel, Sandra; Soler, Carles; Recreo, Pilar; Carretero, Teresa; Bono, Araceli; Berné, José M; Santolaria, Pilar

    2016-01-01

    This study was designed to characterize morphometric sperm subpopulations in normozoospermic men by using different statistical methods and examining their suitability to classify correctly different sperm nuclear morphologies present in human ejaculates. Ejaculates from 21 normozoospermic men were collected for the study. After semen collection and analysis, samples were prepared for morphometric determination. At least 200 spermatozoa per sample were assessed for sperm morphometry by computer-assisted sperm morphometry analysis (CASA-Morph) using fluorescence. Clustering and discriminant procedures were performed to identify sperm subpopulations from the morphometric data obtained. Clustering procedures resulted in the classification of spermatozoa into three morphometric subpopulations (large-round 30.4%, small-round 46.6%, and large-elongated 22.9%). In the second analysis, using discriminant methods, the classification was made independently of size and shape. Three morphological categories according to nuclear size (small <10.90 μm2, intermediate 10.91–13.07 μm2, and large >13.07 μm2) and four categories were defined on 400 canonical cells (100 × 4) from 10 men according to sperm nuclear shape (oval, pyriform, round, and elongated). Thereafter, the resulting classification functions were used to categorize 4200 spermatozoa from 21 men. Differences in the class distribution were observed among men from both clustering and discriminant procedures. It was concluded that the combination of CASA-Morph fluorescence-based technology with multivariate cluster or discriminant analyses provides new information on the description of different morphometric sperm subpopulations in normal individuals, and that important variations in the distribution of morphometric sperm subpopulations may exist between men, with possible functional implications. PMID:27624984

  17. Analysis of Epithelial and Mesenchymal Markers in Ovarian Cancer Reveals Phenotypic Heterogeneity and Plasticity

    PubMed Central

    Strauss, Robert; Li, Zong-Yi; Liu, Ying; Beyer, Ines; Persson, Jonas; Sova, Pavel; Möller, Thomas; Pesonen, Sari; Hemminki, Akseli; Hamerlik, Petra; Drescher, Charles; Urban, Nicole; Bartek, Jiri; Lieber, André

    2011-01-01

    In our studies of ovarian cancer cells we have identified subpopulations of cells that are in a transitory E/M hybrid stage, i.e. cells that simultaneously express epithelial and mesenchymal markers. E/M cells are not homogenous but, in vitro and in vivo, contain subsets that can be distinguished based on a number of phenotypic features, including the subcellular localization of E-cadherin, and the expression levels of Tie2, CD133, and CD44. A cellular subset (E/M-MP) (membrane E-cadherinlow/cytoplasmic E-cadherinhigh/CD133high, CD44high, Tie2low) is highly enriched for tumor-forming cells and displays features which are generally associated with cancer stem cells. Our data suggest that E/M-MP cells are able to differentiate into different lineages under certain conditions, and have the capacity for self-renewal, i.e. to maintain a subset of undifferentiated E/M-MP cells during differentiation. Trans-differentiation of E/M-MP cells into mesenchymal or epithelial cells is associated with a loss of stem cell markers and tumorigenicity. In vivo xenograft tumor growth is driven by E/M-MP cells, which give rise to epithelial ovarian cancer cells. In contrast, in vitro, we found that E/M-MP cells differentiate into mesenchymal cells, in a process that involves pathways associated with an epithelial-to-mesenchymal transition. We also detected phenotypic plasticity that was dependent on external factors such as stress created by starvation or contact with either epithelial or mesenchymal cells in co-cultures. Our study provides a better understanding of the phenotypic complexity of ovarian cancer and has implications for ovarian cancer therapy. PMID:21264259

  18. Diversity and genetic differentiation among subpopulations of Gliricidia sepium revealed by PCR-based assays.

    PubMed

    Dawson, I K; Simons, A J; Waugh, R; Powell, W

    1995-01-01

    Randomly amplified polymorphic DNA (RAPD), and a mitochondrial marker based on amplification of the V7 region of the mitochondrial small ribosomal RNA (srRNA) gene, were used to partition genetic variation within a single population of Gliricidia sepium sampled from Guatemala. Seventeen per cent of the variation detected with RAPDs was partitioned among subpopulations and indicated a greater level of discrimination than previously detected with isozymes. Cluster analysis indicated a direct relationship between this variation and the geographical distance between subpopulations. A polymorphism identified within the maternally inherited mitochondrial V7 srRNA product, which relied on digestion with restriction endonucleases, confirmed the genetic subdivision identified with RAPDs, and suggested a relatively limited role for seed in gene dispersal.

  19. Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations.

    PubMed

    Mohamadi, Reza M; Besant, Justin D; Mepham, Adam; Green, Brenda; Mahmoudian, Laili; Gibbs, Thaddeus; Ivanov, Ivaylo; Malvea, Anahita; Stojcic, Jessica; Allan, Alison L; Lowes, Lori E; Sargent, Edward H; Nam, Robert K; Kelley, Shana O

    2015-01-02

    The analysis of circulating tumor cells (CTCs) is an important capability that may lead to new approaches for cancer management. CTC capture devices developed to date isolate a bulk population of CTCs and do not differentiate subpopulations that may have varying phenotypes with different levels of clinical relevance. Here, we present a new device for CTC spatial sorting and profiling that sequesters blood-borne tumor cells with different phenotypes into discrete spatial bins. Validation data are presented showing that cancer cell lines with varying surface expression generate different binning profiles within the device. Working with patient blood samples, we obtain profiles that elucidate the heterogeneity of CTC populations present in cancer patients and also report on the status of CTCs within the epithelial-to-mesenchymal transition (EMT).

  20. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    PubMed Central

    Camacho-Morales, Alberto

    2016-01-01

    Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process. PMID:27725838

  1. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models.

    PubMed

    Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J

    2012-12-01

    The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria.

  2. Glycoconjugate residues in a subpopulation of feline taste cells.

    PubMed

    Sotthibandhu, Pongsiwa; Taniguchi, Kazumi; Mutoh, Ken-Ichiro

    2010-06-01

    There have been a number of studies which have categorized cells of feline taste buds: Types I, II, III and IV; however, few studies have examined whether feline taste bud cell types differ from each other histochemically. The goal of the present study is to figure out what kinds of glycoconjugates correspond to the four different types of cells in the taste bud. We have detected glycochains by lectin histochemistry. We have also identified Types II and III by immunohistochemistry. Then, we combined lectin histochemistry and immunohistochemistry to determine which types of cells have which glycochains. In addition, we have compared these reactions in different papillae in the oral cavity: circumvallate papillae, fungiform papillae and epiglottises. Our results demonstrated that glycoconjugates showed a variety of distributions among cells in these papillae, although immunopositive reactions of the proteins involved in the taste transduction showed similar distributions in the taste buds in these papillae. Amongst all, N-acetyllactosamine was the most prominently detected glycoconjugate residue in a subpopulation of Type II (receptor) cells and Type III (pre-synaptic) cells. Our findings suggest that 1) Different localization of glycol-residues in taste buds might be owing to the possibility that different types of cells need different types of glycoconjugates, possibly for the function of cells in the taste buds, and 2) N-acetyllactosamine might play some roles in taste sensation perception and their transfer by Type II and III cells.

  3. Multiparametric characterization of neuronal subpopulations in the ventrolateral preoptic nucleus.

    PubMed

    Dubourget, Romain; Sangare, Aude; Geoffroy, Hélène; Gallopin, Thierry; Rancillac, Armelle

    2017-04-01

    The characterization of neuronal properties is a necessary first step toward understanding how the ventrolateral preoptic nucleus (VLPO) neuronal network regulates slow-wave sleep (SWS). Indeed, the electrophysiological heterogeneity of VLPO neurons suggests the existence of subtypes that could differently contribute in SWS induction and maintenance. The aim of the present study was to define cell classes in the VLPO using an unsupervised clustering classification method. Electrophysiological features extracted from 289 neurons recorded in whole-cell patch-clamp allowed the identification of three main classes of VLPO neurons subdivided into five distinct subpopulations (cluster 1, 2a, 2b, 3a and 3b). The high occurrence of a low-threshold calcium spike (LTS) was one of the most distinctive features of cluster 1 and 3. Since sleep-promoting neurons are generally identified by their ability to generate an LTS and by their inhibitory response to noradrenaline (NA), 189 neurons from our dataset were also tested for this neurotransmitter. Neurons from cluster 3 were the most frequently inhibited by NA. Biocytin labeling and Neurolucida reconstructions of 112 neurons furthermore revealed a small dendritic arbor of cluster 3b neurons compared, in particular, to cluster 2b neurons. Altogether, we performed an exhaustive characterization of VLPO neuronal subtypes that is a crucial step toward a better understanding of the neuronal network within the VLPO and thereby sleep physiology.

  4. Distribution of phenotypically disparate myocyte subpopulations in airway smooth muscle.

    PubMed

    Halayko, Andrew J; Stelmack, Gerald L; Yamasaki, Akira; McNeill, Karol; Unruh, Helmut; Rector, Edward

    2005-01-01

    Phenotype and functional heterogeneity of airway smooth muscle (ASM) cells in vitro is well known, but there is limited understanding of these features in vivo. We tested whether ASM is composed of myocyte subsets differing in contractile phenotype marker expression. We used flow cytometry to compare smooth muscle myosin heavy chain (smMHC) and smooth muscle-alpha-actin (sm-alpha-actin) abundance in myocytes dispersed from canine trachealis. Based on immunofluorescent intensity and light scatter characteristics (forward and 90 degrees side scatter), 2 subgroups were identified and isolated. Immunoblotting confirmed smMHC and sm-alpha-actin were 10- and 5-fold greater, respectively, in large, elongate myocytes that comprised approximately 60% of total cells. Immunohistochemistry revealed similar phenotype heterogeneity in human bronchial smooth muscle. Canine tracheal myocyte subpopulations isolated by flow cytometry were used to seed primary subcultures. Proliferation of subcultures established with myocytes exhibiting low levels of smMHC and sm-alpha-actin was approximately 2 x faster than subcultures established with ASM cells with a high marker protein content. These studies demonstrate broad phenotypic heterogeneity of myocytes in normal ASM tissue that is maintained in cell culture, as demonstrated by divergent proliferative capacity. The distinct roles of these subgroups could be a key determinant of normal and pathological lung development and biology.

  5. Diabetes Irreversibly Depletes Bone Marrow–Derived Mesenchymal Progenitor Cell Subpopulations

    PubMed Central

    Januszyk, Michael; Sorkin, Michael; Glotzbach, Jason P.; Vial, Ivan N.; Maan, Zeshaan N.; Rennert, Robert C.; Duscher, Dominik; Thangarajah, Hariharan; Longaker, Michael T.; Butte, Atul J.

    2014-01-01

    Diabetic vascular pathology is largely attributable to impairments in tissue recovery from hypoxia. Circulating progenitor cells have been postulated to play a role in ischemic recovery, and deficiencies in these cells have been well described in diabetic patients. Here, we examine bone marrow–derived mesenchymal progenitor cells (BM-MPCs) that have previously been shown to be important for new blood vessel formation and demonstrate significant deficits in the context of diabetes. Further, we determine that this dysfunction is attributable to intrinsic defects in diabetic BM-MPCs that are not correctable by restoring glucose homeostasis. We identify two transcriptionally distinct subpopulations that are selectively depleted by both type 1 and type 2 diabetes, and these subpopulations have provasculogenic expression profiles, suggesting that they are vascular progenitor cells. These results suggest that the clinically observed deficits in progenitor cells may be attributable to selective and irreversible depletion of progenitor cell subsets in patients with diabetes. PMID:24740572

  6. Expressions of machismo in colorectal cancer screening among New Mexico Hispanic subpopulations.

    PubMed

    Getrich, Christina M; Sussman, Andrew L; Helitzer, Deborah L; Hoffman, Richard M; Warner, Teddy D; Sánchez, Victoria; Solares, Angélica; Rhyne, Robert L

    2012-04-01

    Although national colorectal cancer (CRC) incidence rates have steadily decreased, the rate for New Mexico Hispanics has been increasing, and screening rates are low. We conducted an exploratory qualitative study to determine barriers to CRC screening for New Mexico Hispanics. We found that machismo served as a dynamic influence on men's health-seeking behaviors; however, it was conceptualized differently by two distinct Hispanic subpopulations, and therefore appeared to play a different role in shaping their screening attitudes and behaviors. Machismo emerged as more of an influence for Mexican men, who expressed concern over colonoscopies being potentially transformative and/or stigmatizing, but was not as salient for Hispanos, who viewed the colonoscopy as "strictly medical," and were more concerned with discomfort and pain. Findings from the study highlight the importance of identifying varying characteristics among subpopulations to better understand screening barriers and provide optimal CRC screening counseling in primary care settings.

  7. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks.

    PubMed

    Moore, Andrew S; Wong, Yvette C; Simpson, Cory L; Holzbaur, Erika L F

    2016-09-30

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis.

  8. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks

    PubMed Central

    Moore, Andrew S.; Wong, Yvette C.; Simpson, Cory L.; Holzbaur, Erika L. F.

    2016-01-01

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis. PMID:27686185

  9. Expressions of Machismo in Colorectal Cancer Screening Among New Mexico Hispanic Subpopulations

    PubMed Central

    Getrich, Christina M.; Sussman, Andrew L.; Helitzer, Deborah L.; Hoffman, Richard M.; Warner, Teddy D.; Sánchez, Victoria; Solares, Angélica; Rhyne, Robert L.

    2013-01-01

    Although national colorectal cancer (CRC) incidence rates have steadily decreased, the rate for New Mexico Hispanics has been increasing and screening rates are low. We conducted an exploratory qualitative study to determine barriers to CRC screening for New Mexico Hispanics. We found that machismo served as a dynamic influence on men’s health seeking behaviors; however, it was conceptualized differently by two distinct Hispanic subpopulations and therefore appeared to play a different role in shaping their screening attitudes and behaviors. Machismo emerged as more of an influence for Mexican men, who expressed concern over colonoscopies being potentially transformative and/or stigmatizing, but was not as salient for Hispanos, who viewed the colonoscopy as “strictly medical” and were more concerned with discomfort and pain. This study highlights the importance of identifying varying characteristics among subpopulations to better understand screening barriers and provide optimal CRC screening counseling in primary care settings. PMID:22138258

  10. Tactile perception: do distinct subpopulations explain differences in mislocalization rates of stimuli across fingertips?

    PubMed

    Warren, Jay P; Tillery, Stephen I Helms

    2011-11-07

    In a previous study we were able to demonstrate that the Cutaneous Rabbit Effect (CRE) could be induced across fingertips using a form of the reduced rabbit paradigm and electrotactile stimuli. The CRE, as used here, is an illusory phenomenon where two stimuli are rapidly at a site and then a stimulus is presented to a nearby site. The perception of the second of the stimuli is not at its presented location but at a site between the first and last stimuli. In this experiment, though the overall population did perceive the mislocalized stimuli as the CRE would predict, some subjects were very infrequently observed to mislocalize stimuli due to the CRE or other effects. Here we further examine this phenomena, attempting to identify whether a subpopulation exists that rarely mislocalizes stimuli on their fingertips. To test for this subpopulation, we reexamined the collected data from the previously published experiment and other unpublished data relating to that study. By examining these data for rates of mislocalization utilizing our previous metric we identified that there is a perceptual subpopulation that very infrequently misidentifies the location of a fingertip stimulus. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation

    PubMed Central

    Su, Tin Tin

    2016-01-01

    Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR) that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1) and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog) activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue. PMID:27584613

  12. Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data

    PubMed Central

    Abdelmoula, Walid M.; Balluff, Benjamin; Englert, Sonja; Dijkstra, Jouke; Walch, Axel; McDonnell, Liam A.; Lelieveldt, Boudewijn P. F.

    2016-01-01

    The identification of tumor subpopulations that adversely affect patient outcomes is essential for a more targeted investigation into how tumors develop detrimental phenotypes, as well as for personalized therapy. Mass spectrometry imaging has demonstrated the ability to uncover molecular intratumor heterogeneity. The challenge has been to conduct an objective analysis of the resulting data to identify those tumor subpopulations that affect patient outcome. Here we introduce spatially mapped t-distributed stochastic neighbor embedding (t-SNE), a nonlinear visualization of the data that is able to better resolve the biomolecular intratumor heterogeneity. In an unbiased manner, t-SNE can uncover tumor subpopulations that are statistically linked to patient survival in gastric cancer and metastasis status in primary tumors of breast cancer. PMID:27791011

  13. Low-Resolution Spectroscopic Study of the Intriguing Globular Cluster NGC 2808: Chemical Abundance Patterns among Subpopulations

    NASA Astrophysics Data System (ADS)

    Hong, Seungsoo; Lim, Dongwook; Han, Sang-Il; Lee, Young-Wook

    2017-01-01

    The presence of multiple stellar populations is now well established in most globular clusters (GCs) in the Milky Way. The origin of this phenomenon, however, is yet to be understood. In this respect, the study of NGC 2808, an intriguing GC which hosts subpopulations with extreme helium and light-element abundances, would help to understand this phenomenon. In order to investigate chemical abundance patterns among different subpopulations, we have performed low-resolution spectroscopy for the red-giant-branch stars and measured CN & CH bands, and Ca line strength. We have identified at least three subpopulations from the CN band strength. The CN band strength appears to be more efficient than Na abundance in separating earlier populations. We also find that this GC shows the CN-CH anti-correlation following the general trend of most GCs which are less affected by supernovae enrichment.

  14. Direct reprogramming of fibroblasts into skeletal muscle progenitor cells by transcription factors enriched in undifferentiated subpopulation of satellite cells.

    PubMed

    Ito, Naoki; Kii, Isao; Shimizu, Noriaki; Tanaka, Hirotoshi; Shin'ichi, Takeda

    2017-08-14

    Satellite cells comprise a functionally heterogeneous population of stem cells in skeletal muscle. Separation of an undifferentiated subpopulation and elucidation of its molecular background are necessary to identify the reprogramming factors to induce skeletal muscle progenitor cells. In this study, we found that intracellular esterase activity distinguishes a subpopulation of cultured satellite cells with high stemness using esterase-sensitive cell staining reagent, calcein-AM. Gene expression analysis of this subpopulation revealed that defined combinations of transcription factors (Pax3, Mef2b, and Pitx1 or Pax7, Mef2b, and Pitx1 in embryonic fibroblasts, and Pax7, Mef2b and MyoD in adult fibroblasts) reprogrammed fibroblasts into skeletal muscle progenitor cells. These reprogrammed cells formed Dystrophin-positive mature muscle fibers when transplanted into a mouse model of Duchenne muscular dystrophy. These results highlight the new marker for heterogenous population of cultured satellite cells, potential therapeutic approaches and cell sources for degenerative muscle diseases.

  15. A Distinct Slow-Cycling Cancer Stem-like Subpopulation of Pancreatic Adenocarcinoma Cells is maintained in Vivo

    PubMed Central

    Dembinski, Jennifer L.; Krauss, Stefan

    2010-01-01

    Pancreatic adenocarcinoma has the worst prognosis of any major malignancy, with <5% of patients surviving five years. This can be contributed to the often late diagnosis, lack of sufficient treatment and metastatic spread. Heterogeneity within tumors is increasingly becoming a focus in cancer research, as novel therapies are required to target the most aggressive subpopulations of cells that are frequently termed cancer stem cells (CSCs). In the current study, we describe the identification of a slow-cycling cancer stem-like population of cells in vivo in BxPC-3 and Panc03.27 xenografts. A distinct slow-cycling label-retaining population of cells (DiI+/SCC) was found both at the edge of tumors, and in small circumscribed areas within the tumors. DiI+/SCC in these areas display an epithelial-to-mesenchymal transition (EMT) fingerprint, including an upregulation of the mesenchymal markers vimentin and N-cadherin and a loss of the epithelial marker E-cadherin. DiI+/SCC also displayed a critical re-localization of beta-catenin from the membrane to the nucleus. Additionally, the DiI+/SCC population was found to express the developmental signaling molecule sonic hedgehog. This study represents a novel step in defining the biological activities of a tumorigenic subpopulation within the heterogeneous tumor microenvironment in vivo. Understanding the interactions and functions of a CSC population within the context of the tumor microenvironment is critical to design targeted therapeutics. PMID:24281215

  16. The proliferative human monocyte subpopulation contains osteoclast precursors.

    PubMed

    Lari, Roya; Kitchener, Peter D; Hamilton, John A

    2009-01-01

    Immediate precursors of bone-resorbing osteoclasts are cells of the monocyte/macrophage lineage. Particularly during clinical conditions showing bone loss, it would appear that osteoclast precursors are mobilized from bone marrow into the circulation prior to entering tissues undergoing such loss. The observed heterogeneity of peripheral blood monocytes has led to the notion that different monocyte subpopulations may have special or restricted functions, including as osteoclast precursors. Human peripheral blood monocytes were sorted based upon their degree of proliferation and cultured in macrophage colony-stimulating factor (M-CSF or CSF-1) and receptor activator of nuclear factor-kappa-B ligand (RANKL). The monocyte subpopulation that is capable of proliferation gave rise to significantly more multinucleated, bone-resorbing osteoclasts than the bulk of the monocytes. Human peripheral blood osteoclast precursors reside in the proliferative monocyte subpopulation.

  17. An approach to confirmatory testing of subpopulations in clinical trials.

    PubMed

    Glimm, Ekkehard; Di Scala, Lilla

    2015-09-01

    In oncology studies with immunotherapies, populations of "super-responders" (patients in whom the treatment works particularly well) are often suspected to be related to biomarkers. In this paper, we explore various ways of confirmatory statistical hypothesis testing for joint inference on the subpopulation of putative "super-responders" and the full study population. A model-based testing framework is proposed, which allows to define, up-front, the strength of evidence required from both full and subpopulations in terms of clinical efficacy. This framework is based on a two-way analysis of variance (ANOVA) model with an interaction in combination with multiple comparison procedures. The ease of implementation of this model-based approach is emphasized and details are provided for the practitioner who would like to adopt this approach. The discussion is exemplified by a hypothetical trial that uses an immune-marker in oncology to define the subpopulation and tumor growth as the primary endpoint.

  18. Particle Backtracking Improves Breeding Subpopulation Discrimination and Natal-Source Identification in Mixed Populations

    PubMed Central

    Fraker, Michael E.; Anderson, Eric J.; Brodnik, Reed M.; Carreon-Martinez, Lucia; DeVanna, Kristen M.; Fryer, Brian J.; Heath, Daniel D.; Reichert, Julie M.; Ludsin, Stuart A.

    2015-01-01

    We provide a novel method to improve the use of natural tagging approaches for subpopulation discrimination and source-origin identification in aquatic and terrestrial animals with a passive dispersive phase. Our method integrates observed site-referenced biological information on individuals in mixed populations with a particle-tracking model to retrace likely dispersal histories prior to capture (i.e., particle backtracking). To illustrate and test our approach, we focus on western Lake Erie’s yellow perch (Perca flavescens) population during 2006–2007, using microsatellite DNA and otolith microchemistry from larvae and juveniles as natural tags. Particle backtracking showed that not all larvae collected near a presumed hatching location may have originated there, owing to passive drift during the larval stage that was influenced by strong river- and wind-driven water circulation. Re-assigning larvae to their most probable hatching site (based on probabilistic dispersal trajectories from the particle backtracking model) improved the use of genetics and otolith microchemistry to discriminate among local breeding subpopulations. This enhancement, in turn, altered (and likely improved) the estimated contributions of each breeding subpopulation to the mixed population of juvenile recruits. Our findings indicate that particle backtracking can complement existing tools used to identify the origin of individuals in mixed populations, especially in flow-dominated systems. PMID:25799555

  19. Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations

    PubMed Central

    2014-01-01

    Introduction Pathophysiologic changes associated with diabetes impair new blood vessel formation and wound healing. Mesenchymal stem cells derived from adipose tissue (ASCs) have been used clinically to promote healing, although it remains unclear whether diabetes impairs their functional and therapeutic capacity. Methods In this study, we examined the impact of diabetes on the murine ASC niche as well as on the potential of isolated cells to promote neovascularization in vitro and in vivo. A novel single-cell analytical approach was used to interrogate ASC heterogeneity and subpopulation dynamics in this pathologic setting. Results Our results demonstrate that diabetes alters the ASC niche in situ and that diabetic ASCs are compromised in their ability to establish a vascular network both in vitro and in vivo. Moreover, these diabetic cells were ineffective in promoting soft tissue neovascularization and wound healing. Single-cell transcriptional analysis identified a subpopulation of cells which was diminished in both type 1 and type 2 models of diabetes. These cells were characterized by the high expression of genes known to be important for new blood vessel growth. Conclusions Perturbations in specific cellular subpopulations, visible only on a single-cell level, represent a previously unreported mechanism for the dysfunction of diabetic ASCs. These data suggest that the utility of autologous ASCs for cell-based therapies in patients with diabetes may be limited and that interventions to improve cell function before application are warranted. PMID:24943716

  20. Time-dependent release of extracellular vesicle subpopulations in tumor CABA I cells.

    PubMed

    Giusti, Ilaria; Di Francesco, Marianna; Cantone, Laura; D'Ascenzo, Sandra; Bollati, Valentina; Carta, Gaspare; Dolo, Vincenza

    2015-11-01

    Investigations into extracellular vesicles (EVs) have significantly increased since their role in physiological and pathological processes has become more clearly understood. Furthermore, it has become increasingly clear that several subpopulations of EVs exist, such as exosomes (EXOs) and microvesicles (MVs). Various methods and techniques used to identify and isolate the specific EVs subpopulations exist. However, these methods should be further elucidated. A deep understanding of the different factors that affect the EVs release may therefore be useful for the standardization of protocols and to establish guidelines for a more adequate analysis and correct inter‑laboratory comparison. In the present study, we investigated whether composition and molecular features of EVs altered over time following a trigger stimulus. Starved CABA I cells were stimulated with FBS and conditioned medium was collected after different time intervals (30 min and 4, 8 and 18 h). The dynamic of EVs release was time-dependent, as shown by the results of scanning electron microscopy. Additionally, the time elapsed from the stimulus affected the size distribution (as highlighted by transmission electron microscopy and NanoSight assay), amount (in terms of the number of particles and protein amount) and molecular composition (CD63, HLA, Ago-2, gelatinases, and plasminogen activators) suggesting that, different EVs subpopulations were released at different time intervals following cell stimulation. Collectively, the results suggested that, parameters useful to standardize procedures for EVs isolation, including stimulation time should be considered.

  1. Particle backtracking improves breeding subpopulation discrimination and natal-source identification in mixed populations.

    PubMed

    Fraker, Michael E; Anderson, Eric J; Brodnik, Reed M; Carreon-Martinez, Lucia; DeVanna, Kristen M; Fryer, Brian J; Heath, Daniel D; Reichert, Julie M; Ludsin, Stuart A

    2015-01-01

    We provide a novel method to improve the use of natural tagging approaches for subpopulation discrimination and source-origin identification in aquatic and terrestrial animals with a passive dispersive phase. Our method integrates observed site-referenced biological information on individuals in mixed populations with a particle-tracking model to retrace likely dispersal histories prior to capture (i.e., particle backtracking). To illustrate and test our approach, we focus on western Lake Erie's yellow perch (Perca flavescens) population during 2006-2007, using microsatellite DNA and otolith microchemistry from larvae and juveniles as natural tags. Particle backtracking showed that not all larvae collected near a presumed hatching location may have originated there, owing to passive drift during the larval stage that was influenced by strong river- and wind-driven water circulation. Re-assigning larvae to their most probable hatching site (based on probabilistic dispersal trajectories from the particle backtracking model) improved the use of genetics and otolith microchemistry to discriminate among local breeding subpopulations. This enhancement, in turn, altered (and likely improved) the estimated contributions of each breeding subpopulation to the mixed population of juvenile recruits. Our findings indicate that particle backtracking can complement existing tools used to identify the origin of individuals in mixed populations, especially in flow-dominated systems.

  2. Lymphocyte subpopulations in Chinese women with Turner syndrome.

    PubMed

    Fan, Hongye; Wang, Dandan; Zhu, Haiyan; Li, Jie; Hu, Yali; Hou, Yayi

    2012-03-01

    Turner syndrome (TS) is associated with deficiency of cellular and humoral immunity. However, the characteristics of lymphocyte subpopulations in Chinese women with TS have not been reported. In this study, the percentage of lymphocyte subpopulations and the mRNA expression of some transcription factors were determined in patients with TS. The effect of the hormone substitution on lymphocyte subpopulations was also analyzed. Thirteen Chinese TS women and eight age and sex-matched healthy volunteers were studied. The percentage and mean fluorescence intensity (MFI) of lymphocyte subpopulations including CD3+CD4+, CD3+CD8+, CD19-CD138+, CD4+CD25+FoxP3+ and CD4+CD8-IL17A+ cells were determined by flow cytometry. The mRNA expression of some transcription factors were detected by RT-PCR. Compared to control, the percentage of CD3+CD4+ cells was significantly reduced (p < 0.05), while the percentage of CD19-CD138+, CD4+CD25+FoxP3+ and CD4+CD8-IL17A+ cells was significantly increased in TS patients. No difference was observed in the percentage of CD3+CD8+, CD19+ B cells between TS patients and healthy volunteers, with the similar changes in the mean fluorescence intensity of these cells. The mRNA expression of some transcription factors slightly enhanced in TS patients. Estrogen therapy did not affect the percentage of lymphocyte subpopulations. These findings suggested that Turner syndrome might be associated with changes of lymphocyte subpopulations.

  3. NF-κB2 is required for the control of autoimmunity by regulating the development of medullary thymic epithelial cells*

    PubMed Central

    Zhang, Baochun; Wang, Zhe; Ding, Jane; Peterson, Pärt; Gunning, William T.; Ding, Han-Fei

    2007-01-01

    Medullary thymic epithelial cells function as antigen-presenting cells in negative selection of self-reactive T cell clones, a process essential for the establishment of central self-tolerance. These cells mirror peripheral tissues through promiscuous expression of a diverse set of tissue-restricted self-antigens. The genes and signaling pathways that regulate the development of medullary thymic epithelial cells are not fully understood. Here we show that mice deficient in NF-κB2, a member of the NF-κB family, display a marked reduction in the number of mature medullary thymic epithelial cells that express CD80 and bind the lectin Ulex europaeus agglutinin-1, leading to a significant decrease in the extent of promiscuous gene expression in the thymus of NF-κB2−/− mice. Moreover, NF-κB2−/− mice manifest autoimmunity characterized by multiorgan infiltration of activated T cells and high levels of autoantibodies to multiple organs. A subpopulation of the mice also develops immune-complex glomerulonephritis. These findings identify a physiological function of NF-κB2 in the development of medullary thymic epithelial cells and, thus, the control of self-tolerance induction. PMID:17046818

  4. [Study of interaction of wild soybean subpopulations (Glycine soja) in the valley of the Tsukanovka river in the south of Far East of Russia].

    PubMed

    Tikhonov, A V; Martynov, V V; Dorokhov, D B

    2011-01-01

    A comparative study of the genetic structure of natural and anthropogenic populations of G. soja gives significant information about formation of different populations, and allows developing measures for preservation of unique natural gene bank of wild soybean, the species closely related to cultivated soybean. In this study, ISSR markers were used to carry out a comparative analysis of genetic structure of natural and anthropogenic subpopulations of G. soja for studying possible mutual influence of subpopulations of anthropogenic and natural phytocenosis on the formation of their genetic diversity and to study genetic structure of natural subpopulations of wild soybean in the contact places between the two types ofcenoses. As a result, the characteristics that describe the genetic diversity of studied populations have been identified and the important role of an interaction between subpopulations of different phytocenoses on formation of the spatial genetic structure of population in the valley of Tsukanovka river has been demonstrated.

  5. Integration of genetic and seed fitness data to the conservation of isolated subpopulations of the Mediterranean plant Malcolmia littorea.

    PubMed

    De Vitis, Marcello; Mattioni, Claudia; Mattana, Efisio; Pritchard, Hugh W; Seal, Charlotte E; Ulian, Tiziana; Cherubini, Marcello; Magrini, Sara

    2017-09-26

    Plant autoecology and population genetics provide a perspective on the likelihood of natural regeneration, which is critical when designing conservation strategies for endangered species. The threatened coastal plant Malcolmia littorea (Brassicaceae) was sampled across its European distribution and studied for genetic diversity and seed fitness, with the aim of providing information for the conservation of isolated and declining populations. Nine microsatellite markers (five chloroplast and four nuclear) were analysed to assess population genetic diversity and structure and to conduct a spatial analysis using the software DIVA-GIS. Germination percentages and rates were assessed by incubating the seeds under eight constant temperatures (0-27°C). The genetic diversity was found to be similar among subpopulations (chloroplast H= 0.04 ÷ 0.17; nuclear Ho= 0.20 ÷ 0.37), with no correlation between subpopulation diversity and AOO (P > 0.05). The subpopulations were found to be clustered in three genetic groups and three of them were identified as conservation priorities due to their unique genetic composition. The germination study revealed a significant influence of the maternal environment and AOO on seed germination, with the smaller subpopulations showing lower germination percentages (P < 0.05). These results highlight the importance of obtaining information on isolated subpopulations through different experimental approaches (e.g. seed germination plus population genetics) to enable planning of effective conservation actions. For M. littorea, seed collection for both in situ and ex situ conservation should take into account the local adaptation of the subpopulation and the genetic structure of the species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. [Focal epithelial hyperplasia].

    PubMed

    Delgado, Yolanda; Torrelo, Antonio; Colmenero, Isabel; Zambrano, Antonio

    2005-12-01

    Focal epithelial hyperplasia (FEH) is a benign proliferation of the oral mucosa with well defined clinical and histological characteristics. It has been associated with infection of the oral mucosa by types 13 and 32 of the human papillomavirus (HPV), and to a lesser extent, with other types. Its clinical course is variable, although it usually persists for months or years; cases with spontaneous resolution have been described, as have others with prolonged persistence. We present the case of an Ecuadorian boy whose visit was motivated by lesions in the oral mucosa consistent with a diagnosis of FEH, which were confirmed in the histological study, and in which HPV type 13 DNA was identified.

  7. Mononuclear phagocyte subpopulations in the mouse kidney.

    PubMed

    George, James F; Lever, Jeremie M; Agarwal, Anupam

    2017-04-01

    Mononuclear phagocytes are the most common cells in the kidney associated with immunity and inflammation. Although the presence of these cells in the kidney has been known for decades, the study of mononuclear phagocytes in the context of kidney function and dysfunction is still at an early stage. The purpose of this review is to summarize the present knowledge regarding classification of these cells in the mouse kidney and to identify relevant questions that would further advance the field and potentially lead to new opportunities for treatment of acute kidney injury and other kidney diseases.

  8. Using Subpopulation Invariance to Assess Test Score Equity

    ERIC Educational Resources Information Center

    Dorans, Neil J.

    2004-01-01

    Score equity assessment (SEA) is introduced, and placed within a fair assessment context that includes differential prediction or fair selection and differential item functioning. The notion of subpopulation invariance of linking functions is central to the assessment of score equity, just as it has been for differential item functioning and…

  9. The Impact of Missing Background Data on Subpopulation Estimation

    ERIC Educational Resources Information Center

    Rutkowski, Leslie

    2011-01-01

    Although population modeling methods are well established, a paucity of literature appears to exist regarding the effect of missing background data on subpopulation achievement estimates. Using simulated data that follows typical large-scale assessment designs with known parameters and a number of missing conditions, this paper examines the extent…

  10. [Analysis of vesicle subpopulations carrying early endosomal autoantigen EEA1].

