Science.gov

Sample records for epithelium modifications intracellulaires

  1. Epithelium

    MedlinePlus

    The term "epithelium" refers to layers of cells that line hollow organs and glands. It is also those cells that make ... Epithelium. In: Kierszenbaum AL, Tres LL. Histology and Cell Biology - An Introduction to Pathology , 3rd ed. Philadelphia, ...

  2. Modification of disodium cromoglycate passage across lung epithelium in vitro via incorporation into polymeric microparticles.

    PubMed

    Haghi, Mehra; Salama, Rania; Traini, Daniela; Bebawy, Mary; Young, Paul M

    2012-03-01

    Two microparticle systems containing disodium cromoglycate (DSCG) alone or with polyvinyl alcohol (DSCG/PVA) were produced via spray drying and compared in terms of their physicochemical characteristics, aerosol performance and drug uptake across a pulmonary epithelial cell line (Calu-3), cultured under air interface conditions. The particle size distribution of DSCG and DSCG/PVA were similar, of spherical geometry, amorphous and suitable for inhalation purposes. Aerosolisation studies using a modified twin-stage impinger showed the DSCG/PVA to have greater aerosol performance than that of DSCG alone. Aerosol particles of DSCG and DSCG/PVA were deposited onto the surface of the Calu-3 air interface epithelium monolayer and the drug uptake from apical to basal directions measured over time. Drug uptake was measured across a range of doses to allow comparison of equivalent drug and powder mass deposition. Analysis of the data indicated that the percentage cumulative drug uptake was independent of the mass of powder deposited, but dependent on the formulation. Specifically, with the formulation containing DSCG, the diffusion rate was observed to change with respect to time (indicative of a concentration-dependent diffusion process), whilst DSCG/PVA showed a time-independent drug uptake (suggesting a zero-order depot release).

  3. Inducible gene modification in the gastric epithelium of Tff1-CreERT2, Tff2-rtTA, Tff3-luc mice.

    PubMed

    Thiem, Stefan; Eissmann, Moritz F; Stuart, Emma; Elzer, Joachim; Jonas, Anna; Buchert, Michael; Ernst, Matthias

    2016-12-01

    Temporal and spatial regulation of genes mediated by tissue-specific promoters and conditional gene expression systems provide a powerful tool to study gene function in health, disease, and during development. Although transgenic mice expressing the Cre recombinase in the gastric epithelium have been reported, there is a lack of models that allow inducible and reversible gene modification in the stomach. Here, we exploited the gastrointestinal epithelium-specific expression pattern of the three trefoil factor (Tff) genes and bacterial artificial chromosome transgenesis to generate a novel mouse strain that expresses the CreERT2 recombinase and the reverse tetracycline transactivator (rtTA). The Tg(Tff1-CreERT2;Tff2-rtTA;Tff3-Luc) strain confers tamoxifen-inducible irreversible somatic recombination and allows simultaneous doxycycline-dependent reversible gene activation in the gastric epithelium of developing and adult mice. This strain also confers luciferase activity to the intestinal epithelium to enable in vivo bioluminescence imaging. Using fluorescent reporters as conditional alleles, we show Tff1-CreERT2 and Tff2-rtTA transgene activity in a partially overlapping subset of long-term regenerating gastric stem/progenitor cells. Therefore, the Tg(Tff1-CreERT2;Tff2-rtTA;Tff3-Luc) strain can confer intermittent transgene expression to gastric epithelial cells that have undergone previous gene modification, and may be suitable to genetically model therapeutic intervention during development, tumorigenesis, and other genetically tractable diseases. Birth Defects Research (Part A) 106:626-635, 2016. © 2016 Wiley Periodicals, Inc.

  4. [CYSTEAMINE-INDUCED MODIFICATION OF CYTOGENETIC DAMAGES TO THE CORNEAL EPITHELIUM OF MICE EXPOSED TO CORPUSCULAR RADIATION WITH VARYING LINEAR TRANSFER ENERGIES].

    PubMed

    Vorozhtsova, S V; Bulynina, T M; Molokanov, A G; Ivanov, A A

    2015-01-01

    Cytogenetic damages to cells of the corneal epithelium were studied in mice exposed to protons (10, 25, 50 and 645 MeV), ions of boron, carbon and neon, and X-rays (180 keV) within the dose range from 25 to 750 cGy and injected with a radioprotector. Animals were subjected to a single exposure. The protective effect of β-mercaptoethylamine was tested in the experiment. The radioprotector (0.2 ml) was introduced intraperitoneally 30 minutes before exposure in 350 mI/kg dose. Control animals received the same amount of sodium chloride solution. The animals were sacrificed by cervical dislocation in 24 and 72 hrs. after exposure. It was shown that cysteamine effectively protects in vivo corneal epithelium cells of mice exposed to electromagnetic radiation or protons in a broad energy spectrum (10 to 645 MeV), and to a broad range of radiation doses (25 to 750 cGy), as judged from levels of aberrant mitosis and mitotic activity. The radioprotector exhibited the highest effectiveness in animals exposed to the doses of 50 to 300 cGy. These findings prove that cysteamine may potentially be used for pharmacological protection from protons. The radioprotector failed to prevent chromosomal aberrations after exposure to heavy charged particles of boron, carbon and neon, which implies the need to design radioprotectors against this type of corpuscular radiation specifically.

  5. [Regeneration of airway epithelium].

    PubMed

    Adam, D; Perotin, J-M; Lebargy, F; Birembaut, P; Deslée, G; Coraux, C

    2014-04-01

    Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  6. Thoracoabdominal foregut duplication cyst with respiratory epithelium and alimentary epithelium.

    PubMed

    Zhang, Juan; Zhang, Ke Ren; Bai, Yu Zuo; Song, Dan; Wang, Weilin

    2010-05-01

    Thoracoabdominal foregut duplication is a rare congenital abnormality. The authors report a case of thoracoabdominal foregut duplication cyst in a 13-year-old male patient. The pathologic report revealed that a thoracic mass with a pseudostratified, ciliated, columnar epithelial lining (respiratory tract epithelium), an abdominal mass with gastric mucosa (alimentary tract epithelium), and the cyst originated from the foregut. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  8. Ductal barriers in mammary epithelium

    PubMed Central

    Owens, Mark B; Hill, Arnold DK; Hopkins, Ann M

    2013-01-01

    Tissue barriers play an integral role in the biology and pathobiology of mammary ductal epithelium. In normal breast physiology, tight and adherens junctions undergo dynamic changes in permeability in response to hormonal and other stimuli, while several of their proteins are directly involved in mammary tumorigenesis. This review describes first the structure of mammary ductal epithelial barriers and their role in normal mammary development, examining the cyclical changes in response to puberty, pregnancy, lactation and involution. It then examines the role of adherens and tight junctions and the participation of their constituent proteins in mammary tumorigenic functions such as migration, invasion and metastasis. Finally, it discusses the potential of these adhesion proteins as both prognostic biomarkers and potential therapeutic targets in breast cancer. PMID:24665412

  9. Potentiel intracellulaire du mésophylle d'épinard (Spinacia oleracea L. cv. Nobel) en relation avec la lumière et l'induction florale.

    PubMed

    Montavon, M; Greppin, H

    1985-04-01

    Using glass microelectrodes we studied (in spinach, a long-day plant) the characteristics of the intracellular potential of mesophyll cells as well as its response towards light, in particular during the transfer of the plant to an inductive photoperiod (transfer from short day to continuous photoperiod). When 20 minutes treatments of alternating white light (2 minutes) and darkness (2 minutes) are provided every 2 hours (during the photo-or nyctoperiod), the amplitude of the bioelectrical response increases after the transfer and follows a circadian pattern (Figs. 1 and 2). This phenomenon (amplification effect), specific to the transfer of vegetative plants, is probably linked to changes in energy metabolism or to structural modifications, e.g. properties of membranes. Bonzon et al. (1981) found a similar behavior of energetic charge and redox potential of the leaf after the transfer. The diversity of bioelectrical responses (amplification effect) obtained with different cells of the leaf suggests a metabolic specificity among apparently identical cells of the same tissue.

  10. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth.

    PubMed

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-05-02

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period.

  11. The junctional epithelium originates from the odontogenic epithelium of an erupted tooth

    PubMed Central

    Yajima-Himuro, Sara; Oshima, Masamitsu; Yamamoto, Gou; Ogawa, Miho; Furuya, Madoka; Tanaka, Junichi; Nishii, Kousuke; Mishima, Kenji; Tachikawa, Tetsuhiko; Tsuji, Takashi; Yamamoto, Matsuo

    2014-01-01

    The junctional epithelium (JE) is an epithelial component that is directly attached to the tooth surface and has a protective function against periodontal diseases. In this study, we determined the origin of the JE using a bioengineered tooth technique. We transplanted the bioengineered tooth germ into the alveolar bone with an epithelial component that expressed green fluorescence protein. The reduced enamel epithelium from the bioengineered tooth fused with the oral epithelium, and the JE was apparently formed around the bioengineered tooth 50 days after transplantation. Importantly, the JE exhibited green fluorescence for at least 140 days after transplantation, suggesting that the JE was not replaced by oral epithelium. Therefore, our results demonstrated that the origin of the JE was the odontogenic epithelium, and odontogenic epithelium-derived JE was maintained for a relatively long period. PMID:24785116

  12. Comparative cytokeratin distribution patterns in cholesteatoma epithelium.

    PubMed

    Olszewska, E; Sudhoff, H

    2007-01-01

    Cytokeratins (CKs) are known as the intermediate filament proteins of epithelial origin. Their distribution in human epithelia is different according to the type of epithelium, state of growth and differentiation. We used monoclonal mouse antibodies against cytokeratins to study CK expression in the following human tissues: cholesteatoma, middle ear mucosa, glandular epithelium, and meatal ear canal epithelium. Immunohistochemical processing was performed using the labeled steptavidin peroxidase method to demonstrate the presence of CKs in cells of human epidermis. Positive reaction was obtained for CK4, CK34betaE12, CK10, CK14 in skin and cholesteatoma epithelium. However, a more extensive positive reaction with those CKs was observed in cholesteatoma epithelium. Positive immunoreactivity was seen with anti- CK19 in the glandular epithelium. Middle ear mucosa specimens revealed positive immunoreactivity with the antibodies against CK4. The expression of CK4 was definitely positive within the basal layers of the epidermis. The glandular epithelium showed no positive reaction with anti- CK4, anti- CK34betaE12, anti- CK14 and anti-CK10. Immunohistochemistry for CK18 showed no reaction in all examined tissues. Cholesteatoma is known as a proliferative disease in the middle ear which pathogenesis is not completely understood. Keratinocytes express hyperproliferation- associated CKs and after reaching the suprabasal layers they finally undergo apoptosis creating keratinous debris. Cytokeratin expression observed in the epithelium explains proliferative behavior of cholesteatoma which is associated with increased keratinocyte migration. Cytokeratins can be used as potential proliferative markers. It can also allow for searching the usefulness of inhibiting regulators in the treatment of hyperproliferative diseases.

  13. Osmotic regulation of airway reactivity by epithelium.

    PubMed

    Fedan, J S; Yuan, L X; Chang, V C; Viola, J O; Cutler, D; Pettit, L L

    1999-05-01

    Inhalation of nonisotonic solutions can elicit pulmonary obstruction in asthmatic airways. We evaluated the hypothesis that the respiratory epithelium is involved in responses of the airways to nonisotonic solutions using the guinea pig isolated, perfused trachea preparation to restrict applied agents to the mucosal (intraluminal) or serosal (extraluminal) surface of the airway. In methacholine-contracted tracheae, intraluminally applied NaCl or KCl equipotently caused relaxation that was unaffected by the cyclo-oxygenase inhibitor, indomethacin, but was attenuated by removal of the epithelium and Na+ and Cl- channel blockers. Na+-K+-2Cl- cotransporter and nitric oxide synthase blockers caused a slight inhibition of relaxation, whereas Na+,K+-pump inhibition produced a small potentiation. Intraluminal hyperosmolar KCl and NaCl inhibited contractions in response to intra- or extraluminally applied methacholine, as well as neurogenic cholinergic contractions elicited with electric field stimulation (+/- indomethacin). Extraluminally applied NaCl and KCl elicited epithelium-dependent relaxation (which for KCl was followed by contraction). In contrast to the effects of hyperosmolarity, intraluminal hypo-osmolarity caused papaverine-inhibitable contractions (+/- epithelium). These findings suggest that the epithelium is an osmotic sensor which, through the release of epithelium-derived relaxing factor, can regulate airway diameter by modulating smooth muscle responsiveness and excitatory neurotransmission.

  14. Chronic exposure of rats to cotton-mill-room noise changes the cell composition of the tracheal epithelium.

    PubMed

    Oliveira, Maria João R; Pereira, António S; Guimarães, Laura; Freitas, Diamantino; Carvalho, António P O; Grande, Nuno R; Aguas, Artur P

    2002-12-01

    The work environment of cotton mill rooms of modern textile plants is characterized by noise pollution. We have taped and reproduced this noisy environment to study its effects on experimentally exposed rats. Because we have previously documented that chronic noise causes alterations in the respiratory epithelium, we have focused our investigation on the morphology of the tracheal lining. Wistar rats were exposed to the textile-type noise from 1 up to 7 months, with an average 40 hours weekly exposure of the animals. The rats were sacrificed monthly and the tracheas were studied by scanning electron microscopy (SEM) to quantify the areas of the airway lining that were covered by ciliated, serous or other cells of the epithelium. We found that noise exposure of the rats caused a significant loss of tracheal ciliated cells; an increased density of serous cells on the epithelium balanced this change. This modification of the rat trachea was already established after 1 month of noise treatment of the animals; it did not change significantly throughout the 7-month course of the herein investigation. Loss of ciliated cells was more intense in areas of the tracheal epithelium located between the regions of cartilage rings. We conclude that the ciliated cell is an elective target for damage caused on the respiratory epithelium by the workplace noise occurring in cotton mill rooms. This modification of the respiratory epithelium is likely to impair clearance of the airways since this function depends on the activity of ciliated cells.

  15. The skin of fish as a transport epithelium: a review.

    PubMed

    Glover, Chris N; Bucking, Carol; Wood, Chris M

    2013-10-01

    The primary function of fish skin is to act as a barrier. It provides protection against physical damage and assists with the maintenance of homoeostasis by minimising exchange between the animal and the environment. However in some fish, the skin may play a more active physiological role. This is particularly true in species that inhabit specialised environmental niches (e.g. amphibious and air-breathing fish such as the lungfish), those with physiological characteristics that may subvert the need for the integument as a barrier (e.g. the osmoconforming hagfish), and/or fish with anatomical modifications of the epidermis (e.g. reduced epithelial thickness). Using examples from different fish groups (e.g. hagfishes, elasmobranchs and teleosts), the importance of fish skin as a transport epithelium for gases, ions, nitrogenous waste products, and nutrients was reviewed. The role of the skin in larval fish was also examined, with early life stages often utilising the skin as a surrogate gill, prior to the development of a functional branchial epithelium.

  16. Olfactory epithelium changes in germfree mice

    PubMed Central

    François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas

    2016-01-01

    Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944

  17. THE PERMEABILITY OF RAT TRANSITIONAL EPITHELIUM

    PubMed Central

    Hicks, R. M.

    1966-01-01

    Permeability barriers must exist in transitional epithelium to prevent the free flow of water from underlying blood capillaries through the epithelium into the hypertonic urine, and such a barrier has now been demonstrated in isolated bladders. This barrier is passive in function and can be destroyed by damaging the luminal surface of the transitional epithelium with sodium hydroxide and 8 M urea solutions, by digesting it with trypsin, lecithinase C, and lecithinase D, or by treating it with lipid solvents such as Triton x 100 and saponin. From this it is concluded that the barrier depends on the integrity of lipoprotein cell membranes. The barrier function is also destroyed by sodium thioglycollate solutions, and electron microscope investigations show that sodium thioglycollate damages the thick asymmetric membrane which limits the luminal face of the superficial squamous cell. Cytochemical staining shows the epithelium to contain disulfide and thiol groups and to have a concentration of these groups at the luminal margin of the superficial cells. It thus appears that the permeability barrier also depends on the presence of disulfide bridges in the epithelium, and it is presumed that these links are located in keratin. Because of the effect of thioglycollates, both on the barrier function and on the morphology of the membrane, it is suggested that keratin may be incorporated in the thick barrier membrane. It is proposed that the cells lining the urinary bladder and ureters should be regarded as a keratinizing epitheluim. PMID:5901498

  18. Behavior modification.

    PubMed

    Pelham, W E; Fabiano, G A

    2000-07-01

    Attention deficit/hyperactivity disorder (ADHD) is a chronic and substantially impairing disorder. This means that treatment must also be chronic and substantial. Behavior Modification, and in many cases, the combination of behavior modification and stimulant medication, is a valid, useful treatment for reducing the pervasive impairment experienced by children with ADHD. Based on the research evidence reviewed, behavior modification should be the first line of treatment for children with ADHD.

  19. Expressions of TRPVs in the cholesteatoma epithelium.

    PubMed

    Do, Ba Hung; Koizumi, Hiroki; Ohbuchi, Toyoaki; Kawaguchi, Rintaro; Suzuki, Hideaki

    2017-10-01

    We have recently proposed a hypothesis that acid leakage through the cholesteatoma epithelium mediates bone resorption in middle ear cholesteatoma. In the present study, we investigated the expressions of transient receptor potential vanilloid (TRPV) channels, which have been shown to play roles in the regulation of epidermal barrier function, in the cholesteatoma epithelium in comparison with the normal skin. Cholesteatoma epithelium and postauricular skin were collected from 17 patients with primary acquired middle ear cholesteatoma who underwent tympanomastoidectomy. Expressions of TRPV1, TRPV3, TRPV4, and TRPV6 were explored by fluorescence immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). TRPV1, TRPV3, TRPV4, and TRPV6 mRNAs were all detected by qRT-PCR both in the skin and cholesteatoma tissue. Immunohistochemical staining showed that TRPV1 and TRPV3 were positive in the viable cell layers of the epidermis of the skin, and only TRPV3 was positive in those of the cholesteatoma epithelium. The immunoreactivity for TRPV3 was significantly weaker in cholesteatoma than in the skin. The lower expression of TRPV3 in cholesteatoma may be one of the mechanisms underlying the increased permeability of this tissue. On the other hand, TRPV1, TRPV4, and TRPV6 are unlikely to be involved in the regulation of epithelial permeability in cholesteatoma.

  20. Ubiquitin modifications

    PubMed Central

    Swatek, Kirby N; Komander, David

    2016-01-01

    Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. PMID:27012465

  1. Waterpipe smoking induces epigenetic changes in the small airway epithelium.

    PubMed

    Walters, Matthew S; Salit, Jacqueline; Ju, Jin Hyun; Staudt, Michelle R; Kaner, Robert J; Rogalski, Allison M; Sodeinde, Teniola B; Rahim, Riyaad; Strulovici-Barel, Yael; Mezey, Jason G; Almulla, Ahmad M; Sattar, Hisham; Mahmoud, Mai; Crystal, Ronald G

    2017-01-01

    Waterpipe (also called hookah, shisha, or narghile) smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use waterpipe smoking on DNA methylation of the small airway epithelium (SAE) and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk) waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05) representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05) change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling). Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking.

  2. Waterpipe smoking induces epigenetic changes in the small airway epithelium

    PubMed Central

    Ju, Jin Hyun; Staudt, Michelle R.; Kaner, Robert J.; Rogalski, Allison M.; Sodeinde, Teniola B.; Rahim, Riyaad; Strulovici-Barel, Yael; Mezey, Jason G.; Almulla, Ahmad M.; Sattar, Hisham; Mahmoud, Mai; Crystal, Ronald G.

    2017-01-01

    Waterpipe (also called hookah, shisha, or narghile) smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use waterpipe smoking on DNA methylation of the small airway epithelium (SAE) and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk) waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05) representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05) change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling). Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking. PMID:28273093

  3. Intrinsic Defense Mechanisms of the Intestinal Epithelium.

    PubMed

    Ramanan, Deepshika; Cadwell, Ken

    2016-04-13

    The intestinal epithelium is a single cell layer that facilitates the absorption of nutrients but also provides a tight barrier to prevent pathogen invasion and dissemination of commensal microbes. Specialized epithelial cells of the gastrointestinal tract achieve this frontline defense by working in concert with lymphoid, myeloid, and stromal cells to secrete an array of factors that limit direct contact between the epithelium and infectious agents. The importance of these mechanisms is underscored by the ability of enteric pathogens to target these mechanisms to achieve invasion and dissemination. This review highlights recent advances in our understanding of these intricate molecular and cellular mechanisms adopted by these cells to promote spatial segregation and barrier maintenance. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Intrinsic Defense Mechanisms of the Intestinal Epithelium

    PubMed Central

    Ramanan, Deepshika; Cadwell, Ken

    2016-01-01

    SUMMARY The intestinal epithelium is a single cell layer that facilitates the absorption of nutrients but also provides a tight barrier to prevent pathogen invasion and dissemination of commensal microbes. Specialized epithelial cells of the gastrointestinal tract achieve this front-line defense by working in concert with lymphoid, myeloid, and stromal cells to secrete an array of factors that limit direct contact between the epithelium and infectious agents. The importance of these mechanisms is underscored by the ability of enteric pathogens to target these mechanisms to achieve invasion and dissemination. This review highlights recent advances in our understanding of these intricate molecular and cellular mechanisms adopted by these cells to promote spatial segregation and barrier maintenance. PMID:27049583

  5. Lung alveolar epithelium and interstitial lung disease.

    PubMed

    Corvol, Harriet; Flamein, Florence; Epaud, Ralph; Clement, Annick; Guillot, Loic

    2009-01-01

    Interstitial lung diseases (ILDs) comprise a group of lung disorders characterized by various levels of inflammation and fibrosis. The current understanding of the mechanisms underlying the development and progression of ILD strongly suggests a central role of the alveolar epithelium. Following injury, alveolar epithelial cells (AECs) may actively participate in the restoration of a normal alveolar architecture through a coordinated process of re-epithelialization, or in the development of fibrosis through a process known as epithelial-mesenchymal transition (EMT). Complex networks orchestrate EMT leading to changes in cell architecture and behaviour, loss of epithelial characteristics and gain of mesenchymal properties. In the lung, AECs themselves may serve as a source of fibroblasts and myofibroblasts by acquiring a mesenchymal phenotype. This review covers recent knowledge on the role of alveolar epithelium in the pathogenesis of ILD. The mechanisms underlying disease progression are discussed, with a main focus on the apoptotic pathway, the endoplasmic reticulum stress response and the developmental pathway.

  6. Mechanically patterning the embryonic airway epithelium.

    PubMed

    Varner, Victor D; Gleghorn, Jason P; Miller, Erin; Radisky, Derek C; Nelson, Celeste M

    2015-07-28

    Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo.

  7. Mechanically patterning the embryonic airway epithelium

    PubMed Central

    Varner, Victor D.; Gleghorn, Jason P.; Miller, Erin; Radisky, Derek C.; Nelson, Celeste M.

    2015-01-01

    Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo. PMID:26170292

  8. Odors Discrimination by Olfactory Epithelium Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Qingjun; Hu, Ning; Ye, Weiwei; Zhang, Fenni; Wang, Hua; Wang, Ping

    2011-09-01

    Humans are exploring the bionic biological olfaction to sense the various trace components of gas or liquid in many fields. For achieving the goal, we endeavor to establish a bioelectronic nose system for odor detection by combining intact bioactive function units with sensors. The bioelectronic nose is based on the olfactory epithelium of rat and microelectrode array (MEA). The olfactory epithelium biosensor generates extracellular potentials in presence of odor, and presents obvious specificity under different odors condition. The odor response signals can be distinguished with each other effectively by signal sorting. On basis of bioactive MEA hybrid system and the improved signal processing analysis, the bioelectronic nose will realize odor discrimination by the specific feature of signals response to various odors.

  9. [Neutrophils and monocytes in gingival epithelium

    PubMed

    Meng, H X; Zheng, L P

    1994-06-01

    Neutrophils and monocytes of gingival epithellium in health gingiva(H),marginal gingivitis(MG),juvenile periodontitis(JP),adult periodontitis(AP) and subgingival bacteria were quantitated and analyzed,The results showed that the numbers of PMN within either pocket epithelium or oral gingival epithelium in JP were significantly lower than in AP and G.The amounts of PMN in AP were much larger than other three groups.Positive correlation between the number of PMN in sulcular pocket epitelium and the motile bacteri of subgingival plaque was demonstrated by correlation analysis.Monocytes mainly presented in deep pocket and junctional epithelum which were stained by NAE method,however very few Langhans cells were seen in these areas.

  10. Airway epithelium stimulates smooth muscle proliferation.

    PubMed

    Malavia, Nikita K; Raub, Christopher B; Mahon, Sari B; Brenner, Matthew; Panettieri, Reynold A; George, Steven C

    2009-09-01

    Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air-liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (HASM) using commercially available Transwells. In some co-cultures, the NHBE were repeatedly (x4) scrape-injured. An in vivo model of tracheal injury consisted of gently denuding the tracheal epithelium (x3) of a rabbit over 5 days and then examining the trachea by histology 3 days after the last injury. Our results show that HASM cell number increases 2.5-fold in the presence of NHBE, and 4.3-fold in the presence of injured NHBE compared with HASM alone after 8 days of in vitro co-culture. In addition, IL-6, IL-8, monocyte chemotactic protein (MCP)-1 and, more markedly, matrix metalloproteinase (MMP)-9 concentration increased in co-culture correlating with enhanced HASM growth. Inhibiting MMP-9 release significantly attenuated the NHBE-dependent HASM proliferation in co-culture. In vivo, the injured rabbit trachea demonstrated proliferation in the smooth muscle (trachealis) region and significant MMP-9 staining, which was absent in the uninjured control. The airway epithelium modulates smooth muscle cell proliferation via a mechanism that involves secretion of soluble mediators including potential smooth muscle mitogens such as IL-6, IL-8, and MCP-1, but also through a novel MMP-9-dependent mechanism.

  11. Obesity, rather than diet, drives epigenomics alterations in colonic epithelium resembling cancer progression

    PubMed Central

    Li, Ruifang; Grimm, Sara A.; Chrysovergis, Kaliopi; Kosak, Justin; Wang, Xingya; Du, Ying; Burkholder, Adam; Janardhan, Kyathanahalli; Mav, Deepak; Shah, Ruchir; Eling, Thomas E.; Wade, Paul A.

    2014-01-01

    Summary While obesity represents one of several risk factors for colorectal cancer in humans, the mechanistic underpinnings of this association remain unresolved. Environmental stimuli, including diet, can alter the epigenetic landscape of DNA cis-regulatory elements affecting gene expression and phenotype. Here, we explored the impact of diet and obesity on gene expression and the enhancer landscape in murine colonic epithelium. Obesity led to the accumulation of histone modifications associated with active enhancers at genomic loci downstream of signaling pathways integral to the initiation and progression of colon cancer. Meanwhile, colon-specific enhancers lost the same histone mark, poising cells for loss of differentiation. These alterations reflect a transcriptional program with many features shared with the program driving colon cancer progression. The interrogation of enhancer alterations by diet in colonic epithelium provides insights into the biology underlying high-fat diet and obesity as risk factors for colon cancer. PMID:24703701

  12. Obesity, rather than diet, drives epigenomic alterations in colonic epithelium resembling cancer progression.

    PubMed

    Li, Ruifang; Grimm, Sara A; Chrysovergis, Kaliopi; Kosak, Justin; Wang, Xingya; Du, Ying; Burkholder, Adam; Janardhan, Kyathanahalli; Mav, Deepak; Shah, Ruchir; Eling, Thomas E; Wade, Paul A

    2014-04-01

    While obesity represents one of several risk factors for colorectal cancer in humans, the mechanistic underpinnings of this association remain unresolved. Environmental stimuli, including diet, can alter the epigenetic landscape of DNA cis-regulatory elements affecting gene expression and phenotype. Here, we explored the impact of diet and obesity on gene expression and the enhancer landscape in murine colonic epithelium. Obesity led to the accumulation of histone modifications associated with active enhancers at genomic loci downstream of signaling pathways integral to the initiation and progression of colon cancer. Meanwhile, colon-specific enhancers lost the same histone mark, poising cells for loss of differentiation. These alterations reflect a transcriptional program with many features shared with the program driving colon cancer progression. The interrogation of enhancer alterations by diet in colonic epithelium provides insights into the biology underlying high-fat diet and obesity as risk factors for colon cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Novel organelles in primate retinal epithelium.

    PubMed

    Biesemeier, A; Gouras, P

    2016-10-01

    We are investigating age-related changes in organelles in monkey retinal epithelium using transmission and analytic electron microscopy. We previously described a circular organelle in retinal epithelium with a diameter of about 0.5μm. The organelle is unique in containing a single, round vacuole within an otherwise electron dense interior. We suggested that the organelle might be a melanosome with lysosomal properties. We now find that there are two similar organelles with such a single vacuole but which differ in their chemical composition, electron density, cell location and according to age. Epon embedded sections from the macular epithelium of seven monkeys, ranging from 1 to 35 years of age, were examined by transmission electron microscopy. A seven year old monkey was processed for analytic electron microscopy to determine the chemical composition of the organelles. The number and location of the organelles in the retinal epithelium were determined. The chemical composition of these two organelles was different. One of the organelles contained high mole fractions of oxygen and nitrogen and little phosphorous characteristic of melanin; the other had little oxygen and nitrogen and higher mole fractions of phosphorous uncharacteristic of melanin, but more common with lysosomal organelles. The latter had an electron dense rim around the vacuole, a less electron dense interior than the melanin containing organelle and also contained iron. The melanin containing organelle was more common in young monkeys and in the middle third of the cell. The organelle without melanin was more common in old monkeys and localized in the basal third of the cell. Two similarly vacuolated organelles, not identified before in retinal epithelium, differ in their chemical composition. One contains melanin; the other does not. The former is more common in young and the latter more common in old monkeys. This suggests reorganization and or degradation of melanin-containing organelles

  14. Lgr5 regulates the regeneration of lesioned nasal respiratory epithelium.

    PubMed

    Zhang, Yan-Qiang; Li, Peng; Zhang, Feng-Qin; Sun, Shao-Jun; Cao, Yin-Guang

    2016-12-09

    Nasal respiratory epithelium is a ciliated pseudostratified columnar epithelium. The cellular components of nasal respiratory epithelium include ciliated cells, goblet cells, and basal cells. Until now, our knowledge in the development of nasal respiratory epithelium is still limited and the cellular mechanism of regeneration is still elusive. In this study, we found that adult stem cell marker leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is expressed in the mice nasal respiratory epithelium. Both immunostaining and lineage tracing analysis indicated Lgr5 positive cells in the nasal respiratory epithelium are proliferative stem/progenitor cells. Using the Rosa-Tdtomato and Rosa26-DTR mice, we elucidated that Lgr5(+) cells participate in the regeneration of lesioned nasal respiratory epithelium, and this group of cells is necessary in the process of epithelium recovery. Using the in vitro culture system, we observed the formation of spheres from Lgr5(+) cells and these spheres have the capacity to generate other types of cells. Above all, this study reported a group of previously unidentified progenitor/stem cells in nasal respiratory epithelium, unveiling the potential cellular mechanism in nasal respiratory epithelium regeneration.

  15. Defective barrier function in neosquamous epithelium.

    PubMed

    Jovov, Biljana; Shaheen, Nicholas J; Orlando, Geraldine S; Djukic, Zorka; Orlando, Roy C

    2013-03-01

    Radiofrequency ablation (RFA) of Barrett's esophagus (BE) is a common strategy for the prevention of esophageal adenocarcinoma (EAC). After RFA, the ablated esophagus heals on acid suppressive therapy, and is re-populated with a stratified squamous epithelium, referred to as "neosquamous epithelium (NSE)." Because the ability of the NSE to protect the underlying tissue from recurrent insult by reflux is unclear, we assessed the barrier function of NSE by comparing it to that of the native upper squamous epithelium (USE) in subjects having undergone RFA. At varying intervals following RFA, the barrier function of NSE and USE were assessed in endoscopic biopsies by light and electron microscopy, and by measurement of electrical resistance (R) and fluorescein flux in mini-Ussing chambers. Chamber results were further compared with results from control biopsies (healthy distal esophagus). A claudin expression profile in the tight junctions (TJs) of NSE and USE was determined using Quantitative reverse transcriptase PCR. Differential expression of claudin-4 between NSE and USE was assayed by immunoblots. USE was histologically normal whereas NSE showed dilated intercellular spaces and marked eosinophilia. NSE was also more permeable than USE and healthy controls, having lower mean R and higher fluorescein fluxes. Abnormally low R values for NSE were unrelated to the time period following RFA (or number of prior RFA sessions), being abnormal even 26 months after RFA. Abnormal permeability in NSE was associated with significantly lower values for claudin-4 and claudin-10 than in USE. NSE commonly exhibits defective barrier function. As this defect will make it vulnerable to injury, inflammation, and destruction by acidic and weakly acidic refluxates, it may in part explain incidences of recurrence of BE following ablation.

  16. Expression profile of maize (Zea mays) scutellar epithelium during imbibition.

    PubMed

    Tnani, Hedia; García-Muniz, Nora; Vicient, Carlos M; López-Ribera, Ignacio

    2012-09-15

    The scutellum is a shield-shaped structure surrounding the embryo axis in grass species. The scutellar epithelium (Sep) is a monolayer of cells in contact with the endosperm. The Sep plays an important role during seed germination in the secretion of gibberellins and hydrolytic enzymes and in the transport of the hydrolized products to the growing embryo. We identified 30 genes predominantly expressed after imbibition in the Sep as compared to other parts of the scutellum. A high proportion of these genes is involved in metabolic processes. Some other identified genes are involved in the synthesis or modification of cell walls, which may be reflected in the changes of cell shape and cell wall composition that can be observed during imbibition. One of the genes encodes a proteinase that belongs to a proteinase family typical of carnivorous plants. Almost nothing is known about their role in other plants or organs, but the scutellar presence may point to a "digestive" function during germination. Genes involved in the production of energy and the transport of peptides were also identified.

  17. Odontogenic potential of post-natal oral mucosal epithelium.

    PubMed

    Nakagawa, E; Itoh, T; Yoshie, H; Satokata, I

    2009-03-01

    A bioengineered tooth would provide a powerful alternative to currently available clinical treatments. Previous experiments have succeeded in bioengineering teeth using tooth germs from animal embryos. However, the ultimate goal is to develop a technology which enables teeth to be regenerated with the use of autologous cells. To pursue this goal, we re-associated the palatal epithelium from young mice with the odontogenic dental mesenchyme and transplanted the re-associated tissues into mouse kidney capsules. Morphologically defined teeth were formed from the re-associated cultured palatal epithelial cell sheets from mice aged up to 4 wks, but no tooth was formed when the palatal epithelium from mice after 2 days of age was directly re-associated. Our results demonstrated that post-natal non-dental oral mucosal epithelium can be used as a substitute for dental epithelium, and that epithelial cell sheet improves the ability of the oral epithelium of older mice to differentiate into dental epithelium.

  18. Ability of transplanted cultured epithelium to respond to dermal papillae.

    PubMed

    Xing, L; Kobayashi, K

    2001-10-01

    Cultured epithelium has been used successfully in the treatment of extensive burns. Regenerated epidermis, however, lacks such as hair follicles and sweat glands that are common in mammalian skin. We attempted to determine whether cultured epithelium could be induced to form hair follicles by dermal papillae, which are most important for the morphogenesis and growth of hair follicles. We cultivated adult rat sole keratinocytes, obtained the cultured epithelium, and prepared recombinants consisting of cultured epithelium and fresh dermal papillae with or without the sole dermis. These recombinants were then transplanted underneath the dermis of the dorsal skin of syngeneic rats or athymic mice. Histologic examination revealed that the transplanted cultured epithelium formed the follicular structures with sebaceous gland-like structure following induction of the dermal papillae, especially when supported by the dermis. We concluded that transplanted cultured epithelium of adult rat sole keratinocytes can respond to growth signals from adult dermal papillae.

  19. Epigenetic Regulation of the Intestinal Epithelium

    PubMed Central

    Elliott, Ellen N.; Kaestner, Klaus H.

    2015-01-01

    The intestinal epithelium is an ideal model system for the study of normal and pathological differentiation processes. The mammalian intestinal epithelium is a single cell layer comprised of proliferative crypts and differentiated villi. The crypts contain both proliferating and quiescent stem cell populations that self-renew and produce all the differentiated cell types, which are replaced every 3 to 5 days. The genetics of intestinal development, homeostasis, and disease are well defined, but less is known about the contribution of epigenetics in modulating these processes. Epigenetics refers to heritable phenotypic traits, including gene expression, which are independent of mutations in the DNA sequence. We have known for several decades that human colorectal cancers contain hypomethylated DNA, but the causes and consequences of this phenomenon are not fully understood. In contrast, tumor suppressor gene promoters are often hypermethylated in colorectal cancer, resulting in decreased expression of the associated gene. In this review, we describe the role that epigenetics plays in intestinal homeostasis and disease, with an emphasis on results from mouse models. We highlight the importance of producing and analyzing next-generation sequencing data detailing the epigenome from intestinal stem cell to differentiated intestinal villus cell. PMID:26220502

  20. Transport pathways in rat lingual epithelium.

    PubMed

    Simon, S A; Robb, R; Schiffman, S S

    1988-02-01

    Measurements of ion transport across isolated lingual epithelium of rat were correlated with electrophysiological recordings from taste nerves. At hyperosmotic concentrations of NaCl, sodium ions enter the mucosal membrane of the isolated epithelium partially through an amiloride-inhibitable pathway and exit the serosal membrane through a Na+-K+-ATPase. At hyposmotic concentrations of KCl, potassium ions enter the mucosal membrane through a K+ pathway that is inhibited by 4-aminopyridine and exit at the serosal membrane through a K+ pathway that is inhibited by BaCl2. The inhibition of sodium transport by amiloride and potassium transport by 4-aminopyridine is consistent with previously published electrophysiological recordings from the chorda tympani nerve bundle (CT) and recordings from nucleus of the solitary tract (NST) obtained here. The responses to NaCl are greater than the responses to KCl at equimolar concentrations over the entire concentration range both in epithelial and neural measurements. At hyposmotic concentrations of NaCl the epithelial responses include inward sodium and outward chloride components. Isolated rat tongue is only slightly stimulated by D-glucose or sucrose as are the CT and NTS responses. These data suggest that events in taste transduction can be understood, in part, by measuring the epithelial responses of isolated rat tongue.

  1. Effluxing ABC Transporters in Human Corneal Epithelium

    PubMed Central

    Vellonen, Kati-Sisko; Mannermaa, Eliisa; Turner, Helen; Häkli, Marika; Wolosin, J. Mario; Tervo, Timo; Honkakoski, Paavo; Urtti, Arto

    2010-01-01

    ATP-binding cassette (ABC) transporters are able to efflux their substrate drugs from the cells. We compared expression of efflux proteins in normal human corneal epithelial tissue, primary human corneal epithelial cells (HCEpiC), and corneal epithelial cell culture model (HCE model) based on human immortal cell line. Expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1–6 (MRP1–6) and breast cancer resistance protein (BCRP) was studied using quantitative RT-PCR, Western blot, and immunohistochemistry. Only MRP1, MRP5, and BCRP were expressed in the freshly excised human corneal epithelial tissue. Expression of MRP1 and MRP5 was localized predominantly in the basal cells of the central cornea and limbus. Functional efflux activity was shown in the cell models, but they showed over-expression of most efflux transporters compared to that of normal corneal epithelium. In conclusion, MRP1, MRP5, and BCRP are expressed in the corneal epithelium, but MDR1, MRP2, MRP3, MRP4, and MRP6 are not significantly expressed. HCE cell model and commercially available primary cells deviate from this expression profile. PMID:19623615

  2. Acid phosphatase and lipid peroxidation in human cataractous lens epithelium.

    PubMed

    Vasavada, A R; Thampi, P; Yadav, S; Rawal, U M

    1993-12-01

    The anterior lens epithelial cells undergo a variety of degenerative and proliferative changes during cataract formation. Acid phosphatase is primarily responsible for tissue regeneration and tissue repair. The lipid hydroperoxides that are obtained by lipid peroxidation of polysaturated or unsaturated fatty acids bring about deterioration of biological membranes at cellular and tissue levels. Acid phosphatase and lipid peroxidation activities were studied on the lens epithelial cells of nuclear cataract, posterior subcapsular cataract, mature cataract, and mixed cataract. Of these, mature cataractous lens epithelium showed maximum activity for acid phosphatase (516.83 moles of p-nitrophenol released/g lens epithelium) and maximum levels of lipid peroxidation (86.29 O.D./min/g lens epithelium). In contrast, mixed cataractous lens epithelium showed minimum activity of acid phosphatase (222.61 moles of p-nitrophenol released/g lens epithelium) and minimum levels of lipid peroxidation (54.23 O.D./min/g lens epithelium). From our study, we correlated the maximum activity of acid phosphatase in mature cataractous lens epithelium with the increased areas of superimposed cells associated with the formation of mature cataract. Likewise, the maximum levels of lipid peroxidation in mature cataractous lens epithelium was correlated with increased permeability of the plasma membrane. Conversely, the minimum levels of lipid peroxidation in mixed cataractous lens epithelium makes us presume that factors other than lipid peroxidation may also account for the formation of mixed type of cataract.

  3. Tissue specific DNA methylation in normal human breast epithelium and in breast cancer.

    PubMed

    Avraham, Ayelet; Cho, Sean Soonweng; Uhlmann, Ronit; Polak, Mia Leonov; Sandbank, Judith; Karni, Tami; Pappo, Itzhak; Halperin, Ruvit; Vaknin, Zvi; Sella, Avishay; Sukumar, Saraswati; Evron, Ella

    2014-01-01

    Cancer is a heterogeneous and tissue-specific disease. Thus, the tissue of origin reflects on the natural history of the disease and dictates the therapeutic approach. It is suggested that tissue differentiation, mediated mostly by epigenetic modifications, could guide tissue-specific susceptibility and protective mechanisms against cancer. Here we studied breast specific methylation in purified normal epithelium and its reflection in breast cancers. We established genome wide methylation profiles of various normal epithelial tissues and identified 110 genes that were differentially methylated in normal breast epithelium. A number of these genes also showed methylation alterations in breast cancers. We elaborated on one of them, TRIM29 (ATDC), and showed that its promoter was hypo-methylated in normal breast epithelium and heavily methylated in other normal epithelial tissues. Moreover, in breast carcinomas methylation increased and expression decreased whereas the reverse was noted for multiple other carcinomas. Interestingly, TRIM29 regulation in breast tumors clustered according to the PAM50 classification. Thus, it was repressed in the estrogen receptor positive tumors, particularly in the more proliferative luminal B subtype. This goes in line with previous reports indicating tumor suppressive activity of TRIM29 in estrogen receptor positive luminal breast cells in contrast to oncogenic function in pancreatic and lung cancers. Overall, these findings emphasize the linkage between breast specific epigenetic regulation and tissue specificity of cancer.

  4. The electrical potential profile of gallbladder epithelium.

    PubMed

    van Os, C H; Slegers, J F

    1975-12-04

    In this study the relative ionic permeabilities of the cell membranes of Necturus gallbladder epithelium have been determined by means of simultaneous measurement of transmural and transmucosal membrane potential differences (PD) and by ionic substitution experiments with sodium, potassium and chloride ions. It is shown that the mucosal membrane is permeable to sodium and to potassium ions. The baso-lateral membrane PD is only sensitive to potassium ions. In both membranes chloride conductance is negligible or absent. The ratio of the resistances of the mucosal and baso-lateral membranes, RM/RS, increases upon reducing the sodium concentration in the mucosal solution. The same ratio decreases when sodium is replaced by potassium which implies a greater potassium than sodium conductance in the mucosal membrane. The relative permeability of the shunt for potassium, sodium and chloride ions is: PK/PNa/PCl=1.81:1.00:0.32. From the results obtained in this study a value for the PK/PNa ratio of the mucosal membrane could be evaluated. This ratio is 2.7. From the same data the magnitude of the electromotive forces generated across the cell membranes could be calculated. The EMF's are -15mV across the mucosal membrane and -81mV across the baso-lateral one. Due to the presence of the low resistance shunt the transmucosal membrane PD is -53.2mV (cell inside negative) and the transmural PD is +2.6mV (serosal side positive). The change in potential profile brought about by the low resistance shunt favors passive entry of Na ions into the cell across the mucosal membrane. Calculations show that this passive Na influx is maximally 64% of the net Na flux estimated from fluid transport measurements. The C-1 conductive of the baso-lateral membrane is too small to allow electrogenic coupling of C1 with Na transport across this membrane. Experiments with rabbit gallbladder epithelium indicate that the membrane properties in this tissue are qualitatively similar to those of Necturus

  5. Barrier function of airway tract epithelium

    PubMed Central

    Ganesan, Shyamala; Comstock, Adam T; Sajjan, Uma S

    2013-01-01

    Airway epithelium contributes significantly to the barrier function of airway tract. Mucociliary escalator, intercellular apical junctional complexes which regulate paracellular permeability and antimicrobial peptides secreted by the airway epithelial cells are the three primary components of barrier function of airway tract. These three components act cooperatively to clear inhaled pathogens, allergens and particulate matter without inducing inflammation and maintain tissue homeostasis. Therefore impairment of one or more of these essential components of barrier function may increase susceptibility to infection and promote exaggerated and prolonged innate immune responses to environmental factors including allergens and pathogens resulting in chronic inflammation. Here we review the regulation of components of barrier function with respect to chronic airways diseases. PMID:24665407

  6. Pigmentation of the Lacrimal Sac Epithelium.

    PubMed

    Jakobiec, Frederick A; Stagner, Anna M; Sutula, Francis C; Freitag, Suzanne K; Yoon, Michael K

    To describe the patterns of the melanocytic populations of 3 cases of lacrimal sac benign melanosis and 1 of atypical primary-acquired sac melanosis with a melanomatous nodule secondary to spread of atypical conjunctival primary-acquired melanosis to the sac. Clinical records, photographs, and paraffin sections stained with hematoxylin and eosin and the Fontana reaction were critically reviewed. Additional sections were immunoreacted for melanoma antigen recognized by T cells and microphthalmia-associated transcription factor. Five nonpigmented pterygia and 4 nonpigmented lacrimal sacs served as controls. Three patients with obstructive dacryocystitis and benign melanosis were African-Americans whose sacs disclosed the presence of nonclustering, melanoma antigen recognized by T cells, and microphthalmia-associated transcription factor-positive intraepithelial dendritic melanocytes at all levels of the epithelium. The transferred melanin granules were concentrated in the adlumenal apical region of the epithelial cells. No fusiform melanocytes were found in the lamina propria. The fourth patient, a white, had atypical conjunctival and sac primary-acquired melanosis and conjunctival and sac melanomas. The intraepithelial sac melanocytes in this case were strikingly atypical and profusely distributed in a back to back fashion at all levels of a thickened epithelial layer focally approximating the appearance of a melanoma in situ. Five nonpigmented pterygia and 4 nonpigmented lacrimal sacs served as controls. Each displayed nonnesting dendritic melanocytes of various densities without back to back contact. Low densities of intraepithelial melanocytes were discovered in all controls and therefore represent a normal subpopulation within the conjunctival and lacrimal sacs. Due to the pseudostratification of the sac epithelium, melanocytes can move to higher levels without implying atypia. Benign melanosis is produced by small diffusely distributed individual

  7. Persistent disruption of ciliated epithelium following paediatric lung transplantation.

    PubMed

    Thomas, Biju; Aurora, Paul; Spencer, Helen; Elliott, Martin; Rutman, Andrew; Hirst, Robert A; O'Callaghan, Christopher

    2012-11-01

    It is unclear whether ciliary function following lung transplantation is normal or not. Our aim was to study the ciliary function and ultrastructure of epithelium above and below the airway anastomosis and the peripheral airway of children following lung transplantation. We studied the ciliary beat frequency (CBF) and beat pattern, using high speed digital video imaging and ultrastructure by transmission electron microscopy, of bronchial epithelium from above and below the airway anastomosis and the peripheral airway of 10 cystic fibrosis (CF) and 10 non-suppurative lung disease (NSLD) paediatric lung transplant recipients. Compared to epithelium below the anastomosis, the epithelium above the anastomosis in the CF group showed reduced CBF (median (interquartile range): 10.5 (9.0-11.4) Hz versus 7.4 (6.4-9.2) Hz; p<0.01) and increased dyskinesia (median (IQR): 16.5 (12.9-28.2)% versus 42.2 (32.6-56.4)%; p<0.01). In both CF and NSLD groups, compared with epithelium above the anastomosis, the epithelium below the anastomosis showed marked ultrastructural abnormalities (median duration post-transplant 7-12 months). Ciliary dysfunction is a feature of native airway epithelium in paediatric CF lung transplant recipients. The epithelium below the airway anastomosis shows profound ultrastructural abnormalities in both CF and NSLD lung transplant recipients, many months after transplantation.

  8. Challenges and opportunities for tissue-engineering polarized epithelium.

    PubMed

    Paz, Ana C; Soleas, John; Poon, James C H; Trieu, Dennis; Waddell, Thomas K; McGuigan, Alison P

    2014-02-01

    The epithelium is one of the most important tissue types in the body and the specific organization of the epithelial cells in these tissues is important for achieving appropriate function. Since many tissues contain an epithelial component, engineering functional epithelium and understanding the factors that control epithelial maturation and organization are important for generating whole artificial organ replacements. Furthermore, disruption of the cellular organization leads to tissue malfunction and disease; therefore, engineered epithelium could provide a valuable in vitro model to study disease phenotypes. Despite the importance of epithelial tissues, a surprisingly limited amount of effort has been focused on organizing epithelial cells into artificial polarized epithelium with an appropriate structure that resembles that seen in vivo. In this review, we provide an overview of epithelial tissue organization and highlight the importance of cell polarization to achieve appropriate epithelium function. We next describe the in vitro models that exist to create polarized epithelium and summarize attempts to engineer artificial epithelium for clinical use. Finally, we highlight the opportunities that exist to translate strategies from tissue engineering other tissues to generate polarized epithelium with a functional structure.

  9. Bronchial epithelium in children: a key player in asthma.

    PubMed

    Carsin, Ania; Mazenq, Julie; Ilstad, Alexandra; Dubus, Jean-Christophe; Chanez, Pascal; Gras, Delphine

    2016-06-01

    Bronchial epithelium is a key element of the respiratory airways. It constitutes the interface between the environment and the host. It is a physical barrier with many chemical and immunological properties. The bronchial epithelium is abnormal in asthma, even in children. It represents a key component promoting airway inflammation and remodelling that can lead to chronic symptoms. In this review, we present an overview of bronchial epithelium and how to study it, with a specific focus on children. We report physical, chemical and immunological properties from ex vivo and in vitro studies. The responses to various deleterious agents, such as viruses or allergens, may lead to persistent abnormalities orchestrated by bronchial epithelial cells. As epithelium dysfunctions occur early in asthma, reprogramming the epithelium may represent an ambitious goal to induce asthma remission in children.

  10. [The new era of epithelium-targeted drug development].

    PubMed

    Shimizu, Yoshimi; Nagase, Shotaro; Yagi, Kiyohito; Kondoh, Masuo

    2014-01-01

    Epithelium plays pivotal roles in biological barrier separating the inside of body and the outside environment. Ninety percent of malignant tumors are derived from epithelium. Most pathological microorganisms invade into the body from mucosal epithelium. Thus, epithelium is potential targets for drug development. Claudins (CLs), a family of tetra-transmembrane protein consisting of over 20 members, are structural and functional components of tight junction-seals in epithelium. Modulation of CL-seals enhanced mucosal absorption of drugs. CLs are often over-expressed in malignant tumors. CL-4 expression is increased in the epithelial cells covering the mucosal immune tissues. Very recently, CLs are also expected to be targets for traumatic brain injury and regenerative therapy. In this review, we overview the past, the present and the future of CLs-targeted drug development.

  11. Trachea Epithelium as a “Canary” for Cigarette Smoking-induced Biologic Phenotype of the Small Airway Epithelium*

    PubMed Central

    Turetz, Meredith L.; O’Connor, Timothy P.; Tilley, Ann E.; Strulovici-Barel, Yael; Salit, Jacqueline; Dang, David; Teater, Matthew; Mezey, Jason; Clark, Andrew G.; Crystal, Ronald G.

    2013-01-01

    The initial site of smoking-induced lung disease is the small airway epithelium, which is difficult and time consuming to sample by fiberoptic bronchoscopy. We developed a rapid, office-based procedure to obtain trachea epithelium without conscious sedation from healthy nonsmokers (n=26) and healthy smokers (n=19, 27 ± 15 pack-yr). Gene expression differences (fold-change >1.5, p<0.01, Benjamini-Hochberg correction) were assessed with Affymetrix microarrays. 1,057 probe sets were differentially expressed in healthy smokers vs nonsmokers, representing >500 genes. Trachea gene expression was compared to an independent group of small airway epithelial samples (n=23 healthy nonsmokers, n=19 healthy smokers, 25 ± 12 pack-yr). The trachea epithelium is more sensitive to smoking, responding with 3-fold more differentially-expressed genes than small airway epithelium. The trachea transcriptome paralleled the small airway epithelium, with 156 of 167 (93%) genes that are significantly upand down-regulated by smoking in the small airway epithelium showing similar direction and magnitude of response to smoking in the trachea. Trachea epithelium can be obtained without conscious sedation, representing a less invasive surrogate “canary” for smoking-induced changes in the small airway epithelium. This should prove useful in epidemiologic studies correlating gene expression with clinical outcome in assessing smoking-induced lung disease. PMID:20443905

  12. Epigenetic modification and cancer: mark or stamp?

    PubMed

    Foulkes, William D

    2012-04-01

    Hypotheses are built upon data, but data require hypotheses before they can be understood. The development of the 'two-hit' hypothesis of carcinogenesis was a key event in cancer genetics because it provided a testable model of how tumours develop. In this commentary on 'Promoter hypermethylation patterns in Fallopian tube epithelium of BRCA1 and BRCA2 germline mutation carriers' by Bijron et al. published in the February 2012 issue of Endocrine-Related Cancer, the need for new grammar and some new hypotheses in epigenetics is discussed. Meanwhile, data suggesting an important role of epigenetic modification in the cause, progression and treatment of cancer continues to accumulate.

  13. Revisiting the human seminiferous epithelium cycle.

    PubMed

    Nihi, F; Gomes, M L M; Carvalho, F A R; Reis, A B; Martello, R; Melo, R C N; Almeida, F R C L; Chiarini-Garcia, H

    2017-06-01

    Can all types of testicular germ cells be accurately identified by microscopy techniques and unambiguously distributed in stages of the human seminiferous epithelium cycle (SEC)? By using a high-resolution light microscopy (HRLM) method, which enables an improved visualization of germ cell morphological features, we identified all testicular germ cells in the seminiferous epithelium and precisely grouped them in six well-delimitated SEC stages, thus providing a reliable reference source for staging in man. Morphological characterization of germ cells in human has been done decades ago with the use of conventional histological methods (formaldehyde-based fixative -Zenker-formal- and paraffin embedding). These early studies proposed a classification of the SEC in six stages. However, the use of stages as baseline for morphofunctional evaluations of testicular parenchyma has been difficult because of incomplete morphological identification of germ cells and their random distribution in the human SEC. Testicular tissue from adult and elderly donors with normal spermatogenesis according to Levin's, Johnsen's and Bergmann's scores were used to evaluate germ cell morphology and validate their distribution and frequency in stages throughout human spermatogenesis. Testicular tissue from patients diagnosed with congenital bilateral agenesis of vas deferens (n = 3 adults) or prostate cancer (n = 3 elderly) were fixed in glutaraldehyde and embedded in araldite epoxy resin. Morphological analyses were performed by both light and transmission electron microscopy. HRLM method enabled a reliable morphological identification of all germ cells (spermatogonia, spermatocytes and spermatids) based on high-resolution aspects of euchromatin, heterochromatin and nucleolus. Moreover, acrosomal development of spermatids was clearly revealed. Altogether, our data redefined the limits of each stage leading to a more reliable determination of the SEC in man. Occasionally, germ cells can be

  14. [Influence of cancer chemotherapy on conjunctival epithelium and goblet cells].

    PubMed

    Wojciechowska, Katarzyna; Jesionek-Kupnicka, Dorota; Jurowski, Piotr

    2013-01-01

    Evaluation of different types of chemotherapy schemes administered in lung, breast and bowel cancer on conjunctival epithelium and goblet cells morphology. 36 patients (72 eyes) were enrolled to the study. Patients were divided into three groups depending on type of cancer and chemotherapy: group I - patients diagnosed with non- small cells lung cancer treated with PE schema (cisplatin, etoposide), group II - with breast cancer treated with FAC schema (fluorouracil, doxorubicin, cyclophosphamide), group Ill - bowel cancer treated with FU/LV schema (fluorouracil, leucovorin). Examinations were performed before chemotherapy and after Il'th, IV'th, VI'th chemotherapy cycle. Conjuntival specimen were obtained with exfoliative cytology, stained with PAS and hematoxyline. Statistically significant deterioration of conjunctival epithelium and goblet cells in all the groups in each time of examination (p<0.001) was observed. Alterations were aggravated with duration of chemotherapy. Before chemotherapy all the patients had normal epithelium and goblet cells (grade 0 or 1 according to the Nelson's scale). Conjunctival cells status gradually deteriorated and altered from the normal glandular epithelium to the squamous cells epithelium through the process of squamous metaplasia. In further chemotherapy cycles each patient (1,0 fraction) had abnormal morphology of epithelium and goblet cells (grade 2 or 3 of Nelson's scale). Chemotherapy induces squamous metaplasia of epithelium and the reduction of number of conjunctival goblet cells. This abnormalities were time dependent and increased with duration of chemotherapy and were not depended on type of chemotherapy scheme.

  15. STUDIES ON SMALL INTESTINAL CRYPT EPITHELIUM

    PubMed Central

    Trier, Jerry S.

    1963-01-01

    Small intestinal crypt epithelium obtained from normal fasting humans by peroral biopsy of the mucosa was studied with the electron microscope. Paneth cells were identified at the base of the crypts by their elaborate highly organized endoplasmic reticulum, large secretory granules, and small lysosome-like dense bodies within the cytoplasm. Undifferentiated cells were characterized by smaller cytoplasmic membrane-bounded granules which were presumed to be secretory in nature, a less elaborate endoplasmic reticulum, many unattached ribosomes and, in some cells, the presence of glycogen. Some undifferentiated cells at the base of the crypts contained lobulated nuclei and striking paranuclear accumulations of mitochondria. Membrane-bounded cytoplasmic fragments, probably originating from undifferentiated and Paneth cells, were frequently apparent within crypt lumina. Of the goblet cells, some were seen actively secreting mucus. In these, apical mucus appeared to exude into the crypt lumen between gaps in the microvilli. The membrane formerly surrounding the apical mucus appeared to fuse with and become part of the plasma membrane of the cell, suggesting a merocrine secretory mechanism. Enterochromaffin cells were identified by their location between the basal regions of other crypt cells and by their unique intracytoplasmic granules. PMID:14064112

  16. Biochemical studies of the tracheobronchial epithelium

    SciTech Connect

    Mass, M.J.; Kaufman, D.G.

    1984-06-01

    Tracheobronchial epithelium has been a focus of intense investigation in the field of chemical carcinogenesis. We have reviewed some biochemical investigations that have evolved through linkage with carcinogenesis research. These areas of investigation have included kinetics of carcinogen metabolism, identification of carcinogen metabolites, levels of carcinogen binding to DNA, and analysis of carcinogen-DNA adducts. Such studies appear to have provided a reasonable explanation for the susceptibilities of the respiratory tracts of rats and hamsters to carcinogenesis by benzo(a)pyrene. Coinciding with the attempts to understand the initiation of carcinogenesis in the respiratory tract has also been a major thrust aimed at effecting its prevention both in humans and in animal models for human bronchogenic carcinoma. These studies have concerned the effects of derivatives of vitamin A (retinoids) and their influence on normal cell biology and biochemistry of this tissue. Recent investigations have included the effects of retinoid deficiency on the synthesis of RNA and the identification of RNA species associated with this biological state, and also have included the effects of retinoids on the synthesis of mucus-related glycoproteins. Tracheal organ cultures from retinoid-deficient hamsters have been used successfully to indicate the potency of synthetic retinoids by monitoring the reversal of squamous metaplasia. Techniques applied to this tissue have also served to elucidate features of the metabolism of retinoic acid using high pressure liquid chromatography. 94 references, 9 figures, 2 tables.

  17. Neuropilins: expression and roles in the epithelium

    PubMed Central

    Wild, Jonathan R L; Staton, Carolyn A; Chapple, Keith; Corfe, Bernard M

    2012-01-01

    Summary Initially found expressed in neuronal and then later in endothelial cells, it is well established that the transmembrane glycoproteins neuropilin-1 (NRP1) and neuropilin-2 (NRP2) play essential roles in axonal growth and guidance and in physiological and pathological angiogenesis. Neuropilin expression and function in epithelial cells has received little attention when compared with neuronal and endothelial cells. Overexpression of NRPs is shown to enhance growth, correlate with invasion and is associated with poor prognosis in various tumour types, especially those of epithelial origin. The contribution of NRP and its ligands to tumour growth and metastasis has spurred a strong interest in NRPs as novel chemotherapy drug targets. Given NRP’s role as a multifunctional co-receptor with an ability to bind with disparate ligand families, this has sparked new areas of research implicating NRPs in diverse biological functions. Here, we review the growing body of research demonstrating NRP expression and role in the normal and neoplastic epithelium. PMID:22414290

  18. Stem cells of the skin epithelium

    PubMed Central

    Alonso, Laura; Fuchs, Elaine

    2003-01-01

    Tissue stem cells form the cellular base for organ homeostasis and repair. Stem cells have the unusual ability to renew themselves over the lifetime of the organ while producing daughter cells that differentiate into one or multiple lineages. Difficult to identify and characterize in any tissue, these cells are nonetheless hotly pursued because they hold the potential promise of therapeutic reprogramming to grow human tissue in vitro, for the treatment of human disease. The mammalian skin epithelium exhibits remarkable turnover, punctuated by periods of even more rapid production after injury due to burn or wounding. The stem cells responsible for supplying this tissue with cellular substrate are not yet easily distinguishable from neighboring cells. However, in recent years a significant body of work has begun to characterize the skin epithelial stem cells, both in tissue culture and in mouse and human skin. Some epithelial cells cultured from skin exhibit prodigious proliferative potential; in fact, for >20 years now, cultured human skin has been used as a source of new skin to engraft onto damaged areas of burn patients, representing one of the first therapeutic uses of stem cells. Cell fate choices, including both self-renewal and differentiation, are crucial biological features of stem cells that are still poorly understood. Skin epithelial stem cells represent a ripe target for research into the fundamental mechanisms underlying these important processes. PMID:12913119

  19. Culturing of retinal pigment epithelium cells.

    PubMed

    Valtink, Monika; Engelmann, Katrin

    2009-01-01

    The retinal pigment epithelium (RPE) is a monolayer of cells adjacent to the photoreceptors of the retina. It plays a crucial role in maintaining photoreceptor health and survival. Degeneration or dysfunction of the RPE can lead to photoreceptor degeneration and as a consequence to visual impairment. The most common diseased state of the RPE becomes manifest in age-related macular degeneration, an increasing cause of blindness in the elderly. RPE cells are therefore of great interest to researchers working in the field of tissue engineering and cell transplantation. In fact, studies in animal models have proven that the transplantation of RPE cells can delay the course of photoreceptor degenerative diseases. Although first attempts to transplant RPE cells into the subretinal space in human individuals suffering from age-related macular degeneration were less successful, RPE cell transplantation is still favored as a future therapeutic option, and much work is done to develop and design cell transplants. Cell banking is a prerequisite to have well-differentiated and characterized cells at hand when needed for research purposes, but also for therapeutic approaches. In this chapter the authors will describe methods to isolate, culture and preserve adult human RPE cells for the purpose of RPE cell banking. Copyright 2009 S. Karger AG, Basel.

  20. Human vomeronasal epithelium development: An immunohistochemical overview.

    PubMed

    Dénes, Lóránd; Pap, Zsuzsanna; Szántó, Annamária; Gergely, István; Pop, Tudor Sorin

    2015-06-01

    The vomeronasal organ (VNO) is the receptor structure of the vomeronasal system (VNS) in vertebrates. It is found bilaterally in the submucosa of the inferior part of the nasal septum. There are ongoing controversies regarding the functionality of this organ in humans. In this study we propose the immunohistochemical evaluation of changes in components of the human vomeronasal epithelium during foetal development. We used 45 foetuses of different age, which were included in three age groups. After VNO identification immunohistochemical reactions were performed using primary antibodies against the following: neuron specific enolase, calretinin, neurofilament, chromogranin, synaptophysin, cytokeratin 7, pan-cytokeratin and S100 protein. Digital slides were obtained and following colorimetric segmentation, surface area measurements were performed. The VNO was found in less than half of the studied specimens (42.2%). Neuron specific enolase and calretinin immunoexpression showed a decreasing trend with foetal age, while the other neural/neuroendocrine markers were negative in all specimens. Cytokeratin 7 expression increased with age, while Pan-Ctk had no significant variations. S100 protein immunoexpression also decreased around the VNO. The results of the present work uphold the theory of regression of the neuroepithelium that is present during initial stages of foetal development.

  1. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress.

  2. Building and maintaining the epithelium of the lung.

    PubMed

    Rackley, Craig R; Stripp, Barry R

    2012-08-01

    Airspaces of the lung are lined by an epithelium whose cellular composition changes along the proximal-to-distal axis to meet local functional needs for mucociliary clearance, hydration, host defense, and gas exchange. Advances in cell isolation, in vitro culture techniques, and genetic manipulation of animal models have increased our understanding of the development and maintenance of the pulmonary epithelium. This review discusses basic cellular mechanisms that regulate establishment of the conducting airway and gas exchange systems as well as the functional maintenance of the epithelium during postnatal life.

  3. Airway epithelium-derived relaxing factor: myth, reality, or naivety?

    PubMed

    Vanhoutte, Paul M

    2013-05-01

    The presence of a healthy epithelium can moderate the contraction of the underlying airway smooth muscle. This is, in part, because epithelial cells generate inhibitory messages, whether diffusible substances, electrophysiological signals, or both. The epithelium-dependent inhibitory effect can be tonic (basal), synergistic, or evoked. Rather than a unique epithelium-derived relaxing factor (EpDRF), several known endogenous bronchoactive mediators, including nitric oxide and prostaglandin E2, contribute. The early concept that EpDRF diffuses all the way through the subepithelial layers to directly relax the airway smooth muscle appears unlikely. It is more plausible that the epithelial cells release true messenger molecules, which alter the production of endogenous substances (nitric oxide and/or metabolites of arachidonic acid) by the subepithelial layers. These substances then diffuse to the airway smooth muscle cells, conveying epithelium dependency.

  4. Detachments of the retinal pigment epithelium at the posterior pole.

    PubMed

    Noble, K G; Levitzky, M J; Carr, R E

    1976-08-01

    Multiple vitelliform cysts of the retina, a disorder of unknown cause in which there are multiple detachments of the retinal pigment epithelium at the posterior pole, occurred in five patients. In four patients all lesions were located outside the parafoveal area while one patient showed bilateral foveal elevations associated with more eccentric detachments. Several patients showed slow resolution of some of the detachments with mild disturbances of the pigment epithelium.

  5. Scanning electron microscopic studies of the surface morphology of the vomeronasal epithelium and olfactory epithelium of garter snakes.

