Science.gov

Sample records for epitopes preferentially recognized

  1. Major role for carbohydrate epitopes preferentially recognized by chronically infected mice in the determination of Schistosoma mansoni schistosomulum surface antigenicity

    SciTech Connect

    Omer-ali, P.; Magee, A.I.; Kelly, C.; Simpson, A.J.G.

    1986-12-01

    A radioimmunoassay that makes use of whole Schistosomula and /sup 125/I-labeled protein A has been used to characterize and to quantify the binding of antisera to the surface of 3 hr mechanically transformed schistosomula of Schistosoma mansoni. This technique facilitates the determination of epitopes on the schistosomula in addition to those detected by surface labeling and immunoprecipitation. By using this technique, it has been demonstrated that there is a much greater binding to the parasite surface of antibodies from chronically infected mice (CMS) than of antibodies from mice infected with highly irradiated cercariae (VMS), and CMS recognizes epitopes that VMS does not. Treatment of the surface of the schistosomula with trifluoromethanesulphonic acid and sodium metaperiodate has suggested that the discrepancy of the binding between the two sera is due to the recognition of a large number of additional epitopes by CMS, which are carbohydrate in nature. Some of the carbohydrate epitopes are expressed on the previously described surface glycoprotein antigens of M/sub r/ 200,000, 38,000, and 17,000.

  2. Worldwide Distribution of HIV Type 1 Epitopes Recognized by Human Anti-V3 Monoclonal Antibodies

    PubMed Central

    Swetnam, James; Pinter, Abraham; Krachmarov, Chavdar; Nadas, Arthur; Almond, David; Zolla-Pazner, Susan

    2009-01-01

    Abstract Epitopes, also known as antigenic determinants, are small clusters of specific atoms within macromolecules that are recognized by the immune system. Such epitopes can be targeted with vaccines designed to protect against specific pathogens. The third variable loop (V3 loop) of the HIV-1 pathogen's gp120 surface envelope glycoprotein can be a highly sensitive neutralization target. We derived sequence motifs for the V3 loop epitopes recognized by the human monoclonal antibodies (mAbs) 447-52D and 2219. Searching the HIV database for the occurrence of each epitope motif in worldwide viruses and correcting the results based on published WHO epidemiology reveal that the 447-52D epitope we defined occurs in 13% of viruses infecting patients worldwide: 79% of subtype B viruses, 1% of subtype C viruses, and 7% of subtype A/AG sequences. In contrast, the epitope we characterized for human anti-V3 mAb 2219 is present in 30% of worldwide isolates but is evenly distributed across the known HIV-1 subtypes: 48% of subtype B strains, 40% of subtype C, and 18% of subtype A/AG. Various assays confirmed that the epitopes corresponding to these motifs, when expressed in the SF162 Env backbone, were sensitively and specifically neutralized by the respective mAbs. The method described here is capable of accurately determining the worldwide occurrence and subtype distribution of any crystallographically resolved HIV-1 epitope recognized by a neutralizing antibody, which could be useful for multivalent vaccine design. More importantly, these calculations demonstrate that globally relevant, structurally conserved epitopes are present in the sequence variable V3 loop. PMID:19320565

  3. Characterization of epitopes recognized by monoclonal antibodies: experimental approaches supported by freely accessible bioinformatic tools.

    PubMed

    Clementi, Nicola; Mancini, Nicasio; Castelli, Matteo; Clementi, Massimo; Burioni, Roberto

    2013-05-01

    Monoclonal antibodies (mAbs) have been used successfully both in research and for clinical purposes. The possible use of protective mAbs directed against different microbial pathogens is currently being considered. The fine definition of the epitope recognized by a protective mAb is an important aspect to be considered for possible development in epitope-based vaccinology. The most accurate approach to this is the X-ray resolution of mAb/antigen crystal complex. Unfortunately, this approach is not always feasible. Under this perspective, several surrogate epitope mapping strategies based on the use of bioinformatics have been developed. In this article, we review the most common, freely accessible, bioinformatic tools used for epitope characterization and provide some basic examples of molecular visualization, editing and computational analysis.

  4. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy.

    PubMed

    Fresquet, Maryline; Jowitt, Thomas A; Gummadova, Jennet; Collins, Richard; O'Cualain, Ronan; McKenzie, Edward A; Lennon, Rachel; Brenchley, Paul E

    2015-02-01

    Phospholipase A2 receptor 1 (PLA2R) is a target autoantigen in 70% of patients with idiopathic membranous nephropathy. We describe the location of a major epitope in the N-terminal cysteine-rich ricin domain of PLA2R that is recognized by 90% of human anti-PLA2R autoantibodies. The epitope was sensitive to reduction and SDS denaturation in the isolated ricin domain and the larger fragment containing the ricin, fibronectin type II, first and second C-type lectin domains (CTLD). However, in nondenaturing conditions the epitope was protected against reduction in larger fragments, including the full-length extracellular region of PLA2R. To determine the composition of the epitope, we isolated immunoreactive tryptic fragments by Western blotting and analyzed them by mass spectrometry. The identified peptides were tested as inhibitors of autoantibody binding to PLA2R by surface plasmon resonance. Two peptides from the ricin domain showed strong inhibition, with a longer sequence covering both peptides (31-mer) producing 85% inhibition of autoantibody binding to PLA2R. Anti-PLA2R antibody directly bound this 31-mer peptide under nondenaturing conditions and binding was sensitive to reduction. Analysis of PLA2R and the PLA2R-anti-PLA2R complex using electron microscopy and homology-based representations allowed us to generate a structural model of this major epitope and its antibody binding site, which is independent of pH-induced conformational change in PLA2R. Identification of this major PLA2R epitope will enable further therapeutic advances for patients with idiopathic membranous nephropathy, including antibody inhibition therapy and immunoadsorption of circulating autoantibodies.