    PubMed

    Zlobina, M V; Kamentseva, R S; Kornilova, E S; Kharchenko, M V

    2014-01-01

    Confocal immunofluorescent analysis of interphase HeLa cells has demonstrated that involved in regulation of homotypic fusions early endosomal autoantigene EEA1 is associated with vesicles represented by two populations differing in apparent size, localization and the level of bound EEA1. Before analysis the cells have been preincubated in serum-deprived medium for 12 h to minimize ligand-dependent endocytosis of serum growth factors. The first subpopulation is mainly represented by large vesicles strongly decorated with EEA1. These vesicles are localized presumably in juxtanuclear region. Microtubule depolimerization experiments have shown that this localization is maintained by tubulin cytoskeleton. The second subpopulation consists of numerous small vesicles slightly stained by EEA1 antibody and localized more peripherally. Double indirect immunofluorescent ananlysis of fixed cell images has revealed that juxtanuclear vesicles enriched in EEA1 are fully colocalized with key protein of early endosomes small GTPase Rab5, whereas about 50% of slightly decorated peripheral vesicles are Rab5-negative. It is found that the number of Rab5-positive vesicles per cell is higher than that of EEA1-positive vesicles. Thus, in serum-deprivated HeLa cells with low endocytic activity two subpopulations of EEA1-vesicles are revealed: the first one carries the both EEA1 at high level and Rab5 (EEA1+++/Rab5+), and the second subpopulation oconsists of weakly decorated EEA1-vesicles, that can be both Rab5-positive and -negative (EEA1+/Rab5- and EEA1+/Rab5+). Besides, there are vesicles carrying Rab5 only (EEA1-/Rab5+). The data obtained favor different functional role of all these subpopulations, which are associated with proteins widely considered as equivalent markers of early endosomes.

  11. True epithelial hyperplasia in the thymus of early-onset myasthenia gravis patients: implications for immunopathogenesis.

    PubMed

    Roxanis, I; Micklem, K; Willcox, N

    2001-01-01

    The early-onset myasthenia gravis (EOMG) thymus shows characteristic medullary epithelial bands (MEB), greatly expanded perivascular infiltrates and fenestrations of the intervening basement membranes. We now compare epithelial expression of epidermal growth factor receptor (EGFR) and many integrins in EOMG and control samples. The main differences are striking/consistent thickening (in MEB) of what is normally a monolayer of perivascular epithelium, with focal protrusion into the infiltrates. This evidently hyperplastic epithelial subpopulation also strongly expresses EGFR and certain integrins. We suggest that its enhanced interactions with the locally increased extracellular matrix protein deposits may play an important role in autosensitization.

  12. Methods and Measures: Growth Mixture Modeling--A Method for Identifying Differences in Longitudinal Change among Unobserved Groups

    ERIC Educational Resources Information Center

    Ram, Nilam; Grimm, Kevin J.

    2009-01-01

    Growth mixture modeling (GMM) is a method for identifying multiple unobserved sub-populations, describing longitudinal change within each unobserved sub-population, and examining differences in change among unobserved sub-populations. We provide a practical primer that may be useful for researchers beginning to incorporate GMM analysis into their…

  13. Cytokine profiling of ascites at primary surgery identifies an interaction of tumor necrosis factor-α and interleukin-6 in predicting reduced progression-free survival in epithelial ovarian cancer.

    PubMed

    Kolomeyevskaya, Nonna; Eng, Kevin H; Khan, Anm Nazmul H; Grzankowski, Kassondra S; Singel, Kelly L; Moysich, Kirsten; Segal, Brahm H

    2015-08-01

    Epithelial ovarian cancer (EOC) typically presents with advanced disease. Even with optimal debulking and response to adjuvant chemotherapy, the majority of patients will have disease relapse. We evaluated cytokine and chemokine profiles in ascites at primary surgery as biomarkers for progression-free survival (PFS) and overall survival (OS) in patients with advanced EOC. Retrospective analysis of patients (n =70) who underwent surgery at Roswell Park Cancer Institute between 2002 and 2012, followed by platinum-based chemotherapy. The mean age at diagnosis was 61.8 years, 85.3% had serous EOC, and 95.7% had stage IIIB, IIIC, or IV disease. Univariate analysis showed that ascites levels of tumor necrosis factor (TNF)-α were associated with reduced PFS after primary surgery. Although the ascites concentration of interleukin (IL)-6 was not by itself predictive of PFS, we found that stratifying patients by high TNF-α and high IL-6 levels identified a sub-group of patients at high risk for rapid disease relapse. This effect was largely independent of clinical prognostic variables. The combination of high TNF-α and high IL-6 ascites levels at primary surgery predicts worse PFS in patients with advanced EOC. These results suggest an interaction between ascites TNF-α and IL-6 in driving tumor progression and resistance to chemotherapy in advanced EOC, and raise the potential for pre-treatment ascites levels of these cytokines as prognostic biomarkers. This study involved a small sample of patients and was an exploratory analysis; therefore, findings require validation in a larger independent cohort. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. An analysis of glucocorticoid receptor-mediated gene expression in BEAS-2B human airway epithelial cells identifies distinct, ligand-directed, transcription profiles with implications for asthma therapeutics.

    PubMed

    Joshi, T; Johnson, M; Newton, R; Giembycz, M

    2015-03-01

    International asthma guidelines recommend that inhaled glucocorticoids be used as a monotherapy in all patients with mild to moderate disease because of their ability to suppress airways inflammation. Current evidence suggests that the therapeutic benefit of glucocorticoids is due to the transactivation and transrepression of anti-inflammatory and pro-inflammatory genes respectively. However, the extent to which clinically relevant glucocorticoids are equivalent in their ability to modulate gene expression is unclear. A pharmacodynamics investigation of glucocorticoid receptor (GR)-mediated gene transactivation in BEAS-2B human airway epithelial cells was performed using a glucocorticoid response element luciferase reporter coupled with an analysis of glucocorticoid-inducible genes encoding proteins with anti-inflammatory and adverse-effect potential. Using transactivation as a functionally relevant output, a given glucocorticoid displayed a unique, gene expression 'fingerprint' where intrinsic efficacy and GR density were essential determinants. We showed that depending on the gene selected for analysis, a given glucocorticoid can behave as an antagonist, partial agonist, full agonist or even 'super agonist'. In the likely event that different, tissue-dependent gene expression profiles are reproduced in vivo, then the anti-inflammatory and adverse-effect potential of many glucocorticoids currently available as asthma therapeutics may not be equivalent. The generation of gene expression 'fingerprints' in target and off-target human tissues could assist the rational design of GR agonists with improved therapeutic ratios. This approach could identify compounds that are useful in the management of severe asthma and other inflammatory disorders where systemic exposure is desirable. © 2014 The British Pharmacological Society.

  15. Memory B cell subpopulations in the aged.

    PubMed

    Colonna-Romano, Giuseppina; Aquino, Alessandra; Bulati, Matteo; Di Lorenzo, Gabriele; Listì, Florinda; Vitello, Salvatore; Lio, Domenico; Candore, Giuseppina; Clesi, Gioacchino; Caruso, Calogero

    2006-01-01

    The literature on immunosenescence has focused mainly on T cell impairment. With the aim of gaining insight into B cell immunosenescence, the authors investigated the serum IgD levels in 24 young and 21 old people and analyzed their relationship with the number of CD19+CD27+ memory cells. Serum IgD were quantified by the use of radial immunodiffusion and the lymphocyte population CD19+CD27+ was identified by a FACScan flow cytometer. Serum IgD levels were significantly lower (p < 0.0001) in old subjects, and the percentage of CD19+CD27+ lymphocytes were significantly increased (p = 0.01) in old subjects. Finally, a significant negative correlation was found (p = 0.01) between serum concentrations of IgD and CD19+CD27+. The present results show that the levels of IgD are negatively age-related to the amount of B memory cells. This suggests that the B repertoire available to respond to new antigenic challenges is decreased in the elderly. In fact, many memory IgD- B cells fill immunologic space, and the number of naïve IgD+ B cells is dramatically decreased. Therefore, these preliminary results suggest that a decrease of naïve IgD+CD27- B cells and a concomitant increase of memory IgD-CD27+ B cells could represent hallmarks of B immunosenescence, might provide biomarkers related to the lifespan of humans, and could be useful for the evaluation of antiaging treatments.

  16. Collecting Duct-Derived Cells Display Mesenchymal Stem Cell Properties and Retain Selective In Vitro and In Vivo Epithelial Capacity

    PubMed Central

    Li, Joan; Ariunbold, Usukhbayar; Suhaimi, Norseha; Sunn, Nana; Guo, Jinjin; McMahon, Jill A.; McMahon, Andrew P.

    2015-01-01

    We previously described a mesenchymal stem cell (MSC)-like population within the adult mouse kidney that displays long-term colony-forming efficiency, clonogenicity, immunosuppression, and panmesodermal potential. Although phenotypically similar to bone marrow (BM)-MSCs, kidney MSC–like cells display a distinct expression profile. FACS sorting from Hoxb7/enhanced green fluorescent protein (GFP) mice identified the collecting duct as a source of kidney MSC–like cells, with these cells undergoing an epithelial-to-mesenchymal transition to form clonogenic, long-term, self-renewing MSC-like cells. Notably, after extensive passage, kidney MSC–like cells selectively integrated into the aquaporin 2–positive medullary collecting duct when microinjected into the kidneys of neonatal mice. No epithelial integration was observed after injection of BM-MSCs. Indeed, kidney MSC–like cells retained a capacity to form epithelial structures in vitro and in vivo, and conditioned media from these cells supported epithelial repair in vitro. To investigate the origin of kidney MSC–like cells, we further examined Hoxb7+ fractions within the kidney across postnatal development, identifying a neonatal interstitial GFPlo (Hoxb7lo) population displaying an expression profile intermediate between epithelium and interstitium. Temporal analyses with Wnt4GCE/+:R26tdTomato/+ mice revealed evidence for the intercalation of a Wnt4-expressing interstitial population into the neonatal collecting duct, suggesting that such intercalation may represent a normal developmental mechanism giving rise to a distinct collecting duct subpopulation. These results extend previous observations of papillary stem cell activity and collecting duct plasticity and imply a role for such cells in collecting duct formation and, possibly, repair. PMID:24904087

  17. Collecting duct-derived cells display mesenchymal stem cell properties and retain selective in vitro and in vivo epithelial capacity.

    PubMed

    Li, Joan; Ariunbold, Usukhbayar; Suhaimi, Norseha; Sunn, Nana; Guo, Jinjin; McMahon, Jill A; McMahon, Andrew P; Little, Melissa

    2015-01-01

    We previously described a mesenchymal stem cell (MSC)-like population within the adult mouse kidney that displays long-term colony-forming efficiency, clonogenicity, immunosuppression, and panmesodermal potential. Although phenotypically similar to bone marrow (BM)-MSCs, kidney MSC-like cells display a distinct expression profile. FACS sorting from Hoxb7/enhanced green fluorescent protein (GFP) mice identified the collecting duct as a source of kidney MSC-like cells, with these cells undergoing an epithelial-to-mesenchymal transition to form clonogenic, long-term, self-renewing MSC-like cells. Notably, after extensive passage, kidney MSC-like cells selectively integrated into the aquaporin 2-positive medullary collecting duct when microinjected into the kidneys of neonatal mice. No epithelial integration was observed after injection of BM-MSCs. Indeed, kidney MSC-like cells retained a capacity to form epithelial structures in vitro and in vivo, and conditioned media from these cells supported epithelial repair in vitro. To investigate the origin of kidney MSC-like cells, we further examined Hoxb7(+) fractions within the kidney across postnatal development, identifying a neonatal interstitial GFP(lo) (Hoxb7(lo)) population displaying an expression profile intermediate between epithelium and interstitium. Temporal analyses with Wnt4(GCE/+):R26(tdTomato/+) mice revealed evidence for the intercalation of a Wnt4-expressing interstitial population into the neonatal collecting duct, suggesting that such intercalation may represent a normal developmental mechanism giving rise to a distinct collecting duct subpopulation. These results extend previous observations of papillary stem cell activity and collecting duct plasticity and imply a role for such cells in collecting duct formation and, possibly, repair.

  18. CCAST: a model-based gating strategy to isolate homogeneous subpopulations in a heterogeneous population of single cells.

    PubMed

    Anchang, Benedict; Do, Mary T; Zhao, Xi; Plevritis, Sylvia K

    2014-07-01

    A model-based gating strategy is developed for sorting cells and analyzing populations of single cells. The strategy, named CCAST, for Clustering, Classification and Sorting Tree, identifies a gating strategy for isolating homogeneous subpopulations from a heterogeneous population of single cells using a data-derived decision tree representation that can be applied to cell sorting. Because CCAST does not rely on expert knowledge, it removes human bias and variability when determining the gating strategy. It combines any clustering algorithm with silhouette measures to identify underlying homogeneous subpopulations, then applies recursive partitioning techniques to generate a decision tree that defines the gating strategy. CCAST produces an optimal strategy for cell sorting by automating the selection of gating markers, the corresponding gating thresholds and gating sequence; all of these parameters are typically manually defined. Even though CCAST is optimized for cell sorting, it can be applied for the identification and analysis of homogeneous subpopulations among heterogeneous single cell data. We apply CCAST on single cell data from both breast cancer cell lines and normal human bone marrow. On the SUM159 breast cancer cell line data, CCAST indicates at least five distinct cell states based on two surface markers (CD24 and EPCAM) and provides a gating sorting strategy that produces more homogeneous subpopulations than previously reported. When applied to normal bone marrow data, CCAST reveals an efficient strategy for gating T-cells without prior knowledge of the major T-cell subtypes and the markers that best define them. On the normal bone marrow data, CCAST also reveals two major mature B-cell subtypes, namely CD123+ and CD123- cells, which were not revealed by manual gating but show distinct intracellular signaling responses. More generally, the CCAST framework could be used on other biological and non-biological high dimensional data types that are

  19. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer.

    PubMed

    Marín-Aguilera, Mercedes; Codony-Servat, Jordi; Reig, Òscar; Lozano, Juan José; Fernández, Pedro Luis; Pereira, María Verónica; Jiménez, Natalia; Donovan, Michael; Puig, Pere; Mengual, Lourdes; Bermudo, Raquel; Font, Albert; Gallardo, Enrique; Ribal, María José; Alcaraz, Antonio; Gascón, Pere; Mellado, Begoña

    2014-05-01

    Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel + androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF-κB transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44(+) subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44(+) subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evidence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer.

  20. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    NASA Astrophysics Data System (ADS)

    Santana, Steven Michael; Antonyak, Marc A.; Cerione, Richard A.; Kirby, Brian J.

    2014-12-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell-cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells.

  1. Sources of variability in cytosolic calcium transients triggered by stimulation of homogeneous uro-epithelial cell monolayers

    PubMed Central

    Appleby, Peter A.; Shabir, Saqib; Southgate, Jennifer; Walker, Dawn

    2015-01-01

    Epithelial tissue structure is the emergent outcome of the interactions between large numbers of individual cells. Experimental cell biology offers an important tool to unravel these complex interactions, but current methods of analysis tend to be limited to mean field approaches or representation by selected subsets of cells. This may result in bias towards cells that respond in a particular way and/or neglect local, context-specific cell responses. Here, an automated algorithm was applied to examine in detail the individual calcium transients evoked in genetically homogeneous, but asynchronous populations of cultured non-immortalized normal human urothelial cells when subjected to either the global application of an external agonist or a localized scratch wound. The recorded calcium transients were classified automatically according to a set of defined metrics and distinct sub-populations of cells that responded in qualitatively different ways were observed. The nature of this variability in the homogeneous cell population was apportioned to two sources: intrinsic variation in individual cell responses and extrinsic variability due to context-specific factors of the environment, such as spatial heterogeneity. Statistically significant variation in the features of the calcium transients evoked by scratch wounding according to proximity to the wound edge was identified. The manifestation of distinct sub-populations of cells is considered central to the coordination of population-level response resulting in wound closure. PMID:25694543

  2. Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi

    PubMed Central

    Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.

    2017-01-01

    Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705

  3. A dysbiotic subpopulation of alcohol-dependent subjects.

    PubMed

    de Timary, Philippe; Leclercq, Sophie; Stärkel, Peter; Delzenne, Nathalie

    2015-01-01

    The vast majority of studies that assessed the importance of biological factors for the development of psychiatric disorders focused on processes occurring at the brain level. Alcohol-dependence is a very frequent psychiatric disorder where psycho-pharmacological interventions are only of moderate efficacy. Our laboratory has recently described that a subpopulation of alcohol-dependent subjects, that accounted for approximately 40% of individuals tested, presented with an increased intestinal permeability, with a dysbiosis, with alterations in the metabolomic content of faeces--that could play a role in the increased permeability--and finally with a more severe profile of alcohol-dependence than the other non-dysbiotic subpopulation. In this addendum, we discuss the implications of our observations for the pathophysiology of alcohol dependence where we try to discriminate which addiction dimensions are likely related to the gut microbiota alterations and whether these alterations are the cause or the consequence of drinking habits.

  4. A dysbiotic subpopulation of alcohol-dependent subjects

    PubMed Central

    de Timary, Philippe; Leclercq, Sophie; Stärkel, Peter; Delzenne, Nathalie

    2015-01-01

    The vast majority of studies that assessed the importance of biological factors for the development of psychiatric disorders focused on processes occurring at the brain level. Alcohol-dependence is a very frequent psychiatric disorder where psycho-pharmacological interventions are only of moderate efficacy. Our laboratory has recently described that a subpopulation of alcohol-dependent subjects, that accounted for approximately 40% of individuals tested, presented with an increased intestinal permeability, with a dysbiosis, with alterations in the metabolomic content of faeces - that could play a role in the increased permeability - and finally with a more severe profile of alcohol-dependence than the other non-dysbiotic subpopulation. In this addendum, we discuss the implications of our observations for the pathophysiology of alcohol dependence where we try to discriminate which addiction dimensions are likely related to the gut microbiota alterations and whether these alterations are the cause or the consequence of drinking habits. PMID:26727422

  5. Analysis of B-cell subpopulations in monoclonal gammopathies.

    PubMed

    Všianská, Pavla; Říhová, Lucie; Varmužová, Tamara; Suská, Renata; Kryukov, Fedor; Mikulášová, Aneta; Kupská, Renata; Penka, Miroslav; Pour, Luděk; Adam, Zdeněk; Hájek, Roman

    2015-04-01

    Multiple myeloma (MM) is characterized by accumulation of pathological plasma cells (PCs) in bone marrow (BM) as a result of deregulation of B-cell development. To clarify its pathophysiology it is necessary to investigate in detail the developmental stages of B-cells. Enumeration of total CD19-positive (CD19(+)) cells and their subpopulations together with PCs was done in peripheral blood (PB) and BM of newly diagnosed monoclonal gammopathy patients and control subjects. Representation of subsets was compared among groups and relationships between subset percentage and cytogenetic/biochemical findings were analyzed. A lower number of total CD19(+) cells was found in MM, particularly in advanced stages of disease. Reduction of naive (P < .01) and transitional B-cells (P < .05) and increase of switched memory and switched CD27(-) B-cells and germinal center founder cells were detected in PB of MM compared with controls (P < .01). Similar results were found in BM. β2 microglobulin level in MM positively correlated with the number of PCs and negatively with percentage of naive B-cells (P < .05). Our results provided a detailed phenotypic profile and enumeration of B and PC subpopulations in monoclonal gammopathy patients. A reduced number of B-cells and particularly a differentiation shift to more numerous antigen-stimulated forms was observed in MM. This might indicate a potential source of myeloma-initiating cells in one of these subpopulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Characterisation of subpopulations of myeloid cells in infantile haemangioma.

    PubMed

    Tan, Elysia M S; Chudakova, Daria A; Davis, Paul F; Brasch, Helen D; Itinteang, Tinte; Tan, Swee T

    2015-07-01

    Cells expressing markers of mast cells, macrophages and dendritic cells have previously been demonstrated within the interstitium of infantile haemangioma (IH). This study characterised these myeloid cellular subpopulations within IH. Immunohistochemical staining was performed on proliferating and involuted IHs for the expression of Nanog, tryptase, CD163, DC-SIGN and CD45. The presence of mRNA corresponding to Nanog, tryptase α/β-1, tryptase β-2, CD163 and DC-SIGN was confirmed by NanoString and RT-PCR in snap-frozen IH tissues. Immunohistochemical staining showed expression of Nanog by interstitial phenotypical mast cells within proliferating IH, which were separate from the interstitial M2-polarised macrophages that also expressed DC-SIGN, a dendritic cell marker. These two myeloid cellular subpopulations in IH did not express the pan-haematopoietic marker, CD45. There are two interstitial subpopulations of myeloid cells within IH: phenotypical mast cells which also express Nanog, indicating a primitive phenotype; and M2-polarised macrophages which also express DC-SIGN. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Simple Epithelial Keratins.

    PubMed

    Strnad, Pavel; Guldiken, Nurdan; Helenius, Terhi O; Misiorek, Julia O; Nyström, Joel H; Lähdeniemi, Iris A K; Silvander, Jonas S G; Kuscuoglu, Deniz; Toivola, Diana M

    2016-01-01

    Simple epithelial keratins (SEKs) are the cytoplasmic intermediate filament proteins of single-layered and glandular epithelial cells as found in the liver, pancreas, intestine, and lung. SEKs have broad cytoprotective functions, which are facilitated by dynamic posttranslational modifications and interaction with associated proteins. SEK filaments are composed of obligate heteropolymers of type II (K7, K8) and type I (K18-K20, K23) keratins. The multifaceted roles of SEKs are increasingly appreciated due to findings obtained from transgenic mouse models and human studies that identified SEK variants in several digestive diseases. Reorganization of the SEK network into aggregates called Mallory-Denk bodies (MDBs) is characteristic for specific liver disorders such as alcoholic and nonalcoholic steatohepatitis. To spur further research on SEKs, we here review the methods and potential caveats of their isolation as well as possibilities to study them in cell culture. The existing transgenic SEK mouse models, their advantages and potential drawbacks are discussed. The tools to induce MDBs, ways of their visualization and quantification, as well as the possibilities to detect SEK variants in humans are summarized. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Separation and functional analysis of subpopulations of lymphocytes bearing complement and Fc receptors.

    PubMed

    Parish, C R

    1975-01-01

    A highly versatile procedure is described in this review which can be used to separate and obtain in pure form subpopulations of lymphoid cells which express different cell surface structures. The method is based on the observation that when rosetting and non-rosetting leukocytes are centrifuged on a cushion of Isopaque/Ficoll, the rosetting leukocytes and red cells sink whereas the non-rosetting leukocytes float. Thus, any subpopulation of leukocytes can be separated providing they can be identified by rosetting. The earlier sections of this review describe the method, its efficiency of separation and its advantages compared with other fractionation procedures. Subsequent sections describe experiments in which the procedure was specifically applied to separating Fc receptor (Fc+) and complement receptor (CR+) lymphocytes. On the basis of these two receptors it was possible to subdivide T and B lymphocytes into distinct subpopulations. Four subclasses of B lymphocytes were identified in mouse spleen (Fc+CR+,Fc+CR-,Fc-CR+ and Fc-CR-) and two subclasses of T cells were also detected (Fc+ and Fc-). The functional relevance of these subpopulations of lymphocytes was examined. It was found that in all cases examined, antigens could successfully activate CR+ B cells to produce antibody. However, only polymeric antigens, whether T-dependent or T-independent, were capable of triggering CR- B cells to synthesize antibody. Furthermore, preliminary experiments suggest that Fc receptors are present on functional B cells and helper T cells but are not expressed on cytotoxic T cells. On the basis of these results it is proposed that complement receptors on B lymphocytes provide an additional binding site which stabilizes the union between the antigen-specific receptors and soluble antigen. In contrast, due to their multi-determinant nature, polymeric antigens can avidly bind to B cells without involvement of the complement receptors. The possibility of Fc receptors playing a

  9. Differential distribution of sperm subpopulations and incidence of pleiomorphisms in ejaculates of captive howling monkeys ( Alouatta caraya)

    NASA Astrophysics Data System (ADS)

    Valle, R. R.; Carvalho, F. M.; Muniz, J. A. P. C.; Leal, C. L. V.; García-Herreros, M.

    2013-10-01

    The aim of this study was to develop an objective method to determine the incidence of pleiomorphisms and its influence on the distribution of sperm morphometric subpopulations in ejaculates of howling monkeys ( Alouatta caraya) by using a combination of computerized analysis system (ASMA) and principal component analysis (PCA) methods. Ejaculates were collected by electroejaculation methods on a regular basis from five individuals maintained under identical captive environmental, nutritional, and management conditions. Each sperm head was measured for dimensional parameters (Area [ A, (square micrometers)], Perimeter [ P, (micrometers)], Length [ L, (micrometers)], and Width [ W, (micrometers)]) and shape-derived parameters (Ellipticity [( L/ W)], Elongation [( L - W)/( L + W)], and Rugosity [(4л A/ P 2)]). PCA revealed two principal components explaining more than the 96 % of the variance. Clustering methods and discriminant analyzes were performed and seven separate subpopulations were identified. There were differences ( P < 0.001) in the distribution of the seven subpopulations as well as in the incidence of abnormal pleiomorphisms (58.6 %, 49.8 %, 35.1 %, 66.4 %, and 55.1 %, P < 0.05) among the five donors tested. Our results indicated that differences among individuals related to the incidence of pleiomorphisms, and sperm subpopulational structure was not related to the captivity conditions or the sperm collection method, since all individuals were studied under identical conditions. In conclusion, the combination of ASMA and PCA is a useful clinical diagnostic resource for detecting deficiencies in sperm morphology and sperm subpopulations in A. caraya ejaculates that could be used in ex situ conservation programs of threatened species in Alouatta genus or even other endangered neotropical primate species.

  10. Differential distribution of sperm subpopulations and incidence of pleiomorphisms in ejaculates of captive howling monkeys (Alouatta caraya).

    PubMed

    Valle, R R; Carvalho, F M; Muniz, J A P C; Leal, C L V; García-Herreros, M

    2013-10-01

    The aim of this study was to develop an objective method to determine the incidence of pleiomorphisms and its influence on the distribution of sperm morphometric subpopulations in ejaculates of howling monkeys (Alouatta caraya) by using a combination of computerized analysis system (ASMA) and principal component analysis (PCA) methods. Ejaculates were collected by electroejaculation methods on a regular basis from five individuals maintained under identical captive environmental, nutritional, and management conditions. Each sperm head was measured for dimensional parameters (Area [A, (square micrometers)], Perimeter [P, (micrometers)], Length [L, (micrometers)], and Width [W, (micrometers)]) and shape-derived parameters (Ellipticity [(L/W)], Elongation [(L - W)/(L + W)], and Rugosity [(4лA/P (2))]). PCA revealed two principal components explaining more than the 96 % of the variance. Clustering methods and discriminant analyzes were performed and seven separate subpopulations were identified. There were differences (P < 0.001) in the distribution of the seven subpopulations as well as in the incidence of abnormal pleiomorphisms (58.6 %, 49.8 %, 35.1 %, 66.4 %, and 55.1 %, P < 0.05) among the five donors tested. Our results indicated that differences among individuals related to the incidence of pleiomorphisms, and sperm subpopulational structure was not related to the captivity conditions or the sperm collection method, since all individuals were studied under identical conditions. In conclusion, the combination of ASMA and PCA is a useful clinical diagnostic resource for detecting deficiencies in sperm morphology and sperm subpopulations in A. caraya ejaculates that could be used in ex situ conservation programs of threatened species in Alouatta genus or even other endangered neotropical primate species.

  11. Seminal plasma proteins modify the distribution of sperm subpopulations in cryopreserved semen of rams with lesser fertility.

    PubMed

    Ledesma, Alba; Zalazar, Lucía; Fernández-Alegre, Estela; Hozbor, Federico; Cesari, Andreina; Martínez-Pastor, Felipe

    2017-09-01

    Any physiological mechanism involved in sperm selection and semen improvement has effects on heterogeneous sperm populations. This is mainly due to the fact that sperm populations within a single ejaculate have considerable heterogeneity for many variables, such as motility which is meaningful in terms of understanding how some sperm cells possess fertility advantages as compared with other cells. In the present research, initially there was a multivariate and clustering analysis used to assess sperm motility data from cryopreserved ram semen to identify subpopulations and compare the distribution of these clusters between rams with lesser and greater fertility. There were four classifications made of sperm subpopulations (clusters): CL1 fast/linear/progressive sperm; CL2 fast/non-linear sperm; CL3 very fast/linear sperm with vigorous beating and CL4 slow/non-linear sperm. Rams with greater fertility had a lesser proportion of sperm considered as "hyperactivated" (CL2) and a greater proportion of slow and non-linear sperm (CL4) than sperm of rams with lesser fertility. In addition, the effects were assessed for the capacity of seminal plasma (SP) and interacting SP proteins (iSPP) that were present during different seasons of the year to improve the distribution of sperm within subpopulations of semen from rams with lesser fertility. The iSPP and SP were obtained by artificial vagina (AV) and electroejaculation (EE) during breeding and non-breeding seasons and added to thawed semen. All the aggregates had a significant effect on the distribution of sperm subpopulations and effects differed among seasons of the year and depending on collection method used. Even though, future studies are needed to assess the contribution of each subpopulation on ram sperm fertility, it is important that a multivariate analysis be used to evaluate the effect of a treatment on sperm quality variables. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cell Cycle and Cell Size Dependent Gene Expression Reveals Distinct Subpopulations at Single-Cell Level

    PubMed Central

    Dolatabadi, Soheila; Candia, Julián; Akrap, Nina; Vannas, Christoffer; Tesan Tomic, Tajana; Losert, Wolfgang; Landberg, Göran; Åman, Pierre; Ståhlberg, Anders

    2017-01-01

    Cell proliferation includes a series of events that is tightly regulated by several checkpoints and layers of control mechanisms. Most studies have been performed on large cell populations, but detailed understanding of cell dynamics and heterogeneity requires single-cell analysis. Here, we used quantitative real-time PCR, profiling the expression of 93 genes in single-cells from three different cell lines. Individual unsynchronized cells from three different cell lines were collected in different cell cycle phases (G0/G1 – S – G2/M) with variable cell sizes. We found that the total transcript level per cell and the expression of most individual genes correlated with progression through the cell cycle, but not with cell size. By applying the random forests algorithm, a supervised machine learning approach, we show how a multi-gene signature that classifies individual cells into their correct cell cycle phase and cell size can be generated. To identify the most predictive genes we used a variable selection strategy. Detailed analysis of cell cycle predictive genes allowed us to define subpopulations with distinct gene expression profiles and to calculate a cell cycle index that illustrates the transition of cells between cell cycle phases. In conclusion, we provide useful experimental approaches and bioinformatics to identify informative and predictive genes at the single-cell level, which opens up new means to describe and understand cell proliferation and subpopulation dynamics. PMID:28179914

  13. Novel flow cytometric approach for the detection of adipocyte subpopulations during adipogenesis[S

    PubMed Central

    Durandt, Chrisna; van Vollenstee, Fiona A.; Dessels, Carla; Kallmeyer, Karlien; de Villiers, Danielle; Murdoch, Candice; Potgieter, Marnie; Pepper, Michael S.

    2016-01-01

    The ability of mesenchymal stromal cells (MSCs) to differentiate into adipocytes provides a cellular model of human origin to study adipogenesis in vitro. One of the major challenges in studying adipogenesis is the lack of tools to identify and monitor the differentiation of various subpopulations within the heterogeneous pool of MSCs. Cluster of differentiation (CD)36 plays an important role in the formation of intracellular lipid droplets, a key characteristic of adipocyte differentiation/maturation. The objective of this study was to develop a reproducible quantitative method to study adipocyte differentiation by comparing two lipophilic dyes [Nile Red (NR) and Bodipy 493/503] in combination with CD36 surface marker staining. We identified a subpopulation of adipose-derived stromal cells that express CD36 at intermediate/high levels and show that combining CD36 cell surface staining with neutral lipid-specific staining allows us to monitor differentiation of adipose-derived stromal cells that express CD36intermediate/high during adipocyte differentiation in vitro. The gradual increase of CD36intermediate/high/NRpositive cells during the 21 day adipogenesis induction period correlated with upregulation of adipogenesis-associated gene expression. PMID:26830859

  14. N-acetylcysteine alters apoptotic gene expression in axotomised primary sensory afferent subpopulations.

    PubMed

    Reid, Adam J; Shawcross, Susan G; Hamilton, Alex E; Wiberg, Mikael; Terenghi, Giorgio

    2009-10-01

    Novel approaches are required in peripheral nerve injury management because current surgical techniques, which do not address axotomy-induced neuronal death, lead to deficient sensory recovery. Sensory neuronal death has functional preference with cutaneous neurons dying in great numbers whilst muscle afferents survive axotomy. This offers the potential of comparing similar cell types that suffer distinct fates upon nerve injury. Here, a novel approach, combining in vivo rat nerve injury model with laser microdissection and quantitative real-time polymerase chain reaction, identifies crucial disparities in apoptotic gene expression attributable to subpopulations of differing sensory modalities and examines the response to N-acetylcysteine (NAC) therapy. We show that axotomised muscle afferent neurons survive injury due to a neuroprotective response which markedly downregulates Bax and caspase-3 mRNA. In contrast, axotomised cutaneous sensory neurons significantly upregulate caspase-3 and alter both Bcl-2 and Bax expression such that pro-apoptotic Bax predominates. N-Acetylcysteine (NAC) intervention promotes neuroprotection of cutaneous sensory neurons through considerable upregulation of Bcl-2 and downregulation of both Bax and caspase-3 mRNA. The data presented identifies differential activation of apoptotic genes in axotomised neuronal subpopulations. Furthermore, NAC therapy instigates apoptotic gene expression changes in axotomised neurons, thereby offering pharmacotherapeutic potential in the clinical treatment of nerve injury.

  15. Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake

    PubMed Central

    Anacker, Allison M. J.; Ryabinin, Andrey E.

    2013-01-01

    Peer influences are critical in the decrease of alcohol (ethanol) abuse and maintenance of abstinence. We previously developed an animal model of inhibitory peer influences on ethanol drinking using prairie voles and here sought to understand whether this influential behavior was due to specific changes in drinking patterns and to variation in a microsatellite sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a). Adult prairie voles’ drinking patterns were monitored in a lickometer apparatus that recorded each lick a subject exhibited during continuous access to water and 10% ethanol during periods of isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid consumption confirmed previous results that high drinkers typically decrease ethanol intake when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout structure revealed differences in the number of ethanol drinking bouts in the subpopulations of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by visual and by cross-correlation analyses demonstrated that pair housing did not increase the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a microsatellite did not predict susceptibility to peer influence or any other drinking behaviors. In summary, subpopulations of high drinkers were identified, by fluid intake and number of drinking bouts, which did or did not lower their ethanol intake when paired with a low drinking peer, and these subpopulations should be explored for testing the efficacy of treatments to decrease ethanol use in groups that are likely to be responsive to different types of therapy. PMID:23847535

  16. Subpopulation-Specific Transcriptome Analysis of Competence-Stimulating-Peptide-Induced Streptococcus mutans▿†

    PubMed Central

    Lemme, André; Gröbe, Lothar; Reck, Michael; Tomasch, Jürgen; Wagner-Döbler, Irene

    2011-01-01

    Competence-stimulating-peptide (CSP)-mediated competence development in Streptococcus mutans is a transient and biphasic process, since only a subpopulation induces the expression of ComX in the presence of CSP, and the activation of the DNA uptake machinery in this fraction shuts down ∼3 to 4 h postinduction. Here, we combine for the first time, to our knowledge, the bacterial flow-cytometric sorting of cells and subpopulation-specific transcriptome analysis of both the competent and noncompetent fraction of CSP-treated S. mutans cells. Sorting was guided by a ComX-green fluorescent protein (ComX-GFP) reporter, and the transcriptome analysis demonstrated the successful combination of both methods, because a strong enrichment of transcripts for comX and its downstream genes was achieved. Three two-component systems were expressed in the competent fraction, and among them was ComDE. Moreover, the recently identified regulator system ComR/S was expressed exclusively in the competent fraction. In contrast, the expression of bacteriocin-related genes was at the same level in all cells. GFP reporter strains for ComE and CipB (mutacin V) confirmed this expression pattern on the single-cell level. Fluorescence microscopy revealed that some ComX-expressing cells committed autolysis in an early stage of competence initiation. In viable ComX-expressing cells, the uptake of DNA could be shown on the single-cell level. This study demonstrates that all cells in the population respond to CSP through the activation of bacteriocin-related genes. Some of these cells start to activate ComX expression but then segregate into two subpopulations, one becoming competent and another one that lyses, resulting in intrapopulation diversity. PMID:21317319

  17. Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake.