    PubMed

    Wang, R T; Halpern, M

    1980-04-01

    Fixed vomeronasal and olfactory epithelia from normal adult garter snakes were microdissected, fractured, and examined with a scanning electron microscope. The method permits a detailed comparative study of the structural organization and morphological characteristics of the constituent cells of the vomeronasal and olfactory epithelia. Despite similarities in the nomenclature of the constituent cells in both epithelia, significant differences exist in their surface morphology. A unique columnar structure composed of non-neuronal elements is present in the vomeronasal epithelium. These columns house the bioplar neurons and undifferentiated cells. Such a columnar organization is absent in the olfactory epithelium. In vomeronasal epithelium the bipolar neurons possess microvillous terminals at their dendritic tips, while the dendritic tips of the bipolar neurons of the olfactory epithelium possess cilia. Vomeronasal supporting cells are covered with microvilli, while olfactory supporting cells are covered with cytoplasmic protuberances in addition to the microvilli. In the vomeronasal epithelium the pear-shaped neurons have a grossly smooth surface and are organized into clusters, while in the olfactory epithelium the elliptical bipolar neurons are spinous, aligned side-by-side and interdigitate. The basal (undifferentiated) cell layer in the vomeronasal epithelium has a high packing density and is composed of several layers of irregularly shaped cells. In the olfactory epithelium the basal cell layer is loosely organized and composed of a single layer of oval cells. This information on the three-dimensional cell structure of both epithelia provides a basis for experimental observations on changes in morphology of the bipolar neurons during genesis, development, maturation, degeneration, and regeneration in postnatal, adult animals.

  6. Ependymal epithelium disruption after vanadium pentoxide inhalation. A mice experimental model.

    PubMed

    Avila-Costa, María Rosa; Colín-Barenque, Laura; Zepeda-Rodríguez, Armando; Antuna, Silvia B; Saldivar O, Liliana; Espejel-Maya, Guadalupe; Mussali-Galante, Patricia; del Carmen Avila-Casado, Maria; Reyes-Olivera, Alfonso; Anaya-Martinez, Veronica; Fortoul, Teresa I

    The blood-brain barrier (BBB) protects the CNS against chemical insults. Regulation of blood-brain tissue exchange is accomplished by ependymal cells, which possess intercellular tight junctions. Loss of BBB function is an etiologic component of many neurological disorders. Vanadium (V) is a metalloid widely distributed in the environment and exerts potent toxic effects on a wide variety of biological systems. The current study examines the effects of Vanadium pentoxide (V2O5) inhalation in mice ependymal epithelium, through the analysis of the brain metal concentrations and the morphological modifications in the ependymal cells identified by scanning and transmission electron microscopy after 8 weeks of inhalation, in order to obtain a possible explanation about the mechanisms that V uses to enter and alter the CNS. Our results showed that V2O5 concentrations increase from the first week of study, stabilizing its values during the rest of the experiment. The morphological effects included cilia loss, cell sloughing and ependymal cell layer detachment. This damage can allow toxicants to modify the permeability of the epithelium and promote access of inflammatory mediators to the underlying neuronal tissue causing injury and neuronal death. Thus, understanding the mechanisms of BBB disruption would allow planning strategies to protect the brain from toxicants such as metals, which have increased in the atmosphere during the last decades and constitute an important health problem.

  7. Signature microRNAs in human cornea limbal epithelium.

    PubMed

    Teng, Yufei; Wong, Hoi Kin; Jhanji, Vishal; Chen, Jian Huan; Young, Alvin Lerrmann; Zhang, Mingzhi; Choy, Kwong Wai; Mehta, Jodhbir Singh; Pang, Chi Pui; Yam, Gary Hin-Fai

    2015-05-01

    This study was aimed to identify the signature microRNAs, which regulate the biological processes of corneal epithelial progenitor cell (CEPC) homeostasis and regulation through characterizing the differential expression profile of microRNAs in human limbal epithelium containing adult CEPC versus central corneal epithelium without CEPC. MicroRNA microarray had identified 37 microRNAs enriched in human corneal epithelium. Among them, nine were significantly upregulated in limbal epithelium and one in central corneal epithelium after validation by TaqMan® real-time polymerase chain reaction. In addition to our previous finding of miR-143 and 145, the expression of miR-10b, 126, and 155 was localized in limbal epithelium (LE) (predominantly basal layers) by using locked nucleic acid-based in situ hybridization. Potential target genes were predicted by TargetScan Human v6.0 and compared to the reported human cornea epithelial gene profile GSE5543. Analyzed by web-based Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and DAVID Functional Annotation Bioinformatics Resources v6.7, the downregulated genes were involved in pathways of immune response and cellular protection, apoptosis, and cell movement whereas upregulated genes with cell survival, cell-matrix interaction, and cell-cell adhesion. We found a constant occurrence of miR-143, 145, and 155 in all KEGG pathways regulating limbal epithelial events. By Ingenuity Systems (IPA®) analysis, these microRNAs could cooperatively regulate cell growth and apoptosis via tumor necrosis factor activation and MYC repression. Our findings thus suggest a unique microRNA signature existing in human limbal epithelium and participating in CEPC homeostasis.

  8. Characterization of Side Population Cells from Human Airway Epithelium

    PubMed Central

    Hackett, Tillie-Louise; Shaheen, Furquan; Johnson, Andrew; Wadsworth, Samuel; Pechkovsky, Dmitri V.; Jacoby, David B.; Kicic, Anthony; Stick, Stephen M.; Knight, Darryl A.

    2010-01-01

    The airway epithelium is the first line of contact with the inhaled external environment and is continuously exposed to and injured by pollutants, allergens, and viruses. However, little is known about epithelial repair and in particular the identity and role of tissue resident stem/progenitor cells that may contribute to epithelial regeneration. The aims of the present study were to identify, isolate, and characterize side population (SP) cells in human tracheobronchial epithelium. Epithelial cells were obtained from seven nontransplantable healthy lungs and four asthmatic lungs by pronase digestion. SP cells were identified by verapamil-sensitive efflux of the DNA-binding dye Hoechst 33342. Using flow cytometry, CD45− SP, CD45+ SP, and non-SP cells were isolated and sorted. CD45− SP cells made up 0.12% ± 0.01% of the total epithelial cell population in normal airway but 4.1% ± 0.06% of the epithelium in asthmatic airways. All CD45− SP cells showed positive staining for epithelial-specific markers cytokeratin-5, E-cadherin, ZO-1, and p63. CD45− SP cells exhibited stable telomere length and increased colony-forming and proliferative potential, undergoing population expansion for at least 16 consecutive passages. In contrast with non-SP cells, fewer than 100 CD45− SP cells were able to generate a multilayered and differentiated epithelium in air-liquid interface culture. SP cells are present in human tracheobronchial epithelium, exhibit both short- and longterm proliferative potential, and are capable of generation of differentiated epithelium in vitro. The number of SP cells is significantly greater in asthmatic airways, providing evidence of dysregulated resident SP cells in the asthmatic epithelium. PMID:18653771

  9. Prevalence of ciliated epithelium in apical periodontitis lesions.

    PubMed

    Ricucci, Domenico; Loghin, Simona; Siqueira, José F; Abdelsayed, Rafik A

    2014-04-01

    This article reports on the morphologic features and the frequency of ciliated epithelium in apical cysts and discusses its origin. The study material consisted of 167 human apical periodontitis lesions obtained consecutively from patients presenting for treatment during a period of 12 years in a dental practice operated by one of the authors. All of the lesions were obtained still attached to the root apices of teeth with untreated (93 lesions) or treated canals (74 lesions). The former were obtained by extraction and the latter by extraction or apical surgery. Specimens were processed for histopathologic and histobacteriologic analyses. Lesions were classified, and the type of epithelium, if present, was recorded. Of the lesions analyzed, 49 (29%) were diagnosed as cysts. Of these, 26 (53%) were found in untreated teeth, and 23 (47%) related to root canal-treated teeth. Ciliated columnar epithelium was observed partially or completely lining the cyst wall in 4 cysts, and all of them occurred in untreated maxillary molars. Three of these lesions were categorized as pocket cysts, and the other was a true cyst. Ciliated columnar epithelium-lined cysts corresponded to approximately 2% of the apical periodontitis lesions and 8% of the cysts of endodontic origin in the population studied. This epithelium is highly likely to have a sinus origin in the majority of cases. However, the possibility of prosoplasia or upgraded differentiation into ciliated epithelium from the typical cystic lining squamous epithelium may also be considered. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Effects of formaldehyde on normal xenotransplanted human tracheobronchial epithelium.

    PubMed Central

    Ura, H.; Nowak, P.; Litwin, S.; Watts, P.; Bonfil, R. D.; Klein-Szanto, A. J.

    1989-01-01

    Epithelial cells obtained from autopsies of full-term fetuses or infants less than 1 year old were isolated, amplified in primary cultures and inoculated in deepithelialized rat tracheas. These tracheas were then sealed and transplanted subcutaneously into irradiated athymic nude mice. Four weeks after transplantation the tracheal lumen was completely covered by epithelium, most of which was of mucociliary respiratory type. At this stage, tracheal transplants containing tracheobronchial epithelium from 20 different donors were exposed to silastic devices containing 0, 0.5, 1 and 2 mg paraformaldehyde. The tracheal transplants were examined histologically at 2, 4, 8, and 16 weeks after transplantation. Before sacrifice, all animals were injected with a single pulse of tritiated thymidine. Important epithelial alterations could be seen in the formaldehyde treated transplants with a maximum effect visible at 2 weeks after exposure. The highest dose of 2 mg produced, in most cases, numerous areas of epithelial erosion and inflammation whereas this effect was not as evident with the lower doses. All doses produced areas of hyperplastic epithelium alternating with areas of pleomorphic-atrophic epithelium. Although the differences in predominance of different types of epithelium was not clearly dose-dependent, the labeling index (LI) showed dose dependence between 2 and 4 weeks after initiation of exposure. The maximum mean LI was three to four times higher than normal, although in some focal hyperplastic-metaplastic lesions the LI was increased up to 20 times. These studies show that formaldehyde, although toxic at higher doses, is able to elicit at lower doses a proliferative response of the human respiratory epithelium that is not preceded by a massive toxic effect. This response is similar, although less intense than that of the rat respiratory epithelium in which formaldehyde proved to be a carcinogen. Images Figure 2 Figure 5 PMID:2913828

  11. Detection of human cytomegalovirus in normal and neoplastic breast epithelium

    PubMed Central

    2010-01-01

    Introduction Human cytomegalovirus (HCMV) establishes a persistent life-long infection, and can cause severe pathology in the fetus and the immunocompromised host[1]. Breast milk is the primary route of transmission in humans worldwide, and breast epithelium is thus a likely site of persistent infection and/or reactivation, though this phenomenon has not previously been demonstrated. Increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. We hypothesized that persistent HCMV infection occurs in normal adult breast epithelium and that persistent viral expression might be associated with normal and neoplastic ductal epithelium. Methods Surgical biopsy specimens of normal breast (n = 38) breast carcinoma (n = 39) and paired normal breast from breast cancer patients (n = 21) were obtained. Specimens were evaluated by immunohistochemistry, in situ hybridization, PCR and DNA sequencing for evidence of HCMV antigens and nucleic acids. Results We detected HCMV expression specifically in glandular epithelium in 17/27 (63%) of normal adult breast cases evaluated. In contrast, HCMV expression was evident in the neoplastic epithelium of 31/32 (97%) patients with ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC) cases evaluated (p = 0.0009). Conclusions These findings are the first to demonstrate that persistent HCMV infection occurs in breast epithelium in a significant percentage of normal adult females. HCMV expression was also evident in neoplastic breast epithelium in a high percentage of normal and neoplastic breast tissues obtained from breast cancer patients, raising the possibility that viral infection may be involved in the neoplastic process. PMID:21429243

  12. Impact of the environment on the mammalian corneal epithelium.

    PubMed

    Ringvold, Amund; Anderssen, Erlend; Kjønniksen, Inge

    2003-01-01

    To evaluate whether the content of ascorbic acid in the corneal epithelium and aqueous humor reflects seasonal fluctuations in parallel with environmental changes. Reindeer, cattle, rabbits, and humans were examined, to cover a broad spectrum of overlapping habitats. Ascorbic acid was determined by high-performance liquid chromatography. The thickness of the corneal epithelium was measured, and the number of cells was counted in the tissue sections. Three groups of reindeer eyes were used, two of them collected during summer, the third group during winter. Ascorbate content did not show seasonal variation in either the corneal epithelium or the aqueous humor, whereas epithelial thickness and number of cells decreased significantly from summer to winter. In cattle, ascorbate content, thickness of the epithelium, and number of cells were lower in animals tended indoors compared with those tended outdoors, whereas ascorbate level in the aqueous humor remained similar in both cases. The rabbit showed significantly reduced ascorbate content in the corneal epithelium but not in the aqueous humor in tarsorrhaphy-treated eyes. This procedure did not change epithelial thickness, but the number of cells was slightly increased. The mean epithelial thickness in human corneas successively decreased with increasing latitude and decreasing radiation exposure from the summer season in Oslo to the midnight sun, polar night, conditions in Tromsø, 10 degrees far north, although the differences did not reach statistical significance. Ambient radiation is needed to sustain high ascorbic acid concentration in the corneal epithelium. Corneal epithelial thickness and number of cells are prone to seasonal fluctuations regulated by ambient radiation. In contrast, ascorbate content of the aqueous humor is uninfluenced by environmental change. It is suggested that seasonal adaptation of mammalian corneal epithelium in response to variation in ambient radiation may be nature's strategy for

  13. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia

    PubMed Central

    Tolmachova, Tanya; Anders, Ross; Abrink, Magnus; Bugeon, Laurence; Dallman, Margaret J.; Futter, Clare E.; Ramalho, José S.; Tonagel, Felix; Tanimoto, Naoyuki; Seeliger, Mathias W.; Huxley, Clare; Seabra, Miguel C.

    2006-01-01

    Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs. PMID:16410831

  14. Meckel's diverticulum and ectopic epithelium: Evaluation of a complex relationship

    PubMed Central

    Burjonrappa, Sathyaprasad; Khaing, Phue

    2014-01-01

    Introduction: Meckel's diverticulum is the most common congenital anomaly of the gastrointestinal tract. Currently, for any incidentally discovered Meckel's diverticulum, the management approach is based on weighing the statistical odds of future complications against the risks of a diverticulectomy. Materials and Methods: The temporal relationship between age at Meckel's diverticulectomy and the presence of ectopic epithelium was evaluated in our series. A meta-analysis of all reported recent literature on this condition was subsequently performed to evaluate the strength of the relationship between ectopic epithelium and symptomatic Meckel's diverticulum. Results: There was a paucity of ectopic epithelium in Meckel's diverticulectomy specimens in infants operated on at less than 1 year of age. Having two or more ectopic epithelia in a diverticulum does not appear to carry an additive risk for complications. The meta-analysis confirmed that ectopic epithelium was the most significant factor that influenced surgical intervention in all series of Meckel's diverticulum. Conclusion: The relationship between ectopic epithelium and the development of symptomatic Meckel's diverticulum is complex. Further understanding of the development of ectopic rests in the diverticulum will facilitate elucidating the pathophysiology in symptomatic cases. PMID:24741211

  15. Developmental origin of the posterior pigmented epithelium of iris.

    PubMed

    Wang, Xiaobing; Xiong, Kai; Lu, Lei; Gu, Dandan; Wang, Songtao; Chen, Jing; Xiao, Honglei; Zhou, Guomin

    2015-03-01

    Iris epithelium is a double-layered pigmented cuboidal epithelium. According to the current model, the neural retina and the posterior iris pigment epithelium (IPE) are derived from the inner wall of the optic cup, while the retinal pigment epithelium (RPE) and the anterior IPE are derived from the outer wall of the optic cup during development. Our current study shows evidence, contradicting this model of fetal iris development. We demonstrate that human fetal iris expression patterns of Otx2 and Mitf transcription factors are similar, while the expressions of Otx2 and Sox2 are complementary. Furthermore, IPE and RPE exhibit identical morphologic development during the early embryonic period. Our results suggest that the outer layer of the optic cup forms two layers of the iris epithelium, and the posterior IPE is the inward-curling anterior rim of the outer layer of the optic cup. These findings provide a reasonable explanation of how IPE cells can be used as an appropriate substitute for RPE cells.

  16. Characterization of the global profile of genes expressed in cervical epithelium by Serial Analysis of Gene Expression (SAGE)

    PubMed Central

    Pérez-Plasencia, Carlos; Riggins, Gregory; Vázquez-Ortiz, Guelaguetza; Moreno, José; Arreola, Hugo; Hidalgo, Alfredo; Piña-Sanchez, Patricia; Salcedo, Mauricio

    2005-01-01

    Background Serial Analysis of Gene Expression (SAGE) is a new technique that allows a detailed and profound quantitative and qualitative knowledge of gene expression profile, without previous knowledge of sequence of analyzed genes. We carried out a modification of SAGE methodology (microSAGE), useful for the analysis of limited quantities of tissue samples, on normal human cervical tissue obtained from a donor without histopathological lesions. Cervical epithelium is constituted mainly by cervical keratinocytes which are the targets of human papilloma virus (HPV), where persistent HPV infection of cervical epithelium is associated with an increase risk for developing cervical carcinomas (CC). Results We report here a transcriptome analysis of cervical tissue by SAGE, derived from 30,418 sequenced tags that provide a wealth of information about the gene products involved in normal cervical epithelium physiology, as well as genes not previously found in uterine cervix tissue involved in the process of epidermal differentiation. Conclusion This first comprehensive and profound analysis of uterine cervix transcriptome, should be useful for the identification of genes involved in normal cervix uterine function, and candidate genes associated with cervical carcinoma. PMID:16171524

  17. Morphology of the epithelium of the lower rectum and the anal canal in the adult human.

    PubMed

    Tanaka, Eiichi; Noguchi, Tsuyoshi; Nagai, Kaoruko; Akashi, Yuichi; Kawahara, Katsunobu; Shimada, Tatsuo

    2012-06-01

    The anal canal is an important body part clinically. However, there is no agreement about the epithelium of the anal canal, the anal transitional zone (ATZ) epithelium in particular. The aim of this study is to clarify the structure of the epithelium of the human lower rectum and anal canal. Intact rectum and anus obtained from patients who underwent surgery for rectal carcinoma were examined by light and scanning electron microscopy (LM and SEM). By LM, three types of epithelium were observed in the anal canal: simple columnar epithelium, stratified squamous epithelium, and stratified columnar epithelium. The lower rectum was composed of simple columnar epithelium. SEM findings showed stratified squamous epithelium that consisted of squamous cells with microridges, changing to simple columnar epithelium consisting of columnar cells with short microvilli at the anorectal line. LM and SEM observations in a one-to-one ratio revealed that the area of stratified columnar epithelium based on LM corresponded to the anal crypt and sinus. In conclusion, the epithelium of the human anal canal was fundamentally composed of simple columnar epithelium and stratified squamous epithelium. We found no evidence of the ATZ.

  18. Abnormal Ion Permeation through Cystic Fibrosis Respiratory Epithelium

    NASA Astrophysics Data System (ADS)

    Knowles, M. R.; Stutts, M. J.; Spock, A.; Fischer, N.; Gatzy, J. T.; Boucher, R. C.

    1983-09-01

    The epithelium of nasal tissue excised from subjects with cystic fibrosis exhibited higher voltage and lower conductance than tissue from control subjects. Basal sodium ion absorption by cystic fibrosis and normal nasal epithelia equaled the short-circuit current and was amiloride-sensitive. Amiloride induced chloride ion secretion in normal but not cystic fibrosis tissue and consequently was more effective in inhibiting the short-circuit current in cystic fibrosis epithelia. Chloride ion-free solution induced a smaller hyperpolarization of cystic fibrosis tissue. The increased voltage and amiloride efficacy in cystic fibrosis reflect absorption of sodium ions across an epithelium that is relatively impermeable to chloride ions.

  19. Ultrastructure of free-ending nerve fibres in oesophageal epithelium.

    PubMed Central

    Robles-Chillida, E M; Rodrigo, J; Mayo, I; Arnedo, A; Gómez, A

    1981-01-01

    For the first time, at the ultrastructural level, the existence of free-ending, intraepithelial nerve fibres has been demonstrated in the oesophagus wall of adult cats and monkeys. Their form, the way they penetrate the epithelium, their location within the epithelium and their relationships with neighbouring cells have been established. A sensory function is suggested for this type of ending. Images Figs. 1-4 Figs. 5-6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Figs. 14-15 Figs. 16-17 PMID:7333951

  20. Structural changes in rabbit oral epithelium caused by zinc deficiency.

    PubMed

    Joseph, C E; Ashrafi, S H; Waterhouse, J P

    1981-01-01

    We report the successful establishment of zinc deficiency in rabbits by dietary means. The soybean protein of a standard rabbit diet was replaced by egg albumin. Weanling, New Zealand white rabbits, were fed a low zinc diet containing 1.5 microgram Zn/g of diet. Zinc-deficient rabbits showed stunted growth, weight loss, altered posture, partial alopecia and crusting of skin. Structural alterations in oral epithelium of the zinc-deficient rabbits included in the tongue flattened filiform papillae showing parakeratosis, in the cheek parakeratosis of the normally nonkeratinized epithelium and hyperplasia of the lip epidermis.

  1. Behavior Modification is not...

    ERIC Educational Resources Information Center

    Tawney, James W.; And Others

    1973-01-01

    Identified are misconceptions of behavior modification procedures according to which behavior modification is connected mistakenly with noncontingent reinforcement, partial change of a teacher's behavior, decelerations of inappropriate behaviors only, dependency producing technology, teacher dominated activity, a single type of classroom…

  2. Behavior Modification in Coaching.

    ERIC Educational Resources Information Center

    Lynch, Annette Rutt; Stillman, Stephen M.

    1979-01-01

    An example of behavior modification used in athletic coaching is presented. The case study involves a member of a women's basketball team and details the use of behavior modification for both weight reduction and skill improvement. (JMF)

  3. Behavior Modification is not...

    ERIC Educational Resources Information Center

    Tawney, James W.; And Others

    1973-01-01

    Identified are misconceptions of behavior modification procedures according to which behavior modification is connected mistakenly with noncontingent reinforcement, partial change of a teacher's behavior, decelerations of inappropriate behaviors only, dependency producing technology, teacher dominated activity, a single type of classroom…

  4. Readers of histone modifications

    PubMed Central

    Yun, Miyong; Wu, Jun; Workman, Jerry L; Li, Bing

    2011-01-01

    Histone modifications not only play important roles in regulating chromatin structure and nuclear processes but also can be passed to daughter cells as epigenetic marks. Accumulating evidence suggests that the key function of histone modifications is to signal for recruitment or activity of downstream effectors. Here, we discuss the latest discovery of histone-modification readers and how the modification language is interpreted. PMID:21423274

  5. Biotransformation enzyme expression in the nasal epithelium of woodrats.

    PubMed

    Skopec, Michele M; Hale, Andrew; Torregrossa, Ann-Marie; Dearing, M Denise

    2013-01-01

    When herbivores come in contact with volatile plant secondary compounds (PSC) that enter the nasal passages the only barrier between the nasal cavity and the brain is the nasal epithelium and the biotransformation enzymes present there. The expression of two biotransformation enzymes Cytochrome P450 2B (CYP2B) and glutathione-S-transferase (GST) was investigated in the nasal epithelia and livers of three populations of woodrats. One population of Neotoma albigula was fed juniper that contains volatile terpenes. Juniper caused upregulation of CYP2B and GST in the nasal epithelium and the expression of CYP2B and GST in the nasal epithelium was correlated to liver expression, showing that the nasal epithelia responds to PSC and the response is similar to the liver. Two populations of Neotoma bryanti were fed creosote that contains less volatile phenolics. The creosote naive animals upregulated CYP2B in their nasal epithelia while the creosote experienced animals upregulated GST. There was no correlation between CYP2B and GST expression in the nasal epithelia and livers of either population. The response of the nasal epithelium to PSC seems to be an evolved response that is PSC and experience dependent. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Cigarette smoke inhibition of ion transport in canine tracheal epithelium

    SciTech Connect

    Welsh, M.J.

    1983-06-01

    To determine the effect of cigarette smoke on airway epithelial ion transport, the electrical properties and transepithelial Na and Cl fluxes were measured in canine tracheal epithelium. In vivo, the inhalation of the smoke from one cigarette acutely and reversibly decreased the electrical potential difference across the tracheal epithelium. In vitro, exposure of the mucosal surface of the epithelium to cigarette smoke decreased the short circuit current and transepithelial resistance. The decrease in short circuit current was due to an inhibition of the rate of Cl secretion with minimal effect on the rate of Na absorption. The effect of cigarette smoke was reversible, was not observed upon exposure of the submucosal surface to smoke, and was most pronounced when secretion was stimulated. The particulate phase of smoke was largely responsible for the inhibitory effect, since filtering the smoke minimized the effect. The effect of cigarette smoke was not prevented by addition of antioxidants to the bathing solutions, suggesting that the inhibition of Cl secretion cannot be entirely attributed to an oxidant mechanism. These results indicate that cigarette smoke acutely inhibits active ion transport by tracheal epithelium, both in vivo and in vitro. This effect may explain, in part, both the abnormal mucociliary clearance and the airway disease observed in cigarette smokers.

  7. Quantum Dot Distribution in the Olfactory Epithelium After Nasal Delivery

    NASA Astrophysics Data System (ADS)

    Garzotto, D.; De Marchis, S.

    2010-10-01

    Nanoparticles are used in a wide range of human applications from industrial to bio-medical fields. However, the unique characteristics of nanoparticles, such as the small size, large surface area per mass and high reactivity raises great concern on the adverse effects of these particles on ecological systems and human health. There are several pioneer studies reporting translocation of inhaled particulates to the brain through a potential neuronal uptake mediated by the olfactory nerve (1, 2, 3). However, no direct evidences have been presented up to now on the pathway followed by the nanoparticles from the nose to the brain. In addition to a neuronal pathway, nanoparticles could gain access to the central nervous system through extracellular pathways (perineuronal, perivascular and cerebrospinal fluid paths). In the present study we investigate the localization of intranasally delivered fluorescent nanoparticles in the olfactory epithelium. To this purpose we used quantum dots (QDs), a model of innovative fluorescent semiconductor nanocrystals commonly used in cell and animal biology (4). Intranasal treatments with QDs were performed acutely on adult CD1 mice. The olfactory epithelium was collected and analysed by confocal microscopy at different survival time after treatment. Data obtained indicate that the neuronal components of the olfactory epithelium are not preferentially involved in QDs uptake, thus suggesting nanoparticles can cross the olfactory epithelium through extracellular pathways.

  8. Posterior scleritis with retinal pigment epithelium rip: an unusual presentation.

    PubMed

    Fiebai, Bassey; Padhi, Tapas Ranjan; Panda, Krushna Gopal; Modi, Rohit Ramesh

    2015-02-01

    Posterior scleritis is a great mimicker and can cause irreversible visual loss because of late or misdiagnosis. We report a case of retinal pigment epithelial rip in the event of nodular posterior scleritis that is hardly reported in the literature. The authors hypothesize the rip to be a result of inflammation, exudation and continuing pressure by the fluid or granuloma on the pigment epithelium.

  9. Examination of the reticular epithelium of the bovine pharyngeal tonsil

    USDA-ARS?s Scientific Manuscript database

    The nasopharyngeal tonsil (adenoid), located at the posterior of the nasopharynx is ideally positioned to sample antigens entering through the nasal cavity or oral cavity. Entering antigens will first contact tonsilar epithelium. To better understand the cellular composition of this important epithe...

  10. Coelomic epithelium-derived cells in visceral morphogenesis.

    PubMed

    Ariza, Laura; Carmona, Rita; Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón

    2016-03-01

    Coelomic cavities of vertebrates are lined by a mesothelium which develops from the lateral plate mesoderm. During development, the coelomic epithelium is a highly active cell layer, which locally is able to supply mesenchymal cells that contribute to the mesodermal elements of many organs and provide signals which are necessary for their development. The relevance of this process of mesenchymal cell supply to the developing organs is becoming clearer because genetic lineage tracing techniques have been developed in recent years. Body wall, heart, liver, lungs, gonads, and gastrointestinal tract are populated by cells derived from the coelomic epithelium which contribute to their connective and vascular tissues, and sometimes to specialized cell types such as the stellate cells of the liver, the Cajal interstitial cells of the gut or the Sertoli cells of the testicle. In this review we collect information about the contribution of coelomic epithelium derived cells to visceral development, their developmental fates and signaling functions. The common features displayed by all these processes suggest that the epithelial-mesenchymal transition of the embryonic coelomic epithelium is an underestimated but key event of vertebrate development, and probably it is shared by all the coelomate metazoans.

  11. The multi-tasking gut epithelium of insects.

    PubMed

    Huang, Jia-Hsin; Jing, Xiangfeng; Douglas, Angela E

    2015-12-01

    The insect gut epithelium plays a vital role in multiple processes, including nutrition, immunity and osmoregulation. Recent research is revealing the molecular and biochemical basis of these functions. For example, the pattern of nutrient acquisition by the gut epithelium is integrated into the overall regulation of nutrient allocation, as illustrated by evidence for systemic controls over expression of key genes coding digestive enzymes and transporters in carbohydrate acquisition; and the abundance and diversity of microorganisms in the gut lumen is regulated by multiple molecular properties of the gut epithelial cells, including the synthesis of enzymes that produce reactive oxygen species and anti-microbial peptides. These traits are underpinned by the function of the gut epithelium as a selective barrier which mediates the controlled movement of water, ions, metabolites and macromolecules between the gut lumen and insect tissues. Breakdown of the gut epithelial barrier has been implicated in muscle paralysis of insects at low temperatures (chill coma) and in aging. The key challenge for future research is to understand how the multiple functions of the insect gut epithelium are integrated by signaling interactions among epithelial cells, the gut microbiota and other insect organs.

  12. The Olfactory Neural Epithelium As a Tool in Neuroscience.

    PubMed

    Lavoie, Joëlle; Gassó Astorga, Patricia; Segal-Gavish, Hadar; Wu, YeeWen Candace; Chung, Youjin; Cascella, Nicola G; Sawa, Akira; Ishizuka, Koko

    2017-02-01

    Capturing both dynamic changes (state) and persistent signatures (trait) directly associated with disease at the molecular level is crucial in modern medicine. The olfactory neural epithelium, easily accessible in clinical settings, is a promising surrogate model in translational brain medicine, complementing the limitations in current engineered cell models.

  13. Increased expression of nestin in human pterygial epithelium

    PubMed Central

    Wen, Dan; Wang, Hua; Heng, Boon Chin; Liu, Hua

    2013-01-01

    AIM To investigate the distribution of nestin-positive cells in pterygium, as well as the relationship between nestin-positive cells and proliferative cells in the pathogenesis of pterygium. METHODS Nine pterygium specimens and 5 normal conjunctiva specimens were investigated. All explanted specimens were immediately immersed in 5-Ethynyl-2′-deoxyuridine, and were subjected to hematoxylin and eosin staining, as well as immunostaining to detect nestin. RESULTS Small sub-populations of nestin-expressing cells in both normal and pterygial conjunctiva epithelium were found. These were located at the superficial layer of the epithelium, and were significantly increased (P=0.007) and spread out in the pterygial conjunctiva epithelium, even though these cells were mitotically quiescent. CONCLUSION In pterygium, more nestin-positive cells were present at the superficial layer of the epithelium. With growing scientific evidence that nestin plays an important role in defining various specialized cell types, such as stem cells, cancer cells and angiogenic cells, further investigations on the roles of nestin-expressing cells in pterygium may help to uncover the mechanisms of initiation, development and the prognosis of this disease. PMID:23826515

  14. Notch signaling promotes the corneal epithelium wound healing.

    PubMed

    Lu, Huayi; Lu, Qingxian; Zheng, Yajuan; Li, Qiutang

    2012-01-01

    The Notch signaling pathway plays crucial roles in regulation of cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. This study was designed to test the effects of enhanced Notch activity on corneal epithelium homeostasis and wound healing using the transgenic mice that overexpressed an activated Notch1 (NICD) in cornea epithelium. The studies were performed on R26(fN1-ICD) transgenic mice that carry a NICD cDNA (cDNA) whose expression is prevented by a "Lox-STOP-Lox" cassette. When this transgenic mouse is bred to a mouse strain carrying a Cre recombinase expression cassette driven by a tissue-specific keratin 14 (K14) promoter, the floxed "STOP" cassette is excised and NICD is expressed in the cornea epithelium. The expression level of NICD and its downstream target genes, hairy and enhancer of split 1 (Hes1) and hairy/enhancer-of-split related with YRPW motif 1 (Hey1), in the transgenic corneal epithelium was examined by quantitative PCR (qPCR). The phenotypes and morphology of the transgenic corneal epithelium were compared with that of wild type (WT) controls. The proliferation rate of the epithelial cells was assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation and the differentiation statues were examined by K14, tumor protein p63 (p63), K12, and zona occludens 1 (ZO-1) immunoreactivity at either normal developmental condition or after corneal epithelial debridement. The corneal epithelial response to wound healing was studied by fluorescent staining and Richardson's staining macroscopically and by H&E staining at microscope level at 0, 6, 12, 18, and 24 h post injury. Although overexpression of NICD in cornea epithelium led to upregulation of its downstream targets, i.e., Hes1 and Hey1, this did not alter corneal epithelial cell proliferation and differentiation. However, wound healing induced Notch activity and overexpression of NICD promoted corneal epithelial wound healing, which was in agreement with more

  15. The effects of coronavirus on human nasal ciliated respiratory epithelium.

    PubMed

    Chilvers, M A; McKean, M; Rutman, A; Myint, B S; Silverman, M; O'Callaghan, C

    2001-12-01

    Human coronavirus (HCoV) accounts for 15-30% of common colds, but only one case report has described the effect of a coronavirus infection, that was asymptomatic, on human respiratory epithelium. The authors examined the effects of infection with HCoV on ciliary structure and function in healthy volunteers infected by intranasal inoculation with HCoV 229E. A further four volunteers were sham infected with ultraviolet-inactivated virus. Immediately before inoculation (day 0) and 3 days later (day 3), ciliated epithelium was obtained by brushing the inferior nasal turbinate. Ciliary beat frequency was determined and beat pattern analysed for evidence of dyskinesia (0=normal, 3=severely dyskinetic) using digital high-speed video photography. Ciliary ultrastructure was examined by transmission electron microscopy. Symptom diaries were kept for the duration of the study. All subjects inoculated with HCoV, including the three who did not develop symptoms of an upper respiratory tract infection, had disruption of their respiratory epithelium on day 3. Although there was no difference in the mean ciliary beat frequency between day 0 (11.3 Hz (95% confidence interval (CI): 8.6-14.0) and day 3 (9.4 Hz (95% CI 7.2-11.6)), there was a significant increase (p<0.05) in the ciliary dyskinesia score between day 0 (0.2 (95% CI 0-0.5)) and day 3 (1.1 (95% CI 0.5-1.7). In sham-infected subjects, no differences in epithelial integrity, or ciliary structure and function were found between day 0 and day 3. Inoculation of healthy volunteers with human coronavirus caused disruption of the ciliated epithelium and ciliary dyskinesia. This is likely to impair mucociliary clearance. Damage to the respiratory epithelium, due to human coronavirus infection, may occur without overt clinical symptoms.

  16. Transcriptomic profiles differentiate normal rectal epithelium and adenocarcinoma.

    PubMed

    Hogan, J; Dejulius, K; Liu, X; Coffey, J C; Kalady, M F

    2015-05-01

    Adenocarcinoma is a histologic diagnosis based on subjective findings. Transcriptional profiles have been used to differentiate normal tissue from disease and could provide a means of identifying malignancy. The goal of this study was to generate and test transcriptomic profiles that differentiate normal from adenocarcinomatous rectum. Comparisons were made between cDNA microarrays derived from normal epithelium and rectal adenocarcinoma. Results were filtered according to standard deviation to retain only highly dysregulated genes. Genes differentially expressed between cancer and normal tissue on two-groups t test (P < 0.05, Bonferroni P value adjustment) were further analyzed. Genes were rank ordered in terms of descending fold change. For each comparison (tumor versus normal epithelium), those 5 genes with the greatest positive fold change were grouped in a classifier. Five separate tests were applied to evaluate the discriminatory capacity of each classifier. Genetic classifiers derived comparing normal epithelium with malignant rectal epithelium from pooled stages had a mean sensitivity and specificity of 99.6% and 98.2%, respectively. The classifiers derived from comparing normal and stage I cancer had comparable mean sensitivities and specificities (97% and 98%, respectively). Areas under the summary receiver-operator characteristic curves for each classifier were 0.981 and 0.972, respectively. One gene was common to both classifiers. Classifiers were tested in an independent Gene Expression Omnibus-derived dataset. Both classifiers retained their predictive properties. Transcriptomic profiles comprising as few as 5 genes are highly accurate in differentiating normal from adenocarcinomatous rectal epithelium, including early-stage disease.

  17. Alterations to the Bull Sperm Surface Proteins That Bind Sperm to Oviductal Epithelium1

    PubMed Central

    Hung, Pei-hsuan; Suarez, Susan S.

    2012-01-01

    ABSTRACT Three Binder of SPerm proteins (BSP1, BSP3, BSP5) are secreted by bovine seminal vesicles into seminal plasma and adsorbed onto sperm. When sperm inseminated into the female reach the oviduct, the BSP proteins bind them to its epithelial lining, forming a sperm storage reservoir. Previously, we reported that binding of capacitated sperm to oviductal epithelium in vitro is lower than that of uncapacitated sperm and we proposed that reduced binding was due to loss of BSP proteins during capacitation. Because of differences in amino acid sequences, we predicted that each BSP would respond differently to capacitating conditions. To test whether all three BSP proteins were lost from sperm during capacitation and whether the kinetics of loss differed among the three BSP proteins, ejaculated bull sperm were incubated under various capacitating conditions, and then the amounts of BSP proteins remaining on the sperm were assayed by Western blotting. Capacitation was assayed by analysis of protein tyrosine phosphorylation. While loss of BSP1 was not detected, most of the BSP5 was lost from sperm during incubation in TALP medium, even without addition of the capacitation enhancers heparin and dbcAMP-IBMX. Surprisingly, a smaller molecular mass was detected by anti-BSP3 antibodies in extracts of incubated sperm. Its identity was confirmed as BSP3 by mass spectrometry, indicating that BSP3 undergoes modification on the sperm surface. These changes in the composition of BSP proteins on sperm could play a role in releasing sperm from the storage reservoir by modifying sperm interactions with the oviductal epithelium. PMID:22837481

  18. Peripapillary haemorrhagic retinal pigment epithelium detachment following radial optic neurotomy.

    PubMed

    Maia, Mauricio; Farah, Michel E; Aggio, Fabio B; Rodrigues, Eduardo B; de Souza, Eduardo C; Magalhães, Octaviano

    2007-01-01

    Central retinal vein occlusion is a common vascular cause of blidness. In this paper, we first report focal haemorrhagic pigment epithelium detachment and chorioretinal anastomosis in the peripapillary area as an intraoperative complication of radial optic neurotomy (RON). A 65-year-old white man presented with ischaemic central vein occlusion OS. He underwent vitrectomy with RON, panretinal photocoagulation and intravitreal injection of triamcinolone acetonide. A circumscribed subretinal haemorrhage was noted intraoperatively at the nasal site of the RON. The haemorrhage size decreased at the seventh postoperative day when an optical coherence tomography scan disclosed a haemorrhagic pigment epithelium detachment. Fluorescein angiography and fundus photograph revealed a chorioretinal anastomosis formation nasal to the optic nerve confirmed by indocyanine green angiography. Best-correlated visual acuity improved from hand movements to 6/18 at the fourth week and it was stable until last examination. This case illustrates the role of chorioretinal anastomosis formation in the vision improvement following RON.

  19. Localization of neurotrophin receptors in olfactory epithelium and bulb.

    PubMed

    Deckner, M L; Frisén, J; Verge, V M; Hökfelt, T; Risling, M

    1993-12-13

    We used in situ hybridization to localize trk, trkB and trkC mRNA, in rat and cat olfactory bulb. Expression of mRNA encoding truncated trkB receptors was seen in all layers, while only very modest full-length trkB expression could be detected. trkC hybridization was seen in all layers, most dense in the mitral cell layer. The localization of full-length tyrosine kinase trkB receptor in olfactory bulb and epithelium was examined with immunohistochemistry. trkB-like immunoreactivity was seen in the fila olfactoria, epithelium and in vitro, in olfactory sensory neurones. Since BDNF is expressed by olfactory sensory neurone target cells in the olfactory bulb, these data suggest that BDNF may act as a target derived neurotrophic factor in the primary olfactory system.

  20. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  1. Responses of the Rat Olfactory Epithelium to Retronasal Air Flow

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa; Phan, Maggie

    2008-01-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very non-polar, hydrophobic odorants were used. While the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the non-polar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recording from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally vs. retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  2. Gallbladder epithelium as a niche for chronic Salmonella carriage.

    PubMed

    Gonzalez-Escobedo, Geoffrey; Gunn, John S

    2013-08-01

    Although typhoid fever has been intensively studied, chronic typhoid carriage still represents a problem for the transmission and persistence of the disease in areas of endemicity. This chronic state is highly associated with the presence of gallstones in the gallbladder of infected carriers upon which Salmonella can form robust biofilms. However, we hypothesize that in addition to gallstones, the gallbladder epithelium aids in the establishment/maintenance of chronic carriage. In this work, we present evidence of the role of the gallbladder epithelium in chronic carriage by a mechanism involving invasion, intracellular persistence, and biofilm formation. Salmonella was able to adhere to and invade polarized gallbladder epithelial cells apically in the absence and presence of bile in a Salmonella pathogenicity island 1 (SPI-1)-dependent manner. Intracellular replication of Salmonella was also evident at 12 and 24 h postinvasion. A flowthrough system revealed that Salmonella is able to adhere to and form extensive bacterial foci on gallbladder epithelial cells as early as 12 h postinoculation. In vivo experiments using a chronic mouse model of typhoid carriage showed invasion and damage of the gallbladder epithelium and lamina propria up to 2 months after Salmonella infection, with an abundant presence of macrophages, a relative absence of neutrophils, and extrusion of infected epithelial cells. Additionally, microcolonies of Salmonella cells were evident on the surface of the mouse gallbladder epithelia up to 21 days postinfection. These data reveal a second potential mechanism, intracellular persistence and/or bacterial aggregation in/on the gallbladder epithelium with luminal cell extrusion, for Salmonella maintenance in the gallbladder.

  3. Nanoparticle incorporation of melittin reduces sperm and vaginal epithelium cytotoxicity.

    PubMed

    Jallouk, Andrew P; Moley, Kelle H; Omurtag, Kenan; Hu, Grace; Lanza, Gregory M; Wickline, Samuel A; Hood, Joshua L

    2014-01-01

    Melittin is a cytolytic peptide component of bee venom which rapidly integrates into lipid bilayers and forms pores resulting in osmotic lysis. While the therapeutic utility of free melittin is limited by its cytotoxicity, incorporation of melittin into the lipid shell of a perfluorocarbon nanoparticle has been shown to reduce its toxicity in vivo. Our group has previously demonstrated that perfluorocarbon nanoparticles containing melittin at concentrations <10 µM inhibit HIV infectivity in vitro. In the current study, we assessed the impact of blank and melittin-containing perfluorocarbon nanoparticles on sperm motility and the viability of both sperm and vaginal epithelial cells. We found that free melittin was toxic to sperm and vaginal epithelium at concentrations greater than 2 µM (p<0.001). However, melittin nanoparticles were not cytotoxic to sperm (p = 0.42) or vaginal epithelium (p = 0.48) at an equivalent melittin concentration of 10 µM. Thus, nanoparticle formulation of melittin reduced melittin cytotoxicity fivefold and prevented melittin toxicity at concentrations previously shown to inhibit HIV infectivity. Melittin nanoparticles were toxic to vaginal epithelium at equivalent melittin concentrations ≥20 µM (p<0.001) and were toxic to sperm at equivalent melittin concentrations ≥40 µM (p<0.001). Sperm cytotoxicity was enhanced by targeting of the nanoparticles to the sperm surface antigen sperm adhesion molecule 1. While further testing is needed to determine the extent of cytotoxicity in a more physiologically relevant model system, these results suggest that melittin-containing nanoparticles could form the basis of a virucide that is not toxic to sperm and vaginal epithelium. This virucide would be beneficial for HIV serodiscordant couples seeking to achieve natural pregnancy.

  4. Effect of carbonated drinks on wound healing of oral epithelium.

    PubMed

    Fahim, Ayesha; Ilyas, Muhammad Sharjeel; Jafari, Fahim Haider; Farzana, Fauzia

    2016-01-01

    Carbonated drinks are the second most consumed non-alcoholic beverages in the world after tea. The effects of these drinks on hard tissues and vital organs of the body have been proved beyond doubt. This study, however, explains the effect of these drinks on wound healing of oral epithelium. Thirty-six male Wistar rats were considered for the study. A circular wound of 3.0 mm was created on the buccal mucosa of all animals and they were divided into two groups. Animals in group 1 were fed with chow pellet and water, while those in group 2 were fed with a commercially available carbonated drink instead of water. Six animals from each group were euthanized at 0, 7, and 21 days. Wound site was histologically assessed for differences in thickness and characteristics of the regenerating epithelium between two groups. There was a marked difference in the healing pattern between the two groups. Animals in group 1 showed a normal healing pattern at the end of day 21. In the group 2, the regenerated epithelium showed hyperplasia and hyperkeratosis along with acanthosis at the end of the experiment with a subsequent delayed inflammatory reaction at day 21. Consumption of carbonated drinks can disrupt oral wound healing. The contents in carbonated drinks have a proinflammatory action on the soft tissue. Results suggest that epithelial changes seen in experimental group 2 could be a result of constant irritation by the acidic and fizzy nature of carbonated drinks.

  5. Expression of interleukin-18 by porcine airway and intestinal epithelium.

    PubMed

    Muneta, Yoshihiro; Goji, Noriko; Tsuji, Noriko M; Mikami, Osamu; Shimoji, Yoshihiro; Nakajima, Yasuyuki; Yokomizo, Yuichi; Mori, Yasuyuki

    2002-08-01

    In this study, we investigated the expression of interleukin-18 (IL-18) in porcine airway and intestinal epithelium. We found constitutive protein expression of precursor IL-18 in primary culture of porcine airway epithelium. Immunohistochemical staining revealed that porcine IL-18 was localized in the porcine airway epithelium and that it was significantly upregulated with experimental endotoxemia induced by Escherichia coli lipopolysaccharide (LPS) inoculation. We also confirmed by immunohistochemical staining that IL-18 was expressed in porcine intestinal epithelial cells. Moreover, the concentration of IL-18 in intestinal cell lysates of 1-day-old piglets was about 3-fold and 6-fold less than that in those of 1-month-old and 6-month-old piglets, respectively. Exogenous IL-18 was able to induce interferon-gamma (IFN-gamma) in the peripheral blood of 1-day-old piglets, whereas concanavalin A (ConA) was not able to induce IFN-gamma in the same condition. These results suggest that mucosal epithelial cells are among the major sources of IL-18 in pig and that IL-18 may be useful as a therapeutic agent for the enhancement of immune responses and as a vaccine adjuvant, especially in neonatal piglets.

  6. The oxidant role of 4-hydroxynonenal in corneal epithelium.

    PubMed

    Chen, Longlong; Zong, Rongrong; Zhou, Jing; Ge, Lianping; Zhou, Tong; Ma, Jian-xing; Liu, Zuguo; Zhou, Yueping

    2015-05-29

    4-Hydroxynonenal (4-HNE or HNE) is a main endogenous product of cellular lipid peroxidation in tissues and is reported to play pathogenic roles in eye diseases. Here we investigated the association between 4-HNE and oxidative stress in the corneal epithelium. 4-HNE suppressed the cell viability of human corneal epithelial cells (HCE) in a concentration dependent manner. 4-HNE significantly increased the level of 3-Nitrotyrosine (3-NT), a marker of oxidative stress, in HCE cells and corneal epithelium of rats by immunofluorescent staining and Western blot analysis. To its underlying mechanistic on ROS system, 4-HNE elevated the ROS generation enzyme NADPH oxidase 4 (NOX4) and induced the activation of NF-E2-related factor-2 (NRF2) and its downstream effectors: NAD(P)H dehydrogenase (quinone 1) (NQO1) and glutathione S-transferase P (GSTP). Furthermore, N-acetylcysteine (NAC), an antioxidant and ROS scavenger, antagonized the inhibitory and oxidant effects of 4-HNE on the corneal epithelial cells. In conclusion, 4-HNE plays an oxidant role in the corneal epithelium and this work provides a new strategy for the pathogenesis and treatment of corneal diseases.

  7. Effect of carbonated drinks on wound healing of oral epithelium

    PubMed Central

    Fahim, Ayesha; Ilyas, Muhammad Sharjeel; Jafari, Fahim Haider; Farzana, Fauzia

    2015-01-01

    Background Carbonated drinks are the second most consumed non-alcoholic beverages in the world after tea. The effects of these drinks on hard tissues and vital organs of the body have been proved beyond doubt. This study, however, explains the effect of these drinks on wound healing of oral epithelium. Methods Thirty-six male Wistar rats were considered for the study. A circular wound of 3.0 mm was created on the buccal mucosa of all animals and they were divided into two groups. Animals in group 1 were fed with chow pellet and water, while those in group 2 were fed with a commercially available carbonated drink instead of water. Six animals from each group were euthanized at 0, 7, and 21 days. Wound site was histologically assessed for differences in thickness and characteristics of the regenerating epithelium between two groups. Results There was a marked difference in the healing pattern between the two groups. Animals in group 1 showed a normal healing pattern at the end of day 21. In the group 2, the regenerated epithelium showed hyperplasia and hyperkeratosis along with acanthosis at the end of the experiment with a subsequent delayed inflammatory reaction at day 21. Conclusion Consumption of carbonated drinks can disrupt oral wound healing. The contents in carbonated drinks have a proinflammatory action on the soft tissue. Results suggest that epithelial changes seen in experimental group 2 could be a result of constant irritation by the acidic and fizzy nature of carbonated drinks. PMID:26937370

  8. Biomechanics of liquid-epithelium interactions in pulmonary airways

    PubMed Central

    Ghadiali, Samir N.; Gaver, Donald P.

    2008-01-01

    The delicate structure of the lung epithelium makes it susceptible to surface tension induced injury. For example, the cyclic reopening of collapsed and/or fluid-filled airways during the ventilation of injured lungs generates hydrodynamic forces that further damage the epithelium and exacerbate lung injury. The interactions responsible for epithelial injury during airway reopening are fundamentally multiscale, since air-liquid interfacial dynamics affect global lung mechanics, while surface tension forces operate at the molecular and cellular scales. This article will review the current state-of-knowledge regarding the effect of surface tension forces on a) the mechanics of airway reopening and b) epithelial cell injury. Due to the complex nature of the liquid-epithelium system, a combination of computational and experimental techniques are being used to elucidate the mechanisms of surface-tension induced lung injury. Continued research is leading to an integrated understanding of the biomechanical and biological interactions responsible for cellular injury during airway reopening. This information may lead to novel therapies that minimize ventilation induced lung injury. PMID:18511356

  9. Activin Potentiates Proliferation in Mature Avian Auditory Sensory Epithelium

    PubMed Central

    McCullar, Jennifer S.; Ty, Sidya; Campbell, Sean; Oesterle, Elizabeth C.

    2010-01-01

    Humans and other mammals are highly susceptible to permanent hearing and balance deficits due to an inability to regenerate sensory hair cells lost to inner ear trauma. In contrast, nonmammalian vertebrates, such as birds, robustly regenerate replacement hair cells and restore hearing and balance functions to near-normal levels. There is considerable interest in understanding the cellular mechanisms responsible for this difference in regenerative capacity. Here we report on involvement of the TGFβ superfamily type II activin receptors, Acvr2a and Acvr2b, in regulating proliferation in mature avian auditory sensory epithelium. Cultured, posthatch avian auditory sensory epithelium treated with Acvr2a and Acvr2b inhibitors shows decreased proliferation of support cells, the cell type that gives rise to new hair cells. Conversely, addition of activin A, an Acvr2a/b ligand, potentiates support cell proliferation. Neither treatment (inhibitor or ligand) affected hair cell survival, suggesting a specific effect of Acvr2a/b signaling on support cell mitogenicity. Using immunocytochemistry, Acvr2a, Acvr2b, and downstream Smad effector proteins were differentially localized in avian and mammalian auditory sensory epithelia. Collectively, these data suggest that signaling through Acvr2a/b promotes support cell proliferation in mature avian auditory sensory epithelium and that this signaling pathway may be incomplete, or actively blocked, in the adult mammalian ear. PMID:20071511

  10. Olfactory receptor gene expression in tiger salamander olfactory epithelium.

    PubMed

    Marchand, James E; Yang, Xinhai; Chikaraishi, Dona; Krieger, Jurgen; Breer, Heinz; Kauer, John S

    2004-06-28

    Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods. Copyright 2004 Wiley-Liss, Inc.

  11. Passive Electrical Properties of Toad Urinary Bladder Epithelium

    PubMed Central

    Reuss, Luis; Finn, Arthur L.

    1974-01-01

    The electrical resistances of the transcellular and paracellular pathways across the toad urinary bladder epithelium (a typical "tight" sodium-transporting epithelium) were determined by two independent sets of electrophysiological measurements: (a) the measurement of the total transepithelial resistance, the ratio of resistance of the apical to the basal cell membrane, and cable analysis of the voltage spread into the epithelium; (b) the measurement of the total transepithelial resistance and the ratio of resistances of both cell membranes before and after replacing all mucosal sodium with potassium (thus, increasing selectively the resistance of the apical membrane). The results obtained with both methods indicate the presence of a finite transepithelial shunt pathway, whose resistance is about 1.8 times the resistance of the transcellular pathway. Appropriate calculations show that the resistance of the shunt pathway is almost exclusively determined by the zonula occludens section of the limiting junctions. The mean resistance of the apical cell membrane is 1.7 times that of the basal cell membrane. The use of nonconducting materials on the mucosal side allowed us to demonstrate that apparently all epithelial cells are electrically coupled, with a mean space constant of 460 µm, and a voltage spread consistent with a thin sheet model. PMID:4209766

  12. Mucosal adenosine stimulates chloride secretion in canine tracheal epithelium

    SciTech Connect

    Pratt, A.D.; Clancy, G.; Welsh, M.J.

    1986-08-01

    Adenosine is a local regulator of a variety of physiological functions in many tissues and has been observed to stimulate secretion in several Cl-secreting epithelia. In canine tracheal epithelium the authors found that adenosine stimulates Cl secretion from both the mucosal and submucosal surfaces. Addition of adenosine, or its analogue 2-chloroadenosine, to the mucosal surface potently stimulated Cl secretion with no effect on the rate of Na absorption. Stimulation resulted from an interaction of adenosine with adenosine receptors, because it was blocked by the adenosine receptor blocker, 8-phenyltheophylline. The adenosine receptor was a stimulatory receptor as judged by the rank-order potency of adenosine and its analogues and by the increase in cellular adenosine 3',5'-cyclic monophosphate levels produced by 2-chloroadenosine. Adenosine also stimulated Cl secretion when it was added to the submucosal surface, although the maximal increase in secretion was less and it was much less potent. The observation that mucosal 8-phenyletheophylline blocked the effect of submucosal 2-chloroadenosine, whereas submucosal 8-phenyltheophylline did not prevent a response to mucosal or submucosal 2-chloroadenosine, suggests that adenosine receptors are located on the mucosal surface. Thus submucosal adenosine may stimulate secretion by crossing the epithelium and interacting with receptors located on the mucosal surface. Because adenosine can be released from mast cells located in the airway lumen in response to inhaled material, and because adenosine stimulated secretion from the mucosal surface, it may be in a unique position to control the epithelium on a regional level.

  13. Candida albicans Ultrastructure: Colonization and Invasion of Oral Epithelium

    PubMed Central

    Howlett, Julie A.; Squier, Christopher A.

    1980-01-01

    The colonization and invasion of various animal oral mucosae by Candida albicans were examined in an organ culture model. Scanning and transmission electron microscopy of the oral epithelium between 12 and 30 h after inoculation with the fungus revealed the morphological relationships between host and parasite. Examination of the fungi in thin sections showed five distinct layers in the cell wall of C. albicans within the epithelium, but changes were evident in the organization and definition of the outer cell wall layers in budding hyphae and in hyphae participating in colonization and invasion of the epithelial cells. Adherence of the fungus to the superficial cells of the oral mucosa appeared to involve intimate contact between the epithelial cell surface and the deeper layers of the fungal cell wall. During invasion a close seal was maintained between the invading hyphae and the surrounding epithelial cell envelope, there being no other evidence of damage to the host cell surface except at the site of entry. Within the epithelial cells there was only occasional loss of cytoplasmic components in the vicinity of the invading hyphae. These findings would suggest that enzymatic lysis associated with the invasive process is localized and that the mechanical support provided by surface adherence and the intimate association between the fungus and the epithelial cell envelope may permit growth of Candida on through the epithelium. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:6995338

  14. Fine structure of the olfactory epithelium in some primates.

    PubMed Central

    Loo, S K

    1977-01-01

    Electron microscopy of the olfactory epithelium of two prosimian primates, the trees shrew and slow loris, and two simian primates, the macaque and gibbon, has shown that this epithelium consists of three cell types, receptor cells, supporting cells and basal cells, as in other mammals. Receptor cells were ciliated in all the animals investigated except the tree shrew, where, in addition to ciliated receptors, nonciliated receptors bearing only microvilli were occasionally present. Developing receptor cells containing numerous centrioles between nucleus and cell surface were occasionally observed and these cells had poorly developed olfactory knobs and few mitochondria. The olfactory epithelium was similar in morphology in all four species, except that supporting cells showed progressively more numerous, more slender and longer microvilli on their distal surface from tree shrew to slow loris to macaque to gibbon. This may imply a more discriminatory surface in the higher primates in view of the close relationship of these microvilli to the receptor cell surface. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:838619

  15. Modifications of mitosis

    SciTech Connect

    1993-12-31

    Chapter 15, discusses modifications of mitosis, including endoreduplication, polyteny, endomitosis, C-mitosis, restitution, amitosis and multipolar mitoses. Apart from multipolar mitosis, all other mitotic modifications are characterized by an absent or defective spindle, and in most cases these result in the duplication of the chromosome number. 29 refs., 4 figs.

  16. Permit application modifications

    SciTech Connect

    1995-11-01

    This document contains the Permit Application Modifications for the Y-12 Industrial Landfill V site on the Oak Ridge Reservation. These modifications include the assessment of stability of the proposed Landfill V under static and loading conditions. Analyses performed include the general slope stability, veneer stability of the bottom liner and cover system, and a liquefaction potential assessment of the foundation soils.

  17. Basic Behavior Modification.

    ERIC Educational Resources Information Center

    Mehrabian, Albert

    This monograph examines the component parts of behavior modification, initially defining the problem behavior and drawing a difference between specific observable behaviors (the focus of behavior modification), and the interest of Freudian and similar psychologies in unobservable internal processes. Instrumental learning related to shaping in…

  18. Alterations in the mantle epithelium during transition from hatching gland to adhesive organ of Idiosepius pygmaeus (Mollusca, Cephalopoda).

    PubMed

    Cyran, Norbert; Klepal, Waltraud; Städler, Yannick; Schönenberger, Jürg; von Byern, Janek

    2015-02-01

    Epithelial gland systems play an important role in marine molluscs in fabricating lubricants, repellents, fragrances, adhesives or enzymes. In cephalopods the typically single layered epithelium provides a highly dynamic variability and affords a rapid rebuilding of gland cells. While the digestive hatching gland (also named Hoyle organ) is obligatory for most cephalopods, only four genera (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions by means of glandular cells in an adhesive area on the mantle or tentacles. In Idiosepius this adhesive organ is restricted to the posterior part of the fin region on the dorsal mantle side and well developed in the adult stage. Two gland cell types could be distinguished, which produce different contents of the adhesive. During the embryonic development the same body area is occupied by the temporary hatching gland. The question arises, in which way the hatching gland degrades and is replaced by the adhesive gland. Ultrastructural analyses as well as computer tomography scans were performed to monitor the successive post hatching transformation in the mantle epithelium from hatching gland degradation to the formation of the adhesive organ. According to our investigations the hatching gland cells degrade within about 1 day after hatching by a type of programmed cell death and leave behind a temporary cellular gap in this area. First glandular cells of the adhesive gland arise 7 days after hatching and proceed evenly over the posterior mantle epithelium. In contrast, the accompanying reduction of a part of the dorsal mantle musculature is already established before hatching. The results demonstrate a distinct independence between the two gland systems and illustrate the early development of the adhesive organ as well as the corresponding modifications within the mantle.

  19. Shape of Barrett’s epithelium is associated with prevalence of erosive esophagitis

    PubMed Central

    Akiyama, Tomoyuki; Inamori, Masahiko; Iida, Hiroshi; Endo, Hiroki; Hosono, Kunihiro; Sakamoto, Yasunari; Fujita, Koji; Yoneda, Masato; Takahashi, Hirokazu; Koide, Tomoko; Tokoro, Chikako; Goto, Ayumu; Abe, Yasunobu; Shimamura, Takeshi; Kobayashi, Noritoshi; Kubota, Kensuke; Saito, Satoru; Nakajima, Atsushi

    2010-01-01

    AIM: To test the hypothesis that the shape and length of Barrett’s epithelium are associated with prevalence of erosive esophagitis. METHODS: A total study population comprised 869 patients who underwent endoscopy during a health checkup at our hospital. The presence and extent of Barrett’s epithelium were diagnosed based on the Prague C & M Criteria. We originally classified cases of Barrett’s epithelium into two types based on its shape, namely, flame-like and lotus-like Barrett’s epithelium, and into two groups based on its length, its C extent < 2 cm, and ≥ 2 cm. Correlation of shape and length of Barrett’s epithelium with erosive esophagitis was examined. RESULTS: Barrett’s epithelium was diagnosed in 374 cases (43%). Most of these were diagnosed as short-segment Barrett’s epithelium. The prevalence of erosive esophagitis was significantly higher in subjects with flame-like than lotus-like Barrett’s epithelium, and in those with a C extent of ≥ 2 cm than < 2 cm. CONCLUSION: Flame-like rather than lotus-like Barrett’s epithelium, and Barrett’s epithelium with a longer segment were more strongly associated with erosive esophagitis. PMID:20101776

  20. Cell cycle of globose basal cells in rat olfactory epithelium.

    PubMed

    Huard, J M; Schwob, J E

    1995-05-01

    The olfactory epithelium of adult mammals has the unique property of generating olfactory sensory neurons throughout life. Cells of the basal compartment, which include horizontal and globose basal cells, are responsible for the ongoing process of neurogenesis in this system. We report here that the globose basal cells in olfactory epithelium of rats, as in mice, are the predominant type of proliferating cell, and account for 97.6% of the actively dividing cells in the basal compartment of the normal epithelium. Globose basal cells have not been fully characterized in terms of their proliferative properties, and the dynamic aspects of neurogenesis are not well understood. As a consequence, it is uncertain whether cell kinetic properties are under any regulation that could affect the rate of neurogenesis. To address this gap in our knowledge, we have determined the duration of both the synthesis phase (S-phase) and the full cell cycle of globose basal cells in adult rats. The duration of the S-phase was found to be 9 hr in experiments utilizing sequential injections of either IdU followed by BrdU or 3H-thy followed by BrdU. The duration of the cell cycle was determined by varying the time interval between the injections of 3H-thy and BrdU and tracking the set of cells that exit S shortly after the first injection. With this paradigm, the interval required for these cells to traverse G2, M, G1, and a second S-phase, is equivalent to the duration of one mitotic cycle and equals 17 hr. These observations serve as the foundation to assess whether the cell cycle duration is subject to regulation in response to experimental injury, and whether such regulation is partly responsible for changes in the rate of neurogenesis in such settings.

  1. Changes of the lingual epithelium in Ambystoma mexicanum.

    PubMed

    Wistuba, J; Clemen, G

    1998-12-01

    Changes in the lingual epithelium during ontogenesis and after induced metamorphosis in Ambystoma mexicanum are described as observed by light microscopy and scanning electron microscopy. The epithelium of the tongue is always multilayered in the larva as well as in the adult. It consists of a stratum germinativum with little differentiated basal cells and a stratum superficiale (superficial layer) with specialized superficial cells and goblet cells. Usually, there are more than two layers because of a stratum intermedium consisting of replacement cells. The apical cell membrane of the superficial cells is perforated by fine pores. Its most typical feature are microridges. Maturing superficial cells possess microvilli. Goblet cells occur in early larvae primarily in the centre of the tongue. They spread throughout the dorsal face of the tongue as their numbers increase during ontogenesis. The small apices of the goblet cells are intercalated in the wedges between the superficial cells. Leydig cells are not found on the larval tongue but on that of adults. Due to metamorphosis, the epithelium of the tongue changes. It is furrowed in its anterior part. The furrows house the openings of the lingual glands. The surface is further modulated by ridges which are densely coated by microvilli and which bear the taste buds. The villi of the tongue which lack extrusion pores show cilia and microvilli but lack microridges. The Leydig cells disappear during metamorphosis. In addition to the two types of goblet cells found in different regions of the glandular tubules, goblet cells occur in the caudal part. They secrete directly into the cavity of the mouth. The posterior part is characterised by a dense coat of cilia.

  2. Megalin and cubilin in the human gallbladder epithelium.

    PubMed

    Tsaroucha, Alexandra K; Chatzaki, Ekaterini; Lambropoulou, Maria; Despoudi, Kaliopi; Laftsidis, Prodromos; Charsou, Chara; Polychronidis, Alexandros; Papadopoulos, Nikolaos; Simopoulos, Constantinos E

    2008-09-01

    Although the role of cholesterol absorption by the gallbladder epithelium in gallstone formation is well established, the exact process is poorly understood. Potential candidates for regulation of transepithelial cholesterol transport are suggested to be two large membrane multiple ligand receptors, megalin and cubilin. We studied the expression of these two proteins in both acalculous and calculous human gallbladder epithelia. Adult human gallbladder tissues were received from 21 patients (9 men, 12 women) who had undergone cholecystectomy. The patients were divided into two groups: group A (calculous gallbladder group; 5 men, 6 women; mean age 64.4 +/- 11.1 years) with cholelithiasis, and group B (acalculous gallbladder group; 4 men, 6 women; mean age 55.3 +/- 16.1 years). In the gallbladder tissues megalin and cubilin expression was studied by immunohistochemistry and conventional RT-PCR, and gene expression levels were estimated by real-time RT-PCR. Both megalin and cubilin gene transcripts were found in total RNA preparations from acalculous gallbladder. In contrast, in preparations from calculous gallbladder, none or only one of the proteins was detected. Immunoreactive proteins were detected in the simple columnar acalculous gallbladder epithelium but not in the calculous gallbladder epithelium. Our results show different expression patterns of the two proteins in calculous gallbladders and acalculous gallbladders. In the latter both proteins are expressed, suggesting an association with gallstone formation and implying a putative role of the two proteins in cholesterol endocytosis. In other words, the presence of both proteins may be essential for the prevention of stone formation.

  3. Morphologic changes in basal cells during repair of tracheal epithelium.

    PubMed Central

    Wang, C. Z.; Evans, M. J.; Cox, R. A.; Burke, A. S.; Zhu, Q.; Herndon, D. N.; Barrow, R. E.