    PubMed

    Anacker, Allison M J; Ryabinin, Andrey E

    2013-01-01

    Peer influences are critical in the decrease of alcohol (ethanol) abuse and maintenance of abstinence. We previously developed an animal model of inhibitory peer influences on ethanol drinking using prairie voles and here sought to understand whether this influential behavior was due to specific changes in drinking patterns and to variation in a microsatellite sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a). Adult prairie voles' drinking patterns were monitored in a lickometer apparatus that recorded each lick a subject exhibited during continuous access to water and 10% ethanol during periods of isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid consumption confirmed previous results that high drinkers typically decrease ethanol intake when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout structure revealed differences in the number of ethanol drinking bouts in the subpopulations of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by visual and by cross-correlation analyses demonstrated that pair housing did not increase the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a microsatellite did not predict susceptibility to peer influence or any other drinking behaviors. In summary, subpopulations of high drinkers were identified, by fluid intake and number of drinking bouts, which did or did not lower their ethanol intake when paired with a low drinking peer, and these subpopulations should be explored for testing the efficacy of treatments to decrease ethanol use in groups that are likely to be responsive to different types of therapy.

  18. The novel PAR-1-binding protein MTCL1 has crucial roles in organizing microtubules in polarizing epithelial cells.

    PubMed

    Sato, Yoshinori; Akitsu, Masashi; Amano, Yoshiko; Yamashita, Kazunari; Ide, Mariko; Shimada, Kyoko; Yamashita, Akio; Hirano, Hisashi; Arakawa, Noriaki; Maki, Takahisa; Hayashi, Ikuko; Ohno, Shigeo; Suzuki, Atsushi

    2013-10-15

    The establishment of epithelial polarity is tightly linked to the dramatic reorganization of microtubules (MTs) from a radial array to a vertical alignment of non-centrosomal MT bundles along the lateral membrane, and a meshwork under the apical and basal membranes. However, little is known about the underlying molecular mechanism of this polarity-dependent MT remodeling. The evolutionarily conserved cell polarity-regulating kinase PAR-1 (known as MARK in mammals), whose activity is essential for maintaining the dynamic state of MTs, has indispensable roles in promoting this process. Here, we identify a novel PAR-1-binding protein, which we call microtubule crosslinking factor 1 (MTCL1), that crosslinks MTs through its N-terminal MT-binding region and subsequent coiled-coil motifs. MTCL1 colocalized with the apicobasal MT bundles in epithelial cells, and its knockdown impaired the development of these MT bundles and the epithelial-cell-specific columnar shape. Rescue experiments revealed that the N-terminal MT-binding region was indispensable for restoring these defects of the knockdown cells. MT regrowth assays indicated that MTCL1 was not required for the initial radial growth of MTs from the apical centrosome but was essential for the accumulation of non-centrosomal MTs to the sublateral regions. Interestingly, MTCL1 recruited a subpopulation of PAR-1b (known as MARK2 in mammals) to the apicobasal MT bundles, and its interaction with PAR-1b was required for MTCL1-dependent development of the apicobasal MT bundles. These results suggest that MTCL1 mediates the epithelial-cell-specific reorganization of non-centrosomal MTs through its MT-crosslinking activity, and cooperates with PAR-1b to maintain the correct temporal balance between dynamic and stable MTs within the apicobasal MT bundles.

  19. Genomic epidemiology of Lineage 4 Mycobacterium tuberculosis subpopulations in New York City and New Jersey, 1999-2009.

    PubMed

    Brown, Tyler S; Narechania, Apurva; Walker, John R; Planet, Paul J; Bifani, Pablo J; Kolokotronis, Sergios-Orestis; Kreiswirth, Barry N; Mathema, Barun

    2016-11-21

    Whole genome sequencing (WGS) has rapidly become an important research tool in tuberculosis epidemiology and is likely to replace many existing methods in public health microbiology in the near future. WGS-based methods may be particularly useful in areas with less diverse Mycobacterium tuberculosis populations, such as New York City, where conventional genotyping is often uninformative and field epidemiology often difficult. This study applies four candidate strategies for WGS-based identification of emerging M. tuberculosis subpopulations, employing both phylogenomic and population genetics methods. M. tuberculosis subpopulations in New York City and New Jersey can be distinguished via phylogenomic reconstruction, evidence of demographic expansion and subpopulation-specific signatures of selection, and by determination of subgroup-defining nucleotide substitutions. These methods identified known historical outbreak clusters and previously unidentified subpopulations within relatively monomorphic M. tuberculosis endemic clone groups. Neutrality statistics based on the site frequency spectrum were less useful for identifying M. tuberculosis subpopulations, likely due to the low levels of informative genetic variation in recently diverged isolate groups. In addition, we observed that isolates from New York City endemic clone groups have acquired multiple non-synonymous SNPs in virulence- and growth-associated pathways, and relatively few mutations in drug resistance-associated genes, suggesting that overall pathoadaptive fitness, rather than the acquisition of drug resistance mutations, has played a central role in the evolutionary history and epidemiology of M. tuberculosis subpopulations in New York City. Our results demonstrate that some but not all WGS-based methods are useful for detection of emerging M. tuberculosis clone groups, and support the use of phylogenomic reconstruction in routine tuberculosis laboratory surveillance, particularly in areas with

  20. Profiling of the three circulating monocyte subpopulations in human obesity.

    PubMed

    Devêvre, Estelle F; Renovato-Martins, Mariana; Clément, Karine; Sautès-Fridman, Catherine; Cremer, Isabelle; Poitou, Christine

    2015-04-15

    Three subpopulations of circulating monocytes have been described: CD14(2+)CD16(-) (classical monocytes [CM]), CD14(2+)CD16(+) (intermediate monocytes [IM]), and CD14(+)CD16(2+) (nonclassical monocytes [NCM]). We previously showed that obesity is associated with an increased proportion of IM and NCM. Our objective is to decipher the migratory and inflammatory functions of each monocyte subset in obesity-related low-grade inflammation. Twenty-six healthy, normal-weight and nondiabetic volunteers (C) and 40 obese nondiabetic (Ob) individuals were included in this study. We explored the gene expression profile of 18 inflammatory genes in each subset of C and Ob subjects and measured protein expression of the upregulated genes. We then tested their functional response to TLR signaling in both groups. We showed an increased expression of CX3CR1 in all monocyte subpopulations and of CCR2 and CCR5 in CM and IM in the Ob group. We found negative correlation between CCR2 and CX3CR1 expressions and high-density lipoprotein-cholesterol, whereas CCR5 expression was positively linked to obesity-related metabolic traits. Production of inflammatory proteins upon bacterial LPS and viral ssRNA stimulation was higher in CM and NCM of the Ob group compared with the C group. Our work highlights an enhanced inflammatory phenotype of monocytes with a higher response to TLR4 and TLR8 stimulations in obesity. Moreover, it suggests an increased migration capacity of CM and IM subpopulations.

  1. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content

    PubMed Central

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit; Saari, Heikki; Ibañez, Elisa Lazaro; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2015-01-01

    Current analysis of exosomes focuses primarily on bulk analysis, where exosome-to-exosome variability cannot be assessed. In this study, we used Raman spectroscopy to study the chemical composition of single exosomes. We measured spectra of individual exosomes from 8 cell lines. Cell-line-averaged spectra varied considerably, reflecting the variation in total exosomal protein, lipid, genetic, and cytosolic content. Unexpectedly, single exosomes isolated from the same cell type also exhibited high spectral variability. Subsequent spectral analysis revealed clustering of single exosomes into 4 distinct groups that were not cell-line specific. Each group contained exosomes from multiple cell lines, and most cell lines had exosomes in multiple groups. The differences between these groups are related to chemical differences primarily due to differing membrane composition. Through a principal components analysis, we identified that the major sources of spectral variation among the exosomes were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression. For example, exosomes derived from cancerous versus non-cancerous cell lines can be largely separated based on their relative expression of cholesterol and phospholipids. We are the first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosome functionality. The origins of these differences are likely related to the specific role of extracellular vesicle subpopulations in both normal cell function and carcinogenesis, and they may provide diagnostic potential at the single exosome level. PMID:26649679

  2. Dioxins and dibenzofurans in adipose tissue of the general US population and selected subpopulations.

    PubMed Central

    Orban, J E; Stanley, J S; Schwemberger, J G; Remmers, J C

    1994-01-01

    OBJECTIVES. The Environmental Protection Agency's National Human Adipose Tissue Survey (NHATS) was conducted in fiscal year (FY) 1987 to (1) estimate average concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in the adipose tissue of humans in the US population, (2) identify differences in average concentrations among subpopulations, and (3) compare average concentrations with those from the FY 1982 NHATS. METHODS. Population estimates of the average levels of PCDDs and PCDFs were established on the basis of 865 human adipose tissue specimens collected in FY 1987. Average levels among subpopulations were compared. RESULTS. The average concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the adipose tissue of the US population was 5.38 pg/g, increasing from 1.98 pg/g in children under 14 years of age to 9.40 pg/g in adults over 45. The effect of age was significant for nine compounds. Regional differences in the levels of 2,3,4,7,8-pentachlorinated dibenzofurans were statistically significant, but there were no significant differences associated with sex or race. CONCLUSIONS. The survey provides a baseline of average levels of PCDDs and PCDFs in the adipose tissue of humans in the US population. PMID:8129062

  3. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection

    PubMed Central

    Hellerstein, Marc K.; Hoh, Rebecca A.; Hanley, Mary Beth; Cesar, Denise; Lee, Daniel; Neese, Richard A.; McCune, Joseph M.

    2003-01-01

    Antigenic stimulation of T cells gives rise to short-lived effector cells and long-lived memory cells. We used two stable isotope-labeling techniques to identify kinetically distinct subpopulations of T cells and to determine the effect of advanced infection with HIV-1. Long-term deuterated water (2H2O) incorporation into DNA demonstrated biphasic accrual of total and of memory/effector (m/e)–phenotype but not naive-phenotype T cells, consistent with the presence of short-lived and longer-lived subpopulations within the m/e-phenotype T cell pool. These results were mirrored by biphasic die-away kinetics in m/e- but not naive-phenotype T cells after short-term 2H-glucose labeling. Persistent label retention was observed in a subset of m/e-phenotype T cells (presumably memory T cells), confirming the presence of T cells with very different life spans in humans. In advanced HIV-1 infection, much higher proportions of T cells were short-lived, compared to healthy controls. Effective long-term anti-retroviral therapy restored values to normal. These results provide the first quantitative evidence that long-lived and quiescent T cells do indeed predominate in the T cell pool in humans and determine T cell pool size, as in rodents. The greatest impact of advanced HIV-1 infection is to reduce the generation of long-lived, potential progenitor T cells. PMID:12975480

  4. Raman spectroscopy of single extracellular vesicles reveals subpopulations with varying membrane content (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit S.; Saari, Heikki; Lazaro Ibañez, Elisa; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Exosomes are small (~100nm) membrane bound vesicles excreted by cells as part of their normal biological processes. These extracellular vesicles are currently an area of intense research, since they were recently found to carry functional mRNA that allows transfer of proteins and other cellular instructions between cells. Exosomes have been implicated in a wide range of diseases, including cancer. Cancer cells are known to have increased exosome production, and may use those exosomes to prepare remote environments for metastasis. Therefore, there is a strong need to develop characterization methods to help understand the structure and function of these vesicles. However, current techniques, such as proteomics and genomics technologies, rely on aggregating a large amount of exosome material and reporting on chemical content that is averaged over many millions of exosomes. Here we report on the use of laser-tweezers Raman spectroscopy (LTRS) to probe individual vesicles, discovering distinct heterogeneity among exosomes both within a cell line, as well as between different cell lines. Through principal components analysis followed by hierarchical clustering, we have identified four "subpopulations" of exosomes shared across seven cell lines. The key chemical differences between these subpopulations, as determined by spectral analysis of the principal component loadings, are primarily related to membrane composition. Specifically, the differences can be ascribed to cholesterol content, cholesterol to phospholipid ratio, and surface protein expression. Thus, we have shown LTRS to be a powerful method to probe the chemical content of single extracellular vesicles.

  5. Estimation of death rates in US states with small subpopulations.

    PubMed

    Voulgaraki, Anastasia; Wei, Rong; Kedem, Benjamin

    2015-05-20

    In US states with small subpopulations, the observed mortality rates are often zero, particularly among young ages. Because in life tables, death rates are reported mostly on a log scale, zero mortality rates are problematic. To overcome the observed zero death rates problem, appropriate probability models are used. Using these models, observed zero mortality rates are replaced by the corresponding expected values. This enables logarithmic transformations and, in some cases, the fitting of the eight-parameter Heligman-Pollard model to produce mortality estimates for ages 0-130 years, a procedure illustrated in terms of mortality data from several states.

  6. Mitochondrial oxidative stress as a novel therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations

    PubMed Central

    Cierlitza, Monika; Chauvistré, Heike; Bogeski, Ivan; Zhang, Xin; Hauschild, Axel; Herlyn, Meenhard; Schadendorf, Dirk; Vogt, Thomas; Roesch, Alexander

    2015-01-01

    Despite recent success in melanoma therapy, most patients with metastatic disease still undergo deadly progression. We have identified a novel mechanism of multidrug resistance allowing a small subpopulation of slow-cycling melanoma cells to survive based on elevated oxidative bioenergy metabolism. In this study, we asked whether such slow-cycling cells could be eliminated by co-treatment with the copper-chelator elesclomol. Elesclomol–copper complexes can cause oxidative stress by disruption of the mitochondrial respiration chain or by indirect non-mitochondrial induction of reactive oxygen species. We have found that elesclomol effectively kills the slow-cycling subpopulation and prevents the selective enrichment for slow-cycling cells, which usually results after monotreatment. We hypothesize that elesclomol could overcome the multidrug resistance of slow-cycling melanoma cells and prevent tumor repopulation in melanoma patients in future. PMID:25453510

  7. Mitochondrial oxidative stress as a novel therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations.

    PubMed

    Cierlitza, Monika; Chauvistré, Heike; Bogeski, Ivan; Zhang, Xin; Hauschild, Axel; Herlyn, Meenhard; Schadendorf, Dirk; Vogt, Thomas; Roesch, Alexander

    2015-02-01

    Despite recent success in melanoma therapy, most patients with metastatic disease still undergo deadly progression. We have identified a novel mechanism of multidrug resistance allowing a small subpopulation of slow-cycling melanoma cells to survive based on elevated oxidative bioenergy metabolism. In this study, we asked whether such slow-cycling cells could be eliminated by co-treatment with the copper-chelator elesclomol. Elesclomol-copper complexes can cause oxidative stress by disruption of the mitochondrial respiration chain or by indirect non-mitochondrial induction of reactive oxygen species. We have found that elesclomol effectively kills the slow-cycling subpopulation and prevents the selective enrichment for slow-cycling cells, which usually results after monotreatment. We hypothesize that elesclomol could overcome the multidrug resistance of slow-cycling melanoma cells and prevent tumor repopulation in melanoma patients in future. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers

    PubMed Central

    Fickert, Stefan; Fiedler, Jörg; Brenner, Rolf E

    2004-01-01

    We first identified and isolated cellular subpopulations with characteristics of mesenchymal progenitor cells (MPCs) in osteoarthritic cartilage using fluorescence-activated cell sorting (FACS). Cells from osteoarthritic cartilage were enzymatically isolated and analyzed directly or after culture expansion over several passages by FACS using various combinations of surface markers that have been identified on human MPCs (CD9, CD44, CD54, CD90, CD166). Culture expanded cells combined and the subpopulation derived from initially sorted CD9+, CD90+, CD166+ cells were tested for their osteogenic, adipogenic and chondrogenic potential using established differentiation protocols. The differentiation was analyzed by immunohistochemistry and by RT-PCR for the expression of lineage related marker genes. Using FACS analysis we found that various triple combinations of CD9, CD44, CD54, CD90 and CD166 positive cells within osteoarthritic cartilage account for 2–12% of the total population. After adhesion and cultivation their relative amount was markedly higher, with levels between 24% and 48%. Culture expanded cells combined and the initially sorted CD9/CD90/CD166 triple positive subpopulation had multipotency for chondrogenic, osteogenic and adipogenic differentiation. In conclusion, human osteoarthritic cartilage contains cells with characteristics of MPCs. Their relative enrichment during in vitro cultivation and the ability of cell sorting to obtain more homogeneous populations offer interesting perspectives for future studies on the activation of regenerative processes within osteoarthritic joints. PMID:15380042

  9. Trace Element Concentrations in Two Subpopulations of Lesser Snow Geese from Wrangel Island, Russia

    PubMed

    Hui; Takekawa; Baranyuk; Litvin

    1998-02-01

    Lesser snow geese (Anser c. caerulescens) from the Wrangel Island, Russia breeding colony spend the winter in two widely separated areas: the northern subpopulation in southern British Columbia and northern Washington and the southern subpopulation in the Central Valley of California. We examined 19 trace elements in the eggs and livers of geese from these two subpopulations to examine whether geese from the different wintering areas have similar trace element burdens. Eggs collected at the breeding colony from geese of the southern subpopulation had slightly higher levels of manganese, an element that can cause neurological damage and behavioral changes in chicks, than geese of the northern subpopulation. Livers from adult geese collected on the two wintering areas showed significant differences in trace elements including copper, iron, magnesium, molybdenum, and zinc. Copper concentrations in the livers of geese from the southern subpopulation were much higher than those from the northern subpopulation (&xmacr; = 116 vs. 46 ppm; dry weight). Elevated levels of copper may induce anemia in birds. The differences in trace element concentrations of these two subpopulations may be related to farming practices in their wintering areas. Geese from the northern subpopulation feed in pastures and coastal marshes and migrate along the coast, but geese from the southern subpopulation feed predominantly in rice fields and migrate over farm land. Copper and manganese are major components of fertilizers and fungicides commonly applied during rice cultivation.

  10. Trace element concentrations in two subpopulations of lesser snow geese from Wrangel Island, Russia

    USGS Publications Warehouse

    Hui, A.; Takekawa, J.Y.; Baranyuk, Vasily V.; Litvin, K.V.

    1998-01-01

    Lesser snow geese (Anser c. caerulescens) from the Wrangel Island, Russia breeding colony spend the winter in two widely separated areas: the northern subpopulation in southern British Columbia and northern Washington and the southern subpopulation in the Central Valley of California. We examined 19 trace elements in the eggs and livers of geese from these two subpopulations to examine whether geese from the different wintering areas have similar trace element burdens. Eggs collected at the breeding colony from geese of the southern subpopulation had slightly higher levels of manganese, an element that can cause neurological damage and behavioral changes in chicks, than geese of the northern subpopulation. Livers from adult geese collected on the two wintering areas showed significant differences in trace elements including copper, iron, magnesium, molybdenum, and zinc. Copper concentrations in the livers of geese from the southern subpopulation were much higher than those from the northern subpopulation (x?? = 116 vs. 46 ppm; dry weight). Elevated levels of copper may induce anemia in birds. The differences in trace element concentrations of these two subpopulations may be related to farming practices in their wintering areas. Geese from the northern subpopulation feed in pastures and coastal marshes and migrate along the coast, but geese from the southern subpopulation feed predominantly in rice fields and migrate over farm land. Copper and manganese are major components of fertilizers and fungicides commonly applied during rice cultivation.

  11. Bionomics of Aedes aegypti subpopulations (Diptera: Culicidae) from Misiones Province, northeastern Argentina.

    PubMed

    Tejerina, Edmundo Fabricio; Almeida, Francisco Felipe Ludueña; Almirón, Walter Ricardo

    2009-01-01

    Life statistics of four Aedes aegypti subpopulations from the subtropical province of Misiones were studied during autumn and winter, under semi-natural conditions, coming from the localities of Posadas (SW), San Javier (SE), Bernardo de Irigoyen (NE) and Puerto Libertad (NW). The eastern subpopulations are geographically separated by the central mountain system of the province from the western subpopulations. High percentages of larval and pupal survival (97-100%) were recorded, and no significant differences were detected among the four subpopulations. Larvae and pupae lasted approximately 8 days to complete their development, no significant differences being detected among the four subpopulations studied. Sex ratio recorded did not differ significantly from 1:1. Male longevity did not show difference among the different subpopulations, but female longevity was remarkably different among the four subpopulations (F=16.27; d.f.=(3;8); P=0.0009), ranging among 11.45 days for San Javier and 57.87 days for Posadas. Fecundity also varied considerably among subpopulations, the greatest number (307.44 eggs/female) being recorded for Posadas (F=4.13; d.f.=(3;8); P=0.04). Ae. aegypti females of the western subpopulations lived longer than the eastern subpopulations studied, therefore, the risk of dengue outbreak would be greater on the Misiones Province border with Paraguay.

  12. Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death

    PubMed Central

    Grau, Amir; Tabib, Adi; Atallah, Mizhir; Krispin, Alon; Mevorach, Dror

    2016-01-01

    Human monocyte-derived dendritic cells (mdDCs) are versatile cells that are used widely for research and experimental therapies. Although different culture conditions can affect their characteristics, there are no known subpopulations. Since monocytes differentiate into dendritic cells (DCs) in a variety of tissues and contexts, we asked whether they can give rise to different subpopulations. In this work we set out to characterize two human mdDC subpopulations that we identified and termed small (DC-S) and large (DC-L). Morphologically, DC-L are larger, more granular and have a more complex cell membrane. Phenotypically, DC-L show higher expression of a wide panel of surface molecules and stronger responses to maturation stimuli. Transcriptomic analysis confirmed their separate identities and findings were consistent with the phenotypes observed. Although they show similar apoptotic cell uptake, DC-L have different capabilities for phagocytosis, demonstrate better antigen processing, and have significantly better necrotic cell uptake. These subpopulations also have different patterns of cell death, with DC-L presenting an inflammatory, “dangerous” phenotype while DC-S mostly downregulate their surface markers upon cell death. Apoptotic cells induce an immune-suppressed phenotype, which becomes more pronounced among DC-L, especially after the addition of lipopolysaccharide. We propose that these two subpopulations correspond to inflammatory (DC-L) and steady-state (DC-S) DC classes that have been previously described in mice and humans. PMID:27690130

  13. Hypolactasia in Saami subpopulations of Russia and Finland.

    PubMed

    Kozlov, A; Lisitsyn, D

    1997-12-01

    Primary hypolactasia is a gene attributed condition of the inability of adult individuals to consume whole milk. Subpopulations of the Russia (Kildin) and Finland Saami are characterized by a large variability of the LAC*R (lactase restriction) gene frequencies (0.50-0.77). The distribution of primary hypolactasia among the Saami is ranging from 25% to 60%. The intensive reindeer breeding was developed by the Saami only 300-400 years ago. Reindeer milk is poor in lactose (2.4%) and is consumed by the Saami in small amounts. Thus, "milk behaviour" connected with reindeer breeding could not have influenced the trait evolution too much. The large between-group differences of the LAC*R gene frequencies in the Saami seem to reflect the level of genetic influence of neighbouring non-Saami populations. The role of gene inflow in reducing the level of primary hypolactasia in various Saami subpopulations is confirmed by historic data of various ethnoterritorial groups as well as by the reduction of the number of traditional family name bearers and the change of the AB0 blood group gene frequencies among the Kildin Saami in the last 30 years.

  14. Emergent patterns in interacting neuronal sub-populations

    NASA Astrophysics Data System (ADS)

    Kamal, Neeraj Kumar; Sinha, Sudeshna

    2015-05-01

    We investigate an ensemble of coupled model neurons, consisting of groups of varying sizes and intrinsic dynamics, ranging from periodic to chaotic, where the inter-group coupling interaction is effectively like a dynamic signal from a different sub-population. We observe that the minority group can significantly influence the majority group. For instance, when a small chaotic group is coupled to a large periodic group, the chaotic group de-synchronizes. However, counter-intuitively, when a small periodic group couples strongly to a large chaotic group, it leads to complete synchronization in the majority chaotic population, which also spikes at the frequency of the small periodic group. It then appears that the small group of periodic neurons can act like a pacemaker for the whole network. Further, we report the existence of varied clustering patterns, ranging from sets of synchronized clusters to anti-phase clusters, governed by the interplay of the relative sizes and dynamics of the sub-populations. So these results have relevance in understanding how a group can influence the synchrony of another group of dynamically different elements, reminiscent of event-related synchronization/de-synchronization in complex networks.

  15. Vascular channels formed by subpopulations of PECAM1+ melanoma cells

    PubMed Central

    Dunleavey, James M.; Xiao, Lin; Thompson, Joshua; Kim, Mi Mi; Shields, Janiel M.; Shelton, Sarah E.; Irvin, David M.; Brings, Victoria E.; Ollila, David; Brekken, Rolf A.; Dayton, Paul A.; Melero-Martin, Juan M.; Dudley, Andrew C.

    2014-01-01

    Targeting the vasculature remains a promising approach for treating solid tumors; however, the mechanisms of tumor neovascularization are diverse and complex. Here we uncover a new subpopulation of melanoma cells that express the vascular cell adhesion molecule PECAM1, but not VEGFR-2, and participate in a PECAM1-dependent form of vasculogenic mimicry (VM). Clonally-derived PECAM1+ tumor cells coalesce to form PECAM1-dependent networks in vitro and they generate well-perfused, VEGF-independent channels in mice. The neural crest specifier AP-2α is diminished in PECAM1+ melanoma cells and is a transcriptional repressor of PECAM1. Reintroduction of AP-2α into PECAM1+ tumor cells represses PECAM1 and abolishes tube-forming ability whereas AP-2α knockdown in PECAM1− tumor cells up-regulates PECAM1 expression and promotes tube formation. Thus, VM-competent subpopulations, rather than all cells within a tumor, may instigate VM, supplant host-derived endothelium, and form PECAM1-dependent conduits that are not diminished by neutralizing VEGF. PMID:25335460

  16. Automated identification of stratifying signatures in cellular subpopulations

    PubMed Central

    Bruggner, Robert V.; Bodenmiller, Bernd; Dill, David L.; Tibshirani, Robert J.; Nolan, Garry P.

    2014-01-01

    Elucidation and examination of cellular subpopulations that display condition-specific behavior can play a critical contributory role in understanding disease mechanism, as well as provide a focal point for development of diagnostic criteria linking such a mechanism to clinical prognosis. Despite recent advancements in single-cell measurement technologies, the identification of relevant cell subsets through manual efforts remains standard practice. As new technologies such as mass cytometry increase the parameterization of single-cell measurements, the scalability and subjectivity inherent in manual analyses slows both analysis and progress. We therefore developed Citrus (cluster identification, characterization, and regression), a data-driven approach for the identification of stratifying subpopulations in multidimensional cytometry datasets. The methodology of Citrus is demonstrated through the identification of known and unexpected pathway responses in a dataset of stimulated peripheral blood mononuclear cells measured by mass cytometry. Additionally, the performance of Citrus is compared with that of existing methods through the analysis of several publicly available datasets. As the complexity of flow cytometry datasets continues to increase, methods such as Citrus will be needed to aid investigators in the performance of unbiased—and potentially more thorough—correlation-based mining and inspection of cell subsets nested within high-dimensional datasets. PMID:24979804

  17. Lymphocyte subpopulations during acute and convalescence phases of malaria.

    PubMed

    Tongtawe, P; Chaicumpa, W; Tapchaisri, P; Looareesuwan, S; Webster, H K

    1988-06-01

    Lymphocytes of normal healthy persons were separated from blood by Ficoll-Hypaque gradient centrifugation and iron-magnet application. peripheral blood lymphocytes (PBL) were stained by various dye-labeled monoclonal antibodies. Cells positive for specific surface markers were enumerated by a fluorescence activated cell sorter (FACS) and fluorescence microscope (FM). The results revealed that the percentages of cells positive with one monoclonal antibody counted by these two techniques were similar while the percentages of cells with double staining were higher when counted by FACS than by FM. Lymphocyte subpopulations of 18 patients infected with Plasmodium falciparum during acute and convalescence period were studied. Lymphocytopenia occurred during the acute infection while total white blood cell counts were normal. PBL of the patients were stained with OKT3, OKT4, OKT8, Leu-11 and a combination of Leu-7, Leu-1 monoclonal antibodies. The absolute numbers of all lymphocyte subpopulations were decreased during the acute infection while T8 positive cells were decreased in both percentage and absolute number. Thus T4:T8 ratio (1.7:1) became higher than normal (1.3:1) at this period. During convalescence phase, absolute numbers and percentages of Leu-7+, Leu-1+ and perhaps Leu-7+, Leu-11- cells which had low NK cell activity were significantly higher than during acute illness. The finding might explain why the NK cell activity was low during the convalescence period.

  18. Atopic dermatitis: serum immunoglobulins and T-lymphocyte subpopulations.

    PubMed

    Valdés Sánchez, A F; Gómez Echevarría, A H; Lastra Alfonso, G

    1991-04-01

    A group of patients with atopic dermatitis who attended the Allergy Outpatient Service of the Hermanos Ameijeiras Clinical Surgical Hospital from May, 1987 to May, 1988 were studied. The patients were assigned to 2 groups; the first one composed of 38 patients and the second one composed of 12 non-allergic, supposedly healthy subjects. Different tests were carried out for the quantification of total serum immunoglobulins (A, G, M, E) by means of the radial immunodiffusion method and the ELISA ultramicromethod. They were also submitted to quantification of lymphocyte subpopulations by means of the indirect immunofluorescence test with monoclonal antibodies, using Cuban antiserum prepared at the National Institute of Oncology and Radiobiology. In our study IgG and IgA values were within normal limits in patients, contrary to the statistically significant increase in IgM and IgE values. The relative values of total T-lymphocytes (anti-T3) and of the suppressor lymphocyte subpopulations decreased.

  19. T lymphocyte subpopulations diverge in commercially raised chickens

    PubMed Central

    Bridle, Byram W.; Julian, Richard; Shewen, Patricia E.; Vaillancourt, Jean-Pierre

    2006-01-01

    Abstract To evaluate immunocompetence in commercially raised chickens, we immunophenotyped Dekalb Delta and H&N White Leghorn (WLH) hybrids, 20 chickens in each of 3 age groups (9 wk [juvenile], 25 wk [young adult], and 79 or 80 wk [adult]), for circulating CD3+, CD4+, CD8+, TCR1+, TCR2+, and TCR3+ lymphocytes. The proportion of CD3+ T cells, including CD4+ and CD8+ subsets, was increased in the hybrids as compared with published values for laboratory-raised outbred WLH chickens. The proportion of the TCR2+ (Vβ1) T cell subpopulation was also increased. An age-related decrease in the proportion of TCR1+ (γδ) T cells was noted in both hybrids. Further, a remarkably low CD4:CD8 ratio was evident in all age groups of both hybrids, indicating decreased immunocompetence. Overall, these experiments provide age-related proportions of various peripheral-blood T lymphocyte subpopulations in commercially raised Dekalb Delta and H&N chickens that diverge from the proportions in laboratory-raised outbred WLH chickens and suggest reduced immunocompetence. Such a decline in immunocompetence, including humoral immune capacity, could be attributed to genetic selection for production traits, environmental factors associated with commercial operations, and intense immunization. PMID:16850940

  20. Emergence of Bursting Activity in Connected Neuronal Sub-Populations

    PubMed Central

    Pasquale, Valentina; Berdondini, Luca; Chiappalone, Michela

    2014-01-01

    Uniform and modular primary hippocampal cultures from embryonic rats were grown on commercially available micro-electrode arrays to investigate network activity with respect to development and integration of different neuronal populations. Modular networks consisting of two confined active and inter-connected sub-populations of neurons were realized by means of bi-compartmental polydimethylsiloxane structures. Spontaneous activity in both uniform and modular cultures was periodically monitored, from three up to eight weeks after plating. Compared to uniform cultures and despite lower cellular density, modular networks interestingly showed higher firing rates at earlier developmental stages, and network-wide firing and bursting statistics were less variable over time. Although globally less correlated than uniform cultures, modular networks exhibited also higher intra-cluster than inter-cluster correlations, thus demonstrating that segregation and integration of activity coexisted in this simple yet powerful in vitro model. Finally, the peculiar synchronized bursting activity shown by confined modular networks preferentially propagated within one of the two compartments (‘dominant’), even in cases of perfect balance of firing rate between the two sub-populations. This dominance was generally maintained during the entire monitored developmental frame, thus suggesting that the implementation of this hierarchy arose from early network development. PMID:25250616

  1. Identifying mechanistic indicators of childhood asthma from blood gene expression

    EPA Science Inventory

    Asthmatic individuals have been identified as a susceptible subpopulation for air pollutants. However, asthma represents a syndrome with multiple probable etiologies, and the identification of these asthma endotypes is critical to accurately define the most susceptible subpopula...

  2. Identifying mechanistic indicators of childhood asthma from blood gene expression

    EPA Science Inventory

    Asthmatic individuals have been identified as a susceptible subpopulation for air pollutants. However, asthma represents a syndrome with multiple probable etiologies, and the identification of these asthma endotypes is critical to accurately define the most susceptible subpopula...

  3. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells

    PubMed Central

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C.; Liu, Jinsong

    2016-01-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  4. Identification of sperm subpopulations with defined motility characteristics in ejaculates from Holstein bulls: effects of cryopreservation and between-bull variation.

    PubMed

    Muiño, R; Tamargo, C; Hidalgo, C O; Peña, A I

    2008-12-01

    The aims of the present study were: (1) to determine the existence of sperm subpopulations with specific motility characteristics in fresh ejaculates from Holstein bulls, (2) to investigate the effects of semen cryopreservation and post-thaw incubation on the distribution of spermatozoa within the different subpopulations, and (3) to evaluate the existence of between-bull variation in the sperm subpopulations structure of fresh and frozen-thawed semen. Six ejaculates were collected from each of 9 Holstein bulls and cryopreserved following a standard protocol. Overall sperm motility and the individual kinematic parameters of motile spermatozoa, determined using a CASA system, were evaluated before freezing and after 0, 2 and 4h of post-thaw incubation at 37 degrees C. Data from 16,740 motile spermatozoa, defined by VCL, VSL, VAP, LIN, STR, WOB, ALH and BCF, were analysed using a multivariate clustering procedure to identify and quantify specific subpopulations within the semen samples. The statistical analysis clustered all the motile spermatozoa into four separate subpopulations with defined patters of movement: Subpopulation (Subp. 1) moderately slow but progressive spermatozoa (23.2%), (Subp. 2) highly active but non-progressive spermatozoa (16.0%), (Subp. 3) poorly motile non-progressive sperm (35.5%), and (Subp. 4) highly active and progressive sperm (25.3%). Subpopulations 2 and 4 significantly (P<0.01) decreased during cryopreservation and post-thaw incubation (Subp. 2: 21.1%, 18.1%, 8.7% and 5.9%; and Subp. 4: 34.1%, 20.6%, 15.2% and 7.3%, respectively, for fresh, 0, 2 and 4h post-thaw) whereas Subp. 3 significantly (P<0.01) increased (10.7%, 27.2%, 27.2% and 30.7%, respectively, for fresh, 0, 2 and 4h post-thaw). The frequency distribution of spermatozoa within subpopulations was quite similar for the 9 bulls, either in fresh or frozen-thawed semen, and differences among bulls were mainly due to differences in the Subp. 4. Significant correlations (P<0

  5. Growth of corneal epithelial cells over in situ therapeutic contact lens after simple limbal epithelial transplantation (SLET).

    PubMed

    Bhalekar, Swapnil; Sangwan, Virender S; Basu, Sayan

    2013-06-27

    An 11-year-old boy underwent simple limbal epithelial transplantation (SLET) from the healthy right eye to his left eye for total limbal stem cell deficiency. One month later, corneal surface epithelialised and whitish plaques overlying the transplants were seen inferiorly. Those plaques were adherent to the surface of the contact lens and underlying corneal surface had smooth elevations. Similar findings were noted in a 23-year man following cyanoacrylate glue application for corneal perforation. On histological and immunohistochemical analysis, cells lining the contact lenses were identified as corneal epithelial cells. These cases illustrate epithelial cell growth on the contact lens and epithelial hyperplasia on corresponding surface of the cornea. Exorbitant proliferation of the epithelial cells may be owing to young age; therefore, early contact lens removal after SLET in young age, can possibly avoid epithelial hyperplasia. This also reiterates the possibility of using contact lens as a scaffold to grow epithelial cells.

  6. Bivariate flow cytometric analysis of murine intestinal epithelial cells for cytokinetic studies

    SciTech Connect

    Pallavicini, M.G.; Ng, C.R.; Gray, J.W.