    1992-01-01

    Basal cells are differentiated with respect to junctional adhesion mechanisms and play a role in attachment of columnar epithelium to the basal lamina. Although much is known about nonciliated and ciliated cell differentiation during the repair process after injury, little is known about the basal cell. We studied the morphology of basal cells and quantitated junctional adhesion structures during repair of tracheal epithelium exposed to toxic cotton smoke. Ten adult ewes were given a smoke injury to a portion of the upper cervical trachea and were killed at 4, 6, 8, 10, and 18 days after injury for morphometric studies. At 4 days, there was a stratified reparative epithelium over the basal lamina, which was two to four cells in depth. The basal cells were identified by their hemidesmosome (HD) attachment to the basal lamina. Basal cells were about 69% larger than controls and flattened rather than columnar. The amount of HD attachment was 192% greater than controls. In contrast, volume density of cytokeratin filaments had decreased about 47%. Basal cells had returned to normal numbers and size and a columnar shape by day 18. The amount of desmosome (D) and HD attachment and volume density of cytokeratins had also reached control levels by day 18. These data indicate that morphology of basal cells changes during the initial stages of reparative regeneration but returns to normal by 18 days. Morphologic changes appear to reflect changes in size of the cell associated with cell division rather than differentiation of recently divided basal cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:1381564

  4. Response of macaque bronchiolar epithelium to ambient concentrations of ozone

    SciTech Connect

    Harkema, J.R.; Plopper, C.G.; Hyde, D.M.; St. George, J.A.; Wilson, D.W.; Dungworth, D.L. )

    1993-09-01

    Recently, we reported that exposure to ambient concentrations of ozone, near the U.S. National Ambient Air Quality Standard (0.12 ppm), induced significant nasal epithelial lesions in a non-human primate, the bonnet monkey. The present study defines the effects of ambient concentrations of ozone on the surface epithelium lining respiratory bronchioles and on the underlying bronchiolar interstitium in these same monkeys. Bonnet monkeys were exposed to filtered air or to 0.15 or 0.30 ppm ozone 8 hours/day for 6 or 90 days. At the end of exposures, monkeys were anesthetized and killed by exsanguination. Microdissected bronchiolar airways of infusion-fixed lungs were evaluated morphometrically by light microscopy and quantitatively by scanning and transmission electron microscopy for ozone-induced epithelial changes. Hyperplasia of nonciliated, cuboidal epithelial cells and intraluminal accumulation of macrophages characterized ozone-induced lesions in respiratory bronchioles. There were no significant differences in epithelial thickness or cell numbers among ozone-exposed groups. Ozone-exposed epithelium was composed of 80% cuboidal and 20% squamous cells compared with 40% cuboidal and 60% squamous cells in filtered air controls. In addition, the arithmetic mean thickness of the surface epithelium, a measure of tissue mass per unit area of basal lamina, was significantly increased in all of the ozone-exposed groups. The number of cuboidal epithelial cells per surface area of basal lamina was increased above control values by 780% after 6 days exposure to 0.15 ppm, 777% after 90 days to 0.15 ppm, and 996% after 90 days exposure to 0.30 ppm. There was also a significant ozone-induced increase in the thickness of the bronchiolar interstitium that was due to an increase in both cellular and acellular components.

  5. Connexins form functional hemichannels in porcine ciliary epithelium.

    PubMed

    Shahidullah, Mohammad; Delamere, Nicholas A

    2014-01-01

    The expression of connexins in the ciliary epithelium is consistent with gap junctions between the pigmented (PE) and nonpigmented ciliary epithelium (NPE) that form when connexon hemichannels from adjacent cells pair to form a channel. Here we present evidence that suggests undocked connexons may form functional hemichannels that permit exchange of substances between NPE and the aqueous humor. Intact porcine eyes were perfused via the ciliary artery and propidium iodide (PI) (MW 668) was added to the aqueous humor compartment as a tracer. After calcium-free solution containing PI was introduced into the aqueous humor compartment for 30 min, fluorescence microscopy revealed PI in the NPE cell layer. PI entry into the NPE was inhibited by calcium and by the connexin antagonist 18α-glycyrrhetinic acid (18-AGA). Studies also were carried out with cultured porcine NPE. Under normal conditions, little PI entered the cultured cells but calcium-free medium stimulated PI accumulation and the entry was inhibited by 18-AGA. In cells loaded with calcein (MW 622), calcium-free solution stimulated calcein exit. 18-AGA partially suppressed calcein exit in calcium-free medium. Connexin 43 and connexin 50 proteins were detected by western blot analysis in both native and cultured NPE. In the intact eye, immunolocalization studies revealed connexin 50 at the basolateral, aqueous humor-facing, margin of the NPE. In contrast, connexin 43 was observed at the junction of the PE and NPE layer and on the basolateral membrane of PE. The results point to functional hemichannels at the NPE basolateral surface. It is feasible that hemichannels might contribute to the transfer of substances between the ciliary epithelium cytoplasm and aqueous humor.

  6. Nonequilibrium thermodynamic model of the rat proximal tubule epithelium.

    PubMed Central

    Weinstein, A M

    1983-01-01

    The rat proximal tubule epithelium is represented as well-stirred, compliant cellular and paracellular compartments bounded by mucosal and serosal bathing solutions. With a uniform pCO2 throughout the epithelium, the model variables include the concentrations of Na, K, Cl, HCO3, H2PO4, HPO4, and H, as well as hydrostatic pressure and electrical potential. Except for a metabolically driven Na-K exchanger at the basolateral cell membrane, all membrane transport within the epithelium is passive and is represented by the linear equations of nonequilibrium thermodynamics. In particular, this includes the cotransport of Na-Cl and Na-H2PO4 and countertransport of Na-H at the apical cell membrane. Experimental constraints on the choice of ionic conductivities are satisfied by allowing K-Cl cotransport at the basolateral membrane. The model equations include those for mass balance of the nonreacting species, as well as chemical equilibrium for the acidification reactions. Time-dependent terms are retained to permit the study of transient phenomena. In the steady state the energy dissipation is computed and verified equal to the sum of input from the Na-K exchanger plus the Gibbs free energy of mass addition to the system. The parameter dependence of coupled water transport is studied and shown to be consistent with the predictions of previous analytical models of the lateral intercellular space. Water transport in the presence of an end-proximal (HCO3-depleted) luminal solution is investigated. Here the lower permeability and higher reflection coefficient of HCO3 enhance net sodium and water transport. Due to enhanced flux across the tight junction, this process may permit proximal tubule Na transport to proceed with diminished energy dissipation. PMID:6652211

  7. [Regeneration of corneal epithelium using keratin modified chitosan membranes].

    PubMed

    Grolik, Maria; Kopeć, Maciej; Szczubiałka, Krzysztof; Wowra, Bogumił; Dobrowolski, Dariusz; Wylegała, Edward; Nowakowska, Maria

    2012-01-01

    The cornea is a transparent front layer of the eye. It functions like a window that controls and focuses the light entering into the eye. The cornea contributes to 65-75% of the eye's total focusing power and it acts as a physical barrier against pathogenic microorganisms, dirt and other noxious physical factors. The corneal tissue is arranged in five basic layers. The outermost layer (epithelium) is made up of highly regenerative cells that allow for quick healing of superficial injuries. Eye infections, diseases, or mechanical injury can harm corneal epithelium and cause blindness. Under certain circumstances, to prevent that, it is recommended to perform complete corneal transplantation. However, due to lack of sufficient number of donors, researchers are searching for alternative solutions.. Regeneration of epidermal tissue can restore and ensure normal functioning of cornea. For that purpose proper grafts are needed. The goal of current research was to develop the material for scaffold preparation providing optimal conditions for the epithelium cornea cell culturing and to determine its chemical, physical, and biological properties. The scaffolds, which could be applied in ophthalmology should fulfill a lot of requirements, among them such as biocompatibility, biodegradability, restorability, non-toxicity. They should also have adequate mechanical strength, flexibility and porosity. The aim of this work was to synthesize and to determine the properties of polymeric material for ophthalmic surgery applications. A hydrogel scaffold in the form of membrane was obtained from chitosan - natural, biocompatible, biologically inert, stable in the natural environmental and antibacterial polysaccharide derived from chitin. Biodegradable chitosan films containing keratin were crosslinked with genipin - a naturally occurring and nontoxic agent. In this study we present physicochemical characterization of the scaffolds. Porosity, contact angle and swelling ratio (at

  8. Ion transport across an isolated preparation of sheep rumen epithelium

    PubMed Central

    Ferreira, H. G.; Harrison, F. A.; Keynes, R. D.; Zurich, L.

    1972-01-01

    1. The fluxes of isotopically labelled sodium, potassium and chloride passing in each direction across isolated sheets of rumen epithelium from the sheep have been measured under short-circuit conditions. 2. With both sides of the epithelium bathed in chloride Ringer the mean sodium fluxes were 2·85 μmole/cm2.hr from rumen to blood and 1·28 μmole/cm2.hr in the reverse direction. In sulphate Ringer the sodium fluxes were 1·64 μmole/cm2.hr from rumen to blood and 0·54 μmole/cm2.hr from blood to rumen. 3. In chloride Ringer the mean potassium fluxes were 0·18 μmole/cm2.hr from rumen to blood and 0·54 μmole/cm2.hr from blood to rumen. In sulphate Ringer the potassium fluxes were 0·07 μmole/cm2.hr from rumen to blood and 0·35 μmole/cm2.hr from blood to rumen. 4. In chloride Ringer the mean chloride fluxes were 4·89 μmole/cm2.hr from rumen to blood and 3·78 μmole/cm2.hr from blood to rumen. 5. In chloride Ringer the mean value of the short-circuit current was 13 μA/cm2, corresponding to a flux of 0·49 μequiv/cm2.hr. When sulphate was substituted for chloride, the short-circuit current was increased by about 40%, and the net flux of sodium from rumen to blood fell by 30%. 6. Neither the sodium nor the chloride fluxes changed significantly when the epithelium was temporarily open-circuited. PMID:5037110

  9. THE FINE STRUCTURE OF THE TRANSITIONAL EPITHELIUM OF RAT URETER

    PubMed Central

    Hicks, R. M.

    1965-01-01

    The fine structure of the transitional epithelium of rat ureter has been studied in thin sections with the electron microscope, including some stained cytochemically to show nucleoside triphosphatase activity. The epithelium is three to four cells deep with cuboidal or columnar basal cells, intermediate cells, and superficial squamous cells. The basal cells are attached by half desmosomes, or attachment plates, on their basal membranes to a basement membrane which separates the epithelium from the lamina propria. Fine extracellular fibres, ca. 100 A in diameter, are to be found in the connective tissue layer immediately below the basement membrane of this epithelium. The plasma membranes of the basal and intermediate cells and the lateral and basal membranes of the squamous cells are deeply interdigitated, and nucleoside triphosphatase activity is associated with them. All the cells have a dense feltwork of tonofilaments which ramify throughout the cytoplasm. The existence of junctional complexes, comprising a zonula occludens, zonula adhaerens, and macula adhaerens or desmosome, between the lateral borders of the squamous cells is reported. It is suggested that this complex is the major obstacle to the free flow of water from the extracellular spaces into the hypertonic urine. The free luminal surface of the squamous cells and many cytoplasmic vesicles in these cells are bounded by an unusually thick plasma membrane. The three leaflets of this unit membrane are asymmetric, with the outer one about twice as thick as the innermost one. The vesicles and the plasma membrane maintain angular conformations which suggest the membrane to be unusually rigid. No nucleoside triphosphatase activity is associated with this membrane. Arguments are presented to support a suggestion that this thick plasma membrane is the morphological site of a passive permeability barrier to water flow across the cells, and that keratin may be included in the membrane structure. The possible

  10. [Macroadenoma of the non-pigmented ciliary epithelium].

    PubMed

    Lara-Medina, J; Ispa Callén, C; González del Valle, F; Mate Valdezate, A

    2014-06-01

    We report the clinical features and surgery of a patient with an adenoma of the non-pigmented ciliary epithelium. The adenoma measured 5 × 7 mm. The patient underwent radical ocular surgery consisting of partial iridocyclectomy associated to lamellar sclerouvectomy. Adenomas of ciliary body can mimic clinically amelanotic melanomas. We present details of the patient's medical records and review the literature. Clinically, adenoma in ciliary body can mimic amelanotic melanomas. Conservative surgery of the eye allows diagnosis and treatment, maintaining visual function. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  11. Spatial pattern of receptor expression in the olfactory epithelium.

    PubMed Central

    Nef, P; Hermans-Borgmeyer, I; Artières-Pin, H; Beasley, L; Dionne, V E; Heinemann, S F

    1992-01-01

    A PCR-based strategy for amplifying putative receptors involved in murine olfaction was employed to isolate a member (OR3) of the seven-transmembrane-domain receptor superfamily. During development, the first cells that express OR3 appear adjacent to the wall of the telencephalic vesicle at embryonic day 10. The OR3 receptor is uniquely expressed in a subset of olfactory cells that have a characteristic bilateral symmetry in the adult olfactory epithelium. This receptor and its specific pattern of expression may serve a functional role in odor coding or, alternatively, may play a role in the development of the olfactory system. Images PMID:1384038

  12. Diet, Microbiome, and the Intestinal Epithelium: An Essential Triumvirate?

    PubMed Central

    Guzman, Javier Rivera; Conlin, Victoria Susan; Jobin, Christian

    2013-01-01

    The intestinal epithelium represents a critical barrier protecting the host against diverse luminal noxious agents, as well as preventing the uncontrolled uptake of bacteria that could activate an immune response in a susceptible host. The epithelial monolayer that constitutes this barrier is regulated by a meshwork of proteins that orchestrate complex biological function such as permeability, transepithelial electrical resistance, and movement of various macromolecules. Because of its key role in maintaining host homeostasis, factors regulating barrier function have attracted sustained attention from the research community. This paper will address the role of bacteria, bacterial-derived metabolism, and the interplay of dietary factors in controlling intestinal barrier function. PMID:23586037

  13. Are pheromones detected through the main olfactory epithelium?

    PubMed

    Wang, Zhenshan; Nudelman, Aaron; Storm, Daniel R

    2007-06-01

    A major sensory organ for the detection of pheromones by animals is the vomeronasal organ (VNO). Although pheromones control the behaviors of various species, the effect of pheromones on human behavior has been controversial because the VNO is not functional in adults. However, recent genetic, biochemical, and electrophysiological data suggest that some pheromone-based behaviors, including male sexual behavior in mice, are mediated through the main olfactory epithelium (MOE) and are coupled to the type 3 adenylyl cyclase (AC3) and a cyclic nucleotide-gated (CNG) ion channel. These recent discoveries suggest the provocative hypothesis that human pheromones may signal through the MOE.

  14. Bacterial cellulose as a support for the growth of retinal pigment epithelium.

    PubMed

    Gonçalves, Sara; Padrão, Jorge; Rodrigues, Inês Patrício; Silva, João Pedro; Sencadas, Vítor; Lanceros-Mendez, Senentxu; Girão, Henrique; Dourado, Fernando; Rodrigues, Lígia R

    2015-04-13

    The feasibility of bacterial cellulose (BC) as a novel substrate for retinal pigment epithelium (RPE) culture was evaluated. Thin (41.6 ± 2.2 μm of average thickness) and heat-dried BC substrates were surface-modified via acetylation and polysaccharide adsorption, using chitosan and carboxymethyl cellulose. All substrates were characterized according to their surface chemistry, wettability, energy, topography, and also regarding their permeability, dimensional stability, mechanical properties, and endotoxin content. Then, their ability to promote RPE cell adhesion and proliferation in vitro was assessed. All surface-modified BC substrates presented similar permeation coefficients with solutes of up to 300 kDa. Acetylation of BC decreased it's swelling and the amount of endotoxins. Surface modification of BC greatly enhanced the adhesion and proliferation of RPE cells. All samples showed similar stress-strain behavior; BC and acetylated BC showed the highest elastic modulus, but the latter exhibited a slightly smaller tensile strength and elongation at break as compared to pristine BC. Although similar proliferation rates were observed among the modified substrates, the acetylated ones showed higher initial cell adhesion. This difference may be mainly due to the moderately hydrophilic surface obtained after acetylation.

  15. Role of pigment epithelium-derived factor in the reproductive system.

    PubMed

    Chuderland, Dana; Ben-Ami, Ido; Bar-Joseph, Hadas; Shalgi, Ruth

    2014-10-01

    The physiological function of the female reproductive organs is hormonally controlled. In each cycle, the reproductive organs undergo tissue modifications that are accompanied by formation and destruction of blood vessels. Proper angiogenesis requires an accurate balance between stimulatory and inhibitory signals, provided by pro- and anti-angiogenic factors. As with many other tissues, vascular endothelial growth factor (VEGF) appears to be one of the major pro-angiogenic factors in the female reproductive organs. Pigment epithelium-derived factor (PEDF) is a non-inhibitory member of the serine protease inhibitors (serpin) superfamily, possessing potent physiologic anti-angiogenic activity that negates VEGF activity. The role of PEDF in decreasing abnormal neovascularization by exerting its anti-angiogenic effect that inhibits pro-angiogenic factors, including VEGF, has been investigated mainly in the eye and in cancer. This review summarizes the function of PEDF in the reproductive system, showing its hormonal regulation and its anti-angiogenic activity. Furthermore, some pathologies of the female reproductive organs, including endometriosis, ovarian hyperstimulation syndrome, polycystic ovary syndrome, and others, are associated with a faulty angiogenic process. This review illuminates the role of PEDF in their pathogenesis and treatment. Collectively, we can conclude that although PEDF seems to play an essential role in the physiology and pathophysiology of the reproductive system, its full role and mechanism of action still need to be elucidated. © 2014 Society for Reproduction and Fertility.

  16. Enzymatic modification of schizophyllan

    USDA-ARS?s Scientific Manuscript database

    An enzymatic method was developed for the progressive modification of the polysaccharide schizophyllan. Fungal strains Hypocrea nigricans NRRL 62555, Penicillium crustosum NRRL 62558, and Penicillium simplicissimum NRRL 62550 were previously identified as novel sources of ß-endoglucanase with specif...

  17. Surface modification of solids

    SciTech Connect

    Appleton, B.R.

    1984-05-01

    The use of ion beam and pulsed laser processing is reviewed for the near-surface modification of a wide range of materials. The techniques of ion implantation doping, ion beam and laser mixing, and pulsed-laser annealing are stressed with particular emphasis on the nonequilibrium aspects of these processing techniques and on new materials properties which can result. Examples are presented illustrating the utility of these techniques for fundamental materials research as well as practical surface modifications.

  18. Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue.

    PubMed

    Kawashima, M; Imura, K; Sato, I

    2012-05-10

    Transient receptor potential vanilloid subfamily member 1 (TRPV1) is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP), a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRP-expressing terminals.

  19. Identification of a synergistic interaction between endothelial cells and retinal pigment epithelium.

    PubMed

    Spencer, Carrie; Abend, Stephanie; McHugh, Kevin J; Saint-Geniez, Magali

    2017-04-12

    The retinal pigment epithelium located between the neurosensory retina and the choroidal vasculature is critical for the function and maintenance of both the photoreceptors and underlying capillary endothelium. While the trophic role of retinal pigment epithelium on choroidal endothelial cells is well recognized, the existence of a reciprocal regulatory function of endothelial cells on retinal pigment epithelium cells remained to be fully characterized. Using a physiological long-term co-culture system, we determined the effect of retinal pigment epithelium-endothelial cell heterotypic interactions on cell survival, behaviour and matrix deposition. Human retinal pigment epithelium and endothelial cells were cultured on opposite sides of polyester transwells for up to 4 weeks in low serum conditions. Cell viability was quantified using a trypan blue assay. Cellular morphology was evaluated by H&E staining, S.E.M. and immunohistochemistry. Retinal pigment epithelium phagocytic function was examined using a fluorescent bead assay. Gene expression analysis was performed on both retinal pigment epithelium and endothelial cells by quantitative PCR. Quantification of extracellular matrix deposition was performed on decellularized transwells stained for collagen IV, fibronectin and fibrillin. Our results showed that presence of endothelial cells significantly improves retinal pigment epithelium maturation and function as indicated by the induction of visual cycle-associated genes, accumulation of a Bruch's membrane-like matrix and increase in retinal pigment epithelium phagocytic activity. Co-culture conditions led to increased expression of anti-angiogenic growth factors and receptors in both retinal pigment epithelium and endothelial cells compared to monoculture. Tube-formation assays confirmed that co-culture with retinal pigment epithelium significantly decreased the angiogenic phenotype of endothelial cells. These findings provide evidence of critical interdependent

  20. Attack and defence in the gastric epithelium - a delicate balance.

    PubMed

    Dimaline, Rod; Varro, Andrea

    2007-07-01

    The gastric epithelium is a complex structure formed into tubular branched gastric glands. The glands contain a wide variety of cell types concerned with the secretion of hydrochloric acid, proteases, mucus and a range of signalling molecules. All cell types originate from stem cells in the neck region of the gland, before migrating and differentiating to assume their characteristic positions and functions. Endocrine and local paracrine mediators are of crucial importance for maintaining structural and functional integrity of the epithelium, in the face of a hostile luminal environment. The first such mediator to be recognized, the hormone gastrin, was identified over a century ago and is now established as the major physiological stimulant of gastric acid secretion. Recent studies, including those using mice that overexpress or lack the gastrin gene, suggest a number of previously unrecognized roles for this hormone in the regulation of cellular proliferation, migration and differentiation. This review focuses on the identification of hitherto unsuspected gastrin-regulated genes and discusses the paracrine cascades that contribute to the maintenance of gastric epithelial architecture and secretory function. Helicobacter infection is also considered in cases where it shares targets and signalling mechanisms with gastrin.

  1. Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro.

    PubMed

    Steinfort, C; Wilson, R; Mitchell, T; Feldman, C; Rutman, A; Todd, H; Sykes, D; Walker, J; Saunders, K; Andrew, P W

    1989-07-01

    A total of 11 of 15 Streptococcus pneumoniae culture filtrates and all five bacterial autolysates produced by cell death in the stationary phase caused slowed ciliary beating and disruption of the surface integrity of human respiratory epithelium in organ culture. This effect was inhibited by cholesterol and was heat labile and reduced by standing at room temperature but was stable at -40 degrees C. The activity was detected at the late stationary phase of culture and was associated with the presence of hemolytic activity. Gel filtration of a concentrated culture filtrate and autolysate both yielded a single fraction of approximately 50 kilodaltons which slowed ciliary beating and were the only fractions with hemolytic activity. Rabbit antiserum to pneumolysin, a sulfhydryl-activated hemolytic cytotoxin released by S. pneumoniae during autolysis, neutralized the effect of the culture filtrate on respiratory epithelium. Both native and recombinant pneumolysin caused ciliary slowing and epithelial disruption. Electron microscopy showed a toxic effect of pneumolysin on epithelial cells: cytoplasmic blebs, mitochondrial swelling, cellular extrusion, and cell death, but no change in ciliary ultrastructure. Recombinant pneumolysin (10 micrograms/ml) caused ciliary slowing in the absence of changes in cell ultrastructure. Release of pneumolysin in the respiratory tract during infection may perturb host defenses, allowing bacterial proliferation and spread.

  2. Transcriptional Response of Respiratory Epithelium to Nontuberculous Mycobacteria.

    PubMed

    Matsuyama, Masashi; Martins, Andrew J; Shallom, Shamira; Kamenyeva, Olena; Kashyap, Anuj; Sampaio, Elizabeth P; Kabat, Juraj; Olivier, Kenneth N; Zelazny, Adrian M; Tsang, John S; Holland, Steven M

    2017-09-15

    The incidence of pulmonary nontuberculous mycobacterial (PNTM) disease is increasing, but host responses in respiratory epithelium infected with NTM are not fully understood. We aimed to identify infection-relevant gene expression signatures of NTM infection of the respiratory epithelium. We infected air-liquid interface (ALI) primary respiratory epithelial cell cultures with Mycobacterium avium subsp. avium (MAC) or Mycobacterium abscessuss subsp. abscessuss (MAB). We used cells from 4 different donors to obtain generalizable data. The differentiated respiratory epithelial cells at ALI were infected with MAC or MAB at MOI of 100:1 or 1000:1, and RNA-seq was performed at days 1 and 3 after infection. In response to infection we found downregulation of ciliary genes but upregulation of genes associated with cytokine/chemokine, such as IL-32, and cholesterol biosynthesis. Inflammatory response genes tended to be more upregulated by MAB than MAC infection. Primary respiratory epithelial cell infection with NTM at ALI identified ciliary function, cholesterol biosynthesis, and cytokine/chemokine production as major host responses to infection. Some of these pathways may be amenable to therapeutic manipulation.

  3. Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium.

    PubMed

    Bjerknes, Matthew; Cheng, Hazel

    2010-09-01

    Elucidating the mechanisms determining multipotent progenitor cell fate remains a fundamental project of contemporary biology. Various tissues of mice and men with defects in the zinc-finger transcriptional repressor Gfi1 have dramatic perturbations in the proportions of their differentiated cell types. In Gfi1-deficient intestinal epithelium there is a shift from mucous and Paneth towards enteroendocrine cells, leading to the proposal that Gfi1 functions in the allocation of the progeny derived from a hypothetical common granulocytic progenitor. However, studies of clones have yielded no evidence of such a common progenitor prompting us to investigate alternate mechanisms explaining the Gfi1-deficient phenotype. We report that mucous and Paneth but not enteroendocrine lineage cells normally express Gfi1. Sporadic mucous and Paneth lineage cells in the crypts of Gfi1-deficient mice aberrantly express the pro-enteroendocrine transcription factor Neurog3, indicating that stable repression of Neurog3 in these lineages requires Gfi1. Importantly, we also find mucous and Paneth lineage cells in various stages of cellular reprogramming into the enteroendocrine lineage in Gfi1-deficient mice. We propose that mucous and Paneth cell lineage metastability, rather than reallocation at the level of a hypothetical common granulocytic progenitor, is responsible for the shifts in cell type proportions observed in Gfi1-deficient intestinal epithelium. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  4. An Apical-Membrane Chloride Channel in Human Tracheal Epithelium

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.

    1986-06-01

    The mechanism of chloride transport by airway epithelia has been of substantial interest because airway and sweat gland-duct epithelia are chloride-impermeable in cystic fibrosis. The decreased chloride permeability prevents normal secretion by the airway epithelium, thereby interfering with mucociliary clearance and contributing to the morbidity and mortality of the disease. Because chloride secretion depends on and is regulated by chloride conductance in the apical cell membrane, the patch-clamp technique was used to directly examine single-channel currents in primary cultures of human tracheal epithelium. The cells contained an anion-selective channel that was not strongly voltage-gated or regulated by calcium in cell-free patches. The channel was also blocked by analogs of carboxylic acid that decrease apical chloride conductance in intact epithelia. When attached to the cell, the channel was activated by isoproterenol, although the channel was also observed to open spontaneously. However, in some cases, the channel was only observed after the patch was excised from the cell. These results suggest that this channel is responsible for the apical chloride conductance in airway epithelia.

  5. The growth and differentiation of transitional epithelium in vitro

    PubMed Central

    1979-01-01

    The development of rat transitional epithelial cells grown on conventional non-permeable surfaces was compared with development on permeable collagen supports. On glass or plastic surfaces, cells grew as expanding nomolayer sheets. Once confluent, growth continued with a bilayer being formed in most areas and apical cells being continuously sloughed off. Although most cells were interconnected by desmosomes, and junctional complexes were formed, no other indications of differentiation were observed. After 2-3 wk of growth, division stopped and cel death ensued. In contrast, single-cell suspensions plated on collagen-coated nylon disks reassociated into multicellular islands and commenced growth. Mitoses were confined to the basal cells in contact with the permeable substrate. The islands developed into epithelial trilayers, tapering to monolayers along spreading edges. Once the islands were confluent, stratification was completed and appeared similar to that observed in vivo. Germinal cells formed a basal lamina, and the upper layer was composed of large, flattened cells with an unusually thick asymmetrical plasma membrane on the apical surface. Electron microscopic and radioactive tracers demonstrated "leaky" zonulae occludentes with a restricted permeability to small molecules. The movement of urea was retarded in comparison to water. Unlike the slow turnover of adult epithelium in vivo, maturation and sloughing of apical cells were measurable. Transfer of cells could be effected and growth maintained for up to 4 mo. These results may indicate the necessity of a nutrient-permeable growth surface for the polarized differentiation of adult transitional epithelium. PMID:574872

  6. Dicer function is essential for lung epithelium morphogenesis.

    PubMed

    Harris, Kelley S; Zhang, Zhen; McManus, Michael T; Harfe, Brian D; Sun, Xin

    2006-02-14

    DICER is a key enzyme that processes microRNA and small interfering RNA precursors into their short mature forms, enabling them to regulate gene expression. Only a single Dicer gene exists in the mouse genome, and it is broadly expressed in developing tissues. Dicer-null mutants die before gastrulation. Therefore, to study Dicer function in the later event of lung formation, we inactivated it in the mouse lung epithelium using a Dicer conditional allele and the Sonic Hedgehogcre (Shhcre) allele. Branching arrests in these mutant lungs, although epithelial growth continues in distal domains that are expanded compared with normal samples. These defects result in a few large epithelial pouches in the mutant lung instead of numerous fine branches present in a normal lung. Significantly, the initial phenotypes are apparent before an increase in epithelial cell death is observed, leading us to propose that Dicer plays a specific role in regulating lung epithelial morphogenesis independent of its requirement in cell survival. In addition, we found that the expression of Fgf10, a key gene involved in lung development, is up-regulated and expanded in the mesenchyme of Dicer mutant lungs. Previous studies support the hypothesis that precise localization of FGF10 in discrete sites of the lung mesenchyme serves as a chemoattractant for the outgrowth of epithelial branches. The aberrant Fgf10 expression may contribute to the Dicer morphological defects. However, the mechanism by which DICER functions in the epithelium to influence Fgf10 expression in the mesenchyme remains unknown.

  7. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity

    NASA Astrophysics Data System (ADS)

    Westphalen, Kristin; Gusarova, Galina A.; Islam, Mohammad N.; Subramanian, Manikandan; Cohen, Taylor S.; Prince, Alice S.; Bhattacharya, Jahar

    2014-02-01

    The tissue-resident macrophages of barrier organs constitute the first line of defence against pathogens at the systemic interface with the ambient environment. In the lung, resident alveolar macrophages (AMs) provide a sentinel function against inhaled pathogens. Bacterial constituents ligate Toll-like receptors (TLRs) on AMs, causing AMs to secrete proinflammatory cytokines that activate alveolar epithelial receptors, leading to recruitment of neutrophils that engulf pathogens. Because the AM-induced response could itself cause tissue injury, it is unclear how AMs modulate the response to prevent injury. Here, using real-time alveolar imaging in situ, we show that a subset of AMs attached to the alveolar wall form connexin 43 (Cx43)-containing gap junction channels with the epithelium. During lipopolysaccharide-induced inflammation, the AMs remained sessile and attached to the alveoli, and they established intercommunication through synchronized Ca2+ waves, using the epithelium as the conducting pathway. The intercommunication was immunosuppressive, involving Ca2+-dependent activation of Akt, because AM-specific knockout of Cx43 enhanced alveolar neutrophil recruitment and secretion of proinflammatory cytokines in the bronchoalveolar lavage. A picture emerges of a novel immunomodulatory process in which a subset of alveolus-attached AMs intercommunicates immunosuppressive signals to reduce endotoxin-induced lung inflammation.

  8. Mucous granule exocytosis and CFTR expression in gallbladder epithelium.

    PubMed

    Kuver, R; Klinkspoor, J H; Osborne, W R; Lee, S P

    2000-02-01

    A mechanistic model of mucous granule exocytosis by columnar epithelial cells must take into account the unique physical-chemical properties of mucin glycoproteins and the resultant mucus gel. In particular, any model must explain the intracellular packaging and the kinetics of release of these large, heavily charged species. We studied mucous granule exocytosis in gallbladder epithelium, a model system for mucus secretion by columnar epithelial cells. Mucous granules released mucus by merocrine exocytosis in mouse gallbladder epithelium when examined by transmission electron microscopy. Spherules of secreted mucus larger than intracellular granules were noted on scanning electron microscopy. Electron probe microanalysis demonstrated increased calcium concentrations within mucous granules. Immunofluorescence microscopic studies revealed intracellular colocalization of mucins and the cystic fibrosis transmembrane conductance regulator (CFTR). Confocal laser immunofluorescence microscopy confirmed colocalization. These observations suggest that calcium in mucous secretory granules provides cationic shielding to keep mucus tightly packed. The data also suggests CFTR chloride channels are present in granule membranes. These observations support a model in which influx of chloride ions into the granule disrupts cationic shielding, leading to rapid swelling, exocytosis and hydration of mucus. Such a model explains the physical-chemical mechanisms involved in mucous granule exocytosis.

  9. Selective gene expression by rat gastric corpus epithelium

    PubMed Central

    Goebel, M.; Stengel, A.; Sachs, G.

    2011-01-01

    The gastrointestinal (GI) tract is divided into several segments that have distinct functional properties, largely absorptive. The gastric corpus is the only segment thought of as largely secretory. Microarray hybridization of the gastric corpus mucosal epithelial cells was used to compare gene expression with other segments of the columnar GI tract followed by statistical data subtraction to identify genes selectively expressed by the rat gastric corpus mucosa. This provides a means of identifying less obvious specific functions of the corpus in addition to its secretion-related genes. For example, important properties found by this GI tract comparative transcriptome reflect the energy demand of acid secretion, a role in lipid metabolism, the large variety of resident neuroendocrine cells, responses to damaging agents and transcription factors defining differentiation of its epithelium. In terms of overlap of gastric corpus genes with the rest of the GI tract, the distal small bowel appears to express many of the gastric corpus genes in contrast to proximal small and large bowel. This differential map of gene expression by the gastric corpus epithelium will allow a more detailed description of major properties of the gastric corpus and may lead to the discovery of gastric corpus cell differentiation genes and those mis-regulated in gastric carcinomas. PMID:21177383

  10. Ethanol impedes embryo transport and impairs oviduct epithelium.

    PubMed

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-05-16

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50±6mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Nanotopography follows force in TGF-β1 stimulated epithelium

    NASA Astrophysics Data System (ADS)

    Thoelking, Gerold; Reiss, Bjoern; Wegener, Joachim; Oberleithner, Hans; Pavenstaedt, Hermann; Riethmuller, Christoph

    2010-07-01

    Inflammation and cellular fibrosis often imply an involvement of the cytokine TGF-β1. TGF-β1 induces epithelial-to-mesenchymal transdifferentiation (EMT), a term describing the loss of epithelium-specific function. Indicative for this process are an elongated cell shape parallel to stress fibre formation. Many signalling pathways of TGF-β1 have been discovered, but mechanical aspects have not yet been investigated. In this study, atomic force microscopy (AFM) was used to analyse surface topography and mechanical properties of EMT in proximal kidney tubule epithelium (NRK52E). Elongated cells, an increase of stress fibre formation and a loss of microvillus compatible structures were observed as characteristic signs of EMT. Furthermore, AFM could identify an increase in stiffness by 71% after six days of stimulation with TGF-β1. As a novel topographical phenomenon, nodular protrusions emerged at the cell-cell junctions. They occurred preferentially at sites where stress fibres cross the border. Since these nodular protrusions were sensitive to inhibitors of force generation, they can indicate intracellular tension. The results demonstrate a manifest impact of elevated tension on the cellular topography.

  12. An in vitro model of murine middle ear epithelium.

    PubMed

    Mulay, Apoorva; Akram, Khondoker M; Williams, Debbie; Armes, Hannah; Russell, Catherine; Hood, Derek; Armstrong, Stuart; Stewart, James P; Brown, Steve D M; Bingle, Lynne; Bingle, Colin D

    2016-11-01

    Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air-liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host-pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. © 2016. Published by The Company of Biologists Ltd.

  13. Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations

    PubMed Central

    Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi

    2016-01-01

    The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418

  14. Accumulation of Topical Naproxen by Cultured Oral Epithelium

    PubMed Central

    Fitzgerald, R.R.; Walters, J.D.

    2008-01-01

    Topically administered non-steroidal anti-inflammatory drugs (NSAIDs) inhibit periodontal bone loss, but little is known about the mechanism by which they penetrate oral epithelium. Active transporters could potentially play a role in this process. In this study, we used a cell line derived from oral epithelium to investigate a role for transporters and to characterize conditions that enhance epithelial penetration. Using fluorescence to monitor uptake, we demonstrated that SCC-25 cell monolayers transport naproxen with a Michaelis constant (Km) and maximum velocity (Vmax) of 164 μg/mL and 0.94 ng/min/μg protein, respectively. At steady state, the intracellular/extracellular concentration ratio was 3.4. Naproxen accumulation was more efficient at acidic pH than under neutral or alkaline conditions. Small proportions of glycerol, Pluronic F-127, and glucosylceramide enhanced naproxen entry. The individual and combined effects of glycerol and Pluronic F-127 were of lesser magnitude than those obtained with glucosylceramide or at pH 6.3. Thus, SCC-25 cells possess transporters for naproxen. PMID:17652209

  15. Olfactory epithelium of Necturus maculosus and Ambystoma tigrinum.

    PubMed

    Graziadei, P P; Monti Graziadei, G A

    1976-02-01

    The morphological study presented here provides a general description of the elements of the olfactory epithelium in the mud puppy and tiger salamander,, and gives evidence about their dynamic activity and interrelationships. There are morphological indications of local bursts of reduplication and a continual line of differentiation of receptor cells from basal cell progenitors through stages of mature development to senescence (indicated by the accumulation of pigment granules) and cell death and disposal (by expulsion of pycnotic cell nuclei and by phagocytosis by macrophages). The supporting cells probably play several roles: a secretory role which supplements the activity of Bowman's glands, a minor insulating role in which some dendrites are shielded from the surrounding milieu, and a skeletal role in which they facilitate the efficient displacement of dendrites. The dendrites are regularly arranged in organized relationships with one another and are for the most part in direct apposition, separated only by a 200 A intercellular gap, thus suggesting the possibility of functional interrelationships. This study emphasizes the fact that efficient planning of experimental investigations must include knowledge and consideration of the thickness of the particular olfactory epithelium under study. It also suggests that because of the large receptor-cell size, the mud puppy and/or tiger salamander would make good model systems for single cell recording. Further, the olfactory epithelia of these species are suggested as favorable targets for studies of the aging process in nerve cells.

  16. An in vitro model of murine middle ear epithelium

    PubMed Central

    Mulay, Apoorva; Akram, Khondoker M.; Williams, Debbie; Armes, Hannah; Russell, Catherine; Hood, Derek; Armstrong, Stuart; Stewart, James P.; Brown, Steve D. M.; Bingle, Lynne

    2016-01-01

    ABSTRACT Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air–liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host–pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. PMID:27660200

  17. Esophageal epithelium of women with AIDS: thickness and local immunity.

    PubMed

    Rocha, Laura; Silva, Renata; Olegário, Janaínna; Corrêa, Rosana; Teixeira, Vicente; Cavellani, Camila

    2010-04-15

    The aim of this study was to evaluate the morphological characteristics of the esophageal epithelium (EE) and its local immunity. Esophageal fragments of autopsied women were collected from 1980 to 2008, and two groups were analyzed: with AIDS (n=17) and without AIDS (n=12). The measurement of the esophageal epithelium was carried out through the image analysis software ImageJ, and the immunostaining of Langerhans cells (LCs) was carried out using anti-S100 antibody. Women with AIDS, when compared with women without AIDS, had significantly thinner EE (220.6 versus 243.5 microm), a less number of LCs (6.2 versus 18.8 LCs/mm(2)), and a higher percentage of immature or morphologically altered LCs (66.6 versus 40.0%). The malnourished women, when compared with normonourished women, regardless of AIDS, had significantly thinner EE (227.1 versus 238.0 microm) and a less number of LCs (6.2 versus 12.5 LCs/mm(2)). The percentage of immature or morphologically altered LCs was the same in both groups. Additionally, the women with AIDS (7.0 versus 2.8%) and the malnourished women (5.8 versus 3.1%) presented a significantly higher percentage of fibrosis. We concluded that AIDS and malnutrition contribute to the decrease in esophagus local immunity and, therefore, to a possible increase in local opportunistic infections. Copyright 2009 Elsevier GmbH. All rights reserved.

  18. Re-epithelialization: advancing epithelium frontier during wound healing.

    PubMed

    Ben Amar, M; Wu, M

    2014-04-06

    The first function of the skin is to serve as a protective barrier against the environment. Its loss of integrity as a result of injury or illness may lead to a major disability and the first goal of healing is wound closure involving many biological processes for repair and tissue regeneration. In vivo wound healing has four phases, one of them being the migration of the healthy epithelium surrounding the wound in the direction of the injury in order to cover it. Here, we present a theoretical model of the re-epithelialization phase driven by chemotaxis for a circular wound. This model takes into account the diffusion of chemoattractants both in the wound and the neighbouring tissue, the uptake of these molecules by the surface receptors of epithelial cells, the migration of the neighbour epithelium, the tension and proliferation at the wound border. Using a simple Darcy's law for cell migration transforms our biological model into a free-boundary problem, which is analysed in the simplified circular geometry leading to explicit solutions for the closure and making stability analysis possible. It turns out that for realistic wound sizes of the order of centimetres and from experimental data, the re-epithelialization is always an unstable process and the perfect circle cannot be observed, a result confirmed by fully nonlinear simulations and in agreement with experimental observations.

  19. Effect of nitrogen dioxide on human nasal epithelium

    SciTech Connect

    Carson, J.L.; Collier, A.M.; Hu, S.C.; Delvin, R.B. )

    1993-09-01

    The nasal epithelium of young adult white men in good health was evaluated by electron microscopy in a condition blind fashion relative to exposures of 2 ppm nitrogen dioxide (NO2) or clean air for 4 h. The exposure protocol involved two separate exposures of the same individuals to NO2 or clean air approximately 3 wk apart. We found qualitative and quantitative evidence that luminal border membranes of ciliated cells were ultrastructurally altered in six of seven samples of nasal epithelium obtained following NO2 exposures, although subsequent morphometric statistical analyses were not significant. This alteration was characterized by cilia containing excess matrix in which individual or, more commonly, multiple ciliary axonemes were embedded, and by vesiculations of luminal border ciliary membranes, a pattern less common in clean air-exposed control specimens. Although these patterns were not widespread, their morphology was consistent with findings of previous animal studies involving acute and chronic exposure to NO2. Our findings suggest that adverse effects on mucociliary function in normal humans due to acute exposure to low levels of NO2 are most likely minimal. However, in view of other reports of NO2 exposure in laboratory animals documenting ciliary injury, our observations support a view that similar patterns might appear more prominently with higher NO2 levels and/or more extended exposure intervals.

  20. Re-epithelialization: advancing epithelium frontier during wound healing

    PubMed Central

    Ben Amar, M.; Wu, M.

    2014-01-01

    The first function of the skin is to serve as a protective barrier against the environment. Its loss of integrity as a result of injury or illness may lead to a major disability and the first goal of healing is wound closure involving many biological processes for repair and tissue regeneration. In vivo wound healing has four phases, one of them being the migration of the healthy epithelium surrounding the wound in the direction of the injury in order to cover it. Here, we present a theoretical model of the re-epithelialization phase driven by chemotaxis for a circular wound. This model takes into account the diffusion of chemoattractants both in the wound and the neighbouring tissue, the uptake of these molecules by the surface receptors of epithelial cells, the migration of the neighbour epithelium, the tension and proliferation at the wound border. Using a simple Darcy's law for cell migration transforms our biological model into a free-boundary problem, which is analysed in the simplified circular geometry leading to explicit solutions for the closure and making stability analysis possible. It turns out that for realistic wound sizes of the order of centimetres and from experimental data, the re-epithelialization is always an unstable process and the perfect circle cannot be observed, a result confirmed by fully nonlinear simulations and in agreement with experimental observations. PMID:24451391

  1. Ex vivo culture of the intestinal epithelium: strategies and applications.

    PubMed

    Leushacke, Marc; Barker, Nick

    2014-08-01

    Limited pools of resident adult stem cells are critical effectors of epithelial renewal in the intestine throughout life. Recently, significant progress has been made regarding the isolation and in vitro propagation of fetal and adult intestinal stem cells in mammals. It is now possible to generate ever-expanding, three-dimensional epithelial structures in culture that closely parallel the in vivo epithelium of the intestine. Growing such organotypic epithelium ex vivo facilitates a detailed description of endogenous niche factors or stem-cell characteristics, as they can be monitored in real time. Accordingly, this technology has already greatly contributed to our understanding of intestinal adult stem-cell renewal and differentiation. Transplanted organoids have also been proven to readily integrate into, and effect the long-term repair of, mouse colonic epithelia in vivo, establishing the organoid culture as a promising tool for adult stem cell/gene therapy. In another exciting development, novel genome-editing techniques have been successfully employed to functionally repair disease loci in cultured intestinal stem cells from human patients with a hereditary defect. It is anticipated that this technology will be instrumental in exploiting the regenerative medicine potential of human intestinal stem cells for treating human disorders in the intestinal tract and for creating near-physiological ex vivo models of human gastrointestinal disease.

  2. Human Rights and Behavior Modification

    ERIC Educational Resources Information Center

    Roos, Philip

    1974-01-01

    Criticisms of behavior modification, which charge that it violates ethical and legal principles, are discussed and reasons are presented to explain behavior modification's susceptibility to attack. (GW)

  3. Ultrastructural analysis of in vivo expanded corneal epithelium on amniotic membrane.

    PubMed

    Ha, Hyo Shin; Song, Kye Yong; Kim, Jae Chan

    2006-06-01

    The purpose of this study is to characterize and compare the ultrastructural changes occurring during the in vivo cultivation of corneal epithelium on amniotic membrane (AM) at several different time points. Corneal burn patients (n=7) with a corneal epithelial defect and severe limbal damage were selected. Initially, AM transplantation with limbal autograft was performed at the acute stage of corneal burn to reconstruct the damaged ocular surface. One to six (mean interval; 3.3+/-1.2) months later, the central part of AM containing an in vivo expanded corneal epithelium was excised and retransplanted in adjacent lesions. The excised epithelium with AM was examined by electron microscopy and immunohistochemical study. By electron microscopy, one and two months after expansion, cultivated epithelium on AM showed an undifferentiated epithelium and an incomplete basement membrane (BM). But, after three months, the cultivated epithelium began to differentiate into a multilayered epithelium with a continuous BM with increased hemidesmosomes. These findings were further confirmed by immunohistochemical study, that cytokeratin K3 was expressed in the cultivated corneal epithelium and newly formed BM was partially positive of collagen IV at three months. At least 3 months may be needed for the proliferation and differentiation of in vivo cultivated corneal epithelium on AM.

  4. Ultrastructural Analysis of in vivo Expanded Corneal Epithelium on Amniotic Membrane

    PubMed Central

    Ha, Hyo Shin; Song, Kye Yong

    2006-01-01

    The purpose of this study is to characterize and compare the ultrastructural changes occurring during the in vivo cultivation of corneal epithelium on amniotic membrane (AM) at several different time points. Corneal burn patients (n=7) with a corneal epithelial defect and severe limbal damage were selected. Initially, AM transplantation with limbal autograft was performed at the acute stage of corneal burn to reconstruct the damaged ocular surface. One to six (mean interval; 3.3±1.2) months later, the central part of AM containing an in vivo expanded corneal epithelium was excised and retransplanted in adjacent lesions. The excised epithelium with AM was examined by electron microscopy and immunohistochemical study. By electron microscopy, one and two months after expansion, cultivated epithelium on AM showed an undifferentiated epithelium and an incomplete basement membrane (BM). But, after three months, the cultivated epithelium began to differentiate into a multilayered epithelium with a continuous BM with increased hemidesmosomes. These findings were further confirmed by immunohistochemical study, that cytokeratin K3 was expressed in the cultivated corneal epithelium and newly formed BM was partially positive of collagen IV at three months. At least 3 months may be needed for the proliferation and differentiation of in vivo cultivated corneal epithelium on AM. PMID:16778403

  5. Response of macaque bronchiolar epithelium to ambient concentrations of ozone.

    PubMed Central

    Harkema, J. R.; Plopper, C. G.; Hyde, D. M.; St George, J. A.; Wilson, D. W.; Dungworth, D. L.

    1993-01-01

    Recently, we reported that exposure to ambient concentrations of ozone, near the U.S. National Ambient Air Quality Standard (0.12 ppm), induced significant nasal epithelial lesions in a non-human primate, the bonnet monkey. The present study defines the effects of ambient concentrations of ozone on the surface epithelium lining respiratory bronchioles and on the underlying bronchiolar interstitium in these same monkeys. Bonnet monkeys were exposed to filtered air or to 0.15 or 0.30 ppm ozone 8 hours/day for 6 or 90 days. At the end of exposures, monkeys were anesthetized and killed by exsanguination. Microdissected bronchiolar airways of infusion-fixed lungs were evaluated morphometrically by light microscopy and quantitatively by scanning and transmission electron microscopy for ozone-induced epithelial changes. Hyperplasia of nonciliated, cuboidal epithelial cells and intraluminal accumulation of macrophages characterized ozone-induced lesions in respiratory bronchioles. There were no significant differences in epithelial thickness or cell numbers among ozone-exposed groups. Ozone-exposed epithelium was composed of 80% cuboidal and 20% squamous cells compared with 40% cuboidal and 60% squamous cells in filtered air controls. In addition, the arithmetic mean thickness of the surface epithelium, a measure of tissue mass per unit area of basal lamina, was significantly increased in all of the ozone-exposed groups. The number of cuboidal epithelial cells per surface area of basal lamina was increased above control values by 780% after 6 days exposure to 0.15 ppm, 777% after 90 days to 0.15 ppm, and 996% after 90 days exposure to 0.30 ppm. There was also a significant ozone-induced increase in the thickness of the bronchiolar interstitium that was due to an increase in both cellular and acellular components. These results demonstrate that exposure to low ambient concentrations of ozone, near the current. National Ambient Air Quality Standard, induces pulmonary lesions

  6. Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium

    PubMed Central

    Bormusov, Elvira; P.Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-01-01

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5ºC for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat. PMID

  7. Fluid transport across the isolated porcine ciliary epithelium.

    PubMed

    Candia, Oscar A; To, Chi-Ho; Law, Cheung Sing

    2007-01-01

    To quantify spontaneous fluid transport across the isolated porcine ciliary epithelium and determine its sensitivity to the electrolyte transport inhibitors ouabain and bumetanide, as well as bath Cl(-) and HCO(3)(-) levels. A complete annulus of ciliary body was mounted in a custom-designed chamber appropriate for quantifying net fluid movement, as well as the transepithelial potential difference (PD) across the in vitro ciliary epithelium. A spontaneous and stable fluid flow (FF) in the blood-to-aqueous direction was measured over a 4-hour period. This flux solely reflected the secretory activity of the isolated ciliary epithelium (CE), given the absence of externally applied osmotic or pressure gradients. In contrast to FF, the PD declined during the 4 hours in vitro, suggesting that the integrity of the tight junctions may have been compromised during this time so that an increased movement of counter ions via the paracellular pathway could have shunted the PD, while at the same time transcellular fluid transport remained unaffected. The FF in the blood-to-aqueous direction (2.3 +/- 0.2 muL/hr; n = 7) was eliminated by a unilateral reduction in the bath Cl(-) levels on the blood side of the preparation and restored on reintroducing the anion to the bathing medium. This linkage between FF and blood side [Cl(-)] is consistent with the existence of a net Cl(-) flux across the porcine CE in the same direction as the fluid transport. Addition of bumetanide to the blood-side bath inhibited FF by approximately 40%, whereas the removal of CO(2)/HCO(3)(-) from the blood-side bathing solution elicited a approximately 50% reduction in FF. Ouabain inhibited the FF from either side of the preparation, although the effects were more rapid when the glycoside was applied to the blood side of the tissue. Overall, these findings indicate the dependence of FF on active ionic transport by the isolated CE. Isolated porcine ciliary epithelial preparations transport fluid in the

  8. Non-thermal electromagnetic radiation damage to lens epithelium.

    PubMed

    Bormusov, Elvira; P Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-05-21

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was used to investigate the effects of microwave radiation on the lenses. 58 lenses were used in this study. The lenses were divided into four groups: (1) Control lenses incubated in organ culture for 10 to15 days. (2) Electromagnetic radiation exposure group treated with 1.1 GHz, 2.22 mW microwave radiation for 90 cycles of 50 minutes irradiation followed by 10 minutes pause and cultured up to 10 days. (3) Electromagnetic radiation exposure group treated as group 2 with 192 cycles of radiation and cultured for 15 days. (4) Lenses exposed to 39.5°C for 2 hours 3 times with 24 hours interval after each treatment beginning on the second day of the culture and cultured for 11 days. During the culture period, lens optical quality was followed daily by a computer-operated scanning laser beam. At the end of the culture period, control and treated lenses were analyzed morphologically and by assessment of the lens epithelial ATPase activity. Exposure to 1.1 GHz, 2.22 mW microwaves caused a reversible decrease in lens optical quality accompanied by irreversible morphological and biochemical damage to the lens epithelial cell layer. The effect of the electromagnetic radiation on the lens epithelium was remarkably different from those of conductive heat. The results of this investigation showed that electromagnetic fields from microwave radiation have a negative impact on the eye lens. The lens damage by electromagnetic fields was distinctly different from that caused by conductive heat.

  9. Readers of PCNA modifications.

    PubMed

    Ulrich, Helle D; Takahashi, Tomio

    2013-08-01

    The eukaryotic sliding clamp, proliferating cell nuclear antigen (PCNA), acts as a central coordinator of DNA transactions by providing a multivalent interaction surface for factors involved in DNA replication, repair, chromatin dynamics and cell cycle regulation. Posttranslational modifications (PTMs), such as mono- and polyubiquitylation, sumoylation, phosphorylation and acetylation, further expand the repertoire of PCNA's binding partners. These modifications affect PCNA's activity in the bypass of lesions during DNA replication, the regulation of alternative damage processing pathways such as homologous recombination and DNA interstrand cross-link repair, or impact on the stability of PCNA itself. In this review, we summarise our current knowledge about how the PTMs are "read" by downstream effector proteins that mediate the appropriate action. Given the variety of interaction partners responding to PCNA's modified forms, the ensemble of PCNA modifications serves as an instructive model for the study of biological signalling through PTMs in general.

  10. Programming for articularion modification.

    PubMed

    Gerber, A

    1977-02-01

    Within the past decade, principles and techniques of programmed instruction have been applied to the procedures of articulation modification in a number of preconstructed programs. The analysis of nine of these programs reveals that the majority of them are characterized by precisely stated objectives, ordered sequences of materials and procedures, clearly established criteria and rigorously controlled methods of reinforcement and recording of responses. Evaluation of the preconstructed programs raises some questions about the appropriateness of certain aspects of the technology to the process of articulation modification.

  11. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium

    PubMed Central

    Mabbott, Neil A.; Donaldson, David S.; Ohno, Hiroshi; Williams, Ifor R.; Mahajan, Arvind

    2013-01-01

    SUMMARY The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer’s patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady-state and during aging; molecules expressed on M cells which appear to be used as “immunosurveillance” receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines. PMID:23695511

  12. Vitiligo and disorders of the retinal pigment epithelium.

    PubMed Central

    Albert, D M; Wagoner, M D; Pruett, R C; Nordlund, J J; Lerner, A B

    1983-01-01

    The association of vitiligo with inflammation of the uveal tract is well established. The relationship between vitiligo and hypopigmentation and/or degeneration of the retinal pigment epithelium (RPE) not secondary to ocular inflammation has not been adequately investigated. Sixty (27%) of 223 consecutive patients with vitiligo were found to have some evidence of RPE hypopigmentation ranging from mild, focal areas of involvement in most cases to extensive RPE degeneration with a retinitis pigmentosa-like syndrome in one patient. Fifteen (25%) patients complained of night blindness. Only 6 (4%) of 148 patients in a control group had similar funduscopic findings (p less than 0.001). None of these patients were symptomatic. There have been isolated reports of vitiligo occurring with tapetoretinal degeneration. We report 2 patients with both vitiligo and retinitis pigmentosa. Images PMID:6824621

  13. Intermediate Filaments and Polarization in the Intestinal Epithelium

    PubMed Central

    Coch, Richard A.; Leube, Rudolf E.

    2016-01-01

    The cytoplasmic intermediate filament cytoskeleton provides a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. This is particularly apparent in the intestinal epithelium, in which the intermediate filament network is localized below the apical terminal web region and is anchored to the apical junction complex. This arrangement is conserved from the nematode Caenorhabditis elegans to humans. The review summarizes compositional, morphological and functional features of the polarized intermediate filament cytoskeleton in intestinal cells of nematodes and mammals. We emphasize the cross talk of intermediate filaments with the actin- and tubulin-based cytoskeleton. Possible links of the intermediate filament system to the distribution of apical membrane proteins and the cell polarity complex are highlighted. Finally, we discuss how these properties relate to the establishment and maintenance of polarity in the intestine. PMID:27429003

  14. Piezoelectric materials mimic the function of the cochlear sensory epithelium.

    PubMed

    Inaoka, Takatoshi; Shintaku, Hirofumi; Nakagawa, Takayuki; Kawano, Satoyuki; Ogita, Hideaki; Sakamoto, Tatsunori; Hamanishi, Shinji; Wada, Hiroshi; Ito, Juichi

    2011-11-08

    Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application.

  15. Claudin and occludin expression and function in the seminiferous epithelium

    PubMed Central

    Morrow, Carla M. K.; Mruk, Dolores; Cheng, C. Yan; Hess, Rex A.

    2010-01-01

    Integral membrane proteins that contribute to function of the blood–testes barrier (BTB) in mice include claudins 3, 5 and 11 and occludin. Although claudin 11 is expressed throughout all stages of the seminiferous epithelial cycle, claudins 3 and 5 have specific expression at stage VIII. These differences in protein expression suggest that the interactions among, and functions of, these integral membrane proteins may shift over the course of the seminiferous epithelial cycle. Also, differences in expression among rodent species and men may make interpretation of studies across species challenging. This review will discuss the characteristics of claudins and occludin; the expression, regulation and function of these integral membrane proteins in the seminiferous epithelium; and how these properties relate to the unique features of BTB. PMID:20403878

  16. Autophagy-related vacuoles in mouse gallbladder epithelium.

    PubMed

    Psenicnik, M; Veranic, P

    2001-01-01

    The mouse gallbladder epithelial cells contain very heterogeneous vacuolar population. In an attempt to classify these vacuoles we identified NADPase and TPPase activity as well as the location of HRP which is used as the endocytotic marker. The results of the present study show that the vacuoles can be classified into three categories: (1) the vacuoles predominantly containing loose membrane coils related to the nascent autophagic vacuoles, (2) vacuoles containing densely packed membranes and exhibiting a positive HRP reaction, indicating the convergence of endocytotic and autophagic pathway, and (3) vacuoles composed of degraded membrane structures and containing the reaction product of NADPase activity, showing that the fusion of the lysosomes with the autophagosome-endosome took place. The highly developed cis, medial and trans Golgi compartments reflect the biosynthetic and endocytotic activity of the gallbladder epithelium.

  17. Piezoelectric materials mimic the function of the cochlear sensory epithelium

    PubMed Central

    Inaoka, Takatoshi; Shintaku, Hirofumi; Nakagawa, Takayuki; Kawano, Satoyuki; Ogita, Hideaki; Sakamoto, Tatsunori; Hamanishi, Shinji; Wada, Hiroshi; Ito, Juichi

    2011-01-01

    Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application. PMID:22025702

  18. Retinal pigment epithelium engineering using synthetic biodegradable polymers.

    PubMed

    Lu, L; Yaszemski, M J; Mikos, A G

    2001-12-01

    Retinal pigment epithelium (RPE) plays a key role in the maintenance of the normal functions of the retina, especially photoreceptors. Alteration in RPE structure and function is implicated in a variety of ocular disorders. Tissue engineering strategies using synthetic biodegradable polymers as temporary substrates for RPE cell culture and subsequent transplantation may provide a promising new therapy. In this review article, the manufacture of thin biodegradable poly(DL-lactic-co-glycolic acid) (PLGA) films and their degradation behavior in vitro are discussed. RPE cell proliferation and differentiation on these PLGA films are reviewed. The fabrication of model substrates with desired chemical micropatterns in the micrometer scale is discussed and the effects of surface patterning on RPE morphology and function are assessed. Finally. the preparation of biodegradable micropatterns with adhesive PLGA and non-adhesive poly(ethylene glycol)/PLA domains to modulate RPE cell adhesion is presented.

  19. Evolving management of metaplasia and dysplasia in Barrett's epithelium

    PubMed Central

    Evans, Richard P T; Mourad, Moustafa Mabrouk; Fisher, Simon G; Bramhall, Simon R

    2016-01-01

    Oesophageal cancer affects more than 450000 people worldwide and despite continued medical advancements the incidence of oesophageal cancer is increasing. Oesophageal cancer has a 5 year survival of 15%-25% and now globally attempts are made to more aggressively diagnose and treat Barrett’s oesophagus the known precursor to invasive disease. Currently diagnosis the of Barrett’s oesophagus is predominantly made after endoscopic visualisation and histopathological confirmation. Minimally invasive techniques are being developed to improve the viability of screening programs. The management of Barrett’s oesophagus can vary greatly dependent on the presence and severity of dysplasia. There is no consensus between the major international medical societies to determine and agreed surveillance and intervention pathway. In this review we analysed the current literature to demonstrate the evolving management of metaplasia and dysplasia in Barrett’s epithelium. PMID:28058012

  20. Runx3 expression in gastrointestinal tract epithelium: resolving the controversy.

    PubMed

    Ito, K; Inoue, K-i; Bae, S-C; Ito, Y

    2009-03-12

    We reported earlier that RUNX3 is expressed in human and mouse gastrointestinal tract (GIT) epithelium and that it functions as a tumor suppressor in gastric and colorectal tissues. However, there have been conflicting reports describing the absence of Runx3 in GIT epithelial cells. A part of the controversy may be derived from the use of a specific antibody by other groups (referred to as G-poly). Here, we show further evidence to support our earlier observations and provide a possible explanation for this apparent controversy. We generated multiple anti-RUNX3 monoclonal antibodies and found that RUNX3 antibodies recognizing the RUNX3 N-terminal region (residues 1-234) react with RUNX3 in gastric epithelial cells, whereas those recognizing the C-terminal region (beyond residue 234) did not. G-poly primarily recognizes the region beyond 234 and hence, is unable to detect Runx3 in this tissue.

  1. Ultracytochemical study on the permeability of the human amniotic epithelium.

    PubMed

    Matsubara, S; Tamada, T

    1991-06-01

    In order to elucidate and characterize the transport pathway of the substances in the amniotic fluid, the permeability of the term human amnion was studied ultracytochemically, with lanthanum or horse radish peroxidase (HRP) as a tracer. Pieces of the term human amnion were exposed to the solutions containing lanthanum or HRP, and processed for electronmicroscopy. Precipitates indicating lanthanum or HRP were observed in the lateral intercellular spaces of the amniotic epithelial cells through the entire depth of the spaces. Generally, pinocytosis of HPR was not observed. In rare cases, however, diffuse uptake of HRP was noticed in the cells of the electron-lucent cytoplasm. These facts indicated that the human amniotic epithelium is quite permeable and that this particular intercellular pathway is important in the mechanism of the transfer of substances between the mother and the fetus.

  2. X-ray microanalysis of hamster tracheal epithelium

    SciTech Connect

    Spencer, A.J.; Roomans, G.M. )

    1989-06-01

    Studies of ion transport across respiratory epithelia are of great interest if we are to understand the pathophysiology of diseases such as cystic fibrosis in which ion transport is abnormal. Concentrations of elements were determined in various subcellular regions of normal or isoproterenol-treated hamster tracheal epithelium, using X-ray microanalysis of freeze-dried cryosections. Samples of trachea were taken from animals under anesthesia and either frozen in situ or dissected and plunge frozen. Concentrations of Mg, P, S, Cl, K and Ca were higher in cytoplasm and nuclei of control epithelial cells in dissected samples than in cryoneedle samples. Following treatment with isoproterenol, a large decrease in the concentration of Cl was observed. The results confirm that cyclic AMP-regulated chloride secretion is unaffected by anesthesia.

  3. Abl suppresses cell extrusion and intercalation during epithelium folding.

    PubMed

    Jodoin, Jeanne N; Martin, Adam C

    2016-09-15

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical-basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.

  4. Retinal Pigment Epithelium Tears: Risk Factors, Mechanism and Therapeutic Monitoring.

    PubMed

    Clemens, Christoph R; Eter, Nicole

    2016-01-01

    Tears of the retinal pigment epithelium (RPE) are most commonly associated with vascularised RPE detachment due to age-related macular degeneration (AMD), and they usually involve a deleterious loss in visual acuity. Recent studies suggest an increase in RPE tear incidences since the introduction of anti-vascular endothelial growth factor (anti-VEGF) therapies as well as a temporal association between the tear event and the intravitreal injection. As the number of AMD patients and the number of administered anti-VEGF injections increase, both the challenge of RPE tear prevention and the treatment after RPE tear formation have become more important. At the same time, the evolution of retinal imaging has significantly contributed to a better understanding of RPE tear development in recent years. This review summarises the current knowledge on RPE tear development, predictive factors, and treatment strategies before and after RPE tear formation.

  5. Vitamin E inhibits retinal pigment epithelium cell proliferation in vitro.

    PubMed

    Mojon, D; Boscoboinik, D; Haas, A; Bohnke, M; Azzi, A

    1994-01-01

    Retinal pigment epithelium (RPE) cells migrating through the damaged retina play an important role in the pathogenesis of proliferative vitreoretinopathy (PVR). We found that alpha-tocopherol (vitamin E) inhibits proliferation of human RPE in culture without exerting cytotoxic effects. Maximal inhibition was achieved with 100 microM alpha-tocopherol. Our result could explain the observation that vitamin E supplements have an adverse effect on light-damaged retina and on the course of retinitis pigmentosa. Since it has been shown that supplemental oral administrations of vitamin E can raise the RPE concentration of alpha-tocopherol well above 100 microM and supplementation is not associated with any clinical relevant adverse effect, we believe that vitamin E could be beneficial in the treatment of PVR.

  6. Transcriptome of the human retina, retinal pigmented epithelium and choroid

    PubMed Central

    Tian, Lifeng; Kazmierkiewicz, Krista L; Bowman, Anita S; Li, Mingyao; Curcio, Christine A; Stambolian, Dwight E

    2015-01-01

    The retina and its adjacent supporting tissues -- retinal pigmented epithelium (RPE) and choroid -- are critical structures in human eyes required for normal visual perception. Abnormal changes in these layers have been implicated in diseases such as age-related macular degeneration and glaucoma. With the advent of high-throughput methods, such as serial analysis of gene expression, cDNA microarray, and RNA sequencing, there is unprecedented opportunity to facilitate our understanding of the normal retina, RPE, and choroid. This information can be used to identify dysfunction in age-related macular degeneration and glaucoma. In this review, we describe the current status in our understanding of these transcriptomes through the use of high throughput techniques. PMID:25645700

  7. Asymmetric ( UC)albumin transport across bullfrog alveolar epithelium

    SciTech Connect

    Kim, K.J.; LeBon, T.R.; Shinbane, J.S.; Crandall, E.D.

    1985-10-01

    Bullfrog lungs were prepared as planar sheets and bathed with Ringer solution in Ussing chambers. In the presence of a constant electrical gradient (20, 0, or -20 mV) across the tissue, UC-labeled bovine serum albumin or inulin was instilled into the upstream reservoir and the rate of appearance of the tracer in the downstream reservoir was monitored. Two lungs from the same animal were used to determine any directional difference in tracer fluxes. An apparent permeability coefficient was estimated from a relationship between normalized downstream radioactivities and time. Results showed that the apparent permeability of albumin in the alveolar to pleural direction across the alveolar epithelial barrier is 2.3 X 10(-7) cm/s, significantly greater (P less than 0.0005) than that in the pleural to alveolar direction (5.3 X 10(-8) cm/s) when the tissue was short circuited. Permeability of inulin, on the other hand, did not show any directional dependence and averaged 3.1 X 10(-8) cm/s in both directions. There was no effect on radiotracer fluxes permeabilities of different electrical gradients across the tissue. Gel electrophoretograms and corresponding radiochromatograms suggest that the large and asymmetric isotope fluxes are not primarily due to digestion or degradation of labeled molecules. Inulin appears to traverse the alveolar epithelial barrier by simple diffusion through hydrated paracellular pathways. On the other hand, ( UC)albumin crosses the alveolar epithelium more rapidly than would be expected by simple diffusion. These asymmetric and large tracer fluxes suggest that a specialized mechanism is present in alveolar epithelium that may be capable of helping to remove albumin from the alveolar space.