    1984-01-01

    The heterogeneous nature of the small intestine and the lack of methods to obtain pure crypt populations has, in the past, limited the application of standard flow cytometric analysis for cytokinetic studies of the proliferating crypts. The authors describe a flow cytometric technique to discriminate crypt and villus cells in an epithelial cell suspension on the basis of cell length, and to measure the DNA content of the discriminated subpopulations. These data indicate that bivariate analysis of a mixed epithelial cell suspension can be used to distinguish mature villus cells, G/sub 1/ crypt cells, and S-phase crypt cells. In addition, continuous labeling studies suggest that the position of a cell on the cell length axis reflects epithelial cell maturity. The authors applied this flow cytometric technique to determine the cytokinetic nature of epithelial cells obtained by sequential digestion of the small intestine. 22 references, 4 figures, 2 tables.

  7. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    SciTech Connect

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  8. Quantitative Morphology of Epithelial Folds

    PubMed Central

    Štorgel, Nick; Krajnc, Matej; Mrak, Polona; Štrus, Jasna; Ziherl, Primož

    2016-01-01

    The shape of spatially modulated epithelial morphologies such as villi and crypts is usually associated with the epithelium-stroma area mismatch leading to buckling. We propose an alternative mechanical model based on intraepithelial stresses generated by differential tensions of apical, lateral, and basal sides of cells as well as on the elasticity of the basement membrane. We use it to theoretically study longitudinal folds in simple epithelia and we identify four types of corrugated morphologies: compact, invaginated, evaginated, and wavy. The obtained tissue contours and thickness profiles are compared to epithelial folds observed in invertebrates and vertebrates, and for most samples, the agreement is within the estimated experimental error. Our model establishes the groove-crest modulation of tissue thickness as a morphometric parameter that can, together with the curvature profile, be used to estimate the relative differential apicobasal tension in the epithelium. PMID:26745429

  9. Emergence of two distinct subpopulations from Klebsiella pneumoniae grown in the stimulated microgravity environment.

    PubMed

    Wang, Haili; Li, Wenliang; Gu, Lixiao; Gao, Xiaofang; Ni, Bin; Deng, Haiteng; Yang, Ruifu; Han, Yanping

    2017-09-01

    To isolate and characterize the two phenotypically distinct subpopulations from Klebsiella pneumoniae clonal cultures grown in the simulate microgravity environment. Here clonal culture of K. pneumoniae strain ATCC BAA-1705 was grown within a vertically rotating wall vessel bioreactor. Microscopic, colony staining, biofilm assays and quantitative proteomics were used to define the features of subpopulations. Two subpopulations were isolated based on colony appearance and bacterial morphology and indicated the different capability of biofilm formation and antibiotics resistance. These findings would raise a possibility of understanding the adaptive roles of bacterial subpopulations formed under certain conditions from the viewpoint of population variation.

  10. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state

    PubMed Central

    Rotem, Assaf; Ram, Oren; Shoresh, Noam; Sperling, Ralph A.; Goren, Alon; Weitz, David A.; Bernstein, Bradley E.

    2015-01-01

    Chromatin profiling provides a versatile means to investigate functional genomic elements and their regulation. However, current methods yield ensemble profiles that are insensitive to cell-to-cell variation. Here we combine microfluidics, DNA barcoding and sequencing to collect chromatin data at single-cell resolution. We demonstrate the utility of the technology by assaying thousands of individual cells, and using the data to deconvolute a mixture of ES cells, fibroblasts and hematopoietic progenitors into high-quality chromatin state maps for each cell type. The data from each single cell is sparse, comprising on the order of 1000 unique reads. However, by assaying thousands of ES cells, we identify a spectrum of sub-populations defined by differences in chromatin signatures of pluripotency and differentiation priming. We corroborate these findings by comparison to orthogonal single-cell gene expression data. Our method for single-cell analysis reveals aspects of epigenetic heterogeneity not captured by transcriptional analysis alone. PMID:26458175

  11. Lucifer yellow filling of immunohistochemically pre-labeled neurons: a new method to characterize neuronal subpopulations.

    PubMed

    Galuske, R A; Delius, J A; Singer, W

    1993-07-01

    We describe a new technique for the morphological characterization of immunohistochemically labeled neuron populations. We demonstrate that it is possible to fill neurons iontophoretically with Lucifer Yellow (LY) in fixed slices of cat visual cortex after the respective cells have been identified by indirect immunofluorescence for the neural cell adhesion molecule N-CAM 180, with the VC1.1 antibody or with an antibody against glutamate dehydrogenase (GAD). Morphological analysis of the injected cells at the light and electron microscopic level revealed that the N-CAM 180-positive neurons share the features of neuropeptidergic cortical interneurons. Depending on the antibody applied, the immunohistochemical treatment had little or no noticeable effect on the quality of LY filling or on the preservation of morphological details of the pre-labeled cells. This makes the method described ideally suited for the light and electron microscopic examination of selected, immunologically characterized neuron subpopulations.

  12. Effects of radiation therapy on T-lymphocyte subpopulations in patients with head and neck cancer

    SciTech Connect

    Gray, W.C.; Chretien, P.B.; Suter, C.M.; Revie, D.R.; Tomazic, V.T.; Blanchard, C.L.; Aygun, C.; Amornmarn, R.; Ordonez, J.V.

    1985-10-01

    Cellular immunity was assessed in 85 patients with head and neck cancer with monoclonal antibodies to lymphocyte surface antigens that identify total T cells, helper cells, and suppressor cells. The control group consisted of 22 healthy volunteers. Nine patients who had surgical procedures for benign diseases were also studied. Compared with the controls, the patients with cancer who received radiation therapy had a significant decrease in total lymphocytes, T cells, helper cells, suppressor cells, and decreased helper/suppressor cell ratio. Significant decreases in lymphocyte subpopulations were not detected in patients tested before treatment or in patients treated with surgery alone. The immune deficits observed were prolonged in duration, with some present in the patients studied up to 11 years after radiation therapy. This long-lasting immune depression may have relevance to tumor recurrences and second primaries in patients with head and neck cancer treated by radiation therapy and to attempts at increasing cure rates with adjuvant agents that improve immune reactivity.

  13. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division.

    PubMed

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-07-04

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis.

  14. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state.

    PubMed

    Rotem, Assaf; Ram, Oren; Shoresh, Noam; Sperling, Ralph A; Goren, Alon; Weitz, David A; Bernstein, Bradley E

    2015-11-01

    Chromatin profiling provides a versatile means to investigate functional genomic elements and their regulation. However, current methods yield ensemble profiles that are insensitive to cell-to-cell variation. Here we combine microfluidics, DNA barcoding and sequencing to collect chromatin data at single-cell resolution. We demonstrate the utility of the technology by assaying thousands of individual cells and using the data to deconvolute a mixture of ES cells, fibroblasts and hematopoietic progenitors into high-quality chromatin state maps for each cell type. The data from each single cell are sparse, comprising on the order of 1,000 unique reads. However, by assaying thousands of ES cells, we identify a spectrum of subpopulations defined by differences in chromatin signatures of pluripotency and differentiation priming. We corroborate these findings by comparison to orthogonal single-cell gene expression data. Our method for single-cell analysis reveals aspects of epigenetic heterogeneity not captured by transcriptional analysis alone.

  15. Ara h 2: crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity.

    PubMed

    Mueller, G A; Gosavi, R A; Pomés, A; Wünschmann, S; Moon, A F; London, R E; Pedersen, L C

    2011-07-01

    Peanut allergy affects 1% of the population and causes the most fatal food-related anaphylactic reactions. The protein Ara h 2 is the most potent peanut allergen recognized by 80-90% of peanut allergic patients. The crystal structure of the major peanut allergen Ara h 2 was determined for the first time at 2.7 Å resolution using a customized maltose-binding protein (MBP)-fusion system. IgE antibody binding to the MBP fusion construct vs the natural allergen was compared by ELISA using sera from peanut allergic patients. The structure of Ara h 2 is a five-helix bundle held together by four disulfide bonds and related to the prolamin protein superfamily. The fold is most similar to other amylase and trypsin inhibitors. The MBP--Ara h 2 fusion construct was positively recognized by IgE from 76% of allergic patients (25/33). Two populations of patients could be identified. Subpopulation 1 (n = 14) showed an excellent correlation of IgE antibody binding to natural vs recombinant Ara h 2. Subpopulation 2 (n = 15) showed significantly reduced IgE binding to the MBP fusion protein. Interestingly, about 20% of the IgE binding in subpopulation 2 could be recovered by increasing the distance between MBP and Ara h 2 in a second construct. The reduced IgE binding to the MBP--Ara h 2 of subpopulation 2 indicates that the MBP molecule protects an immunodominant epitope region near the first helix of Ara h 2. Residues involved in the epitope(s) are suggested by the crystal structure. The MBP--Ara h 2 fusion constructs will be useful to further elucidate the relevance of certain epitopes to peanut allergy. © Published 2011. This article is a US Government work and is in the public domain in the USA.

  16. Expected Shannon Entropy and Shannon Differentiation between Subpopulations for Neutral Genes under the Finite Island Model.

    PubMed

    Chao, Anne; Jost, Lou; Hsieh, T C; Ma, K H; Sherwin, William B; Rollins, Lee Ann

    2015-01-01

    Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation") between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.

  17. Expected Shannon Entropy and Shannon Differentiation between Subpopulations for Neutral Genes under the Finite Island Model

    PubMed Central

    Chao, Anne; Jost, Lou; Hsieh, T. C.; Ma, K. H.; Sherwin, William B.; Rollins, Lee Ann

    2015-01-01

    Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information (“Shannon differentiation”) between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings. PMID

  18. Spatial and Space-Time Correlations in Systems of Subpopulations with Genetic Drift and Migration

    PubMed Central

    Epperson, B. K.

    1993-01-01

    The geographic distribution of genetic variation is an important theoretical and experimental component of population genetics. Previous characterizations of genetic structure of populations have used measures of spatial variance and spatial correlations. Yet a full understanding of the causes and consequences of spatial structure requires complete characterization of the underlying space-time system. This paper examines important interactions between processes and spatial structure in systems of subpopulations with migration and drift, by analyzing correlations of gene frequencies over space and time. We develop methods for studying important features of the complete set of space-time correlations of gene frequencies for the first time in population genetics. These methods also provide a new alternative for studying the purely spatial correlations and the variance, for models with general spatial dimensionalities and migration patterns. These results are obtained by employing theorems, previously unused in population genetics, for space-time autoregressive (STAR) stochastic spatial time series. We include results on systems with subpopulation interactions that have time delay lags (temporal orders) greater than one. We use the space-time correlation structure to develop novel estimators for migration rates that are based on space-time data (samples collected over space and time) rather than on purely spatial data, for real systems. We examine the space-time and spatial correlations for some specific stepping stone migration models. One focus is on the effects of anisotropic migration rates. Partial space-time correlation coefficients can be used for identifying migration patterns. Using STAR models, the spatial, space-time, and partial space-time correlations together provide a framework with an unprecedented level of detail for characterizing, predicting and contrasting space-time theoretical distributions of gene frequencies, and for identifying features such as

  19. Chronic stress, leukocyte subpopulations, and humoral response to latent viruses

    SciTech Connect

    McKinnon, W.; Weisse, C.S.; Reynolds, C.P.; Bowles, C.A.; Baum, A. )

    1989-01-01

    Psychological stress has been shown to affect immune system status and function, but most studies of this relationship have focused on acute stress and/or laboratory situations. The present study compared total numbers of leukocytes and lymphocyte subpopulations (determined by flow cytometry) and antibody titers to latent and nonlatent viruses among a group of chronically stressed individuals living near the damaged Three Mile Island (TMI) nuclear power plant with those of a demographically comparable control group. Urinary catecholamine and cortisol levels were also examined. Residents of the TMI area exhibited greater numbers of neutrophils, which were positively correlated with epinephrine levels. The TMI group also exhibited fewer B lymphocytes, T-suppressor/cytotoxic lymphocytes, and natural killer cells. Antibody titers to herpes simplex were significantly different across groups as well, whereas titers to nonlatent rubella virus as well as IgG and IgM levels were comparable.

  20. Aberrations in lymphocyte subpopulations and function during psychological stress.

    PubMed Central

    Dorian, B; Garfinkel, P; Brown, G; Shore, A; Gladman, D; Keystone, E

    1982-01-01

    Eight trainees in psychiatry taking their final oral fellowship examinations were compared with 16 controls to determine the effect of stress on their immune system. Two measures of stress were utilized to distinguish the highly stressed subjects from those minimally stressed. T cell subpopulations, B cell numbers, mitogen reactivity, natural killer cell activity, plaque forming cell responsiveness, antigen specific T suppressor cell activity, and hormone levels were studied 2 weeks before and 2 weeks after the exam. The results demonstrated transiently elevated numbers of T and B lymphocytes but impaired plaque forming cell and mitogen responsiveness in the highly stressed group prior to their exam which normalized later. The results support the concept that stress may significantly alter the immune response in man. PMID:6756726

  1. Osteogenic potential of sorted equine mesenchymal stem cell subpopulations.

    PubMed

    Radtke, Catherine L; Nino-Fong, Rodolfo; Rodriguez-Lecompte, Juan Carlos; Esparza Gonzalez, Blanca P; Stryhn, Henrik; McDuffee, Laurie A

    2015-04-01

    The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow aspirates of the fourth and fifth sternebrae. Aliquots of 800 × 10(3) MSCs from each tissue source were sorted into 5 fractions using non-equilibrium GrFFF (GrFFF proprietary system). Pooled fractions were cultured and expanded for use in osteogenic assays, including flow cytometry, histochemistry, bone nodule assays, and real-time quantitative polymerase chain reaction (qPCR) for gene expression of osteocalcin (OCN), RUNX2, and osterix. Equine MMSCs and BMSCs were consistently sorted into 5 fractions that remained viable for use in further osteogenic assays. Statistical analysis confirmed strongly significant upregulation of OCN, RUNX2, and osterix for the BMSC fraction 4 with P < 0.00001. Flow cytometry revealed different cell size and granularity for BMSC fraction 4 and MMSC fraction 2 compared to unsorted controls and other fractions. Histochemisty and bone nodule assays revealed positive staining nodules without differences in average nodule area, perimeter, or stain intensity between tissues or fractions. As there are different subpopulations of MSCs with different osteogenic capacities within equine muscle- and bone marrow-derived sources, these differences must be taken into account when using equine stem cell therapy to induce bone healing in veterinary medicine.

  2. The addition of reduced glutathione to cryopreservation media induces changes in the structure of motile subpopulations of frozen-thawed boar sperm.

    PubMed

    Estrada, Efrén; Rivera Del Álamo, Maria M; Rodríguez-Gil, Joan E; Yeste, Marc

    2017-10-01

    Adding cryopreservation media with reduced glutathione (GSH) has previously been shown to maintain the motility, membrane integrity and fertilizing ability of frozen-thawed boar sperm, although the effects of GSH on good (GFE) and poor freezability (PFE) ejaculates rely upon the intrinsic ejaculate freezability. The resilience to withstand freeze-thawing procedures has previously been related to the existence of a specific distribution of motile sperm subpopulations, which differs between GFE and PFE. Thus, the main aim of this study was to determine whether the addition of GSH to freezing media has any impact on the distribution of motile sperm subpopulations in GFE and PFE. With this purpose, 18 GFE and 13 PFE were cryopreserved with or without 2 mM GSH. Sperm quality and motile subpopulations were evaluated at 30 min and 4 h post-thawing. Three subpopulations were identified and the percentages of spermatozoa belonging to the fastest and most linear subpopulation, which was referred as 'SP1', decreased over post-thawing time. Good freezability ejaculates that were cryopreserved in the presence of 2 mM exhibited a significantly higher percentage of spermatozoa belonging to SP1 than the other combinations of treatment and freezability both at 30 min (mean ± SEM: GFE-C: 16.6 ± 0.4; GFE-GSH 27.7 ± 0.6) and 4 h post-thawing (GFE-C: 7.8 ± 0.2 vs. 16.7 ± 0.4). In conclusion, the positive effect of GSH on the motility of frozen-thawed sperm is related to a specific sperm subpopulation (SP1), which could coincide with the fertile sperm one. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Promoter methylation in epithelial-enriched and epithelial-depleted cell populations isolated from breast milk.

    PubMed

    Browne, Eva P; Dinc, Signem E; Punska, Elizabeth C; Agus, Sami; Vitrinel, Ayca; Erdag, Gulay Ciler; Anderton, Douglas L; Arcaro, Kathleen F; Yilmaz, Bayram

    2014-11-01

    Breast cancer is the most frequently diagnosed cancer among Turkish women and both the incidence and associated mortality appear to be increasing. Of particular concern is the percentage of young women diagnosed with breast cancer; roughly 20% of all breast cancer diagnoses in Turkey are in women younger than 40 years. Increased DNA methylation in the promoter region of tumor suppressor genes is a promising molecular biomarker, and human milk provides exfoliated breast epithelial cells appropriate for DNA methylation analyses. Comparisons between DNA methylation patterns in epithelial (epithelial-enriched) and nonepithelial (epithelial-depleted) cell fractions from breast milk have not been reported previously. In the present study, we examined promoter methylation of 3 tumor suppressor genes in epithelial-enriched and epithelial-depleted cell fractions isolated from breast milk of 43 Turkish women. Percentage methylation in the promoter region of Rass association domain family 1 (RASSF1), secreted frizzle related protein 1 (SFRP1), and glutathione-S-transferase class pi 1 was determined by pyrosequencing of the epithelial-enriched and epithelial-depleted cell fractions. Pyrosequencing identified a few subjects with significantly increased methylation in 1 or more genes. There was little correlation between the 2 cell fractions within individuals; only 1 woman had increased methylation for 1 gene (SFRP1) in both her enriched and depleted cell fractions. Methylation was positively associated with age for SFRP1 (epithelial-depleted fraction) and with body mass index for RASSF1 (epithelial-enriched cell fraction), respectively. Overall, results show that the methylation signals vary between different cell types in breast milk and suggest that breast milk can be used to assess DNA methylation patterns associated with increased breast cancer risk. © The Author(s) 2014.

  4. [Focal epithelial hyperplasia].

    PubMed

    Vera-Iglesias, E; García-Arpa, M; Sánchez-Caminero, P; Romero-Aguilera, G; Cortina de la Calle, P

    2007-11-01

    Focal epithelial hyperplasia is a rare disease of the oral mucosa caused by the human papilloma virus (HPV). It appears as a benign epithelial growth, usually in the mucosa of the lower lip. It is mainly associated with HPV serotypes 13 and 32 and there is a clear racial predilection for the disease in Native Americans and Eskimos. We describe the case of a 17-year-old girl from Ecuador with multiple papular lesions in both lips that were clinically and histologically consistent with focal epithelial hyperplasia. Analysis by polymerase chain reaction detected HPV serotype 13.

  5. Lung Epithelial Progenitor Cells

    PubMed Central

    Rawlins, Emma L.

    2008-01-01

    The current enthusiasm for stem cell research stems from the hope that damaged or diseased tissues may one day be repaired through the manipulation of endogenous or exogenous stem cells. The postnatal human respiratory system is highly accessible and provides unique opportunities for the application of such techniques. Several putative adult lung epithelial stem cells have been identified in the mouse model system. However, their in vivo capabilities to contribute to different lineages, and their control mechanisms, remain unclear. If stem cell–based therapies are to be successful in the lung, it is vitally important that we understand the normal behavior of adult lung stem cells, and how this is regulated. Lung embryonic progenitor cells are much better defined and characterized than their adult counterparts. Moreover, experiments on a variety of developing tissues are beginning to uncover general mechanisms by which embryonic progenitors influence final organ size and structure. This provides a framework for the study of lung embryonic progenitor cells, facilitating experimental design and interpretation. A similar approach to investigating adult lung stem cells could produce rapid advances in the field. PMID:18684716

  6. CD161 expression characterizes a subpopulation of human regulatory T cells that produces IL-17 in a STAT3-dependent manner

    PubMed Central

    Afzali, Behdad; Mitchell, Peter J; Edozie, Francis C; Povoleri, Giovanni AM; Dowson, Sophie E; Demandt, Laura; Walter, Gina; Canavan, James B; Scotta, Cristiano; Menon, Bina; Chana, Prabhjoat S; Khamri, Wafa; Kordasti, Shahram Y; Heck, Susanne; Grimbacher, Bodo; Tree, Timothy; Cope, Andrew P; Taams, Leonie S; Lechler, Robert I; John, Susan; Lombardi, Giovanna

    2013-01-01

    Treg cells are critical for the prevention of autoimmune diseases and are thus prime candidates for cell-based clinical therapy. However, human Treg cells are “plastic”, and are able to produce IL-17 under inflammatory conditions. Here, we identify and characterize the human Treg subpopulation that can be induced to produce IL-17 and identify its mechanisms. We confirm that a subpopulation of human Treg cells produces IL-17 in vitro when activated in the presence of IL-1β, but not IL-6. “IL-17 potential” is restricted to population III (CD4+CD25hiCD127loCD45RA−) Treg cells expressing the natural killer cell marker CD161. We show that these cells are functionally as suppressive and have similar phenotypic/molecular characteristics to other subpopulations of Treg cells and retain their suppressive function following IL-17 induction. Importantly, we find that IL-17 production is STAT3 dependent, with Treg cells from patients with STAT3 mutations unable to make IL-17. Finally, we show that CD161+ population III Treg cells accumulate in inflamed joints of patients with inflammatory arthritis and are the predominant IL-17-producing Treg-cell population at these sites. As IL-17 production from this Treg-cell subpopulation is not accompanied by a loss of regulatory function, in the context of cell therapy, exclusion of these cells from the cell product may not be necessary. PMID:23677517

  7. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  8. Characterization of Distinct Macrophage Subpopulations during Nitrogen Mustard-Induced Lung Injury and Fibrosis.

    PubMed

    Venosa, Alessandro; Malaviya, Rama; Choi, Hyejeong; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2016-03-01

    Nitrogen mustard (NM) is an alkylating agent known to cause extensive pulmonary injury progressing to fibrosis. This is accompanied by a persistent macrophage inflammatory response. In these studies, we characterized the phenotype of macrophages accumulating in the lung over time following NM exposure. Treatment of rats with NM (0.125 mg/kg, intratracheally) resulted in an increase in CD11b(+) macrophages in histologic sections. These cells consisted of inducible nitric oxide synthase(+) (iNOS) proinflammatory M1 macrophages, and CD68(+), CD163(+), CD206(+), YM-1(+), and arginase-II(+)antiinflammatory M2 macrophages. Although M1 macrophages were prominent 1-3 days after NM, M2 macrophages were most notable at 28 days. At this time, they were enlarged and vacuolated, consistent with a profibrotic phenotype. Flow cytometric analysis of isolated lung macrophages identified three phenotypically distinct subpopulations: mature CD11b(-), CD43(-), and CD68(+) resident macrophages, which decreased in numbers after NM; and two infiltrating (CD11b(+)) macrophage subsets: immature CD43(+) M1 macrophages and mature CD43(-) M2 macrophages, which increased sequentially. Time-related increases in M1 (iNOS, IL-12α, COX-2, TNF-α, matrix metalloproteinase-9, matrix metalloproteinase-10) and M2 (IL-10, pentraxin-2, connective tissue growth factor, ApoE) genes, as well as chemokines/chemokine receptors associated with trafficking of M1 (CCR2, CCR5, CCL2, CCL5) and M2 (CX3CR1, fractalkine) macrophages to sites of injury, were also noted in macrophages isolated from the lung after NM. The appearance of M1 and M2 macrophages in the lung correlated with NM-induced acute injury and the development of fibrosis, suggesting a potential role of these macrophage subpopulations in the pathogenic response to NM.

  9. Subpopulations of PKCγ interneurons within the medullary dorsal horn revealed by electrophysiologic and morphologic approach.

    PubMed

    Alba-Delgado, Cristina; El Khoueiry, Corinne; Peirs, Cédric; Dallel, Radhouane; Artola, Alain; Antri, Myriam

    2015-09-01

    Mechanical allodynia, a cardinal symptom of persistent pain, is associated with the unmasking of usually blocked local circuits within the superficial spinal or medullary dorsal horn (MDH) through which low-threshold mechanical inputs can gain access to the lamina I nociceptive output neurons. Specific interneurons located within inner lamina II (IIi) and expressing the gamma isoform of protein kinase C (PKCγ⁺) have been shown to be key elements for such circuits. However, their morphologic and electrophysiologic features are still unknown. Using whole-cell patch-clamp recordings and immunohistochemical techniques in slices of adult rat MDH, we characterized such lamina IIi PKCγ⁺ interneurons and compared them with neighboring PKCγ⁻ interneurons. Our results reveal that PKCγ⁺ interneurons display very specific activity and response properties. Compared with PKCγ⁻ interneurons, they exhibit a smaller membrane input resistance and rheobase, leading to a lower threshold for action potentials. Consistently, more than half of PKCγ⁺ interneurons respond with tonic firing to step current. They also receive a weaker excitatory synaptic drive. Most PKCγ⁺ interneurons express Ih currents. The neurites of PKCγ⁺ interneurons arborize extensively within lamina IIi, can spread dorsally into lamina IIo, but never reach lamina I. In addition, at least 2 morphologically and functionally different subpopulations of PKCγ⁺ interneurons can be identified: central and radial PKCγ⁺ interneurons. The former exhibit a lower membrane input resistance, rheobase and, thus, action potential threshold, and less PKCγ⁺ immunoreactivity than the latter. These 2 subpopulations might thus differently contribute to the gating of dorsally directed circuits within the MDH underlying mechanical allodynia.

  10. Characterization of Distinct Macrophage Subpopulations during Nitrogen Mustard–Induced Lung Injury and Fibrosis

    PubMed Central

    Venosa, Alessandro; Malaviya, Rama; Choi, Hyejeong; Gow, Andrew J.; Laskin, Jeffrey D.

    2016-01-01

    Nitrogen mustard (NM) is an alkylating agent known to cause extensive pulmonary injury progressing to fibrosis. This is accompanied by a persistent macrophage inflammatory response. In these studies, we characterized the phenotype of macrophages accumulating in the lung over time following NM exposure. Treatment of rats with NM (0.125 mg/kg, intratracheally) resulted in an increase in CD11b+ macrophages in histologic sections. These cells consisted of inducible nitric oxide synthase+ (iNOS) proinflammatory M1 macrophages, and CD68+, CD163+, CD206+, YM-1+, and arginase-II+antiinflammatory M2 macrophages. Although M1 macrophages were prominent 1–3 days after NM, M2 macrophages were most notable at 28 days. At this time, they were enlarged and vacuolated, consistent with a profibrotic phenotype. Flow cytometric analysis of isolated lung macrophages identified three phenotypically distinct subpopulations: mature CD11b−, CD43−, and CD68+ resident macrophages, which decreased in numbers after NM; and two infiltrating (CD11b+) macrophage subsets: immature CD43+ M1 macrophages and mature CD43− M2 macrophages, which increased sequentially. Time-related increases in M1 (iNOS, IL-12α, COX-2, TNF-α, matrix metalloproteinase-9, matrix metalloproteinase-10) and M2 (IL-10, pentraxin-2, connective tissue growth factor, ApoE) genes, as well as chemokines/chemokine receptors associated with trafficking of M1 (CCR2, CCR5, CCL2, CCL5) and M2 (CX3CR1, fractalkine) macrophages to sites of injury, were also noted in macrophages isolated from the lung after NM. The appearance of M1 and M2 macrophages in the lung correlated with NM-induced acute injury and the development of fibrosis, suggesting a potential role of these macrophage subpopulations in the pathogenic response to NM. PMID:26273949

  11. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay.

    PubMed

    Park, Jung Wook; Lee, John K; Phillips, John W; Huang, Patrick; Cheng, Donghui; Huang, Jiaoti; Witte, Owen N

    2016-04-19

    The cell of origin for prostate cancer remains a subject of debate. Genetically engineered mouse models have demonstrated that both basal and luminal cells can serve as cells of origin for prostate cancer. Using a human prostate regeneration and transformation assay, our group previously demonstrated that basal cells can serve as efficient targets for transformation. Recently, a subpopulation of multipotent human luminal cells defined by CD26 expression that retains progenitor activity in a defined organoid culture was identified. We transduced primary human prostate basal and luminal cells with lentiviruses expressing c-Myc and activated AKT1 (myristoylated AKT1 or myrAKT1) to mimic theMYCamplification andPTENloss commonly detected in human prostate cancer. These cells were propagated in organoid culture before being transplanted into immunodeficient mice. We found that c-Myc/myrAKT1-transduced luminal xenografts exhibited histological features of well-differentiated acinar adenocarcinoma, with strong androgen receptor (AR) and prostate-specific antigen (PSA) expression. In contrast, c-Myc/myrAKT1-transduced basal xenografts were histologically more aggressive, with a loss of acinar structures and low/absent AR and PSA expression. Our findings imply that distinct subtypes of prostate cancer may arise from luminal and basal epithelial cell types subjected to the same oncogenic insults. This study provides a platform for the functional evaluation of oncogenes in basal and luminal epithelial populations of the human prostate. Tumors derived in this fashion with defined genetics can be used in the preclinical development of targeted therapeutics.

  12. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay

    PubMed Central

    Park, Jung Wook; Lee, John K.; Phillips, John W.; Huang, Patrick; Cheng, Donghui; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    The cell of origin for prostate cancer remains a subject of debate. Genetically engineered mouse models have demonstrated that both basal and luminal cells can serve as cells of origin for prostate cancer. Using a human prostate regeneration and transformation assay, our group previously demonstrated that basal cells can serve as efficient targets for transformation. Recently, a subpopulation of multipotent human luminal cells defined by CD26 expression that retains progenitor activity in a defined organoid culture was identified. We transduced primary human prostate basal and luminal cells with lentiviruses expressing c-Myc and activated AKT1 (myristoylated AKT1 or myrAKT1) to mimic the MYC amplification and PTEN loss commonly detected in human prostate cancer. These cells were propagated in organoid culture before being transplanted into immunodeficient mice. We found that c-Myc/myrAKT1–transduced luminal xenografts exhibited histological features of well-differentiated acinar adenocarcinoma, with strong androgen receptor (AR) and prostate-specific antigen (PSA) expression. In contrast, c-Myc/myrAKT1–transduced basal xenografts were histologically more aggressive, with a loss of acinar structures and low/absent AR and PSA expression. Our findings imply that distinct subtypes of prostate cancer may arise from luminal and basal epithelial cell types subjected to the same oncogenic insults. This study provides a platform for the functional evaluation of oncogenes in basal and luminal epithelial populations of the human prostate. Tumors derived in this fashion with defined genetics can be used in the preclinical development of targeted therapeutics. PMID:27044116

  13. TH-E-BRF-08: Subpopulations of Similarly-Responding Lesions in Metastatic Prostate Cancer

    SciTech Connect

    Lin, C; Harmon, S; Perk, T; Jeraj, R

    2014-06-15

    Purpose: In patients with multiple lesions, resistance to cancer treatments and subsequent disease recurrence may be due to heterogeneity of response across lesions. This study aims to identify subpopulations of similarly-responding metastatic prostate cancer lesions in bone using quantitative PET metrics. Methods: Seven metastatic prostate cancer patients treated with AR-directed therapy received pre-treatment and mid-treatment [F-18]NaF PET/CT scans. Images were registered using an articulated CT registration algorithm and transformations were applied to PET segmentations. Midtreatment response was calculated on PET-based texture features. Hierarchical agglomerative clustering was used to form groups of similarly-responding lesions, with the number of natural clusters (K) determined by the inconsistency coefficient. Lesion clustering was performed within each patient, and for the pooled population. The cophenetic coefficient (C) quantified how well the data was clustered. The Jaccard Index (JI) assessed similarity of cluster assignments from patient clustering and from population clustering. Results: 188 lesions in seven patients were identified for analysis (between 6 to 53 lesions per patient). Lesion response was defined as percent change relative to pre-treatment for 23 uncorrelated PET-based feature identifiers. . High response heterogeneity was found across all lesions (i.e. range ΔSUVmax =−95.98% to 775.00%). For intra-patient clustering, K ranged from 1–20. Population-based clustering resulted in 75 clusters, of 1-6 lesions each. Intra-patient clustering resulted in higher quality clusters than population clustering (mean C=0.95, range=0.89 to 1.00). For all patients, cluster assignments from population clustering showed good agreement to intra-patient clustering (mean JI=0.87, range=0.68 to 1.00). Conclusion: Subpopulations of similarly-responding lesions were identified in patients with multiple metastatic lesions. Good agreement was found between

  14. Differential clustering of sperm subpopulations in infertile males with clinical varicocele and carriers of rearranged genomes.

    PubMed

    García-Peiró, Agustín; Oliver-Bonet, María; Navarro, Joaquima; Abad, Carlos; Amengual, María José; López-Fernández, Carmen; Gosálvez, Jaime; Benet, Jordi

    2012-01-01

    Some methods for determining sperm DNA fragmentation, such as the sperm chromatin structure assay (SCSA) and the sperm chromatin dispersion test (SCD), provide additional information about particular subgroups of spermatozoa with specific irregularities. Thus, SCSA recognizes a specific sperm subpopulation, the high-DNA stainability sperm subpopulation (HDS), and SCD recognizes the so-called DNA-degraded sperm (DDS) subpopulation. Although some studies associate the presence of these subpopulations with specific aspects related to infertility, the relationship between both sperm subpopulations and their preponderance in specific clinical groups of infertile males has not been extensively investigated. In this study, HDS and DDS subpopulations were determined in a total of 37 human males: 8 males with proven fertility, 9 infertile males with asthenoteratozoospermia, 10 carriers of chromosomal reorganizations, and 10 infertile males with clinical varicocele. Results showed a significant increase of the DDS subpopulation (P < .001) in both the varicocele patient (16.85 ± 7.24) and carrier of rearranged genome (11.6 ± 5.23) groups, but not in patients with asthenoteratozoospermia (3.88 ± 1.55) or fertile donors (2.62 ± 1.68). No statistical differences were detected for the HDS subpopulation (P = .542), but the highest values were found in the varicocele and rearranged-genome groups. However, no correlation between the HDS and DDS subpopulations were found (r = 0.196; P = .244), suggesting that both represent a different class of sperm subpopulation in the ejaculate. A significant increase in HDS, and especially DDS, can be associated with the presence of varicocele or the rearrangement of chromosomes. Specific diagnostic tests to confirm the diagnosis must be performed in patients with increased DDS and HDS values.

  15. Fish sperm subpopulations: Changes after cryopreservation process and relationship with fertilization success in tambaqui (Colossoma macropomum).

    PubMed

    Gallego, V; Cavalcante, S S; Fujimoto, R Y; Carneiro, P C F; Azevedo, H C; Maria, A N

    2017-01-01

    Fish tambaqui (Colossoma macropomum) is the native Brazilian fish with the highest agricultural production under intensive aquaculture in South America. However, the decrease in the genetic variability in fish farms has become necessary the improvement of cryopreservation process through new statistical studies of spermatozoa (like subpopulation studies). The evaluation of the kinetic data obtained with a computer-assisted sperm analysis system, applying a two-step cluster analysis, yielded in tambaqui three different subpopulations in fresh sperm: SP1, considered as a slow nonlinear subpopulation; SP2, considered as a fast nonlinear subpopulation, and finally; SP3, considered as a fast linear subpopulation. For cryopreserved sperm, the cluster analysis yielded only two sperm subpopulations: SP1', considered as a slow nonlinear subpopulation and SP2', which seemed to be an intermediate subpopulation (showing medium motility and velocity values) merged from SP2 and SP3 obtained from fresh sperm. Coefficients of correlation (r) and determination (r(2)) between the sperm subpopulations from fresh sperm and the fertilization rates were calculated, and SP2 and SP3 (the fast-spermatozoa subpopulations) showed a high-positive correlation with the fertilization rates (r = 0.93 and 0.79, respectively). In addition, the positive significant correlations found in curvilinear velocity (r = 0.78), straight line velocity (r = 0.57), and average velocity (r = 0.75) indicate that sperm kinetic features seem to be a key factor in the fertilization process in tambaqui, as occur in other fish species.