  8. Ultrastructure and morphometric features of epididymal epithelium in Desmodus rotundus.

    PubMed

    Castro, Mariana Moraes de; Gonçalves, Wagner Gonzaga; Teixeira, Stéphanie Asséf Millen Valente; Fialho, Maria do Carmo Queiroz; Santos, Felipe Couto; Oliveira, Jerusa Maria; Serrão, José Eduardo; Machado-Neves, Mariana

    2017-08-26

    The blood-feeding behavior of Desmodus rotundus made this bat a potential vector of rabies virus and a public health issue. Consequently, the better understanding of its reproductive biology becomes valuable for the development of methods to control its population. In this study, we described morphological aspects of epithelial cells in D. rotundus' epididymis using light and transmission electron microscopy methods. The duct compartment was the main component of initial segment (83%), caput (90%), corpus (88%) and cauda (80%) regions. The epithelium lining the duct presented a progressive decrease in its height from initial segment to cauda regions. Moreover, the morphology of each cell type was the same along the entire duct. Similarly to rodents, columnar-shaped principal cells were the most abundant cell type throughout the epididymis, followed by basal and clear cells. Differently in rat and mice, the frequency of clear cells did not increase in the epididymis cauda, whereas the proportion of principal and basal cells was greater in this region. Furthermore, D. rotundus presented goblet-shaped clear cells with the nucleus located in the apical portion of the epididymal epithelium. This cellular portion also presented electron-lucid vesicles of different sizes that may correspond to vesicles enriched with proteins related to proton secretion. In addition to the findings regarding clear cells' structural organization, basal cells presented scarce cytoplasm and no axiopodia. Taken these findings together, we suggest that the mechanism of luminal acidification may have other pathways in D. rotundus than those described in rodents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Hypertonic saline inhibits luminal sodium channels in respiratory epithelium.

    PubMed

    Hebestreit, Alexandra; Kersting, Ulrich; Hebestreit, Helge

    2007-05-01

    Physical exercise with increased ventilation leads to a considerable rise in water loss from the airways. The mechanisms underlying the regulation of transepithelial fluid transport necessary to compensate for these losses are unknown but may include changes in luminal ion channel conductance. The present study was designed to examine the effects of an increase in luminal chloride and sodium concentrations which may locally occur during hyperventilation on luminal ion conductance in the respiratory epithelium of healthy controls and patients diagnosed with cystic fibrosis (CF). Changes in luminal chloride and sodium conductance were inferred by recording nasal potential difference in eight healthy subjects and 10 patients with CF, using superfusing solutions based on isotonic saline (150 mM) on one occasion and solutions based on hypertonic saline (300 mM) on the other. Switching from isotonic to hypertonic saline superfusion decreased potential difference in controls and CF patients significantly. Amiloride induced a decrease of potential difference which was larger with isotonic than with hypertonic saline (controls 9.5 +/- 6.1 vs. 3.7 +/- 4.6 mV; CF 17.2 +/- 7.2 vs. 9.8 +/- 7.6 mV). Chloride conductance stimulated with solutions low in chloride and containing isoproterenol was not significantly changed by hypertonic saline solutions compared with isotonic solutions in both groups. The findings indicate a significant inhibition of luminal sodium conductance by high luminal sodium concentrations. This mechanism may be involved in the regulation of fluid transport across the respiratory epithelium during exercise and in the improvement of mucociliary clearance and lung functions with inhalation of hypertonic saline in CF.

  10. Differential activities of peroxisomes along the mouse intestinal epithelium.

    PubMed

    Morvay, Petruta L; Baes, Myriam; Van Veldhoven, Paul P

    2017-04-01

    The presence of peroxisomes in mammalian intestine has been revealed formerly by catalase staining combined with electron microscopy. Despite the central role of intestine in lipid uptake and the established importance of peroxisomes in different lipid-related pathways, few data are available on the physiological role of peroxisomes in intestinal metabolism, more specifically, α-, β-oxidation, and etherlipid synthesis. Hence, the peroxisomal compartment was analyzed in more detail in mouse intestine. On the basis of immunohistochemistry, the organelles are mainly confined to the epithelial cells. The expression of the classical peroxisome marker catalase was highest in the proximal part of jejunum and decreased along the tract. PEX14 showed a similar profile, but was still substantial expressed in large intestinal epithelium. Immunoblotting of epithelial cells, isolated from the different segments, showed also such gradient for some enzymes, ie, catalase, ACOX1, and D-specific multifunctional protein 2, and for the ABCD1 transporter, being high in small and low or absent in large intestine. Other peroxisomal enzymes (PHYH, HACL1, and ACAA1), the ABCD2 and ABCD3 transporters, and peroxins PEX13 and PEX14, however, did not follow this pattern, displaying rather constant signals throughout the intestinal epithelium. The small intestine displayed the highest peroxisomal β-oxidation activity and is particularly active on dicarboxylic acids. Etherlipid synthesis was high in the large intestine, and colonic cells had the highest content of plasmalogens. Overall, these data suggest that peroxisomes exert different functions according to the intestinal segment. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Cultured human ocular surface epithelium on therapeutic contact lenses

    PubMed Central

    Girolamo, Nick Di; Chui, Jeanie; Wakefield, Denis; Coroneo, Minas T

    2007-01-01

    Background This study was initiated after observation of some intriguing epithelial growth properties of contact lenses used as a bandage for patients after pterygium surgery. Aim To determine the efficacy of culturing human ocular surface epithelial cells on therapeutic contact lenses in autologous serum with a view of using this system to transfer epithelial cells to patients with persistent corneal or limbal defects. Methods Excess graft tissue resected from patients undergoing pterygium surgery (n = 3) consisting of limbal epithelium was placed on siloxane–hydrogel contact lenses (lotrafilcon A and balafilcon A). Limbal explants were cultured in media with 10% autologous serum. Morphology, proliferative capacity and cytokeratin profile were determined by phase contrast, light and electron microscopy, and immunohistochemical analysis. Results Lotrafilcon A contact lenses sustained proliferation and migration from limbal tissue. Cells became confluent after 10–14 days and consisted of 2–3 layers with a corneal phenotype (CK3+/CK12+/CK19−) and a propensity to proliferate (p63+). Electron microscopy showed microvilli on the apical surface with adhesive projections, indicating that these cells were stable and likely to survive for a long term. Growth was not observed from limbal explants cultured on balafilcon A contact lenses. Conclusion A method for culturing human ocular surface epithelium on contact lenses that may facilitate expansion and transfer of autologous limbal epithelial cells while avoiding the risks associated with transplanting allogeneic tissue has been developed. This technique may be potentially useful for the treatment of patients with limbal stem cell deficiency. PMID:16987897

  12. Metabolic competence and susceptibility of intestinal epithelium to genotoxic injury during regeneration.

    PubMed

    Patel, H R; Hewer, A; Phillips, D H; Hayes, J D; Wolf, C R; Campbell, F C

    1997-11-01

    The carcinogenic potency of many mutagens is increased in conditions of tissue regeneration. This involves fundamental changes of cellular division and differentiation, in intestinal epithelium. However, effects on epithelial capacity for carcinogen metabolism and susceptibility to genotoxic injury are unknown. Using a novel rat model, this study assessed expression of cytochrome P450 mono-oxygenases (Cyps), glutathione S-transferases (GSTs) and uridine diphosphoglucuronosyl transferase (UGT) in intestinal epithelium during sequential stages of regeneration. Enzyme induction and DNA adduct formation were also assessed after benzo[a]pyrene (BaP) exposure. Control assays were carried out in normal intestinal epithelium. Fewer phase I and II xenobiotic metabolizing enzymes were expressed in regenerating intestinal epithelium than in normal control intestinal epithelium (GSTA3, UGT in regeneration vs Cyp2B, GSTA1/2, GSTA4, GSTP1, UGT in control). Benzo[a]pyrene induced GSTA3 and UGT in regeneration vs Cyp1A, Cyp2B, GSTA1/2, GSTA3, GSTA4, GSTP1 and UGT in control normal intestinal epithelium. Benzo[a]pyrene induced low levels of GSTA3 in early regenerating intestinal epithelium but induction increased by >2-fold at late stage regeneration. Higher levels of benzo[a]pyrene 7,8-diol-9,10-epoxide (BPDE) DNA adducts were formed at early stages of regeneration, than at later stages. Intestinal epithelium displayed reduced metabolic competence and differential susceptibility to genotoxic injury from BaP, during regeneration.

  13. Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung.

    PubMed

    del Moral, Pierre-Marie; De Langhe, Stijn P; Sala, Frédéric G; Veltmaat, Jacqueline M; Tefft, Denise; Wang, Kasper; Warburton, David; Bellusci, Savério

    2006-05-01

    Mesothelial Fibroblast Growth Factor 9 (Fgf9) has been demonstrated by inactivation studies in mouse to be critical for the proliferation of the mesenchyme. We now show that Fgf9 is also expressed at significant levels in the distal epithelium from the mid-pseudoglandular stages. Using mesenchymal-free lung endoderm culture, we show that FGF9 triggers the proliferation of the distal epithelium leading to the formation of a cyst-like structure. On embryonic Fgfr2b-/- lungs, FGF9 induces proliferation of the mesenchyme but fails to trigger a similar effect on the epithelium, therefore involving the FGFR2b receptor in the proliferative response of the epithelium to FGF9. While FGF9 inhibits the differentiation of the mesenchyme, the epithelium appears to differentiate normally. At the molecular level, FGF9 up-regulates Fgf10 expression in the mesenchyme likely via increased expression of Tbx4 and 5 and controls the transcription of Hedgehog targets Ptc and Gli-1 in a Hedgehog-independent manner. We also show that FGF9 inhibits the activation of the canonical Wnt pathway in the epithelium by increasing Dkk1 expression, a canonical Wnt antagonist. Our work shows for the first time that FGF9 acts on the epithelium involving FGFR2b to control its proliferation but not its differentiation and contributes to the regulation of canonical Wnt signaling in the epithelium.

  14. Effects of temperature, amebic strain, and carbohydrates on Acanthamoeba adherence to corneal epithelium in vitro.

    PubMed Central

    Morton, L D; McLaughlin, G L; Whiteley, H E

    1991-01-01

    An in vitro coincubation assay was used to measure adhesion of radiolabeled Acanthamoeba trophozoites to corneal epithelium. Adhesion of amebae to corneal epithelium was higher at 25 degrees C than at 37 or 4 degrees C, did not consistently correlate with the reported pathogenicity of the strain of Acanthamoeba, and was inhibited by mannose and by methyl-alpha-D-mannopyranoside. PMID:1894379

  15. [Role of keratinocytes in preservation of oral mucosa epithelium integrity. Part I].

    PubMed

    Zapała, Jan; Zarzecka, Joanna; Drukała, Justyna

    2005-01-01

    Functions of oral mucosa epithelium in preservation of homeostasis have been presented. Characteristic features that distinguish epithelial cells from the other somatic cells influencing mechanical resistance of oral epithelium and creating selective chemical barrier have been described. The participation of keratinocytes in selected phases of wound healing process has been analyzed.

  16. NORMAL GENE EXPRESSION IN MALE F344 RAT NASAL TRANSITIONAL/RESPIRATORY EPITHELIUM

    EPA Science Inventory

    Abstract

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Ce...

  17. STUDIES OF NORMAL GENE EXPRESSION IN THE RAT NASAL EPITHELIUM USNG CDNA ARRAY TECHNOLOGY

    EPA Science Inventory


    Studies of Normal Gene Expression in the Rat Nasal Epithelium Using cDNA Array

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity .Gene expression data are being used increasingly for studies of such conditions. In or...

  18. NORMAL GENE EXPRESSION IN MALE F344 RAT NASAL TRANSITIONAL/RESPIRATORY EPITHELIUM

    EPA Science Inventory

    Abstract

    The nasal epithelium is an important target site for chemically-induced toxicity and carcinogenicity in rodents. Gene expression profiles were determined in order to provide normal baseline data for nasal transitional/respiratory epithelium from healthy rats. Ce...

  19. Effects of low-power laser irradiation on the mitosis rate of the corneal epithelium

    NASA Astrophysics Data System (ADS)

    Chen, Varda; Landshman, Nahum; Belkin, Michael

    1995-05-01

    The effect of repeated low power He-Ne laser on rabbit's corneal epithelium was studied after 3 daily sessions. Under certain irradiation parameters, low power He-Ne laser irradiation was found to change the mitotic rate in the basal layer of intact corneal epithelium. Three daily irradiations for 3 or 10 minutes increased the mitotic index while 30 minutes irradiations decreased it.

  20. Diet Modification for Hyperlipidemia

    PubMed Central

    Mann, Heather D.; Piotrowski, Pamela

    1992-01-01

    Hyperlipidemia is a major risk factor associated with cardiovascular disease. Dietary modification is effective in achieving and maintaining improved serum lipid levels. Nutritional care provided by a dietitian includes individual dietary and lifestyle assessment, formulating an appropriate dietary regimen, education, and follow-up assessments. PMID:21221406

  1. Biblical behavior modification.

    PubMed

    Lasure, L C; Mikulas, W L

    1996-07-01

    Although we may have formalized and systematized the field of behavior modification in the last few decades, people around the world have been using behavioral change strategies throughout history. Premack's (1965) theory of reinforcement is often called "Grandma's rule" because grandmothers have long been using it (e.g. You must finish your vegetables before you may go out and play). Franks (1969, p. 4), in one of the first behavioral texts, gave historical examples from China, Turkey, France, and Italy. Knapp and Shodahl (1974) showed how Benjamin Franklin used behavior modification. And de Silva (1984, 1985) gave examples of behavior modification by the Buddha and other early Buddhists. Conspicuously absent from our literature are examples from the Judeo-Christian tradition. In this paper, we provide a number of behavior modification examples from the Bible (New International Version). Footnotes provide references for many more examples. In the discussion, we explore implications for education and therapy. Examples are grouped by the following categories: operant conditioning, respondent conditioning, modeling, and cognitive interventions. However, the Biblical examples, like contemporary case studies, do not always fall neatly into discrete categories. They often are a combination, particularly operant and respondent conditioning interweaving.

  2. Teachers and Behavior Modification.

    ERIC Educational Resources Information Center

    Frey, Sherman

    This survey of 406 educators attending the 1973 summer session at Northern Illinois University sought to determine educators' familiarity with behavior modification, including the nature of their exposure to it and the extent to which they have integrated it into their own behavior. The survey also sought subjects' opinion of the value of being…

  3. Behavior Modification: Education's Watergate.

    ERIC Educational Resources Information Center

    Carrison, Muriel Paskin

    Several of the theoretical and experimental assumptions relating to behavior modification are examined and criticized: (1) the human mind can only be understood by observing and measuring the functional behavior it causes, (2) performance can be equated with learning, (3) reward systems and token economies improve intrinsic learning, and (4) all…

  4. THE MODIFICATION OF STUTTERING.

    ERIC Educational Resources Information Center

    BRUTTEN, EUGENE J.; SHOEMAKER, DONALD J.

    INTENDED FOR BOTH THE COLLEGE STUDENT AND THE PROFESSIONAL SPEECH PATHOLOGIST, THE BOOK PRESENTS CURRENT LEARNING THEORIES CONCERNING STUTTERING, DATA IMPORTANT TO THE THEORIES, AND A 2-PROCESS THEORY OF LEARNING FOR THEORETICAL INTEGRATION OF THE DATA ON STUTTERING AND FOR THERAPEUTIC MODIFICATION. INFORMATION PRESENTED ABOUT BEHAVIORISTIC…

  5. Behavior Modification with Children

    ERIC Educational Resources Information Center

    Brown, Daniel G.

    1972-01-01

    The author urges wider use of positive reinforcement theories in helping emotionally disturbed and mentally handicapped children. Underlining the influence of environment on behavior, he also notes that behavior modification programs utilize fewer trained personnel more effectively and, like Tennessee's Re-Education Treatment, allow for therapy in…

  6. Personalizing Behavior Modification.

    ERIC Educational Resources Information Center

    White, Debra G.; And Others

    1987-01-01

    Process reinforcement is proposed as a reinforcement method that is more comfortable, personal, comprehensive, and interactive than traditional behavior modification. Process reinforcement strengthens desired behaviors by engaging learners in a one-on-one examination of how they achieved correct responses and by practicing comfortable eye contact…

  7. Instructional Improvement: Behavior Modification.

    ERIC Educational Resources Information Center

    Haring, Norris G.; Hayden, Alice H.

    Sixteen papers are provided. B. F. Skinner discusses the arrangement of contingencies for learning: Lloyd Homme describes behavioral engineering; and Frank Hewett considers behavior modification in special education. Also treated are experimental education by Norris Haring, program evaluation by Arthur Lumsdaine, and administration of special…

  8. Toy Modification Note. Revised.

    ERIC Educational Resources Information Center

    Vanderheiden, Gregg C.; And Others

    Described are toy modifications which enable handicapped individuals to operate battery-powered toys. A battery interrupter is explained as a device which fits between the batteries in a toy and provides the ability to have a separate on-off switch which can be custom designed to fit a handicapped user's needs. Construction and use of three types…

  9. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning.

    PubMed

    Nagalakshmi, Vidya K; Yu, Jing

    2015-03-01

    The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney.

  10. Laminin modification subretinal bio-scaffold remodels retinal pigment epithelium-driven microenvironment in vitro and in vivo

    PubMed Central

    Jhan, Yong-Yu; Chien, Ke-Hung; Chung, Yu-Chien; Hung, Kuo-Hsuan; Chang, Chia-Ching; Lee, Chao-Kuei; Tseng, Wei-Lien; Hwang, De-Kuang; Hsu, Chia-Hsien; Lin, Tai-Chi; Chiou, Shih-Hwa; Chen, Shih-Jen

    2016-01-01

    Advanced age-related macular degeneration (AMD) may lead to geographic atrophy or fibrovascular scar at macular, dysfunctional retinal microenvironment, and cause profound visual loss. Recent clinical trials have implied the potential application of pluripotent cell-differentiated retinal pigment epithelial cells (dRPEs) and membranous scaffolds implantation in repairing the degenerated retina in AMD. However, the efficacy of implanted membrane in immobilization and supporting the viability and functions of dRPEs, as well as maintaining the retinal microenvironment is still unclear. Herein we generated a biomimetic scaffold mimicking subretinal Bruch's basement from plasma modified polydimethylsiloxane (PDMS) sheet with laminin coating (PDMS-PmL), and investigated its potential functions to provide a subretinal environment for dRPE-monolayer grown on it. Firstly, compared to non-modified PDMS, PDMS-PmL enhanced the attachment, proliferation, polarization, and maturation of dRPEs. Second, PDMS-PmL increased the polarized tight junction, PEDF secretion, melanosome pigment deposit, and phagocytotic-ability of dRPEs. Third, PDMS-PmL was able to carry a dRPEs/photoreceptor-precursors multilayer retina tissue. Finally, the in vivo subretinal implantation of PDMS-PmL in porcine eyes showed well-biocompatibility up to 2-year follow-up. Notably, multifocal ERGs at 2-year follow-up revealed well preservation of macular function in PDMS-PmL, but not PDMS, transplanted porcine eyes. Trophic PEDF secretion of macular retina in PDMS-PmL group was also maintained to preserve retinal microenvironment in PDMS-PmL eyes at 2 year. Taken together, these data indicated that PDMS-PmL is able to sustain the physiological morphology and functions of polarized RPE monolayer, suggesting its potential of rescuing macular degeneration in vivo. PMID:27564261

  11. Posttranslational Protein Modification in Archaea

    PubMed Central

    Eichler, Jerry; Adams, Michael W. W.

    2005-01-01

    One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review. PMID:16148304

  12. Posttranslational protein modification in Archaea.

    PubMed

    Eichler, Jerry; Adams, Michael W W

    2005-09-01

    One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.

  13. Squamous epithelium formation in the respiratory intestine of the bronze Corydoras Corydoras aeneus (Callichthyidae Teleostei).

    PubMed

    Satora, Leszek; Kozioł, Katarzyna; Zebrowski, Jacek

    2017-06-01

    Accessory respiratory organs in fish exhibit great diversity but share the presence of numerous capillaries covered by a simple squamous epithelium. The adoption of the intestine for respiratory function needs certain special modifications. In this study, we explored immunohistochemical and metabolic fingerprint features that could underlay this adaptation in bronze corydoras Corydoras aeneus. Immunohistochemical localization of the cytoplasmic domain of epidermal growth factor receptor (EGFR) in the respiratory part of intestine demonstrated a strong positive immunoreaction in epithelial cells and connective tissue. Fourier Transfer Infrared (FTIR) spectroscopy coupled with chemometrics discriminated between anterior and posterior region of intestine in terms of secondary structure of proteins and the abundance of p-cresol and other phenolics. The latter were reduced in the posterior part of intestine, indicating the cessation of digestive function in this region. It has been suggested that aquatic hypoxia via endocrine cells (hypoxia-sensitive) activate EGFR, which induce proliferation of squamous epithelial cells, thereby enabling gas diffusion in the posterior part of intestine. It seems that hypoxia and normoxia are opposed conditions adjusting the production of squamous epithelial cells in this intestine. The physiological role of EGFR in the respiratory intestine of bronze corydoras is of interest not only from an evolutionary aspect but also in terms of a potential model for observations process proliferation squamous epithelial cells. Future investigations on the molecular responses to different water oxygen levels in air-breathing bronze corydoras fish are required to clarify the mechanism responsible for squamous cell proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Clinical risk modification.

    PubMed

    Wilson, J

    Claims for compensation in cases of clinical negligence have risen dramatically in recent years. The implementation of the NHS reforms, with greater clarity of roles and responsibilities and the emphasis on devolving decision-making as close to the patient as possible, is meant to affect the entire performance of healthcare delivery. For most senior managers and clinicians, the environment in which they operate has grown increasingly turbulent and complex. Both purchasers and providers of health care want the best and most effective and efficient care. The cost and quality of care are components in determining the value of health care delivered, and both are elements of healthcare risk. To begin to manage these elements of risk, the process of healthcare risk modification can be applied. Healthcare risk modification provides the best service for patients through obtaining a synergy between risk management, quality and the law.

  15. Response modification in carcinogenesis.

    PubMed Central

    Cerutti, P A

    1989-01-01

    A major goal in multistep carcinogenesis research is the integration of recent findings obtained by sophisticated molecular-genetic and cytogenetic analysis of cancer into the more descriptive concepts of experimental pathology. It is proposed that the creation of a promotable cell in carcinogenic initiation requires a response modification to extracellular or intercellular signals. Different types of response modification can be distinguished: changes in the receptors for growth and differentiation factors and their cytoplasmic and nuclear signal transduction pathways; increased resistance of initiated cells to cytotoxic agents; alterations in junctional cell-to-cell communications. The challenge of a response-modified cell to an appropriate promoter results in its selection and clonal expansion, usually to a benign tumor. In addition, for malignancy, chromosomal changes are required that affect cellular functions that can play a role early or late in tumorigenesis. These concepts are illustrated with examples from oncogene research and oxidant promotion. PMID:2667983

  16. Morphological and glycan features of the camel oviduct epithelium.

    PubMed

    Accogli, Gianluca; Monaco, Davide; El Bahrawy, Khalid Ahmed; El-Sayed, Ashraf Abd El-Halim; Ciannarella, Francesca; Beneult, Benedicte; Lacalandra, Giovanni Michele; Desantis, Salvatore

    2014-07-01

    This study describes regional differences in the oviduct of the one-humped camel (Camelus dromedarius) during the growth phase (GP) and the mature phase (MP) of the follicular wave by means of morphometry, scanning electron microscopy (SEM) and glycohistochemistry investigations. Epithelium height significantly increased in the ampulla and decreased in the isthmus passing from the GP to the MP. Under SEM, non-ciliated cells displayed apical blebs (secretory) or short microvilli. Cilia glycocalyx expressed glycans terminating with sialic acid linked α2,6 to Gal/GalNAc (SNA affinity) throughout the oviducts of GP and MP and sialic acid linked α2,3 to Galβ1,3GalNAc (MAL II and KOH-sialidase (K-s)-PNA staining) throughout the MP oviducts. Non-ciliated cells displayed lectin-binding sites from the supra-nuclear cytoplasm to the luminal surface. Ampulla non-ciliated cells showed O-linked (mucin-type) sialoglycans (MAL II and K-s-PNA) during GP and MP and N-linked sialoglycans (SNA) during the MP. Isthmus non-ciliated cells expressed SNA reactivity in GP and MP, also K-s-PNA binders in MP, and MAL II and PNA affinity (Galβ1,3GalNAc) during GP. Galβ1,3GalNAc was sialilated in the non-ciliated cells of GP UTJ. Luminal surface lacked of Galβ1,3GalNAc in GP and MP, whereas it expressed α2,6- and α2,3-linked sialic acids. In GP intraluminal substance reacted with SNA, MAL II, K-s-PNA in ampulla and only with MAL II in the isthmus and UTJ. These results demonstrate that the morphology and the glycan pattern of the camel oviductal epithelium vary during the follicular wave and that could relate to the region-specific functions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Development of an electrode for the artificial cochlear sensory epithelium.

    PubMed

    Tona, Yosuke; Inaoka, Takatoshi; Ito, Juichi; Kawano, Satoyuki; Nakagawa, Takayuki

    2015-12-01

    An artificial cochlear sensory epithelium has been developed on the basis of a new concept that the piezoelectric membrane, which converts mechanical distortion into electricity, can mimic the function of the inner hair cell and basilar membrane of the mammalian cochlea. Our previous research demonstrated that the piezoelectric membrane generated electrical outputs in response to the sound stimulation after implantation into the guinea pig cochlea, whereas electrodes for the stimulation of spiral ganglion neurons have not been fabricated, and a method to fix the device in the cochlea is also required to show proof-of-concept. In the present study, to achieve proof-of-concept of hearing recovery by implantation of the artificial cochlear sensory epithelium, we fabricated new electrodes that stick into the cochlear modiolus, which also play a role in the fixation of the device in the cochlea. The efficacy of new electrodes for fixation of the device in the cochlea and for the stimulation of spiral ganglion neurons was estimated in guinea pigs. Four weeks after implantation, we confirmed that the devices were in place. Histological analysis of the implanted cochleae revealed inconspicuous fibrosis and scar formation compared with the sham-operated specimens (n = 5 for each). The terminal deoxynucleotidyl transferase dUTP nick end labeling method was used to assess cell death due to surgical procedures in the cochleae that were harvested after 1 day (n = 6) and 7 days (n = 6) of implantation; there was no significant increase in apoptotic cell death in the implanted cochleae compared with sham-operated cochleae. In seven animals, serial measurements of electrically evoked auditory brainstem responses were obtained, with the electrode positioned in the scala tympani and with the electrode inserted into the cochlear modiolus. With the insertion of electrodes into the cochlear modiolus, significant reduction was achieved in the thresholds of electrically evoked auditory

  18. Intranasal Location and Immunohistochemical Characterization of the Equine Olfactory Epithelium

    PubMed Central

    Kupke, Alexandra; Wenisch, Sabine; Failing, Klaus; Herden, Christiane

    2016-01-01

    The olfactory epithelium (OE) is the only body site where neurons contact directly the environment and are therefore exposed to a broad variation of substances and insults. It can serve as portal of entry for neurotropic viruses which spread via the olfactory pathway to the central nervous system. For horses, it has been proposed and concluded mainly from rodent studies that different viruses, e.g., Borna disease virus, equine herpesvirus 1 (EHV-1), hendra virus, influenza virus, rabies virus, vesicular stomatitis virus can use this route. However, little is yet known about cytoarchitecture, protein expression and the intranasal location of the equine OE. Revealing differences in cytoarchitecture or protein expression pattern in comparison to rodents, canines, or humans might help to explain varying susceptibility to certain intranasal virus infections. On the other hand, disclosing similarities especially between rodents and other species, e.g., horses would help to underscore transferability of rodent models. Analysis of the complete noses of five adult horses revealed that in the equine OE two epithelial subtypes with distinct marker expression exist, designated as types a and b which resemble those previously described in dogs. Detailed statistical analysis was carried out to confirm the results obtained on the descriptive level. The equine OE was predominantly located in caudodorsal areas of the nasal turbinates with a significant decline in rostroventral direction, especially for type a. Immunohistochemically, olfactory marker protein and doublecortin (DCX) expression was found in more cells of OE type a, whereas expression of proliferating cell nuclear antigen and tropomyosin receptor kinase A was present in more cells of type b. Accordingly, type a resembles the mature epithelium, in contrast to the more juvenile type b. Protein expression profile was comparable to canine and rodent OE but equine types a and b were located differently within the nose and

  19. Chloride Channels and Transporters in Human Corneal Epithelium

    PubMed Central

    Cao, Lin; Zhang, Xiao-Dong; Liu, Xiaobo; Chen, Tsung-Yu; Zhao, Min

    2010-01-01

    Transport of water and electrolytes is critical for corneal clarity. Recent studies indicate another important function of transport of ions and electrolytes - establishing wound electric fields that guide cell migration. We found chloride (Cl-) flux is a major component of the corneal wound electric current. In order to elucidate the mechanisms of Cl- transport, we studied Cl- channels and transporters in human corneal epithelial (HCE) cells. We tested a transformed human corneal epithelial cell line (tHCE), primary cultures of human corneal epithelial cells (pHCE), and human donor corneas. We first used RT-PCR to determine expression levels of mRNA of CLC (Cl- channel/transporter) family members and CFTR (cystic fibrosis transmembrane conductance regulator) in HCE cells. We then confirmed protein expression and distribution of selected CLC family members and CFTR with Western blot and immuno-fluorescence confocal microscopy. Finally, Cl- currents were recorded with electrophysiological techniques. The mRNAs of CLC-2, CLC-3, CLC-4, CLC-5, CLC-6, and CFTR were detected in the HCE cell line. CLC-1 and CLC-7 were not detectable. Western blot and immunostaining confirmed protein expression and distribution of CLC-2, CLC-3, CLC-4, CLC-6 and CFTR in human corneal epithelium. CLC-2 preferentially labeled the apical and basal layers, while CLC-3 and CLC-4 labeled only the superficial layer. CLC-6 and CFTR labeling showed a unique gradient with strong staining in apical layers which gradually decreased towards the basal layers. Corneal endothelium was positive for CLC-2, CLC-3, CLC-4, CLC-6 and possibly CFTR. Human corneal epithelial cells demonstrated voltage dependent Cl- currents. HCE cells express functional Cl- channels and transporters. CLC-2, CLC-3, CLC-4, CLC-6, and CFTR had distinct expression patterns in human corneal epithelium. Those molecules and their distribution may play important roles in maintaining resting Cl- fluxes and in regulating Cl- flux at corneal

  20. The significance of small intestinal epithelium in gastric antral biopsies in children.

    PubMed

    Weinberg, Arthur G

    2012-01-01

    Intestinal metaplasia of the gastric antrum is common in adults with chronic gastritis and occurs in Helicobacter -associated gastritis in children. This study examined the frequency and clinical correlates of intestinal epithelium in 1690 consecutive antral biopsies obtained from children over a 2-year period in a tertiary pediatric care facility. Intestinal epithelium in gastric glands not associated with overlying villi was present in 22 (1.3%) biopsies. These came from 20 patients, 2-17 years of age, none of whom had clinical or histologic evidence of Helicobacter infection or significant chronic gastritis. Eight (40%) had an antral pancreatic rest, 8 had some other localized antral abnormality, and 4 were endoscopically normal. Four additional patients with a pancreatic rest had no intestinal epithelium. Six surgically resected rests and 2 rests found at autopsy were also reviewed. Heterotopic intestinal epithelium was present in 1 of the 2 postmortem specimens but was absent from all 6 surgically resected lesions. No intestinal epithelium was present in 67 antral biopsies with Helicobacter gastritis observed during this same period. Although the intestinal epithelium in these patients could be metaplastic, it more likely represents inadvertent sampling of the gastroduodenal junction induced by a lesion in the distal antrum or a focus of heterotopic epithelium and might best be addressed in the surgical pathology report by a comment to this effect. The distinction from metaplasia is more than semantic, because a diagnosis of intestinal metaplasia can have adverse clinical implications and should be made with caution in a child.

  1. [Morpho-functional characteristic of oral mucosal epithelium after treatment with a cytostatic drug].

    PubMed

    Leont'eva, I V; Bykov, V L

    2011-01-01

    The effect of cytostatic drug cyclophosphamide (CY) on lingual epithelium was studied in 90 female mice using histological, morphometric, quantitative histochemical and immunohistochemical methods. CY (400 mg/kg) was injected intraperitoneally three times with a 48 h interval. Material was obtained 2 days after injections and 10-20 days after their discontinuation. CY treatment was shown to result in the damage of both surface epithelium of the tongue and the epithelium of minor lingual salivary glands. Damage to the surface epithelium was more pronounced on the ventral surface of the tongue and was associated mainly with the disturbances of its proliferation. Changes were less severe on the dorsal surface and were seen as the disturbances of epithelial differentiation and desquamation. Glandular epithelium was damaged to a lesser extent than the surface one, with serocytes being more sensitive to the cytotoxic injury than mucocytes. After cytostatic drug discontinuation, the tendency for the normalization of the epithelial characteristics was noted. Most persistent changes in the surface epithelium were found on the dorsal surface of the tongue and in the glandular epithelium--in the serous secretory portions of the salivary glands.

  2. Oxidative DNA modifications.

    PubMed

    Poulsen, Henrik E

    2005-07-01

    Oxidative DNA modifications are frequent in mammalian DNA and have been suggested an important mechanism in carcinogenesis, diabetes and ageing. The foundations for this suggestion are: Evidence for the importance of oxidative DNA modifications in cancer development is: high levels of oxidative lesions in cancer tissue; highly conserved and specific DNA repair systems targeting oxidative lesions; high levels of oxidative DNA lesions in oxidative DNA repair knock-out animals; defective repair of oxidative lesions in cancer-prone progeria syndromes; reduced cancer incidence in populations with high dietary antioxidant intake; and increased oxidative stress to DNA in tobacco smokers. Conflicting evidence for a relation between oxidative stress to DNA and cancer is: disagreement about the true levels and occurrence of the oxidative lesions in vivo; failure to identify the localization of oxidative lesions in important genes, e.g. tumor suppressor and oncogenes; lack of evidence that the oxidative lesions induce mutations in vivo; no cancer development in animals knocked-out for specific DNA repair enzymes in spite of high tissue levels of oxidative lesions; and unchanged cancer rates after antioxidant interventions in large clinical controlled and randomized trials. The rate of DNA oxidation has been estimated from urinary excretion of repair products and it is evident that if these lesions were not repaired, a large part of DNA would be oxidized to a degree not compatible with living. The methodologies by which oxidative DNA modifications are measured cover a wide and different range, advantages and disadvantages will be presented. One particular problem is artificial oxidation, and methods to prevent such artifacts will be presented together with results from a large interlaboratory standardization program. The methodology by which the lesions can be measured is complicated and prone to artifacts during DNA isolation, digestion, derivatization and maybe even during

  3. Stimulation of mucus secretion, ciliary activity, and transport in frog palate epithelium.

    PubMed

    Spungin, B; Silberberg, A

    1984-11-01

    Particle transport velocity and ciliary beat frequency, at the level of a single cell of the epithelium, were measured simultaneously. The preparation used keeps the mucociliated epithelium of the frog palate functionally intact but is thin enough for light to be transmitted. The observations confirm that there exists a resting, or unstimulated, state of the epithelium in which the cilia do not beat. It is shown that tactile stimulation (contact with a small 50- to 75-microns foreign particle or with a fine wire probe) restarts ciliary beat. If the epithelium has not been depleted of its mucus, normal ciliary beat frequency is restored, and there is particle transport at the normal velocity. Only the cilia surrounding the moving particle in a patch about 10 times larger are beating at one time. Beat frequency is highest in the center of the patch, near the particle, and tapers to zero toward the edge. Mucus has to be present for particle transport to occur. Particles impacted on a depleted epithelium are not moved. The placement of previously collected endogenous mucus onto a depleted epithelium produces full ciliary activity and normal particle transport. The moving patch of beating cilia corresponds to a plaque of mucus surrounding the particle being transported. This plaque was produced upon first impact of the particle, presumably by mucus secretion, from the epithelial region which then surrounds it. Stimulation of a quiescent nondepleted epithelium with a wire probe induces a normal ciliary beat frequency that gradually decreases to zero. Stimulation by a wire probe of a mucus-depleted epithelium produces a level of initial beat frequency much below normal. Depletion of the epithelial preparation is by an episode of "creeping" over a glass surface. Depletion of the epithelium could be demonstrated histochemically. Analysis of the data of particle velocity and beat frequency is consistent with a wave-length of 45 microns for the metachronous wave.

  4. Sulfate transport in apical membrane vesicles isolated from tracheal epithelium

    SciTech Connect

    Elgavish, A.; DiBona, D.R.; Norton, P.; Meezan, E.

    1987-09-01

    Sulfate uptake in apical membrane vesicles isolated from bovine tracheal epithelium is shown to occur into an osmotically sensitive intravesicular space, via a carrier-mediated system. This conclusion is based on three lines of evidence: 1) saturation kinetics: 2) substrate specificity; and 3) inhibition by the anion transport inhibitors SITS and DIDS. The affinity of the transport system is highest in low ionic strength media and decreases in the presence of gluconate. Chloride appears to cis-inhibit sulfate uptake and to trans-stimulate sulfate efflux. Cis-inhibition and trans-stimulation studies with a variety of anions indicate that this exchange system may be shared by HCO/sub 3//sup -/, S/sub 2/O/sub 3//sup 2 -/, SeO/sub 4//sup 2 -/, and MoO/sub 4//sup 2 -/ but not by H/sub 2/PO/sub 4//sup -/ or HAsO/sub 4//sup 2/. Studies indicate that protons may play two distinct roles in sulfate transport in this system. These studies show that the carrier-mediated system can function in the absence of chloride. The overshoot observed in the presence of a proton gradient indicates that under those conditions the mechanism of transport may be a SO/sub 4//sup 2 -/-OH/sup -/ exchange.

  5. Regulation of Tight Junctions in Upper Airway Epithelium

    PubMed Central

    Kojima, Takashi; Go, Mitsuru; Takano, Ken-ichi; Kurose, Makoto; Ohkuni, Tsuyoshi; Koizumi, Jun-ichi; Kamekura, Ryuta; Ogasawara, Noriko; Masaki, Tomoyuki; Fuchimoto, Jun; Obata, Kazufumi; Hirakawa, Satoshi; Nomura, Kazuaki; Keira, Takashi; Miyata, Ryou; Fujii, Nobuhiro; Tsutsumi, Hiroyuki; Himi, Tetsuo; Sawada, Norimasa

    2013-01-01

    The mucosal barrier of the upper respiratory tract including the nasal cavity, which is the first site of exposure to inhaled antigens, plays an important role in host defense in terms of innate immunity and is regulated in large part by tight junctions of epithelial cells. Tight junction molecules are expressed in both M cells and dendritic cells as well as epithelial cells of upper airway. Various antigens are sampled, transported, and released to lymphocytes through the cells in nasal mucosa while they maintain the integrity of the barrier. Expression of tight junction molecules and the barrier function in normal human nasal epithelial cells (HNECs) are affected by various stimuli including growth factor, TLR ligand, and cytokine. In addition, epithelial-derived thymic stromal lymphopoietin (TSLP), which is a master switch for allergic inflammatory diseases including allergic rhinitis, enhances the barrier function together with an increase of tight junction molecules in HNECs. Furthermore, respiratory syncytial virus infection in HNECs in vitro induces expression of tight junction molecules and the barrier function together with proinflammatory cytokine release. This paper summarizes the recent progress in our understanding of the regulation of tight junctions in the upper airway epithelium under normal, allergic, and RSV-infected conditions. PMID:23509817

  6. Compensatory plasticity in the olfactory epithelium: age, timing, and reversibility

    PubMed Central

    Barber, Casey N.

    2015-01-01

    Like other biological systems, olfaction responds “homeostatically” to enduring change in the stimulus environment. This adaptive mechanism, referred to as compensatory plasticity, has been studied almost exclusively in developing animals. Thus it is unknown if this phenomenon is limited to ontogenesis and irreversible, characteristics common to some other forms of plasticity. Here we explore the effects of odor deprivation on the adult mouse olfactory epithelium (OE) using nasal plugs to eliminate nasal airflow unilaterally. Plugs were in place for 2–6 wk after which electroolfactograms (EOGs) were recorded from the occluded and open sides of the nasal cavity. Mean EOG amplitudes were significantly greater on the occluded than on the open side. The duration of plugging did not affect the results, suggesting that maximal compensation occurs within 2 wk or less. The magnitude of the EOG difference between the open and occluded side in plugged mice was comparable to adults that had undergone surgical naris occlusion as neonates. When plugs were removed after 4 wk followed by 2 wk of recovery, mean EOG amplitudes were not significantly different between the always-open and previously plugged sides of the nasal cavity suggesting that this form of plasticity is reversible. Taken together, these results suggest that compensatory plasticity is a constitutive mechanism of olfactory receptor neurons that allows these cells to recalibrate their stimulus-response relationship to fit the statistics of their current odor environment. PMID:26269548

  7. The multiple antibacterial activities of the bladder epithelium

    PubMed Central

    Wu, Jianxuan; Miao, Yuxuan

    2017-01-01

    The urinary tract is subject to frequent challenges from the gut microflora. Indeed, up to 40% of women will experience at least one urinary tract infection (UTI) during their lifetime. Uropathogenic Escherichia coli (UPEC) contribute to an overwhelming majority of these cases and they typically initiate UTIs by invading the superficial epithelium that lines the bladder lumen. In addition to serving as an effective barrier to noxious agents found in urine, bladder epithelial cells (BECs) play a key physiological role in regulating bladder volume to accommodate urine flow. UPEC appear to coopt this latter property to circumvent this normally impregnable epithelial barrier. However, in spite of this shortcoming, recent studies suggest that BECs possess several immune mechanisms to combat bacterial invasion including expulsion of invading bacteria back into the bladder lumen following infection. These antibacterial activities of BECs are triggered and coordinated by sensory molecules located on the epithelial cell membrane and within the cells. Although, they are the primary targets of microbial attack, BECs appear to be equipped with a diverse repertoire of defense schemes to fend off many of these microbial challenges. PMID:28217700

  8. Retinal pigment epithelium transplantation: concepts, challenges, and future prospects

    PubMed Central

    Alexander, P; Thomson, H A J; Luff, A J; Lotery, A J

    2015-01-01

    The retinal pigment epithelium (RPE) is a single layer of cells that supports the light-sensitive photoreceptor cells that are essential for retinal function. Age-related macular degeneration (AMD) is a leading cause of visual impairment, and the primary pathogenic mechanism is thought to arise in the RPE layer. RPE cell structure and function are well understood, the cells are readily sustainable in laboratory culture and, unlike other cell types within the retina, RPE cells do not require synaptic connections to perform their role. These factors, together with the relative ease of outer retinal imaging, make RPE cells an attractive target for cell transplantation compared with other cell types in the retina or central nervous system. Seminal experiments in rats with an inherited RPE dystrophy have demonstrated that RPE transplantation can prevent photoreceptor loss and maintain visual function. This review provides an update on the progress made so far on RPE transplantation in human eyes, outlines potential sources of donor cells, and describes the technical and surgical challenges faced by the transplanting surgeon. Recent advances in the understanding of pluripotent stem cells, combined with novel surgical instrumentation, hold considerable promise, and support the concept of RPE transplantation as a regenerative strategy in AMD. PMID:26043704

  9. Tonic and Phasic Receptor Neurons in the Vertebrate Olfactory Epithelium

    PubMed Central

    Madrid, Rodolfo; Sanhueza, Magdalena; Alvarez, Osvaldo; Bacigalupo, Juan

    2003-01-01

    Olfactory receptor neurons (ORNs) respond to odorants with characteristic patterns of action potentials that are relevant for odor coding. Prolonged odorant exposures revealed three populations of dissociated toad ORNs, which were mimicked by depolarizing currents: tonic (TN, displaying sustained firing, 49% of 102 cells), phasic (PN, exhibiting brief action potential trains, 36%) and intermediate neurons (IN, generating trains longer than PN, 15%). We studied the biophysical properties underlying the differences between TNs and PNs, the most extreme cases among ORNs. TNs and PNs possessed similar membrane capacitances (∼4 pF), but they differed in resting potential (−82 versus −64 mV), input resistance (4.2 versus 2.9 GΩ) and unspecific current, Iu (TNs: 0 < Iu ≤ 1 pA/pF; and PNs: Iu > 1 pA/pF). Firing behavior did not correlate with differences in voltage-gated conductances. We developed a mathematical model that accurately simulates tonic and phasic patterns. Whole cell recordings from rat ORNs in fragments (∼4 mm2) of olfactory epithelium showed that such a tissue normally contains tonic and phasic receptor neurons, suggesting that this feature is common across a wide range of vertebrates. Our findings show that the individual passive electrical properties can govern the firing patterns of ORNs. PMID:12770919

  10. Melanosome metabolism in the retinal pigmented epithelium of the opossum.

    PubMed

    Herman, K G; Steinberg, R H

    1982-01-01

    Melanosomal metabolism, including both formation and degradation of melanosomes, was studied in the retinal pigmented epithelium (RPE) of the adult opossum. The majority of the observations were made on a transitional zone between the tapetal and non-tapetal RPE, the region where melanosome metabolism was at its highest level. Formation of melanosomes, demonstrated ultrastructurally by the presence of stage-II and -III premelanosomes, was also examined autoradiographically following the incorporation of the melanin precursor, dihydroxyphenylalanine. The autoradiographic evidence indicated that many newly formed melanosomes were rapidly incorporated into complexes. Ultrastructural observations suggested that melanosome complexes were formed by at least two methods, via the fusion of melanosomes with phagosomes derived from outer segments of photoreceptors, or by the sequestration of melanosomes by cisternae. A central finding of this study, supported by both ultrastructural and histochemical data, is that there are specialized cellular regions that vary in melanosomal formation and lysosomal activity. Stage-II premelanosomes were observed only in the basal parts of the RPE cells, whereas stage-III and -IV melanosomes were found primarily in the apical RPE. Both ultrastructural and cytochemical observations indicated that degradation of melanosomes occurs only in the basal RPE. These findings are interpreted in terms of the expression of both tapetal and nontapetal characteristics in transitional cells. Finally, this study illustrates the role of lysosomal enzymes in shaping the pattern of pigmentation, and shows that the association of lysosomal activity with melanosomes depends on the functional state of the melanosome.

  11. Roles of lung epithelium in neutrophil recruitment during pneumococcal pneumonia.

    PubMed

    Yamamoto, Kazuko; Ahyi, Ayele-Nati N; Pepper-Cunningham, Zachary A; Ferrari, Joseph D; Wilson, Andrew A; Jones, Matthew R; Quinton, Lee J; Mizgerd, Joseph P

    2014-02-01

    Epithelial cells line the respiratory tract and interface with the external world. Epithelial cells contribute to pulmonary inflammation, but specific epithelial roles have proven difficult to define. To discover unique epithelial activities that influence immunity during infection, we generated mice with nuclear factor-κB RelA mutated throughout all epithelial cells of the lung and coupled this approach with epithelial cell isolation from infected and uninfected lungs for cell-specific analyses of gene induction. The RelA mutant mice appeared normal basally, but in response to pneumococcus in the lungs they were unable to rapidly recruit neutrophils to the air spaces. Epithelial cells expressed multiple neutrophil-stimulating cytokines during pneumonia, all of which depended on RelA. Cytokine expression by nonepithelial cells was unaltered by the epithelial mutation of RelA. Epithelial cells were the predominant sources of CXCL5 and granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas nonepithelial cells were major sources for other neutrophil-activating cytokines. Epithelial RelA mutation decreased whole lung levels of CXCL5 and GM-CSF during pneumococcal pneumonia, whereas lung levels of other neutrophil-recruiting factors were unaffected. Defective neutrophil recruitment in epithelial mutant mice could be rescued by administration of CXCL5 or GM-CSF. These results reveal a specialized immune function for the pulmonary epithelium, the induction of CXCL5 and GM-CSF, to accelerate neutrophil recruitment in the infected lung.

  12. Chronic alcohol ingestion changes the landscape of the alveolar epithelium.

    PubMed

    Downs, Charles A; Trac, David; Brewer, Elizabeth M; Brown, Lou Ann; Helms, My N

    2013-01-01

    Similar to effects of alcohol on the heart, liver, and brain, the effects of ethanol (EtOH) on lung injury are preventable. Unlike other vital organ systems, however, the lethal effects of alcohol on the lung are underappreciated, perhaps because there are no signs of overt pulmonary disorder until a secondary insult, such as a bacterial infection or injury, occurs in the lung. This paper provides overview of the complex changes in the alveolar environment known to occur following both chronic and acute alcohol exposures. Contemporary animal and cell culture models for alcohol-induced lung dysfunction are discussed, with emphasis on the effect of alcohol on transepithelial transport processes, namely, epithelial sodium channel activity (ENaC). The cascading effect of tissue and phagocytic Nadph oxidase (Nox) may be triggered by ethanol exposure, and as such, alcohol ingestion and exposure lead to a prooxidative environment; thus impacting alveolar macrophage (AM) function and oxidative stress. A better understanding of how alcohol changes the landscape of the alveolar epithelium can lead to improvements in treating acute respiratory distress syndrome (ARDS) for which hospitalized alcoholics are at an increased risk.

  13. Abl suppresses cell extrusion and intercalation during epithelium folding

    PubMed Central

    Jodoin, Jeanne N.; Martin, Adam C.

    2016-01-01

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical–basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena. Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT. PMID:27440923

  14. Somatic Variants in the Human Lens Epithelium: A Preliminary Assessment

    PubMed Central

    Mesa, Rosana; Tyagi, Manoj; Harocopos, George; Vollman, David; Bassnett, Steven

    2016-01-01

    Purpose We hypothesize that somatic mutations accumulate in cells of the human lens and may contribute to the development of cortical or posterior sub-capsular cataracts. Here, we used a Next-generation sequencing (NGS) strategy to screen for low-allelic frequency variants in DNA extracted from human lens epithelial samples. Methods Next-Generation sequencing of 151 cancer-related genes (WUCaMP2 panel) was performed on DNA extracted from post-mortem or surgical specimens obtained from 24 individuals. Usually, pairwise comparisons were made between two or more ocular samples from the same individual, allowing putative somatic variants detected in lens samples to be differentiated from germline variants. Results Use of a targeted hybridization approach enabled high sequence coverage (>1000-fold) of the WUCaMP2 genes. In addition to high-frequency variants (corresponding to homozygous or heterozygous SNPs and Indels), somatic variants with allelic frequencies of 1-4% were detected in the lens epithelial samples. The presence of one such variant, a T > C point substitution at position 32907082 in BRCA2, was verified subsequently using droplet digital PCR. Conclusions Low-allelic fraction variants are present in the human lens epithelium, at frequencies consistent with the presence of millimeter-sized clones. PMID:27537255

  15. Cytochrome P450 arachidonic acid metabolism in bovine corneal epithelium

    SciTech Connect

    Masferrer, J.; Schwartzman, M.L.; Abraham, N.G.; Dunn, M.W.; McGiff, J.C.

    1986-03-01

    The presence of the cytochrom P450 system and its involvement in the metabolism of AA was studied in the corneal epithelium. This tissue contains cytochrome P450 as assessed directly by measurement of the carbon monoxide reduced spectrum (specific activity of 161 pmol/10 mg protein) and indirectly by measuring the activity of aryl hydrocarbon hydroxylase (AHH) - a cytochrome P450-dependent enzyme (11-39 pmol 3-OH benzopyrene/mg protein/10 min). When corneal epithelial microsomes were incubated with /sup 14/C-arachidonic acid, 30-50% of the total radioactivity was converted to two peaks, I and II. Further separation using high performance liquid chromatography has shown that each peak contains two metabolites, A,B and C,D. Metabolite formation was dependent on the addition of NADPH (1 mM) and inhibited by carbon monoxide and SKF-525A (100 ..mu..M) suggesting a cytochrome P450-dependent mechanism. Compound C (5-10 ..mu..M) inhibited the activity of corneal epithelial Na-K-ATPase by 30-60%, being 100-fold more potent than ouabain. Compound D (10-100 ng) induced a dose dependent relaxation of the rat caudal artery. Compound D also inhibited corneal Na-K-ATPase activity but less potently than compound C. These compounds may be important to transport processes of ocular epithelia and participate in the control of the ocular circulation and aqueous humor dynamics.

  16. Paraoxonase Enzyme Protects Retinal Pigment Epithelium from Chlorpyrifos Insult

    PubMed Central

    Jasna, Jagan Mohan; Anandbabu, Kannadasan; Bharathi, Subramaniam Rajesh; Angayarkanni, Narayanasamy

    2014-01-01

    Retinal pigment epithelium (RPE) provides nourishment and protection to the eye. RPE dysfunction due to oxidative stress and inflammation is one of the major reason for many of the retinal disorders. Organophosphorus pesticides are widely used in the agricultural, industrial and household activities in India. However, their effects on the eye in the context of RPE has not been studied. In this study the defense of the ARPE19 cells exposed to Chlorpyrifos (1 nM to 100 µM) in terms of the enzyme paraoxonase (PON) was studied at 24 hr and 9 days of treatment. Chlorpyrifos was found to induce oxidative stress in the ARPE19 cells as seen by significant increase in ROS and decrease in glutathione (GSH) levels without causing cell death. Tissue resident Paraoxonase 2 (PON2) mRNA expression was elevated with chlorpyrifos exposure. The three enzymatic activities of PON namely, paraoxonase (PONase), arylesterase (PON AREase) and thiolactonase (PON HCTLase) were also found to be significantly altered to detoxify and as an antioxidant defense. Among the transcription factors regulating PON2 expression, SP1 was significantly increased with chlorpyrifos exposure. PON2 expression was found to be crucial as ARPE19 cells showed a significant loss in their ability to withstand oxidative stress when the cells were subjected to chlorpyrifos after silencing PON2 expression. Treatment with N-acetyl cysteine positively regulated the PON 2 expression, thus promoting the antioxidant defense put up by the cells in response to chlorpyrifos. PMID:24979751

  17. Surface characteristics of isopod digestive gland epithelium studied by SEM.

    PubMed

    Millaku, Agron; Leser, Vladka; Drobne, Damjana; Godec, Matjaz; Torkar, Matjaz; Jenko, Monika; Milani, Marziale; Tatti, Francesco

    2010-05-01

    The structure of the digestive gland epithelium of a terrestrial isopod Porcellio scaber has been investigated by conventional scanning electron microscopy (SEM), focused ion beam-scanning electron microscopy (FIB/SEM), and light microscopy in order to provide evidence on morphology of the gland epithelial surface in animals from a stock culture. We investigated the shape of cells, extrusion of lipid droplets, shape and distribution of microvilli, and the presence of bacteria on the cell surface. A total of 22 animals were investigated and we found some variability in the appearance of the gland epithelial surface. Seventeen of the animals had dome-shaped digestive gland "normal" epithelial cells, which were densely and homogeneously covered by microvilli and varying proportions of which extruded lipid droplets. On the surface of microvilli we routinely observed sparsely distributed bacteria of different shapes. Five of the 22 animals had "abnormal" epithelial cells with a significantly altered shape. In three of these animals, the cells were much smaller, partly or completely flat or sometimes pyramid-like. A thick layer of bacteria was detected on the microvillous border, and in places, the shape and size of microvilli were altered. In two animals, hypertrophic cells containing large vacuoles were observed indicating a characteristic intracellular infection. The potential of SEM in morphological investigations of epithelial surfaces is discussed.

  18. Kinetics of Lipofuscin Formation in Aging Retinal Pigment Epithelium Cells

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, Hans E.

    2010-03-01

    Lipofuscin is a deposit that is formed over time by aggregation and clustering of incompletely degraded membrane material in various types of cells. Lipofuscin is made of free-radical-damaged protein and fat and is known to be present in age- related macular dgeneration (AMD), Alzheimer disease, and Parkinson disease. AMD is the leading cause of blindness in adults. The degradation of retinal pigment epithelium cells (RPE) through accumulation of lipsofuscin is considered a significant pathogenic factor in the development of AMD. We will present the results of a study of the kinetics of lipofuscin growth in RPE cells using Kinetic Monte Carlo simulations and scaling theory on a cluster aggregation model. The model captures the essential physics of lipofuscin growth in the cells. A remarkable feature is that small particles may be removed from the cells while the larger ones become fixed and grow by aggregation. We compare our results with the number of lipofuscin granules in eyes with early age-related degeneration.

  19. Histone Deacetylase Inhibition Restores Retinal Pigment Epithelium Function in Hyperglycemia

    PubMed Central

    Desjardins, Danielle; Liu, Yueying; Crosson, Craig E.; Ablonczy, Zsolt

    2016-01-01

    In diabetic individuals, macular edema is a major cause of vision loss. This condition is refractory to insulin therapy and has been attributed to metabolic memory. The retinal pigment epithelium (RPE) is central to maintaining fluid balance in the retina, and this function is compromised by the activation of advanced glycation end-product receptors (RAGE). Here we provide evidence that acute administration of the RAGE agonist, glycated-albumin (gAlb) or vascular endothelial growth factor (VEGF), increased histone deacetylase (HDAC) activity in RPE cells. The administration of the class I/II HDAC inhibitor, trichostatin-A (TSA), suppressed gAlb-induced reductions in RPE transepithelial resistance (in vitro) and fluid transport (in vivo). Systemic TSA also restored normal RPE fluid transport in rats with subchronic hyperglycemia. Both gAlb and VEGF increased HDAC activity and reduced acetyl-α-tubulin levels. Tubastatin-A, a relatively specific antagonist of HDAC6, inhibited gAlb-induced changes in RPE cell resistance. These data are consistent with the idea that RPE dysfunction following exposure to gAlb, VEGF, or hyperglycemia is associated with increased HDAC6 activity and decreased acetyl-α-tubulin. Therefore, we propose inhibiting HDAC6 in the RPE as a potential therapy for preserving normal fluid homeostasis in the hyperglycemic retina. PMID:27617745

  20. Deleterious effects of swimming pool chlorine on the corneal epithelium.

    PubMed

    Ishioka, Misaki; Kato, Naoko; Kobayashi, Akira; Dogru, Murat; Tsubota, Kazuo

    2008-01-01

    To study the effect of rinsing with tap and pool water on the ocular surface epithelium. Twenty eyes of 10 volunteers were irrigated in the following order with 250 mL (50 seconds) of physiological salt solution (PSS), distilled water (DW), tap water, or PSS with chlorine (0.5 mg/L). The pH of each fluid was 6.4, 6.8, 6.8, and 6.4, respectively. Vital staining, fluorophotometric assessment, and confocal microscopy were performed before and after irrigation with each fluid. Eyes irrigated with PSS with chlorine showed an increase in fluorescein scores, and eyes washed with both tap water and PSS with chlorine showed an increase in Rose Bengal scores. Corneal fluorescein uptake measured by anterior fluorometer was not altered by eye irrigation with PSS, DW, or tap water. However, PSS with chlorine resulted in a significant increase in corneal fluorescein uptake. Confocal microscopy showed corneal epithelial cell damage in eyes rinsed with PSS with chlorine. Chlorine was determined to be potentially harmful to the corneal epithelial barrier. This study indicated the possibility that swimming without goggles might become a risk factor for corneal epithelial integrity, suggesting encouragement of goggle wear while swimming.

  1. COEXISTENCE OF GAP AND SEPTATE JUNCTIONS IN AN INVERTEBRATE EPITHELIUM

    PubMed Central

    Hudspeth, A. J.; Revel, J. P.

    1971-01-01

    The intercellular junctions of the epithelium lining the hepatic caecum of Daphnia were examined. Electron microscope investigations involved both conventionally fixed material and tissue exposed to a lanthanum tracer of the extracellular space. Both septate junctions and gap junctions occur between the cells studied. The septate junctions lie apically and resemble those commonly discerned between cells of other invertebrates. They are atypical in that the high electron opacity of the extracellular space obscures septa in routine preparations. The gap junctions are characterized by a uniform 30 A space between apposed cell membranes. Lanthanum treatment of gap junctions reveals an array of particles of 95 A diameter and 120 A separation lying in the plane of the junction. As this pattern closely resembles that described previously in vertebrates, it appears that the gap junction is phylogenetically widespread. In view of evidence that the gap junction mediates intercellular electrotonic coupling, the assignment of a coupling role to other junctions, notably the septate junction, must be questioned wherever these junctions coexist. PMID:5563454

  2. Melatonin Modulates Prohibitin and Cytoskeleton in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; Prigge, Cameron L; Elledge, Beth; He, Weilue; Offor, Johnpaul; Gutsaeva, Diana R; Jahng, Wan Jin

    2017-07-01

    The retinal pigment epithelium (RPE) plays imperative roles in normal retinal function by photoreceptor protection from light and phagocytosis of rod and cone outer segments during disc shedding. Melatonin is the free radical scavenger and circadian determinant to protect the RPE and retina from oxidative stress and regulate the circadian clock. The current study tested the hypothesis whether melatonin could affect cytoskeletal structure within RPE. Our Western blot analysis demonstrated that melatonin treatment up-regulated prohibitin 3-fold compared to control. β-tubulin levels were also up-regulated by melatonin but to a lesser extent. Initial cell shape of ARPE-19 is epitheloid, however, after 30-minute treatment with melatonin, RPE cells undergo a morphological change to a fusiform shape with spindle outgrowth. Cells return to epitheloid shape after 12 hours in untreated medium. Melatonin treated cells showed increased and dissimilar distribution of prohibitin and β-tubulin compared to non-treated cells, thus altered cytoskeletal and mitochondrial structure in the RPE. Our data implies that melatonin may play a protective role under oxidative stress, which is shown by the marker prohibitin in terms of increased expression and nuclear distribution. During the protective process, cells change their morphology. Our results suggest that melatonin treatment could be beneficial to protect mitochondria under oxidative stress and treat certain ocular diseases, including age-related macular degeneration.

  3. The Role of the Papillary Epithelium in Stone Growth

    NASA Astrophysics Data System (ADS)

    Bergsland, Kristin J.

    2007-04-01

    The papillary surface epithelium (PSE) covers the renal papilla in mammalian kidneys and serves as a diffusion barrier between the urine on the apical surface and the interstitium on the basolateral surface. The PSE also plays a physiological role in transport of solutes between the urine and interstitium both by active transport and paracellular pathways. Permeability of the PSE may be affected by alterations in specific transporters, components of intercellular tight junctions, cell surface glycosaminoglycans and urine composition. In idiopathic calcium oxalate (CaOx) stone formers, apatite deposits known as Randall's plaque form in the papillary interstitium and lodge beneath the PSE. The presence of plaque may perturb the normal function of the PSE, possibly by provoking the up-regulation of pro-inflammatory cytokines such as TNFα in the interstitium. Disruption of the epithelial barrier may lead to increased permeability and exposure of the plaque matrix to urine constituents, followed by loss of the PSE and growth of CaOx stone over the plaque. To investigate the role of the PSE in stone development, new experimental systems are needed, including animal models of plaque formation as well as cell culture systems for papillary epithelial cells.

  4. Electrically assisted delivery of macromolecules into the corneal epithelium.

    PubMed

    Hao, Jinsong; Li, S Kevin; Liu, Chia-Yang; Kao, Winston W Y

    2009-12-01

    Electrically assisted delivery is noninvasive and has been investigated in a number of ocular drug delivery studies. The objectives of this study were to examine the feasibility of electrically assisted delivery of macromolecules such as small interfering RNA (siRNA) into the corneal epithelium, to optimize the iontophoresis and electroporation methods, and to study the mechanisms of corneal iontophoresis for macromolecules. Anodal and cathodal iontophoresis, electroporation and their combinations were the methods examined with mice in vivo. Cyanine 3 (Cy3)-labeled glyceraldehyde-3-phosphate dehydrogenase (GAPDH) siRNA and fluorescein isothiocyanate (FITC)-labeled dextran of different molecular weights (4-70 kDa) were the macromolecules studied. Microscopy and histology after cryostat sectioning were used to analyze and compare the delivery of the macromolecules to the cornea. Iontophoresis was effective in delivering siRNA and dextran up to 70 kDa into the cornea. The electroporation method studied was less effective than that of iontophoresis. Although both iontophoresis and electroporation alone can deliver the macromolecules into the cornea, these methods alone were not as effective as the combination of iontophoresis and electroporation (iontophoresis followed by electroporation). The significant enhancement of dextran delivery in anodal iontophoresis suggests that electroosmosis can be a significant flux-enhancing mechanism during corneal iontophoresis. These results illustrate the feasibility of electrically assisted delivery of macromolecules such as siRNA into the cornea.

  5. The 'de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium.

    PubMed

    Elliott, Ellen N; Sheaffer, Karyn L; Kaestner, Klaus H

    2016-01-25

    Dnmt1 is critical for immediate postnatal intestinal development, but is not required for the survival of the adult intestinal epithelium, the only rapidly dividing somatic tissue for which this has been shown. Acute Dnmt1 deletion elicits dramatic hypomethylation and genomic instability. Recovery of DNA methylation state and intestinal health is dependent on the de novo methyltransferase Dnmt3b. Ablation of both Dnmt1 and Dnmt3b in the intestinal epithelium is lethal, while deletion of either Dnmt1 or Dnmt3b has no effect on survival. These results demonstrate that Dnmt1 and Dnmt3b cooperate to maintain DNA methylation and genomic integrity in the intestinal epithelium.

  6. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium.

    PubMed

    Mistry, Alpesh; Stolnik, Snjezana; Illum, Lisbeth

    2015-08-03

    The ability to deliver therapeutically relevant amounts of drugs directly from the nasal cavity to the central nervous system to treat neurological diseases is dependent on the availability of efficient drug delivery systems. Increased delivery and/or therapeutic effect has been shown for drugs encapsulated in nanoparticles; however, the factors governing the transport of the drugs and/or the nanoparticles from the nasal cavity to the brain are not clear. The present study evaluates the potential transport of nanoparticles across the olfactory epithelium in relation to nanoparticle characteristics. Model systems, 20, 100, and 200 nm fluorescent carboxylated polystyrene (PS) nanoparticles that were nonmodified or surface modified with polysorbate 80 (P80-PS) or chitosan (C-PS), were assessed for transport across excised porcine olfactory epithelium mounted in a vertical Franz diffusion cell. Assessment of the nanoparticle content in the donor chamber of the diffusion cell, accompanied by fluorescence microscopy of dismounted tissues, revealed a loss of nanoparticle content from the donor suspension and their association with the excised tissue, depending on the surface properties and particle size. Chitosan surface modification of PS nanoparticles resulted in the highest tissue association among the tested systems, with the associated nanoparticles primarily located in the mucus, whereas the polysorbate 80-modified nanoparticles showed some penetration into the epithelial cell layer. Assessment of the bioelectrical properties, metabolic activity, and histology of the excised olfactory epithelium showed that C-PS nanoparticles applied in pH 6.0 buffer produced a damaging effect on the epithelial cell layer in a size-dependent manner, with fine 20 nm sized nanoparticles causing substantial tissue damage relative to that with the 100 and 200 nm counterparts. Although histology showed that the olfactory tissue was affected by the application of citrate buffer that was

  7. Genetic modification and genetic determinism

    PubMed Central

    Resnik, David B; Vorhaus, Daniel B

    2006-01-01

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions. PMID:16800884

  8. Genetic modification and genetic determinism.

    PubMed

    Resnik, David B; Vorhaus, Daniel B

    2006-06-26

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions.

  9. Discovery Orbiter Major Modifications

    NASA Image and Video Library

    2003-08-27

    During power-up of the orbiter Discovery in the Orbiter Processing Facility, a technician moves a circuit reset on the cockpit console. Discovery has been undergoing Orbiter Major Modifications in the past year, ranging from wiring, control panels and black boxes to gaseous and fluid systems tubing and components. These systems were deserviced, disassembled, inspected, modified, reassembled, checked out and reserviced, as were most other systems onboard. The work includes the installation of the Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.”

  10. Dual modification of biomolecules.

    PubMed

    Maruani, Antoine; Richards, Daniel A; Chudasama, Vijay

    2016-07-14

    With the advent of novel bioorthogonal reactions and "click" chemistry, an increasing number of strategies for the single labelling of proteins and oligonucleotides have emerged. Whilst several methods exist for the site-selective introduction of a single chemical moiety, site-selective and bioorthogonal dual modification of biomolecules remains a challenge. The introduction of multiple modules enables a plethora of permutations and combinations and can generate a variety of bioconjuguates with many potential applications. From de novo approaches on oligomers to the post-translational functionalisation of proteins, this review will highlight the main strategies to dually modify biomolecules.

  11. Ultrastructural study of postnatal development of the tonsillar crypt epithelium of the musk shrew, Suncus murinus.

    PubMed

    Tohya, K; Kimura, M

    1992-09-01

    An ultrastructural study was made of the postnatal development of the tonsillar crypt epithelium in the musk shrew, Suncus murinus. On day 3 after birth, a particular kind of large lymphoid cell was first seen to move through the basement membrane into the epithelium. The next migration was that of lymphocytes, which passed through holes in the basement membrane. On days 5 to 7, the lymphocytes formed clusters, and pale epithelial cells of low electron density appeared. The cell clusters and pale epithelial cells fused on day 10. By day 14, these epithelial cells extended cytoplasmic projections to the surface of the epithelium, which had many heterophagic vacuoles and some microvilli-like structures. These findings suggest that the lymphoepithelial relationship is important for the organization of the immunological microenvironment in tonsillar crypt epithelium of the neonatal musk shrew.

  12. [In vitro Cultivation of Functioning Passaged Ciliated Epithelium for Trachea Tissue Engineering].

    PubMed

    Baranovsky, D S; Lyundup, A V; Parshin, V D

    2015-01-01

    Currently all tissue engineered trachea transplants had no ciliated epithelium until transplantation, and long-term temporary lack of mucociliary clearance leads to patients' condition decline and reduced life quality in postoperative period. So, the need for a better cultivation method and studying ciliated epithelium growth characteristics in cell culture increased rapidly. The aim of our study was to investigate cultivation offunctionally complete passaged ciliated epitheliumfor trachea tissue engineering. Human ciliated epithelium isolated from intraoperative bioptate was used for culturing in the special complex medium with morphological and functional characteristics evaluation. Ciliated epithelial cell-groups were obtained by culturing in the special complex medium. Generated cell-groups had ciliary activity and showed well-coordinated movement with functional characteristics similar to native epithelial tissue. The basic parameters of cell-activity were studied. Thus our study provides a new insight for the problem of ciliated epithelium in vitro culturing as well as developing the optimal laboratory method.

  13. A morphological study of the tracheal epithelium of the snake Natrix maura.

    PubMed Central

    Pastor, L M

    1990-01-01

    The epithelium of the trachea of the Natrix maura snake was studied by conventional light microscopy and transmission and scanning electron microscopy. The epithelium is formed of basal, ciliated, endocrine and secretory cells. It shows different thickness and distribution of the cells, depending on the area (covering the cartilaginous or the membranous zone). Secretory cells show a morphology similar to that found in lizards but it is different from the mucous cells reported in the extrapulmonary airways of turtles, birds and mammals. The ultrastructure of the secretory cells is similar to that reported for serous cells in the airways of mammals. Intra-epithelial plasma cells are also found within the epithelium. The present results show that there are marked morphological differences between the tracheal epithelium of lizards and snakes and that of turtles, birds and mammals. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:2272908

  14. Shigella infection of intestinal epithelium and circumvention of the host innate defense system.

    PubMed

    Ashida, Hiroshi; Ogawa, Michinaga; Mimuro, Hitomi; Sasakawa, Chihiro

    2009-01-01

    Shigella, Gram-negative bacteria closely related to Escherichia coli, are highly adapted human pathogens that cause bacillary dysentery. Although Shigella have neither adherence factors nor flagella required for attaching or accessing the intestinal epithelium, Shigella are capable of colonizing the intestinal epithelium by exploiting epithelial-cell functions and circumventing the host innate immune response. During Shigella infection, they deliver many numbers of effectors through the type III secretion system into the surrounding space and directly into the host-cell cytoplasm. The effectors play pivotal roles from the onset of bacterial infection through to the establishment of the colonization of the intestinal epithelium, such as bacterial invasion, intracellular survival, subversion of the host immune defense response, and maintenance of the infectious foothold. These examples suggest that Shigella have evolved highly sophisticated infectious and intracellular strategies to establish replicative niches in the intestinal epithelium.

  15. Cuboidal epithelium lining of the parietal layer of Bowman's capsule in Afghan pikas (Ochotona rufescens rufescens).

    PubMed

    Madarame, H; Kumagai, M; Motooka, N; Konno, S

    1991-01-01

    Kidneys of 64 Afghan pikas (Ochotona rufescens rufescens) were examined histologically. Seven of 21 males and two of 21 females over 6 months of age had a cuboidal epithelium lining of the parietal layer of Bowman's capsule.

  16. Electrophysiological effects of extracellular ATP on Necturus gallbladder epithelium

    PubMed Central

    1991-01-01

    The effects of addition of ATP to the mucosal bathing solution on transepithelial, apical, and basolateral membrane voltages and resistances in Necturus gallbladder epithelium were determined. Mucosal ATP (100 microM) caused a rapid hyperpolarization of both apical (Vmc) and basolateral (Vcs) cell membrane voltages (delta Vm = 18 +/- 1 mV), a fall in transepithelial resistance (Rt) from 142 +/- 8 to 122 +/- 7 omega.cm2, and a decrease in fractional apical membrane resistance (fRa) from 0.93 +/- 0.02 to 0.83 +/- 0.03. The rapid initial hyperpolarization of Vmc and Vcs was followed by a slower depolarization of cell membrane voltages and a lumen-negative change in transepithelial voltage (Vms). This phase also included an additional decrease in fRa. Removal of the ATP caused a further depolarization of membrane voltages followed by a hyperpolarization and then a return to control values. fRa fell to a minimum after removal of ATP and then returned to control values as the cell membrane voltages repolarized. Similar responses could be elicited by ADP but not by adenosine. The results of two-point cable experiments revealed that ATP induced an initial increase in cell membrane conductance followed by a decrease. Transient elevations of mucosal solution [K+] induced a larger depolarization of Vmc and Vcs during exposure to ATP than under control conditions. Reduction of mucosal solution [Cl-] induced a slow hyperpolarization of Vmc and Vcs before exposure to ATP and a rapid depolarization during exposure to ATP. We conclude that ATP4- is the active agent and that it causes a concentration-dependent increase in apical and basolateral membrane K+ permeability. In addition, an apical membrane electrodiffusive Cl- permeability is activated by ATP4-. PMID:1713948

  17. Human milk hyaluronan enhances innate defense of the intestinal epithelium.

    PubMed

    Hill, David R; Rho, Hyunjin K; Kessler, Sean P; Amin, Ripal; Homer, Craig R; McDonald, Christine; Cowman, Mary K; de la Motte, Carol A

    2013-10-04

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn.

  18. Human Milk Hyaluronan Enhances Innate Defense of the Intestinal Epithelium*

    PubMed Central

    Hill, David R.; Rho, Hyunjin K.; Kessler, Sean P.; Amin, Ripal; Homer, Craig R.; McDonald, Christine; Cowman, Mary K.; de la Motte, Carol A.

    2013-01-01

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179

  19. [Evaluation of conjunctival epithelium of filtering blebs by impression cytology].

    PubMed

    Muniesa, M J; González, S; Buetas, P; López, S; Sánchez, C; Matias-Guiu, X

    2014-06-01

    To study the ocular surface in filtering blebs using impression cytology, comparing the bleb side and areas outside the bleb edges. Twelve filtering blebs of 8 patients were included: 4 cases of trabeculectomy without mitomycin C (MMC), 6 cases of trabeculectomy with MMC, and 2 cases of non-penetrating glaucoma surgery. Impression cytology specimens were taken from filtering blebs as well as outside the bleb area. A classification scale from 0 to 3 was used to describe the distribution of epithelial cells and the density of goblet cells. Grade 0 indicated cohesive epithelial cells and abundant goblet cells; and the grade 3 indicated loss of epithelial cohesion and absence of goblet cells. The mean grade of cytology in filtering blebs was 2.4 ± 0.9, and in the outside bleb area of 0.8 ± 0.3 (P<.001). These differences were independent of the use of MMC (P=.48). The large majority (83%) of filtering blebs showed a decrease in epithelial cohesion and absence of goblet cells. Outside the bleb area, 100% of the cases had cohesive epithelial cells with different grades of goblet cells. The conjunctival epithelium overlying the filtering blebs showed significant changes that consisted of increased intercellular spaces and loss of goblet cells. These increased intercellular spaces could explain the trans-epithelial pathway of aqueous humor. The least amount of mucin due to loss of goblet cells could contribute to increase the risk of infection in filtering blebs. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  20. Functional annotation of the human retinal pigment epithelium transcriptome

    PubMed Central

    Booij, Judith C; van Soest, Simone; Swagemakers, Sigrid MA; Essing, Anke HW; Verkerk, Annemieke JMH; van der Spek, Peter J; Gorgels, Theo GMF; Bergen, Arthur AB

    2009-01-01

    Background To determine level, variability and functional annotation of gene expression of the human retinal pigment epithelium (RPE), the key tissue involved in retinal diseases like age-related macular degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy human donor eyes (aged 63–78 years) were laser dissected and used for 22k microarray studies (Agilent technologies). Data were analyzed with Rosetta Resolver, the web tool DAVID and Ingenuity software. Results In total, we identified 19,746 array entries with significant expression in the RPE. Gene expression was analyzed according to expression levels, interindividual variability and functionality. A group of highly (n = 2,194) expressed RPE genes showed an overrepresentation of genes of the oxidative phosphorylation, ATP synthesis and ribosome pathways. In the group of moderately expressed genes (n = 8,776) genes of the phosphatidylinositol signaling system and aminosugars metabolism were overrepresented. As expected, the top 10 percent (n = 2,194) of genes with the highest interindividual differences in expression showed functional overrepresentation of the complement cascade, essential in inflammation in age-related macular degeneration, and other signaling pathways. Surprisingly, this same category also includes the genes involved in Bruch's membrane (BM) composition. Among the top 10 percent of genes with low interindividual differences, there was an overrepresentation of genes involved in local glycosaminoglycan turnover. Conclusion Our study expands current knowledge of the RPE transcriptome by assigning new genes, and adding data about expression level and interindividual variation. Functional annotation suggests that the RPE has high levels of protein synthesis, strong energy demands, and is exposed to high levels of oxidative stress and a variable degree of inflammation. Our data sheds new light on the molecular composition of BM, adjacent to the RPE, and is useful for

  1. Transcriptome analysis and molecular signature of human retinal pigment epithelium

    PubMed Central

    Strunnikova, N.V.; Maminishkis, A.; Barb, J.J.; Wang, F.; Zhi, C.; Sergeev, Y.; Chen, W.; Edwards, A.O.; Stambolian, D.; Abecasis, G.; Swaroop, A.; Munson, P.J.; Miller, S.S.

    2010-01-01

    Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed ‘signature’ genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases. PMID:20360305

  2. Transcriptional Regionalization of the Fruit Fly’s Airway Epithelium

    PubMed Central

    Faisal, Muhammad N.; Hoffmann, Julia; El-Kholy, Samar; Kallsen, Kimberley; Wagner, Christina; Bruchhaus, Iris; Fink, Christine; Roeder, Thomas

    2014-01-01

    Although airway epithelia are primarily devoted to gas exchange, they have to fulfil a number of different tasks including organ maintenance and the epithelial immune response to fight airborne pathogens. These different tasks are at least partially accomplished by specialized cell types in the epithelium. In addition, a proximal to distal gradient mirroring the transition from airflow conduction to real gas exchange, is also operative. We analysed the airway system of larval Drosophila melanogaster with respect to region-specific expression in the proximal to distal axis. The larval airway system is made of epithelial cells only. We found differential expression between major trunks of the airways and more distal ones comprising primary, secondary and terminal ones. A more detailed analysis was performed using DNA-microarray analysis to identify cohorts of genes that are either predominantly expressed in the dorsal trunks or in the primary/secondary/terminal branches of the airways. Among these differentially expressed genes are especially those involved in signal transduction. Wnt-signalling associated genes for example are predominantly found in secondary/terminal airways. In addition, some G-protein coupled receptors are differentially expressed between both regions of the airways, exemplified by those activated by octopamine or tyramine, the invertebrate counterparts of epinephrine and norepinephrine. Whereas the OAMB is predominantly found in terminal airway regions, the oct3βR has higher expression levels in dorsal trunks. In addition, we observed a significant association of both, genes predominantly expressed in dorsal trunks or in primary to terminal branches branches with those regulated by hypoxia. Taken together, this observed differential expression is indicative for a proximal to distal transcriptional regionalization presumably reflecting functional differences in these parts of the fly’s airway system. PMID:25020150

  3. Interleukin-18 induces retinal pigment epithelium degeneration in mice.

    PubMed

    Ijima, Ryo; Kaneko, Hiroki; Ye, Fuxiang; Nagasaka, Yosuke; Takayama, Kei; Kataoka, Keiko; Kachi, Shu; Iwase, Takeshi; Terasaki, Hiroko

    2014-09-18

    To examine the effectiveness of interleukin-18 (IL-18) on choroidal neovascularization (CNV) and retinal pigment epithelium (RPE) in humans and mice. Serum IL-18 levels in patients with wet and dry AMD who were older than 50 years were measured and compared with those of age-matched controls. In mice, laser photocoagulation was performed in the retina to induce experimental CNV, and CNV volume was measured in eyes injected with recombinant IL-18 (rIL-18) and IL-18 neutralizing antibody (nIL-18Ab) compared with those injected with control. Tube formation assay was performed on human retinal endothelial cells (HREC) with rIL-18 administration in vitro. After subretinal injection of rIL-18, fundus change in the injected eyes was evaluated; active caspase-3 level was measured in the RPE/choroid complex, and tight junction integrity in RPE was visualized by zonula occludens-1 (ZO-1) staining. Serum IL-18 levels in dry AMD patients were higher than those in control. Mouse rIL-18 or nIL-18Ab did not induce significant change in CNV volume compared with controls or change tube formation in HREC. Subretinal injection of rIL-18 induced retinal degeneration in the mice fundus; ZO-1 staining showed considerably disturbed RPE structure, and active caspase-3 expression was significantly higher after rIL-18 induction. Interleukin-18 did not show a pro- or antiangiogenic effect on mouse laser-induced CNVs (laser-CNVs), whereas it directly induced RPE cell apoptosis in the mouse eye. Our results suggested that IL-18 is associated with dry AMD, but not with wet AMD. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  4. Epithelium-derived chemokines induce airway smooth muscle cell migration.

    PubMed

    Takeda, N; Sumi, Y; Préfontaine, D; Al Abri, J; Al Heialy, N; Al-Ramli, W; Michoud, M-C; Martin, J G; Hamid, Q

    2009-07-01

    The remodelling of airway smooth muscle (ASM) associated with asthma severity may involve the migration of ASM cells towards the epithelium. However, little is known about the mechanisms of cell migration and the effect of epithelial-derived mediators on this process. The main objective of the current study is to assess the effects of epithelial-derived chemokines on ASM cell migration. Normal human ASM cells were incubated with supernatants from cells of the bronchial epithelial cell line BEAS-2B and normal human bronchial epithelial (NHBE) cells. To induce chemokine production, epithelial cells were treated with TNF-alpha. Chemokine expression by epithelial cells was evaluated by quantitative real-time PCR, ELISA and membrane antibody array. To identify the role of individual chemokines in ASM cell migration, we performed migration assays with a modified Boyden chamber using specific neutralizing antibodies to block chemokine effects. Supernatants from BEAS-2B cells treated with TNF-alpha increased ASM cell migration; migration was increased 1.6 and 2.5-fold by supernatant from BEAS-2B cells treated with 10 and 100 ng/mL TNF-alpha, respectively. Protein levels in supernatants and mRNA expression by BEAS-2B cells of regulated on activation, normal T cell expressed and secreted (RANTES) and IL-8 were significantly increased by 100 ng/mL TNF-alpha treatment. The incubation of supernatant with antibodies to RANTES or IL-8 significantly reduced ASM cell migration, and the combined antibodies further inhibited the cell migration. The migratory effects of supernatants and inhibiting effects of RANTES and/or IL-8 were confirmed also using NHBE cells. The results show that chemokines from airway epithelial cells cause ASM cell migration and might potentially play a role in the process of airway remodelling in asthma.

  5. Endothelin stimulates chloride secretion across canine tracheal epithelium.

    PubMed

    Plews, P I; Abdel-Malek, Z A; Doupnik, C A; Leikauf, G D

    1991-08-01

    The endothelins (ET) are a group of isopeptides produced by a number of cells, including canine tracheal epithelial cells. Because these compounds are endogenous peptides that may activate eicosanoid metabolism, we investigated the effects of ET on Cl secretion in canine tracheal epithelium. Endothelin 1 (ET-1) was found to produce a dose-dependent change in short-circuit current (Isc) that increased slowly and reached a maximal value within 10-15 min. When isopeptides of ET were compared, 300 nM ET-1 and ET-2 produced comparable maximal increases in Isc, whereas ET-3 produced smaller changes in Isc (half-maximal concentrations of 2.2, 7.2, and 10.4 nM, respectively). Ionic substitution of Cl with nontransported anions, iodide and gluconate, reduced ET-1-induced changes in Isc. Furthermore, the response was inhibited by the NaCl cotransport inhibitor, furosemide. In paired tissues, ET-1 significantly increased mucosal net 36Cl flux without significant effect on 22Na flux. The increase in Isc induced by ET was diminished by pretreatment with indomethacin. The second messengers mediating the increase in Isc were investigated in cultured canine tracheal epithelial cells. ET-1 stimulated the release of [3H]arachidonate from membrane phospholipids, increased intracellular Ca2+ (occasionally producing oscillations), and increased adenosine 3',5'-cyclic monophosphate accumulation. The latter was diminished by indomethacin. Thus ET is a potent agonist of Cl secretion (with the isopeptides having the following potency: ET-1 greater than or equal to ET-2 greater than ET-3) and acts, in part, through a cyclooxygenase-dependent mechanism.

  6. Cytoskeleton as a target for injury in damaged intestinal epithelium.

    PubMed

    Miller, T A; Smith, G S; Banan, A; Kokoska, E R

    2000-10-15

    This report summarizes the findings of a series of studies undertaken to discern the role of the cytoskeleton in intestinal injury and defense. Two established cell lines were used for these studies. IEC-6 cells (a rat intestinal cell line) were incubated in Eagle's minimal essential medium with and without 16, 16 dimethyl prostaglandin E(2) (dmPGE(2); 2.6 microM) for 15 minutes and subsequently incubated in medium containing 10% ethanol (EtOH). The effects on cell viability and the actin cytoskeleton were then determined. Using a similar protocol, Caco-2 cells (a human colonic cell line) were employed to assess the microtubule cytoskeleton under these conditions. In both cell lines, EtOH extensively disrupted the cytoskeletal component being evaluated coincident with adversely affecting cell viability. Pretreatment with dmPGE(2) increased cell viability and abolished the disruptive effects on both the actin and microtubule cytoskeleton in cells exposed to EtOH. Prior incubation with cytochalasin D, an actin disruptive agent, prevented the protective capabilities of dmPGE(2) in IEC-6 cells challenged with EtOH. Phalloidin, an actin stabilizing agent, demonstrated similar effects to that of dmPGE(2) by stabilizing the actin cytoskeleton and preserving cellular viability in IEC-6 cells in response to EtOH. In Caco-2 cells, taxol, a microtubule stabilizing agent, mimicked the effects of dmPGE(2) by increasing cell viability in cells exposed to EtOH and enhancing microtubular integrity. In contrast, pretreatment with colchicine, an inhibitor of microtubule integrity, prevented the protective effects of dmPGE(2). These findings support the hypothesis that the cytoskeleton may be a major target for injury in damaged intestinal epithelium, and that the protective action of dmPGE(2) is orchestrated through preservation of this target.

  7. Optical modulation of transgene expression in retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Palanker, D.; Lavinsky, D.; Chalberg, T.; Mandel, Y.; Huie, P.; Dalal, R.; Marmor, M.

    2013-03-01

    Over a million people in US alone are visually impaired due to the neovascular form of age-related macular degeneration (AMD). The current treatment is monthly intravitreal injections of a protein which inhibits Vascular Endothelial Growth Factor, thereby slowing progression of the disease. The immense financial and logistical burden of millions of intravitreal injections signifies an urgent need to develop more long-lasting and cost-effective treatments for this and other retinal diseases. Viral transfection of ocular cells allows creation of a "biofactory" that secretes therapeutic proteins. This technique has been proven successful in non-human primates, and is now being evaluated in clinical trials for wet AMD. However, there is a critical need to down-regulate gene expression in the case of total resolution of retinal condition, or if patient has adverse reaction to the trans-gene products. The site for genetic therapy of AMD and many other retinal diseases is the retinal pigment epithelium (RPE). We developed and tested in pigmented rabbits, an optical method to down-regulate transgene expression in RPE following vector delivery, without retinal damage. Microsecond exposures produced by a rapidly scanning laser vaporize melanosomes and destroy a predetermined fraction of the RPE cells selectively. RPE continuity is restored within days by migration and proliferation of adjacent RPE, but since the transgene is not integrated into the nucleus it is not replicated. Thus, the decrease in transgene expression can be precisely determined by the laser pattern density and further reduced by repeated treatment without affecting retinal structure and function.

  8. Paracellular pathway in the shell epithelium of Anodonta cygnea.

    PubMed

    Bleher, Reiner; Machado, Jorge

    2004-05-01

    Ultrastructural study of cell-cell connections in the outer mantle epithelium (OME) on high-pressure-frozen specimens revealed zonula adherens, septate junctions and gap junctions in Anodonta cygnea. In order to evaluate the permeability of the paracellular pathway, the OME was incubated under gradients of lanthanum and calcium. After lanthanum incubation (4 mM) from the basal side, the septate junctions were penetrated completely by this tracer. When applied from the apical side, lanthanum deposits were located similarly over the entire length of the septate junctions up to the first dilatations of the intercellular space. Calcium deposits were also present in paracellular areas only when OME had been incubated simultaneously with calcium (6 mM) and lanthanum (4 mM) gradients. Lanthanum and calcium deposits were detected with ESI (Electron Spectroscopic Imaging) and identified with EELS (Electron Energy Loss Spectroscopy). On the other hand, electrophysiological observations showed a 48% reduction of conductance when the OME was bathed on both sides with solutions containing lanthanum (4 mM) and calcium (6 mM), compared to bathing with lanthanum-free solution (control). The conductance reduction was 52% when calcium was removed from the control solution. Supported by morphological and physiological evidence, it appears that, under in vivo conditions, calcium ions may diffuse paracellularly from the haemolymph towards the extrapallial fluid and vice-versa across the septate junctions in the OME of A. cygnea. Permeability of the septate junctions depended proportionally on the calcium concentration in fluids. Copyright 2004 Wiley-Liss, Inc.

  9. Protective responses to sublytic complement in the retinal pigment epithelium

    PubMed Central

    Tan, Li Xuan; Toops, Kimberly A.; Lakkaraju, Aparna

    2016-01-01

    The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4−/− Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4−/− mice, indicating that they could be effective therapeutic approaches for macular degenerations. PMID:27432952

  10. Soviet ionospheric modification research

    SciTech Connect

    Duncan, L.M.; Carlson, H.C.; Djuth, F.T.; Fejer, J.A.; Gerson, N.C.; Hagfors, T.; Newman, D.B. Jr.; Showen, R.L.

    1988-07-01

    Soviet published literature in ionospheric modification research by high-power radio waves is assessed, including an evaluation of its impact on and applications to future remote-sensing and telecommunications systems. This assessment is organized to place equal emphasis on basic research activities, designed to investigate both the natural geophysical environment and fundamental plasma physics; advanced research programs, such as those studying artificial ionization processes and oblique high-power radio propagation and practical system applications and operational limitations addressed by this research. The assessment indicates that the Soviet Union sustains high-quality theoretical and experimental research programs in ionospheric modification, with a breadth and level of effort greatly exceeding comparable Western programs. Soviet theoretical research tends to be analytical and intuitive, as compared to the Western emphasis on numerical simulation techniques. The Soviet experimental approach is less exploratory, designed principally to confirm theoretical predictions. Although limited by inferior diagnostic capabilities, Soviet experimental facilities are more numerous, operate on a more regular basis, and transmit radio wave powers exceeding those os Western facilities. Because of its broad scope of activity, the Soviet Union is better poised to quickly exploit new technologies and system applications as they are developed. This panel has identified several key areas of Soviet research activity and emerging technology that may offer long-term opportunities for remote-sensing and telecommunications advantages. However, we have found no results that suggest imminent breakthrough discoveries in these fields.

  11. Intragenic modification of maize.

    PubMed

    Almeraya, Erika V; Sánchez-de-Jiménez, Estela

    2016-11-20

    The discovery of plant DNA recombination techniques triggered the development of a wide range of genetically modified crops. The transgenics were the first generation of modified plants; however, these crops were quickly questioned due to the artificial combination of DNA between different species. As a result, the second generation of modified plants known as cisgenic and/or intragenic crops arose as an alternative to genetic plant engineering. Cisgenic and/or intragenic crops development establishes the combination of DNA from the plant itself or related species avoiding the introduction of foreign genetic material, such as selection markers and/or reporter genes. Nowadays it has been made successful cisgenic and/or intragenic modifications in crops such as potato and apple. The present study shows the possibility of reaching similar approach in corn plants. This research was focused on achieve intragenic overexpression of the maize Rubisco activase (Rca) protein. The results were compared with changes in the expression of the same protein, in maize plants grown after 23 cycles of conventional selection and open field planting. Experimental evidence shows that maize intragenic modification is possible for increasing specific gene expression, preserving plant genome free of foreign DNA and achieving further significant savings in time and man labor for crop improvement. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Neural crest contribution to lingual mesenchyme, epithelium and developing taste papillae and taste buds.

    PubMed

    Liu, Hong-Xiang; Komatsu, Yoshihiro; Mishina, Yuji; Mistretta, Charlotte M

    2012-08-15

    The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin.

  13. Effect of syngeneic thymocytes on proliferation of the small intestinal epithelium in mice

    SciTech Connect

    Shmakov, A.N.; Aparovich, G.G.; Trufakin, V.A.

    1986-12-01

    This paper describes the study of the action of syngeneic thymocytes on proliferation of the epithelium of the mouse small intestine. The mice were injected with /sup 3/H-thymidine in the experiments. Under the experimental conditions presented here, syngeneic thymocytes can reduce the number of DNA-synthesizing cells in the intestinal epithelium, causing narrowing of the zone of proliferation and enlargement of the zone of differentiation of the enterocytes.

  14. Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium

    DTIC Science & Technology

    2005-08-01

    AD Award Number: W81XWH-04-1-0719 TITLE: Role of the Stem Cell Niche in Hormone-Induced Tumorigenesis in Fetal Mouse Mammary Epithelium PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of the Stem Cell Niche in Hormone-induced Tumorigenesis in Fetal Mouse 5b. GRANT NUMBER Mammary Epithelium...SUPPLEMENTARY NOTES 14. ABSTRACT SEE PAGE 4 15. SUBJECT TERMS Stem Cells , Stem Cell niche, Immunohistochemistry, mammary gland, breast cancer 16

  15. Decreased expression of intelectin 1 in the human airway epithelium of smokers compared to nonsmokers.

    PubMed

    Carolan, Brendan J; Harvey, Ben-Gary; De, Bishnu P; Vanni, Holly; Crystal, Ronald G

    2008-10-15

    Lectins are innate immune defense proteins that recognize bacterial cell wall components. Based on the knowledge that cigarette smoking is associated with an increased risk of infections, we hypothesized that cigarette smoking may modulate the expression of lectin genes in airway epithelium. Affymetrix microarrays were used to survey the expression of lectin genes in large airway epithelium from nine nonsmokers and 20 healthy smokers and in small airway epithelium from 13 nonsmokers and 20 healthy smokers. There were no changes (>2-fold change; p < 0.05) in lectin gene expression among healthy smokers compared with nonsmokers except for down-regulation of intelectin 1, a lectin that binds to galactofuranosyl residues in bacterial cell walls (large airway epithelium, p < 0.01; small airway epithelium, p < 0.01). This was confirmed by TaqMan RT-PCR in both large (p < 0.05) and small airway epithelium (p < 0.02). Immunohistochemistry assessment of airway biopsies demonstrated that intelectin 1 was expressed in secretory cells, while Western analysis confirmed the decreased expression of intelectin 1 in airway epithelium of healthy smokers compared with healthy nonsmokers (p < 0.02). Finally, compared with healthy nonsmokers, intelectin 1 expression was also decreased in small airway epithelium of smokers with lone emphysema and normal spirometry (n = 13, p < 0.01) and smokers with established chronic obstructive pulmonary disease (n = 14, p < 0.01). In the context that intelectin 1 plays a role in defense against bacteria, its down-regulation in response to cigarette smoking is another example of the immunomodulatory effects of smoking on the immune system and may contribute to the increase in susceptibility to infections observed in smokers.

  16. Decreased Expression of Intelectin 1 in the Human Airway Epithelium of Smokers Compared to Nonsmokers*

    PubMed Central

    Carolan, Brendan J.; Harvey, Ben-Gary; De, Bishnu P.; Vanni, Holly; Crystal, Ronald G.

    2009-01-01

    Summary Lectins are innate immune defense proteins that recognize specific bacterial cell wall components. Based on the knowledge that cigarette smoking is associated with increased risk of bacterial infections, we hypothesized that cigarette smoking may modulate the expression of lectin genes in airway epithelium. Affymetrix microarrays were used to survey expression of lectin genes in large airway epithelium from 9 nonsmokers and 20 healthy smokers and in small airway epithelium from 13 nonsmokers and 20 healthy smokers. There were no changes (>2-fold change, p<0.05) in lectin gene expression among healthy smokers compared to nonsmokers except for a striking down regulation of intelectin 1, a lectin that binds to galactofuranosyl residues in the cell walls of bacteria (large airway epithelium, p<0.01; small airway epithelium, p<0.01). This was confirmed by TaqMan RT-PCR in both large (p<0.05) and small airway epithelium (p<0.02). Immunohistochemistry assessment of airway biopsies demonstrated that intelectin 1 was expressed in secretory cells, while Western analysis confirmed the decreased expression of intelectin 1 in airway epithelium of healthy smokers compared to healthy nonsmokers (p<0.02). Finally, compared to healthy nonsmokers, intelectin 1 expression was also decreased in small airway epithelium of smokers with lone emphysema with normal spirometry (n= 13, p<0.01) and smokers with established COPD (n= 14, p<0.01). In the context that intelectin 1 is an epithelial molecule that likely plays a role in defense against bacteria, its down regulation in response to cigarette smoking is another example of the immunomodulatory effects of smoking on the immune system and may contribute to the increase in susceptibility to infections observed in smokers, including those with COPD. PMID:18832735

  17. Lingual cyst lined by respiratory epithelium: a case report and review of literature.

    PubMed

    Juneja, Manish; Boaz, Karen; Srikant, N; Nandita, K P; Vidya, M

    2011-01-01

    The present report describes a case of a lingual cyst lined by a respiratory epithelium occurring in a 1-year-old girl. The article also reviews the cases published in the literature under the heading of lingual cysts and segregates all the cases having predominant respiratory epithelium as the cystic lining. Reclassification, with more descriptive histologic terminology to name the lingual cysts, has been proposed.

  18. Macrophages are required for dendritic cell uptake of respiratory syncytial virus from an infected epithelium.

    PubMed

    Ugonna, Kelechi; Bingle, Colin D; Plant, Karen; Wilson, Kirsty; Everard, Mark L

    2014-01-01

    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells.

  19. Macrophages Are Required for Dendritic Cell Uptake of Respiratory Syncytial Virus from an Infected Epithelium

    PubMed Central

    Ugonna, Kelechi; Bingle, Colin D.; Plant, Karen; Wilson, Kirsty; Everard, Mark L.

    2014-01-01

    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells. PMID:24651119

  20. Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium.

    PubMed

    Thiebaud, Nicolas; Menetrier, Franck; Belloir, Christine; Minn, Anne-Laure; Neiers, Fabrice; Artur, Yves; Le Bon, Anne-Marie; Heydel, Jean-Marie

    2011-11-14

    Transporters, such as multidrug resistance P-glycoproteins (MDR), multidrug resistance-related proteins (MRP) and organic anion transporters (OATs), are involved in xenobiotic metabolism, particularly the cellular uptake or efflux of xenobiotics (and endobiotics) or their metabolites. The olfactory epithelium is exposed to both inhaled xenobiotics and those coming from systemic circulation. This tissue has been described as a pathway for xenobiotics to the brain via olfactory perineural space. Thereby, olfactory transporters and xenobiotic metabolizing enzymes, dedicated to the inactivation and the elimination of xenobiotics, have been involved in the toxicological protection of the brain, the olfactory epithelium itself and the whole body. These proteins could also have a role in the preservation of the olfactory sensitivity by inactivation and clearance of the excess of odorant molecules from the perireceptor space. The goal of the present study was to increase our understanding of the expression and the localization of transporters in this tissue. For most of the studied transporters, we observed an opposite mRNA expression pattern (RT-PCR) in the olfactory epithelium compared to the liver, which is considered to be the main metabolic organ. Olfactory epithelium mainly expressed efflux transporters (MRP, MDR). However, a similar pattern was observed between the olfactory epithelium and the olfactory bulb. We also demonstrate distinct cellular immunolocalization of the transporters in the olfactory epithelium. As previously reported, Mrp1 was mainly found in the supranuclear portions of supporting cells. In addition, Mrp3 and Mrp5 proteins, which were detected for the first time in olfactory epithelium, were localized to the olfactory neuron layer, while Mdr1 was localized to the capillary endothelium of lymphatic vessels in the subepithelial region. The pattern of expression and the distinct localization of the olfactory transporters showed in this work may

  1. Tracheal epithelium in culture: A model for toxicity testing of inhaled molecules

    SciTech Connect

    Romet-Haddad, S.; Marano, F.; Blanquart, C.; Baeza-Squiban, A. )

    1992-07-01

    Rabbit trachea primary cultures have been developed as a model to evaluate the toxicity of noxious airborne pollutants. A mucociliary epithelium has been restored in vitro on collagen gel. Several general cytotoxicity assays (viability and growth inhibition) permit a first assessment for the acute toxicity of the tested molecules. More specific criteria such as measurement of the integrity of the epithelial barrier and inhibition of ciliary beat frequency allow to determine a specific impact of xenobiotics on the mucociliary epithelium in culture.

  2. Cultivated Oral Mucosa Epithelium in Ocular Surface Reconstruction in Aniridia Patients

    PubMed Central

    Dobrowolski, Dariusz; Orzechowska-Wylegala, Boguslawa; Wowra, Bogumil; Wroblewska-Czajka, Ewa; Grolik, Maria; Szczubialka, Krzysztof; Nowakowska, Maria; Puzzolo, Domenico; Wylegala, Edward A.; Micali, Antonio; Aragona, Pasquale

    2015-01-01

    Purpose. Efficacy of cultivated oral mucosa epithelial transplantation (COMET) procedure in corneal epithelium restoration of aniridia patients. Methods. Study subjects were aniridia patients (13 patients; 17 eyes) with irregular, vascular conjunctival pannus involving visual axis who underwent autologous transplantation of cultivated epithelium. For the procedure oral mucosa epithelial cells were obtained from buccal mucosa with further enzymatic treatment. Suspension of single cells was seeded on previously prepared denuded amniotic membrane. Cultures were carried on culture dishes inserts in the presence of the inactivated with Mitomycin C monolayer of 3T3 fibroblasts. Cultures were carried for seven days. Stratified oral mucosa epithelium with its amniotic membrane carrier was transplanted on the surgically denuded corneal surface of aniridia patients with total or subtotal limbal stem cell deficiency. Outcome Measures. Corneal surface, epithelial regularity, and visual acuity improvement were evaluated. Results. At the end of the observation period, 76.4% of the eyes had regular transparent epithelium and 23.5% had developed epithelial defects or central corneal haze; in 88.2% of cases visual acuity had increased. VA range was from HM 0.05 before the surgery to HM up to 0.1 after surgery. Conclusion. Application of cultivated oral mucosa epithelium restores regular epithelium on the corneal surface with moderate improvement in quality of vision. PMID:26451366

  3. Anterior lens epithelium in cataract patients with retinitis pigmentosa - scanning and transmission electron microscopy study.

    PubMed

    Andjelic, Sofija; Drašlar, Kazimir; Hvala, Anastazija; Hawlina, Marko

    2017-05-01

    In retinitis pigmentosa (RP) patients, relatively minor lens opacity in central part of posterior pole of the lens may cause disproportionate functional symptoms requiring cataract operation. To investigate the possible structural reasons for this opacity development, we studied the structure of the lens epithelium of patients with RP. The anterior lens capsule (aLC: basement membrane and associated lens epithelial cells, LECs) was obtained from cataract surgery and prepared for scanning and transmission electron microscopy (SEM and TEM). Both SEM and TEM show a number of abnormal features in the anterior lens epithelium of cataract patients with RP. The abnormalities appear mainly as holes, thinning and degradation of the epithelium, with the dimensions from <1 μm to more than 50 μm. Other types of holes in size up to 20 μm were seen that may be formed by gradual stretching of the lens epithelium. Another type of abnormalities was cracks that were seen between adjacent LECs, with dimensions 0.1-2 μm × up to 10 μm. Abnormal structural features were observed in the anterior lens epithelium that may cause water influx into the lens. This may lead to clouding along the water clefts leading towards the posterior pole in the RP cataractous lens. We suggest that the lens epithelium has a role in the development of the cataract in patients with RP. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis

    PubMed Central

    Grosse, Ann S.; Pressprich, Mark F.; Curley, Lauren B.; Hamilton, Kara L.; Margolis, Ben; Hildebrand, Jeffrey D.; Gumucio, Deborah L.

    2011-01-01

    The cellular mechanisms that drive growth and remodeling of the early intestinal epithelium are poorly understood. Current dogma suggests that the murine fetal intestinal epithelium is stratified, that villi are formed by an epithelial remodeling process involving the de novo formation of apical surface at secondary lumina, and that radial intercalation of the stratified cells constitutes a major intestinal lengthening mechanism. Here, we investigate cell polarity, cell cycle dynamics and cell shape in the fetal murine intestine between E12.5 and E14.5. We show that, contrary to previous assumptions, this epithelium is pseudostratified. Furthermore, epithelial nuclei exhibit interkinetic nuclear migration, a process wherein nuclei move in concert with the cell cycle, from the basal side (where DNA is synthesized) to the apical surface (where mitosis takes place); such nuclear movements were previously misinterpreted as the radial intercalation of cells. We further demonstrate that growth of epithelial girth between E12.5 and E14.5 is driven by microtubule- and actinomyosin-dependent apicobasal elongation, rather than by progressive epithelial stratification as was previously thought. Finally, we show that the actin-binding protein Shroom3 is crucial for the maintenance of the single-layered pseudostratified epithelium. In mice lacking Shroom3, the epithelium is disorganized and temporarily stratified during villus emergence. These results favor an alternative model of intestinal morphogenesis in which the epithelium remains single layered and apicobasally polarized throughout early intestinal development. PMID:21880782

  5. Msx2 plays a critical role in lens epithelium cell cycle control

    PubMed Central

    Zhao, Jiang-Yue; Zhuang, Feng-Feng; Wang, Hong-Yan; Wu, Di; Zhang, Jin-Song

    2013-01-01

    AIM To investigate the effects of Msx2 on lens epithelium cell cycle, and evaluate the changes of the proliferation, apoptosis of lens epithelium cells. METHODS Mice lens epithelium cells were cultured and transfected with pEGFP-Msx2 and control. Msx2-deficient mice (Msx2−/−) lens tissue were isolated. Lens tissue and transfected cells were prepared for mRNA extraction using Trizol reagent. CyclinD1 and Prox1 expression were evaluated by real-time RT-PCR. BrdU incorporation and apoptosis rate were investigated by immunofluorescence and flow cytometry analysis. RESULTS After transfected with pEGFP-Msx2, lens epithelium cells failed to incorporate BrdU and anti-phospho-histone-3 immunofluorescence failed to detect cell nuclei which GFP were positive. Msx2 over expression resulted in increasing apoptosis rate in lens epithelium cells. CyclinD1 and Prox1 expression increased significantly in Msx2 knockout mice by real-time RT-PCR quantization and CyclinD1 expression decreased significantly in Msx2 overexpressed cell. CONCLUSION Msx2 has the effect of inhibiting proliferation and differentiation, triggering apoptosis on mice lens epithelium cells. PMID:23826518

  6. Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue

    PubMed Central

    Kawashima, M.; Imura, K.; Sato, I.

    2012-01-01

    Transient receptor potential vanilloid subfamily member 1 (TRPV1) is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP), a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRP-expressing terminals. PMID:22688302

  7. Usefulness of GATA-3 as a marker of seminal epithelium in prostate biopsies.

    PubMed

    Ortiz-Rey, J A; Chantada-de la Fuente, D; Peteiro-Cancelo, M Á; Gómez-de María, C; San Miguel-Fraile, M P

    2017-04-28

    The incidental presence of seminal vesicle epithelium in prostate needle biopsies is generally recognisable through routine microscopy. However, the biopsy can sometimes be erroneously interpreted as malignant due to its architectural and cytological characteristics, and immunohistochemistry can be useful for correctly identifying the biopsy. Our objective was to analyse the potential usefulness of GATA-3 as a marker of seminal epithelium. Through immunohistochemistry with a monoclonal anti-GATA-3 antibody (clone L50-823), we studied seminal vesicle sections from 20 prostatectomy specimens, 12 prostate needle biopsies that contained seminal vesicle tissue and 68 prostate biopsies without seminal vesicle epithelium, 36 of which showed adenocarcinoma. Staining for GATA-3 was intense in the 20 seminal vesicles of the prostatectomy specimens and in the 12 prostate needle biopsies that contained seminal epithelium. In the 60 biopsies without a seminal vesicle, GATA-3 was positive in the prostate basal cells and even in the secretory cells (57 cases), although with less intensity in 55 of the cases. One of the 36 prostatic adenocarcinomas tested positive for GATA-3. The intense immunohistochemical expression of GATA-3 in the seminal vesicle epithelium can help identify the epithelium in prostate biopsies. This marker is also positive in the basal cells of healthy prostates and, with less intensity, in the secretory cells. Positivity, weak or moderate, is observed on rare occasions in prostatic adenocarcinomas. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Autocrine growth factors are involved in branching morphogenesis of mouse lung epithelium.

    PubMed

    Okada, Kimiko; Noda, Masatsugu; Nogawa, Hiroyuki

    2013-01-01

    The current model for branching morphogenesis of mouse lung proposes that the epithelium bifurcates as cells pursue separate sources of fibroblast growth factor (FGF) 10, secreted from mesenchymal tissue through interactions with epithelial tissue. If so, it may be assumed that the lung epithelium will grow into a uniform, expanding ball (without branching) when uniformly exposed to a constant concentration of FGF10. To test this hypothesis, we cultured Matrigel-embedded lung epithelium explants in FGF10-supplemented medium while shaking the culture dishes. Shaking cultures with FGF10 resulted in inferior epithelial branching compared to control cultures at rest. However, this effect was unexpectedly accompanied by poor growth rather than by ball-like expansion. When using FGF1, epithelial cultures grew and branched similarly well under either culture condition. Thus, we hypothesized that FGF10 signaling must be mediated by autocrine FGFs, such as FGF1, which might easily diffuse through the culture medium in the shaking culture. Reverse transcription-polymerase chain reaction analyses showed that FGF9 as well as FGF1 were expressed in the epithelium in vivo and in FGF10-stimulated epithelium in vitro, and FGF9 induced epithelial branching at a much lower concentration than FGF10. These results suggest that FGF1 and FGF9 may mediate FGF10 signaling and induce branching in the lung epithelium via autocrine signaling.

  9. Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2013-06-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.

  10. Regeneration of the corneal epithelium after debridement of its central region: an autoradiographic study on rabbits.

    PubMed

    Barbosa, Flávia Leão; Góes, Rejane Maira; de Faria-E-Sousa, Sidney Júlio; Haddad, Antonio

    2009-08-01

    To investigate the proliferative behavior of the corneal and limbal epithelia after debridement on the central region of the rabbit cornea. After scraping a circular epithelial area, 5 mm in diameter, in the center of the cornea, ([3]) H-thymidine ( ([3]) H-TdR) was injected intravitreally, and the rabbits killed from 1 to 49 days afterward. The cornea, together with the adjacent conjunctiva, was processed for autoradiography. The regenerating epithelium at the center of the cornea exhibited high frequencies of labeled nuclei when compared to controls. The mitotic indexes for the limbus were comparable in experimental and control eyes. The unique basal stratum of the limbal epithelium exhibited quick proliferation and vertical migration in all eyes. Cells that remained labeled for four weeks or more were observed throughout the corneal epithelium, including its basal stratum, and this did not depend on epithelial damage. Corneal epithelium wounds are healed by sliding and proliferation of cells surrounding the epithelial gap without any evidence for the participation of the limbal epithelium. Daughter cells labeled with ([3]) H-TdR were visualized in all layers of the corneal epithelium up to 7 weeks after the DNA precursor injection. However, at this long interval, the only labeled cells in the limbus were in the suprabasal layers.

  11. Stages and duration of the cycle of the seminiferous epithelium in oncilla (Leopardus tigrinus, Schreber, 1775).

    PubMed

    Balarini, Maytê Koch; de Paula, Tarcízio Antônio Rego; da Matta, S L Pinto; Peixoto, J Vogas; Guião-Leite, F Lima; Rossi Júnior, J L; Czermak Junior, A C; Walker, N J

    2012-03-15

    Six adult Leopardus tigrinus (oncilla) were studied to characterize stages of the seminiferous epithelium cycle and its relative frequency and duration, as well as morphometric parameters of the testes. Testicular fragments were obtained (incisional biopsy), embedded (glycol methacrylate), and histologic sections examined with light microscopy. The cycle of the seminiferous epithelium was categorized into eight stages (based on the tubular morphology method). The duration of one seminiferous epithelium cycle was 9.19 d, and approximately 41.37 d were required for development of sperm from spermatogonia. On average, diameter of the seminiferous tubules was 228.29 μm, epithelium height was 78.86 μm, and there were 16.99 m of testicular tubules per gram of testis. Body weight averaged 2.589 kg, of which 0.06 and 0.04% were attributed to the testis and seminiferous tubules, respectively. In conclusion, there were eight distinct stages in the seminiferous epithelium, the length of the seminiferous epithelium cycle was close to that in domestic cats and cougars, and testicular and somatic indexes were similar to those of other carnivores of similar size.

  12. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium

    PubMed Central

    Bastide, Pauline; Darido, Charbel; Pannequin, Julie; Kist, Ralf; Robine, Sylvie; Marty-Double, Christiane; Bibeau, Frédéric; Scherer, Gerd; Joubert, Dominique; Hollande, Frédéric; Blache, Philippe; Jay, Philippe

    2007-01-01

    The HMG-box transcription factor Sox9 is expressed in the intestinal epithelium, specifically, in stem/progenitor cells and in Paneth cells. Sox9 expression requires an active β-catenin–Tcf complex, the transcriptional effector of the Wnt pathway. This pathway is critical for numerous aspects of the intestinal epithelium physiopathology, but processes that specify the cell response to such multipotential signals still remain to be identified. We inactivated the Sox9 gene in the intestinal epithelium to analyze its physiological function. Sox9 inactivation affected differentiation throughout the intestinal epithelium, with a disappearance of Paneth cells and a decrease of the goblet cell lineage. Additionally, the morphology of the colon epithelium was severely altered. We detected general hyperplasia and local crypt dysplasia in the intestine, and Wnt pathway target genes were up-regulated. These results highlight the central position of Sox9 as both a transcriptional target and a regulator of the Wnt pathway in the regulation of intestinal epithelium homeostasis. PMID:17698607

  13. Ozone-Induced Injury and Oxidative Stress in Bronchiolar Epithelium Are Associated with Altered Pulmonary Mechanics

    PubMed Central

    Sunil, Vasanthi R.

    2013-01-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3h) resulted in rapid (within 3h) and persistent (up to 72h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24h post-exposure. Ozone also induced the appearance of 8-hydroxy-2′-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3–24h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning. PMID:23492811

  14. Translocation of the retinal pigment epithelium and formation of sub-retinal pigment epithelium deposit induced by subretinal deposit

    PubMed Central

    Zhao, Lian; Wang, Zhenfang; Liu, Yun; Song, Ying; Li, Yiwen; Laties, Alan M.

    2007-01-01

    Purpose A cardinal pathological feature of age-related macular degeneration (AMD) is the deposition of extracellular material between the retinal pigment epithelium (RPE) and Bruch's membrane, pathologically described as sub-RPE deposits. Both the presence and local organization of these deposits contribute to the clinical manifestations of AMD, including localized deposits clinically recognized as drusen. The biogenesis of sub-RPE deposits remains elusive. This work explores the pathological processes of sub-RPE deposit formation. Methods Matrigel was injected to the subretinal space of rats to create an amorphous deposit. Tissue sections were examined by light or confocal microscopy. Results In the presence of the subretinal deposit of Matrigel, RPE cells leave Bruch's membrane to migrate toward photoreceptors and then form a new layer between the deposit and photoreceptors, resulting in RPE translocation. The new RPE layer displaces the deposit to the sub-RPE location and therefore it becomes a sub-RPE deposit. The RPE mobilization requires the presence of photoreceptors. Bruch's membrane devoid of RPE attachment becomes vulnerable to invasion by new blood vessels from the choroid. Conclusions Our work supports a novel model of sub-RPE deposit formation in which excessive material first accumulates in the subretinal space, disrupting the physical contact between RPE cells and photoreceptors. To restore the contact, RPE cells migrate toward photoreceptors and form a new layer. The subretinal material is consequently displaced to the sub-RPE location and becomes sub-RPE deposit. Our data also provide evidence that the presence of sub-RPE deposit is sufficient to induce choroidal neovascularization to penetrate Bruch's membrane. PMID:17615538

  15. Plasma modification of starch.

    PubMed

    Zhu, Fan

    2017-10-01

    Plasma is a medium of unbound negative and positive particles with the overall electrical charge being roughly zero. Non-thermal plasma processing is an emerging green technology with great potential to improve the quality and microbial safety of various food materials. Starch is a major component of many food products and is an important ingredient for food and other industries. There has been increasing interest in utilizing plasma to modify the functionalities of starch through interactions with reactive species. This mini-review summarises the impact of plasma on composition, chemical and granular structures, physicochemical properties, and uses of starch. Structure-function relationships of starch components as affected by plasma modifications are discussed. Effect of plasma on the properties of wheat flour, which is a typical example of starch based complex food systems, is also reviewed. Future research directions on how to better utilise plasma to improve the functionalities of starch are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Artificial modification meeting reminder

    NASA Astrophysics Data System (ADS)

    Gordon, W. E.

    A symposium on artificial modification of the ionosphere by high-powered radio waves (V. V. Migulin, Honorary Chairman) will be held September 19-23, 1988, at the Scandic Hotel, Tromso, Norway. The symposium, sponsored by Union Radio Scientifique Internationale Commissions (URSI) G and H, is in the URSI series which started at Suzdal in 1983. Information on the scientific program is available from V.V. Migulin, U.S.S.R. Academy of Sciences, 103907, Moscow Center, Marx Avl8, U.S.S.R.; Peter Stubbe, Max- Planck-Institut fuer Aeronomy, D-3411 Katlenburg- Lindau 3, Federal Republic of Germany; or W.E. Gordon, Rice University, Space Physics and Astronomy Dept., Houston, TX 77251. For local arrangements information, contact Asgeir Brekke, Institute Matematisk Realfag, Aurora Observatory, Box 953, N-9001, Tromso, Norway.

  17. Genetic modification in floriculture.

    PubMed

    Chandler, Stephen F; Brugliera, Filippa

    2011-02-01

    Micro-propagation, embryo rescue, mutagenesis via chemical or irradiation means and in vitro inter-specific hybridisation methods have been used by breeders in the floriculture industry for many years. In the past 20 years these enabling technologies have been supplemented by genetic modification methods. Though many genes of potential utility to the floricultural industry have been identified, and much has been learnt of the genetic factors and molecular mechanisms underlying phenotypes of great importance to the industry, there are only flower colour modified varieties of carnation and rose in the marketplace. To a large extent this is due to unique financial barriers to market entry for genetically modified varieties of flower crops, including use of technology fees and costs of regulatory approval.

  18. Surface modifications of nitinol.

    PubMed

    Haider, Waseem; Munroe, N; Tek, V; Pulletikurthi, C; Gill, P K S; Pandya, S

    2009-01-01

    Nitinol (an acronym for the Nickel-Titanium Naval Ordnance Laboratory) has been extensively explored as an implant material for the medical industry. The potential problem with Nitinol implant devices is the release of Ni in the human body, which has stimulated a great deal of research on surface modifications and the application of coatings. This paper presents a comprehensive review of various treatments to modify the surface of Nitinol in an effort to inhibit Ni release and to render improved biocompatibility. We discuss the important in-service properties of Nitinol, such as biocompatibility, corrosion resistance, stability, uniformity, and the nature of passivating oxides produced by passivation, electropolishing, magnetoelectropolishing, ion beam implantation, sterilization, and artificial coatings.

  19. Reprogramming of the chick retinal pigmented epithelium after retinal injury

    PubMed Central

    2014-01-01

    Background One of the promises in regenerative medicine is to regenerate or replace damaged tissues. The embryonic chick can regenerate its retina by transdifferentiation of the retinal pigmented epithelium (RPE) and by activation of stem/progenitor cells present in the ciliary margin. These two ways of regeneration occur concomitantly when an external source of fibroblast growth factor 2 (FGF2) is present after injury (retinectomy). During the process of transdifferentiation, the RPE loses its pigmentation and is reprogrammed to become neuroepithelium, which differentiates to reconstitute the different cell types of the neural retina. Somatic mammalian cells can be reprogrammed to become induced pluripotent stem cells by ectopic expression of pluripotency-inducing factors such as Oct4, Sox2, Klf4, c-Myc and in some cases Nanog and Lin-28. However, there is limited information concerning the expression of these factors during natural regenerative processes. Organisms that are able to regenerate their organs could share similar mechanisms and factors with the reprogramming process of somatic cells. Herein, we investigate the expression of pluripotency-inducing factors in the RPE after retinectomy (injury) and during transdifferentiation in the presence of FGF2. Results We present evidence that upon injury, the quiescent (p27Kip1+/BrdU-) RPE cells transiently dedifferentiate and express sox2, c-myc and klf4 along with eye field transcriptional factors and display a differential up-regulation of alternative splice variants of pax6. However, this transient process of dedifferentiation is not sustained unless FGF2 is present. We have identified lin-28 as a downstream target of FGF2 during the process of retina regeneration. Moreover, we show that overexpression of lin-28 after retinectomy was sufficient to induce transdifferentiation of the RPE in the absence of FGF2. Conclusion These findings delineate in detail the molecular changes that take place in the RPE during

  20. Tracheal epithelium cell volume responses to hyperosmolar, isosmolar and hypoosmolar solutions: relation to epithelium-derived relaxing factor (EpDRF) effects

    PubMed Central

    Fedan, Jeffrey S.; Thompson, Janet A.; Ismailoglu, U. Burcin; Jing, Yi

    2013-01-01

    In asthmatic patients, inhalation of hyperosmolar saline or D-mannitol (D-M) elicits bronchoconstriction, but in healthy subjects exercise causes bronchodilation. Hyperventilation causes drying of airway surface liquid (ASL) and increases its osmolarity. Hyperosmolar challenge of airway epithelium releases epithelium-derived relaxing factor (EpDRF), which relaxes the airway smooth muscle. This pathway could be involved in exercise-induced bronchodilation. Little is known of ASL hyperosmolarity effects on epithelial function. We investigated the effects of osmolar challenge maneuvers on dispersed and adherent guinea-pig tracheal epithelial cells to examine the hypothesis that EpDRF-mediated relaxation is associated with epithelial cell shrinkage. Enzymatically-dispersed cells shrank when challenged with ≥10 mOsM added D-M, urea or NaCl with a concentration-dependence that mimics relaxation of the of isolated perfused tracheas (IPT). Cells shrank when incubated in isosmolar N-methyl-D-glucamine (NMDG) chloride, Na gluconate (Glu), NMDG-Glu, K-Glu and K2SO4, and swelled in isosmolar KBr and KCl. However, isosmolar challenge is not a strong stimulus of relaxation in IPTs. In previous studies amiloride and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS) inhibited relaxation of IPT to hyperosmolar challenge, but had little effect on shrinkage of dispersed cells. Confocal microscopy in tracheal segments showed that adherent epithelium is refractory to low hyperosmolar concentrations that induce dispersed cell shrinkage and relaxation of IPT. Except for gadolinium and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), actin and microtubule inhibitors and membrane permeabilizing agents did not affect on ion transport by adherent epithelium or shrinkage responses of dispersed cells. Our studies dissociate relaxation of IPT from cell shrinkage after hyperosmolar challenge of airway epithelium. PMID:24130533

  1. Public perceptions of hurricane modification.

    PubMed

    Klima, Kelly; Bruine de Bruin, Wändi; Morgan, M Granger; Grossmann, Iris

    2012-07-01

    If hurricane modification were to become a feasible strategy for potentially reducing hurricane damages, it would likely generate public discourse about whether to support its implementation. To facilitate an informed and constructive discourse, policymakers need to understand how people perceive hurricane modification. Here, we examine Florida residents' perceptions of hurricane modification techniques that aim to alter path and wind speed. Following the mental models approach, we conducted a survey study about public perceptions of hurricane modification that was guided by formative interviews on the topic. We report a set of four primary findings. First, hurricane modification was perceived as a relatively ineffective strategy for damage reduction, compared to other strategies for damage reduction. Second, hurricane modification was expected to lead to changes in projected hurricane path, but not necessarily to the successful reduction of projected hurricane strength. Third, more anger was evoked when a hurricane was described as having changed from the initially forecasted path or strength after an attempted modification. Fourth, unlike what we expected, participants who more strongly agreed with statements that recognized the uncertainty inherent in forecasts reported more rather than less anger at scientists across hurricane modification scenarios. If the efficacy of intensity-reduction techniques can be increased, people may be willing to support hurricane modification. However, such an effort would need to be combined with open and honest communications to members of the general public. © 2011 Society for Risk Analysis.

  2. HMG Modifications and Nuclear Function

    PubMed Central

    Zhang, Qingchun; Wang, Yinsheng

    2009-01-01

    High mobility group (HMG) proteins assume important roles in regulating chromatin dynamics, transcriptional activities of genes and other cellular processes. Post-translational modifications of HMG proteins can alter their interactions with DNA and proteins, and consequently, affect their biological activities. Although the mechanisms through which these modifications are involved in regulating biological processes in different cellular contexts are not fully understood, new insights into these modification “codes” have emerged from the increasing appreciation of the functions of these proteins. In this review, we focus on the chemical modifications of mammalian HMG proteins and highlight their roles in nuclear functions. PMID:20123066

  3. Dimethylarsinic acid in drinking water changed the morphology of urinary bladder but not the expression of DNA repair genes of bladder transitional epithelium in F344 rats.

    PubMed

    Wang, Amy; Wolf, Douglas C; Sen, Banalata; Knapp, Geremy W; Holladay, Steven D; Huckle, William R; Caceci, Thomas; Robertson, John L

    2009-06-01

    Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.

  4. Identification of distinct layers within the stratified squamous epithelium of the adult human true vocal fold.

    PubMed

    Dowdall, Jayme R; Sadow, Peter M; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C; Franco, Ramon A; Rajagopal, Jayaraj

    2015-09-01

    A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Qualitative study with adult human larynges. Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Enhancement by tetragastrin of experimental induction of gastric epithelium in the duodenum.

    PubMed Central

    Tatsuta, M; Iishi, H; Yamamura, H; Yamamoto, R; Taniguchi, H

    1989-01-01

    The effects of tetragastrin and truncal vagotomy on the incidence of gastric type epithelium in the duodenum by intraduodenal instillation of 5% NaOH solution were investigated in Wistar rats. Prolonged administration of 1 mg tetragastrin/kg body weight in depot form starting one week after NaOH treatment resulted in a significant increase in gastric acid secretion and the incidence and number of villi with gastric epithelium in the duodenum in experimental week 10. Villi with gastric epithelium were found in five (23%) of 22 rats in control group, whereas abnormal villi were found in 13 (59%) of 22 rats in the tetragastrin treated group (p less than 0.05). The average number of villi with gastric epithelium rose from 0.6 (0.4) per 100 villi in control rats to 2.4 (0.6) per 100 villi in tetragastrin treated rats (p less than 0.01). On histological examination, gastric type epithelium was most often found on stunted or flattened villi, and was always within the boundaries of the area of Brunner's glands. These mucosal changes reverted toward normal with time. In week 35, the incidence of gastric epithelium was significantly less than at week 10 (p less than 0.05). In contrast, no villi with gastric epithelium were found in vagotomised rats in week 10 (p less than 0.05). Vagotomy also caused a significant decrease in gastric acid secretion. These results show that exposure of the duodenal mucosa to high levels of gastric acid enhance the induction of gastric eithelium in the duodenum. Images Figure PMID:2707631

  6. deltaNp63 has a role in maintaining epithelial integrity in airway epithelium.

    PubMed

    Arason, Ari Jon; Jonsdottir, Hulda R; Halldorsson, Skarphedinn; Benediktsdottir, Berglind Eva; Bergthorsson, Jon Thor; Ingthorsson, Saevar; Baldursson, Olafur; Sinha, Satrajit; Gudjonsson, Thorarinn; Magnusson, Magnus K

    2014-01-01

    The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.

  7. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    PubMed

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.

  8. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    PubMed Central

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  9. Novel multiplexed low coherence interferometry endoscopic probe for analyzing the cervical epithelium in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ho, Derek; Chu, Kengyeh K.; Crose, Michael; Desoto, Michael; Peters, Jennifer J.; Murtha, Amy P.; Wax, Adam

    2017-02-01

    The cervix is primarily composed of two types of epithelium: stratified squamous ectocervix and simple columnar endocervix. In between these two layers lies a metaplastic squamocolumnar junction commonly referred to as the transformation zone (T-zone). During puberty, the cervical epithelium undergoes dynamic changes including cervical ectropion and increased area and rates of metaplasia. Although these metaplastic changes have been linked to higher incidence of cervical cancer among young women, research in this field has been limited to surface analysis using computerized planimetry of colopophotographs. Here, we present a novel multiplexed low coherence interferometry (mLCI) system for interrogating the cervical epithelium. The system is comprised of 6 parallel Mach-Zehnder interferometers in a time-multiplexed configuration that increases throughput by 6-fold to realize a combined 36-channel acquisition. A custom designed endoscopic handheld probe is used to collect sparsely sampled, depth-resolved scattering intensity profiles (A-scans) from a large field of view (25 x 25 mm) on the cervical epithelium in vivo. The instrument incorporates white light imaging through a plastic fiber bundle to co-register the mLCI A-scans to colpophotographs which are analyzed by a clinician to manually segment the cervical epithelium. Our preliminary data shows significant differences in characteristic A-scans from endocervical and ectocervical epithelium. These results demonstrate the feasibility of using mLCI as both a research tool for studying the relationship between cervical ectopy and cancer as well as a clinical instrument for identifying the at-risk T-zone on the cervix in vivo as a means to improve biopsy targeting. Further analysis will be performed to develop an algorithm for distinguishing the mLCI A-scans of endocervical, ectocervical, and metaplastic epithelium in real time.

  10. α7 Nicotinic Acetylcholine Receptor Regulates Airway Epithelium Differentiation by Controlling Basal Cell Proliferation

    PubMed Central

    Maouche, Kamel; Polette, Myriam; Jolly, Thomas; Medjber, Kahina; Cloëz-Tayarani, Isabelle; Changeux, Jean-Pierre; Burlet, Henriette; Terryn, Christine; Coraux, Christelle; Zahm, Jean-Marie; Birembaut, Philippe; Tournier, Jean-Marie

    2009-01-01

    Airway epithelial basal cells are known to be critical for regenerating injured epithelium and maintaining tissue homeostasis. Recent evidence suggests that the α7 nicotinic acetylcholine receptor (nAChR), which is highly permeable to Ca2+, is involved in lung morphogenesis. Here, we have investigated the potential role of the α7 nAChR in the regulation of airway epithelial basal cell proliferation and the differentiation of the human airway epithelium. In vivo during fetal development and in vitro during the regeneration of the human airway epithelium, α7 nAChR expression coincides with epithelium differentiation. Inactivating α7 nAChR function in vitro increases cell proliferation during the initial steps of the epithelium regeneration, leading to epithelial alterations such as basal cell hyperplasia and squamous metaplasia, remodeling observed in many bronchopulmonary diseases. The regeneration of the airway epithelium after injury in α7−/− mice is delayed and characterized by a transient hyperplasia of basal cells. Moreover, 1-year-old α7−/− mice more frequently present basal cells hyperplasia. Modulating nAChR function or expression shows that only α7 nAChR, as opposed to heteropentameric αxβy nAChRs, controls the proliferation of human airway epithelial basal cells. These findings suggest that α7 nAChR is a key regulator of the plasticity of the human airway epithelium by controlling basal cell proliferation and differentiation pathway and is involved in airway remodeling during bronchopulmonary diseases. PMID:19808646

  11. Impaired vitreous composition and retinal pigment epithelium function in the FoxG1::LRP2 myopic mice.

    PubMed

    Cases, Olivier; Obry, Antoine; Ben-Yacoub, Sirine; Augustin, Sébastien; Joseph, Antoine; Toutirais, Géraldine; Simonutti, Manuel; Christ, Annabel; Cosette, Pascal; Kozyraki, Renata

    2017-06-01

    High myopia (HM) is one of the main causes of visual impairment and blindness all over the world and an unsolved medical problem. Persons with HM are predisposed to other eye pathologies such as retinal detachment, myopic retinopathy or glaucomatous optic neuropathy, complications that may at least partly result from the extensive liquefaction of the myopic vitreous gel. To identify the involvement of the liquid vitreous in the pathogenesis of HM we here analyzed the vitreous of the recently described highly myopic low density lipoprotein receptor-related protein 2 (Lrp2)-deficient eyes. Whereas the gel-like fraction was not apparently modified, the volume of the liquid vitreous fraction (LVF) was much higher in the myopic eyes. Biochemical and proteome analysis of the LVF revealed several modifications including a marked decrease of potassium, sodium and chloride, of proteins involved in ocular tissue homeostasis and repair as well as of ADP-ribosylation factor 4 (ARF4), a protein possibly involved in LRP2 trafficking. A small number of proteins, mainly comprising known LRP2 ligands or proteins of the inflammatory response, were over expressed in the mutants. Moreover the morphology of the LRP2-deficient retinal pigment epithelium (RPE) cells was affected and the expression of ARF4 as well as of proteins involved in degradative endocytosis was strongly reduced. Our results support the idea that impairment of the RPE structure and most likely endocytic function may contribute to the vitreal modifications and pathogenesis of HM. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Insulin Restores an Altered Corneal Epithelium Circadian Rhythm in Mice with Streptozotocin-induced Type 1 Diabetes

    PubMed Central

    Song, Fang; Xue, Yunxia; Dong, Dong; Liu, Jun; Fu, Ting; Xiao, Chengju; Wang, Hanqing; Lin, Cuipei; Liu, Peng; Zhong, Jiajun; Yang, Yabing; Wang, Zhaorui; Pan, Hongwei; Chen, Jiansu; Li, Yangqiu; Cai, Dongqing; Li, Zhijie

    2016-01-01

    The mechanisms of corneal epithelial lesions and delayed wound repair, as well as their association with diabetes mellitus, are critical issues for clinical ophthalmologists. To test whether the diabetic condition alters the circadian rhythm in a mouse cornea and whether insulin can synchronise the corneal clock, we studied the effects of streptozotocin-induced diabetes on the mitosis of epithelial cells, the recruitment of leukocytes to the cornea, and the expression of main core clock genes (Clock, Bmal1, Per2, Cry1, and Rev-erbα) in the corneal epithelium. We also assessed the possible effect of insulin on these modifications. Diabetes downregulated Clock, Bmal1, and Per2 expression, upregulated Cry1 and Rev-erbα expression, reduced corneal epithelial mitosis, and increased leukocyte (neutrophils and γδ T-cells) recruitment to the cornea. Early treatments with insulin partially restored the altered rhythmicity in the diabetic cornea. In conclusion, insulin-dependent diabetes altered the normal rhythmicity of the cornea, and insulin administration had a beneficial effect on restoring normal rhythmicity in the diabetic cornea. PMID:27611469

  13. Pigment-epithelium-derived factor (PEDF) occurs at a physiologically relevant concentration in human blood: purification and characterization.