  16. Clonogenic assay allows for selection of a primitive mammary epithelial cell population in bovine.

    PubMed

    Martignani, Eugenio; Cravero, Diego; Miretti, Silvia; Accornero, Paolo; Baratta, Mario

    2015-11-01

    Adult mammary stem cells have been identified in several species including the bovine. They are responsible for the development of the gland and for cyclic remodeling during estrous cycles and pregnancy. Epithelial cell subpopulations exist within the mammary gland. We and others showed previously that the Colony Forming Cell (CFC) assay can be used to detect lineage-restricted mammary progenitors. We carried out CFCs with bovine mammary cells and manually separated colonies with specific morphologies associated with either a luminal or a myoepithelial phenotype. Expression of specific markers was assessed by immunocytochemistry or by flow cytometry to confirm that the manual separation resulted in isolation of phenotipically different cells. When transplanted in recipient immunodeficient mice, we found that only myoepithelial-like colonies gave rise to outgrowths that resembled bovine mammary alveoli, thus proving that adult stem cells were maintained during culture and segregated with myoepithelial cells. After recovery of the cells from the transplanted mice and subsequent progenitor content analysis, we found a tendency to detect a higher progenitor frequency when myoepithelial-like colonies were transplanted. We here demonstrate that bovine adult mammary stem cells can be sustained in short-term culture and that they can be enriched by manually selecting for basal-like morphology.

  17. Tissue proteomics of the human mammary gland: towards an abridged definition of the molecular phenotypes underlying epithelial normalcy.

    PubMed

    Moreira, José M A; Cabezón, Teresa; Gromova, Irina; Gromov, Pavel; Timmermans-Wielenga, Vera; Machado, Isidro; Llombart-Bosch, Antonio; Kroman, Niels; Rank, Fritz; Celis, Julio E

    2010-12-01

    Our limited understanding of the biological impact of the whole spectrum of early breast lesions together with a lack of accurate molecular-based risk criteria for the diagnosis and assignment of prognostic significance to biopsy findings presents an important problem in the clinical management of patients harboring precancerous breast lesions. As a result, there is a need to identify biomarkers that can better determine the outcome of early breast lesions by identifying subpopulations of cells in breast premalignant disease that are at high-risk of progression to invasive disease. A first step towards achieving this goal will be to define the molecular phenotypes of the various cell types and precursors - generated by the stem cell hierarchy - that are present in normal and benign conditions of the breast. To date there have been very few systematic proteomic studies aimed at characterizing the phenotypes of the different cell subpopulations present in normal human mammary tissue, partly due to the formidable heterogeneity of mammary tissue, but also due to limitations of the current proteomic technologies. Work in our laboratories has attempted to address in a systematic fashion some of these limitations and here we present our efforts to search for biomarkers using normal fresh tissue from non-neoplastic breast samples. From the data generated by the 2D gel-based proteomic profiling we were able to compile a protein database of normal human breast epithelial tissue that was used to support the biomarker discovery program. We review and present new data on the putative cell-progenitor marker cytokeratin 15 (CK15), and describe a novel marker, dihydropyriminidase-related protein 3 (DRP3) that in combination with CK15 and other well known proteins were used to define molecular phenotypes of normal human breast epithelial cells and their progenitors in resting acini, lactating alveoli, and large collecting ducts of the nipple. Preliminary results are also presented

  18. Conversion to stem-cell state in response to microenvironmental cues is regulated by balance between epithelial and mesenchymal features in lung cancer cells.

    PubMed

    Andriani, Francesca; Bertolini, Giulia; Facchinetti, Federica; Baldoli, Erika; Moro, Massimo; Casalini, Patrizia; Caserini, Roberto; Milione, Massimo; Leone, Giorgia; Pelosi, Giuseppe; Pastorino, Ugo; Sozzi, Gabriella; Roz, Luca

    2016-02-01

    Cancer cells within a tumor are functionally heterogeneous and specific subpopulations, defined as cancer initiating cells (CICs), are endowed with higher tumor forming potential. The CIC state, however, is not hierarchically stable and conversion of non-CICs to CICs under microenvironment signals might represent a determinant of tumor aggressiveness. How plasticity is regulated at the cellular level is however poorly understood. To identify determinants of plasticity in lung cancer we exposed eight different cell lines to TGFβ1 to induce EMT and stimulate modulation of CD133(+) CICs. We show that response to TGFβ1 treatment is heterogeneous with some cells readily switching to stem cell state (1.5-2 fold CICs increase) and others being unresponsive to stimulation. This response is unrelated to original CICs content or extent of EMT engagement but is tightly dependent on balance between epithelial and mesenchymal features as measured by the ratio of expression of CDH1 (E-cadherin) to SNAI2. Epigenetic modulation of this balance can restore sensitivity of unresponsive models to microenvironmental stimuli, including those elicited by cancer-associated fibroblasts both in vitro and in vivo. In particular, tumors with increased prevalence of cells with features of partial EMT (hybrid epithelial/mesenchymal phenotype) are endowed with the highest plasticity and specific patterns of expression of SNAI2 and CDH1 markers identify a subset of tumors with worse prognosis. In conclusion, here we describe a connection between a hybrid epithelial/mesenchymal phenotype and conversion to stem-cell state in response to external stimuli. These findings have implications for current endeavors to identify tumors with increased plasticity.

  19. Epithelial dynamics of pancreatic branching morphogenesis

    PubMed Central

    Villasenor, Alethia; Chong, Diana C.; Henkemeyer, Mark; Cleaver, Ondine

    2010-01-01

    The mammalian pancreas is a highly branched gland, essential for both digestion and glucose homeostasis. Pancreatic branching, however, is poorly understood, both at the ultrastructural and cellular levels. In this article, we characterize the morphogenesis of pancreatic branches, from gross anatomy to the dynamics of their epithelial organization. We identify trends in pancreatic branch morphology and introduce a novel mechanism for branch formation, which involves transient epithelial stratification and partial loss of cell polarity, changes in cell shape and cell rearrangements, de novo tubulogenesis and epithelial tubule remodeling. In contrast to the classical epithelial budding and tube extension observed in other organs, a pancreatic branch takes shape as a multi-lumen tubular plexus coordinately extends and remodels into a ramifying, single-lumen ductal system. Moreover, our studies identify a role for EphB signaling in epithelial remodeling during pancreatic branching. Overall, these results illustrate distinct, step-wise cellular mechanisms by which pancreatic epithelium shapes itself to create a functional branching organ. PMID:21098570

  20. Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations.

    PubMed

    Gormley, Matthew; Ona, Katherine; Kapidzic, Mirhan; Garrido-Gomez, Tamara; Zdravkovic, Tamara; Fisher, Susan J

    2017-08-01

    The maternal signs of preeclampsia, which include the new onset of high blood pressure, can occur because of faulty placentation. We theorized that transcriptomic analyses of trophoblast subpopulations in situ would lend new insights into the role of these cells in preeclampsia pathogenesis. Our goal was to enrich syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts from the placentas of severe preeclampsia cases. Total RNA was subjected to global transcriptional profiling to identify RNAs that were misexpressed compared with controls. This was a cross-sectional analysis of placentas from women who had been diagnosed with severe preeclampsia. Gestational age-matched controls were placentas from women who had a preterm birth with no signs of infection. Laser microdissection enabled enrichment of syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts. After RNA isolation, a microarray approach was used for global transcriptional profiling. Immunolocalization identified changes in messenger RNA expression that carried over to the protein level. Differential expression of non-protein-coding RNAs was confirmed by in situ hybridization. A 2-way analysis of variance of non-coding RNA expression identified particular classes that distinguished trophoblasts in cases vs controls. Cajal body foci were visualized by coilin immunolocalization. Comparison of the trophoblast subtype data within each group (severe preeclampsia or noninfected preterm birth) identified many highly differentially expressed genes. They included molecules that are known to be expressed by each subpopulation, which is evidence that the method worked. Genes that were expressed differentially between the 2 groups, in a cell-type-specific manner, encoded a combination of molecules that previous studies associated with severe preeclampsia and those that were not known to be dysregulated in this pregnancy complication. Gene ontology analysis of the

  1. A subpopulation of nociceptors specifically linked to itch.

    PubMed

    Han, Liang; Ma, Chao; Liu, Qin; Weng, Hao-Jui; Cui, Yiyuan; Tang, Zongxiang; Kim, Yushin; Nie, Hong; Qu, Lintao; Patel, Kush N; Li, Zhe; McNeil, Benjamin; He, Shaoqiu; Guan, Yun; Xiao, Bo; Lamotte, Robert H; Dong, Xinzhong

    2013-02-01

    Itch-specific neurons have been sought for decades. The existence of such neurons has been doubted recently as a result of the observation that itch-mediating neurons also respond to painful stimuli. We genetically labeled and manipulated MrgprA3(+) neurons in the dorsal root ganglion (DRG) and found that they exclusively innervated the epidermis of the skin and responded to multiple pruritogens. Ablation of MrgprA3(+) neurons led to substantial reductions in scratching evoked by multiple pruritogens and occurring spontaneously under chronic itch conditions, whereas pain sensitivity remained intact. Notably, mice in which TRPV1 was exclusively expressed in MrgprA3(+) neurons exhibited itch, but not pain, behavior in response to capsaicin. Although MrgprA3(+) neurons were sensitive to noxious heat, activation of TRPV1 in these neurons by noxious heat did not alter pain behavior. These data suggest that MrgprA3 defines a specific subpopulation of DRG neurons mediating itch. Our study opens new avenues for studying itch and developing anti-pruritic therapies.

  2. Autophagic subpopulation sorting by sedimentation field-flow fractionation.

    PubMed

    Naves, Thomas; Battu, Serge; Jauberteau, Marie-Odile; Cardot, Philippe J P; Ratinaud, Marie-Hélène; Verdier, Mireille

    2012-10-16

    The development of hypoxic areas often takes place in solid tumors and leads cells to undergo adaptive signalization like autophagy. This process is responsible for misfolded or aggregated proteins and nonfunctional organelle recycling, allowing cells to maintain their energetic status. However, it could constitute a double-edged pathway leading to both survival and cell death. So, in response to stress such as hypoxia, autophagic and apoptotic cells are often mixed. To specifically study and characterize autophagic cells and the process, we needed to develop a method able to (1) isolate autophagic subpopulation and (2) respect apoptotic and autophagic status. Sedimentation field-flow fractionation (SdFFF) was first used to monitor physical parameter changes due to the hypoxia mimetic CoCl(2) in the p53 mutated SKNBE2(c) human neuroblastoma cell line. Second, we showed that "hyperlayer" elution is able to prepare autophagic enriched populations, fraction (F3), overexpressing autophagic markers (i.e., LC3-II accumulation and punctiform organization of autophagosomes as well as cathepsin B overactivity). Conversely, the first eluted fraction exhibited apoptotic markers (caspase-3 activity and Bax increased expression). For the first time, SdFFF was employed as an analytical tool in order to discriminate apoptotic and autophagic cells, thus providing an enriched autophagic fraction consecutively to a hypoxic stress.

  3. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas

    PubMed Central

    Mikhail, Jane; Kato, Ikuko; Suzuki, Rumiko; Yamaoka, Yoshio; Sheppard, Samuel K.; Falush, Daniel

    2017-01-01

    For the last 500 years, the Americas have been a melting pot both for genetically diverse humans and for the pathogenic and commensal organisms associated with them. One such organism is the stomach-dwelling bacterium Helicobacter pylori, which is highly prevalent in Latin America where it is a major current public health challenge because of its strong association with gastric cancer. By analyzing the genome sequence of H. pylori isolated in North, Central and South America, we found evidence for admixture between H. pylori of European and African origin throughout the Americas, without substantial input from pre-Columbian (hspAmerind) bacteria. In the US, strains of African and European origin have remained genetically distinct, while in Colombia and Nicaragua, bottlenecks and rampant genetic exchange amongst isolates have led to the formation of national gene pools. We found three outer membrane proteins with atypical levels of Asian ancestry in American strains, as well as alleles that were nearly fixed specifically in South American isolates, suggesting a role for the ethnic makeup of hosts in the colonization of incoming strains. Our results show that new H. pylori subpopulations can rapidly arise, spread and adapt during times of demographic flux, and suggest that differences in transmission ecology between high and low prevalence areas may substantially affect the composition of bacterial populations. PMID:28231283

  4. Distribution of beta-adrenergic receptors on human lymphocyte subpopulations.

    PubMed Central

    Pochet, R; Delespesse, G; Gausset, P W; Collet, H

    1979-01-01

    A technique is described allowing the quantification and the characterization of specific beta-adrenergic receptors in intact living human lymphocytes. 125I-Iodohydroxybenzylpindolol, a potent beta-adrenergic antagonist was used to label specific binding sites on unfractionated lymphoid cells and on purified subpopulations of T (F1 and F2) and B cells. F1 and F2 were obtained by filtration through nylon wool column as previously described (Delespesse et al., 1976), they differ in their response to mitogens, and in their interactions with adherent cells and B cells. 125I-HYP binding to unfractionated lymphocytes was a saturable, stereospecific and rapid process with a dissociation constant of 2.5 10(-10) M and a binding capacity of 400--600 sites/cell. Bindings on unfractionated lymphocytes, purified B cells and T cells of the F2 fraction were similar. No detectable binding was noted on T cells from the F1 fraction. Enriched T cells obtained by a rosetting technique displayed 200 receptors/cell. PMID:43789

  5. Peanut agglutinin (PNA)-binding properties of murine thymocyte subpopulation.

    PubMed Central

    Dumont, F; Nardelli, J

    1979-01-01

    Surface receptors for peanut agglutinin (PNA), a lectin with D-galactose specificity, were detected on mouse thymocytes using fluorescence microscopy. Depending on mouse strain, 69-85% of unseparated thymocytes could thus be characterized as PNA+. Electrophoretic fractionation of thymocytes from normal or immunosuppressive drug-treated donors revealed an inverse relationship between PNA-binding properties and cell electrophoretic mobility (EPM). Thus, all thymocytes recovered in the lowest EPM fractions were strongly PNA+ whereas those in the highest EPM fractions were in the majority PNA-. Most of the cells collected in the intermediate EPM range were PNA+ but staining with the fluoresceinated lectin appeared weaker than for the low EPM thymocytes. Reciprocal experiments in which thymocytes were separated by PNA-mediated aggregation into fractions with different affinities for the lectin and then subjected to physical analysis, definitely established that PNA+ cells are of lower EPM than PNA- cells and that these two cell types also differ in size distribution. These data show that the four physical subpopulations of thymocytes previously described present distinctive PNA-binding properties: Th1 and Th2 cells can be classified as strongly PNA+, Th3 cells as less intensely PNA+, and Th4 cells as mostly PNA-. Images Figure 1 PMID:313899

  6. B-cell subpopulations in children: National reference values

    PubMed Central

    Duchamp, Marie; Sterlin, Delphine; Diabate, Aminata; Uring-Lambert, Béatrice; Guérin-El Khourouj, Valérie; Le Mauff, Brigitte; Monnier, Delphine; Malcus, Christophe; Labalette, Myriam; Picard, Capucine

    2014-01-01

    Peripheral B-lymphocytes undergo a series of changes during the first few years of life. Encounters with foreign antigens lead to maturation and differentiation. Several primary antibody deficiencies (PADs) affecting B-cell development are associated with abnormalities in the composition and/or differentiation of B-cell compartments. The most recent international classifications of primary immunodeficiencies (PIDs) and common variable immunodeficiencies (CVID) have highlighted the importance of B-cell immunophenotyping and age-specific reference intervals for diagnostic purposes. We established national reference values for memory B-cell subpopulations, on the basis of CD27 and surface IgD expression in the peripheral blood of 242 healthy children. We report here the absolute counts and percentages of naive, switched and non-switched memory B-cells for seven age groups, from neonates to adults. We found that the naive B-cells percentage declined between the ages of 6 months and 8 years, after which it remained stable at about 70–80%. Memory B-cells are already present at birth and their numbers increase throughout childhood, stabilizing between the ages of 12 and 18 years. The definition of reference intervals for pediatric B-cell levels should facilitate the screening and diagnosis of various B-cell immunodeficiencies. This multicenter study, providing national reference values, should thus facilitate immunological diagnosis in children. PMID:25505547

  7. B-cell subpopulations in children: National reference values.

    PubMed

    Duchamp, Marie; Sterlin, Delphine; Diabate, Aminata; Uring-Lambert, Béatrice; Guérin-El Khourouj, Valérie; Le Mauff, Brigitte; Monnier, Delphine; Malcus, Christophe; Labalette, Myriam; Picard, Capucine

    2014-11-01

    Peripheral B-lymphocytes undergo a series of changes during the first few years of life. Encounters with foreign antigens lead to maturation and differentiation. Several primary antibody deficiencies (PADs) affecting B-cell development are associated with abnormalities in the composition and/or differentiation of B-cell compartments. The most recent international classifications of primary immunodeficiencies (PIDs) and common variable immunodeficiencies (CVID) have highlighted the importance of B-cell immunophenotyping and age-specific reference intervals for diagnostic purposes. We established national reference values for memory B-cell subpopulations, on the basis of CD27 and surface IgD expression in the peripheral blood of 242 healthy children. We report here the absolute counts and percentages of naive, switched and non-switched memory B-cells for seven age groups, from neonates to adults. We found that the naive B-cells percentage declined between the ages of 6 months and 8 years, after which it remained stable at about 70-80%. Memory B-cells are already present at birth and their numbers increase throughout childhood, stabilizing between the ages of 12 and 18 years. The definition of reference intervals for pediatric B-cell levels should facilitate the screening and diagnosis of various B-cell immunodeficiencies. This multicenter study, providing national reference values, should thus facilitate immunological diagnosis in children.

  8. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas.

    PubMed

    Thorell, Kaisa; Yahara, Koji; Berthenet, Elvire; Lawson, Daniel J; Mikhail, Jane; Kato, Ikuko; Mendez, Alfonso; Rizzato, Cosmeri; Bravo, María Mercedes; Suzuki, Rumiko; Yamaoka, Yoshio; Torres, Javier; Sheppard, Samuel K; Falush, Daniel

    2017-02-01

    For the last 500 years, the Americas have been a melting pot both for genetically diverse humans and for the pathogenic and commensal organisms associated with them. One such organism is the stomach-dwelling bacterium Helicobacter pylori, which is highly prevalent in Latin America where it is a major current public health challenge because of its strong association with gastric cancer. By analyzing the genome sequence of H. pylori isolated in North, Central and South America, we found evidence for admixture between H. pylori of European and African origin throughout the Americas, without substantial input from pre-Columbian (hspAmerind) bacteria. In the US, strains of African and European origin have remained genetically distinct, while in Colombia and Nicaragua, bottlenecks and rampant genetic exchange amongst isolates have led to the formation of national gene pools. We found three outer membrane proteins with atypical levels of Asian ancestry in American strains, as well as alleles that were nearly fixed specifically in South American isolates, suggesting a role for the ethnic makeup of hosts in the colonization of incoming strains. Our results show that new H. pylori subpopulations can rapidly arise, spread and adapt during times of demographic flux, and suggest that differences in transmission ecology between high and low prevalence areas may substantially affect the composition of bacterial populations.

  9. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  10. Population Genomic Analysis Reveals Differential Evolutionary Histories and Patterns of Diversity across Subgenomes and Subpopulations of Brassica napus L.

    PubMed Central

    Gazave, Elodie; Tassone, Erica E.; Ilut, Daniel C.; Wingerson, Megan; Datema, Erwin; Witsenboer, Hanneke M. A.; Davis, James B.; Grant, David; Dyer, John M.; Jenks, Matthew A.; Brown, Jack; Gore, Michael A.

    2016-01-01

    The allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits. PMID:27148342

  11. Population Genomic Analysis Reveals Differential Evolutionary Histories and Patterns of Diversity across Subgenomes and Subpopulations of Brassica napus L.

    PubMed

    Gazave, Elodie; Tassone, Erica E; Ilut, Daniel C; Wingerson, Megan; Datema, Erwin; Witsenboer, Hanneke M A; Davis, James B; Grant, David; Dyer, John M; Jenks, Matthew A; Brown, Jack; Gore, Michael A

    2016-01-01

    The allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.

  12. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    DOE PAGES

    Gazave, Elodie; Tassone, Erica E.; Ilut, Daniel C.; ...

    2016-04-21

    Here, the allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed) and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia, and America. We detected strong population structure broadlymore » concordant with growth habit and geography, and identified three major genetic groups: spring (SP), winter Europe (WE), and winter Asia (WA). Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.« less

  13. Estimates of vital rates for a declining loggerhead turtle (Caretta caretta) subpopulation: implications for management

    USGS Publications Warehouse

    Lamont, Margaret M.; Fujisaki, Ikuko; Carthy, Raymond R.

    2014-01-01

    Because subpopulations can differ geographically, genetically and/or phenotypically, using data from one subpopulation to derive vital rates for another, while often unavoidable, is not optimal. We used a two-state open robust design model to analyze a 14-year dataset (1998–2011) from the St. Joseph Peninsula, Florida (USA; 29.748°, −85.400°) which is the densest loggerhead (Caretta caretta) nesting beach in the Northern Gulf of Mexico subpopulation. For these analyses, 433 individuals were marked of which only 7.2 % were observed re-nesting in the study area in subsequent years during the study period. Survival was estimated at 0.86 and is among the highest estimates for all subpopulations in the Northwest Atlantic population. The robust model estimated a nesting assemblage size that ranged from 32 to 230 individuals each year with an annual average of 110. The model estimates indicated an overall population decline of 17 %. The results presented here for this nesting group represent the first estimates for this subpopulation. These data provide managers with information specific to this subpopulation that can be used to develop recovery plans and conduct subpopulation-specific modeling exercises explicit to the challenges faced by turtles nesting in this region.

  14. Optimal allocation of conservation effort among subpopulations of a threatened species: how important is patch quality?

    PubMed

    Chauvenet, Aliénor L M; Baxter, Peter W J; McDonald-Madden, Eve; Possingham, Hugh P

    2010-04-01

    Money is often a limiting factor in conservation, and attempting to conserve endangered species can be costly. Consequently, a framework for optimizing fiscally constrained conservation decisions for a single species is needed. In this paper we find the optimal budget allocation among isolated subpopulations of a threatened species to minimize local extinction probability. We solve the problem using stochastic dynamic programming, derive a useful and simple alternative guideline for allocating funds, and test its performance using forward simulation. The model considers subpopulations that persist in habitat patches of differing quality, which in our model is reflected in different relationships between money invested and extinction risk. We discover that, in most cases, subpopulations that are less efficient to manage should receive more money than those that are more efficient to manage, due to higher investment needed to reduce extinction risk. Our simple investment guideline performs almost as well as the exact optimal strategy. We illustrate our approach with a case study of the management of the Sumatran tiger, Panthera tigris sumatrae, in Kerinci Seblat National Park (KSNP), Indonesia. We find that different budgets should be allocated to the separate tiger subpopulations in KSNP. The subpopulation that is not at risk of extinction does not require any management investment. Based on the combination of risks of extinction and habitat quality, the optimal allocation for these particular tiger subpopulations is an unusual case: subpopulations that occur in higher-quality habitat (more efficient to manage) should receive more funds than the remaining subpopulation that is in lower-quality habitat. Because the yearly budget allocated to the KSNP for tiger conservation is small, to guarantee the persistence of all the subpopulations that are currently under threat we need to prioritize those that are easier to save. When allocating resources among subpopulations

  15. [Subpopulation of calbindin-immunoreactive interneurons in the dorsal horn of the mice spinal cord].

    PubMed

    Porseva, V V; Shilkin, V V; Strelkov, A A; Masliukov, P M

    2014-01-01

    In the dorsal horn of the spinal cord in the plates I-IV on the thoracic and lumbar levels different subpopulations of interneurons immunoreactive for calbindin 28 kDa (CAB IR), which are specific to each plate. In the area of the medial edge of the dorsal horn, we have found a special subpopulation of CAB IR interneurons whose morphometric characteristics differ from CAB IR interneurons subpopulations of said plates. The number of CAB IR interneurons was maximal in the plate II at all levels of the spinal cord. Leveled differences are more CAB IR interneurons and larger area of the cross sections at the lumbar level.

  16. The Distinctive Sensitivity to Microgravity of Immune Cell Subpopulations

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Luo, Haiying; Liu, Jing; Wang, Peng; Dong, Dandan; Shang, Peng; Zhao, Yong

    2015-11-01

    Immune dysfunction in astronauts is well documented after spaceflights. Microgravity is one of the key factors directly suppressing the function of immune system. However, it is unclear which subpopulations of immune cells including innate and adaptive immune cells are more sensitive to microgravity We herein investigated the direct effects of modeled microgravity (MMg) on different immune cells in vitro. Mouse splenocytes, thymocytes and bone marrow cells were exposed to MMg for 16 hrs. The survival and the phenotypes of different subsets of immune cells including CD4+T cells, CD8+T cells, CD4+Foxp3+ regulatory T cells (Treg), B cells, monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK) were determined by flow cytometry. After splenocytes were cultured under MMg for 16h, the cell frequency and total numbers of monocytes, macrophages and CD4+Foxp3+T cells were significantly decreased more than 70 %. MMg significantly decreased the cell numbers of CD8+ T cells, B cells and neutrophils in splenocytes. The cell numbers of CD4+T cells and NK cells were unchanged significantly when splenocytes were cultured under MMg compared with controls. However, MMg significantly increased the ratio of mature neutrophils to immature neutrophils in bone marrow and the cell number of DCs in splenocytes. Based on the cell survival ability, monocytes, macrophages and CD4+Foxp3+Treg cells are most sensitive to microgravity; CD4+T cells and NK cells are resistant to microgravity; CD8+T cells and neutrophils are impacted by short term microgravity exposure. Microgravity promoted the maturation of neutrophils and development of DCs in vitro. The present studies offered new insights on the direct effects of MMg on the survival and homeostasis of immune cell subsets.

  17. Graft epithelial defects after deep anterior lamellar keratoplasty.

    PubMed

    Feizi, Sepehr; Javadi, Fatemeh; Javadi, Mohammad Ali

    2014-11-01

    The aim of this study was to report the incidence of epithelial defects and identify donor factors that might correlate with the presence of epithelial defects and graft reepithelialization time after a deep anterior lamellar keratoplasty (DALK). In this retrospective study, 283 consecutive keratoconic eyes underwent DALK using donor corneas of different qualities, ranging from fair to excellent. The donor data included age and sex, cause of death, death-to-preservation time, preservation-to-surgery time, epithelial and stromal status, endothelial cell density and morphology, and graft rating. On the first postoperative day, the corneal surface was carefully examined before and after the application of fluorescein stain, and the patients were followed up daily until complete reepithelialization occurred. A multivariate regression analysis was used to assess the correlation between donor characteristics and graft epithelial defects on postoperative day 1. The mean donor and recipient ages were 33.5 ± 13.2 and 27.6 ± 7.9 years, respectively. Two hundred sixty-four (93.3%) grafts had epithelial defects on day 1. The epithelial defects completely healed after 3.5 ± 2.7 (range, 1-37) days. In the univariate analysis, the presence of epithelial defects on postoperative day 1 had a significant correlation with donor preservation-to-surgery time (P = 0.01), epithelial sloughing (P < 0.001), and graft rating (P = 0.004). In the multivariate analysis, only donor epithelial sloughing significantly influenced the presence of epithelial defects on postoperative day 1 (odds ratio = 9.26, P < 0.001). Graft epithelial defects were very common after DALK. The epithelial status of donors was the only independent factor predictive of the surface integrity on the first postoperative day.

  18. A Common Stem Cell for Murine Cortical and Medullary Thymic Epithelial Cells?

    PubMed Central

    Van Soest, Peter; Platenburg, Peter Paul; Van Ewijk, Willem

    1995-01-01

    We have addressed the question whether the epithelial stroma in the thymus is derived from a common stem cell or whether cortical and medullary epithelial cells are derived from different embryonic stem cells emerging, for example, from endoderm and ectoderm. By the use of rapidly expanding cultures of thymic epithelial cells (TEC) from 14 to 16 day-old murine fetuses and by specific antibodies against cortical and medullary epithelium, respectively, we were able to demonstrate a small subpopulation of double-labeled TEC in the cultures. These cells were not present in TEC cultures initiated from thymuses of neonatal mice. Double-labeled TEC were also found in tissue sections from fetal thymuses. These findings may indicate that TEC populations of the cortex and the medulla are derived from a common stem cell, with potential for differentiation toward both cortical and medullary TEC. PMID:9700364

  19. Characterisation of the green turtle's leukocyte subpopulations by flow cytometry and evaluation of their phagocytic activity.

    PubMed

    Muñoz, F A; Franco-Noguez, S Y; Gonzalez-Ballesteros, E; Negrete-Philippe, A C; Flores-Romo, L

    2014-06-01

    Phagocytosis is a fundamental aspect of innate immunity that is conserved across many species making it a potentially useful health-assessment tool for wildlife. In non-mammalian vertebrates, heterophils, monocytes, macrophages, melanomacrophages, and thrombocytes all have phagocytic properties. Recently, B lymphocytes from fish, amphibians, and aquatic turtles have also showed phagocytic capacity. Phagocytes can be studied by flow cytometry; however, the use of this tool is complicated in reptiles partly because nucleated erythrocytes complicate the procedure. We separated green turtle leukocytes by density gradient centrifugation and identified subpopulations by flow cytometry and confocal microscopy. Additionally, we assessed their ability to phagocytize Fluorspheres and Ovoalbumin-Alexa. We found that heterophils and lymphocytes but not monocytes could be easily identified by flow cytometry. While heterophils from adults and juvenile turtles were equally able to phagocytize fluorspheres, adults had significantly more phagocytic ability for OVA-Alexa. Lymphocytes had a mild phagocytic activity with fluorospheres (27-38 %; 39-45 %) and OVA-Alexa (35-46 %; 14-22 %) in juvenile and adult green turtles, respectively. Confocal microscopy confirmed phagocytosis of fluorospheres in both heterophils and lymphocytes. This provides the first evidence that green turtle lymphocytes have phagocytic activity and that this assay could potentially be useful to measure one aspect of innate immunity in this species.

  20. Catfish consumption as a contributor to elevated PCB levels in a non-Hispanic black subpopulation.

    PubMed

    Weintraub, Max; Birnbaum, Linda S

    2008-07-01

    The human body burden of polychlorinated biphenyls (PCBs) sharply declined after production was banned in the US in 1979. For the 10% of the US population that remains most exposed to PCBs, fish consumption is the primary source. National Health and Nutrition Examination Survey (NHANES) data indicates that the highest remaining PCB levels exist in a non-Hispanic black subpopulation. Our review suggests that catfish consumption may be a significant PCB source for the one million non-Hispanic black anglers who fish for catfish. In comparison to non-Hispanic white anglers, non-Hispanic black anglers consume more catfish, are more likely to eat the whole fish rather than just the fillets that contain less PCBs, and are more likely to fish in watersheds with high PCB contamination. Efforts to diminish potential racial disparities in PCB exposure are challenged by geographic, economic, cultural, and educational barriers. In response, we propose that a fish consumption survey be performed that identifies the extent of subsistence fishing by non-Hispanic black anglers for catfish in watersheds with PCB contamination, the type and quantity of catfish subsistence fishing provides, and what actions would help moderate PCB exposure due to subsistence fishing for catfish in such areas. Understanding the contamination and consumption factors that contribute to higher PCB body burdens will help identify and offer solutions to racial disparities in exposure to PCBs due to subsistence fishing while providing a model to prevent similar disparities in exposure to toxics ranging from mercury to polybrominated diphenyl ethers.

  1. Biomarkers for epithelial-mesenchymal transitions.

    PubMed

    Zeisberg, Michael; Neilson, Eric G

    2009-06-01

    Somatic cells that change from one mature phenotype to another exhibit the property of plasticity. It is increasingly clear that epithelial and endothelial cells enjoy some of this plasticity, which is easily demonstrated by studying the process of epithelial-mesenchymal transition (EMT). Published reports from the literature typically rely on ad hoc criteria for determining EMT events; consequently, there is some uncertainty as to whether the same process occurs under different experimental conditions. As we discuss in this Personal Perspective, we believe that context and various changes in plasticity biomarkers can help identify at least three types of EMT and that using a collection of criteria for EMT increases the likelihood that everyone is studying the same phenomenon - namely, the transition of epithelial and endothelial cells to a motile phenotype.

  2. Galectins in epithelial functions

    PubMed Central

    Viguier, Mireille; Advedissian, Tamara; Delacour, Delphine; Poirier, Françoise; Deshayes, Frédérique

    2014-01-01

    Galectins are a family of animal lectins comprising 15 members in vertebrates. These proteins are involved in many biological processes including epithelial homeostasis and tumor progression by displaying intracellular and extracellular activities. Hence Galectins can be found either in the cytoplasm or the nucleus, associated with membranes or in the extracellular matrix. Current studies aim at understanding the roles of Galectins in cell-cell and cell-matrix adhesion, cellular polarity and motility. This review discusses recent progress in defining the specificities and mechanisms of action of Galectins as cell regulators in epithelial cells. Physiological, cellular and molecular aspects of Galectin specificities will be treated successively. PMID:25097826

  3. Detection of Bone Marrow Derived Lung Epithelial Cells

    PubMed Central

    Kassmer, Susannah H.; Krause, Diane S.

    2010-01-01

    Studies on the ability of bone marrow derived cells to adopt the morphology and protein expression of epithelial cells in vivo have expanded rapidly over the last decade, and hundreds of publications report that bone marrow derived cells can become epithelial cells of multiple organs including lung, liver, GI tract, skin, pancreas and others. In this review, we critically evaluate the literature related to engraftment of bone marrow derived cells as epithelial cells in the lung. Over 40 manuscripts focused on whether bone marrow cells can differentiate into lung epithelial cells have been published, nearly all of which claim to identify marrow derived epithelial cells. A few investigations have concluded that no such cells are present and that the phenomenon of marrow derived epithelial cells is based on detection artifacts. Here we discuss the problems that exist in published papers identifying marrow derived epithelial cells, and propose standards for detection methods that provide the most definitive data. Identification of BM derived epithelial cells requires reliable and sensitive techniques for their detection, which must include cell identification based on the presence of an epithelial marker and the absence of blood cell markers as well as a marker for donor BM origin. In order for these studies to be rigorous, they must also use approaches to rule out cell overlap by microscopy or single cell isolation. Once these stringent criteria for identification of marrow derived epithelial cells are used universally, then the field can move forward to address the critical questions regarding which bone marrow derived cells are responsible for engraftment as epithelial cells, the mechanisms by which this occurs, whether these cells play a role in normal tissue repair, and whether specific cell subsets can be used for therapeutic benefit. PMID:20447442

  4. Scattering attenuation microscopy of oral epithelial dysplasia

    NASA Astrophysics Data System (ADS)

    Tomlins, Pete H.; Adegun, Oluyori; Hagi-Pavli, Eleni; Piper, Kim; Bader, Dan; Fortune, Farida

    2010-11-01

    We present a new method for quantitative visualization of premalignant oral epithelium called scattering attenuation microscopy (SAM). Using low-coherence interferometry, SAM projects measurements of epithelial optical attenuation onto an image of the tissue surface as a color map. The measured attenuation is dominated by optical scattering that provides a metric of the severity of oral epithelial dysplasia (OED). Scattering is sensitive to the changes in size and distribution of nuclear material that are characteristic of OED, a condition recognized by the occurrence of basal-cell-like features throughout the epithelial depth. SAM measures the axial intensity change of light backscattered from epithelial tissue. Scattering measurements are obtained from sequential axial scans of a 3-D tissue volume and displayed as a 2-D SAM image. A novel segmentation method is used to confine scattering measurement to epithelial tissue. This is applied to oral biopsy samples obtained from 19 patients. Our results show that imaging of tissue scattering can be used to discriminate between different dysplastic severities and furthermore presents a powerful tool for identifying the most representative tissue site for biopsy.

  5. Identification of cancer stem cell subpopulations of CD34(+) PLC/PRF/5 that result in three types of human liver carcinomas.