    PubMed Central

    Petersen, Steen V; Valnickova, Zuzana; Enghild, Jan J

    2003-01-01

    Pigment epithelium-derived factor (PEDF) inhibits the formation of blood vessels in the eye by inducing apotosis in actively dividing endothelial cells. The activity of PEDF equals or supersedes that of other anti-angiogenic factors, including angiostatin, endostatin and thrombospondin-1. In addition, PEDF has the potential to promote the survival of neurons and affect their differentiation. Here we show that PEDF is present in plasma at a concentration of approx. 100 nM (5 microg/ml) or twice the level required to inhibit aberrant blood-vessel growth in the eye. Thus the systemic delivery of PEDF has the potential to affect angiogenesis or neurotrophic processes throughout the body, significantly expanding the putative physiological role of the protein. A complete map of all post-translational modifications revealed that authentic plasma PEDF carries an N-terminal pyroglutamate blocking group and an N-linked glycan at position Asn266. The pyroglutamate residue may regulate the activity of PEDF analogously to the manner in which it regulates thyrotropin-releasing hormone. PMID:12737624

  14. Modification of Amino Groups.

    PubMed

    Geoghegan, Kieran F

    2016-11-01

    Chemical modification of amino groups in proteins serves a diversity of preparative and analytical purposes. The most prominent is to attach nonpeptide groups with useful properties to proteins. Examples of these groups include biotin for affinity capture and fluorescent dyes for detectability. A widely applied chemistry, and one for which many reagents are available, is reaction of the activated ester of a carboxylic acid (often a succinimidyl ester) with amino groups at mildly basic pH. Reductive alkylation using a carbonyl compound and a hydride-donating reducing agent is another valued reaction with multiple applications. Most proteins contain more than one amino group, so the extent of reaction desired must be considered in advance and the result assessed experimentally after the fact. The distinctive environment of the α-amino group of a polypeptide sets it apart from the ϵ-amino groups of lysine side chains, and can afford useful specificity. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  15. Expression of semaphorin 3A in the rat corneal epithelium during wound healing

    SciTech Connect

    Morishige, Naoyuki; Ko, Ji-Ae; Morita, Yukiko; Nishida, Teruo

    2010-05-14

    The neural guidance protein semaphorin 3A (Sema3A) is expressed in corneal epithelial cells of the adult rat. We have now further investigated the localization of Sema3A in the normal rat corneal epithelium as well as changes in its expression pattern during wound healing after central corneal epithelial debridement. The expression pattern of Sema3A was compared with that of the tight-junction protein zonula occludens-1 (ZO-1), the gap-junction protein connexin43 (Cx43), or the cell proliferation marker Ki67. Immunofluorescence analysis revealed that Sema3A was present predominantly in the membrane of basal and wing cells of the intact corneal epithelium. The expression of Sema3A at the basal side of basal cells was increased in the peripheral epithelium compared with that in the central region. Sema3A was detected in all layers at the leading edge of the migrating corneal epithelium at 6 h after central epithelial debridement. The expression of Sema3A was markedly up-regulated in the basal and lateral membranes of columnar basal cells apparent in the thickened, newly healed epithelium at 1 day after debridement, but it had largely returned to the normal pattern at 3 days after debridement. The expression of ZO-1 was restricted to superficial epithelial cells and remained mostly unchanged during the wound healing process. The expression of Cx43 in basal cells was down-regulated at the leading edge of the migrating epithelium but was stable in the remaining portion of the epithelium. Ki67 was not detected in basal cells of the central epithelium at 1 day after epithelial debridement, when Sema3A was prominently expressed. Immunoblot analysis showed that the abundance of Sema3A in the central cornea was increased 1 day after epithelial debridement, whereas that of ZO-1 or Cx43 remained largely unchanged. This increase in Sema3A expression was accompanied by up-regulation of the Sema3A coreceptor neuropilin-1. Our observations have thus shown that the expression of

  16. Body Modification and Suicidal Behavior

    ERIC Educational Resources Information Center

    Hicinbothem, Julie; Gonsalves, Sonia; Lester, David

    2006-01-01

    In a large sample of individuals who belong to a website for body modification, having body modifications (e.g., piercings, tattoos, scarification and surgical procedures) was associated with a higher incidence of prior suicidality (i.e., suicidal ideation and attempted suicide). However, controls for self-reported depression weakened the strength…

  17. Body Modification and Suicidal Behavior

    ERIC Educational Resources Information Center

    Hicinbothem, Julie; Gonsalves, Sonia; Lester, David

    2006-01-01

    In a large sample of individuals who belong to a website for body modification, having body modifications (e.g., piercings, tattoos, scarification and surgical procedures) was associated with a higher incidence of prior suicidality (i.e., suicidal ideation and attempted suicide). However, controls for self-reported depression weakened the strength…

  18. Surface modification in microchip electrophoresis.

    PubMed

    Belder, Detlev; Ludwig, Martin

    2003-11-01

    Different approaches and techniques for surface modification of microfluidic devices applied for microchip electrophoresis are reviewed. The main focus is on the improved electrophoretic separation by reducing analyte-wall interactions and manipulation of electroosmosis. Approaches and methods for permanent and dynamic surface modification of microfluidic devices, manufactured from glass, quartz and also different polymeric substrates, are described.

  19. Surface Modification of Intraocular Lenses.

    PubMed

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-20

    This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO 2 , heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs.

  20. Chromatin modification in zebrafish development.

    PubMed

    Cayuso Mas, Jordi; Noël, Emily S; Ober, Elke A

    2011-01-01

    The generation of complex organisms requires that an initial population of cells with identical gene expression profiles can adopt different cell fates during development by progressively diverging transcriptional programs. These programs depend on the binding of transcritional regulators to specific genomic sites, which in turn is controlled by modifications of the chromatin. Chromatin modifications may occur directly upon DNA by methylation of specific nucleotides, or may involve post-translational modification of histones. Local regulation of histone post-translational modifications regionalizes the genome into euchromatic regions, which are more accessible to DNA-binding factors, and condensed heterochromatic regions, inhibiting the binding of such factors. In addition, these modifications may be required in a genome-wide fashion for processes such as DNA replication or chromosome condensation. From an embryologist's point of view chromatin modifications are intensively studied in the context of imprinting and have more recently received increasing attention in understanding the basis of pluripotency and cellular differentiation. Here, we describe recently uncovered roles of chromatin modifications in zebrafish development and regeneration, as well as available resources and commonly used techniques. We provide a general introduction into chromatin modifications and their respective functions with a focus on gene transcription, as well as key aspects of their roles in the early zebrafish embryo, neural development, formation of the digestive system and tissue regeneration.

  1. Mechanical methods of chaparral modification

    Treesearch

    George Roby; Lisle Green

    1976-01-01

    Chaparral modification is undertaken for a variety of land-management purposes. To help land managers in selecting equipment and methods for such work, practitioners in county, State, and Federal modification projects were asked for evaluations of equipment and techniques they had used. This handbook describes the alternative techniques and equipment, provides...

  2. Surface Modification of Intraocular Lenses

    PubMed Central

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-01

    Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993

  3. Dynamic relationship of the epithelium and mesenchyme during salivary gland initiation: the role of Fgf10.

    PubMed

    Wells, Kirsty L; Gaete, Marcia; Matalova, Eva; Deutsch, Danny; Rice, David; Tucker, Abigail S

    2013-01-01

    Salivary glands provide an excellent model for the study of epithelial-mesenchymal interactions. We have looked at the interactions involved in the early initiation and development of murine salivary glands using classic recombination experiments and knockout mice. We show that salivary gland epithelium, at thickening and initial bud stages, is able to direct salivary gland development in non-gland pharyngeal arch mesenchyme at early stages. The early salivary gland epithelium is therefore able to induce gland development in non-gland tissue. This ability later shifts to the mesenchyme, with non-gland epithelium, such as from the limb bud, able to form a branching gland when combined with pseudoglandular stage gland mesenchyme. This shift appears to involve Fgf signalling, with signals from the epithelium inducing Fgf10 in the mesenchyme. Fgf10 then signals back to the epithelium to direct gland down-growth and bud development. These experiments highlight the importance of epithelial-mesenchymal signalling in gland initiation, controlling where, when and how many salivary glands form.

  4. The interface between epithelium and lamina propria in the rat urinary bladder.

    PubMed

    Inoué, T; Gabella, G

    1992-01-01

    We investigated by transmission and scanning election microscopy the interface between the epithelium and lamina propria in the rat urinary bladder. A digestion technique that dissolves the basal laminae and collagen fibrils was effective in cleaving the mucosa at this level; the specimens were then prepared for scanning electron microscopy, thus visualizing the basal epithelial surface and the uppermost surface of the lamina propria. The underside of the epithelium is scored by very numerous grooves which in the intact organ are occupied by a dense network of blood capillaries. These vascular grooves allow a large number of capillaries (epithelial capillaries) to run at a distance of a few tenths of a micron from the epithelium. On the side of the lamina propria, after collagen and other extracellular materials had been removed, the capillary network itself is visible in the uppermost region. The network is complementary to that of vascular grooves. Other smaller grooves on the basal surface of the epithelium correspond to nerve fibres which run within a few tenths of a micron from the epithelium.

  5. Intrachoroidal Neovascularization in Transgenic Mice Overexpressing Vascular Endothelial Growth Factor in the Retinal Pigment Epithelium

    PubMed Central

    Schwesinger, Catherine; Yee, Charles; Rohan, Richard M.; Joussen, Antonia M.; Fernandez, Antonio; Meyer, Tobias N.; Poulaki, Vassiliki; Ma, Joseph J. K.; Redmond, T. Michael; Liu, Suyan; Adamis, Anthony P.; D’Amato, Robert J.

    2001-01-01

    Choroidal neovascularization in age-related macular degeneration is a frequent and poorly treatable cause of vision loss in elderly Caucasians. This choroidal neovascularization has been associated with the expression of vascular endothelial growth factor (VEGF). In current animal models choroidal neovascularization is induced by subretinal injection of growth factors or vectors encoding growth factors such as VEGF, or by disruption of the Bruch’s membrane/retinal pigment epithelium complex with laser treatment. We wished to establish a transgenic murine model of age-related macular degeneration, in which the overexpression of VEGF by the retinal pigment epithelium induces choroidal neovascularization. A construct consisting of a tissue-specific murine retinal pigment epithelium promoter (RPE65 promoter) coupled to murine VEGF164 cDNA with a rabbit β-globin-3′ UTR was introduced into the genome of albino mice. Transgene mRNA was expressed in the retinal pigment epithelium at all ages peaking at 4 months. The expression of VEGF protein was increased in both the retinal pigment epithelium and choroid. An increase of intravascular adherent leukocytes and vessel leakage was observed. Histopathology revealed intrachoroidal neovascularization that did not penetrate through an intact Bruch’s membrane. These results support the hypothesis that additional insults to the integrity of Bruch’s membrane are required to induce growth of choroidal vessels into the subretinal space as seen in age-related macular degeneration. This model may be useful to screen for inhibitors of choroidal vessel growth. PMID:11238064

  6. Lactoferrin at basal side of mouse mammary epithelium derives in part from stroma cells.

    PubMed

    Pecorini, Chiara; Delpal, Serge; Truchet, Sandrine; Le Provost, Fabienne; Baldi, Antonella; Ollivier-Bousquet, Michèle

    2009-11-01

    Lactoferrin is synthesized by glandular epithelial cells and neutrophils and is also present on both sides of the mammary epithelium. We have studied the origin of lactoferrin detected in the various compartments of mouse mammary tissue. As revealed by immunogold electron microscopy, lactoferrin is present in mammary epithelial cells and in the basal region of the epithelium, associated with connective tissue and stroma cells at all physiological stages studied. A perturbation of protein synthesis or transport after in vitro treatment with cycloheximide or brefeldin A does not abrogate lactoferrin labelling in the basal region of the epithelium. The expression of lactoferrin has also been observed in the fat pads of mammary glands from mice surgically depleted of epithelial cells. The sealing of one teat for 24 h is accompanied by an increase in both the number of stroma cells and the labelling of myoepithelial cells. Thus, the lactoferrin present in the interstitial space of the mouse mammary epithelium originates in part from stroma cells. Possible roles of lactoferrin at the basal side of the mammary epithelium are discussed.

  7. PKC iota in the intestinal epithelium protects against DSS-induced colitis

    PubMed Central

    Calcagno, Shelly R.; Li, Shuhua; Shahid, Muhammad W.; Wallace, Michael B.; Leitges, Michael; Fields, Alan P.; Murray, Nicole R.

    2010-01-01

    Background The integrity of the intestinal epithelium is critical for the absorption and retention of fluid and nutrients. The intestinal epithelium also provides a barrier between the intestinal bacteria and the body's immune surveillance. Therefore, intestinal epithelial barrier function is critically important, and disruption of the intestinal epithelium results in rapid repair of the damaged area. Methods We evaluated the requirement for protein kinase C iota (PKCι) in intestinal epithelial homeostasis and response to epithelial damage using a well-characterized mouse model of colitis. Mice were analyzed for the clinical, histological and cellular effects of dextran sodium sulfate (DSS) treatment. Results Knock out of the mouse PKCι gene (Prkci) in the intestinal epithelium (Prkci KO mice) had no effect on normal colonic homeostasis, however, Prkci KO mice were significantly more sensitive to DSS-induced colitis and death. After withdrawal of DSS, Prkci KO mice exhibited a continued increase in apoptosis, inflammation and damage to the intestinal microvasculature, and a progressive loss of trefoil factor 3 (TFF3) expression, a regulatory peptide important for intestinal wound healing. Knockdown of PKCι expression in HT-29 cells reduced wound healing and TFF3 expression, while addition of exogenous TFF3 restored wound healing in PKCι-depleted cells. Conclusions Expression of PKCι in the intestinal epithelium protects against DSS-induced colitis. Our data suggest that PKCι reduces DSS-induced damage by promoting intestinal epithelial wound healing through the control of TFF3 expression. PMID:21744423

  8. The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility

    PubMed Central

    2011-01-01

    Background Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants. Findings Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia. Conclusions No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands. PMID:21548958

  9. Differential Expression Patterns of EGF, EGFR, and ERBB4 in Nasal Polyp Epithelium

    PubMed Central

    Zhao, Li; Subramaniam, Somasundaram; Yu, Xue Min; Li, Ying Ying; Chen, De Hua; Li, Tian Ying; Shen, Liang; Shi, Li; Wang, De Yun

    2016-01-01

    Epidermal growth factor receptors play an important role in airway epithelial cell growth and differentiation. The current study investigates the expression profiles of EGF, EGFR and ERBB4 in patients with nasal polyps (NP), and their response to glucocorticosteroid (GC) treatment. Fifty patients with NP (40 without GC treatment and 10 with oral GC) and 20 control subjects with septal deviation were recruited into the study. Protein levels of EGF, EGFR, and ERBB4 were evaluated by immune-staining. In healthy nasal epithelium, EGF and EGFR localized within p63+ basal cells, while ERBB4 localized within ciliated cells. GC-naïve NP epithelium showed weak expression of EGF in 90% of samples versus 5% of controls. EGFR was significantly increased in the epithelium with basal cell hyperplasia from GC-naïve NPs (78%, 31/40) compared to controls (23%, 4/17). EGFR was also found in some degranulating goblet cells. ERBB4 expression was significantly higher in hyperplastic epithelium from GC-naïve NPs (65%, 26/40) than in controls (6%, 1/17). GC treatment restored the EGF expression and normalized the EGFR and ERBB4 expression in NPs. Differential expression patterns of EGF, EGFR, and ERBB4 are essential in epithelial restitution and remodeling in nasal epithelium. PMID:27285994

  10. The projection from the olfactory epithelium to the olfactory bulb in the salamander, Ambystoma tigrinum.

    PubMed

    Mackay-Sim, A; Nathan, M H

    1984-01-01

    Odor quality may be represented as a "topographic" code of responses of receptor cells throughout the olfactory epithelium, with this code conveyed to the central nervous system by a topographic projection from the olfactory epithelium to the olfactory bulb. There is good evidence for topographic differences in odor-induced receptor cell activity in the tiger salamander but there is no evidence for a topographic epithelium-to-bulb projection in this species. In the present study 3H-leucine autoradiography was used to trace the projections of olfactory receptor neurons in the tiger salamander. Thirteen animals received small injections of tritiated leucine into different regions of the dorsal or the ventral olfactory epithelium, or into the ventrolateral, "vomeronasal organ". The results show that the anterior-to-posterior axes in the dorsal and ventral epithelia are represented along the ventral-to-dorsal axis in the rostral end of the olfactory bulb. The "vomeronasal organ" projects to the caudal end of the bulb. We conclude that the central projection of the olfactory epithelium in the tiger salamander is topographically organised only along the antero-posterior axis and not the medio-lateral axis. Thus epithelial receptor cell activity along the anteroposterior axis would be represented in the glomerular layer of the bulb by activity along its ventro-dorsal axis.

  11. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium.

    PubMed

    Nguyen-Ngoc, Kim-Vy; Cheung, Kevin J; Brenot, Audrey; Shamir, Eliah R; Gray, Ryan S; Hines, William C; Yaswen, Paul; Werb, Zena; Ewald, Andrew J

    2012-09-25

    Breast cancer progression involves genetic changes and changes in the extracellular matrix (ECM). To test the importance of the ECM in tumor cell dissemination, we cultured epithelium from primary human breast carcinomas in different ECM gels. We used basement membrane gels to model the normal microenvironment and collagen I to model the stromal ECM. In basement membrane gels, malignant epithelium either was indolent or grew collectively, without protrusions. In collagen I, epithelium from the same tumor invaded with protrusions and disseminated cells. Importantly, collagen I induced a similar initial response of protrusions and dissemination in both normal and malignant mammary epithelium. However, dissemination of normal cells into collagen I was transient and ceased as laminin 111 localized to the basal surface, whereas dissemination of carcinoma cells was sustained throughout culture, and laminin 111 was not detected. Despite the large impact of ECM on migration strategy, transcriptome analysis of our 3D cultures revealed few ECM-dependent changes in RNA expression. However, we observed many differences between normal and malignant epithelium, including reduced expression of cell-adhesion genes in tumors. Therefore, we tested whether deletion of an adhesion gene could induce sustained dissemination of nontransformed cells into collagen I. We found that deletion of P-cadherin was sufficient for sustained dissemination, but exclusively into collagen I. Our data reveal that metastatic tumors preferentially disseminate in specific ECM microenvironments. Furthermore, these data suggest that breaks in the basement membrane could induce invasion and dissemination via the resulting direct contact between cancer cells and collagen I.

  12. Regional divergence of palate medial edge epithelium along the anterior to posterior axis.

    PubMed

    Jin, Jiu-Zhen; Warner, Dennis R; Ding, Jixiang

    2014-01-01

    Recent studies have shown that mouse palatal mesenchymal cells undergo regional specification along the anterior-posterior (A-P) axis defined by anterior Shox2 and Msx1 expression and posterior Meox2 expression. A-P regional specification of the medial edge epithelium, which is directly responsible for palate fusion, has long been proposed, but it has not yet been demonstrated due to the lack of regional specific markers. In this study, we have demonstrated that the palate medial edge epithelium is regionalized along the A-P axis, similar to that for the underlying mesenchyme. Mmp13, a medial edge epithelium specific marker, was uniformly expressed from anterior to posterior in wild-type mouse palatal shelves. Previous studies demonstrated that medial edge epithelium expression of Mmp13 was regulated by TGF-beta3. We have found that the changes in Mmp13 expression in TGF-beta3 knockouts varied along the A-P axis, and can be broken down into three distinct regions. These regions correlated with regional specification of the underlying medial edge mesenchymal cells and timing of palate fusion. Mouse palate medial edge epithelium along the A-P axis can be divided into different regions according to the differential response to the loss of TGF-beta3.

  13. Content of trans fatty acids in human cheek epithelium: comparison with serum and adipose tissue.

    PubMed

    Abraham, Ransi A; Bahl, Vinay K; Parshad, Rajinder; Seenu, V; Roy, Ambuj; Golandaz, Smita; Dorairaj, Prabhakaran; Ramakrishnan, Lakshmy

    2013-01-01

    Studies pertaining to trans fatty acids (TFA), which have been implicated in development of chronic diseases, are more relevant in developing countries where nutrition transition is changing traditional habits and practices. Measuring TFA is an arduous task because of the need for fat biopsies. This study identifies a tissue, which can be easily accessed for analytical measurement of trans fatty acid. In this cross-sectional study, fatty acid in adipose tissue, cheek epithelium, and blood samples were assessed by gas chromatography. Spearman correlation coefficient was computed to study the correlation of fatty acid distribution among the three tissues. The correlation coefficient of total trans fatty acid between cheek epithelium and serum was 0.30 (P < 0.02) and between cheek epithelium and adipose tissue was 0.33 (P < 0.019). This study is the first to report trans fatty acid profile in cheek epithelium giving scope for utilizing the cheek epithelium as a tissue for objective assessment of trans fatty acid intake.

  14. Dynamic relationship of the epithelium and mesenchyme during salivary gland initiation: the role of Fgf10

    PubMed Central

    Wells, Kirsty L.; Gaete, Marcia; Matalova, Eva; Deutsch, Danny; Rice, David; Tucker, Abigail S.

    2013-01-01

    Summary Salivary glands provide an excellent model for the study of epithelial–mesenchymal interactions. We have looked at the interactions involved in the early initiation and development of murine salivary glands using classic recombination experiments and knockout mice. We show that salivary gland epithelium, at thickening and initial bud stages, is able to direct salivary gland development in non-gland pharyngeal arch mesenchyme at early stages. The early salivary gland epithelium is therefore able to induce gland development in non-gland tissue. This ability later shifts to the mesenchyme, with non-gland epithelium, such as from the limb bud, able to form a branching gland when combined with pseudoglandular stage gland mesenchyme. This shift appears to involve Fgf signalling, with signals from the epithelium inducing Fgf10 in the mesenchyme. Fgf10 then signals back to the epithelium to direct gland down-growth and bud development. These experiments highlight the importance of epithelial–mesenchymal signalling in gland initiation, controlling where, when and how many salivary glands form. PMID:24167707

  15. Chemical Protein Modification through Cysteine.

    PubMed

    Gunnoo, Smita B; Madder, Annemieke

    2016-04-01

    The modification of proteins with non-protein entities is important for a wealth of applications, and methods for chemically modifying proteins attract considerable attention. Generally, modification is desired at a single site to maintain homogeneity and to minimise loss of function. Though protein modification can be achieved by targeting some natural amino acid side chains, this often leads to ill-defined and randomly modified proteins. Amongst the natural amino acids, cysteine combines advantageous properties contributing to its suitability for site-selective modification, including a unique nucleophilicity, and a low natural abundance--both allowing chemo- and regioselectivity. Native cysteine residues can be targeted, or Cys can be introduced at a desired site in a protein by means of reliable genetic engineering techniques. This review on chemical protein modification through cysteine should appeal to those interested in modifying proteins for a range of applications.

  16. RNA modification in Cajal bodies.

    PubMed

    Meier, U Thomas

    2016-10-24

    Aside from nucleoli, Cajal bodies (CBs) are the best-characterized organelles of mammalian cell nuclei. Like nucleoli, CBs concentrate ribonucleoproteins (RNPs), in particular, spliceosomal small nuclear RNPs (snRNPs) and small nucleolar RNPs (snoRNPs). In one of the best-defined functions of CBs, most of the snoRNPs are involved in site-specific modification of snRNAs. The two major modifications are pseudouridylation and 2'-O-methylation that are guided by the box H/ACA and C/D snoRNPs, respectively. This review details the modifications, their function, the mechanism of modification, and the machineries involved. We dissect the different classes of noncoding RNAs that meet in CBs, guides and substrates. Open questions and conundrums, often raised and appearing due to experimental limitations, are pointed out and discussed. The emphasis of the review is on mammalian CBs and their function in modification of noncoding RNAs.

  17. Surface modification of bioceramics

    NASA Astrophysics Data System (ADS)

    Monkawa, Akira

    Hydroxyapatite [Ca10(PO4)6(OH)2, HAp] is a major inorganic component of bone and teeth tissues and has the excellent biocompatibility and high osteoconductivity. The interactions between HAp and protein or cell have been studied. The HAp related bioceramics such as bone substitute, coating substance of metal implants, inorganic-polymer composites, and cell culture. We described two methods; (1) surface modification of HAp using organosilane; (2) fabrication of HAp ultra-thin layer on gold surface for protein adsorption analyzed with QCM-D technique. The interfacial interaction between collagen and HAp in a nano-region was controlled by depositing the organosilane of n-octadecyltrimethoxysilane (ODS: -CH3) or aminopropyltriethoxysilane (APTS: -NH2) with a chemical vapor deposition method. The morphologies of collagen adsorbed on the surfaces of HAp and HAp deposited with APTS were similar, however that of the surface with ODS was apparently different, due to the hydrophobic interaction between the organic head group of -CH3 and residual groups of collagen. We present a method for coating gold quartz crystal microbalance with dissipation (QCM-D) sensor with ultra-thin layer of hydroxyapatite nanocrystals evenly covering and tightly bound to the surface. The hydroxyapatite sensor operated in liquid with high stability and sensitivity. The in-situ adsorption mechanism and conformational change of fibrinogen on gold, titanium and hydroxyapatite surfaces were investigated by QCM-D technique and Fourier-transform infrared spectroscopy. The study indicates that the hydroxyapatite sensor is applicable for qualitative and conformational analysis of protein adsorption.

  18. SPARC preserves follicular epithelium integrity in insect ovaries.

    PubMed

    Irles, Paula; Ramos, Saray; Piulachs, Maria-Dolors

    2017-02-15

    The importance of juvenile hormone regulating insect oogenesis suggests looking for genes whose expression is regulated by this hormone. SPARC is a calcium-binding glycoprotein that forms part of the extracellular membranes, which in vertebrates participates in bones mineralization or regulating cell proliferation in some cancer types. This large number of functions described for SPARC in different species might be related to the significant differences in its structure observed when comparing different species-groups. Indeed, these structural differences allow characterizing the different clades. In the cockroach Blattella germanica, a SPARC homolog emerged from ovarian transcriptomes that were constructed to find genes responding to juvenile hormone. In insects, SPARC functions have been studied in oogenesis and in embryo development of Drosophila melanogaster. In the present work, using RNAi approaches, novel functions for SPARC in the B. germanica panoistic ovaries are described. We found that depletion of SPARC does not allow to the follicular cells to complete mitosis, resulting in giant follicular cells nuclei and in a great alteration of the ovarian follicle cytoskeleton. The SPARC contribution to B. germanica oogenesis occurs stabilizing the follicular cell program and helping to maintain the nuclear divisions. Moreover, SPARC is necessary to maintain the cytoskeleton of the follicular cells. Any modification of these key processes disables females for oviposition.

  19. Aberrant maspin expression in gallbladder epithelium is associated with intestinal metaplasia in patients with cholelithiasis

    PubMed Central

    Maesawa, C; Ogasawara, S; Yashima‐Abo, A; Kimura, T; Kotani, K; Masuda, S; Nagata, Y; Iwaya, T; Suzuki, K; Oyake, T; Akiyama, Y; Kawamura, H; Masuda, T

    2006-01-01

    Objective Aberrant expression of maspin protein related to DNA hypomethylation in the promoter region is frequently observed in gallbladder carcinomas, whereas the non‐tumorous gallbladder epithelium is maspin negative. We investigated maspin expression in non‐tumorous gallbladder epithelium in patients with cholelithiasis. Methods An immunohistochemical study of maspin expression was performed in 69 patients with cholelithiasis and 30 patients with gastric cancer without cholelithiasis. Results Immunoreactivity for maspin was observed in focal and patchy regions of the gallbladder epithelium. Positive immunoreactivity for maspin was significantly associated with the presence of intestinal metaplasia in patients with cholelithiasis (p<0.05). Conclusion The high incidence of aberrant maspin expression in both intestinal metaplasia and carcinoma of the gallbladder supports the assumption that intestinal metaplasia of the gallbladder may predispose to gallbladder carcinoma. PMID:16505288

  20. THE GOLGI APPARATUS IN CHICK CORNEAL EPITHELIUM: CHANGES IN INTRACELLULAR POSITION DURING DEVELOPMENT

    PubMed Central

    Trelstad, Robert L.

    1970-01-01

    The intracellular position of the Golgi apparatuses in the basal cell layer of the corneal epithelium in embryonic and hatched chicks has been studied in the light microscope by impregnating the Golgi apparatus with silver. During two distinct periods in development the Golgi apparatuses in the basal cells shift from an apical to basal position. Each of these periods correlates in time with the appearance of an acellular collagenous matrix beneath the epithelium. Examination of the basal epithelial cells in the electron microscope confirms the intracellular shifts in position of the Golgi apparatus. The results suggest that the Golgi apparatus shifts to the basal cell pole of the corneal epithelium in order to excrete connective tissue materials into the developing corneal stroma. PMID:4195852

  1. The role of cell death in the midgut epithelium in Filientomon takanawanum (Protura).

    PubMed

    Rost-Roszkowska, M M; Machida, R; Fukui, M

    2010-02-01

    Midgut epithelium in Filientomon takanawanum is composed of epithelial cells and single, sporadic regenerative cells. In 80% of analyzed specimens midgut epithelial cells, as fat body and gonads, are infected with rickettsia-like microorganism. In non-infected specimens young and completely differentiated epithelial cells are distinguished among epithelial cells. Characteristic for midgut epithelial cells regionalization in organelles distribution is not observed. Autophagy is the sporadic process, but if the cytoplasm of epithelium cells possesses numerous spherites and sporadic autophagosomes, the apoptosis begins. Necrosis is observed sporadically. In the midgut epithelium cells of about 80% of analyzed specimens rickettsia-like microorganisms are observed. The more rickettsia-like microorganisms occur in the cytoplasm, the more autophagosomes are formed, and the process of apoptosis proceeds intensively. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Peripheral ameloblastoma in-situ: an evidential fact of surface epithelium origin.

    PubMed

    Ide, Fumio; Mishima, Kenji; Miyazaki, Yuji; Saito, Ichiro; Kusama, Kaoru

    2009-11-01

    The proposed origin from the adult gingival epithelium for peripheral ameloblastoma is difficult to prove and still remains unresolved. This report details a small fibrous polyp on the maxillary edentulous ridge of a 73-year-old woman, in which the basal layer of covering squamous epithelium dipped down toward the lamina propria over a wide area. Basal cells of the downgrowth were ameloblastic in type, and bulbous parts assumed an appearance of the bud-shaped enamel organ. Multiple sectioning failed to detect any epithelial nests in the submucosa. In addition to the morphologic overlap, early ameloblastoma epithelia shared antigenic properties with tumor cells of representative control examples of peripheral ameloblastoma. This is the first description of an in situ lesion of peripheral ameloblastoma, to our knowledge, and its multifocal ameloblastoma changes can be accepted as a direct proof of origin from the surface epithelium.

  3. So-called embryonal hyperplasia of Bowman's capsular epithelium: an immunohistochemical and ultrastructural study.

    PubMed

    Ogata, K; Hajikano, H; Sakaguchi, H

    1991-01-01

    The so-called embryonal hyperplasia of Bowman's capsular epithelium (EHBCE) is a rather specific lesion occurring in kidneys of patients maintained on chronic dialysis. It consists of poorly differentiated cells proliferating around sclerosed or obsolescent glomeruli. In this study, immunohistochemical and ultrastructural characterization of EHBCE was performed. The poorly differentiated cells in the lesion exhibited a positive reaction for vimentin and a negative one for cytokeratin (PKK 1) and epithelial membrane antigen. On ultrastructural examination, specialized junctions between adjoining cells, microvilli-like structures on their surfaces, and immature basal folds were observed. These observations suggest that the cells of EHBCE may be associated with the anlage of glomerular epithelium. The background in which neoplasms like renal cell carcinoma or atypical epithelium of cyst wall develop in end-stage kidneys of adult patients on long-term dialysis may cause such a proliferation of poorly differentiated cells in young or paediatric age group patients.

  4. When Insult Is Added to Injury: Cross Talk between ILCs and Intestinal Epithelium in IBD.

    PubMed

    van der Gracht, Esmé; Zahner, Sonja; Kronenberg, Mitchell

    2016-01-01

    Inflammatory bowel disease (IBD) is characterized by an impairment of the integrity of the mucosal epithelial barrier, which causes exacerbated inflammation of the intestine. The intestinal barrier is formed by different specialized epithelial cells, which separate the intestinal lumen from the lamina propria. In addition to its crucial role in protecting the body from invading pathogens, the intestinal epithelium contributes to intestinal homeostasis by its biochemical properties and communication to underlying immune cells. Innate lymphoid cells (ILCs) are a recently described population of lymphocytes that have been implicated in both mucosal homeostasis and inflammation. Recent findings indicate a critical feedback loop in which damaged epithelium activates these innate immune cells to restore epithelial barrier function. This review will focus on the signalling pathways between damaged epithelium and ILCs involved in repair of the epithelial barrier and tissue homeostasis and the relationship of these processes with the control of IBD.

  5. When Insult Is Added to Injury: Cross Talk between ILCs and Intestinal Epithelium in IBD

    PubMed Central

    2016-01-01

    Inflammatory bowel disease (IBD) is characterized by an impairment of the integrity of the mucosal epithelial barrier, which causes exacerbated inflammation of the intestine. The intestinal barrier is formed by different specialized epithelial cells, which separate the intestinal lumen from the lamina propria. In addition to its crucial role in protecting the body from invading pathogens, the intestinal epithelium contributes to intestinal homeostasis by its biochemical properties and communication to underlying immune cells. Innate lymphoid cells (ILCs) are a recently described population of lymphocytes that have been implicated in both mucosal homeostasis and inflammation. Recent findings indicate a critical feedback loop in which damaged epithelium activates these innate immune cells to restore epithelial barrier function. This review will focus on the signalling pathways between damaged epithelium and ILCs involved in repair of the epithelial barrier and tissue homeostasis and the relationship of these processes with the control of IBD. PMID:27578924

  6. Study on the autofluorescence profiles of iris pigment epithelium and retinal pigment epithetlium

    NASA Astrophysics Data System (ADS)

    Xu, Gaixia; Qu, Junle; Chen, Danni; Sun, Yiwen; Zhao, Lingling; Lin, Ziyang; Ding, Zhihua; Niu, Hanben

    2007-05-01

    Transplantation technique of retinal pigment epithelium has been noticeable in recent years and gradually put into clinical practice in treatment of retinal degenerative diseases. Generally, immunological, histochemical, and physical methods are used to study the iris pigment epithelium (IPE) and retinal pigment epithelium (RPE) cells, which need complex sample preparation. In this paper, we provided a simple autofluorescence microscopy to investigate the fresh porcine IPE and RPE cells without any pretreatment. The results showed that the morphology and size of both were similar, round and about 15 μm. The main flourophore in both cells was similar, i.e. lipofuscin. In additional, the autofluorescence spectrum of RPE shifted blue after light-induced damage by laser illuminating. Because it was easier for IPE to be damaged by laser than for RPE, and the power of one scanning operation to get a full image was strong enough to damage IPE sample, we hadn't get any satisfied autofluorescence spectrum of IPE.

  7. Role of GATA factors in development, differentiation, and homeostasis of the small intestinal epithelium.

    PubMed

    Aronson, Boaz E; Stapleton, Kelly A; Krasinski, Stephen D

    2014-03-01

    The small intestinal epithelium develops from embryonic endoderm into a highly specialized layer of cells perfectly suited for the digestion and absorption of nutrients. The development, differentiation, and regeneration of the small intestinal epithelium require complex gene regulatory networks involving multiple context-specific transcription factors. The evolutionarily conserved GATA family of transcription factors, well known for its role in hematopoiesis, is essential for the development of endoderm during embryogenesis and the renewal of the differentiated epithelium in the mature gut. We review the role of GATA factors in the evolution and development of endoderm and summarize our current understanding of the function of GATA factors in the mature small intestine. We offer perspective on the application of epigenetics approaches to define the mechanisms underlying context-specific GATA gene regulation during intestinal development.

  8. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium.

    PubMed

    Grego-Bessa, Joaquim; Bloomekatz, Joshua; Castel, Pau; Omelchenko, Tatiana; Baselga, José; Anderson, Kathryn V

    2016-01-26

    Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis.

  9. Role of GATA factors in development, differentiation, and homeostasis of the small intestinal epithelium

    PubMed Central

    Aronson, Boaz E.; Stapleton, Kelly A.

    2014-01-01

    The small intestinal epithelium develops from embryonic endoderm into a highly specialized layer of cells perfectly suited for the digestion and absorption of nutrients. The development, differentiation, and regeneration of the small intestinal epithelium require complex gene regulatory networks involving multiple context-specific transcription factors. The evolutionarily conserved GATA family of transcription factors, well known for its role in hematopoiesis, is essential for the development of endoderm during embryogenesis and the renewal of the differentiated epithelium in the mature gut. We review the role of GATA factors in the evolution and development of endoderm and summarize our current understanding of the function of GATA factors in the mature small intestine. We offer perspective on the application of epigenetics approaches to define the mechanisms underlying context-specific GATA gene regulation during intestinal development. PMID:24436352

  10. Infradian biorhythms of mitotic activity esophageal epithelium in male Wistar rats.

    PubMed

    Diatroptov, M E; Makarova, O V

    2015-01-01

    Infradian rhythms of esophageal epithelium mitotic activity were studied in male Wistar rats of two age groups: 35-45 days (prepubertal) and 3-4 months (adults). Studies of the time course of esophageal epithelium mitotic indexes in adult males showed 4- and 12-day biorhythms, while prepubertal rats exhibited only 4-day infradian biorhythms of this parameter. Studies of the mitotic activity over long periods (3 years) showed 4.058- and 12.175-day periodicity of infradian biorhythms for this parameter, presumably due to external exposures synchronizing the biorhythms. Studies of the mean daily values of the Bz component of interplanetary magnetic field during the period of our research (2012-2013) showed rhythmicities analogous to changes in the mitotic activity of the epithelium. The minimum mitotic indexes were detected on the days of the most pronounced negative values of the interplanetary magnetic field Bz component.

  11. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review.

    PubMed

    Vrana, Nihal E; Lavalle, Philippe; Dokmeci, Mehmet R; Dehghani, Fariba; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2013-12-01

    Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the

  12. Engineering Functional Epithelium for Regenerative Medicine and In Vitro Organ Models: A Review

    PubMed Central

    Vrana, Nihal E.; Lavalle, Philippe; Dokmeci, Mehmet R.; Dehghani, Fariba; Ghaemmaghami, Amir M.

    2013-01-01

    Recent advances in the fields of microfabrication, biomaterials, and tissue engineering have provided new opportunities for developing biomimetic and functional tissues with potential applications in disease modeling, drug discovery, and replacing damaged tissues. An intact epithelium plays an indispensable role in the functionality of several organs such as the trachea, esophagus, and cornea. Furthermore, the integrity of the epithelial barrier and its degree of differentiation would define the level of success in tissue engineering of other organs such as the bladder and the skin. In this review, we focus on the challenges and requirements associated with engineering of epithelial layers in different tissues. Functional epithelial layers can be achieved by methods such as cell sheets, cell homing, and in situ epithelialization. However, for organs composed of several tissues, other important factors such as (1) in vivo epithelial cell migration, (2) multicell-type differentiation within the epithelium, and (3) epithelial cell interactions with the underlying mesenchymal cells should also be considered. Recent successful clinical trials in tissue engineering of the trachea have highlighted the importance of a functional epithelium for long-term success and survival of tissue replacements. Hence, using the trachea as a model tissue in clinical use, we describe the optimal structure of an artificial epithelium as well as challenges of obtaining a fully functional epithelium in macroscale. One of the possible remedies to address such challenges is the use of bottom-up fabrication methods to obtain a functional epithelium. Modular approaches for the generation of functional epithelial layers are reviewed and other emerging applications of microscale epithelial tissue models for studying epithelial/mesenchymal interactions in healthy and diseased (e.g., cancer) tissues are described. These models can elucidate the epithelial/mesenchymal tissue interactions at the

  13. Effects of formaldehyde on xenotransplanted human respiratory epithelium. Research report, August 1986-April 1991

    SciTech Connect

    Klein-Szanto, A.J.P.; Ura, H.; Momiki, S.; Bonfil, D.; Litwin, S.

    1992-07-01

    A laboratory animal model that permits the exposure of xenotransplanted human respiratory epithelium to formaldehyde was used to study the effects of formaldehyde alone or in combination with a carcinogenic metabolite of benzo(a)pyrene, benzo(a)pyrene diol epoxide. Epithelial cells obtained from autopsies of 20 full-term human fetuses or infants less than one year old were isolated, amplified in vitro, inoculated into rat tracheas from which the epithelial layer had been removed, and then transplanted subcutaneously into irradiated athymic nude mice. Four weeks after transplantation, the tracheal transplants were implanted with silastic devices containing 0, 0.5, 1, or 2 mg of powdered formaldehyde (Study 1). The tracheal transplants were examined histologically 2, 4, 8, or 16 weeks after transplantation. Before killing, all animals were injected with a single pulse of tritiated thymidine. A maximum effect was visible two weeks after exposure; 2 mg of formaldehyde produced numerous areas of epithelial erosion and inflammation. All doses produced areas of hyperplastic epithelium and areas of atrophic epithelium. The labeling indices showed dose dependence between two and four weeks after the initiation of exposure. These studies show that low doses of formaldehyde can elicit a proliferative response in human infant tracheobronchial epithelium that is not preceded by a massive toxic effect. Similar studies using xenotransplanted human adult nasal respiratory epithelium (Study 2) showed a response pattern similar to that of Study 1. In Study 3, using cells from 11 human infants, formaldehyde applied simultaneously or sequentially with benzo(a)pyrene diol epoxide did not induce epithelial alterations different from those observed with formaldehyde alone. This indicated that, under the doses and exposure conditions used, it was not possible to observe any cocarcinogenic or promoting effects of formaldehyde on the human infant tracheobronchial epithelium.

  14. Sensory and sympathetic innervation of the mouse and guinea pig corneal epithelium.

    PubMed

    Ivanusic, Jason J; Wood, Rhiannon J; Brock, James A

    2013-03-01

    This study used immunohistochemistry, retrograde tracing, and high-resolution confocal microscopy to explore the structure and neurochemistry of nerve terminals in the corneal epithelium of mice and guinea pigs. In both species, sub-basal nerves formed a plexus in the basal epithelium. Some axons had bulbar endings within the basal epithelium, but most projected perpendicularly from sub-basal nerves to within a few micrometers of the epithelial surface. Three morphologies for these nerve terminals were identified. Simple terminals did not branch after leaving the sub-basal nerves and ended with a single, bulbar swelling. Ramifying terminals branched in the squamous cell layer, forming horizontal fibers that ran parallel to the surface and terminated with single bulbar swellings. Complex terminals branched as they approached the epithelial surface, forming a cluster of highly branched fibers with multiple bulbar endings. Calcitonin gene-related peptide immunolabeled (peptidergic) axons ended mostly in simple terminals, whereas transient receptor potential cation channel subfamily M member 8 immunolabeled (cold receptor) axons ended almost exclusively in complex terminals. Retrograde labeling identified discrete subpopulations of corneal afferent neurons in the trigeminal ganglion. Tyrosine hydroxylase-immunolabeled (sympathetic) nerve terminals originating from the superior cervical ganglion occurred throughout the corneal epithelium of mice, but only in the basal epithelium of guinea pigs. These findings demonstrate that nerve terminals in the corneal epithelium of mice and guinea pigs can be distinguished on the basis of their morphology and neurochemistry, and suggest that nerve terminals with different sensory modalities can be defined on the basis of their morphology.

  15. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium

    PubMed Central

    Faris, Andrea N.; Ganesan, Shyamala; Chattoraj, Asamanja; Chattoraj, Sangbrita S.; Comstock, Adam T.; Unger, Benjamin L.; Hershenson, Marc B.

    2016-01-01

    Rhinovirus (RV), which causes exacerbation in patients with chronic airway diseases, readily infects injured airway epithelium and has been reported to delay wound closure. In this study, we examined the effects of RV on cell repolarization and differentiation in a model of injured/regenerating airway epithelium (polarized, undifferentiated cells). RV causes only a transient barrier disruption in a model of normal (mucociliary-differentiated) airway epithelium. However, in the injury/regeneration model, RV prolongs barrier dysfunction and alters the differentiation of cells. The prolonged barrier dysfunction caused by RV was not a result of excessive cell death but was instead associated with epithelial-to-mesenchymal transition (EMT)-like features, such as reduced expression of the apicolateral junction and polarity complex proteins, E-cadherin, occludin, ZO-1, claudins 1 and 4, and Crumbs3 and increased expression of vimentin, a mesenchymal cell marker. The expression of Snail, a transcriptional repressor of tight and adherence junctions, was also up-regulated in RV-infected injured/regenerating airway epithelium, and inhibition of Snail reversed RV-induced EMT-like features. In addition, compared with sham-infected cells, the RV-infected injured/regenerating airway epithelium showed more goblet cells and fewer ciliated cells. Inhibition of epithelial growth factor receptor promoted repolarization of cells by inhibiting Snail and enhancing expression of E-cadherin, occludin, and Crumbs3 proteins, reduced the number of goblet cells, and increased the number of ciliated cells. Together, these results suggest that RV not only disrupts barrier function, but also interferes with normal renewal of injured/regenerating airway epithelium by inducing EMT-like features and subsequent goblet cell hyperplasia. PMID:27119973

  16. Detection of a novel stem cell probably involved in normal turnover of the lung airway epithelium.

    PubMed

    Ortega-Martínez, Marta; Rodríguez-Flores, Laura E; de-la-Garza-González, Carlos; Ancer-Rodríguez, Jesús; Jaramillo-Rangel, Gilberto

    2015-11-01

    Regeneration of the lung airway epithelium after injury has been extensively studied. In contrast, analysis of its turnover in healthy adulthood has received little attention. In the classical view, this epithelium is maintained in the steady-state by the infrequent proliferation of basal or Clara cells. The intermediate filament protein nestin was initially identified as a marker for neural stem cells, but its expression has also been detected in other stem cells. Lungs from CD1 mice at the age of 2, 6, 12, 18 or 24 months were fixed in neutral-buffered formalin and paraffin-embedded. Nestin expression was examined by an immunohistochemical peroxidase-based method. Nestin-positive cells were detected in perivascular areas and in connective tissue that were in close proximity of the airway epithelium. Also, nestin-positive cells were found among the cells lining the airway epithelium. These findings suggest that nestin-positive stem cells circulate in the bloodstream, transmigrate through blood vessels and localize in the lung airway epithelium to participate in its turnover. We previously reported the existence of similar cells able to differentiate into lung chondrocytes. Thus, the stem cell reported here might be a bone marrow-derived mesenchymal stem cell (BMDMSC) able to generate several types of lung tissues. In conclusion, our findings indicate that there exist a BMDMSC in healthy adulthood that participates in the turnover of the lung airway epithelium. These findings may improve our knowledge about the lung stem cell biology and also provide novel approaches to therapy for devastating pulmonary diseases.

  17. Seminal epithelium in prostate biopsy can mimic malignant and premalignant prostatic lesions.

    PubMed

    Arista-Nasr, J; Trolle-Silva, A; Aguilar-Ayala, E; Martínez-Benítez, B

    2016-01-01

    In most prostate biopsies, the seminal epithelium is easily recognised because it meets characteristic histological criteria. However, some biopsies can mimic malignant or premalignant prostatic lesions. The aims of this study were to analyse the histological appearance of the biopsies that mimic adenocarcinomas or preneoplastic prostatic lesions, discuss the differential diagnosis and determine the frequency of seminal epithelia in prostate biopsies. We consecutively reviewed 500 prostate puncture biopsies obtained using the sextant method and selected those cases in which we observed seminal vesicle or ejaculatory duct epithelium. In the biopsies in which the seminal epithelium resembled malignant or premalignant lesions, immunohistochemical studies were conducted that included prostate-specific antigen and MUC6. The most important clinical data were recorded. Thirty-six (7.2%) biopsies showed seminal epithelium, and 7 of them (1.4%) resembled various prostate lesions, including high-grade prostatic intraepithelial neoplasia, atypical acinar proliferations, adenocarcinomas with papillary patterns and poorly differentiated carcinoma. The seminal epithelium resembled prostate lesions when the lipofuscin deposit, the perinuclear vacuoles or the nuclear pseudoinclusions were inconspicuous or missing. Five of the 7 biopsies showed mild to moderate cellular atypia with small and hyperchromatic nuclei, and only 2 showed cellular pleomorphism. The patients were alive and asymptomatic after an average of 6 years of progression. The seminal epithelium resembles prostatic intraepithelial neoplasia, atypical acinar proliferations and various types of prostatic adenocarcinomas in approximately 1.4% of prostate biopsies. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. A stab-and-roll biopsy technique to maintain gingival epithelium for desquamative gingivitis.

    PubMed

    Endo, Hiroyasu; Rees, Terry D; Allen, Edward P; Kuyama, Kayo; Aoki, Shinichiro; Yamamoto, Hirotsugu; Ito, Takanori

    2014-06-01

    Desquamative gingivitis (DG) is a clinical manifestation common to several diseases. It is known that most cases of DG are caused by mucous membrane pemphigoid (MMP), oral lichen planus (OLP), or pemphigus vulgaris (PV). Early recognition and treatment of these diseases can improve the prognosis, but diagnostic delays are common in patients with DG because obtaining a diagnostic biopsy is technically challenging. A biopsy technique designed to maintain the gingival epithelium for patients with DG was developed. The usefulness of this technique is discussed. This study is based on a retrospective review of 27 DG cases. A stab-and-roll technique was used to obtain gingival tissue. This technique is designed to reduce lateral forces on the epithelium during the procedure and to thereby prevent the inadvertent removal of the epithelium from the biopsy specimen. A total of 52 biopsies comprising 27 for hematoxylin and eosin (H&E)-stained samples and 25 for direct immunofluorescence (DIF) testing were reviewed. Fifty-one of the 52 biopsies (98.1%) maintained the epithelium. Only one biopsy (1.9%) showed that the epithelium was totally absent. Therefore, H&E and DIF features of 51 biopsies were analyzed. Definitive diagnoses of the diseases causing DG included MMP (13 cases), PV (eight cases), and OLP (six cases). A diagnostic biopsy was obtained from the gingiva of patients with DG using the stab-and-roll technique. The gingival epithelium was well maintained, and the relationship with the underlying connective tissue was diagnostic. In the future, this stab-and-roll biopsy technique may facilitate early diagnosis and treatment of diseases causing DG.

  19. Atypical squamous epithelium in cytologic specimens from the pancreas: cytological differential diagnosis and clinical implications.

    PubMed

    Layfield, L J; Cramer, H; Madden, J; Gopez, E V; Liu, K

    2001-07-01

    Atypical squamous epithelium is an uncommon finding in cytologic specimens obtained from pancreatic lesions. A variety of pathologic conditions can result in the presence of these cells, including primary or metastatic carcinomas, chronic pancreatitis, and squamous metaplasia related to pancreatic or biliary duct stent placement. Primary adenosquamous and squamous-cell carcinomas of the pancreas are rare, representing 3.4% and 1.4 % of pancreatic carcinomas, respectively. Cytologic separation of these malignancies from less ominous metaplasias has immense clinical importance. We reviewed Indiana University Hospital's and Duke University's experiences with atypical squamous epithelium occurring within pancreatic aspirates. Study cases were identified using a computer to search the cytology records of these two institutions. Nine cases with a diagnosis of squamous-cell carcinoma, adenosquamous carcinoma, or atypical squamous epithelium were retrieved from the two institutions' Department of Pathology files. One case of pure squamous-cell carcinoma occurred in a patient with a known pulmonary primary; a single case of adenosquamous carcinoma was diagnosed in a patient with a coexistent endometrial primary; a single sample of adenocarcinoma with squamous differentiation was diagnosed in a patient without other known disease; and four primary squamous-cell carcinomas of the pancreas were detected. In addition, a single case of atypical squamous metaplasia associated with a stent was identified, and one case of atypical squamous epithelium associated with chronic pancreatitis was diagnosed. Despite the reactive atypia present in the examples of metaplastic squamous epithelium, separation of these cases from true squamous-cell carcinoma and adenosquamous carcinoma was achievable by cytologic evaluation. No cytologic criteria aided in separating primary pancreatic carcinomas with squamous differentiation from metastatic lesions. In this study, we report our findings in a

  20. Characterization of endogenous noradrenaline release from intact and epithelium-denuded rat isolated trachea.

    PubMed Central

    Racké, K.; Bähring, A.; Brunn, G.; Elsner, M.; Wessler, I.

    1991-01-01

    1. Overflow of endogenous noradrenaline (NA) from the in vitro incubated rat trachea evoked by two periods of electrical field stimulation (S1, S2 at 3 or 15 Hz) or by high potassium (60 mM) was determined by high performance liquid chromatography (h.p.l.c.) with electrochemical detection. 2. In the presence of the neuronal uptake inhibitor desipramine, the alpha 2-adrenoceptor antagonist, yohimbine, enhanced the overflow of NA evoked by stimulation at 3 Hz by about 100% suggesting the presence of presynaptic inhibitory autoreceptors on the sympathetic nerves innervating the trachea. 3. When desipramine and yohimbine were present throughout the experiments, the overflow of NA evoked by the second period of electrical stimulation (S2) was significantly smaller than that evoked by the first (S1). This decline of overflow was prevented when the NA precursor, tyrosine, was additionally present throughout the experiments. 4. After removal of the epithelium, the tissue content of NA was reduced by about 30%, suggesting that part of the NA may be present and released within the epithelium. However, the overflow of NA evoked by stimulation at 3 Hz or 15 Hz was reduced by 70-80%, indicating that the epithelium may additionally exert a permissive role on the release of NA within the airways, possibly by suppressing inhibitory factors. 5. Stimulation by high potassium (60 mM for 10 min) caused a large overflow of NA (about 45% of the tissue NA), both from epithelium-free and epithelium-denuded tracheae. Thus the 'endogenous inhibition' of NA release after removal of the epithelium is surmountable when a high potassium stimulus is applied.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1878758

  1. Characterization of endogenous noradrenaline release from intact and epithelium-denuded rat isolated trachea.

    PubMed

    Racké, K; Bähring, A; Brunn, G; Elsner, M; Wessler, I

    1991-05-01

    1. Overflow of endogenous noradrenaline (NA) from the in vitro incubated rat trachea evoked by two periods of electrical field stimulation (S1, S2 at 3 or 15 Hz) or by high potassium (60 mM) was determined by high performance liquid chromatography (h.p.l.c.) with electrochemical detection. 2. In the presence of the neuronal uptake inhibitor desipramine, the alpha 2-adrenoceptor antagonist, yohimbine, enhanced the overflow of NA evoked by stimulation at 3 Hz by about 100% suggesting the presence of presynaptic inhibitory autoreceptors on the sympathetic nerves innervating the trachea. 3. When desipramine and yohimbine were present throughout the experiments, the overflow of NA evoked by the second period of electrical stimulation (S2) was significantly smaller than that evoked by the first (S1). This decline of overflow was prevented when the NA precursor, tyrosine, was additionally present throughout the experiments. 4. After removal of the epithelium, the tissue content of NA was reduced by about 30%, suggesting that part of the NA may be present and released within the epithelium. However, the overflow of NA evoked by stimulation at 3 Hz or 15 Hz was reduced by 70-80%, indicating that the epithelium may additionally exert a permissive role on the release of NA within the airways, possibly by suppressing inhibitory factors. 5. Stimulation by high potassium (60 mM for 10 min) caused a large overflow of NA (about 45% of the tissue NA), both from epithelium-free and epithelium-denuded tracheae. Thus the 'endogenous inhibition' of NA release after removal of the epithelium is surmountable when a high potassium stimulus is applied.

  2. Intestinal epithelium is more susceptible to cytopathic injury and altered permeability than the lung epithelium in the context of acute sepsis.

    PubMed

    Julian, Mark W; Bao, Shengying; Knoell, Daren L; Fahy, Ruairi J; Shao, Guohong; Crouser, Elliott D

    2011-10-01

    Mitochondrial morphology and function are altered in intestinal epithelia during endotoxemia. However, it is unclear whether mitochondrial abnormalities occur in lung epithelial cells during acute sepsis or whether mitochondrial dysfunction corresponds with altered epithelial barrier function. Thus, we hypothesized that the intestinal epithelium is more susceptible to mitochondrial injury than the lung epithelium during acute sepsis and that mitochondrial dysfunction precedes impaired barrier function. Using a resuscitated feline model of Escherichia coli-induced sepsis, lung and ileal tissues were harvested after 6 h for histological and mitochondrial ultrastructural analyses in septic (n = 6) and time-matched controls (n = 6). Human lung epithelial cells (HLEC) and Caco-2 monolayers (n = 5) were exposed to 'cytomix' (TNFα: 40 ng/ml, IL-1β: 20 ng/ml, IFNγ: 10 ng/ml) for 24-72 h, and measurements of transepithelial electrical resistance (TER), epithelial permeability and mitochondrial membrane potential (ΔΨ) were taken. Lung epithelial morphology, mitochondrial ultrastructure and pulmonary gas exchange were unaltered in septic animals compared to matching controls. While histologically intact, ileal epithelia demonstrated marked mitochondrial ultrastructural damage during sepsis. Caco-2 monolayers treated with cytomix showed a significant decrease in mitochondrial ΔΨ within 24 h, which was associated with a progressive reduction in TER and increased epithelial permeability over the subsequent 48 h. In contrast, mitochondrial ΔΨ and epithelial barrier functions were preserved in HLEC following cytomix. These findings indicate that intestinal epithelium is more susceptible to mitochondrial damage and dysfunction than the lung epithelium in the context of sepsis. Early alterations in mitochondrial function portend subsequent epithelial barrier dysfunction.

  3. Proteomic profiling of fetal esophageal epithelium, esophageal cancer, and tumor-adjacent esophageal epithelium and immunohistochemical characterization of a representative differential protein, PRX6

    PubMed Central

    Guo, Jun-Hui; Xing, Guo-Lan; Fang, Xin-Hui; Wu, Hui-Fang; Zhang, Bo; Yu, Jin-Zhong; Fan, Zong-Min; Wang, Li-Dong

    2017-01-01

    AIM To understand the molecular mechanism of esophageal cancer development and provide molecular markers for screening high-risk populations and early diagnosis. METHODS Two-dimensional electrophoresis combined with mass spectrometry were adopted to screen differentially expressed proteins in nine cases of fetal esophageal epithelium, eight cases of esophageal cancer, and eight cases of tumor-adjacent normal esophageal epithelium collected from fetuses of different gestational age, or esophageal cancer patients from a high-risk area of esophageal cancer in China. Immunohistochemistry (avidin-biotin-horseradish peroxidase complex method) was used to detect the expression of peroxiredoxin (PRX)6 in 91 cases of esophageal cancer, tumor-adjacent normal esophageal tissue, basal cell hyperplasia, dysplasia, and carcinoma in situ, as well as 65 cases of esophageal epithelium from fetuses at a gestational age of 3-9 mo. RESULTS After peptide mass fingerprint analysis and search of protein databases, 21 differential proteins were identified; some of which represent a protein isoform. Varying degrees of expression of PRX6 protein, which was localized mainly in the cytoplasm, were detected in adult and fetal normal esophageal tissues, precancerous lesions, and esophageal cancer. With the progression of esophageal lesions, PRX6 protein expression showed a declining trend (P < 0.05). In fetal epithelium from fetuses at gestational age 3-6 mo, PRX6 protein expression showed a declining trend with age (P < 0.05). PRX6 protein expression was significantly higher in well-differentiated esophageal cancer tissues than in poorly differentiated esophageal cancer tissues (P < 0.05). CONCLUSION Development and progression of esophageal cancer result from interactions of genetic changes (accumulation or superposition). PRX6 protein is associated with fetal esophageal development and cancer differentiation. PMID:28293090

  4. Genes involved in epithelial differentiation and development are differentially expressed in oral and genital lichen planus epithelium compared to normal epithelium.

    PubMed

    Danielsson, Karin; Coates, Philip J; Ebrahimi, Majid; Nylander, Elisabet; Wahlin, Ylva Britt; Nylander, Karin

    2014-09-01

    Lichen planus (LP) is a chronic mucocutaneous disease with unknown cause. Patients with LP often have both oral and genital lesions, but these conditions are often considered as separate diseases and treated accordingly. To find out which genes are differently expressed in mucosal LP compared to normal mucosa and establish whether oral and genital LP are in fact the same disease, whole genome expression analysis was performed on epithelium from 13 patients diagnosed with oral and/or genital LP and normal controls. For confirmation of keratin 4 and corneodesmosin expression, quantitative reverse-transcription PCR and immunohistochemistry were used. Many genes involved in epithelial development and differentiation are differently expressed in epithelium from LP compared to normal epithelium. Several of the differentially expressed genes are common for oral and genital LP and the same biological processes are altered which supports the fact that oral and genital LP are manifestations of the same disease. The change in gene expression indicates that differentiation is altered leading to changes in the epithelial barrier.

  5. Transplantation tool integrated with MEMS manipulator for retinal pigment epithelium cell sheet.

    PubMed

    Wada, H; Konishi, S

    2013-01-01

    This paper reports a transplantation tool for the retinal pigment epithelium in an eye. We have developed MEMS manipulator as an end-effector for transplantation of retinal pigment epithelium cell sheet. Typical size of MEMS manipulator is 3mm×3mm. MEMS manipulator was made of polydimethylsiloxane and driven by pneumatic balloon actuators. MEMS manipulator have been improved and integrated with several functions by sensors and actuators. MEMS manipulator is integrated into a transplantation tool. A whole tool also requires improvements based on our experimental results. We have improved our tool in terms of assembling, sealing, and operation.

  6. Senile macular degeneration. The involvement of giant cells in atrophy of the retinal pigment epithelium.

    PubMed

    Penfold, P L; Killingsworth, M C; Sarks, S H

    1986-03-01

    Senile macular degeneration (SMD) is a leading cause of registered blindness in the United States and other Western countries. Loss of central vision develops as a result of atrophy of the retinal pigment epithelium or subretinal neovascularisation. The histopathology of the atrophic form of SMD has not been extensively studied. This paper illustrates at the light and electron microscope level the involvement the atrophic form of SMD. Additional features including pigment clumping and detachment of the retinal pigment epithelium at the advancing edge of the lesion are illustrated. Giant cells and MPS cells are typical features of granulomatous inflammation, and results suggest that they may play a role in the pathogenesis of SMD.

  7. Organ Culture as a Model System for Studies on Enterotoxin Interactions with the Intestinal Epithelium.

    PubMed

    Lorenzen, Ulver Spangsberg; Hansen, Gert H; Danielsen, E Michael

    2016-01-01

    Studies on bacterial enterotoxin-epithelium interactions require model systems capable of mimicking the events occurring at the molecular and cellular levels during intoxication. In this chapter, we describe organ culture as an often neglected alternative to whole-animal experiments or enterocyte-like cell lines. Like cell culture, organ culture is versatile and suitable for studying rapidly occurring events, such as enterotoxin binding and uptake. In addition, it is advantageous in offering an epithelium with more authentic permeability/barrier properties than any cell line, as well as a subepithelial lamina propria, harboring the immune cells of the gut mucosa.

  8. Surgical treatment in combined hamartoma of the retina and retinal pigment epithelium.

    PubMed

    Sánchez-Vicente, J L; Rueda-Rueda, T; Llerena-Manzorro, L; Molina-Socola, F E; Contreras-Díaz, M; Szewc, M; Vital-Berral, C; Alfaro-Juárez, A; Medina-Tapia, A; López-Herrero, F; González-García, L; Muñoz-Morales, A

    2017-03-01

    The case is presented of a 39 year-old man with a combined hamartoma of the retina and retinal pigment epithelium, who experienced progressive visual loss and worsening of metamorphopsia. The patient underwent vitrectomy and epiretinal component peeling, with improvement in visual acuity, metamorphopsia, and retinal architecture, assessed by optical coherence tomography. Selected patients with combined hamartomas of the retina and retinal pigment epithelium may benefit from surgical management. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Premalignant Genetic and Epigenetic Alterations in Tubal Epithelium from Women with BRCA1 Mutations

    DTIC Science & Technology

    2010-10-14

    Premalignant Genetic and Epigenetic Alterations in Tubal Epithelium from Women with BRCA1 Mutations PRINCIPAL INVESTIGATOR: Anton Krumm, Ph.D...REPORT TYPE 3. DATES COVERED (From - To) 15 Sept 2009 – 14 Sept 2010 4. TITLE AND SUBTITLE Premalignant Genetic and Epigenetic Alterations in Tubal 5a...Appendices…………………………………………………………………………… 8-33 10/14/2010 Anton Krumm 1 Premalignant Genetic and Epigenetic Alterations in Tubal Epithelium from Women

  10. Micronucleation in the lens epithelium following in vivo exposure to physical and chemical mutagens

    NASA Technical Reports Server (NTRS)

    Odrich, S.; Medvedovsky, C.; Merriam, G. R. Jr; Worgul, B. V.

    1988-01-01

    Rats were exposed to cataractogenic doses of known physical and chemical genotoxic agents in order to study the efficacy of using micronuclei to monitor mutagenicity in the lens epithelium. The total numbers of micronuclei were counted in lens epithelia from rats exposed to graded doses of either 250 kVp X-rays or the anti-leukemic drug, 1,4 dimethanesulfonoxybutane (Myleran (R)). The results indicate a dose-dependent incidence of micronucleation in the lens epithelium following exposure. The findings are consistent with the hypothesis that the cataractogenicity of certain agents may be related to their effect on the genome of lens epithelial cells.