    PubMed

    Park, Su Cheol; Nguyen, Ngoc Tue; Eun, Jong Ryeol; Zhang, Yanling; Jung, Yong Jin; Tschudy-Seney, Benjamin; Trotsyuk, Artem; Lam, Alexander; Ramsamooj, Rajendra; Zhang, Yanghong; Theise, Neil D; Zern, Mark A; Duan, Yuyou

    2015-04-15

    CD34(+) stem cells play an important role during liver development and regeneration. Thus, we hypothesized that some human liver carcinomas (HLCs) might be derived from transformed CD34(+) stem cells. Here, we determined that a population of CD34(+) cells isolated from PLC/PRF/5 hepatoma cells (PLC) appears to function as liver cancer stem cells (LCSCs) by forming HLCs in immunodeficient mice with as few as 100 cells. Moreover, the CD34(+) PLC subpopulation cells had an advantage over CD34(-) PLCs at initiating tumors. Three types of HLCs were generated from CD34(+) PLC: hepatocellular carcinomas (HCCs); cholangiocarcinomas (CC); and combined hepatocellular cholangiocarcinomas (CHCs). Tumors formed in mice transplanted with 12 subpopulations and 6 progeny subpopulations of CD34(+) PLC cells. Interestingly, progenies with certain surface antigens (CD133, CD44, CD90, or EPCAM) predominantly yielded HCCs. CD34(+) PLCs that also expressed OV6 and their progeny OV6(+) cells primarily produced CHC and CC. This represents the first experiment to demonstrate that the OV6(+) antigen is associated with human CHC and CC. CD34(+) PLCs that also expressed CD31 and their progeny CD31(+) cells formed CHCs. Gene expression patterns and tumor cell populations from all xenografts exhibited diverse patterns, indicating that tumor-initiating cells (TICs) with distinct antigenic profiles contribute to cancer cell heterogeneity. Therefore, we identified CD34(+) PLC cells functioning as LCSCs generating three types of HLCs. Eighteen subpopulations from one origin had the capacity independently to initiate tumors, thus functioning as TICs. This finding has broad implications for better understanding of the multistep model of tumor initiation and progression. Our finding also indicates that CD34(+) PLCs that also express OV6 or CD31 result in types of HLCs. This is the first report that PLC/PRF/5 subpopulations expressing CD34 in combination with particular antigens defines categories of

  6. Identification of Cancer Stem Cell Subpopulations of CD34+ PLC/PRF/5 That Result in Three Types of Human Liver Carcinomas

    PubMed Central

    Park, Su Cheol; Nguyen, Ngoc Tue; Eun, Jong Ryeol; Zhang, Yanling; Jung, Yong Jin; Tschudy-Seney, Benjamin; Trotsyuk, Artem; Lam, Alexander; Ramsamooj, Rajendra; Zhang, Yanghong; Theise, Neil D.; Zern, Mark A.

    2015-01-01

    CD34+ stem cells play an important role during liver development and regeneration. Thus, we hypothesized that some human liver carcinomas (HLCs) might be derived from transformed CD34+ stem cells. Here, we determined that a population of CD34+ cells isolated from PLC/PRF/5 hepatoma cells (PLC) appears to function as liver cancer stem cells (LCSCs) by forming HLCs in immunodeficient mice with as few as 100 cells. Moreover, the CD34+ PLC subpopulation cells had an advantage over CD34− PLCs at initiating tumors. Three types of HLCs were generated from CD34+ PLC: hepatocellular carcinomas (HCCs); cholangiocarcinomas (CC); and combined hepatocellular cholangiocarcinomas (CHCs). Tumors formed in mice transplanted with 12 subpopulations and 6 progeny subpopulations of CD34+ PLC cells. Interestingly, progenies with certain surface antigens (CD133, CD44, CD90, or EPCAM) predominantly yielded HCCs. CD34+ PLCs that also expressed OV6 and their progeny OV6+ cells primarily produced CHC and CC. This represents the first experiment to demonstrate that the OV6+ antigen is associated with human CHC and CC. CD34+ PLCs that also expressed CD31 and their progeny CD31+ cells formed CHCs. Gene expression patterns and tumor cell populations from all xenografts exhibited diverse patterns, indicating that tumor-initiating cells (TICs) with distinct antigenic profiles contribute to cancer cell heterogeneity. Therefore, we identified CD34+ PLC cells functioning as LCSCs generating three types of HLCs. Eighteen subpopulations from one origin had the capacity independently to initiate tumors, thus functioning as TICs. This finding has broad implications for better understanding of the multistep model of tumor initiation and progression. Our finding also indicates that CD34+ PLCs that also express OV6 or CD31 result in types of HLCs. This is the first report that PLC/PRF/5 subpopulations expressing CD34 in combination with particular antigens defines categories of HLCs, implicating a

  7. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy

    PubMed Central

    Yilmaz, E; Gold, MS

    2015-01-01

    The purpose of the present study was to test the prediction that the unique manifestation of chemotherapeutic-induced peripheral neuropathy (CIPN) would be reflected in a specific pattern of changes in the regulation of the intracellular Ca2+ concentration ([Ca2+]i) in subpopulations of cutaneous neurons. To test this prediction, we characterized the pattern of changes in mechanical nociceptive threshold associated with paclitaxel administration (2 mg/kg, iv, every other day for four days), as well as the impact of target of innervation and paclitaxel treatment on the regulation of [Ca2+]i in subpopulations of putative nociceptive and non-nociceptive neurons. Neurons innervating the glabrous and hairy skin of the hindpaw as well as the thigh were identified with retrograde tracers, and fura-2 was used to assess changes in [Ca2+]i. Paclitaxel was associated with a persistent decrease in mechanical nociceptive threshold in response to stimuli applied to the glabrous skin of the hindpaw, but not the hairy skin of the hindpaw or the thigh. However, in both putative nociceptive and non-nociceptive neurons, resting [Ca2+]i was significantly lower in neurons innervating the thigh after treatment. The magnitude of the depolarization-evoked Ca2+ transient was also lower in putative non-nociceptive thigh neurons. More interestingly, while paclitaxel had no detectable influence on either resting or depolarization-evoked Ca2+ transients in putative non-nociceptive neurons, in putative nociceptive neurons there was a subpopulation- specific decrease in the duration of the evoked Ca2+ transient that was largely restricted to neurons innervating the glabrous skin. These results suggest that peripheral nerve length alone, does not account for the selective distribution of CIPN symptoms. Rather, they suggest the symptoms of CIPN reflect an interaction between the toxic actions of the therapeutic and unique properties of the neurons deleteriously impacted. PMID:25982563

  8. Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications.

    PubMed

    Marchetti, Antonio; Del Grammastro, Maela; Filice, Giampaolo; Felicioni, Lara; Rossi, Giulio; Graziano, Paolo; Sartori, Giuliana; Leone, Alvaro; Malatesta, Sara; Iacono, Michele; Guetti, Luigi; Viola, Patrizia; Mucilli, Felice; Cuccurullo, Franco; Buttitta, Fiamma

    2012-01-01

    Microdeletions at exon 19 are the most frequent genetic alterations affecting the Epidermal Growth Factor Receptor (EGFR) gene in non-small cell lung cancer (NSCLC) and they are strongly associated with response to treatment with tyrosine kinase inhibitors. A series of 116 NSCLC DNA samples investigated by Sanger Sequencing (SS), including 106 samples carrying exon 19 EGFR deletions and 10 without deletions (control samples), were subjected to deep next generation sequencing (NGS). All samples with deletions at SS showed deletions with NGS. No deletions were seen in control cases. In 93 (88%) cases, deletions detected by NGS were exactly corresponding to those identified by SS. In 13 cases (12%) NGS resolved deletions not accurately characterized by SS. In 21 (20%) cases the NGS showed presence of complex (double/multiple) frameshift deletions producing a net in-frame change. In 5 of these cases the SS could not define the exact sequence of mutant alleles, in the other 16 cases the results obtained by SS were conventionally considered as deletions plus insertions. Different interpretative hypotheses for complex mutations are discussed. In 46 (43%) tumors deep NGS showed, for the first time to our knowledge, subpopulations of DNA molecules carrying EGFR deletions different from the main one. Each of these subpopulations accounted for 0.1% to 17% of the genomic DNA in the different tumors investigated. Our findings suggest that a region in exon 19 is highly unstable in a large proportion of patients carrying EGFR deletions. As a corollary to this study, NGS data were compared with those obtained by immunohistochemistry using the 6B6 anti-mutant EGFR antibody. The immunoreaction was E746-A750del specific. In conclusion, NGS analysis of EGFR exon 19 in NSCLCs allowed us to formulate a new interpretative hypothesis for complex mutations and revealed the presence of subpopulations of deletions with potential pathogenetic and clinical impact.

  9. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy.

    PubMed

    Yilmaz, E; Gold, M S

    2015-08-06

    The purpose of the present study was to test the prediction that the unique manifestation of chemotherapeutic-induced peripheral neuropathy (CIPN) would be reflected in a specific pattern of changes in the regulation of the intracellular Ca(2+) concentration ([Ca(2+)]i) in subpopulations of cutaneous neurons. To test this prediction, we characterized the pattern of changes in mechanical nociceptive threshold associated with paclitaxel administration (2mg/kg, iv, every other day for four days), as well as the impact of target of innervation and paclitaxel treatment on the regulation of [Ca(2+)]i in subpopulations of putative nociceptive and non-nociceptive neurons. Neurons innervating the glabrous and hairy skin of the hindpaw as well as the thigh were identified with retrograde tracers, and fura-2 was used to assess changes in [Ca(2+)]i. Paclitaxel was associated with a persistent decrease in mechanical nociceptive threshold in response to stimuli applied to the glabrous skin of the hindpaw, but not the hairy skin of the hindpaw or the thigh. However, in both putative nociceptive and non-nociceptive neurons, resting [Ca(2+)]i was significantly lower in neurons innervating the thigh after treatment. The magnitude of the depolarization-evoked Ca(2+) transient was also lower in putative non-nociceptive thigh neurons. More interestingly, while paclitaxel had no detectable influence on either resting or depolarization-evoked Ca(2+) transients in putative non-nociceptive neurons, in putative nociceptive neurons there was a subpopulation-specific decrease in the duration of the evoked Ca(2+) transient that was largely restricted to neurons innervating the glabrous skin. These results suggest that peripheral nerve length alone, does not account for the selective distribution of CIPN symptoms. Rather, they suggest the symptoms of CIPN reflect an interaction between the toxic actions of the therapeutic and unique properties of the neurons deleteriously impacted.

  10. Epithelial dysplasia in oral cavity.

    PubMed

    Shirani, Samaneh; Kargahi, Neda; Razavi, Sayed Mohammad; Homayoni, Solmaz

    2014-09-01

    Among oral lesions, we encounter a series of malignant epithelial lesions that go through clinical and histopathologic processes in order to be diagnosed. Identifying these processes along with the etiology knowledge of these lesions is very important in prevention and early treatments. Dysplasia is the step preceding the formation of squamous cell carcinoma in lesions which have the potential to undergo dysplasia. Identification of etiological factors, clinical and histopathologic methods has been the topic of many articles. This article, reviews various articles presenting oral cavity dysplasia, new clinical methods of identifying lesions, and the immunohistochemical research which proposes various markers for providing more precise identification of such lesions. This article also briefly analyzes new treatment methods such as tissue engineering.

  11. Dysplasia of human prostate CD133(hi) sub-population in NOD-SCIDS is blocked by c-myc anti-sense.

    PubMed

    Goodyear, S M; Amatangelo, M D; Stearns, M E

    2009-05-15

    The CD133(hi) sub-population of prostate epithelial cells has been demonstrated to possess tumor-initiating capacity consistent with that of the cancer stem cell theory. However, the involvement of oncogenes such as c-myc has not been fully elucidated in the CD133(hi) sub-population. We have isolated primary prostate cell strains (IBC-10a) and immortalized them by transfection with hTERT. The in vitro and in vivo tumorigenic capacity of isolated CD133(hi) and CD133(lo) cells was evaluated with respect to c-myc expression using specific sense and anti-sense oligonucleotides. Freshly immortalized cells consisted of <3.3% CD133(hi)/CD24(hi) sub-population (SP). "Prostaspheres" generated from single CD133(hi) cells in the presence of EGF consisted of approximately 10% CD133(hi) SPs in 12-21 day cultures. A single Prostasphere generated from single CD133(hi) cells (6-10 cell stage at day 6 injected i.t.) produced dysplastic lesions in NOD-SCID mice (n = 4/5). Treatment of Prostaspheres from CD133(hi) SPs in vitro with c-myc or cyclin D1 anti-sense oligonucleotides totally blocked colony forming ability and growth. Furthermore, treatment of fully formed, 6-day Prostaspheres for 48 hr with c-myc anti-sense significantly reduced c-myc expression and their ability to generate lesions in NOD-SCIDs (n = 10 Prostaspheres injected i.t./mouse). These data demonstrate for the first time that a single CD133(hi) cell is competent to generate Prostaspheres in vitro and that CD133(hi) Prostaspheres require c-myc to grow and form dysplastic lesions in vivo. 2009 Wiley-Liss, Inc.

  12. A Long-Lived Luminal Subpopulation Enriched with Alveolar Progenitors Serves as Cellular Origin of Heterogeneous Mammary Tumors

    PubMed Central

    Tao, Luwei; van Bragt, Maaike P.A.; Li, Zhe

    2015-01-01

    Summary It has been shown that the mammary luminal lineage could be maintained by luminal stem cells or long-lived progenitors, but their identity and role in breast cancer remain largely elusive. By lineage analysis using Wap-Cre mice, we found that, in nulliparous females, mammary epithelial cells (MECs) genetically marked by Wap-Cre represented a subpopulation of CD61+ luminal progenitors independent of ovarian hormones for their maintenance. Using a pulse-chase lineage-tracing approach based on Wap-Cre adenovirus (Ad-Wap-Cre), we found that Ad-Wap-Cre-marked nulliparous MECs were enriched with CD61+ alveolar progenitors (APs) that gave rise to CD61− alveolar luminal cells during pregnancy/lactation and could maintain themselves long term. When transformed by different oncogenes, they could serve as cells of origin of heterogeneous mammary tumors. Thus, our study revealed a type of long-lived AP within the luminal lineage that may serve as the cellular origin of multiple breast cancer subtypes. PMID:26120057

  13. Oral focal epithelial hyperplasia.

    PubMed

    Bassioukas, K; Danielides, V; Georgiou, I; Photos, E; Zagorianakou, P; Skevas, A

    2000-01-01

    Focal epithelial hyperplasia (FEH) or Heck disease, is a rare viral infection of the oral mucosa caused by HPV 13 or HPV 32. In Caucasians there have been only a few cases reported. We present the first case in Greece in a young Caucasian girl in which HPV 13 was detected with PCR analysis. The patient was successfully treated with CO2 laser.

  14. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    PubMed Central

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  15. Normal morphogenesis of epithelial tissues and progression of epithelial tumors.

    PubMed

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A

    2012-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted.

  16. Male and Female Subpopulations of Salix viminalis Present High Genetic Diversity and High Long-Term Migration Rates between Them

    PubMed Central

    Zhai, Feifei; Mao, Jinmei; Liu, Junxiang; Peng, Xiangyong; Han, Lei; Sun, Zhenyuan

    2016-01-01

    Dioecy distributed in 157 flowering plant families and 959 flowering plant genera. Morphological and physiological differences between male and female plants have been studied extensively, but studies of sex-specific genetic diversity are relatively scarce in dioecious plants. In this study, 20 SSR loci were employed to examine the genetic variance of male subpopulations and female subpopulations in Salix viminalis. The results showed that all of the markers were polymorphic (Na = 14.15, He = 0.7566) and workable to reveal the genetic diversity of S. viminalis. No statistically significant difference was detected between male and female subpopulations, but the average genetic diversity of male subpopulations (Na = 7.12, He = 0.7071) and female subpopulations (Na = 7.31, He = 0.7226) were high. Under unfavorable environments (West Liao basin), the genetic diversity between male and female subpopulations was still not significantly different, but the genetic diversity of sexual subpopulations were lower. The differentiation of the ten subpopulations in S. viminalis was moderate (FST = 0.0858), which was conformed by AMOVA that most of genetic variance (94%) existed within subpopulations. Pairwise FST indicated no differentiation between sexual subpopulations, which was accompanied by high long-term migrate between them (M = 0.73~1.26). However, little recent migration was found between sexual subpopulations. Therefore, artificial crossing or/and transplantation by cutting propagation should be carried out so as to increase the migration during the process of ex situ conservation. PMID:27047511

  17. Differential impact of tobacco control policies on youth sub-populations.

    PubMed

    Tauras, John A; Huang, Jidong; Chaloupka, Frank J

    2013-09-12

    While previous studies have demonstrated the efficacy of tobacco control interventions in reducing tobacco use among youth overall, there have been very few studies that examine the potential differential impact of tobacco control policies on various youth subgroups, defined by socio-economic status (SES), race/ethnicity, and gender. We examined the relationship between state-level cigarette prices and smoke-free air laws and youth smoking prevalence and intensity for various youth sub-populations in the United States. We estimated a 2-part model of cigarette demand using data from the 1991 through 2010 nationally representative surveys of 8th-, 10th-, and 12th-grade students as part of the Monitoring the Future project. We found that real cigarette prices are strong determinants of youth smoking. Blacks, females, Hispanics, and low-SES subpopulations are found to have a larger price response with respect to smoking prevalence than the full sample. Smoke-free air laws are found to have a negative effect on smoking prevalence for the full sample and for the male, white, and high-SES sub-populations. This research concludes that higher cigarette prices will reduce smoking prevalence rates of Blacks, Hispanics, females, and low-SES subpopulations faster than the overall youth population and other youth sub-populations. Moreover, this research concludes that smoke-free air laws will reduce smoking prevalence for the overall youth population with the largest reductions in high SES and male subpopulations.

  18. Normozoospermic versus teratozoospermic domestic cats: differential testicular volume, sperm morphometry, and subpopulation structure during epididymal maturation

    PubMed Central

    Gutiérrez-Reinoso, Miguel Angel; García-Herreros, Manuel

    2016-01-01

    Teratozoospermia (<40% morphologically normal spermatozoa/ejaculate) is a frequent phenomenon in feline species. This research was carried out to study the possible differences in testicular volume, differential sperm morphometric traits, and potential differences regarding the sperm subpopulational structure during epididymal sperm maturation in teratozoospermic feline donors. Epididymal sperm samples were collected from the caput (R1), corpus (R2), and cauda (R3) epididymidis in two donor groups (N: normozoospermic; T: teratozoospermic). Aliquots were assessed for concentration, viability, motility, and acrosomal integrity. Sperm morphometric descriptors from CASA-Morph analysis were analyzed by the Principal Component Analysis (PCA) and clustering analyses. Irrespective of the group analyzed, PCA revealed two Principal Components (PCs) for each epididymal region explaining more than the 93% of the variance. Surprisingly, the number of subpopulations remained constant in regions R1-R2-R3 irrespective of the donor group analyzed. However, the distribution of these subpopulations was found to be structurally different and strongly influenced by the epididymal region and the donor group. In conclusion, testicular morphometry and the sperm subpopulation structure were different in N and T donors. The alterations in subpopulations during epididymal maturation could be used as a potential clinical indicator of teratozoospermic individuals since an important influence of teratozoospermia on sperm subpopulation structure has been demonstrated. PMID:27624990

  19. A subpopulation analysis of f-MLP stimulated granulocytes migrating in filters.

    PubMed

    Ebrahimzadeh, P R; Bazargani, F; Afzal, F; Högfors, C; Braide, M

    1996-01-01

    Leukocyte migration in vitro has been studied extensively during many years without providing satisfactory theoretical models for the different migratory behaviors (chemotaxis and chemokinesis) of leukocyte populations. The present study utilized the fluid gradient chamber, which is a new method to study leukocyte migration in filters. Human neutrophils were applied between two stacked filters and migrated in all directions under the influence of constant concentrations or chemotactic gradients of f-MLP, maintained in fluid phase density gradients. The distributions of the granulocytes over filter depth were fitted to theoretical functions composed by 1-3 Gaussian distributions, representing subpopulations. The results showed that the neutrophils migrated as two discrete subpopulations during chemokinetic stimulation (a constant concentration of f-MLP). One of the subpopulations showed less active and passive (slow sedimentation under the influence of gravity) translocation. The most mobile subpopulation was divided into two new subpopulations when exposed to chemotactic stimulation (concentration gradient of f-MLP), one of which responded chemotactically and one of which migrated in random directions. The properties of the different subpopulations where characterized in terms of diffusion coefficient (random migration), convection velocity (chemotactic migration) and sedimentation coefficient (passive translocation).

  20. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates

    PubMed Central

    Yoshino, Timothy P.; Wu, Xiao-Jun; Gonzalez, Laura A.; Hokke, Cornelis H.

    2013-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval S. mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins, as well as

  1. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates.

    PubMed

    Yoshino, Timothy P; Wu, Xiao-Jun; Gonzalez, Laura A; Hokke, Cornelis H

    2013-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval Schistosoma mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins

  2. Development and Identification of a Novel Subpopulation of Human Neutrophil-derived Giant Phagocytes In Vitro

    PubMed Central

    Lavie, Lena; Dyugovskaya, Larissa; Polyakov, Andrey; Rogovoy, Oksana; Leder, Eva

    2017-01-01

    Neutrophils (PMN) are best known for their phagocytic functions against invading pathogens and microorganisms. They have the shortest half-life amongst leukocytes and in their non-activated state are constitutively committed to apoptosis. When recruited to inflammatory sites to resolve inflammation, they produce an array of cytotoxic molecules with potent antimicrobial killing. Yet, when these powerful cytotoxic molecules are released in an uncontrolled manner they can damage surrounding tissues. In recent years however, neutrophil versatility is increasingly evidenced, by demonstrating plasticity and immunoregulatory functions. We have recently identified a new neutrophil-derived subpopulation, which develops spontaneously in standard culture conditions without the addition of cytokines/growth factors such as granulocyte colony-stimulating factor (GM-CSF)/interleukin (IL)-4. Their phagocytic abilities of neutrophil remnants largely contribute to increase their size immensely; therefore they were termed giant phagocytes (Gϕ). Unlike neutrophils, Gϕ are long lived in culture. They express the cluster of differentiation (CD) neutrophil markers CD66b/CD63/CD15/CD11b/myeloperoxidase (MPO)/neutrophil elastase (NE), and are devoid of the monocytic lineage markers CD14/CD16/CD163 and the dendritic CD1c/CD141 markers. They also take-up latex and zymosan, and respond by oxidative burst to stimulation with opsonized-zymosan and PMA. Gϕ also express the scavenger receptors CD68/CD36, and unlike neutrophils, internalize oxidized-low density lipoprotein (oxLDL). Moreover, unlike fresh neutrophils, or cultured monocytes, they respond to oxLDL uptake by increased reactive oxygen species (ROS) production. Additionally, these phagocytes contain microtubule-associated protein-1 light chain 3B (LC3B) coated vacuoles, indicating the activation of autophagy. Using specific inhibitors it is evident that both phagocytosis and autophagy are prerequisites for their development and

  3. Species differences in lectin binding to pulmonary cells: Soybean agglutinin (SBA) as a marker of type I alveolar epithelial cells and alveolar macrophages in mini pigs.

    PubMed

    Kasper, M; Haroske, G; Müller, M

    1994-03-01

    We compared lectin staining patterns in rat and mini pig tissues of normal and fibrotic (irradiation-induced) lungs. Two lectins were studied: Dolichos biflorus (DBA) and Soybean (SBA). Both lectins strongly stained a subpopulation of alveolar macrophages. In the rat, DBA positive macrophages were a subpopulation of the SBA binding cells. In mini pig lungs, a further specific binding of DBA and SBA was observed: DBA reacted with endothelia, and SBA stained the alveolar type I cells. Double immunofluorescence experiments using a type II cell-specific cytokeratin antibody confirmed the selective reactivity of SBA with type I cells, which was also present in fibrotic areas with epithelial cell proliferation.

  4. β1 Integrin Signaling Maintains Human Epithelial Progenitor Cell Survival In Situ and Controls Proliferation, Apoptosis and Migration of Their Progeny

    PubMed Central

    Ernst, Nancy; Yay, Arzu; Bíró, Tamás; Tiede, Stephan; Humphries, Martin

    2013-01-01

    β1 integrin regulates multiple epithelial cell functions by connecting cells with the extracellular matrix (ECM). While β1 integrin-mediated signaling in murine epithelial stem cells is well-studied, its role in human adult epithelial progenitor cells (ePCs) in situ remains to be defined. Using microdissected, organ-cultured human scalp hair follicles (HFs) as a clinically relevant model for studying human ePCs within their natural topobiological habitat, β1 integrin-mediated signaling in ePC biology was explored by β1 integrin siRNA silencing, specific β1 integrin-binding antibodies and pharmacological inhibition of integrin-linked kinase (ILK), a key component of the integrin-induced signaling cascade. β1 integrin knock down reduced keratin 15 (K15) expression as well as the proliferation of outer root sheath keratinocytes (ORSKs). Embedding of HF epithelium into an ECM rich in β1 integrin ligands that mimic the HF mesenchyme significantly enhanced proliferation and migration of ORSKs, while K15 and CD200 gene and protein expression were inhibited. Employing ECM-embedded β1 integrin-activating or -inhibiting antibodies allowed to identify functionally distinct human ePC subpopulations in different compartments of the HF epithelium. The β1 integrin-inhibitory antibody reduced β1 integrin expression in situ and selectively enhanced proliferation of bulge ePCs, while the β1 integrin-stimulating antibody decreased hair matrix keratinocyte apoptosis and enhanced transferrin receptor (CD71) immunoreactivity, a marker of transit amplifying cells, but did not affect bulge ePC proliferation. That the putative ILK inhibitor QLT0267 significantly reduced ORSK migration and proliferation and induced massive ORSK apoptosis suggests a key role for ILK in mediating the ß1 integrin effects. Taken together, these findings demonstrate that ePCs in human HFs require β1 integrin-mediated signaling for survival, adhesion, and migration, and that different human HF e

  5. Mouse adipose tissue stromal cells give rise to skeletal and cardiomyogenic cell sub-populations

    PubMed Central

    Dromard, Cécile; Barreau, Corinne; André, Mireille; Berger-Müller, Sandra; Casteilla, Louis; Planat-Benard, Valerie

    2014-01-01

    We previously reported that adipose tissue could generate cardiomyocyte-like cells from crude stromal vascular fraction (SVF) in vitro that improved cardiac function in a myocardial infarction context. However, it is not clear whether these adipose-derived cardiomyogenic cells (AD-CMG) constitute a homogenous population and if AD-CMG progenitors could be isolated as a pure population from the SVF of adipose tissue. This study aims to characterize the different cell types that constitute myogenic clusters and identify the earliest AD-CMG progenitors in vitro for establishing a complete phenotype and use it to sort AD-CMG progenitors from crude SVF. Here, we report cell heterogeneity among adipose-derived clusters during their course of maturation and highlighted sub-populations that exhibit original mixed cardiac/skeletal muscle phenotypes with a progressive loss of cardiac phenotype with time in liquid culture conditions. Moreover, we completed the phenotype of AD-CMG progenitors but we failed to sort them from the SVF. We demonstrated that micro-environment is required for the maturation of myogenic phenotype by co-culture experiments. These findings bring complementary data on AD-CMG and suggest that their emergence results from in vitro events. PMID:25364749

  6. Isolation and characterization of flat cells, a subpopulation of the embryonic chick retina.

    PubMed

    Li, H P; Sheffield, J B

    1984-01-01

    When the embryonic neutral retina is dissociated into single cells which are maintained in stationary culture, the neuronal cells associate on the surfaces of a second population which we refer to as flat cells. The flat cells appear in the culture in significant numbers after 2 days and are required for neuronal cell attachment. We have been able to isolate pure flat cells from early cultures of mixed retina cells and have identified several antigens which support the concept that these cells are related to the glia. The cells have been tested by immunofluorescence for glial fibrillary acidic protein and have been found positive. Cell surfaces were labeled by transfer of tritiated galactose from UDP-galactose to endogenous acceptors in the presence of exogenous galactosyl transferase. After SDS-PAGE and fluorography, the surface glycoproteins of flat cells were seen to be significantly different from those of the original retina, and from chick fibroblasts. Immunoelectron microscope studies of detergent-extracted flat cells have demonstrated a complex network of intermediate filaments and actin fibers. We conclude that the flat cells are derived from the glia subpopulation of the retina and have adapted to the tissue culture environment by assuming this configuration. The unique surface properties of flat cells may be related to their role as an intermediate substrate between the neuronal cells and the tissue culture dish.

  7. Functional features of hemocyte subpopulations of the invasive mollusk species Dreissena polymorpha.

    PubMed

    Evariste, Lauris; Auffret, Michel; Audonnet, Sandra; Geffard, Alain; David, Elise; Brousseau, Pauline; Fournier, Michel; Betoulle, Stéphane

    2016-09-01

    Dreissena polymorpha is a mussel species that invaded many lotic and lentic inland waters in Western Europe and North America. Its positive or negative interactions with biotic and abiotic components of ecosystems are numerous, making this bivalve the subject of numerous studies in ecology, ecophysiology and ecotoxicology. In these contexts, the functional characterization of the zebra mussel hemocytes is of particular interest, as hemocytes are central cells involved in vital functions (immunity, growth, reproduction) of molluscan physiology. Dreissena polymorpha circulating hemocytes populations were characterized by a combination of structural and functional analysis. Assessments were performed during two contrasted physiological periods for mussels (gametogenesis and spawning). Three hemocyte types were identified as hyalinocytes and blast-like cells for agranular hemocytes and one granulocyte population. Flow cytometry analysis of hemocytes functionalities indicated that blast-like cells had low oxidative and mitochondrial activities and low lysosomal content. Hyalinocytes and granulocytes are fully equipped to perform innate immune response. Hyalinocytes exhibit higher oxidative activity than granulocytes. Such observation is not common since numerous studies show that granulocytes are usually cells that have the highest cellular activities. This result demonstrates the significant functional variability of hemocyte subpopulations. Moreover, our findings reveal that spawning period of Dreissena polymorpha was associated with an increase of hyalinocyte percentage in relation to low levels of biological activities in hemocytes. This reduction in hemocyte activity would reflect the important physiological changes associated with the spawning period of this invasive species known for its high reproductive potential.

  8. Allele frequency data for 15 autosomal STR loci in eight Indonesian subpopulations.

    PubMed

    Venables, Samantha J; Daniel, Runa; Sarre, Stephen D; Soedarsono, Nurtami; Sudoyo, Herawati; Suryadi, Helena; van Oorschot, Roland A H; Walsh, Simon J; Widodo, Putut T; McNevin, Dennis

    2016-01-01

    Evolutionary and cultural history can affect the genetic characteristics of a population and influences the frequency of different variants at a particular genetic marker (allele frequency). These characteristics directly influence the strength of forensic DNA evidence and make the availability of suitable allele frequency information for every discrete country or jurisdiction highly relevant. Population sub-structure within Indonesia has not been well characterised but should be expected given the complex geographical, linguistic and cultural architecture of the Indonesian population. Here we use forensic short tandem repeat (STR) markers to identify a number of distinct genetic subpopulations within Indonesia and calculate appropriate population sub-structure correction factors. This data represents the most comprehensive investigation of population sub-structure within Indonesia to date using these markers. The results demonstrate that significant sub-structure is present within the Indonesian population and must be accounted for using island specific allele frequencies and corresponding sub-structure correction factors in the calculation of forensic DNA match statistics.

  9. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells

    PubMed Central

    Duscher, Dominik; Rennert, Robert C.; Januszyk, Michael; Anghel, Ersilia; Maan, Zeshaan N.; Whittam, Alexander J.; Perez, Marcelina G.; Kosaraju, Revanth; Hu, Michael S.; Walmsley, Graham G.; Atashroo, David; Khong, Sacha; Butte, Atul J.; Gurtner, Geoffrey C.

    2014-01-01

    Advanced age is associated with an increased risk of vascular morbidity, attributable in part to impairments in new blood vessel formation. Mesenchymal stem cells (MSCs) have previously been shown to play an important role in neovascularization and deficiencies in these cells have been described in aged patients. Here we utilize single cell transcriptional analysis to determine the effect of aging on MSC population dynamics. We identify an age-related depletion of a subpopulation of MSCs characterized by a pro-vascular transcriptional profile. Supporting this finding, we demonstrate that aged MSCs are also significantly compromised in their ability to support vascular network formation in vitro and in vivo. Finally, aged MSCs are unable to rescue age-associated impairments in cutaneous wound healing. Taken together, these data suggest that age-related changes in MSC population dynamics result in impaired therapeutic potential of aged progenitor cells. These findings have critical implications for therapeutic cell source decisions (autologous versus allogeneic) and indicate the necessity of strategies to improve functionality of aged MSCs. PMID:25413454

  10. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations

    PubMed Central

    Lin, Shih-Chieh; Nicolelis, Miguel A. L.

    2011-01-01

    The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these “pro-arousal” neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation. PMID:21865435

  11. Role of Different Subpopulations of CD8(+) T Cells during HIV Exposure and Infection.

    PubMed

    Gonzalez, Sandra Milena; Taborda, Natalia Andrea; Rugeles, María Teresa

    2017-01-01

    During HIV infection, specific responses exhibited by CD8(+) T cells are crucial to establish an early, effective, and sustained viral control, preventing severe immune alterations and organ dysfunction. Several CD8(+) T cells subsets have been identified, exhibiting differences in terms of activation, functional profile, and ability to limit HIV replication. Some of the most important CD8(+) T cells subsets associated with viral control, production of potent antiviral molecules, and strong polyfunctional responses include Th1-like cytokine pattern and Tc17 cells. In addition, the expression of specific activation markers has been also associated with a more effective response of CD8(+) T cells, as evidenced in HLA-DR(+) CD38(-) cells. CD8(+) T cells in both, peripheral blood and gut mucosa, are particularly important in individuals with a resistant phenotype, including HIV-exposed seronegative individuals (HESNs), long-term non-progressors (LTNPs) and HIV-controllers. Although the role of CD8(+) T cells has been extensively explored in the context of an established HIV-1 infection, the presence of HIV-specific cells with effector abilities and a defined functional profile in HESNs, remain poorly understood. Here, we reviewed studies carried out on different subpopulations of CD8(+) T cells in relation with natural resistance to HIV infection and progression.

  12. Differential involvement of mussel hemocyte sub-populations in the clearance of bacteria.

    PubMed

    Parisi, Maria-Giovanna; Li, Hui; Jouvet, Lionel B P; Dyrynda, Elisabeth A; Parrinello, Nicolo; Cammarata, Matteo; Roch, Philippe

    2008-12-01

    Mussels are filter-feeders living in a bacteria-rich environment. We have previously found that numerous bacterial species are naturally present within the cell-free hemolymph, including several of the Vibrio genus, whereas the intra-cellular content of hemocytes was sterile. When bacteria were injected into the circulation of the mussel, the number of living intra-hemocyte bacteria dramatically increased in less than an hour, suggesting intense phagocytosis, then gradually decreased, with no viable bacteria remaining 12h post-injection for Micrococcus lysodeikticus, 24h for Vibrio splendidus and more than 48 h for Vibrio anguillarum. The total hemocyte count (THC) was dramatically lowered by the bacterial injections, as quantified by flow cytometry. V. splendidus induced the strongest decreases with -66% 9h post-injection of living bacteria and -56% 3h post-injection of heat-killed bacteria. Flow cytometry was used to identify three main sub-populations of hemocytes, namely hyalinocytes, small granulocytes and large granulocytes. When THC was minimal, i.e. within the first 9h post-injection, proportions of the three cell categories varied dramatically, suggesting differential involvement according to the targets, but small granulocytes remained the majority. According to a decrease in their number followed by an increase (+90% at 12h with living V. splendidus), hyalinocytes also appeared to be involved as cellular effectors of antibacterial immunity, despite possessing little capacity for phagocytosis and not containing antimicrobial peptides.

  13. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division

    PubMed Central

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-01-01

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.02875.001 PMID:24996848

  14. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    SciTech Connect

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  15. Effects of freezing/thawing on motile sperm subpopulations of boar and donkey ejaculates.