  11. Glycoconjugate secretion in human airways in vitro: effects of epithelium removal.

    PubMed Central

    Sossé-Alaoui, H; Labat, C; Gorenne, I; Thomas de Montpreville, V; Bara, J; Brink, C

    1998-01-01

    The aim of this study was to examine glycoconjugate secretion in human airways with and without an epithelium. Glycoconjugate release in supernatants derived from human airways in vitro was determined using an ELISA assay with an anti-human mucin monoclonal antibody (MAb 3D3). This monoclonal antibody reacted strongly with Le(b) antigen but also recognized in vitro Le(a) and Le(y) determinants. In 11 of the 34 different lung samples (32%) studied the glycoconjugate levels were below the threshhold of detection for this assay. The mean basal secretion of glycoconjugates in human airways in vitro was 100+/-28 microg/g tissue (Period I; n = 23 different lung samples). The amount of glycoconjugate measured in the medium derived from human isolated bronchial ring preparations did not change under control conditions during the course of the experimental procedure (Period I; 128+/-46 microg/g tissue and Period II; 159 +/-48 microg/g tissue; n = 13 paired lung samples). In the supernatants of airway preparations with an intact epithelium the amount of glycoconjugates detected was 90+/-38 microg/g tissue (Period I; n = 12 different lung samples) and removal of the epithelium did not alter this basal glycoconjugate release (94+/-60 microg/g tissue: Period I, n = 8 different lung samples). The absence of the epithelial layer was confirmed by histological evaluation. Methacholine (100 microM) induced a 10- and four-fold increase in glycoconjugate release from airways with and without an epithelium, respectively. In contrast, in preparations with an epithelium, LTD4 (10 microM) and anti-IgE (dilution: 1/1000) did not cause an increase of glycoconjugate release. The methacholine difference between airways with and without an epithelium was not significantly different (P > 0.10). However, a treatment with atropine (100 microM) prevented the increase of glycoconjugate release in preparations with an epithelium. These data derived from a limited number of experiments suggest that

  12. Micronucleation in the lens epithelium following in vivo exposure to physical and chemical mutagens

    NASA Technical Reports Server (NTRS)

    Odrich, S.; Medvedovsky, C.; Merriam, G. R. Jr; Worgul, B. V.

    1988-01-01

    Rats were exposed to cataractogenic doses of known physical and chemical genotoxic agents in order to study the efficacy of using micronuclei to monitor mutagenicity in the lens epithelium. The total numbers of micronuclei were counted in lens epithelia from rats exposed to graded doses of either 250 kVp X-rays or the anti-leukemic drug, 1,4 dimethanesulfonoxybutane (Myleran (R)). The results indicate a dose-dependent incidence of micronucleation in the lens epithelium following exposure. The findings are consistent with the hypothesis that the cataractogenicity of certain agents may be related to their effect on the genome of lens epithelial cells.

  13. Effects of vocal fold epithelium removal on vibration in an excised human larynx model

    PubMed Central

    Tse, Justin R.; Zhang, Zhaoyan; Long, Jennifer L.

    2015-01-01

    This study investigated the impact of selective epithelial injury on phonation in an excised human larynx apparatus. With intact epithelium, the vocal folds exhibited a symmetrical vibration pattern with complete glottal closure during vibration. The epithelium was then enzymatically removed from one, then both vocal folds, which led to left-right asymmetric vibration and a decreased closed quotient. Although the mechanisms underlying these vibratory changes are unclear, these results demonstrate that some component of an intact surface layer may play an important role in achieving normal symmetric vibration and glottal closure. PMID:26233062

  14. MODIFICATIONS OF THE RAND REAC,

    DTIC Science & Technology

    The major items of the modification program were the installation of a removable plugboard of the type used on the International Business Machines punched card tabulators, and a digital readout device.

  15. Respiratory psychophysiology and behavior modification.

    PubMed

    Ley, R

    2001-09-01

    This article was written as an introduction to a special issue of Behavior Modification dedicated to studies in the field of respiratory psychophysiology. Although the invited articles that constitute this special issue cover a fairly broad range of topics, priority was given to articles that focus on the role of respiration in panic disorder. Attention is directed to the fundamental role of breathing in applied psychophysiology and to the encouragement of research in the modification of breathing behavior. The connection between respiratory psychophysiology and behavior modification is explained by reference to (a) a recent article on Pavlovian and operant control of breathing behavior and (b) four published volumes of selected articles dedicated exclusively to the field of respiratory psychophysiology. The present special issue of Behavior Modification marks the fifth volume.

  16. Chatting histone modifications in mammals

    PubMed Central

    Izzo, Annalisa

    2010-01-01

    Eukaryotic chromatin can be highly dynamic and can continuously exchange between an open transcriptionally active conformation and a compacted silenced one. Post-translational modifications of histones have a pivotal role in regulating chromatin states, thus influencing all chromatin dependent processes. Methylation is currently one of the best characterized histone modification and occurs on arginine and lysine residues. Histone methylation can regulate other modifications (e.g. acetylation, phosphorylation and ubiquitination) in order to define a precise functional chromatin environment. In this review we focus on histone methylation and demethylation, as well as on the enzymes responsible for setting these marks. In particular we are describing novel concepts on the interdependence of histone modifications marks and discussing the molecular mechanisms governing this cross-talks. PMID:21266346

  17. Cellular dynamics of RNA modification.

    PubMed

    Yi, Chengqi; Pan, Tao

    2011-12-20

    Five decades of research have identified more than 100 ribonucleosides that are post-transcriptionally modified. Many modified nucleosides are conserved throughout bacteria, archaea, and eukaryotes, while some are unique to each branch of life. However, the cellular and functional dynamics of RNA modification remain largely unexplored, mostly because of the lack of functional hypotheses and experimental methods for quantification and large-scale analysis. Many RNA modifications are not essential for life, which parallels the observation that many well-characterized protein and DNA modifications are not essential for life. Instead, increasing evidence indicates that RNA modifications can play regulatory roles in cells, especially in response to stress conditions. In this Account, we review some examples of RNA modification that are dynamically controlled in cells. We also discuss some recently developed methods that have enhanced the ability to study the cellular dynamics of RNA modification. We discuss four specific examples of RNA modification in detail here. We begin with 4-thio uridine (s(4)U), which can act as a cellular sensor of near-UV light. Then we consider queuosine (Q), which is a potential biomarker for malignancy. Next we examine N(6)-methyl adenine (m(6)A), which is the prevalent modification in eukaryotic messenger RNAs (mRNAs). Finally, we discuss pseudouridine (ψ), which is inducible by nutrient deprivation. We then consider two recent technical advances that have stimulated the study of the cellular dynamics in modified ribonucleosides. The first is a genome-wide method that combines primer extension with a microarray. It was used to study the N(1)-methyl adenine (m(1)A) hypomodification in human transfer RNA (tRNA). The second is a quantitative mass spectrometric method used to investigate dynamic changes in a wide range of tRNA modifications under stress conditions in yeast. In addition, we discuss potential mechanisms that control dynamic

  18. Cytosine modifications in myeloid malignancies.

    PubMed

    Meldi, Kristen M; Figueroa, Maria E

    2015-08-01

    Aberrant DNA methylation is a hallmark of many cancers, including the myeloid malignancies acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). The discovery of TET-mediated demethylation of 5-methylcytosine (5mC) and technological advancements in next-generation sequencing have permitted the examination of other cytosine modifications, namely 5-hydroxymethylcytosine (5hmC), in these myeloid malignancies on a genome-wide scale. Due to the prominence of mutations in epigenetic modifiers that can influence cytosine modifications in these disorders, including IDH1/2, TET2, and DNMT3A, many recent studies have evaluated the relative levels, distribution, and functional consequences of cytosine modifications in leukemic cells. Furthermore, several therapies are being used to treat AML and MDS that target various proteins within the cytosine modification pathway in an effort to revert the abnormal epigenetic patterns that contribute to the diseases. In this review, we provide an overview of cytosine modifications and selected technologies currently used to distinguish and analyze these epigenetic marks in the genome. Then, we discuss the role of mutant enzymes, including DNMT3A, TET2, IDH1/2, and the transcription factor, WT1, in disrupting normal patterns of 5mC and 5hmC in AML and MDS. Finally, we describe several therapies, both standard, front-line treatments and new drugs in clinical trials, aimed at inhibiting the proteins that ultimately lead to aberrant cytosine modifications in these diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Weather Modification: Finding Common Ground.

    NASA Astrophysics Data System (ADS)

    Garstang, Michael; Bruintjes, Roelof; Serafin, Robert; Orville, Harold; Boe, Bruce; Cotton, William; Warburton, Joseph

    2005-05-01

    Research and operational approaches to weather modification expressed in the National Research Council's 2003 report on “Critical Issues in Weather Modification Research” and in the Weather Modification Association's response to that report form the basis for this discussion. There is agreement that advances in the past few decades over a broad front of understanding physical processes and in technology have not been comprehensively applied to weather modification. Such advances need to be capitalized upon in the form of a concerted and sustained national effort to carry out basic and applied research in weather modification. The need for credible scientific evidence and the pressure for action should be resolved. Differences in the perception of current knowledge, the utility of numerical models, and the specific needs of research and operations in weather modification must be addressed. The increasing demand for water and the cost to society inflicted by severe weather require that the intellectual, technical, and administrative resources of the nation be combined to resolve whether and to what degree humans can influence the weather.The National Center for Atmospheric Research is sponsored by the National Science Foundation


  20. Data Analysis Strategies for Protein Modification Identification.

    PubMed

    Fu, Yan

    2016-01-01

    Mass spectrometry-based proteomics provides a powerful tool for large-scale analysis of protein modifications. Statistical and computational analysis of mass spectrometry data is a key step in protein modification identification. This chapter presents common and advanced data analysis strategies for modification identification, including variable modification search, unrestrictive approaches for modification discovery, false discovery rate estimation and control methods, and tools for modification site localization.

  1. Gland ducts and multilayered epithelium in mucosal biopsies from gastroesophageal-junction region are useful in characterizing esophageal location.

    PubMed

    Shi, L; Der, R; Ma, Y; Peters, J; Demeester, T; Chandrasoma, P

    2005-01-01

    SUMMARY. There is controversy as to whether oxynto-cardiac mucosa (OCM), cardiac mucosa (CM) and intestinal metaplasia (IM) found in the gastroesophageal-junction region line the anatomic stomach, esophagus or both. A total of 785 retroflex biopsies taken at the endoscopic gastroesophageal junction in 244 patients were evaluated for the presence of gland ducts and multilayered epithelium which are two recognized markers of esophageal mucosa. Oxyntic mucosa was found in 287 biopsies, OCM in 283, CM in 158, IM in 30 and squamous epithelium in 53 (some biopsies had more than one epithelial type). Esophageal gland ducts and multilayered epithelium were absent in all biopsies with oxyntic mucosa. Sixty-four (13.6%) of 471 biopsies with OCM, CM and IM contained esophageal gland ducts, and 68 of 471 (14.4%) contained multilayered epithelium. Ninety-eight of 471 (20.8%) biopsies contained either gland ducts or multilayered epithelium. This study shows that 20.8% of biopsies at the gastroesophageal junction with OCM, CM and IM can be definitively characterized as lining the anatomic esophagus by the finding of gland ducts and multilayered epithelium. The absence of these markers in oxyntic mucosa confirms this epithelium as gastric. The presence of gland ducts and multilayered epithelium can be used by pathologists to objectively ascribe an esophageal or gastric location to a biopsy from the gastroesophageal junction.

  2. [In vivo imaging of the conjunctival epithelium using confocal laser scanning microscopy].

    PubMed

    Rath, R; Stave, J; Guthoff, R; Giebel, J; Tost, F

    2006-05-01

    In various ocular diseases, cytomorphological findings of the ocular surface are an essential component of clinical diagnostics. When evaluating the conjunctival epithelium, minimally invasive acquisition of biomaterial is necessary for lab and technical processing and in vitro histological examination. To examine corneal structures in vivo, confocal laser scanning microscopy is a successful standard method. Our aim was to employ in vivo confocal laser scanning microscopy also for examining the conjunctival epithelium. Results were analyzed and compared with cytomorphological findings of impression cytology. Accordingly, the basic features of conjunctival in vivo examination using RLSM were described and defined. In vivo images were analyzed and compared with impression cytological slide preparations (n=110) of 23 healthy test persons. Examination was standardized. Finally, the confocal laser scan images were compared to the impression cytological patterns. Due to the distribution of reflectors (pixel brightness), diagnostic analysis of important morphological structures (cell nucleus, cytoplasm, nucleus/plasma relation) of the conjunctiva is possible. Secretory cells of the epithelium (goblet cells) can be easily recognized by their size. Highly reflective pixels depict cell walls or wide intercellular spaces with high contrast. The in vivo investigation of important anatomical and morphological structures of the conjunctival epithelium is possible using RLSM. The distribution pattern of goblet cell pixel brightness may correlate with various secretion contents or suggest distinct, recognizable, functional conditions (hypo- or hypersecretion).

  3. Aspiration cytology of radiation-induced changes of normal breast epithelium

    SciTech Connect

    Bondeson, L.

    1987-05-01

    From a case illustrated, it appears that irradiation may induce changes in normal breast epithelium indistinguishable from malignancy by means of aspiration cytology. This fact must be considered in the choice of diagnostic methods for the evaluation of lesions in irradiated breast tissue.

  4. Histology, Immunohistochemistry and Ultrastructure of the Bovine Palatine Tonsil with Special Emphasis on Reticular Epithelium

    USDA-ARS?s Scientific Manuscript database

    The paired palatine tonsils are located at the junction of the nasopharynx and oropharynx; ideally positioned to sample antigens entering through either the nasal cavity or oral cavity. Entering antigens will first contact tonsilar epithelium. To better understand the cellular and functional composi...

  5. Expression of the stem cell marker, SOX2, in ameloblastoma and dental epithelium.

    PubMed

    Juuri, Emma; Isaksson, Sanna; Jussila, Maria; Heikinheimo, Kristiina; Thesleff, Irma

    2013-12-01

    Ameloblastomas are locally invasive odontogenic tumors that exhibit a high rate of recurrence and often associate with the third molars. They are suggested to originate from dental epithelium because the tumor cells resemble epithelial cells of developing teeth. Expression of the transcription factor SOX2 has been previously localized in epithelial stem and progenitor cells in developing teeth as well as in various tumors. Here, we show that SOX2 is expressed in the epithelial cells of follicular and plexiform ameloblastomas. SOX2 was localized in the dental lamina of developing human primary molars. It was also expressed in the fragmented dental lamina associated with the third molars and in the epithelium budding from its posterior aspect in mice. However, no SOX2 expression was detected in either Hertwig's epithelial root sheath directing the formation of roots or in the epithelial cell rests of Malassez covering the completed roots. SOX2 was associated with supernumerary tooth formation in odontoma-like tumors induced by Wnt signal activation in mice. We propose that SOX2 functions in maintaining the progenitor state of epithelium in ameloblastomas and that ameloblastomas may originate from SOX2-expressing dental lamina epithelium. © 2013 Eur J Oral Sci.

  6. [Quantitative image analysis in pulmonary pathology - digitalization of preneoplastic lesions in human bronchial epithelium (author's transl)].

    PubMed

    Steinbach, T; Müller, K M; Kämper, H

    1979-01-01

    The report concerns the first phase of a quantitative study of normal and abnormal bronchial epithelium with the objective of establishing the digitalization of histologic patterns. Preparative methods, data collecting and handling, and further mathematical analysis are described. In cluster and discriminatory analysis the digitalized histologic features can be used to separate and classify the individual cases into the respective diagnostic groups.

  7. Loss of Retinal Function and Pigment Epithelium Changes in a Patient with Common Variable Immunodeficiency

    PubMed Central

    Halborg, Jakob; Sørensen, Torben L.

    2012-01-01

    Common variable immunodeficiency (CVID) has only scarcely been associated with ocular symptoms and rarely with retinal disease. In this case we describe a patient with distinct morphological and functional alterations in the retina. The patient presents with characteristic changes in retinal pigment epithelium, autofluorescence, and electrophysiology. PMID:23056974

  8. Cycle and duration of the seminiferous epithelium in puma (Puma concolor).

    PubMed

    Leite, Flaviana Lima Guião; de Paula, Tarcízio Antônio Rego; da Matta, Sérgio Luis Pinto; Fonseca, Cláudio Cesar; das Neves, Marco Túlio David; de Barros, João Bosco Gonçalves

    2006-02-01

    Puma or sussuarana (Puma concolor) is the second largest feline in the American continent and has an ample latitudinal distribution in very diverse habitats. In relation to its conservation status, the puma is considered an extinction-threatened species. The study of the testis morphology and the spermatogenic process in a species is fundamental for establishing the physiologic patterns that will make possible the selection of the protocols for assisted reproduction. A number of peculiarities associated with the reproductive biology of specific species such as the duration of spermatogenic process can be used to determine the frequency of sperm collection. Nine adult male pumas maintained in captivity were used to determine the relative frequency of stages in the seminiferous epithelium cycle. Three of them received intra-testicular injections of 0.1ml tritiated thymidine to determine the duration of the seminiferous epithelium cycle, and were subjected to biopsy 7 days later. The cycle of the seminiferous epithelium in puma was didactically described into eight stages by the tubular morphology method. The total duration of one seminiferous epithelium cycle in puma was calculated to be 9.89 days, and approximately 44.5 days are required for development of spermatozoon from spermatogonia. The duration of spermiogenesis, prophase and other events of meiosis were 14.08, 15.20 and 1.79 days, respectively. The relative frequency of the pre-meiotic, meiotic and post-meiotic phases were 3.98, 1.79 and 4.12 days, respectively.

  9. Redox regulation of sperm surface thiols modulates adhesion to the fallopian tube epithelium.

    PubMed

    Talevi, Riccardo; Zagami, Maria; Castaldo, Marianna; Gualtieri, Roberto

    2007-04-01

    Sperm that adhere to the fallopian tube epithelium are of superior quality and adhesion extends their fertile life. It has been postulated that periovulatory signals, as yet undefined, promote sperm release. In the in vitro studies described here, we examined the effects of several antioxidants, reportedly present within oviductal fluid, on the modulation of sperm-oviduct adhesion in bovine species. Results showed that 1) the cell-permeant thiols (penicillamine, beta mercaptoethanol, cysteine, and dithiotreitol), as well as the nonpermeant thiol, reduced glutathione, cause adhering spermatozoa to release from the epithelium; 2) thiol action is exerted on spermatozoa; and 3) oxidized glutathione, as well as the non-thiol antioxidants (dimethylthiourea, trolox, superoxide dismutase, and catalase) have no effect. Sperm surface sulfhydryls labeled with iodoacetamide fluorescein showed that spermatozoa devoid of sulfhydryls on the head surface adhered to the fallopian epithelium in vitro, whereas thiol-induced release increased the exposure of sulfhydryls on the sperm head surface. Finally, analysis of capacitation status demonstrated that uncapacitated spermatozoa adhered to the oviduct, and that thiol-induced release of spermatozoa was accompanied by capacitation. In conclusion, thiol-reducing agents in the oviductal fluid may modulate the redox status of sperm surface proteins, leading to the release of spermatozoa selected and stored through adhesion to the fallopian tube epithelium in the bovine species.

  10. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system.

    PubMed

    Liu, Qingjun; Hu, Ning; Zhang, Fenni; Zhang, Diming; Hsia, K Jimmy; Wang, Ping

    2012-12-01

    Bio-hybrid systems provide an opportunity for integrating a living bio-active unit and a proper biosensing system, to employ the unique properties of the bio-active unit. The biological olfactory system can sense and identify thousands of trace odors. The purpose of this study is to combine olfactory epithelium with microelectrode array (MEA) to establish an olfactory epithelium-MEA hybrid system to record the odor-induced electrophysiological activities of the tissue. In our experiments, extracellular potential of olfactory receptor neurons in intact epithelium were measured in the presence of ethyl ether, acetic acid, butanedione, and acetone, respectively. After the odor-induced response signals were analyzed in the time and frequency domain, the temporal characteristics of response signals were extracted. We found that olfactory epithelium-MEA hybrid system can reflect the in vitro odor information of different signal characteristics and firing modes in vitro. The bio-hybrid sensing system can represent a useful instrument to sense and detect the odorant molecules with well recognizing patterns. With the development of sensor technology, bio-hybrid systems will represent emerging and promising platforms for wide applications, ranging from health care to environmental monitoring.

  11. Morphological and Functional Features of Hepatic Cyst Epithelium in Autosomal Dominant Polycystic Kidney Disease

    PubMed Central

    Alvaro, Domenico; Onori, Paolo; Alpini, Gianfranco; Franchitto, Antonio; Jefferson, Douglas M.; Torrice, Alessia; Cardinale, Vincenzo; Stefanelli, Fabrizio; Mancino, Maria Grazia; Strazzabosco, Mario; Angelico, Mario; Attili, Adolfo; Gaudio, Eugenio

    2008-01-01

    We evaluated the morphological and functional features of hepatic cyst epithelium in adult autosomal dominant polycystic kidney disease (ADPKD). In six ADPKD patients, we investigated the morphology of cyst epithelium apical surface by scanning electron microscopy and the expression of estrogen receptors (ERs), insulin-like growth factor 1 (IGF1), IGF1 receptors (IGF1-R), growth hormone receptor, the proliferation marker proliferating cell nuclear antigen, and pAKT by immunohistochemistry and immunofluorescence. Proliferation of liver cyst-derived epithelial cells was evaluated by both MTS proliferation assay and [3H]thymidine incorporation into DNA. The hepatic cyst epithelium displayed heterogeneous features, being normal in small cysts (<1 cm), characterized by rare or shortened cilia in 1- to 3-cm cysts, and exhibiting the absence of both primary cilia and microvilli in large cysts (>3 cm). Cyst epithelium showed marked immunohistochemical expression of ER, growth hormone receptor, IGF1, IGF1-R, proliferating cell nuclear antigen, and pAKT. IGF1 was 10-fold more enriched in the hepatic cyst fluid than in serum. Serum-deprived liver cyst-derived epithelial cells proliferated when exposed to 17β-estradiol and IGF1 and when exposed to human cyst fluid. ER or IGF1-R antagonists inhibited the proliferative effect of serum readmission, cyst fluid, 17β-estradiol, and IGF1. Our findings could explain the role of estrogens in accelerating the progression of ADPKD and may suggest a potential benefit of therapeutic strategies based on estrogen antagonism. PMID:18202196

  12. A Polarized Epithelium Organized by β- and α-Catenin Predates Cadherin and Metazoan Origins

    PubMed Central

    Dickinson, Daniel J.; Nelson, W. James; Weis, William I.

    2011-01-01

    Summary A polarized epithelium in the non-metazoan Dictyostelium discoideum requires α-catenin and β-catenin but not classical cadherins, polarity proteins or Wnt signaling. A fundamental characteristic of metazoans is the formation of a simple, polarized epithelium. In higher animals, the structural integrity and functional polarization of simple epithelia require a cell-cell adhesion complex containing a classical cadherin, the Wnt-signaling protein β-catenin and the actin-binding protein α-catenin. We show that the non-metazoan Dictyostelium discoideum forms a polarized epithelium that is essential for multicellular development. Although D. discoideum lacks a cadherin homolog, we identify an α-catenin ortholog that binds a β-catenin-related protein. Both proteins are essential for formation of the epithelium, polarized protein secretion and proper multicellular morphogenesis. Thus the organizational principles of metazoan multicellularity may be more ancient than previously recognized, and the role of the catenins in cell polarity predates the evolution of Wnt signaling and classical cadherins. PMID:21393547

  13. Probiotic-induced changes in the intestinal epithelium: implications in gastrointestinal disease.

    PubMed

    Ramakrishna, B S

    2009-01-01

    There is resurgent interest in the use of probiotics to maintain gastrointestinal and systemic health, driven by recent advances in knowledge of bacterial interactions with the epithelium and innate immune system of the intestine. The effects of probiotic bacteria on the intestinal epithelium and their downstream consequences are reviewed. Probiotics prevent pathogen adherence and invasion of the epithelium, partly by blocking adherence sites but also by upregulating gene expression of MUC2 and of antimicrobial peptides. Metabolic effects of probiotics on the intestinal epithelium include production of short chain fatty acids which influence epithelial cell metabolism, turnover and apoptosis. Bacterial metabolism of unabsorbed dietary constituents with production of free radicals and phenolic metabolites can lead to DNA damage and cancer; probiotics restore eubiosis and potentially prevent this. Probiotics alter expression and redistribution of tight junction proteins and reduce intestinal permeability limiting absorption of noxious molecules from the gut lumen. Most studied are the effects of probiotics on epithelial cells which are the first line of innate immune-capable cells that encounter luminal flora. Probiotics, through secreted molecules, influence the innate inflammatory response of epithelial cells to stimuli from the gut lumen, and reduce mucosal inflammation. Through effects on dendritic, and possibly epithelial, cells they influence naïve T cells in the lamina propria of the gut and thus influence adaptive immunity. These varied effects of probiotics have implications for the treatment of several gastrointestinal diseases including antibiotic-associated colitis, acute gastroenteritis, inflammatory bowel disease, colon cancer, and irritable bowel syndrome.

  14. Immunocytochemical localization of NaK-ATPase isoforms in the rat and mouse ocular ciliary epithelium.

    PubMed

    Wetzel, R K; Sweadner, K J

    2001-03-01

    Ion gradients established by NaK-adenosine triphosphatase (ATPase) in the ocular ciliary epithelium (CE) contribute to the production of aqueous humor. Modulation of NaK-ATPase activity in the CE may alter aqueous inflow, aqueous turnover, and intraocular pressure. To understand the role of NaK-ATPase, it is necessary to examine the distribution of NaK-ATPase subunit isoforms within the epithelium. Isoform-specific antibodies and scanning laser confocal microscopy were used to localize NaK-ATPase subunit isoforms in the CE of the mouse and rat. The nonpigmented epithelium (NPE) expressed alpha2 and beta3 at very high levels on its basolateral surface, and alpha1 and beta2 at much lower levels. The pigmented epithelium (PE) expressed alpha1 and beta1 subunits on its basolateral surface along its entire length, whereas alpha3 was expressed in the pars plana only. The distribution and apparent expression levels of isoforms were similar for mouse and rat, with only minor discrepancies, most likely caused by antibody sensitivity. The results indicate that sodium pumps in the NPE are primarily composed of alpha2 and beta3, whereas those in the PE are alpha1 and beta1. This specialization in isoform expression implies that NaK-ATPase has distinct physiological functions in the two epithelia and that its activity is likely to be regulated by different mechanisms.

  15. Ultrastructure of the external gill epithelium of the axolotl, Ambystoma mexicanum with reference to ionic transport.

    PubMed

    Jarial, M S; Wilkins, J H

    2003-10-01

    The ultrastructure of the external gill epithelium of the axolotl, Ambystoma mexicanum, has been examined using conventional transmission electron microscopy to elucidate its role in ionic transport. Four cell types are identified in the gill filament and primary gill bar epithelium. These are granular, ciliated, Leydig and basal cells. A fifth cell type, the flat mitochondria-rich cell is only found in the gill bar epithelium. The predominant granular cells display microvilli at their surface and their cytoplasm contains abundant mitochondria, rough endoplasmic reticulum, Golgi complexes, vesicles and PAS+ secretory granules that are extruded at the surface, which along with secretions from the Leydig cells form a mucous coat. The granular cells are joined apically by junctional complexes consisting of zonulae occludens, zonulae adherens and desmosomes. The lateral membranes of granular cells enclose large intercellular spaces that are closed at the apical ends but remain open at the basal ends adjoining capillaries. In AgNO3-treated axolotl, the gills become darkly stained, the silver grains penetrate apical membranes and appear in the cytoplasm, accumulating near the lateral membranes and also enter the intercellular spaces. These findings are consistent with the dual role of the gill epithelium in mucus production and active ionic transport.

  16. Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis.

    PubMed

    Frontera, Jimena Laura; Cervino, Ailen Soledad; Jungblut, Lucas David; Paz, Dante Agustín

    2015-03-01

    Olfactory epithelium has the capability to continuously regenerate olfactory receptor neurons throughout life. Adult neurogenesis results from proliferation and differentiation of neural stem cells, and consequently, olfactory neuroepithelium offers an excellent opportunity to study neural regeneration and the factors involved in the maintenance and regeneration of all their cell types. We analyzed the expression of BDNF in the olfactory system under normal physiological conditions as well as during a massive regeneration induced by chemical destruction of the olfactory epithelium in Xenopus laevis larvae. We described the expression and presence of BDNF in the olfactory epithelium and bulb. In normal physiological conditions, sustentacular (glial) cells and a few scattered basal (stem) cells express BDNF in the olfactory epithelium as well as the granular cells in the olfactory bulb. Moreover, during massive regeneration, we demonstrated a drastic increase in basal cells expressing BDNF as well as an increase in BDNF in the olfactory bulb and nerve. Together these results suggest an important role of BDNF in the maintenance and regeneration of the olfactory system.

  17. Epithelium-Innate Immune Cell Axis in Mucosal Responses to SIV

    PubMed Central

    Shang, L.; Duan, L.; Perkey, K. E.; Wietgrefe, S.; Zupancic, M.; Smith, A. J.; Southern, P. J.; Johnson, R. P.; Haase, A. T.

    2016-01-01

    In the SIV-rhesus macaque model of HIV-1 transmission to women, one hallmark of the mucosal response to exposure to high doses of SIV is CD4 T cell recruitment that fuels local virus expansion in early infection. In this study, we systematically analyzed the cellular events and chemoattractant profiles in cervical tissues that precede CD4 T cell recruitment. We show that vaginal exposure to the SIV inoculum rapidly induces chemokine expression in cervical epithelium including CCL3, CCL20, and CXCL8. The chemokine expression is associated with early recruitment of macrophages and plasmacytoid dendritic cells that are co-clustered underneath the cervical epithelium. Production of chemokines CCL3 and CXCL8 by these cells in turn generates a chemokine gradient that is spatially correlated with the recruitment of CD4 T cells. We further show that the protection of SIVmac239Δnef vaccination against vaginal challenge is correlated with the absence of this epithelium-innate immune cell-CD4 T cell axis response in the cervical mucosa. Our results reveal a critical role for cervical epithelium in initiating early mucosal responses to vaginal infection, highlight an important role for macrophages in target cell recruitment and provide further evidence of a paradoxical dampening effect of a protective vaccine on these early mucosal responses. PMID:27435105

  18. FORMALDEHYDE-INDUCED GENE EXPRESSION IN F344 RAT NASAL RESPIRATORY EPITHELIUM.

    EPA Science Inventory

    Formaldehyde-induced gene expression in F344 rat nasal respiratory epithelium

    ABSTRACT

    Formaldehyde, an occupational and environmental toxicant used extensively in the manufacturing of many household and personal use products, is known to induce squamous cell carci...

  19. Deletion of JAM-A causes morphological defects in the corneal epithelium.

    PubMed

    Kang, Liang I; Wang, Yan; Suckow, Arthur T; Czymmek, Kirk J; Cooke, Vesselina G; Naik, Ulhas P; Duncan, Melinda K

    2007-01-01

    Junctional adhesion molecule-A (JAM-A, JAM-1, F11R) is an Ig domain containing transmembrane protein that has been proposed to function in diverse processes including platelet activation and adhesion, leukocyte transmigration, angiogenesis, epithelial cell shape and endothelial cell migration although its function in vivo is less well established. In the mouse eye, JAM-A protein expression is first detected at 12.5 dpc in the blood vessels of the tunica vasculosa, while it is first detected in both the corneal epithelium and lens between 13.5 and 14.5 dpc. In the corneal epithelium, JAM-A levels remain appreciable throughout life, while JAM-A immunostaining becomes stronger in the lens as the animals age. Both the cornea and lens of mice lacking an intact JAM-A gene are transparent until at least a year of age, although the cells of the JAM-A null corneal epithelium are irregularly shaped. In wild-type mice, JAM-A protein is found at the leading edge of repairing corneal epithelial wounds, however, corneal epithelial wound repair was qualitatively normal in JAM-A null animals. In summary, JAM-A is expressed in the corneal epithelium where it appears to regulate cell shape.

  20. Immunoglobulin deposits in labial mucosal epithelium of patients suspected of Sjögren's syndrome.

    PubMed

    Oxholm, P; Manthorpe, R; Oxholm, A; Schiødt, M

    1986-02-01

    Lower lip biopsies from twenty-three consecutive patients under evaluation for Sjögren's syndrome, and from six normal controls, were investigated for deposits of immunoglobulins, fibrinogen and C3, using a direct immunofluorescence technique. Deposits of both IgG and IgA were demonstrated in the mucosal epithelium in three of six patients with primary Sjögren's syndrome. Similar IgG deposits were found in two of three patients with xerostomia and in one of three patients with Sjögren's syndrome secondary to rheumatoid arthritis. Immunoglobulins were located in close relation to cell surfaces in the basal and suprabasal layers of the epithelium. Double labelling experiments indicated a partial topographic concordance between the immunoglobulin deposits and OKT6 positive Langerhans cells in the epithelium. No deposits of immunoglobulins, fibrinogen or C3 were found in the remaining eleven patients and six normal controls. We conclude that deposits of IgG and IgA in the labial mucosal epithelium seem to be a characteristic finding in patients with primary Sjögren's syndrome as well as in patients with xerostomia. The diagnostic value of this new observation needs to be clarified in future studies.

  1. Digital histologic analysis reveals morphometric patterns of age-related involution in breast epithelium and stroma

    PubMed Central

    Sandhu, Rupninder; Chollet-Hinton, Lynn; Kirk, Erin L.; Midkiff, Bentley; Troester, Melissa A.

    2015-01-01

    Complete age-related regression of mammary epithelium, often termed post-menopausal involution, is associated with decreased breast cancer risk. However, most studies have qualitatively assessed involution. We quantitatively analyzed epithelium, stroma, and adipose tissue from histologically normal breast tissue of 454 patients in the Normal Breast Study (NBS). High-resolution digital images of normal breast Hematoxylin & Eosin stained slides were partitioned into epithelium, adipose tissue, and non-fatty stroma. Percentage area and nuclei per unit area (nuclear density) were calculated for each component. Quantitative data were evaluated in association with age using linear regression and cubic spline models Stromal area decreased (p=0.0002) and adipose tissue area increased (p<0.0001), with an approximate 0.7% change in area for each component, until age 55 when these area measures reached a steady state. While epithelial area did not show linear changes with age, epithelial nuclear density decreased linearly beginning in the third decade of life. No significant age-related trends were observed for stromal or adipose nuclear density. Digital image analysis offers a high-throughput method for quantitatively measuring tissue morphometry and for objectively assessing age-related changes in adipose tissue, stroma, and epithelium. Epithelial nuclear density is a quantitative measure of age-related breast involution that begins to decline in the early premenopausal period. PMID:26772400

  2. Transient receptor potential vanilloid 4 (TRPV4) silencing in Helicobacter pylori-infected human gastric epithelium.

    PubMed

    Mihara, Hiroshi; Suzuki, Nobuhiro; Muhammad, Jibran Sualeh; Nanjo, Sohachi; Ando, Takayuki; Fujinami, Haruka; Kajiura, Shinya; Hosokawa, Ayumu; Sugiyama, Toshiro

    2017-04-01

    Helicobacter pylori (HP) infection induces methylation silencing of specific genes in gastric epithelium. Various stimuli activate the nonselective cation channel TRPV4, which is expressed in gastric epithelium where it detects mechanical stimuli and promotes ATP release. As CpG islands in TRPV4 are methylated in HP-infected gastric epithelium, we evaluated HP infection-dependent changes in TRPV4 expression in gastric epithelium. Human gastric biopsy samples, a human gastric cancer cell line (AGS), and a normal gastric epithelial cell line (GES-1) were used to detect TRPV4 mRNA and protein expression by RT-PCR and Western blotting, respectively. Ca(2+) imaging was used to evaluate TRPV4 ion channel activity. TRPV4 methylation status was assessed by methylation-specific PCR (MSP). ATP release was measured by a luciferin-luciferase assay. TRPV4 mRNA and protein were detected in human gastric biopsy samples and in GES-1 cells. MSP and demethylation assays showed TRPV4 methylation silencing in AGS cells. HP coculture directly induced methylation silencing of TRPV4 in GES-1 cells. In human samples, HP infection was associated with TRPV4 methylation silencing that recovered after HP eradication in a time-dependent manner. HP infection-dependent DNA methylation suppressed TRPV4 expression in human gastric epithelia, suggesting that TRPV4 methylation may be involved in HP-associated dyspepsia. © 2016 The Authors. Helicobacter Published by John Wiley & Sons Ltd.

  3. [Regulatory elements in the skin epithelium of Saccoglossus mereschkowskii (Enteropneusta, Hemichordata): electron microscopic and immunocytochemical study].

    PubMed

    Stoliarova, M V; Val'kovich, E I

    2013-01-01

    The aim of this investigation was to demonstrate the regulatory elements in the skin epithelium of Enteropneusta which are supposed to be related to the chordate ancestors. Using electron microscopy, it was found that in the skin epithelium of a representative of enteropneusts Saccoglossus mereschkowskii, the basal parts of some epitheliocytes took part in formation of a nerve layer. These cells were considered as receptor ciliated cells. The granular epithelial cells were shown to release secretion according to both exocrine and endocrine mechanism; these cells were characterized as endocrine-like regulatory cells. Fine granular cells possibly represent special receptor-endocrine-like cell type. The immunocytochemical detection of FMRFamid neuropeptide localization in histological sections confirmed the electron microscopic data on the presence of receptor and endocrine-like cells in the epithelium. It is suggested that the skin epithelium of Enteropneusta contains a peculiar neuro-endocrine regulatory system that is represented by receptor cells, receptor-endocrine-like cells of an open type and nerve elements of the nerve layer.

  4. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis.

    PubMed Central

    Franklin, W A; Gazdar, A F; Haney, J; Wistuba, I I; La Rosa, F G; Kennedy, T; Ritchey, D M; Miller, Y E

    1997-01-01

    Individuals with one aerodigestive tract malignancy have a high incidence of second primary aerodigestive tumors. The mechanism for this field effect has not been determined. We studied an individual with widespread dysplastic changes in the respiratory epithelium but no overt carcinoma. The entire tracheobronchial tree obtained at autopsy was embedded in paraffin, and bronchial epithelial cells were isolated by microdissection. DNA extracted from the microdissected cells was analyzed for point mutations in the p53 tumor suppressor gene. A single, identical point mutation consisting of a G:C to T:A transversion in codon 245 was identified in bronchial epithelium from 7 of 10 sites in both lungs. Epithelium at sites containing the p53 mutation was morphologically abnormal, exhibiting squamous metaplasia and mild to moderate atypia. No invasive tumor was found in the tracheobronchial tree or any other location. Cells from peripheral blood, kidney, liver, and lymph node exhibited no abnormality in the p53 gene. The widespread presence of a single somatic p53 point mutation in the bronchi of a smoker suggests that a single progenitor bronchial epithelial clone may expand to populate broad areas of the bronchial mucosa-a novel mechanism for field carcinogenesis in the respiratory epithelium that may be of importance in assessing individuals for risk of a second primary tumor as well as in devising effective strategies for chemoprevention of lung cancer. PMID:9329980

  5. Multi-resolution cell orientation congruence descriptors for epithelium segmentation in endometrial histology images.

    PubMed

    Li, Guannan; Raza, Shan E Ahmed; Rajpoot, Nasir M

    2017-04-01

    It has been recently shown that recurrent miscarriage can be caused by abnormally high ratio of number of uterine natural killer (UNK) cells to the number of stromal cells in human female uterus lining. Due to high workload, the counting of UNK and stromal cells needs to be automated using computer algorithms. However, stromal cells are very similar in appearance to epithelial cells which must be excluded in the counting process. To exclude the epithelial cells from the counting process it is necessary to identify epithelial regions. There are two types of epithelial layers that can be encountered in the endometrium: luminal epithelium and glandular epithelium. To the best of our knowledge, there is no existing method that addresses the segmentation of both types of epithelium simultaneously in endometrial histology images. In this paper, we propose a multi-resolution Cell Orientation Congruence (COCo) descriptor which exploits the fact that neighbouring epithelial cells exhibit similarity in terms of their orientations. Our experimental results show that the proposed descriptors yield accurate results in simultaneously segmenting both luminal and glandular epithelium.

  6. Apico-basal forces exerted by apoptotic cells drive epithelium folding.

    PubMed

    Monier, Bruno; Gettings, Melanie; Gay, Guillaume; Mangeat, Thomas; Schott, Sonia; Guarner, Ana; Suzanne, Magali

    2015-02-12

    Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.

  7. Increased Regenerative Capacity of the Olfactory Epithelium in Niemann–Pick Disease Type C1

    PubMed Central

    Meyer, Anja; Wree, Andreas; Günther, René; Holzmann, Carsten; Schmitt, Oliver; Rolfs, Arndt; Witt, Martin

    2017-01-01

    Niemann–Pick disease type C1 (NPC1) is a fatal neurovisceral lysosomal lipid storage disorder. The mutation of the NPC1 protein affects the homeostasis and transport of cholesterol and glycosphingolipids from late endosomes/lysosomes to the endoplasmic reticulum resulting in progressive neurodegeneration. Since olfactory impairment is one of the earliest symptoms in many neurodegenerative disorders, we focused on alterations of the olfactory epithelium in an NPC1 mouse model. Previous findings revealed severe morphological and immunohistochemical alterations in the olfactory system of NPC1−/− mutant mice compared with healthy controls (NPC1+/+). Based on immunohistochemical evaluation of the olfactory epithelium, we analyzed the impact of neurodegeneration in the olfactory epithelium of NPC1−/− mice and observed considerable loss of mature olfactory receptor neurons as well as an increased number of proliferating and apoptotic cells. Additionally, after administration of two different therapy approaches using either a combination of miglustat, 2-hydroxypropyl-β-cyclodextrin (HPβCD) and allopregnanolone or a monotherapy with HPβCD, we recorded a remarkable reduction of morphological damages in NPC1−/− mice and an up to four-fold increase of proliferating cells within the olfactory epithelium. Numbers of mature olfactory receptor neurons doubled after both therapy approaches. Interestingly, we also observed therapy-induced alterations in treated NPC1+/+ controls. Thus, olfactory testing may provide useful information to monitor pharmacologic treatment approaches in human NPC1. PMID:28383485

  8. FORMALDEHYDE-INDUCED GENE EXPRESSION IN F344 RAT NASAL RESPIRATORY EPITHELIUM.

    EPA Science Inventory

    Formaldehyde-induced gene expression in F344 rat nasal respiratory epithelium

    ABSTRACT

    Formaldehyde, an occupational and environmental toxicant used extensively in the manufacturing of many household and personal use products, is known to induce squamous cell carci...

  9. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI) Expression in Intestinal Epithelium.

    PubMed

    Balakrishnan, Arjun; Chakravortty, Dipshikha

    2017-01-01

    As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP) that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI) is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn's Disease, Ulcerative colitis, and Infectious enteritis's. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin). Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri) whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC) did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  10. Changing distribution of cadherins during gestation in the uterine epithelium of lizards.

    PubMed

    Wu, Qiong; Thompson, Michael B; Murphy, Christopher R

    2011-09-15

    The uterine epithelium provides the interface between an embryo and its mother during pregnancy. Calcium-dependent cadherins are adherens junction proteins that undergo major shifts in the uterine epithelium to facilitate the communication between maternal cells and the embryonic milieu during implantation in mammals. They are, therefore, important in trophoblast invasion and the maintenance of pregnancy. We investigated spatiotemporal changes of cadherins throughout pregnancy in the uterine epithelium of two viviparous skinks and one oviparous population, which all exhibit a noninvasive (epitheliochorial) placenta. Cadherins were identified for the first time in squamate reptiles. In all species, cadherins are reduced in the uterine epithelium as gestation progresses, which would lessen the attachment between uterine epithelial cells and allow them to stretch to accommodate embryonic growth. Interestingly, cadherins were reduced sooner after ovulation in the oviparous species than in the viviparous species. In viviparous species, the different expression of cadherins between barren and pregnant uteri from the same mother indicates that expression of cadherins may not be driven solely by maternal hormones, but also by the presence of an embryo. The redistribution of cadherins in squamates is comparable to that of mammals, reflecting establishment of feto-maternal communication during the peri-implantation period. As there is no breaching of maternal tissue in lizards, the change in adherens junctional properties are thus not exclusive to mammals with invasive placentae, which suggests that similar molecular mechanisms regulate changes to uterine epithelia during pregnancy across placental types. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.

  11. Potential, Current, and Ionic Fluxes across the Isolated Retinal Pigment Epithelium and Choroid

    PubMed Central

    Lasansky, Arnaldo; de Fisch, Felisa W.

    1966-01-01

    A flux chamber was utilized for in vitro studies of a membrane formed by the retinal pigment epithelium and choroid of the eye of the toad (Bufo arenarum and Bufo marinus). A transmembrane potential of 20 to 30 mv was found, the pigment epithelium surface positive with respect to the choroidal surface. Unidirectional fluxes of chloride, sodium, potassium, and calcium were determined in the absence of an electrochemical potential difference. A net transfer of chloride from pigment epithelium to choroid accounted for a major fraction of the mean short-circuit current. A small net flux of sodium from choroid to pigment epithelium was detected in Bufo marinus. In both species of toads, however, about one-third of the mean short-circuit current remained unaccounted for. Manometric determinations of bicarbonate suggested an uptake of this ion at the epithelial surface of the membrane but did not provide evidence of a relationship between this process and the short-circuit current. PMID:5961357

  12. Repeated intranasal exposure to microcystin-LR affects lungs but not nasal epithelium in mice.

    PubMed

    Oliveira, Vinícius R; Mancin, Viviane G L; Pinto, Eliete F; Soares, Raquel M; Azevedo, Sandra M F O; Macchione, Mariangela; Carvalho, Alysson R; Zin, Walter A

    2015-09-15

    Microcystin-LR (MC-LR) is a harmful cyanotoxin able to induce adverse outcomes in the respiratory system. We aimed to examine the lungs and nasal epithelium of mice following a sub-chronic exposure to MC-LR. Swiss mice were intranasally instilled with 10 μL of distilled water (CTRL, n = 10) or 6.7 ng/kg of MC-LR diluted in 10 μL of distilled water (TOX, n = 8) during 30 consecutive days. Respiratory mechanics was measured in vivo and histology measurements (morphology and inflammation) were assessed in lungs and nasal epithelium samples 24 h after the last intranasal instillation. Despite the lack of changes in the nasal epithelium, TOX mice displayed an increased amount of PMN cells in the lungs (× 10(-3)/μm(2)), higher lung static elastance (cmH2O/mL), resistive and viscoelastic/inhomogeneous pressures (cmH2O) (7.87 ± 3.78, 33.96 ± 2.64, 1.03 ± 0.12, 1.01 ± 0.08, respectively) than CTRL (5.37 ± 4.02, 26.65 ± 1.24, 0.78 ± 0.06, 0.72 ± 0.05, respectively). Overall, our findings suggest that the nasal epithelium appears more resistant than lungs in this model of MC-LR intoxication.

  13. Quantification of transcriptome responses of the rumen epithelium to butyrate infusion

    USDA-ARS?s Scientific Manuscript database

    Short-chain fatty acids (SCFAs), such as butyrate, produced by gut microorganisms play an important role in energy metabolism and physiology in ruminants as well as in human health. Butyrate is a preferred substrate in the rumen epithelium where approximately 90% of butyrate is metabolized. Additi...

  14. CD36 is expressed in a defined subpopulation of neurons in the olfactory epithelium

    PubMed Central

    Xavier, André Machado; Ludwig, Raissa Guimarães; Nagai, Maíra Harume; de Almeida, Tiago Jonas; Watanabe, Hebe Mizuno; Hirata, Marcio Yukio; Rosenstock, Tatiana Rosado; Papes, Fabio; Malnic, Bettina; Glezer, Isaias

    2016-01-01

    The sensory neurons in the olfactory epithelium (OSNs) are equipped with a large repertoire of olfactory receptors and the associated signal transduction machinery. In addition to the canonical OSNs, which express odorant receptors (ORs), the epithelium contains specialized subpopulations of sensory neurons that can detect specific information from environmental cues and relay it to relevant neuronal circuitries. Here we describe a subpopulation of mature OSNs in the main olfactory epithelium (MOE) which expresses CD36, a multifunctional receptor involved in a series of biological processes, including sensory perception of lipid ligands. The Cd36 expressing neurons coexpress markers of mature OSNs and are dispersed throughout the MOE. Unlike several ORs analyzed in our study, we found frequent coexpression of the OR Olfr287 in these neurons, suggesting that only a specific set of ORs may be coexpressed with CD36 in OSNs. We also show that CD36 is expressed in the cilia of OSNs, indicating a possible role in odorant detection. CD36-deficient mice display no signs of gross changes in the organization of the olfactory epithelium, but show impaired preference for a lipid mixture odor. Our results show that CD36-expressing neurons represent a distinct population of OSNs, which may have specific functions in olfaction. PMID:27145700

  15. Digital histologic analysis reveals morphometric patterns of age-related involution in breast epithelium and stroma.

    PubMed

    Sandhu, Rupninder; Chollet-Hinton, Lynn; Kirk, Erin L; Midkiff, Bentley; Troester, Melissa A

    2016-02-01

    Complete age-related regression of mammary epithelium, often termed postmenopausal involution, is associated with decreased breast cancer risk. However, most studies have qualitatively assessed involution. We quantitatively analyzed epithelium, stroma, and adipose tissue from histologically normal breast tissue of 454 patients in the Normal Breast Study. High-resolution digital images of normal breast hematoxylin and eosin-stained slides were partitioned into epithelium, adipose tissue, and nonfatty stroma. Percentage area and nuclei per unit area (nuclear density) were calculated for each component. Quantitative data were evaluated in association with age using linear regression and cubic spline models. Stromal area decreased (P = 0.0002), and adipose tissue area increased (P < 0.0001), with an approximate 0.7% change in area for each component, until age 55 years when these area measures reached a steady state. Although epithelial area did not show linear changes with age, epithelial nuclear density decreased linearly beginning in the third decade of life. No significant age-related trends were observed for stromal or adipose nuclear density. Digital image analysis offers a high-throughput method for quantitatively measuring tissue morphometry and for objectively assessing age-related changes in adipose tissue, stroma, and epithelium. Epithelial nuclear density is a quantitative measure of age-related breast involution that begins to decline in the early premenopausal period. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Luminal Microbes Promote Monocyte–Stem Cell Interactions Across a Healthy Colonic Epithelium

    PubMed Central

    Skoczek, Dagmara A.; Walczysko, Petr; Horn, Nikki; Parris, Alyson; Clare, Simon; Williams, Mark R.

    2014-01-01

    The intestinal epithelium forms a vital barrier between luminal microbes and the underlying mucosal immune system. Epithelial barrier function is maintained by continuous renewal of the epithelium and is pivotal for gut homeostasis. Breaching of the barrier causes mobilization of immune cells to promote epithelial restitution. However, it is not known whether microbes at the luminal surface of a healthy epithelial barrier influence immune cell mobilization to modulate tissue homeostasis. Using a mouse colonic mucosal explant model, we demonstrate that close proximity of luminal microbes to a healthy, intact epithelium results in rapid mucus secretion and movement of Ly6C+7/4+ monocytes closer to epithelial stem cells. These early events are driven by the epithelial MyD88-signaling pathway and result in increased crypt cell proliferation and intestinal stem cell number. Over time, stem cell number and monocyte–crypt stem cell juxtapositioning return to homeostatic levels observed in vivo. We also demonstrate that reduced numbers of tissue Ly6C+ monocytes can suppress Lgr5EGFP+ stem cell expression in vivo and abrogate the response to luminal microbes ex vivo. The functional link between monocyte recruitment and increased crypt cell proliferation was further confirmed using a crypt–monocyte coculture model. This work demonstrates that the healthy gut epithelium mediates communication between luminal bacteria and monocytes, and monocytes can modulate crypt stem cell number and promote crypt cell proliferation to help maintain gut homeostasis. PMID:24907348

  17. Histological and scanning electron microscopical study of the olfactory epithelium of the Indian major carp, Catla catla (Hamilton).

    PubMed

    Chakrabarti, P; Ghosh, S K

    2010-02-01

    The histological and micro-architecture of different cells lining the olfactory epithelium in Catla catla (Hamilton) have been studied by means of light and scanning electron microscopes. The oval olfactory rosette of the fish consists of a rosette of 30 to 32 primary lamellae. Each lamella is provided with restricted area of sensory epithelium in the middle region while the apical and basal part of the lamella consists of non-sensory epithelium. The non-sensory epithelium is made up of patches of ciliated supporting cells, epidermal or stratified epithelial cells with concentrically arranged microridges and scattered mucous cells. The sensory epithelium contains two types of receptor cell (microvillar and flagellated) and mucous cells. The multilayer olfactory organ in C. catla provides an acute sense of smell, and various aspects of their existence are mediated through olfactory cues.

  18. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    PubMed Central

    2012-01-01

    Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU) to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5) and keratin 14 (K14) for basal cells, Clara cell secretory protein (CCSP) for Clara cells, and acetylated tubulin (AcTub) for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10), but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion The data are

  19. Induction and Antagonism of Antiviral Responses in Respiratory Syncytial Virus-Infected Pediatric Airway Epithelium

    PubMed Central

    Villenave, Rémi; Broadbent, Lindsay; Douglas, Isobel; Lyons, Jeremy D.; Coyle, Peter V.; Teng, Michael N.; Tripp, Ralph A.; Heaney, Liam G.; Shields, Michael D.

    2015-01-01

    ABSTRACT Airway epithelium is the primary target of many respiratory viruses. However, virus induction and antagonism of host responses by human airway epithelium remains poorly understood. To address this, we developed a model of respiratory syncytial virus (RSV) infection based on well-differentiated pediatric primary bronchial epithelial cell cultures (WD-PBECs) that mimics hallmarks of RSV disease in infants. RSV is the most important respiratory viral pathogen in young infants worldwide. We found that RSV induces a potent antiviral state in WD-PBECs that was mediated in part by secreted factors, including interferon lambda 1 (IFN-λ1)/interleukin-29 (IL-29). In contrast, type I IFNs were not detected following RSV infection of WD-PBECs. IFN responses in RSV-infected WD-PBECs reflected those in lower airway samples from RSV-hospitalized infants. In view of the prominence of IL-29, we determined whether recombinant IL-29 treatment of WD-PBECs before or after infection abrogated RSV replication. Interestingly, IL-29 demonstrated prophylactic, but not therapeutic, potential against RSV. The absence of therapeutic potential reflected effective RSV antagonism of IFN-mediated antiviral responses in infected cells. Our data are consistent with RSV nonstructural proteins 1 and/or 2 perturbing the Jak-STAT signaling pathway, with concomitant reduced expression of antiviral effector molecules, such as MxA/B. Antagonism of Jak-STAT signaling was restricted to RSV-infected cells in WD-PBEC cultures. Importantly, our study provides the rationale to further explore IL-29 as a novel RSV prophylactic. IMPORTANCE Most respiratory viruses target airway epithelium for infection and replication, which is central to causing disease. However, for most human viruses we have a poor understanding of their interactions with human airway epithelium. Respiratory syncytial virus (RSV) is the most important viral pathogen of young infants. To help understand RSV interactions with pediatric

  20. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor.

    PubMed

    Clewell, H J; Efremenko, A; Campbell, J L; Dodd, D E; Thomas, R S

    2014-10-01

    Male and female Fischer 344 rats were exposed to naphthalene vapors at 0 (controls), 0.1, 1, 10, and 30ppm for 6h/d, 5 d/wk, over a 90-day period. Following exposure, the respiratory epithelium and olfactory epithelium from the nasal cavity were dissected separately, RNA was isolated, and gene expression microarray analysis was conducted. Only a few significant gene expression changes were observed in the olfactory or respiratory epithelium of either gender at the lowest concentration (0.1ppm). At the 1.0ppm concentration there was limited evidence of an oxidative stress response in the respiratory epithelium, but not in the olfactory epithelium. In contrast, a large number of significantly enriched cellular pathway responses were observed in both tissues at the two highest concentrations (10 and 30ppm, which correspond to tumorigenic concentrations in the NTP bioassay). The nature of these responses supports a mode of action involving oxidative stress, inflammation and proliferation. These results are consistent with a dose-dependent transition in the mode of action for naphthalene toxicity/carcinogenicity between 1.0 and 10ppm in the rat. In the female olfactory epithelium (the gender/site with the highest incidences of neuroblastomas in the NTP bioassay), the lowest concentration at which any signaling pathway was significantly affected, as characterized by the median pathway benchmark dose (BMD) or its 95% lower bound (BMDL) was 6.0 or 3.7ppm, respectively, while the lowest female olfactory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 16.1, 11.1, and 8.4ppm, respectively. In the male respiratory epithelium (the gender/site with the highest incidences of adenomas in the NTP bioassay), the lowest pathway BMD and BMDL were 0.4 and 0.3ppm, respectively, and the lowest male respiratory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 0.5, 0.7, and 0.9ppm, respectively

  1. A three-dimensional study of human fetal endocervix with special reference to its epithelium.

    PubMed

    Barberini, F; Makabe, S; Motta, P M

    1998-07-01

    The development of human fetal cervix has been systematically studied by SEM, obtaining a detailed map of its fine structure, particularly concerning the differentiation and maturation of the endocervical epithelium, including its "eversion" and "squamous metaplasia", normally occurring in postnatal life, but not yet observed in detail by electron microscopy in the fetus. Cervices from spontaneous abortion at 12, 15, 18, 20, 21 and 22 weeks and from intrauterine fetal death (hydrocephalus) at 31 weeks of development have been examined. At 12-15 weeks, as the canalization of the cervix proceeded, the endocervical epithelium consisted of high polyhedral cells, with regularly flattened or concave apices exhibiting scarce microvilli and often single primary cilia. Some narrow intercellular infoldings probably corresponded to primordial tubular glands. At the 18th week the epithelium was made up of a mosaic of flat or slightly raised polygonal cells, whose apical surface showed thin microplicae. At the 20th week a pseudostratified epithelium with many apically convex cells lined the cervical canal and the tubular glands. At 21 and 22 weeks "plicae palmatae" developed, covered by cells, often showing a smooth central area surrounded by microvilli, provided with a primary cilium and swollen by secretory material. This also formed rounded masses on the epithelium. In the lower part of the endocervix some very elongated cells showed short microplicae resulting from fusion of microvilli. At the 31st week secretion increased and its products spreading from the bottom of the glands contacted isolated ciliated cells at their openings and diffusely covered the surface epithelium. Most of the ectocervix exhibited squamous elements, with well-developed labyrinthine microplicae. These cells could overlap each other and also desquamate. The zone of the portio vaginalis around the os of the cervical canal appeared infolded and hypertrophic. Here, an indented squamo-columnar junction

  2. Histochemical profiles of mucins in the tracheal epithelium during the posthatching period of Japanese quail.

    PubMed

    Alan, Emel; Liman, Narin

    2010-01-01

    Mucus normally protects the airway epithelium from dehydration and inhaled infectious agents and possibly toxic substances. Two components of mucus, mucin and water play major roles in the elimination of inhaled foreign material. Mucins are large carbohydrates rich glycoprotein. The objective of the present study was to determine the histochemical changes in mucin pattern of the goblet cells and intraepithelial glands of the trachea in quails during the post-hatching period using specific various staining procedures for complex carbohydrates (Periodic acid Schiff, Alcian blue-Periodic acid Schiff (pH 2.5), Aldehyde fuchsin-Alcian blue (pH 2.5), High-iron diamine-Alcian blue (pH 2.5), Periodic acid-Phenylhydrazine-Schiff). The intraepithelial alveolar glands were present at hatching and their numbers increased with the advance of age. In quail of all ages, the histochemical reactions revealed that the goblet cells and mucous cells of intraepithelial glands contained the mucins with vicinal diol groups, neutral mucin, sialomucin and sulphomucin. In all ages studied, the tracheal epithelium contained three distinct types of goblet or mucous cells producing neutral-, acid- and mixture of neutral- and acid mucins. In 1 day old, the majority of the goblet cells and gland cells contained neutral mucin or a mixture of neutral- and acid mucins, while the proportion of only acid mucin-producing cells was few. The majority of acidic mucins consisted of sulphomucin. The sialomucin-containing cells were only a few. After day 14, it was seen that the content of sialomucin in the epithelium became more diffuse toward adulthood. In conclusion, the content of mucin of tracheal epithelium was variable depending on the ages during the post-hatching period. These changes in mucin dynamics could affect the protective functions against pathogens and toxins of the tracheal epithelium.

  3. Progressive effects of N-myc deficiency on proliferation, neurogenesis, and morphogenesis in the olfactory epithelium.

    PubMed

    Wittmann, Walter; Schimmang, Thomas; Gunhaga, Lena

    2014-06-01

    N-myc belongs to the myc proto-oncogene family, which is involved in numerous cellular processes such as proliferation, growth, apoptosis, and differentiation. Conditional deletion of N-myc in the mouse nervous system disrupted brain development, indicating that N-myc plays an essential role during neural development. How the development of the olfactory epithelium and neurogenesis within are affected by the loss of N-myc has, however, not been determined. To address these issues, we examined an N-myc(Foxg1Cre) conditional mouse line, in which N-myc is depleted in the olfactory epithelium. First changes in N-myc mutants were detected at E11.5, with reduced proliferation and neurogenesis in a slightly smaller olfactory epithelium. The phenotype was more pronounced at E13.5, with a complete lack of Hes5-positive progenitor cells, decreased proliferation, and neurogenesis. In addition, stereological analyses revealed reduced cell size of post-mitotic neurons in the olfactory epithelium, which contributed to a smaller olfactory pit. Furthermore, we observed diminished proliferation and neurogenesis also in the vomeronasal organ, which likewise was reduced in size. In addition, the generation of gonadotropin-releasing hormone neurons was severely reduced in N-myc mutants. Thus, diminished neurogenesis and proliferation in combination with smaller neurons might explain the morphological defects in the N-myc depleted olfactory structures. Moreover, our results suggest an important role for N-myc in regulating ongoing neurogenesis, in part by maintaining the Hes5-positive progenitor pool. In summary, our results provide evidence that N-myc deficiency in the olfactory epithelium progressively diminishes proliferation and neurogenesis with negative consequences at structural and cellular levels.

  4. Morphological Alterations of the Palpebral Conjunctival Epithelium in a Dry Eye Model

    PubMed Central

    Henriksson, Johanna Tukler; De Paiva, Cintia S.; Farley, William; Pflugfelder, Stephen C.; Burns, Alan R.; Bergmanson, Jan P.G.

    2012-01-01

    Purpose To investigate the normal palpebral conjunctival histology in C57BL/6 mice, and the structural changes that occur in a dry eye model. Methods 24 male and female C57BL/6 mice, 8 untreated (UT) and 16 exposed to experimental ocular surface desiccating stress (DS). Ocular dryness was induced by administration of scopolamine hydrobromide (0.5 mg/0.2 ml) QID for 5 (DS5) or 10 (DS10) days. Counts and measurements were obtained using anatomical reference points and goblet cell density was investigated with a variety of stains. Results Near the junction between the lid margin and the normal palpebral conjunctiva, the epithelium had an average thickness of 45.6±10.5μm, 8.8±2.0 cell layers, versus 37.7±5.6μm, 7.4±1.3 layers in DS10 (P<0.05). In the goblet cell populated palpebral region the normal epithelium was thicker (P<0.05) than in DS5 and DS10. In the control, 43% of the goblet cells were covered by squamous epithelium, compared to 58% (DS5) and 63% (DS10) (P<0.05). A decreased number of Periodic Acid Schiff (PAS) and Alcian blue stained goblet cells was observed in the dry eye. Not all goblet cells stained with PAS and Alcian blue. Conclusions The mouse palpebral conjunctival epithelium was structurally similar to the human. After DS the palpebral conjunctival epithelium decreased in thickness and goblet cell access to the surface appeared to be inhibited by surrounding epithelial cells, potentially slowing down their migration to the surface. Differential staining with PAS and Alcian blue suggests there may be different subtypes of conjunctival goblet cells. PMID:23146932

  5. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility

    PubMed Central

    Sehgal, Anuj; Rios, Daniel

    2016-01-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer’s patches is essential for the efficient spread of disease to the brain. To replicate within Peyer’s patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer’s patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer’s patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases

  6. Visualization of ex vivo human ciliated epithelium and induced flow using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ling, Yuye; Gamm, Uta A.; Yao, Xinwen; Arteaga-Solis, Emilio; Emala, Charles W.; Choma, Michael A.; Hendon, Christine P.

    2017-04-01

    The ciliated epithelium is important to the human respiratory system because it clears mucus that contains harmful microorganisms and particulate matter. We report the ex vivo visualization of human trachea/bronchi ciliated epithelium and induced flow characterized by using spectral-domain optical coherence tomography (SD-OCT). A total number of 17 samples from 7 patients were imaged. Samples were obtained from Columbia University Department of Anesthesiology's tissue bank. After excision, the samples were placed in Gibco Medium 199 solution with oxygen at 4°C until imaging. The samples were maintained at 36.7°C throughout the experiment. The imaging protocol included obtaining 3D volumes and 200 consecutive B-scans parallel to the head-to-feet direction (superior-inferior axis) of the airway, using Thorlabs Telesto system at 1300 nm at 28 kHz A-line rate and a custom built high resolution SDOCT system at 800nm at 32 kHz A-line rate. After imaging, samples were processed with H and E histology. Speckle variance of the time resolved datasets demonstrate significant contrast at the ciliated epithelium sites. Flow images were also obtained after injecting 10μm polyester beads into the solution, which shows beads traveling trajectories near the ciliated epithelium areas. In contrary, flow images taken in the orthogonal plane show no beads traveling trajectories. This observation is in line with our expectation that cilia drive flow predominantly along the superior-inferior axis. We also observed the protective function of the mucus, shielding the epithelium from the invasion of foreign objects such as microspheres. Further studies will be focused on the cilia's physiological response to environmental changes such as drug administration and physical injury.

  7. Conserved form and function of the germinal epithelium through 500 million years of vertebrate evolution.

    PubMed

    Grier, Harry J; Uribe, Mari Carmen; Lo Nostro, Fabiana L; Mims, Steven D; Parenti, Lynne R

    2016-08-01

    The germinal epithelium, i.e., the site of germ cell production in males and females, has maintained a constant form and function throughout 500 million years of vertebrate evolution. The distinguishing characteristic of germinal epithelia among all vertebrates, males, and females, is the presence of germ cells among somatic epithelial cells. The somatic epithelial cells, Sertoli cells in males or follicle (granulosa) cells in females, encompass and isolate germ cells. Morphology of all vertebrate germinal epithelia conforms to the standard definition of an epithelium: epithelial cells are interconnected, border a body surface or lumen, are avascular and are supported by a basement membrane. Variation in morphology of gonads, which develop from the germinal epithelium, is correlated with the evolution of reproductive modes. In hagfishes, lampreys, and elasmobranchs, the germinal epithelia of males produce spermatocysts. A major rearrangement of testis morphology diagnoses osteichthyans: the spermatocysts are arranged in tubules or lobules. In protogynous (female to male) sex reversal in teleost fishes, female germinal epithelial cells (prefollicle cells) and oogonia transform into the first male somatic cells (Sertoli cells) and spermatogonia in the developing testis lobules. This common origin of cell types from the germinal epithelium in fishes with protogynous sex reversal supports the homology of Sertoli cells and follicle cells. Spermatogenesis in amphibians develops within spermatocysts in testis lobules. In amniotes vertebrates, the testis is composed of seminiferous tubules wherein spermatogenesis occurs radially. Emerging research indicates that some mammals do not have lifetime determinate fecundity. The fact emerged that germinal epithelia occur in the gonads of all vertebrates examined herein of both sexes and has the same form and function across all vertebrate taxa. Continued study of the form and function of the germinal epithelium in vertebrates

  8. EXPRESSION OF PAX6 AND SOX2 IN ADULT OLFACTORY EPITHELIUM

    PubMed Central

    Guo, Zhen; Packard, Adam; Krolewski, Richard C.; Harris, Margaret T.; Manglapus, Glen L.; Schwob, James E.