    PubMed

    Flores, E; Taberner, E; Rivera, M M; Peña, A; Rigau, T; Miró, J; Rodríguez-Gil, J E

    2008-10-01

    The main aim of this study is to assess the influence of freeze/thawing on motile sperm subpopulations in ejaculates from two phylogenetically different mammalian species, boar and donkey. Our results indicate that, whereas boar and donkey sperm respond very differently in their mean motion characteristics to freezing/thawing, this process did not change the existence of a 4-subpopulations structure in the ejaculates in either species when these subpopulations were defined by taking values of curvilinear velocity (VCL) as reference. Moreover, the freezing/thawing-linked changes in mean sperm-motion characteristics in both boar and donkey semen were especially due to changes in the proportion among each concrete subpopulation. In this way, the freezing/thawing-induced mean increase in motion characteristics observed in boar sperm was a result of the decrease in the percentage of sperm in Subpopulation 1 (from 53.9%+/-4.7% to 31.2%+/-3.9% after thawing) and a concomitant increase of sperm from Subpopulations 3 (from 13.3%+/-2.5% to 32.6%+/-3.9% after thawing) and 4 (from 3.4%+/-0.9% to 8.0%+/-1.1% after thawing). On the contrary, changes in mean motility of frozen/thawed donkey sperm were linked to an increase in the percentage of sperm in Subpopulation 1 (from 31.5%+/-4.3% to 58.8%+/-4.9% after thawing) and a concomitant decrease of sperm from Subpopulations 3 (from 32.4%+/-3.2% to 6.6%+/-1.8% after thawing) and 4 (from 12.2%+/-2.5% to 7.3%+/-1.9% after thawing). In conclusion, our results seem to indicate that motility changes induced by the freezing/thawing protocol are linked to concomitant changes in both the specific parameters and, more importantly, to the specific percentage of each of the motile sperm subpopulations. These changes did not affect the overall proportion of motile sperm present in both boar and donkey, which is conserved despite the detrimental effect caused by freezing/thawing in both species. Finally, the presence of some kind of motile sperm

  16. Enriching and characterizing cancer stem cell sub-populations in the WM115 melanoma cell line.

    PubMed

    Chandrasekaran, Siddarth; DeLouise, Lisa A

    2011-12-01

    Cutaneous melanoma is an increasingly common and potentially lethal malignancy of melanocytes, the melanin producing cells normally located in the basal layer of the skin epidermis. Despite major advances in cancer chemotherapeutics and immunotherapy, the success in treating metastatic melanoma remains poor. The notion that cancer stem cells (CSCs) play a key role in melanoma progression is well received. Therefore, isolating and characterizing CSCs is of critical importance for designing new therapeutic strategies that target this unique tumor initiating cell sub-population. In this work, we present a simple in vitro method, employing cell culture on polydimethylsiloxane (PDMS) and transfer back onto standard tissue culture plate, to enrich a non-adherent spheroid (NA/S) forming and an adherent monolayer (AM) cell sub-populations from the tumorigenic WM115 melanoma cell line. The phenotypes of the morphologically distinct NA/S and AM sub-populations were further characterized by quantifying the expression of stem cell markers, CD20 and CD271. Flow cytometric analysis found 2.32% of the cells in the NA/S sub-population were CD20+ CD271+ whereas only 0.27% of the cells in the AM sub-population were CD20+ CD271+. When the NA/S sub-population was cultured back onto PDMS it resulted in the further enrichment of CD20+ CD271+ cells to 14.7%. We used microbubble arrays to quantify the in vitro clonogenic potential of the NA/S and AM cell sub-populations. Microbubbles are spherical cavities, ~160 μm in diameter with 60 μm circular openings, formed in PDMS using the gas expansion molding (GEM) process. Cells from each sub-population were seeded, under limiting dilution conditions, onto separate arrays containing 1215 microbubble wells. After five days in culture, wells seeded with 1, 2, 3 and >3 cells per microbubble well were inspected for cell proliferation. The Extreme Limiting Dilutions Analysis (ELDA) determined a ~58% clonal survival (1 in every 1.72 cells) for the

  17. Stem Cell Factor-Based Identification and Functional Properties of In Vitro-Selected Subpopulations of Malignant Mesothelioma Cells.

    PubMed

    Blum, Walter; Pecze, László; Felley-Bosco, Emanuela; Wu, Licun; de Perrot, Marc; Schwaller, Beat

    2017-03-09

    Malignant mesothelioma (MM) is an aggressive neoplasm characterized by a poor patient survival rate, because of rapid tumor recurrence following first-line therapy. Cancer stem cells (CSCs) are assumed to be responsible for initiating tumorigenesis and driving relapse after therapeutic interventions. CSC-enriched MM cell subpopulations were identified by an OCT4/SOX2 reporter approach and were characterized by (1) increased resistance to cisplatin, (2) increased sensitivity toward the FAK inhibitor VS-6063 in vitro, and (3) a higher tumor-initiating capacity in vivo in orthotopic xenograft and allograft mouse models. Overexpression of NF2 (neurofibromatosis 2, merlin), a tumor suppressor often mutated or lost in MM, did not affect proliferation and viability of CSC-enriched MM populations but robustly decreased the viability of reporter-negative cells. In contrast, downregulation of calretinin strongly decreased proliferation and viability of both populations. In summary, we have enriched and characterized a small MM cell subpopulation that bears the expected CSC characteristics.

  18. Heteroresistance to colistin in Klebsiella pneumoniae is triggered by small colony variants sub-populations within biofilms.

    PubMed

    Silva, Ana; Sousa, Ana Margarida; Alves, Diana; Lourenço, Anália; Pereira, Maria Olívia

    2016-07-01

    The emergence of Klebsiella pneumoniae multidrug-resistant strains paves the way to the re-introduction of colistin as a salvage therapy. However, recent planktonic studies have reported several cases of heteroresistance to this antimicrobial agent. The aim of this present work was to gain better understanding about the response of K. pneumoniae biofilms to colistin antibiotherapy and inspect the occurrence of heteroresistance in biofilm-derived cells. Biofilm formation and its susceptibility to colistin were evaluated through the determination of biofilm-cells viability. The profiling of planktonic and biofilm cell populations was conducted to assess the occurrence of heteroresistance. Colony morphology was further characterized in order to inspect the potential role of colistin in K. pneumoniae phenotypic differentiation. Results show that K. pneumoniae was susceptible to colistin in its planktonic form, but biofilms presented enhanced resistance. Population analysis profiles pointed out that K. pneumoniae manifest heteroresistance to colistin only when grown in biofilm arrangements, and it was possible to identify a resistant sub-population presenting a small colony morphology (diameter around 5 mm). To the best of our knowledge, this is the first report linking heteroresistance to biofilm formation and a morphological distinctive sub-population. Moreover, this is the first evidence that biofilm formation can trigger the emergence of heteroresistance in an apparently susceptible strain. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. A Novel Approach to Selectively Target Neuronal Subpopulations Reveals Genetic Pathways That Regulate Tangential Migration in the Vertebrate Hindbrain

    PubMed Central

    Benzing, Karsten; Flunkert, Stefanie; Schedl, Andreas; Engelkamp, Dieter

    2011-01-01

    Vertebrate genes often play functionally distinct roles in different subsets of cells; however, tools to study the cell-specific function of gene products are poorly developed. Therefore, we have established a novel mouse model that enables the visualization and manipulation of defined subpopulations of neurons. To demonstrate the power of our system, we dissected genetic cascades in which Pax6 is central to control tangentially migrating neurons of the mouse brainstem. Several Pax6 downstream genes were identified and their function was analyzed by over-expression and knock-down experiments. One of these, Pou4f2, induces a prolonged midline arrest of growth cones to influence the proportion of ipsilaterally versus contralaterally settling neurons. These results demonstrate that our approach serves as a versatile tool to study the function of genes involved in cell migration, axonal pathfinding, and patterning processes. Our model will also serve as a general tool to specifically over-express any gene in a defined subpopulation of neurons and should easily be adapted to a wide range of applications. PMID:21698138

  20. The CA19-9 and Sialyl-TRA Antigens Define Separate Subpopulations of Pancreatic Cancer Cells.

    PubMed

    Barnett, Daniel; Liu, Ying; Partyka, Katie; Huang, Ying; Tang, Huiyuan; Hostetter, Galen; Brand, Randall E; Singhi, Aatur D; Drake, Richard R; Haab, Brian B

    2017-06-22

    Molecular markers to detect subtypes of cancer cells could facilitate more effective treatment. We recently identified a carbohydrate antigen, named sTRA, that is as accurate a serological biomarker of pancreatic cancer as the cancer antigen CA19-9. We hypothesized that the cancer cells producing sTRA are a different subpopulation than those producing CA19-9. The sTRA glycan was significantly elevated in tumor tissue relative to adjacent pancreatic tissue in 3 separate tissue microarrays covering 38 patients. The morphologies of the cancer cells varied in association with glycan expression. Cells with dual staining of both markers tended to be in well-to-moderately differentiated glands with nuclear polarization, but exclusive sTRA staining was present in small clusters of cells with poor differentiation and large vacuoles, or in small and ill-defined glands. Patients with higher dual-staining of CA19-9 and sTRA had statistically longer time-to-progression after surgery. Patients with short time-to-progression (<2 years) had either low levels of the dual-stained cells or high levels of single-stained cells, and such patterns differentiated short from long time-to-progression with 90% (27/30) sensitivity and 80% (12/15) specificity. The sTRA and CA19-9 glycans define separate subpopulations of cancer cells and could together have value for classifying subtypes of pancreatic adenocarcinoma.

  1. Polarity in Mammalian Epithelial Morphogenesis

    PubMed Central

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture models has brought new insights into the mechanisms underlying the establishment and maintenance of higher-order epithelial tissue architecture, and in the dynamic remodeling of cell polarity that often occurs during development of epithelial organs. Here we discuss some important aspects of mammalian epithelial morphogenesis, from the establishment of cell polarity to epithelial tissue generation. PMID:23378592

  2. Phenotypic plasticity in normal breast derived epithelial cells

    PubMed Central

    2014-01-01

    Background Normal, healthy human breast tissue from a variety of volunteer donors has become available for research thanks to the establishment of the Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center (KTB). Multiple epithelial (K-HME) and stromal cells (K-HMS) were established from the donated tissue. Explant culture was utilized to isolate the cells from pieces of breast tissue. Selective media and trypsinization were employed to select either epithelial cells or stromal cells. The primary, non-transformed epithelial cells, the focus of this study, were characterized by immunohistochemistry, flow cytometry, and in vitro cell culture. Results All of the primary, non-transformed epithelial cells tested have the ability to differentiate in vitro into a variety of cell types when plated in or on biologic matrices. Cells identified include stratified squamous epithelial, osteoclasts, chondrocytes, adipocytes, neural progenitors/neurons, immature muscle and melanocytes. The cells also express markers of embryonic stem cells. Conclusions The cell culture conditions employed select an epithelial cell that is pluri/multipotent. The plasticity of the epithelial cells developed mimics that seen in metaplastic carcinoma of the breast (MCB), a subtype of triple negative breast cancer; and may provide clues to the origin of this particularly aggressive type of breast cancer. The KTB is a unique biorepository, and the normal breast epithelial cells isolated from donated tissue have significant potential as new research tools. PMID:24915897

  3. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    PubMed

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867.

  4. In vitro methods to culture primary human breast epithelial cells.

    PubMed

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  5. Epithelial infectious crystalline keratopathy.

    PubMed

    Sridhar, M S; Sharma, S; Garg, P; Rao, G N

    2001-02-01

    To report 2 cases of epithelial infectious crystalline keratopathy. Two patients (2 eyes) with significant meibomitis presented with minimal inflammation and plaque-like lesions on the corneal surface made of fine crystalline structures. Corneal scrapings of these lesions were performed for microbiological evaluation. The patients were treated with topical ciprofloxacin and artificial tears. Smear examination of the corneal scrapings revealed numerous bacteria and keratinized epithelial cells with no inflammatory cells. Culture showed a significant growth of Staphylococcus epidermidis and Corynebacterium species in the first case and Pseudomonas aeroginosa in the second case. The response to treatment was poor, with recurrence of the crystalline lesion. Infectious crystalline keratopathy lesions may involve the epithelium and occur on the corneal surface.

  6. Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus).

    PubMed

    Soler, Carles; Contell, Jesús; Bori, Lorena; Sancho, María; García-Molina, Almudena; Valverde, Anthony; Segarvall, Jan

    2017-01-01

    This work provides information on the blue fox ejaculated sperm quality needed for seminal dose calculations. Twenty semen samples, obtained by masturbation, were analyzed for kinematic and morphometric parameters by using CASA-Mot and CASA-Morph system and principal component (PC) analysis. For motility, eight kinematic parameters were evaluated, which were reduced to PC1, related to linear variables, and PC2, related to oscillatory movement. The whole population was divided into three independent subpopulations: SP1, fast cells with linear movement; SP2, slow cells and nonoscillatory motility; and SP3, medium speed cells and oscillatory movement. In almost all cases, the subpopulation distribution by animal was significantly different. Head morphology analysis generated four size and four shape parameters, which were reduced to PC1, related to size, and PC2, related to shape of the cells. Three morphometric subpopulations existed: SP1: large oval cells; SP2: medium size elongated cells; and SP3: small and short cells. The subpopulation distribution differed between animals. Combining the kinematic and morphometric datasets produced PC1, related to morphometric parameters, and PC2, related to kinematics, which generated four sperm subpopulations - SP1: high oscillatory motility, large and short heads; SP2: medium velocity with small and short heads; SP3: slow motion small and elongated cells; and SP4: high linear speed and large elongated cells. Subpopulation distribution was different in all animals. The establishment of sperm subpopulations from kinematic, morphometric, and combined variables not only improves the well-defined fox semen characteristics and offers a good conceptual basis for fertility and sperm preservation techniques in this species, but also opens the door to use this approach in other species, included humans.

  7. Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus)

    PubMed Central

    Soler, Carles; Contell, Jesús; Bori, Lorena; Sancho, María; García-Molina, Almudena; Valverde, Anthony; Segarvall, Jan

    2017-01-01

    This work provides information on the blue fox ejaculated sperm quality needed for seminal dose calculations. Twenty semen samples, obtained by masturbation, were analyzed for kinematic and morphometric parameters by using CASA-Mot and CASA-Morph system and principal component (PC) analysis. For motility, eight kinematic parameters were evaluated, which were reduced to PC1, related to linear variables, and PC2, related to oscillatory movement. The whole population was divided into three independent subpopulations: SP1, fast cells with linear movement; SP2, slow cells and nonoscillatory motility; and SP3, medium speed cells and oscillatory movement. In almost all cases, the subpopulation distribution by animal was significantly different. Head morphology analysis generated four size and four shape parameters, which were reduced to PC1, related to size, and PC2, related to shape of the cells. Three morphometric subpopulations existed: SP1: large oval cells; SP2: medium size elongated cells; and SP3: small and short cells. The subpopulation distribution differed between animals. Combining the kinematic and morphometric datasets produced PC1, related to morphometric parameters, and PC2, related to kinematics, which generated four sperm subpopulations – SP1: high oscillatory motility, large and short heads; SP2: medium velocity with small and short heads; SP3: slow motion small and elongated cells; and SP4: high linear speed and large elongated cells. Subpopulation distribution was different in all animals. The establishment of sperm subpopulations from kinematic, morphometric, and combined variables not only improves the well-defined fox semen characteristics and offers a good conceptual basis for fertility and sperm preservation techniques in this species, but also opens the door to use this approach in other species, included humans. PMID:27751987

  8. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  9. Oral focal epithelial hyperplasia.

    PubMed

    López-Jornet, Pía; Camacho-Alonso, Fabio; Berdugo, Lucero

    2010-01-01

    Focal epithelial hyperplasia (FEH) is a benign, asymptomatic disease. It appears as papules, principally on the lower lip, although it can also be found on the retro-commissural mucosa and tongue and, less frequently, on the upper lip, gingiva and palate. FEH is caused by human papillomavirus subtype 13 or 32. The condition occurs in many populations and ethnic groups. We present the clinical case of a 31-year-old male with lesions that clinically and histologically corresponded to FEH.

  10. Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential.

    PubMed

    Tong, Jessica G; Valdes, Yudith Ramos; Sivapragasam, Milani; Barrett, John W; Bell, John C; Stojdl, David; DiMattia, Gabriel E; Shepherd, Trevor G

    2017-08-30

    Epithelial ovarian cancer exhibits extensive interpatient and intratumoral heterogeneity, which can hinder successful treatment strategies. Herein, we investigated the efficacy of an emerging oncolytic, Maraba virus (MRBV), in an in vitro model of ovarian tumour heterogeneity. Four ovarian high-grade serous cancer (HGSC) cell lines were isolated and established from a single patient at four points during disease progression. Limiting-dilution subcloning generated seven additional subclone lines to assess intratumoral heterogeneity. MRBV entry and oncolytic efficacy were assessed among all 11 cell lines. Low-density receptor (LDLR) expression, conditioned media treatments and co-cultures were performed to determine factors impacting MRBV oncolysis. Temporal and intratumoral heterogeneity identified two subpopulations of cells: one that was highly sensitive to MRBV, and another set which exhibited 1000-fold reduced susceptibility to MRBV-mediated oncolysis. We explored both intracellular and extracellular mechanisms influencing sensitivity to MRBV and identified that LDLR can partially mediate MRBV infection. LDLR expression, however, was not the singular determinant of sensitivity to MRBV among the HGSC cell lines and subclones. We verified that there were no apparent extracellular factors, such as type I interferon responses, contributing to MRBV resistance. However, direct cell-cell contact by co-culture of MRBV-resistant subclones with sensitive cells restored virus infection and oncolytic killing of mixed population. Our data is the first to demonstrate differential efficacy of an oncolytic virus in the context of both spatial and temporal heterogeneity of HGSC cells and to evaluate whether it will constitute a barrier to effective viral oncolytic therapy.

  11. Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes.

    PubMed

    Arufe, M C; De la Fuente, A; Fuentes, I; de Toro, F J; Blanco, F J

    2010-11-01

    In this study we analyzed the chondrogenic potential of subpopulations of mesenchymal stem cells (MSCs) derived from human synovial membranes enriched for CD73, CD106, and CD271 markers. Subpopulations of human synovial membrane MSCs enriched for CD73, CD106, and CD271 markers were isolated using a cytometry sorter and characterized by flow cytometry for MSC markers. The expression of Sox9, Nanog, and Runx2 genes by these cells was measured by reverse transcriptase-polymerase chain reaction. The chondrogenesis of each subpopulation was assessed by culturing the cells in a defined medium to produce spontaneous spheroid formation and differentiation towards chondrocyte-like cells. The examination of the spheroids by histological and immunohistochemical analyses for collagen type II (COL2), aggrecan, collagen type I (COL1), metalloprotease 13 (MMP13), and collagen type X (COLX) levels were performed to assess their chondrogenesis capacity. The adipogenesis and osteogenesis potential of each subpopulation was determined using commercial media; the resulting cells were stained with oil red O or red alizarin to test the degree of differentiation. The subpopulations had different profiles of cells positive for the MSC markers CD44, CD69, CD73, CD90, and CD105 and showed different expression levels of the genes Sox9, Nanog, and Runx2 involved in chondrogenesis, undifferentiation, and osteoblastogenesis, respectively. Immunohistochemical analysis demonstrated that COL1, COL2, COLX, MMP13, and aggrecan were expressed in the spheroids as soon as 14 days of culture. The CD271(+) subpopulation expressed the highest levels of COL2 staining compared to the other subpopulations. CD105 and Runx2 were shown by immunohistochemistry and genetic analysis to have significantly higher expression CD271(+) subpopulation than the other subpopulations. Spheroids formed from CD271-enriched and CD73-enriched MSCs from normal human synovial membranes mimic the native cartilage extracellular

  12. Depth sensitive oblique polarized reflectance spectroscopy of oral epithelial tissue

    NASA Astrophysics Data System (ADS)

    Jimenez, Maria K.; Lam, Sylvia; Poh, Catherine; Sokolov, Konstantin

    2014-05-01

    Identifying depth-dependent alterations associated with epithelial cancerous lesions can be challenging in the oral cavity where variable epithelial thicknesses and troublesome keratin growths are prominent. Spectroscopic methods with enhanced depth resolution would immensely aid in isolating optical properties associated with malignant transformation. Combining multiple beveled fibers, oblique collection geometry, and polarization gating, oblique polarized reflectance spectroscopy (OPRS) achieves depth sensitive detection. We report promising results from a clinical trial of patients with oral lesions suspected of dysplasia or carcinoma demonstrating the potential of OPRS for the analysis of morphological and architectural changes in the context of multilayer, epithelial oral tissue.

  13. Escape from Lethal Bacterial Competition through Coupled Activation of Antibiotic Resistance and a Mobilized Subpopulation

    PubMed Central

    Stubbendieck, Reed M.; Straight, Paul D.

    2015-01-01

    Bacteria have diverse mechanisms for competition that include biosynthesis of extracellular enzymes and antibiotic metabolites, as well as changes in community physiology, such as biofilm formation or motility. Considered collectively, networks of competitive functions for any organism determine success or failure in competition. How bacteria integrate different mechanisms to optimize competitive fitness is not well studied. Here we study a model competitive interaction between two soil bacteria: Bacillus subtilis and Streptomyces sp. Mg1 (S. Mg1). On an agar surface, colonies of B. subtilis suffer cellular lysis and progressive degradation caused by S. Mg1 cultured at a distance. We identify the lytic and degradative activity (LDA) as linearmycins, which are produced by S. Mg1 and are sufficient to cause lysis of B. subtilis. We obtained B. subtilis mutants spontaneously resistant to LDA (LDAR) that have visibly distinctive morphology and spread across the agar surface. Every LDAR mutant identified had a missense mutation in yfiJK, which encodes a previously uncharacterized two-component signaling system. We confirmed that gain-of-function alleles in yfiJK cause a combination of LDAR, changes in colony morphology, and motility. Downstream of yfiJK are the yfiLMN genes, which encode an ATP-binding cassette transporter. We show that yfiLMN genes are necessary for LDA resistance. The developmental phenotypes of LDAR mutants are genetically separable from LDA resistance, suggesting that the two competitive functions are distinct, but regulated by a single two-component system. Our findings suggest that a subpopulation of B. subtilis activate an array of defensive responses to counter lytic stress imposed by competition. Coordinated regulation of development and antibiotic resistance is a streamlined mechanism to promote competitive fitness of bacteria. PMID:26647299

  14. Subpopulations of Older Foster Youths With Differential Risk of Diagnosis for Alcohol Abuse or Dependence*

    PubMed Central

    Keller, Thomas E.; Blakeslee, Jennifer E.; Lemon, Stephenie C.; Courtney, Mark E.

    2010-01-01

    Objective: Distinctive combinations of factors are likely to be associated with serious alcohol problems among adolescents about to emancipate from the foster care system and face the difficult transition to independent adulthood. This study identifies particular subpopulations of older foster youths that differ markedly in the probability of a lifetime diagnosis for alcohol abuse or dependence. Method: Classification and regression tree (CART) analysis was applied to a large, representative sample (N = 732) of individuals, 17 years of age or older, placed in the child welfare system for more than 1 year. CART evaluated two exploratory sets of variables for optimal splits into groups distinguished from each other on the criterion of lifetime alcohol-use disorder diagnosis. Results: Each classification tree yielded four terminal groups with different rates of lifetime alcohol-use disorder diagnosis. Notable groups in the first tree included one characterized by high levels of both delinquency and violence exposure (53% diagnosed) and another that featured lower delinquency but an independent-living placement (21% diagnosed). Notable groups in the second tree included African American adolescents (only 8% diagnosed), White adolescents not close to caregivers (40% diagnosed), and White adolescents closer to caregivers but with a history of psychological abuse (36% diagnosed). Conclusions: Analyses incorporating variables that could be comorbid with or symptomatic of alcohol problems, such as delinquency, yielded classifications potentially useful for assessment and service planning. Analyses without such variables identified other factors, such as quality of caregiving relationships and maltreatment, associated with serious alcohol problems, suggesting opportunities for prevention or intervention. PMID:20946738

  15. Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion.

    PubMed

    Yang, J; Huang, Y; Wang, X; Wang, X B; Becker, F F; Gascoyne, P R

    1999-06-01

    The separation and purification of human blood cell subpopulations is an essential step in many biomedical applications. New dielectrophoretic fractionation methods have great potential for cell discrimination and manipulation, both for microscale diagnostic applications and for much larger scale clinical problems. To discover whether human leukocyte subpopulations might be separable by such methods, the dielectric characteristics of the four main leukocyte subpopulations, namely, B- and T-lymphocytes, monocytes, and granulocytes, were measured by electrorotation over the frequency range 1 kHz to 120 MHz. The subpopulations were derived from human peripheral blood by magnetically activated cell sorting (MACS) and sheep erythrocyte rosetting methods, and the quality of cell fractions was checked by flow cytometry. Mean specific membrane capacitance values were calculated from the electrorotation data as 10.5 (+/- 3.1), 12.6 (+/- 3.5), 15.3 (+/- 4.3), and 11.0 (+/- 3.2) mF/m2 for T- and B-lymphocytes, monocytes, and granulocytes, respectively, according to a single-shell dielectric model. In agreement with earlier findings, these values correlated with the richness of the surface morphologies of the different cell types, as revealed by scanning electron microscopy (SEM). The data reveal that dielectrophoretic cell sorters should have the ability to discriminate between, and to separate, leukocyte subpopulations under appropriate conditions.

  16. Is there a distinct harbor porpoise subpopulation in the Marmara Sea?

    PubMed

    Tonay, Arda M; Yazıcı, Özge; Dede, Ayhan; Bilgin, Sabri; Danyer, Erdem; Aytemiz, Işıl; Maracı, Öncü; Öztürk, Ayaka A; Öztürk, Bayram; Bilgin, Raşit

    2017-07-01

    Genetic population structure of geographically isolated endangered Black Sea harbor porpoise (Phocoena phocoena relicta) is little known in Turkish waters, especially in the Turkish Straits System (TSS- Marmara Sea, Bosphorus and Dardanelles), which connects the Black Sea and the Aegean Sea. Mitochondrial DNA sequences of 70 new individuals sampled in the Turkish Black Sea, TSS and Aegean Sea, revealed five new haplotypes from the Black Sea. The findings support the idea that harbor porpoises from the Black Sea dispersed into the Aegean through the TSS. Considering signatures of population expansion, all subpopulations showed a signature of population expansion. The network data and the Фst calculations indicated that the Marmara Sea subpopulation was significantly differentiated from all of the other subpopulations, and supports the notion of its isolated. The finding of a potential management unit (MU) within an already heavily impacted subpopulation as a whole suggests that the individuals of P. p. relicta inhabiting the Marmara Sea require a very rigorous conservation strategy to ensure the survival of this subpopulation, represented by its unique haplotype.

  17. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies

    PubMed Central

    Thapa, Dharendra; Shepherd, Danielle L.

    2014-01-01

    Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle. PMID:24778166

  18. The ALDH1⁺ subpopulation of the human NMFH-1 cell line exhibits cancer stem-like characteristics.

    PubMed

    Li, Dejian; Zhang, Tao; Gu, Wenguang; Li, Peng; Cheng, Xiangyang; Tong, Tiejun; Wang, Wenbo

    2015-05-01

    Cancer stem cells (CSCs) have been reported in many tissues. However, CSCs have yet to be identified in a human malignant fibrous histiocytoma (MFH) cell line. Elevated aldehyde dehydrogenase 1 (ALDH1) has been proposed as a stem cell marker for isolating CSCs from cancer. The aim of the present study was to identify a population with elevated ALDH in the human NMFH-1 cell line. ALDH⁺ and ALDH- cell populations were isolated and compared for CSC characteristics. ALDH enzymatic activity was used as a marker to identify the cells in the NMFH-1 line. Self-renewal, differentiation capacity, and tumorigenicity of the NMFH-1 ALDH⁺ cell population were then examined using a spheroid formation assay and xenograft model in nude mice. Chemoresistance levels, ABCG2 drug transport gene expression, and stem cell-associated gene expression were compared in these NMFH-1 populations. The ALDH⁺ population was better able to form spheres in anchorage-independent serum-starved conditions. Furthermore, the mRNA expression of key stem cell-related genes was enhanced in these cells. Increased expression of the drug transporter gene, ABCG2, was detected. Compared with ALDH-, the ALDH⁺ subpopulation had higher levels of chemoresistance to doxorubicin (DXR) and cisplatin (CDDP). Additionally, the ALDH⁺ cells more efficiently formed tumors when implanted into BALB/c nude mice. ALDH1 may therefore be used as a marker for the isolation of cells that exhibit several characteristics of CSCs from the NMFH-1 cell line. This finding may lead to the development of novel therapies to specifically kill ALDH1⁺ subpopulations (CSCs).

  19. Fate-mapping of the epithelial seam during palatal fusion rules out epithelial-mesenchymal transformation.

    PubMed

    Vaziri Sani, Forugh; Hallberg, Kristina; Harfe, Brian D; McMahon, Andrew P; Linde, Anders; Gritli-Linde, Amel

    2005-09-15

    During palatogenesis, fusion of the palatine shelves is a crucial event, the failure of which results in the birth defect, cleft palate. The fate of the midline epithelial seam (MES), which develops transiently upon contact of the two palatine shelves, is still strongly debated. Three major mechanisms underlying the regression of the MES upon palatal fusion have been proposed: (1) apoptosis has been evidenced by morphological and molecular criteria; (2) epithelial-mesenchymal transformation has been suggested based on ultrastructural and lipophilic dye cell labeling observations; and (3) migration of MES cells toward the oral and nasal areas has been proposed following lipophilic dye cell labeling. To verify whether epithelial-mesenchymal transformation of MES cells takes place during murine palatal fusion, we used the Cre/lox system to genetically mark Sonic hedgehog- and Keratin-14-expressing palatal epithelial cells and to identify their fate in vivo. Our analyses provide conclusive evidence that rules out the occurrence of epithelial-mesenchymal transformation of MES cells.

  20. Pyridoxine responsive hereditary sideroblastic erythropoiesis and iron overload: two microcytic subpopulations in the affected male, one normocytic and one microcytic subpopulation in the obligate female carrier.

    PubMed

    Harris, J W; Danish, E H; Brittenham, G M; McLaren, C E

    1993-04-01

    Mild hepatic iron overload has been demonstrated by magnetic susceptibility measurements in a 22-year-old man with hereditary sideroblastic erythropoiesis despite hemoglobin levels in the normal range and a normal erythropoietin level. His grandfather's sideroblastic anemia has been found to be responsive to pyridoxine; his mother's hemoglobin has persisted in the normal range but red cell volume distribution analysis demonstrated two subpopulations; 30% with estimated geometric mean of 68 fl and 70% an estimated mean of 93 fl. Red cell distribution analysis of the grandson demonstrated two microcytic subpopulations; 46% with an estimated geometric mean of 45 fl and 54% an estimated mean of 70 fl. A therapeutic regimen is outlined to reduce to normal his iron stores and to prevent the future development of excessive iron overload.

  1. Defining epithelial cell dynamics and lineage relationships in the developing lacrimal gland.

    PubMed

    Farmer, D'Juan T; Nathan, Sara; Finley, Jennifer K; Shengyang Yu, Kevin; Emmerson, Elaine; Byrnes, Lauren E; Sneddon, Julie B; McManus, Michael T; Tward, Aaron D; Knox, Sarah M

    2017-07-01

    The tear-producing lacrimal gland is a tubular organ that protects and lubricates the ocular surface. The lacrimal gland possesses many features that make it an excellent model in which to investigate tubulogenesis, but the cell types and lineage relationships that drive lacrimal gland formation are unclear. Using single-cell sequencing and other molecular tools, we reveal novel cell identities and epithelial lineage dynamics that underlie lacrimal gland development. We show that the lacrimal gland from its earliest developmental stages is composed of multiple subpopulations of immune, epithelial and mesenchymal cell lineages. The epithelial lineage exhibits the most substantial cellular changes, transitioning through a series of unique transcriptional states to become terminally differentiated acinar, ductal and myoepithelial cells. Furthermore, lineage tracing in postnatal and adult glands provides the first direct evidence of unipotent KRT5(+) epithelial cells in the lacrimal gland. Finally, we show conservation of developmental markers between the developing mouse and human lacrimal gland, supporting the use of mice to understand human development. Together, our data reveal crucial features of lacrimal gland development that have broad implications for understanding epithelial organogenesis. © 2017. Published by The Company of Biologists Ltd.

  2. ESTIMATION OF TREATMENT EFFECT IN A SUB-POPULATION: AN EMPIRICAL BAYES APPROACH

    PubMed Central

    Shen, Changyu; Li, Xiaochun; Jeong, Jaesik

    2016-01-01

    It is well recognized that the benefit of a medical intervention may not be distributed evenly in the target population due to patient heterogeneity and conclusions based on conventional randomized clinical trials may not apply to every person. Given the increasing cost of randomized trials and difficulties in recruiting patients, there is a strong need to develop analytical approaches to estimate treatment effect in sub-populations. In particular, due to limited sample size for sub-populations and the need for multiple comparisons, standard analysis tends to yield wide confidence intervals of the treatment effect that are often non-informative. We propose an empirical Bayes approach to combine both information embedded in a target sub-population and information from other subjects to construct confidence intervals of the treatment effect. The method is appealing in its simplicity and tangibility in characterizing the uncertainty about the true treatment effect. Simulation studies and a real data analysis are presented. PMID:26010422

  3. Identifying critical regions in small-world marine metapopulations.

    PubMed

    Watson, James R; Siegel, David A; Kendall, Bruce E; Mitarai, Satoshi; Rassweiller, Andrew; Gaines, Steven D

    2011-10-25

    The precarious state of many nearshore marine ecosystems has prompted the use of marine protected areas as a tool for management and conservation. However, there remains substantial debate over their design and, in particular, how to best account for the spatial dynamics of nearshore marine species. Many commercially important nearshore marine species are sedentary as adults, with limited home ranges. It is as larvae that they disperse greater distances, traveling with ocean currents sometimes hundreds of kilometers. As a result, these species exist in spatially complex systems of connected subpopulations. Here, we explicitly account for the mutual dependence of subpopulations and approach protected area design in terms of network robustness. Our goal is to characterize the topology of nearshore metapopulation networks and their response to perturbation, and to identify critical subpopulations whose protection would reduce the risk for stock collapse. We define metapopulation networks using realistic estimates of larval dispersal generated from ocean circulation simulations and spatially explicit metapopulation models, and we then explore their robustness using node-removal simulation experiments. Nearshore metapopulations show small-world network properties, and we identify a set of highly connected hub subpopulations whose removal maximally disrupts the metapopulation network. Protecting these subpopulations reduces the risk for systemic failure and stock collapse. Our focus on catastrophe avoidance provides a unique perspective for spatial marine planning and the design of marine protected areas.

  4. Phenotypic characterisation of the monocyte subpopulations in healthy adult pigs and Salmonella-infected piglets by seven-colour flow cytometry.

    PubMed

    Ondrackova, Petra; Matiasovic, Jan; Volf, Jiri; Dominguez, Javier; Faldyna, Martin

    2013-04-01

    The present study describes the distinct bone marrow (BM) and peripheral blood (PB) monocyte subpopulations detected by seven-colour flow cytometry. Mononuclear phagocytes were identified as viable CD172a(+) SWC8(-) CD203a(-) mononuclear leukocytes. After that, monocyte subpopulations were differentiated by using CD14, CD163 and SLA-DR markers. Four distinct monocyte subpopulations were found in the BM and PB. Based on the discovered populations two possible maturation pathways have been proposed. The first pathway was characterised by release of CD14(hi) CD163(-) SLA-DR(-) BM monocytes into the PB where they matured into CD14(low) CD163(+) SLA-DR(+) monocytes. In the alternative pathway the monocytes finalised their phenotypical maturation in the BM and then they were released into the PB as CD14(low) CD163(+) SLA-DR(+) cells. In Salmonella-infected piglets, the population of CD14(low) CD163(+) SLA-DR(+) monocytes was elevated in the BM and mesenteric lymph nodes (MLN), suggesting the role of this population in pathogenesis of Salmonella infection in pigs.

  5. Intracellular calcium regulation among subpopulations of rat dorsal root ganglion neurons

    PubMed Central

    Lu, Shao-Gang; Zhang, Xiulin; Gold, Michael S

    2006-01-01

    Primary afferent neurons are functionally heterogeneous. To determine whether this functional heterogeneity reflects, in part, heterogeneity in the regulation of the concentration of intracellular Ca2+ ([Ca2+]i), the magnitude and decay of evoked Ca2+ transients were assessed in subpopulations of dorsal root ganglion (DRG) neurons with voltage clamp and fura-2 ratiometric imaging. To determine whether differences in evoked Ca2+ transients among subpopulations of DRG neurons reflected differences in the contribution of Ca2+ regulatory mechanisms, pharmacological techniques were employed to assess the contribution of influx, efflux, release and uptake pathways. Subpopulations of DRG neurons were defined by cell body size, binding of the plant lectin IB4 and responsiveness to the algogenic compound capsaicin (CAP). Ca2+ transients were evoked with 30 mm K+ or voltage steps to 0 mV. There were marked differences between subpopulations of neurons with respect to both the magnitude and decay of the Ca2+ transient, with the largest and most slowly decaying Ca2+ transients in small-diameter, IB4-positive, CAP-responsive neurons. The smallest and most rapidly decaying transients were in large-diameter, IB4-negative and CAP-unresponsive DRG neurons. These differences were not due to a differential distribution of voltage-gated Ca2+ currents. However, these differences did appear to reflect a differential contribution of other influx, efflux, release and uptake mechanisms between subpopulations of neurons. These results suggest that electrical activity in subpopulations of DRG neurons will have a differential influence on Ca2+-regulated phenomena such as spike adaptation, transmitter release and gene transcription. Significantly more activity should be required in large-diameter non-nociceptive afferents than in small-diameter nociceptive afferents to have a comparable influence on these processes. PMID:16945973

  6. Ara h 2: crystal structure and IgE binding distinguish two sub-populations of peanut allergic patients by epitope diversity

    PubMed Central

    Mueller, Geoffrey A.; Gosavi, Rajendrakumar A.; Pomés, Anna; Wünschmann, Sabina; Moon, Andrea F.; London, Robert E.; Pedersen, Lars C.