    2010-01-01

    The olfactory epithelium maintains stem and progenitor cells that support the neuroepithelium’s life-long capacity to reconstitute after injury. However, the identity of the stem cells – and their regulation – remain poorly defined. The transcription factors Pax6 and Sox2 are characteristic of stem cells in many tissues, including the brain. Therefore, we assessed the expression of Pax6 and Sox2 in normal olfactory epithelium and during epithelial regeneration after methyl bromide lesion or olfactory bulbectomy. Sox2 is found in multiple kinds of cells in normal epithelium, including sustentacular cells, horizontal basal cells, and some globose basal cells. Pax6 is co-expressed with Sox2 in all these, but is also found in duct/gland cells as well as olfactory neurons that innervate necklace glomeruli. Most of the Sox2/Pax6-positive globose basal cells are actively cycling, but some express the cyclin-dependent kinase inhibitor p27Kip1, and are presumably mitotically quiescent. Among globose basal cells, Sox2 and Pax6 are co-expressed by putatively multipotent progenitors (labeled by neither anti-Mash1 nor anti-Neurog1) and neuron-committed transit amplifying cells (which express Mash1). However, Sox2 and Pax6 are expressed by only a minority of immediate neuronal precursors (Neurog1- and NeuroD1-expressing). The assignment of Sox2 and Pax6 to these categories of globose basal cells is confirmed by a temporal analysis of transcription factor expression during the recovery of the epithelium from methyl bromide-induced injury. Each of the Sox2/Pax6-colabeled cell types is at a remove from the birth of neurons; thus, suppressing their differentiation may be among the roles of Sox2/Pax6 in the olfactory epithelium. PMID:20852734

  9. An examination of surface epithelium structures of the embryo across the genus Poeciliopsis (Poeciliidae).

    PubMed

    Panhuis, Tami M; Fris, Megan; Tuhela, Laura; Kwan, Lucia

    2017-08-28

    In viviparous, teleost fish, with postfertilization maternal nutrient provisioning, embryonic structures that facilitate maternal-fetal nutrient transfer are predicted to be present. For the family Poeciliidae, only a handful of morphological studies have explored these embryonic specializations. Here, we present a comparative morphological study in the viviparous poeciliid genus, Poeciliopsis. Using microscopy techniques, we examine the embryonic surface epidermis of Poeciliopsis species that vary in their level of postfertilization maternal nutrient provisioning and placentation across two phylogenetic clades and three independent evolutionary origins of placentation. We focus on surface features of the embryo that may facilitate maternal-fetal nutrient transfer. Specifically, we studied cell apical-surface morphology associated with the superficial epithelium that covers the body and sac (yolk and pericardial) of embryos at different developmental stages. Scanning electron microscopy revealed common surface epithelial cells across species, including pavement cells with apical-surface microridges or microvilli and presumed ionocytes and/or mucus-secreting cells. For three species, in the mid-stage embryos, the surface of the body and sac were covered in microvillus epithelium. The remaining species did not display microvillus epithelium at any of the stages examined. Instead, their epithelium of the body and sac were composed of cells with apical-surface microridges. For all species, in the late stage embryos, the surface of the body proper was composed of apical-surface microridges in a "fingerprint-like arrangement." Despite the differences in the surface epithelium of embryos across Poeciliopsis species and embryonic developmental stages, this variation was not associated with the level of postfertilization maternal nutrient provisioning. We discuss these results in light of previous morphological studies of matrotrophic, teleost fish, phylogenetic

  10. Effect of the synthetic NC-1059 peptide on diffusion of riboflavin across an intact corneal epithelium.

    PubMed

    Zhang, Yuntao; Sukthankar, Pinakin; Tomich, John M; Conrad, Gary W

    2012-05-04

    To investigate the effect of the peptide NC-1059 on riboflavin (RF) diffusion across an intact corneal epithelium into the stroma. NC-1059 peptide was synthesized by solid-phase synthesis with 9-fluorenylmethoxycarbonyl chemistry, characterized by reversed-phase HPLC, and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. The diffusion of RF across embryonic day 18 chick corneal epithelium ex vivo was monitored using confocal microscopy. The depth distributions of RF in the corneal stroma were calculated using a group of linear equations based on the relationship between RF fluorescence intensity and concentration. Data presented in this study demonstrate that the NC-1059 peptide can transiently open the intact epithelial barrier to allow the permeation of RF into the stroma. The effect of NC-1059 peptide on RF diffusion across the corneal epithelium was concentration and time dependent. The amount of RF reaching a 50-μm depth of chick corneal stoma increased dramatically after exposure to NC-1059 for 10 minutes, reaching a plateau by 30 minutes. The concentrations of RF in the presence of NC-1059 at corneal stromal depths of 50, 100, and 150 μm were significantly higher than in the absence of the peptide, and almost as high as in corneas in which the epithelium first had been physically removed. In addition, a cell viability assay indicated that the NC-1059 peptide did not kill corneal epithelial cells. NC-1059 peptide significantly enhances the diffusion of RF across intact corneal epithelium into the stroma.

  11. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility.

    PubMed

    Donaldson, David S; Sehgal, Anuj; Rios, Daniel; Williams, Ifor R; Mabbott, Neil A

    2016-12-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases.

  12. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium.

    PubMed

    Baiocchi, Stefano; Mazzotta, Cosimo; Cerretani, Daniela; Caporossi, Tomaso; Caporossi, Aldo

    2009-05-01

    To evaluate intrastromal concentrations of riboflavin with and without epithelium to ensure the efficacy and safety of corneal crosslinking (CXL) by the standard and transepithelial procedures. Department of Ophthalmology and Department of Pharmacology G. Segre, Siena University, Siena, Italy. This study comprised keratoconic patients enrolled for penetrating keratoplasty (PKP) and warm-stored sclerocorneal rings unsuitable for transplantation. Half the PKP specimens were debrided, and half were left with the epithelium in situ. One of the latter and 1 debrided sample were not exposed to riboflavin (controls). Samples in both groups were soaked with 0.1% riboflavin-dextran 20% solution instilled every 2 minutes for 5, 15, and 30 minutes. Riboflavin concentrations were determined by high-performance liquid chromatography (HPLC). The study evaluated 14 PKP specimens and 16 sclerocorneal rings. Control samples did not show a riboflavin emission peak. In exposed samples with epithelium, the mean riboflavin concentration was 91.88 ng/g after 5 minutes of exposure, 95.60 ng/g after 15 minutes, and 94.92 ng/g after 30 minutes. In the debrided samples, the mean riboflavin concentration was 14.42 microg/g, 20.92 microg/g, and 24.06 microg/g, respectively. No differences were seen between the in vivo samples and the ex vivo samples. The HPLC quantitative study showed that stromal concentrations of riboflavin increased with exposure time only if the epithelium was removed. A theoretically safe and effective riboflavin concentration of 15 microg/g was obtained for ultraviolet A-induced CXL only after the epithelium was removed and after at least 10 minutes of riboflavin application every 2 minutes.

  13. Morphological and autoradiographic studies on the corneal and limbal epithelium of rabbits.

    PubMed

    Góes, Rejane Maira; Barbosa, Flávia Leão; De Faria-E-Sousa, Sidney Júlio; Haddad, Antonio

    2008-02-01

    The investigation was centered on the morphological features of the conjunctiva-cornea transition (limbus) of the rabbit eye and the proliferative behavior of its epithelium. The eyes were processed for examination with light and electron microscopy, as well as for autoradiography after intravitreal injection of [(3)H]thymidine ([(3)H]TdR). At the sites of extraocular muscle insertion, the vascularization of the stroma extended to the peripheral cornea, and the limbal epithelium was thin with its basal stratum made up by clear cuboidal cells. In between the muscle insertions, the cuboidal clear cells, as well as the stroma blood vessels, were scarce. At the light microscope level, the basement membrane was distinct in the cornea but not in the limbus or the conjunctiva. Autoradiographs demonstrated that, at the limbus, the basal cells migrated very quickly to the suprabasal region and remained there up to the 28-day interval. Labeled cells were identified in all epithelial layers of the cornea, including the basal one, at 21 and 28 days but not in the limbal basal clear cells. The rate of renewal of conjunctival epithelium was similar to that observed for the transition with scarce clear cells. The high-resolution autoradiographs demonstrated that the basal cuboidal clear limbal cells exhibit a quick renewal and that they are not label-retaining cells. These latter ones were detected all over the corneal epithelium and in the suprabasal layers of the limbus up to 28 days, in physiological conditions, without the need of stimulation by damage to the corneal epithelium. (c) 2008 Wiley-Liss, Inc.

  14. NADPH: cytochrome P-450 reductase in olfactory epithelium. Relevance to cytochrome P-450-dependent reactions.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1986-01-01

    The presence of a very active cytochrome P-450-dependent drug-metabolizing system in the olfactory epithelium has been confirmed by using 7-ethoxycoumarin, 7-ethoxyresorufin, hexobarbitone and aniline as substrates, and the reasons for the marked activity of the cytochrome P-450 in this tissue have been investigated. The spectral interaction of hexobarbitone and aniline with hepatic and olfactory microsomes has been examined. By this criterion there was no evidence for marked differences in the spin state of the cytochromes of the two tissues, or for the olfactory epithelium containing a greater amount of cytochrome capable of binding hexobarbitone, a very actively metabolized substrate. Rates of NADPH and NADH: cytochrome c reductase activity were found to be higher in the olfactory epithelium than in the liver, and direct evidence was obtained for a greater amount of the NADPH-dependent flavoprotein in the olfactory microsomes. Investigation of male rats and male and female mice, as well as male hamsters, demonstrated that, in all cases, the cytochrome P-450 levels of the olfactory epithelium were lower than those of the liver, while the 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities were higher. A correlation was found between 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities for both tissues in all species examined. The ratio of reductase to cytochrome P-450 was found to be considerably higher in the olfactory epithelium (1:2-1:3) than in the liver (1:11-1:15), regardless of the species examined, suggesting that facilitated electron flow may contribute significantly to the cytochrome P-450 catalytic turnover in the olfactory tissue. Images Fig. 1. PMID:3101674

  15. Gene expression based evidence of innate immune response activation in the epithelium with oral lichen planus

    PubMed Central

    Adami, Guy R.; Yeung, Alexander C.F.; Stucki, Grant; Kolokythas, Antonia; Sroussi, Herve Y.; Cabay, Robert J.; Kuzin, Igor; Schwartz, Joel L.

    2014-01-01

    Objective Oral lichen planus (OLP) is a disease of the oral mucosa of unknown cause producing lesions with an intense band-like inflammatory infiltrate of T cells to the subepithelium and keratinocyte cell death. We performed gene expression analysis of the oral epithelium of lesions in subjects with OLP and its sister disease, oral lichenoid reaction (OLR), in order to better understand the role of the keratinocytes in these diseases. Design Fourteen patients with OLP or OLR were included in the study, along with a control group of 23 subjects with a variety of oral diseases and a normal group of 17 subjects with no clinically visible mucosal abnormalities. Various proteins have been associated with OLP, based on detection of secreted proteins or changes in RNA levels in tissue samples consisting of epithelium, stroma, and immune cells. The mRNA level of twelve of these genes expressed in the epithelium was tested in the three groups. Results Four genes showed increased expression in the epithelium of OLP patients: CD14, CXCL1, IL8, and TLR1, and at least two of these proteins, TLR1 and CXCL1, were expressed at substantial levels in oral keratinocytes. Conclusions Because of the large accumulation of T cells in lesions of OLP it has long been thought to be an adaptive immunity malfunction. We provide evidence that there is increased expression of innate immune genes in the epithelium with this illness, suggesting a role for this process in the disease and a possible target for treatment. PMID:24581860

  16. Expression of keratins K12, K4 and K14 during development of ocular surface epithelium.

    PubMed

    Kurpakus, M A; Maniaci, M T; Esco, M

    1994-11-01

    The 55 kDa keratin K12 and the 59 kDa keratin K4 were used as biochemical markers of differentiated corneal and conjunctival epithelium, respectively, to follow the temporal and spatial appearance of these cell types during embryonic development of the mouse eye. K12 was first detected in corneal epithelial cells of day 15 mouse embryos in a small subpopulation of superficial cells. At later developmental stages only suprabasal corneal epithelium expressed K12, however, in post-natal and adult cornea all cell layers were K12-positive. K4 was first observed, in 14 and 15 day embryos, in a subpopulation of epithelial cells which had invaginated from surface ectoderm to form the lid buds. From embryonic day 16 on K4 was detected in all areas of developing conjunctival epithelium. Some superficial corneal epithelial cells also expressed K4 during embryonic development, but by immunofluorescence microscopic criteria, this keratin was localized exclusively to the conjunctiva in post-natal and adult eye. Expression of the 50 kDa 'basal-type' keratin K14 was also examined in this study. Similarly to K4, K14 was first noted in epithelium comprising the lid bud at embryonic day 14. Between 14 and 17 days of development some epithelial cells in the putative fornix of the conjunctiva did not express K14. Although corneal epithelial cells expressed K14 during development, in adult cornea only certain basal cells did so. These results suggest that the invagination of surface ectoderm to form the presumptive eyelid may be coupled to the initiation of differentiation of ocular surface epithelium.

  17. TRANSCRIPTOMIC ANALYSIS OF F344 RAT NASAL EPITHELIUM SUGGESTS THAT THE LACK OF CARCINOGENIC RESPONSE TO GLUTARALDEHYDE IS DUE TO ITS GREATER TOXICITY COMPARED TO FORMALDEHYDE

    EPA Science Inventory

    Formaldehyde is cytotoxic and carcinogenic to the rat nasal respiratory epithelium inducing tumors after 12 months. Glutaraldehyde is also cytotoxic but is not carcinogenic to nasal epithelium even after 24 months. Both aldehydes induce similar acute and subchronic histopathology...

  18. Cytokeratin patterns in corneal, limbal, and conjunctival epithelium. An immunofluorescence study with PKK-1, 8.12, 8.60, and 4.62 anticytokeratin antibodies.

    PubMed

    Ryder, M I; Weinreb, R N

    1990-11-01

    The authors examined immunofluorescently the specific cytokeratin staining patterns of corneal, limbal, and conjunctival epithelium with PKK-1, 8.12, 4.62, and 8.60 monoclonal anticytokeratin antibodies. Observations were made on unfixed frozen postmortem human tissue. The PKK-1 antibody stain was observed in all layers of corneal epithelium but only in suprabasal layers of limbal and conjunctival epithelium. By contrast, the 8.12 antibody stain was observed only in the superficial layer of corneal epithelium but through all layers of limbal and conjunctival epithelium. The 4.60 antibody stain was seen in focal areas of corneal and limbal epithelium and through all layers of conjunctival epithelium. The 8.60 antibody stain was not present in the three epithelia. These immunofluorescence studies showed unique cytokeratin patterns among layers in corneal, limbal, and conjunctival epithelium.

  19. TRANSCRIPTOMIC ANALYSIS OF F344 RAT NASAL EPITHELIUM SUGGESTS THAT THE LACK OF CARCINOGENIC RESPONSE TO GLUTARALDEHYDE IS DUE TO ITS GREATER TOXICITY COMPARED TO FORMALDEHYDE

    EPA Science Inventory

    Formaldehyde is cytotoxic and carcinogenic to the rat nasal respiratory epithelium inducing tumors after 12 months. Glutaraldehyde is also cytotoxic but is not carcinogenic to nasal epithelium even after 24 months. Both aldehydes induce similar acute and subchronic histopathology...

  20. Epigenetic modifications and diabetic retinopathy.

    PubMed

    Kowluru, Renu A; Santos, Julia M; Mishra, Manish

    2013-01-01

    Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s) responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2) and matrix metalloproteinase-9 (MMP-9) are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1), and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.

  1. Surface modification by molecular ions

    SciTech Connect

    Hanley, L.; Schultz, D. G.; Ada, E. T.

    1999-06-10

    There are several advantages in using molecular ions for surface modification. The modification can be confined to the uppermost layer of the surface, the molecular character of the ion can be imparted to the surface, and sputter yields are often higher. These effects are demonstrated by the use of mass selected ion beams incident on well characterized surfaces. Energy transfer is examined by detecting the masses and energies of ions scattered off surfaces and performing molecular dynamics simulations. Surface modification is followed by chemical analysis with x-ray photoelectron spectroscopy and surface mass spectrometry. TRIDYN monte carlo simulations are used to support some of the modification experiments. Energy transfer is examined for Si(CD{sub 3}){sub 3}{sup +} scattered off clean and hexanethiolate covered Au(111). Adsorbate desorption cross sections and substrate damage depths for NH{sub 3}/CO/Ni(111) are compared for 10-1000 eV isobaric atomic and polyatomic ions, Xe{sup +} and SF{sub 5}{sup +}. The surface chemical modification of polystyrene thin films by 10-100 eV SF{sub 5}{sup +} and C{sub 3}F{sub 5}{sup +} ions is also examined.

  2. Beta-agonists and secretory cell number and intracellular glycoproteins in airway epithelium. The effect of isoproterenol and salbutamol.

    PubMed Central

    Jones, R.; Reid, L.

    1979-01-01

    This study describes the effect of systemic administration of the beta-adrenergic agonists isoproterenol and salbutamol on the secretory cell populations in seven regions of rat airway epithelium (three extrapulmonary and four intrapulmonary) and on the size of salivary glands and heart. Isoproterenol (a nonselective beta-adrenergic agonist) significantly increases secretory cell number in all airway regions except the midtrachea; salbutamol (a selective beta 2 agonist) increases secretory cell number only in proximal and peripheral regions. The absolute number of secretory cells is greatest in the most peripheral region after isoproterenol administration and in the most proximal region after salbutamol, although both drugs produce the greatest relative increase at the periphery. In proximal and, particularly, peripheral regions, the increase by isoproterenol (less than 3- and 14-fold, respectively) is greater than by salbutamol (less than 2- and less than 3-fold, respectively). In all airway regions, both drugs modify intracellular glycoprotein in the secretory cell population; within a given region, modification is much the same. In the most proximal region, the population of cells synthesizing only granules of neutral glycoprotein significantly increases while in other regions increase is in cells synthesizing only granules of acid. A significant shift in glycoprotein synthesis occurs whether or not the secretory cell population is increased, which suggests that existing as well as newly appearing cells modify their product. Isoproterenol significantly increases the size of the parotid and submaxillary glands; salbutamol increases the size of the parotid only. Isoproterenol significantly increases the weight of both ventricles of the heart; salbutamol has no such effect. PMID:36762

  3. Pigment epithelium-derived factor (PEDF) shares binding sites in collagen with heparin/heparan sulfate proteoglycans.

    PubMed

    Sekiya, Atsushi; Okano-Kosugi, Hitomi; Yamazaki, Chisato M; Koide, Takaki

    2011-07-29

    Pigment epithelium-derived factor (PEDF) is a collagen-binding protein that is abundantly distributed in various tissues, including the eye. It exhibits various biological functions, such as anti-angiogenic, neurotrophic, and neuroprotective activities. PEDF also interacts with extracellular matrix components such as collagen, heparan sulfate proteoglycans (HSPGs), and hyaluronan. The collagen-binding property has been elucidated to be important for the anti-angiogenic activity in vivo (Hosomichi, J., Yasui, N., Koide, T., Soma, K., and Morita, I. (2005) Biochem. Biophys. Res. Commun. 335, 756-761). Here, we investigated the collagen recognition mechanism by PEDF. We first narrowed down candidate PEDF-binding sequences by taking advantage of previously reported structural requirements in collagen. Subsequent searches for PEDF-binding sequences employing synthetic collagen-like peptides resulted in the identification of one of the critical binding sites for PEDF, human α1(I)(929-938) (IKGHRGFSGL). Further analysis revealed that the collagen recognition by PEDF is sequence- and conformation-specific, and the high affinity binding motif is KGXRGFXGL in the triple helix. The PEDF-binding motif significantly overlapped with the heparin/HSPG-binding motif, KGHRG(F/Y). The interaction of PEDF with collagen I was specifically competed with by heparin but not by chondroitin sulfate-C or hyaluronan. The binding sequences for PEDF and heparin/HSPG also overlapped with the covalent cross-linking sites between collagen molecules. These findings imply a functional relationship between PEDF and HSPGs during angiogenesis, and the interaction of these molecules is regulated by collagen modifications.

  4. Photobleaching of melanosomes from retinal pigment epithelium: II. Effects on the response of living cells to photic stress.

    PubMed

    Zareba, Mariusz; Sarna, Tadeusz; Szewczyk, Grzegorz; Burke, Janice M

    2007-01-01

    Melanosomes of the retinal pigment epithelium (RPE) are long lived organelles that may undergo photobleaching with aging, which can diminish the antioxidant efficiency of melanin. Here, isolated porcine RPE melanosomes were experimentally photobleached with visible light to simulate aging and compared with untreated granules or control particles (black latex beads) for their effects on the survival of photically stressed ARPE-19 cultures. Particles were delivered to cultures for uptake by phagocytosis then cells were exposed to violet light and analyzed by a new live cell imaging method to identify the time of apoptotic blebbing as a dynamic measure of reduced cell survival. Results indicated that untreated melanosomes did not decrease photic injury to ARPE-19 cells when compared with cells lacking particles or with cells containing control particles, as might be expected if melanin performed an antioxidant function. Instead cells with untreated melanosomes showed reduced survival indicated by an earlier onset of blebbing and a lower fraction of surviving cells after photic stress. Cell survival was reduced even further in stressed cells containing melanosomes that were photobleached, and survival decreased with increasing photobleaching time. Photobleaching of RPE melanosomes therefore makes cells containing them more sensitive to light-induced cytotoxicity. This observation raises the possibility that aged melanosomes increase RPE cell photic stress in situ, perhaps contributing to reduced tissue function and to degeneration of the adjacent retina that the RPE supports. How melanosomes (photobleached or not) interact with their local subcellular environment to modify RPE cell survival is poorly understood and is likely determined by the physicochemical state of the granule and its constituent melanin. The live cell imaging method introduced here, which permitted detection of a graded effect of photobleaching, provides a sensitive bioassay for probing the effects

  5. Betaine aids in the osmoregulation of duodenal epithelium of broiler chicks, and affects the movement of water across the small intestinal epithelium in vitro.

    PubMed

    Kettunen, H; Peuranen, S; Tiihonen, K

    2001-06-01

    In Experiment 1, the water holding capacity of broiler chick intestinal tissue was studied in vitro. The chicks were fed with corn-based diets with or without a 0.2% betaine supplementation in the drinking water. Slices from duodenum and jejunum were incubated in iso-osmotic (300 mM) or hyperosmotic saline (600 mM) with or without 10 mM betaine. The water volume of tissue slices was studied by adding tritiated water in the incubation medium while [14C]inulin was used to correct for the adherent water. After 30 min of incubation, by which time the steady-state of tritium influx had been achieved, the 3H and 14C-activities of the tissue slices were measured. The ileal and duodenal tissues incubated in the hyperosmotic saline accumulated less tritium than those incubated in iso-osmotic saline. Duodenal slices incubated in hyperosmotic saline with the presence of betaine showed a tritium content similar to slices incubated in iso-osmotic saline. The data suggest that the presence of betaine helped the duodenal, but not jejunal, epithelium to maintain water balance in hyperosmotic conditions. The dietary betaine supplementation diminished the differences between the incubation treatments in duodenal, but not in ileal tissue. In Experiment 2, the same double labeling method, but with shorter incubation times, was used to assess the rate of water flux from the incubation medium to duodenal or jejunal slices. The dietary treatments (as in Experiment 1) had little effect on the results. Betaine in the hyperosmotic saline significantly decreased the rate of tritium accumulation into the tissue slices, indicating that betaine slowed down the influx of water to the epithelium. We suggest that betaine affects the movement of water across the intestinal epithelium and has a role in the osmoregulation of small intestine of broiler chicks.

  6. Playing TETris with DNA modifications

    PubMed Central

    Delatte, Benjamin; Deplus, Rachel; Fuks, François

    2014-01-01

    Methylation of the fifth carbon of cytosine was the first epigenetic modification to be discovered in DNA. Recently, three new DNA modifications have come to light: hydroxymethylcytosine, formylcytosine, and carboxylcytosine, all generated by oxidation of methylcytosine by Ten Eleven Translocation (TET) enzymes. These modifications can initiate full DNA demethylation, but they are also likely to participate, like methylcytosine, in epigenetic signalling per se. A scenario is emerging in which coordinated regulation at multiple levels governs the participation of TETs in a wide range of physiological functions, sometimes via a mechanism unrelated to their enzymatic activity. Although still under construction, a sophisticated picture is rapidly forming where, according to the function to be performed, TETs ensure epigenetic marking to create specific landscapes, and whose improper build-up can lead to diseases such as cancer and neurodegenerative disorders. PMID:24825349

  7. Laser modification of polyamide fabrics

    NASA Astrophysics Data System (ADS)

    Bahtiyari, M. İ.

    2011-02-01

    A new method for the modification of the properties of polyamide fabric, based on exposure to the output from a CO 2 laser, has been investigated. It was found that, after laser modification of polyamide fabric, the dyeability of fabric was increased significantly, while the bursting strength was decreased. The reasons for this drastic increase in dyeability of polyamide fabrics have been analyzed with the help of FTIR and iodine sorption methods, revealing a relationship with a decrease in the crystallinity of the polyamide. It was observed that, as the laser modification of the fabric was carried out with low intensity, the concentration of free amino groups, which are necessary during dyeing with acid and reactive dyes, increased.

  8. Surface modification for corrosion resistance

    SciTech Connect

    Natesan, K.

    1993-06-01

    The raw gas environments that arise from coal gasification have chemical compositions that are low in pO{sub 2} and moderate-to-high in pS{sub 2}. Metallic materials for service in such an environment undergo predominantly sulfidation attack at temperatures of 400 to 700{degree}C. Modification of alloy compositions in bulk can alter the scaling processes and lead to improvements in corrosion resistance, but the benefits can only be attained at temperatures much higher than the service temperatures of the components. Modification of surfaces of structural components by several of the coating techniques examined in this study showed substantial benefit in corrosion resistance when tested in simulated coal gasification environments. The paper presents several examples of surface modification and their corrosion performance.

  9. Drug Addiction and DNA Modifications.

    PubMed

    Brown, Amber N; Feng, Jian

    2017-01-01

    Drug addiction is a complex disorder which can be influenced by both genetic and environmental factors. Research has shown that epigenetic modifications can translate environmental signals into changes in gene expression, suggesting that epigenetic changes may underlie the causes and possibly treatment of substance use disorders. This chapter will focus on epigenetic modifications to DNA, which include DNA methylation and several recently defined additional DNA epigenetic changes. We will discuss the functions of DNA modifications and methods for detecting them, followed by a description of the research investigating the function and consequences of drug-induced changes in DNA methylation patterns. Understanding these epigenetic changes may provide us translational tools for the diagnosis and treatment of addiction in the future.

  10. Epigenetic Modifications in Essential Hypertension.

    PubMed

    Wise, Ingrid A; Charchar, Fadi J

    2016-03-25

    Essential hypertension (EH) is a complex, polygenic condition with no single causative agent. Despite advances in our understanding of the pathophysiology of EH, hypertension remains one of the world's leading public health problems. Furthermore, there is increasing evidence that epigenetic modifications are as important as genetic predisposition in the development of EH. Indeed, a complex and interactive genetic and environmental system exists to determine an individual's risk of EH. Epigenetics refers to all heritable changes to the regulation of gene expression as well as chromatin remodelling, without involvement of nucleotide sequence changes. Epigenetic modification is recognized as an essential process in biology, but is now being investigated for its role in the development of specific pathologic conditions, including EH. Epigenetic research will provide insights into the pathogenesis of blood pressure regulation that cannot be explained by classic Mendelian inheritance. This review concentrates on epigenetic modifications to DNA structure, including the influence of non-coding RNAs on hypertension development.

  11. Manufacturer evaluations of endograft modifications.

    PubMed

    Waninger, Matthew S; Whirley, Robert G; Smith, Louis J; Wolf, Ben S

    2013-03-01

    The motivation to modify the design of a vascular device can arise from a number of sources. Clinical experience with the unmodified device could suggest new design modifications to improve device performance or clinical outcomes. Similarly, clinical success with a device often suggests modifications that could broaden the applicability of the device to enable treatment of different or more advanced disease states. As a specific example, both of these scenarios have arisen during the last decade in the evolution of endovascular grafts for the treatment of abdominal aortic aneurysms, with modifications enabling the treatment of patients with shorter infrarenal necks, more angulated anatomy, and smaller access vessels. These modifications have been made by manufacturers and additionally by physicians who create branched and fenestrated devices. The experience to date with the use of fenestrated devices and the development of chimney, snorkel, and periscope techniques suggests that modifications to off-the-shelf devices may provide some clinical benefit. This experience provides additional motivation for manufacturers to develop devices to address the clinical needs not met with their current product lines. For manufacturers, the device development process includes an assessment of the new device design to determine the appropriate evaluation strategy to support the safety and effectiveness of the modified device. This report provides a high-level overview of the process generally followed by device manufacturers to evaluate a proposed device modification before market release, in accordance with local country regulations and recognized international standards such as the International Organization of Standardization (ISO) standards for endovascular grafts (ISO 25539 Part 1). Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  12. [Posttranscriptional messenger RNA modifications in eukaryotes].

    PubMed

    Laptev, I G; Golovina, A Ya; Sergiev, P V; Dontsova, O A

    2015-01-01

    Genomewide mapping of posttranscriptional modification in eukaryotic RNA allowed to reveal tens of thousands modification sites. Among modified nucleotides of eukaryotic RNA 6-methyladenosine, 5-methylcytidine, pseudouridine, inosine, and others. Many modification sites are conserved, many are regulated. Function is known for a small subset of modified nucleotides, while the role of majority of them is still obscure. Global character of mRNA modifications allowed scientists to coin a new term, RNA epigenetics. The review is about posttranscriptional messenger RNA modifications in eukaryotes. Main modifications, their role in cell, their mapping techniques and proteins, that are responsible for such RNA modifications are observed.

  13. Mapping chromatin modifications in nanochannels

    NASA Astrophysics Data System (ADS)

    Lim, Shuang Fang; Karpusenko, Alena; Riehn, Robert

    2013-03-01

    DNA and chromatin are elongated to a fixed fraction of their contour length when introduced into quasi-1d nanochannels. Because single molecules are analyzed, their hold great potential for the analysis for the genetic analysis of material from single cells. In this study, we have reconstituted chromatin with histones from a variety of sources, and mapped the modification profile of the chromatin. We monitored methylation and acetylation patterns of the histone tail protein residues using fluorescently labelled antibodies. Using those, we distinguished chromatin reconstituted from chicken erythrocytes, calf thymus, and HeLa cells. We discuss prospects for profiling histone modifications for whole chromosomes from single cells.

  14. [Lung cancer and epigenetic modifications].

    PubMed

    Darılmaz Yüce, Gülbahar; Ortaç Ersoy, Ebru

    2016-06-01

    Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA expression, have been reported to play a major role in the genesis of lung cancer. DNA methylation, histone modifications, and RNA expression are epigenetic markers in assesment of early detection, prognosis and evaluation of treatment of lung cancer. In this rewiev we summarize the common epigenetic changes associated with lung cancer to give some clarity to its etiology, and to provide an overview of the potential translational applications of these changes, including applications for early detection, diagnosis, prognostication, and therapeutics.

  15. Microbial profile modification with spores

    SciTech Connect

    Bae, J.H.; Chambers, K.T.; Lee, H.O.

    1996-08-01

    To overcome the shortcomings of conventional, near-wellbore profile modification methods, a microbial profile modification (MPM) method with spores was investigated. A halotolerant, spore-forming mesophile was isolated and characterized. These biopolymer-producing spores propagate easily in Berea cores with permeabilities more than about 500 md. With a specifically formulated nutrient package, they are readily germinated and produce biofilm, which reduces the permeability of the rock. The depth of penetration and the degree of permeability reduction can be controlled by varying injection schemes.

  16. Differences in cellular glycoconjugates of quiescent, inflamed, and neoplastic colonic epithelium in colitis and cancer-prone tamarins.

    PubMed Central

    Moore, R.; King, N.; Alroy, J.

    1988-01-01

    In the preceding paper the authors demonstrated that the lectin staining patterns of normal colonic epithelium obtained from colitis and carcinoma-prone cotton top tamarins (CTTs), Saguinus oedipus, a New World primate, differs from colitis- and carcinoma-resistant primate species. In this study they determined the usefulness of cytochemical features in inflamed epithelium as indicators for malignant change. They compared the lectin staining pattern in inflamed mucosa and adjacent mucosa with colonic carcinoma from 8 CTTs with that of 9 clinically healthy CTTs with no histologic evidence of colitis. Deparaffinized sections were labeled with ten biotinylated lectins and stained by the avidin-biotin peroxidase complex method. Numerous significant differences were demonstrated in the lectin staining pattern between normal epithelium and colonic carcinoma; fewer between normal and chronic inflamed epithelium. However, between chronic inflamed epithelium and colonic carcinoma significant staining differences were observed with only two lectins, peanut agglutinin (PNA) and Ulex europaeus agglutinin-I (UEA-I). These findings suggest that there is a progression in alteration of lectin staining pattern from normal epithelium, via chronic colitis, to colonic carcinoma. Furthermore, the differences between chronic colitis and colonic carcinoma are expressed only with those lectins that are associated with malignant transformation of human colonic epithelium. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:3132858

  17. The Effect of Corneal Epithelium on Corneal Curvature in Patients with Keratoconus.

    PubMed

    Akcay, Emine Kalkan; Uysal, Betul Seher; Sarac, Ozge; Ugurlu, Nagehan; Yulek, Fatma; Cagil, Nurullah; Aslan, Nabi

    2015-01-01

    To investigate the effects of corneal epithelium on corneal curvature in patients with keratoconus. This is a prospective, nonrandomized study. Fifty-nine eyes of 47 patients diagnosed as keratoconus and for whom corneal collagen crosslinking (CXL) was recruited in this study. This study is a single-center clinical trial. Pregnancy, lactation, connective tissue disease, corneal thickness below 350 μm, severe dry eyes, or scar of corneal surgery were exclusion criteria. Before and during CXL procedure after removing the corneal epithelium, maximum values of corneal apical curvature, simulated keratometry 1 (Sim-K1), simulated keratometry 2 (Sim-K2), temporal and inferior curvature values, all of which are 1.5 mm from the corneal center, were calculated. These values before and after removal of epithelium were compared statistically. Mean age of patients was 23.30 ± 5.5 (12-38) years. Twenty-eight (59%) were male while 19 (41%) were female. Mean values measured before and after removing the corneal epithelium were: apical curvature; 59.19 ± 7.2 (47.06-82.40) diopter (D) and 61.70 ± 8.8 (49.19-92.66) D (p = 0.001), SimK1; 47.57 ± 4.3 (39.14-64.57) D and 48.23 ± 4.3 (41.89-66.70) D (p = 0.001), SimK2; 52.04 ± 5.3 (43.56-69.34) D and 53.34 ± 5.6 (43.73-70.89) D (p = 0.001), inferior curvature; 53,85 ± 5.2 (43.47-76.56) D and 55.05 ± 5.8 (44.56-81.93) D (p = 0.002), temporal curvature 49.49 ± 5.1 (41.50-71.03) D and 51.53 ± 5.4 (41.58-73.34) D (p = 0.001), respectively. In keratoconus patients during CXL treatment, after removing the corneal epithelium, more steepness is detected in the curvature of the steeper area of the cornea. When evaluating patients with keratoconus, the masking effect of corneal epithelium on values of curvature should be taken into consideration.

  18. Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium.

    PubMed

    Shahidullah, M; Mandal, A; Delamere, N A

    2015-11-01

    The bulk of the lens consists of tightly packed fiber cells. Because mature lens fibers lack mitochondria and other organelles, lens homeostasis relies on a monolayer of epithelial cells at the anterior surface. The detection of various signaling pathways in lens epithelial cells suggests they respond to stimuli that influence lens function. Focusing on Src Family Kinases (SFKs) and Transient Receptor Potential Vanilloid 4 (TRPV4), we tested whether the epithelium can sense and respond to an event that occurs in fiber mass. The pig lens was subjected to localized freeze-thaw (FT) damage to fibers at posterior pole then the lens was incubated for 1-10 min in Krebs solution at 37 °C. Transient SFK activation in the epithelium was detectable at 1 min. Using a western blot approach, the ion channel TRPV4 was detected in the epithelium but was sparse or absent in fiber cells. Even though TRPV4 expression appears low at the actual site of FT damage to the fibers, SFK activation in the epithelium was suppressed in lenses subjected to FT damage then incubated with the TRPV4 antagonist HC067047 (10 μM). Na,K-ATPase activity was examined because previous studies report changes of Na,K-ATPase activity associated with SFK activation. Na,K-ATPase activity doubled in the epithelium removed from FT-damaged lenses and the response was prevented by HC067047 or the SFK inhibitor PP2 (10 μM). Similar changes were observed in response to fiber damage caused by injection of 5 μl hyperosmotic NaCl or mannitol solution beneath the surface of the posterior pole. The findings point to a TRPV4-dependent mechanism that enables the epithelial cells to detect remote damage in the fiber mass and respond within minutes by activating SFK and increasing Na,K-ATPase activity. Because TRPV4 channels are mechanosensitive, we speculate they may be stimulated by swelling of the lens structure caused by damage to the fibers. Increased Na,K-ATPase activity gives the lens greater capacity to

  19. Proliferation and apoptotic rates and increased frequency of p63-positive cells in the prostate acinar epithelium of alloxan-induced diabetic rats.

    PubMed

    Arcolino, Fanny Oliveira; Ribeiro, Daniele Lisboa; Gobbo, Marina Guimarães; Taboga, Sebastião Roberto; Góes, Rejane Maira

    2010-04-01

    The effects of experimental type 1 diabetes were investigated in the acinar epithelium of rat ventral prostate, focusing on the rates of cell proliferation and the frequency of apoptosis and p63-positive cells. Type 1 diabetes was induced in adult male Wistar rats by a single alloxan administration (42 mg/kg b.w.) and its effects were analysed for 1 week and 3 months after the establishment of the disease. A group of diabetic rats was treated daily with 5 IU of insulin during 1 week after diabetes had been diagnosed. Immunocytochemical methods for the localization of cell proliferation antigen (PCNA), androgen receptor (AR) and p63 protein were carried out, and apoptotic cells were identified by TUNEL essay. In diabetic rats, testosterone levels reduced drastically after 1 week and in a lower degree after 3 months. In short-term diabetic rats, cell proliferation decreased, and in medium-term, epithelial apoptotic rates increased. In both periods after the onset of diabetes, the frequency of p63-positive cells doubled. Insulin treatment was effective in preventing testosterone decrease, p63-positive cell increase and apoptotic rates, but did not interfere in cell proliferation. This investigation shows that, soon after diabetes onset, there are important modifications in cell proliferation within the acinar prostatic epithelium, and in longer term, there is a marked impact on kinetics of differentiation and cell death, which may initially be attributable to an androgenic fall, but is probably also because of other factors related to diabetes, as changes are considerably different from those resulting from castration.

  20. Proliferation and apoptotic rates and increased frequency of p63-positive cells in the prostate acinar epithelium of alloxan-induced diabetic rats

    PubMed Central

    Arcolino, Fanny Oliveira; Ribeiro, Daniele Lisboa; Gobbo, Marina Guimarães; Taboga, Sebastião Roberto; Góes, Rejane Maira

    2010-01-01

    The effects of experimental type 1 diabetes were investigated in the acinar epithelium of rat ventral prostate, focusing on the rates of cell proliferation and the frequency of apoptosis and p63-positive cells. Type 1 diabetes was induced in adult male Wistar rats by a single alloxan administration (42 mg/kg b.w.) and its effects were analysed for 1 week and 3 months after the establishment of the disease. A group of diabetic rats was treated daily with 5 IU of insulin during 1 week after diabetes had been diagnosed. Immunocytochemical methods for the localization of cell proliferation antigen (PCNA), androgen receptor (AR) and p63 protein were carried out, and apoptotic cells were identified by TUNEL essay. In diabetic rats, testosterone levels reduced drastically after 1 week and in a lower degree after 3 months. In short-term diabetic rats, cell proliferation decreased, and in medium-term, epithelial apoptotic rates increased. In both periods after the onset of diabetes, the frequency of p63-positive cells doubled. Insulin treatment was effective in preventing testosterone decrease, p63-positive cell increase and apoptotic rates, but did not interfere in cell proliferation. This investigation shows that, soon after diabetes onset, there are important modifications in cell proliferation within the acinar prostatic epithelium, and in longer term, there is a marked impact on kinetics of differentiation and cell death, which may initially be attributable to an androgenic fall, but is probably also because of other factors related to diabetes, as changes are considerably different from those resulting from castration. PMID:20041964

  1. Role of corneal epithelium in riboflavin/ultraviolet-A mediated corneal cross-linking treatment in rabbit eyes.

    PubMed

    Tao, Xiangchen; Yu, Haiqun; Zhang, Yong; Li, Zhiwei; Jhanji, Vishal; Ni, Shouxiang; Wang, Ya; Mu, Guoying

    2013-01-01

    To evaluate the role of corneal epithelium in riboflavin/ultraviolet-A (UVA) mediated corneal collagen cross-linking treatment. Fifty New Zealand rabbits were divided into 5 groups: UVA treatment with or without corneal epithelium, UVA+riboflavin treatment with or without corneal epithelium, and control without any treatment. All rabbits were sacrificed after irradiation and subsequently 4 mm × 10 mm corneal strips were harvested for biomechanical evaluation. UVA irradiation alone did not enhance the maximal stress and Young's modulus of corneal specimens with (3.15 ± 0.56 mpa, 1.00 ± 0.09 mpa) or without (3.53 ± 0.85 mpa, 0.94 ± 0.21 mpa) the corneal epithelium, compared to specimens in the control group (4.30 ± 0.68 mpa, 1.03 ± 0.24 mpa). However, UVA irradiation combined with riboflavin significantly increased the maximal stress and Young's modulus of corneal specimens with (5.27 ± 1.09 mpa, 1.23 ± 0.23 mpa, P < 0.05) or without (7.16 ± 1.88 mpa, 1.42 ± 0.16 mpa, P < 0.05) corneal epithelium when compared to the control group. The maximal stress and Young's modulus of cornea in UVA+riboflavin and "epithelium-off" group were 35.9% and 15.4% higher compared to the UVA+riboflavin and "epithelium-on" group, respectively (P < 0.05). Our study shows that UVA+riboflavin treatment significantly affects the biomechanical properties of the cornea with and without epithelial removal. However, corneas without epithelium seem to benefit more compared to corneas with the epithelium.

  2. Structural differentiation of human uterine luminal and glandular epithelium during early pregnancy: an ultrastructural and immunohistochemical study.

    PubMed

    Demir, R; Kayisli, U A; Celik-Ozenci, C; Korgun, E T; Demir-Weusten, A Y; Arici, A

    2002-01-01

    The differentiation of human endometrial epithelium is a dynamic event that occurs throughout the menstrual cycle and early pregnancy. The structural transformation and differentiation of human uterine luminal and glandular epithelium of early human pregnancy (n=14) was investigated ultrastructurally and immunohistochemically using antibodies against cytokeratin (CT), endothelial marker CD31, Fas, and proliferating cell nuclear antigen (PCNA). Ultrastructurally, luminal epithelial cells showed distinctive euchromatic nuclei with prominent nucleoli and relatively loose cell membranes in all poles (apical to basal). Subcellular components were easily recognized in luminal epithelium except in degenerating cells. Mainly two cell types, dark and clear cells, formed the glandular epithelium. In the early gestation period, microvilli were abundant on the apical and apico-lateral poles of these cells. Only a few cytoplasmic projections were observed in dark cells. Numerous cilia were observed on the apical pole of some clear cells, located at the adluminal segment. In contrast, dark cells lacked cilia, nuclear channels, or giant mitochondrial profiles. Glycogen synthesis and apocrine secretion were recognizable for several days during early gestation. The apocrine secretory activity differed among dark cells of the glandular epithelium. The immunoreactivity of PCNA and Fas, and ultrastructural observations in the glandular epithelium suggest that, even in different segments of the same gland, epithelial cells do not regress during early gestation, but proliferate, perhaps representing a resistance against trophoblastic invasion. These morphological and molecular changes suggest that both luminal and glandular epithelium may play an important role in cellular defense and limitation for trophoblastic invasion during early pregnancy since plasma membrane alterations of the surface epithelium take place at the apical, basal and lateral poles compared to early secretory phase

  3. Morphology of a novel glandular epithelium lining the infrabuccal cavity in the ant Monomorium pharaonis (Hymenoptera, Formicidae).

    PubMed

    Eelen, Dieter; Børgesen, Lisbeth W; Billen, Johan

    2004-10-01

    A novel glandular epithelium lining the infrabuccal cavity and anterior pharynx is described in both workers and queens of the pharaoh's ant Monomorium pharaonis. The infrabuccal cavity, connected with the buccal tube, forms a ventral outgrowth of the anterior pharynx, and as such displays the tegumental lining with a cuticle and an epithelial layer. In its dorsal region, the cavity's epithelium reaches a thickness of approx. 11-12mum in both workers and queens, which is considerably thicker than the epithelium lining the rest of the infrabuccal cavity. Also the possible role of the infrabuccal gland is discussed.

  4. Synthesis and Modification of Clinoptilolite.

    PubMed

    Ambrozova, Pavlina; Kynicky, Jindrich; Urubek, Tomas; Nguyen, Vinh Dinh

    2017-07-04

    Clinoptilolite is a natural mineral with exceptional physical characteristics resulting from its special crystal structure, mainstreamed into a large zeolite group called heulandites. An overall view of the research related to the synthesis, modification and application of synthetic clinoptilolite is presented. A single phase of clinoptilolite can be hydrothermally synthesized for 1-10 days in an autoclave from various silica, alumina, and alkali sources with initial Si/Al ratio from 3.0 to 5.0 at a temperature range from 120 to 195 °C. Crystallization rate and crystallinity of clinoptilolite can be improved by seeding. The modification of clinoptilolite has received noticeable attention from the research community, since modified forms have specific properties and therefore their area of application has been broadening. This paper provides a review of the use of organic compounds such as quarter alkyl ammonium, polymer, amine and inorganic species used in the modification process, discusses the processes and mechanisms of clinoptilolite modification, and identifies research gaps and new perspectives.

  5. Histone modifications in zebrafish development.

    PubMed

    Cunliffe, V T

    2016-01-01

    Reversible covalent histone modifications are known to influence spatiotemporal patterns of gene transcription during development. Here I review recent advances in the development and use of methods to analyze the distribution and functions of histone modifications in zebrafish chromatin. I discuss the roles of dynamic histone modification patterns at the promoters and enhancers of genes during the process of zygotic gene activation at blastula stages and the interplay between the molecular machinery responsible for histone modifications, chromatin remodeling and DNA methylation. Interactions are also described between developmentally regulated enhancer sequences and modified histones. A detailed method for chromatin immunoprecipitation using antibodies is provided, and I describe the use of high-throughput whole genome sequencing technology to generate DNA sequence data from chromatin immunoprecipitates. I also discuss computational approaches to integrating DNA sequence data obtained from chromatin immunoprecipitates with annotated reference genome sequences, transcriptome and methylome sequence data, transcription factor binding motif databases, and gene ontologies and describe the types of software tools currently available for visualizing the results. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Plasma surface modification of polymers

    NASA Technical Reports Server (NTRS)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  7. Carbohydrate post-glycosylational modifications

    PubMed Central

    Yu, Hai; Chen, Xi

    2008-01-01

    Carbohydrate modification is a common phenomenon in nature. Many carbohydrate modifications such as some epimerization, O-acetylation, O-sulfation, O-methylation, N-deacetylation, and N-sulfation, take place after the formation of oligosaccharide or polysaccharide backbones. These modifications can be categorized as carbohydrate post-glycosylational modifications (PGMs). Carbohydrate PGMs further extend the complexity of the structures and the synthesis of carbohydrates and glycoconjugates. They also increase the capacity of the biological information that can be controlled by finely tuning the structures of carbohydrates. Developing efficient methods to obtain structurally defined naturally occurring oligosaccharides, polysaccharides, and glycoconjugates with carbohydrate PGMs is essential for understanding the biological significance of carbohydrate PGMs. Combine with high-throughput screening methods, synthetic carbohydrates with PGMs are invaluable probes in structure-activity relationship studies. We illustrate here several classes of carbohydrates with PGMs and their applications. Recent progress in chemical, enzymatic, and chemoenzymatic syntheses of these carbohydrates and their derivatives are also presented. PMID:17340000

  8. Weather Modification: The Ultimate Weapon

    DTIC Science & Technology

    1993-04-01

    All but nobody does anything about it -- Mark Twain liboducthm Weather modification. The very words conjure up an Image of quackery, chdatanism and...President, a few high-ranking military officers, and the assigned aircrew. We had come a long way since Mark Twain - something was being done about the

  9. Chemical modification of semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Finklea, H. O.

    1981-01-01

    Results of research on the chemical modification of TiO2 powders in the gas phase and the examination of the modified powders by infrared absorption spectroscopy are comprehensively summarized. The range of information obtainable by IR spectroscopy of chemically modified semiconductors, and a definition of the optimum reaction conditions for synthesizing a monolayer of methylsilanes using vapor phase reaction conditions were considered.

  10. Changing Attitudes Through Behavior Modification.

    ERIC Educational Resources Information Center

    Whipple, W. Scott

    This article describes the philosophy and methods used by the staff at the Granite Alternative School in changing student attitudes through behavior modification. The students involved all have a failure syndrome or low self-image, and are dropouts from traditional high schools. Among the techniques used are: (1) reinforcing good behavior (praise…

  11. Demonstrating Allotropic Modifications of Sulfur.

    ERIC Educational Resources Information Center

    McCarty, Jillian L.; Dragojlovic, Veljko

    2002-01-01

    Shows how a common demonstration that consists of slowly heating sulfur powder in a test tube to illustrate sulfur's allotropic modifications can convince students of conclusions about the moon Io which they often find surprising. Describes the demonstration in full. (Author/MM)

  12. Supervisory Workbook on Behavior Modification.

    ERIC Educational Resources Information Center

    Arkin, Ronald; And Others

    This workbook is designed to be used with the trainer's manual in supervisory training sessions on behavior modification of employees. This is one of four manuals prepared to aid supervisors in training disadvantaged groups using social reinforcement techniques. Related documents are available as VT 018 031-VT 018 035 in this issue. (MF)

  13. Demonstrating Allotropic Modifications of Sulfur.

    ERIC Educational Resources Information Center

    McCarty, Jillian L.; Dragojlovic, Veljko

    2002-01-01

    Shows how a common demonstration that consists of slowly heating sulfur powder in a test tube to illustrate sulfur's allotropic modifications can convince students of conclusions about the moon Io which they often find surprising. Describes the demonstration in full. (Author/MM)

  14. Actin capping protein alpha maintains vestigial-expressing cells within the Drosophila wing disc epithelium.

    PubMed

    Janody, Florence; Treisman, Jessica E

    2006-09-01

    Tissue patterning must be translated into morphogenesis through cell shape changes mediated by remodeling of the actin cytoskeleton. We have found that Capping protein alpha (Cpa) and Capping protein beta (Cpb), which prevent extension of the barbed ends of actin filaments, are specifically required in the wing blade primordium of the Drosophila wing disc. cpa or cpb mutant cells in this region, but not in the remainder of the wing disc, are extruded from the epithelium and undergo apoptosis. Excessive actin filament polymerization is not sufficient to explain this phenotype, as loss of Cofilin or Cyclase-associated protein does not cause cell extrusion or death. Misexpression of Vestigial, the transcription factor that specifies the wing blade, both increases cpa transcription and makes cells dependent on cpa for their maintenance in the epithelium. Our results suggest that Vestigial specifies the cytoskeletal changes that lead to morphogenesis of the adult wing.

  15. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut

    PubMed Central

    Shulzhenko, Natalia; Morgun, Andrey; Hsiao, William; Battle, Michele; Yao, Michael; Gavrilova, Oksana; Orandle, Marlene; Mayer, Lloyd; Macpherson, Andrew J; McCoy, Kathy D; Fraser-Liggett, Claire; Matzinger, Polly

    2014-01-01

    Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV that also have intestinal malabsorption were very similar to those of the B cell–deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans. PMID:22101768

  16. Accessory Olfactory Bulb Function is Modulated by Input from the Main Olfactory Epithelium

    PubMed Central

    Slotnick, Burton; Restrepo, Diego; Schellinck, Heather; Archbold, Georgina; Price, Stephen; Lin, Weihong

    2013-01-01

    While it is now established that sensory neurons in both the main olfactory epithelium and the vomeronasal organ may be activated by both general and pheromonal odorants, it remains unclear what initiates sampling by the VNO. Anterograde transport of wheat germ agglutinin-horseradish peroxidase was used to determine that adequate intranasal syringing with zinc sulfate interrupted all inputs to the main olfactory bulb but left intact those to the accessory olfactory bulb. Adult male treated mice were frankly anosmic when tested with pheromonal and non-pheromonal odors and failed to engage in aggressive behavior. Treated juvenile females failed to show puberty acceleration subsequent to exposure to bedding from adult males. Activation of the immediate early gene c-Fos and electro-vomeronasogram recording confirmed the integrity of the vomeronasal system in zinc sulfate treated mice. These results support the hypothesis that odor detection by the main olfactory epithelium is required to initiate sampling by the vomeronasal system. PMID:20377623

  17. Candida tropicalis biofilm and human epithelium invasion is highly influenced by environmental pH.

    PubMed

    Ferreira, Carina; Gonçalves, Bruna; Vilas Boas, Diana; Oliveira, Hugo; Henriques, Mariana; Azeredo, Joana; Silva, Sónia

    2016-11-01

    The main goal of this study was to investigate the role of pH on Candida tropicalis virulence determinants, namely the ability to form biofilms and to colonize/invade reconstituted human vaginal epithelia. Biofilm formation was evaluated by enumeration of cultivable cells, total biomass quantification and structural analysis by scanning electron microscopy and confocal laser scanning microscopy. Candida tropicalis human vaginal epithelium colonization and invasiveness were examined qualitatively by epifluorescence microscopy and quantitatively by a novel quantitative real-time PCR protocol for Candida quantification in tissues. The results revealed that environmental pH influences C. tropicalis biofilm formation as well as the colonization and potential to invade human epithelium with intensification at neutral and alkaline conditions compared to acidic conditions. For the first time, we have demonstrated that C. tropicalis biofilm formation and invasion is highly influenced by environmental pH. © Crown copyright 2016.

  18. T cell chemotaxis and chemokine release after Staphylococcus aureus interaction with polarized airway epithelium.

    PubMed

    Escotte, Sandie; Al Alam, Denise; Le Naour, Richard; Puchelle, Edith; Guenounou, Moncef; Gangloff, Sophie C

    2006-03-01

    In response to bacterial infection, airway epithelium releases inflammatory mediators including cytokines and chemokines that lead to immune cell efflux and could stimulate the adaptive T cell immune response. The aim of our study was to analyze, in a double chamber culture, the chemokine changes in response to Staphylococcus aureus and their consequences for T cells. Our data show that S. aureus stimulates basolateral and apical release of IL-8 and eotaxin by airway epithelial cells. We also observed increased chemokine receptor expression on CD8+ and CD4+ T cells and enhanced chemotaxis of CD4+ T cells toward apical supernatant. Our data strongly suggest that S. aureus interaction with airway epithelium contributes to specific migration of T cells to inflamed sites.

  19. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut.

    PubMed

    Shulzhenko, Natalia; Morgun, Andrey; Hsiao, William; Battle, Michele; Yao, Michael; Gavrilova, Oksana; Orandle, Marlene; Mayer, Lloyd; Macpherson, Andrew J; McCoy, Kathy D; Fraser-Liggett, Claire; Matzinger, Polly

    2011-11-20

    Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.

  20. Vascular endothelial growth factor co-ordinates proper development of lung epithelium and vasculature.

    PubMed

    Zhao, Liqing; Wang, Ke; Ferrara, Napoleone; Vu, Thiennu H

    2005-07-01

    The vasculature forms an intrinsic functional component of the lung and its development must be tightly regulated and coordinated with lung epithelial morphogenesis. Vascular endothelial growth factor (VEGF) and its receptors are highly expressed in a complementary pattern in the lungs during embryonic development. VEGF is expressed by epithelium and the receptors in the surrounding mesenchyme. To determine the function of VEGF in lung formation, we inhibited its activity using a soluble receptor in lung renal capsule grafts. Inhibition of VEGF results in inhibition of vascular development and significant alteration in epithelial development. Epithelial proliferation is inhibited, sacculation is impaired, and the epithelium undergoes apoptosis. Interestingly, when VEGF is attenuated, epithelial differentiation still proceeds, as shown by acquisition of both proximal and distal markers. These data show that VEGF co-ordinates epithelial and vascular development. It is required for the development of the lung vasculature and the vasculature is necessary for epithelial proliferation and morphogenesis, but not for cell differentiation.

  1. Desmoplakin controls microvilli length but not cell adhesion or keratin organization in the intestinal epithelium

    PubMed Central

    Sumigray, Kaelyn D.; Lechler, Terry

    2012-01-01

    Maintaining proper cell–cell adhesion in the intestine is essential for tissue homeostasis and barrier function. This adhesion is thought to be mediated by cell adhesion structures, including tight junctions, adherens junctions, and desmosomes, which concentrate in the apical junctional region. While clear roles for adherens and tight junctions have been established in simple epithelia, the function of desmosomes has not been addressed. In stratified epithelia, desmosomes impart mechanical strength to tissues by organizing and anchoring the keratin filament network. In this paper, we report that the desmosomal protein desmoplakin (DP) is not essential for cell adhesion in the intestinal epithelium. Surprisingly, when DP is lacking, keratin filament localization is also unperturbed, although keratin filaments no longer anchor at desmosomes. Unexpectedly, DP is important for proper microvillus structure. Our study highlights the tissue-specific functions of desmosomes and reveals that the canonical functions for these structures are not conserved in simple epithelium. PMID:22238362

  2. The nanomechanical role of melanin granules in the retinal pigment epithelium.

    PubMed

    Sarna, Michal; Olchawa, Magdalena; Zadlo, Andrzej; Wnuk, Dawid; Sarna, Tadeusz

    2017-04-01

    Nanomechanical properties of cells and tissues, in particular their elasticity, play an important role in different physiological and pathological processes. Recently, we have demonstrated that melanin granules dramatically modify nanomechanical properties of melanoma cells making them very stiff and, as a result, less aggressive. Although the mechanical effect of melanin granules was demonstrated in pathological cells, it was never studied in the case of normal cells. In this work, we analyzed the impact of melanin granules on nanomechanical properties of primary retinal pigment epithelium tissue fragments isolated from porcine eyes. The obtained results clearly show that melanin granules are responsible for the exceptional nanomechanical properties of the tissue. Our findings suggest that melanin granules in the retinal pigment epithelium may play an important role in sustaining the stiffness of this single cell layer, which functions as a natural mechanical barrier separating the retina from the choroid. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Morphological and histochemical observations on the intestinal epithelium of Ascardia galli (Nematoda: Ascaridida).

    PubMed

    Parshad, V R; Guraya, S S

    1978-06-30

    The intestinal epithelium of Ascardia galli has been studied with various cytological and cytochemical techniques. It consists of large epithelial cells resting on a thick collagenous basal lamina. Their luminal surface is provided with microvilli. The intestinal cells store considerable amounts of glycogen and neutral lipids. Some intracellular granular inclusions, which stain for proteins, phospholipids and lipoproteins, are distributed throughout the cytoplasm. The brush border is composed of microvilli whereas the outer surface coat consists of saliva resistant PAS-positive material. The detailed histochemical analysis of surface material has revealed that it is composed of nonacetylated acid mucopolysaccharides rich in hyaluronic acid with carboxylate polyanions. The brush border shows intense activities of acid phosphatase and glucose-6-phosphatase, moderate of ATPase, and lipase, weak of 5'-nucleotidase. Acid phosphatase-positive intracellular structures are seen in the intestinal epithelium which form distinct aggregations.

  4. [The artificial epithelium in chronic corneal diseases and to avoid emergency keratoplasty (author's transl)].

    PubMed

    Turss, R; Retzlaff, K; Hebrock, R

    1979-02-01

    Report on the treatment of 41 patients in the last 10 years. In chronic corneal diseases epikeratoprosthesis is possible when every other therapy failed. With growing experience functional results are better and complications seldom. Since several years we use glued-on contact lenses in acute ulcers too in order to avoid emergency keratoplasty. When suitable donor material is missing or if plastic surgery of the eye lids is necessary the artificial epithelium prevents ulcer perforation as a mechanical collagenase inhibitor. The anterior chamber can be reinstalled in perforated ulcers by sealing with cyanoacrylate glue and covering with artificial epithelium. A corticosteroid therapy of the iritis becomes possible to avoid the frequent complication of anterior synechia in later keratoplasty. By reducing the steroid dosis vascularisation of the ulcer is reached and a corneal grafting can be evaded sometimes if the prognosis of keratoplasty is poor or the central cornea is clear such as in ulcers near the limbus.

  5. Nested expression domains for odorant receptors in zebrafish olfactory epithelium

    PubMed Central

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-01-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system. PMID:8917589

  6. Chemodetection and Destruction of Host Urea Allows Helicobacter pylori to Locate the Epithelium.

    PubMed

    Huang, Julie Y; Sweeney, Emily Goers; Sigal, Michael; Zhang, Hai C; Remington, S James; Cantrell, Michael A; Kuo, Calvin J; Guillemin, Karen; Amieva, Manuel R

    2015-08-12

    The gastric pathogen Helicobacter pylori interacts intimately with the gastric mucosa to avoid the microbicidal acid in the stomach lumen. The cues H. pylori senses to locate and colonize the gastric epithelium have not been well defined. We show that metabolites emanating from human gastric organoids rapidly attract H. pylori. This response is largely controlled by the bacterial chemoreceptor TlpB, and the main attractant emanating from epithelia is urea. Our previous structural analyses show that TlpB binds urea with high affinity. Here we demonstrate that this tight binding controls highly sensitive responses, allowing detection of urea concentrations as low as 50 nM. Attraction to urea requires that H. pylori urease simultaneously destroys the signal. We propose that H. pylori has evolved a sensitive urea chemodetection and destruction system that allows the bacterium to dynamically and locally modify the host environment to locate the epithelium.

  7. Chemodetection and Destruction of Host Urea Allows Helicobacter pylori to Locate the Epithelium

    PubMed Central

    Huang, Julie Y.; Sweeney, Emily Goers; Sigal, Michael; Zhang, Hai C.; Remington, S. James; Cantrell, Michael A.; Kuo, Calvin J.; Guillemin, Karen; Amieva, Manuel R.

    2015-01-01

    SUMMARY The gastric pathogen Helicobacter pylori interacts intimately with the gastric mucosa to avoid the microbicidal acid in the stomach lumen. The cues H. pylori senses to locate and colonize the gastric epithelium have not been well defined. We show that metabolites emanating from human gastric organoids rapidly attract H. pylori. This response is largely controlled by the bacterial chemoreceptor TlpB, and the main attractant emanating from epithelia is urea. Our previous structural analyses show that TlpB binds urea with high affinity. Here we demonstrate that this tight binding controls highly sensitive responses, allowing detection of urea concentrations as low as 50 nanomolar. Attraction to urea requires that H. pylori urease simultaneously destroys the signal. We propose that H. pylori has evolved a sensitive urea chemodetection and destruction system that allows the bacterium to dynamically and locally modify the host environment to locate the epithelium. PMID:26269952

  8. Olfactory epithelium destruction by ZnSO4 modified sulfhydryl oxidase expression in mice.

    PubMed

    Bon, Karine; Adami, Pascale; Esnard, Frédéric; Jouvenot, Michèle; Versaux-Bottéri, Claudine

    2005-02-08

    Experimental destruction of olfactory neurons stimulates proliferation and differentiation of local neural precursors and is used as a model to study in vivo mechanisms for degeneration and regeneration of the nervous system. Quiescin-sulfhydryl oxidases (QSOX) have a potential role in the control of the cell cycle or growth regulation and have recently been described in the central nervous system. In mice, we show an expression of QSOX in olfactory mucosa. Northern- and western-blot analysis show that the destruction of olfactory epithelium is associated with a reversible reduction in QSOX expression. Interestingly, QSOX is not localized in olfactory neurons (ON) but in cells of the lamina propria, suggesting that olfactory epithelium destruction may act as a signal of down-regulation of QSOX expression.

  9. Expression of Ia antigens by murine kidney epithelium after exposure to streptozotocin.

    PubMed Central

    Farr, A. G.; Mannschreck, J. W.; Anderson, S. K.

    1987-01-01

    In the normal murine kidney, Ia antigens are expressed by dendritic cells located within the interstitial connective tissue and scattered cells within the glomerulus. After receiving multiple low doses of streptozotocin, a nitrosourea derivative of glucose, kidney epithelium labeled intensely with anti-Ia antibodies. Ultrastructural immunohistochemistry indicated that the epithelial cells of the proximal convoluted tubules expressed Ia antigens on their basolateral surfaces while remaining Ia- on their luminal surfaces. This response to streptozotocin does not appear to be related to the diabetogenic potential of the drug, because BALB/cJ mice, which remain normoglycemic after treatment with streptozotocin, also exhibited strongly Ia+ tubular epithelium after treatment with streptozotocin. Images Figure 1 Figure 2 Figure 3 PMID:2950766

  10. Accessory olfactory bulb function is modulated by input from the main olfactory epithelium.

    PubMed

    Slotnick, Burton; Restrepo, Diego; Schellinck, Heather; Archbold, Georgina; Price, Stephen; Lin, Weihong

    2010-03-01

    Although it is now established that sensory neurons in both the main olfactory epithelium and the vomeronasal organ may be activated by both general and pheromonal odorants, it remains unclear what initiates sampling by the vomeronasal organ. Anterograde transport of wheat germ agglutinin-horseradish peroxidase was used to determine that adequate intranasal syringing with zinc sulfate interrupted all inputs to the main olfactory bulb but left intact those to the accessory olfactory bulb. Adult male treated mice were frankly anosmic when tested with pheromonal and non-pheromonal odors and failed to engage in aggressive behavior. Treated juvenile females failed to show puberty acceleration subsequent to exposure to bedding from adult males. Activation of the immediate early gene c-Fos and electrovomeronasogram recording confirmed the integrity of the vomeronasal system in zinc sulfate-treated mice. These results support the hypothesis that odor detection by the main olfactory epithelium is required to initiate sampling by the vomeronasal system.

  11. Oestrus synchronization treatment induces histomorphological changes on the uterine tube epithelium of the gilt.

    PubMed

    Juárez-Mosqueda, M L; Anzaldúa Arce, S R; Palma Lara, I; García Dalmán, C; Cornejo Cortés, M A; Córdova Izquierdo, A; Villaseñor Gaona, H; Trujillo Ortega, M E

    2015-12-01

    The aim of this study was to determine the histomorphological changes that occurred in response to two treatments for oestrus synchronization in three different regions of the gilt's uterine tubes epithelium: the ampulla (AMP), ampulla-isthmic junction (AIJ) and isthmus (IST). Nine prepuberal gilts were divided into three groups (n = 3): (1) eCG 400 IU and hCG 200 IU (eCG/hCG), (2) progesterone agonist (P4) and (3) control group. The number of secretory cells (stained with periodic acid-Schiff reaction or PAS-positive cells) decreased in the AMP in the P4 treated group when compared to the control group, whereas, no difference was observed in the number of PAS-negative cells in the AMP of the three groups. A significant