    2010-01-01

    Background Peanut allergy affects 1% of the population and causes the most fatal food-related anaphylactic reactions. The protein Ara h 2 is the most potent peanut allergen recognized by 80–90% of peanut allergic patients. Methods The crystal structure of the major peanut allergen Ara h 2 was determined for the first time at 2.7 Å resolution using a customized MBP-fusion system. IgE antibody binding to the MBP fusion construct versus the natural allergen was compared by ELISA using sera from peanut allergic patients. Results The structure of Ara h 2 is a five helix bundle held together by four disulfide bonds and related to the prolamin protein superfamily. The fold is most similar to other amylase and trypsin inhibitors. The MBP-Ara h 2 fusion construct was positively recognized by IgE from 76% of allergic patients (25/33). Two populations of patients could be identified. Sub-population 1 (n=14) showed an excellent correlation of IgE antibody binding to natural versus recombinant Ara h 2. Sub-population 2 (n=15) showed significantly reduced IgE binding to the MBP fusion protein. Interestingly, about 20% of the IgE binding in sub-population 2 could be recovered by increasing the distance between MBP and Ara h 2 in a second construct. Discussion The reduced IgE binding to the MBP-Ara h 2 of sub-population 2 indicates that the MBP molecule protects an immunodominant epitope region near the first helix of Ara h 2. Residues involved in the epitope(s) are suggested by the crystal structure. The MBP-Ara h 2 fusion constructs will be useful to further elucidate the relevance of certain epitopes to peanut allergy. PMID:21255036

  7. Streptococcus salivarius MS-oral-D6 promotes gingival re-epithelialization in vitro through a secreted serine protease.

    PubMed

    Fernandez-Gutierrez, Marcela M; Roosjen, Peter P J; Ultee, Eveline; Agelink, Maarten; Vervoort, Jacques J M; Keijser, Bart; Wells, Jerry M; Kleerebezem, Michiel

    2017-09-11

    Gingival re-epithelialization represents an essential phase of oral wound healing in which epithelial integrity is re-establish. We developed an automated high-throughput re-epithelialization kinetic model, using the gingival epithelial cell line Ca9-22. The model was employed to screen 39 lactic acid bacteria, predominantly including oral isolates, for their capacity to accelerate gingival re-epithelialization. This screen identified several strains of Streptococcus salivarius that stimulated re-epithelialization. Further analysis revealed that S. salivarius strain MS-oral-D6 significantly promoted re-epithelialization through a secreted proteinaceous compound and subsequent experiments identified a secreted serine protease as the most likely candidate to be involved in re-epithelialization stimulation. The identification of bacteria or their products that stimulate gingival wound repair may inspire novel strategies for the maintenance of oral health.

  8. Protons sensitize epithelial cells to mesenchymal transition.

    PubMed

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M; Pluth, Janice M; Cucinotta, Francis A

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  9. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    PubMed Central

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  10. Occludin S471 Phosphorylation Contributes to Epithelial Monolayer Maturation.

    PubMed

    Bolinger, Mark T; Ramshekar, Aniket; Waldschmidt, Helen V; Larsen, Scott D; Bewley, Maria C; Flanagan, John M; Antonetti, David A

    2016-08-01

    Multiple organ systems require epithelial barriers for normal function, and barrier loss is a hallmark of diseases ranging from inflammation to epithelial cancers. However, the molecular processes regulating epithelial barrier maturation are not fully elucidated. After contact, epithelial cells undergo size-reductive proliferation and differentiate, creating a dense, highly ordered monolayer with high resistance barriers. We provide evidence that the tight junction protein occludin contributes to the regulation of epithelial cell maturation upon phosphorylation of S471 in its coiled-coil domain. Overexpression of a phosphoinhibitory occludin S471A mutant prevents size-reductive proliferation and subsequent tight junction maturation in a dominant manner. Inhibition of cell proliferation in cell-contacted but immature monolayers recapitulated this phenotype. A kinase screen identified G-protein-coupled receptor kinases (GRKs) targeting S471, and GRK inhibitors delayed epithelial packing and junction maturation. We conclude that occludin contributes to the regulation of size-reductive proliferation and epithelial cell maturation in a phosphorylation-dependent manner. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Occludin S471 Phosphorylation Contributes to Epithelial Monolayer Maturation

    PubMed Central

    Bolinger, Mark T.; Waldschmidt, Helen V.; Larsen, Scott D.; Bewley, Maria C.; Flanagan, John M.

    2016-01-01

    Multiple organ systems require epithelial barriers for normal function, and barrier loss is a hallmark of diseases ranging from inflammation to epithelial cancers. However, the molecular processes regulating epithelial barrier maturation are not fully elucidated. After contact, epithelial cells undergo size-reductive proliferation and differentiate, creating a dense, highly ordered monolayer with high resistance barriers. We provide evidence that the tight junction protein occludin contributes to the regulation of epithelial cell maturation upon phosphorylation of S471 in its coiled-coil domain. Overexpression of a phosphoinhibitory occludin S471A mutant prevents size-reductive proliferation and subsequent tight junction maturation in a dominant manner. Inhibition of cell proliferation in cell-contacted but immature monolayers recapitulated this phenotype. A kinase screen identified G-protein-coupled receptor kinases (GRKs) targeting S471, and GRK inhibitors delayed epithelial packing and junction maturation. We conclude that occludin contributes to the regulation of size-reductive proliferation and epithelial cell maturation in a phosphorylation-dependent manner. PMID:27185880

  12. Case-crossover analysis of heat-coded deaths and vulnerable subpopulations: Oklahoma, 1990-2011

    NASA Astrophysics Data System (ADS)

    Moore, Brianna F.; Brooke Anderson, G.; Johnson, Matthew G.; Brown, Sheryll; Bradley, Kristy K.; Magzamen, Sheryl

    2017-06-01

    The extent of the association between temperature and heat-coded deaths, for which heat is the primary cause of death, remains largely unknown. We explored the association between temperature and heat-coded deaths and potential interactions with various demographic and environmental factors. A total of 335 heat-coded deaths that occurred in Oklahoma from 1990 through 2011 were identified using heat-related International Classification of Diseases codes, cause-of-death nomenclature, and narrative descriptions. Conditional logistic regression models examined the association between temperature and heat index on heat-coded deaths. Interaction by demographic factors (age, sex, marital status, living alone, outdoor/heavy labor occupations) and environmental factors (ozone, PM10, PM2.5) was also explored. Temperatures ≥99 °F (the median value) were associated with approximately five times higher odds of a heat-coded death as compared to temperatures <99 °F (adjusted OR = 4.9, 95% CI 3.3, 7.2). The effect estimates were attenuated when exposure to heat was characterized by heat index. The interaction results suggest that effect of temperature on heat-coded deaths may depend on sex and occupation. For example, the odds of a heat-coded death among outdoor/heavy labor workers exposed to temperatures ≥99 °F was greater than expected based on the sum of the individual effects (observed OR = 14.0, 95% CI 2.7, 72.0; expected OR = 4.1 [2.8 + 2.3-1.0]). Our results highlight the extent of the association between temperature and heat-coded deaths and emphasize the need for a comprehensive, multisource definition of heat-coded deaths. Furthermore, based on the interaction results, we recommend that states implement or expand heat safety programs to protect vulnerable subpopulations, such as outdoor workers.

  13. Synaptic vesicle protein synaptoporin is differently expressed by subpopulations of mouse hippocampal neurons.

    PubMed

    Singec, Ilyas; Knoth, Rolf; Ditter, Margarethe; Hagemeyer, Christoph E; Rosenbrock, Holger; Frotscher, Michael; Volk, Benedikt

    2002-10-14

    In the hippocampus, the synaptic vesicle protein synaptoporin (SPO) has been reported to be exclusively enriched in the granule cell axons, the mossy fibers. In this study, we show that in adult rats and mice SPO immunoreactivity (IR) is also detectable in strata oriens, radiatum, and lacunosum-moleculare of CA1-CA3, as well as perisomatically in the hippocampus proper and fascia dentata. In situ hybridization confirmed that SPO mRNA was present in granule cells and CA3 pyramidal cells but not in CA1 pyramidal cells. Importantly, cells scattered throughout the hippocampal layers resembling the distribution of interneurons were found to synthesize high amounts of SPO mRNA, too. Thus, these findings indicate that SPO expression in the hippocampus was underestimated until now. Moreover, double-labeling immunohistochemistry and confocal microscopy revealed selective colocalization of SPO and glutamate decarboxylase (GAD 65), a marker for gamma-aminobutyric acid (GABA)ergic terminals. To identify SPO expressing interneurons, in situ hybridization was combined with immunocytochemistry against parvalbumin (PV), calbindin (CB), calretinin (CR), cholecystokinin (CCK), and vasoactive intestinal polypeptide (VIP). We found that SPO transcripts were differentially expressed by various interneuron subpopulations in the hippocampus of C57Bl/6 mice (PV 44.2%, CB 46.3%, CR 19.3%, CCK 38.6%, VIP 59.9%). Immunoelectron microscopy for SPO labeled synaptic vesicle profiles in distinct symmetric and asymmetric synapses. In conclusion, our data demonstrate that hippocampal principal cells and interneurons display a variety of synaptic vesicles that are likely to contribute to the functional characteristics of their output synapses.

  14. Identification and Characterization of CD133(pos) Subpopulation Cells From a Human Laryngeal Cancer Cell Line.

    PubMed

    Qiu, Hai-ou; Wang, Huifang; Che, Na; Li, Dong; Mao, Yong; Zeng, Qiao; Ge, Rongming

    2016-04-06

    Recent research indicates that CD133 are expressed in several kinds of stem cells, among which, its high expression in laryngeal carcinoma has caused wide concern. To further explore efficaciously targeting drugs to laryngeal carcinoma stem cells (CSCs), we transplanted a solid tumor from CSCs into abdominal subcutaneous tissue of nude mice, and then compared the biological characteristics of laryngeal solid tumors with or without cisplatin intervention. In this study, the expression of CD133 was detected in the Hep-2 cell line by flow cytometry. By applying magnetic cell sorting (MACS) technology, we reported the results of purifying CD133-positive cells from a Hep-2 cell line. Cell proliferation, colony formation, and tumor-forming ability were examined in vitro and in vivo to identify the marker of CSCs in Hep-2 cell line. Upon flow cytometry analysis, CD133 was expressed constantly on 40.12±1.32% in Hep-2 cell line. Cell proliferation and colony formation ability were higher in CD133-positive cells compared to CD133-negative cells, and the in vivo tumorigenesis experiment showed the same results as in vitro assay. The 2 subpopulations cells were both sensitive to DDP, among which, the effect of DPP on proliferation ability and tumor-forming ability of CD133-positive cells was obviously greater than that of CD133-negative cells. Above all, our study revealed that CD133-positive cells have properties of higher proliferation, colony formation, and tumorigenesis in Hep-2 cell line, indicating that CD133 could be a marker to characterize laryngeal cancer stem cells.

  15. Epithelial Conduction in Hydromedusae

    PubMed Central

    Mackie, G. O.; Passano, L. M.

    1968-01-01

    Sarsia, Euphysa, and other hydromedusae have been studied by electrophysiological techniques and are found to have nonnervous conducting epithelia resembling those described earlier for siphonophores. Simple, non-muscular epithelia fire singly or repetitively following brief electrical stimuli. The pulses recorded with suction electrodes are biphasic, initially positive, and show amplitudes of 0.75–2.0 mv, durations of 5–15 msec, and velocities of 15–35 cm/sec with short refractory periods. In the swimming muscle (myoepithelium) 2.0–4.0 mv composite events lasting 150–300 msec are associated with contraction waves. Propagation in nonnervous epithelia is typically all-or-none, nondecremental, and unpolarized. The subumbrellar endoderm lamella conducts independently of the adjacent ectoderm. The lower regions of the tentacles do not show propagated epithelial events. The spread of excitation in conducting epithelia and associated effector responses are described. Examples are given of interaction between events seemingly conducted in the nervous system and those in nonnervous epithelia. Either system may excite the other. Spontaneous activity, however, appears to originate in the nervous system. Conduction in nonnervous tissues is unaffected by excess Mg++ in concentrations suppressing presumed nervous activity, although this may not be a wholly adequate criterion for distinguishing components of the two systems. Evidence from old work by Romanes is considered in the light of these findings and the general significance of epithelial conduction is discussed. PMID:4386662

  16. Epithelial-Mesenchymal Transition

    PubMed Central

    Klymkowsky, Michael W.; Savagner, Pierre

    2009-01-01

    Epithelial-mesenchymal transition (EMT) describes a series of rapid changes in cellular phenotype. During EMT, epithelial cells down-modulate cell-cell adhesion structures, alter their polarity, reorganize their cytoskeleton, and become isolated, motile, and resistant to anoikis. The term EMT is often applied to distinct biological events as if it were a single conserved process, but in fact EMT-related processes can vary in intensity from a transient loss of cell polarity to the total cellular reprogramming, as found by transcriptional analysis. Based on clinical observations, it is more appropriate in most cases to describe the emergence of an EMT-like phenotype during tumor progression. Although EMT implies complete trans-differentiation, EMT-like emphasizes the intermediary phenotype associated with tumor cell renewal and adaptation to specific microenvironments. Here, we categorize the various EMT-like phenotypes found in human carcinomas that, depending on the tumor type, may or not represent analogous stages in tumor progression. We based these categories on the global tumor phenotype. The tumor microenvironment, which is associated with stromal reactions, hypoxia, paucity of nutrients, impaired differentiation, and activation of various EMT-associated pathways, modulates overall tumor phenotype and leads to tumor heterogeneity. PMID:19342369

  17. Endocardial cell epithelial-mesenchymal transformation requires Type III TGFβ receptor interaction with GIPC.

    PubMed

    Townsend, Todd A; Robinson, Jamille Y; How, Tam; DeLaughter, Daniel M; Blobe, Gerard C; Barnett, Joey V

    2012-01-01

    An early event in heart valve formation is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endothelial cells in specific regions of the heart tube, the endocardial cushions. The Type III TGFβ receptor (TGFβR3) is required for TGFβ2- or BMP-2-stimulated EMT in atrioventricular endocardial cushion (AVC) explants in vitro but the mediators downstream of TGFβR3 are not well described. Using AVC and ventricular explants as an in vitro assay, we found an absolute requirement for specific TGFβR3 cytoplasmic residues, GAIP-interacting protein, C terminus (GIPC), and specific Activin Receptor-Like Kinases (ALK)s for TGFβR3-mediated EMT when stimulated by TGFβ2 or BMP-2. The introduction of TGFβR3 into nontransforming ventricular endocardial cells, followed by the addition of either TGFβ2 or BMP-2, results in EMT. TGFβR3 lacking the entire cytoplasmic domain, or only the 3C-terminal amino acids that are required to bind GIPC, fails to support EMT in response to TGFβ2 or BMP-2. Overexpression of GIPC in AVC endocardial cells enhanced EMT while siRNA-mediated silencing of GIPC in ventricular cells overexpressing TGFβR3 significantly inhibited EMT. Targeting of specific ALKs by siRNA revealed that TGFβR3-mediated EMT requires ALK2 and ALK3, in addition to ALK5, but not ALK4 or ALK6. Taken together, these data identify GIPC, ALK2, ALK3, and ALK5 as signaling components required for TGFβR3-mediated endothelial cell EMT. Copyright © 2011. Published by Elsevier Inc.

  18. ENDOCARDIAL CELL EPITHELIAL-MESENCHYMAL TRANSFORMATION REQUIRES TYPE III TGFβ RECEPTOR INTERACTION WITH GIPC

    PubMed Central

    Townsend, Todd A.; Robinson, Jamille Y.; How, Tam; DeLaughter, Daniel M.; Blobe, Gerard C.; Barnett, Joey V.

    2011-01-01

    An early event in heart valve formation is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endothelial cells in specific regions of the heart tube, the endocardial cushions. The Type III TGFβ receptor (TGFβR3) is required for TGFβ2- or BMP-2-stimulated EMT in atrioventricular endocardial cushion (AVC) explants in vitro but the mediators downstream of TGFβR3 are not well described. Using AVC and ventricular explants as an in vitro assay, we found an absolute requirement for specific TGFβR3 cytoplasmic residues, GAIP-interacting protein, C terminus (GIPC), and specific Activin Receptor-Like Kinases (ALK)s for TGFβR3-mediated EMT when stimulated by TGFβ2 or BMP-2. The introduction of TGFβR3 into nontransforming ventricular endocardial cells, followed by the addition of either TGFβ2 or BMP-2, results in EMT. TGFβR3 lacking the entire cytoplasmic domain, or only the 3 C-terminal amino acids that are required to bind GIPC, fails to support EMT in response to TGFβ2 or BMP-2. Overexpression of GIPC in AVC endocardial cells enhanced EMT while siRNA-mediated silencing of GIPC in ventricular cells overexpressing TGFβR3 significantly inhibited EMT. Targeting of specific ALK’s by siRNA revealed that TGFβR3-mediated EMT requires ALK2 and ALK3, in addition to ALK5, but not ALK4 or ALK6. Taken together, these data identify GIPC, ALK2, ALK3, and ALK5 as signaling components required for TGFβR3-mediated endothelial cell EMT. PMID:21945156

  19. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells.

    PubMed

    Iliev, I D; Spadoni, I; Mileti, E; Matteoli, G; Sonzogni, A; Sampietro, G M; Foschi, D; Caprioli, F; Viale, G; Rescigno, M

    2009-11-01

    In mice, a subpopulation of gut dendritic cells (DCs) expressing CD103 drives the development of regulatory T (T(reg)) cells. Further, it was recently described that the cross-talk between human intestinal epithelial cells (IECs) and DCs helps in maintaining gut immune homeostasis via the induction of non-inflammatory DCs. In this study, an analysis was carried out to determine whether IECs could promote the differentiation of CD103+ tolerogenic DCs, and the function of primary CD103+ DCs isolated from human mesenteric lymph nodes (MLNs) was evaluated. Monocyte-derived DCs (MoDCs) and circulating CD1c+ DCs were conditioned or not with supernatants from Caco-2 cells or IECs isolated from healthy donors or donors with Crohn's disease and analysed for their ability to induce T(reg) cell differentiation. In some cases, transforming growth factor beta (TGFbeta), retinoic acid (RA) or thymic stromal lymphopoietin (TSLP) were neutralised before conditioning. CD103+ and CD103- DCs were sorted by fluorescence-activated cell sorting (FACS) from MLNs and used in T(reg) cell differentiation experiments. It was found that human IECs promoted the differentiation of tolerogenic DCs able to drive the development of adaptive Foxp3+ T(reg) cells. This control was lost in patients with Crohn's disease and paralleled a reduced expression of tolerogenic factors by primary IECs. MoDCs differentiated with RA or IEC supernatant upregulated the expression of CD103. Consistently, human primary CD103+ DCs isolated from MLNs were endowed with the ability to drive T(reg) cell differentiation. This subset of DCs expressed CCR7 and probably represents a lamina propria-derived migratory population. A population of tolerogenic CD103+ DCs was identified in the human gut that probably differentiate in response to IEC-derived factors and drive T(reg) cell development.

  20. Profiling lymphocyte subpopulations in peripheral blood under efalizumab treatment of psoriasis by multi epitope ligand cartography (MELC) robot microscopy.

    PubMed

    Bonnekoh, Bernd; Malykh, Yanina; Böckelmann, Raik; Bartsch, Sebastian; Pommer, Ansgar J; Gollnick, Harald

    2006-01-01

    CD11a-blocking efalizumab has recently been approved as a systemic treatment of moderate to severe chronic plaque psoriasis. When treating 6 psoriasis patients with efalizumab over 12 weeks in the present study, we observed an overall good tolerability and 5 treatment responders characterized by a decrease of PASI from 21.3 +/- 5.4 to 3.9 +/- 0.6. The accompanying significant increase of peripheral blood lymphocytes from 1.9 +/- 0.7 to 4.3 +/- 1.0 x 10(9)/L (p < 0.05) was analyzed by multi epitope ligand cartography (MELC) robot microscopy. Thereby a high-dimension simultaneous multiplex immunophenotyping was pursued using 39 fluorophore-labeled antibodies including labeled efalizumab and 3 other affinity reagents such as lectins. Due to efalizumab treatment there was a substantial decrease of the cellular expression of CD11a (detected by mab clone 25.3.1) and efalizumab binding sites (EfaBSs). This was paralleled by an increase of the number of EfaBS- and EfaBS+ lymphocytes by a factor of 2.4x and 2.2x, respectively. The latter effect was mainly derived from a subpopulation showing a low degree of EfaBS expression. Efalizumab treatment led furthermore to an increase of the numbers of CD3+, CD4+, CD8+, CD44+, CD45+, CD45R0+, CD45 RA+, CD52+, CD58+, CD247+, HLA-DR+ and Sambucus nigra lectin-reactive lymphocytes (by factors from 2.0 to 3.3x). In terms of a combinatorial molecular phenotype we identified a CD3+/CD4+/CD44+/CD52+ lymphocyte subpopulation which accumulated most predominantly from 0.824 +/- 0.270 x 10(9)/L up to 1.616 +/- 0.152 x 10(9)/L under efalizumab treatment (p < 0.01). Thus, the current study extends the knowledge of efalizumab-dependent perturbations of recirculating blood lymphocyte subpopulations in psoriasis patients.

  1. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model.

    PubMed

    Carey, Shawn P; Starchenko, Alina; McGregor, Alexandra L; Reinhart-King, Cynthia A

    2013-06-01

    Solid tumors consist of genetically and phenotypically diverse subpopulations of cancer cells with unique capacities for growth, differentiation, and invasion. While the molecular and microenvironmental bases for heterogeneity are increasingly appreciated, the outcomes of such intratumor heterogeneity, particularly in the context of tumor invasion and metastasis, remain poorly understood. To study heterotypic cell-cell interactions and elucidate the biological consequences of intratumor heterogeneity, we developed a tissue-engineered multicellular spheroid (MCS) co-culture model that recapitulates the cellular diversity and fully three-dimensional cell-cell and cell-matrix interactions that characterize human carcinomas. We found that "invasion-competent" malignant cells induced the collective invasion of otherwise "invasion-incompetent" epithelial cells, and that these two cell types consistently exhibited distinct leader and follower roles during invasion. Analysis of extracellular matrix (ECM) microarchitecture revealed that malignant cell invasion was accompanied by extensive ECM remodeling including matrix alignment and proteolytic track-making. Inhibition of cell contractility- and proteolysis-mediated matrix reorganization prevented leader-follower behavior and malignant cell-induced epithelial cell invasion. These results indicate that heterogeneous subpopulations within a tumor may possess specialized roles during tumor progression and suggest that complex interactions among the various subpopulations of cancer cells within a tumor may regulate critical aspects of tumor biology and affect clinical outcome.

  2. Hydraulic fracture during epithelial stretching

    PubMed Central

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression maneuvers. After pressure equilibration cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics. PMID:25664452

  3. Hydraulic fracture during epithelial stretching

    NASA Astrophysics Data System (ADS)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  4. Hydraulic fracture during epithelial stretching.

    PubMed

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  5. Galectin-3 Regulates Desmoglein-2 and Intestinal Epithelial Intercellular Adhesion*

    PubMed Central

    Jiang, Kun; Rankin, Carl R.; Nava, Porfirio; Sumagin, Ronen; Kamekura, Ryuta; Stowell, Sean R.; Feng, Mingli; Parkos, Charles A.; Nusrat, Asma

    2014-01-01

    The desmosomal cadherins, desmogleins, and desmocollins mediate strong intercellular adhesion. Human intestinal epithelial cells express the desmoglein-2 isoform. A proteomic screen for Dsg2-associated proteins in intestinal epithelial cells identified a lectin referred to as galectin-3 (Gal3). Gal3 bound to N-linked β-galactosides in Dsg2 extracellular domain and co-sedimented with caveolin-1 in lipid rafts. Down-regulation of Gal3 protein or incubation with lactose, a galactose-containing disaccharide that competitively inhibits galectin binding to Dsg2, decreased intercellular adhesion in intestinal epithelial cells. In the absence of functional Gal3, Dsg2 protein was internalized from the plasma membrane and degraded in the proteasome. These results report a novel role of Gal3 in stabilizing a desmosomal cadherin and intercellular adhesion in intestinal epithelial cells. PMID:24567334

  6. Stromal-to-Epithelial Transition during Postpartum Endometrial Regeneration

    PubMed Central

    Huang, Cheng-Chiu; Orvis, Grant D.; Wang, Ying; Behringer, Richard R.

    2012-01-01

    Endometrium is the inner lining of the uterus which is composed of epithelial and stromal tissue compartments enclosed by the two smooth muscle layers of the myometrium. In women, much of the endometrium is shed and regenerated each month during the menstrual cycle. Endometrial regeneration also occurs after parturition. The cellular mechanisms that regulate endometrial regeneration are still poorly understood. Using genetic fate-mapping in the mouse, we found that the epithelial compartment of the endometrium maintains its epithelial identity during the estrous cycle and postpartum regeneration. However, whereas the stromal compartment maintains its identity during homeostatic cycling, after parturition a subset of stromal cells differentiates into epithelium that is subsequently maintained. These findings identify potential progenitor cells within the endometrial stromal compartment that produce long-term epithelial tissue during postpartum endometrial regeneration. PMID:22970108

  7. The Importance of Distinguishing Hispanic Subpopulations in the Use of Medical Care.

    ERIC Educational Resources Information Center

    Schur, Claudia L.; And Others

    1987-01-01

    Examines the following issues pertaining to the health care of different Hispanic subpopulations: (1) utilization of the health services; (2) insurance coverage; (3) mean annual expenses, by source of payment; and (4) health status. Cubans, Mexicans, and Puerto Ricans have different health care practices. Policy implications are discussed. (BJV)

  8. Osmotic properties of stallion sperm subpopulations determined by simultaneous assessment of cell volume and viability.

    PubMed

    Oldenhof, Harriëtte; Blässe, Anne-Kathrin; Wolkers, Willem F; Bollwein, Heinrich; Sieme, Harald

    2011-07-15

    The aim of this study was to determine the osmotic tolerance limits of stallion sperm as well as the osmotic behavior of different sperm subpopulations, including viable and non-viable cells as well as viable cells of different average sizes. A flow cytometric approach was used for simultaneous assessment of cell volume and permeability of the plasma membrane for the fluorescent dye propidium iodide while exposing the cells to media with different solute concentrations. Equine spermatozoa have limited osmotic tolerance limits: exposure to hypotonic conditions below approximately 240 mOsm kg(-1) already results in an increase in plasma membrane damaged cells, increasing up to 50% at an osmolality of 136 mOsm kg(-1). Plasma membrane damaged stallion sperm do not show an osmotic response after 10 min incubation in hypotonic conditions, and their volume is smaller as compared to viable cells. It is shown that inclusion or exclusion of different subpopulations greatly affects Boyle van 't Hoff behavior and therewith determination of the osmotic inactive volume. Osmotic inactive volumes were determined to be 76% and 46% of the isotonic volume for the whole sperm population and the plasma membrane intact viable cells, respectively. In addition, viable subpopulations with different average cell volumes also show different osmotic behavior. The main subpopulation of viable cells increased up to 1.6 times its isotonic volume upon exposure to 150 mOsm kg(-1), and exhibited an osmotic inactive volume of 79%. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML

    PubMed Central

    Warfvinge, Rebecca; Geironson, Linda; Lang, Stefan; Karlsson, Christine; Roschupkina, Teona; Stenke, Leif; Stentoft, Jesper; Olsson-Strömberg, Ulla; Hjorth-Hansen, Henrik; Mustjoki, Satu; Soneji, Shamit; Richter, Johan

    2017-01-01

    Understanding leukemia heterogeneity is critical for the development of curative treatments as the failure to eliminate therapy-persistent leukemic stem cells (LSCs) may result in disease relapse. Here we have combined high-throughput immunophenotypic screens with large-scale single-cell gene expression analysis to define the heterogeneity within the LSC population in chronic phase chronic myeloid leukemia (CML) patients at diagnosis and following conventional tyrosine kinase inhibitor (TKI) treatment. Our results reveal substantial heterogeneity within the putative LSC population in CML at diagnosis and demonstrate differences in response to subsequent TKI treatment between distinct subpopulations. Importantly, LSC subpopulations with myeloid and proliferative molecular signatures are proportionally reduced at a higher extent in response to TKI therapy compared with subfractions displaying primitive and quiescent signatures. Additionally, cell surface expression of the CML stem cell markers CD25, CD26, and IL1RAP is high in all subpopulations at diagnosis but downregulated and unevenly distributed across subpopulations in response to TKI treatment. The most TKI-insensitive cells of the LSC compartment can be captured within the CD45RA− fraction and further defined as positive for CD26 in combination with an aberrant lack of cKIT expression. Together, our results expose a considerable heterogeneity of the CML stem cell population and propose a Lin−CD34+CD38−/lowCD45RA−cKIT−CD26+ population as a potential therapeutic target for improved therapy response. PMID:28122740

  10. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML.

    PubMed

    Warfvinge, Rebecca; Geironson, Linda; Sommarin, Mikael N E; Lang, Stefan; Karlsson, Christine; Roschupkina, Teona; Stenke, Leif; Stentoft, Jesper; Olsson-Strömberg, Ulla; Hjorth-Hansen, Henrik; Mustjoki, Satu; Soneji, Shamit; Richter, Johan; Karlsson, Göran

    2017-04-27

    Understanding leukemia heterogeneity is critical for the development of curative treatments as the failure to eliminate therapy-persistent leukemic stem cells (LSCs) may result in disease relapse. Here we have combined high-throughput immunophenotypic screens with large-scale single-cell gene expression analysis to define the heterogeneity within the LSC population in chronic phase chronic myeloid leukemia (CML) patients at diagnosis and following conventional tyrosine kinase inhibitor (TKI) treatment. Our results reveal substantial heterogeneity within the putative LSC population in CML at diagnosis and demonstrate differences in response to subsequent TKI treatment between distinct subpopulations. Importantly, LSC subpopulations with myeloid and proliferative molecular signatures are proportionally reduced at a higher extent in response to TKI therapy compared with subfractions displaying primitive and quiescent signatures. Additionally, cell surface expression of the CML stem cell markers CD25, CD26, and IL1RAP is high in all subpopulations at diagnosis but downregulated and unevenly distributed across subpopulations in response to TKI treatment. The most TKI-insensitive cells of the LSC compartment can be captured within the CD45RA(-) fraction and further defined as positive for CD26 in combination with an aberrant lack of cKIT expression. Together, our results expose a considerable heterogeneity of the CML stem cell population and propose a Lin(-)CD34(+)CD38(-/low)CD45RA(-)cKIT(-)CD26(+) population as a potential therapeutic target for improved therapy response. © 2017 by The American Society of Hematology.

  11. Meta-STEPP: subpopulation treatment effect pattern plot for individual patient data meta-analysis.

    PubMed

    Wang, Xin Victoria; Cole, Bernard; Bonetti, Marco; Gelber, Richard D

    2016-09-20

    We have developed a method, called Meta-STEPP (subpopulation treatment effect pattern plot for meta-analysis), to explore treatment effect heterogeneity across covariate values in the meta-analysis setting for time-to-event data when the covariate of interest is continuous. Meta-STEPP forms overlapping subpopulations from individual patient data containing similar numbers of events with increasing covariate values, estimates subpopulation treatment effects using standard fixed-effects meta-analysis methodology, displays the estimated subpopulation treatment effect as a function of the covariate values, and provides a statistical test to detect possibly complex treatment-covariate interactions. Simulation studies show that this test has adequate type-I error rate recovery as well as power when reasonable window sizes are chosen. When applied to eight breast cancer trials, Meta-STEPP suggests that chemotherapy is less effective for tumors with high estrogen receptor expression compared with those with low expression. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Connecting endangered brown bear subpopulations in the Cantabrian Range (north-western Spain)

    Treesearch

    M. C. Mateo-Sanchez; Samuel Cushman; S. Saura

    2014-01-01

    The viability of many species depends on functional connectivity of their populations through dispersal across broad landscapes. This is particularly the case for the endangered brown bear in north-western Spain, with a total population of about 200 individuals in two subpopulations that are separated by a wide gap with low permeability. Our goal in this paper...

  13. Quantitative approach to determining the contribution of viable-but-nonculturable subpopulations to malolactic fermentation processes.

    PubMed

    Quirós, Covadonga; Herrero, Mónica; García, Luis A; Díaz, Mario

    2009-05-01

    Different sizes of viable-but-nonculturable cell subpopulations of a lactic acid bacterium strain were induced by adding increasing amounts of SO(2). The experimental data obtained here were fitted to a segregated kinetic model developed previously. This procedure allowed us to determine in quantitative terms the contribution of this physiological state to malolactic fermentation.

  14. Circulating Melanoma Cell Subpopulations: Their Heterogeneity and Differential Responses to Treatment.

    PubMed

    Gray, Elin S; Reid, Anna L; Bowyer, Samantha; Calapre, Leslie; Siew, Kelvin; Pearce, Robert; Cowell, Lester; Frank, Markus H; Millward, Michael; Ziman, Mel

    2015-08-01

    Metastatic melanoma is a highly heterogeneous tumor; thus, methods to analyze tumor-derived cells circulating in blood should address this diversity. Taking this into account, we analyzed, using multiparametric flow cytometry, the co-expression of the melanoma markers melanoma cell adhesion molecule and melanoma-associated chondroitin sulphate proteoglycan and the tumor-initiating markers ATP-binding cassette sub-family B member 5 (ABCB5), CD271, and receptor activator of NF-κβ (RANK) in individual circulating tumor cells (CTCs) from 40 late-stage (III-IV) and 16 early-stage (I-II) melanoma patients. CTCs were heterogeneous within and between patients, with limited co-expression between the five markers analyzed. Analysis of patient matched blood and metastatic tumors revealed that ABCB5 and RANK subpopulations are more common among CTCs than in the solid tumors, suggesting a preferential selection for these cells in circulation. Pairwise comparison of CTC subpopulations longitudinally before and 6-13 weeks after treatment initiation showed that the percentage of RANK(+) CTCs significantly increased in the patients undergoing targeted therapy (N=16, P<0.01). Moreover, the presence of ⩾5 RANK(+) CTCs in the blood of patients undergoing targeted therapies was prognostic of shorter progression-free survival (hazards ratio 8.73, 95% confidence interval 1.82-41.75, P<0.01). Taken together, our results provide evidence of the heterogeneity among CTC subpopulations in melanoma and the differential response of these subpopulations to targeted therapy.

  15. Intratumoral Heterogeneity as a Therapy Resistance Mechanism: Role of Melanoma Subpopulations

    PubMed Central

    Somasundaram, Rajasekharan; Villanueva, Jessie; Herlyn, Meenhard

    2013-01-01

    Malignant melanoma is an aggressive form of skin cancer whose incidence continues to increase worldwide. Increased exposure to sun, ultraviolet radiation and the use of tanning beds can increase the risk of melanoma. Early detection of melanomas is the key to successful treatment mainly through surgical excision of the primary tumor lesion. But in advanced stage melanomas, once the disease has spread beyond the primary site to distant organs, the tumors are difficult to treat and quickly develop resistance to most available forms of therapy. The advent of molecular and cellular techniques has led to a better characterization of tumor cells revealing the presence of heterogeneous melanoma subpopulations. The discovery of gene mutations and alterations of cell-signaling pathways in melanomas has led to the development of new targeted drugs that show dramatic response rates in patients. Single agent therapies generally target one subpopulation of tumor cells while leaving others unharmed. The surviving subpopulations will have the ability to repopulate the original tumors that can continue to progress. Thus, a rational approach to target multip