  5. Identification of a Major Epitope Recognized by PLA2R Autoantibodies in Primary Membranous Nephropathy

    PubMed Central

    Fresquet, Maryline; Jowitt, Thomas A.; Gummadova, Jennet; Collins, Richard; O’Cualain, Ronan; McKenzie, Edward A.; Brenchley, Paul E.

    2015-01-01

    Phospholipase A2 receptor 1 (PLA2R) is a target autoantigen in 70% of patients with idiopathic membranous nephropathy. We describe the location of a major epitope in the N-terminal cysteine-rich ricin domain of PLA2R that is recognized by 90% of human anti-PLA2R autoantibodies. The epitope was sensitive to reduction and SDS denaturation in the isolated ricin domain and the larger fragment containing the ricin, fibronectin type II, first and second C-type lectin domains (CTLD). However, in nondenaturing conditions the epitope was protected against reduction in larger fragments, including the full-length extracellular region of PLA2R. To determine the composition of the epitope, we isolated immunoreactive tryptic fragments by Western blotting and analyzed them by mass spectrometry. The identified peptides were tested as inhibitors of autoantibody binding to PLA2R by surface plasmon resonance. Two peptides from the ricin domain showed strong inhibition, with a longer sequence covering both peptides (31-mer) producing 85% inhibition of autoantibody binding to PLA2R. Anti-PLA2R antibody directly bound this 31-mer peptide under nondenaturing conditions and binding was sensitive to reduction. Analysis of PLA2R and the PLA2R-anti-PLA2R complex using electron microscopy and homology-based representations allowed us to generate a structural model of this major epitope and its antibody binding site, which is independent of pH-induced conformational change in PLA2R. Identification of this major PLA2R epitope will enable further therapeutic advances for patients with idiopathic membranous nephropathy, including antibody inhibition therapy and immunoadsorption of circulating autoantibodies. PMID:25288605

  6. Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens.

    PubMed

    Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John

    2009-12-30

    In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.

  7. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies.

    PubMed

    Tsiantoulas, Dimitrios; Perkmann, Thomas; Afonyushkin, Taras; Mangold, Andreas; Prohaska, Thomas A; Papac-Milicevic, Nikolina; Millischer, Vincent; Bartel, Caroline; Hörkkö, Sohvi; Boulanger, Chantal M; Tsimikas, Sotirios; Fischer, Michael B; Witztum, Joseph L; Lang, Irene M; Binder, Christoph J

    2015-02-01

    Oxidation-specific epitopes (OSEs) present on apoptotic cells and oxidized low density lipoprotein (OxLDL) represent danger-associated molecular patterns that are recognized by different arcs of innate immunity, including natural IgM antibodies. Here, we investigated whether circulating microparticles (MPs), which are small membrane vesicles released by apoptotic or activated cells, are physiological carriers of OSEs. OSEs on circulating MPs isolated from healthy donors and patients with ST-segment elevation myocardial infarction (STE-MI) were characterized by flow cytometry using a panel of OSE-specific monoclonal antibodies. We found that a subset of MPs carry OSEs on their surface, predominantly malondialdehyde (MDA) epitopes. Consistent with this, a majority of IgM antibodies bound on the surface of circulating MPs were found to have specificity for MDA-modified LDL. Moreover, we show that MPs can stimulate THP-1 (human acute monocytic leukemia cell line) and human primary monocytes to produce interleukin 8, which can be inhibited by a monoclonal IgM with specificity for MDA epitopes. Finally, we show that MDA(+) MPs are elevated at the culprit lesion site of patients with STE-MI. Our results identify a subset of OSE(+) MPs that are bound by OxLDL-specific IgM. These findings demonstrate a novel mechanism by which anti-OxLDL IgM antibodies could mediate protective functions in CVD.

  8. HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently.

    PubMed

    Turnbull, Emma L; Lopes, A Ross; Jones, Nicola A; Cornforth, David; Newton, Phillipa; Aldam, Diana; Pellegrino, Pierre; Turner, Jo; Williams, Ian; Wilson, Craig M; Goepfert, Paul A; Maini, Mala K; Borrow, Persephone

    2006-05-15

    The ability of HIV-1-specific CD8(+) T cell responses to recognize epitope variants resulting from viral sequence variation in vivo may affect the ease with which HIV-1 can escape T cell control and impact on the rate of disease progression in HIV-1-infected humans. Here, we studied the functional cross-reactivity of CD8 responses to HIV-1 epitopes restricted by HLA class I alleles associated with differential prognosis of infection. We show that the epitope-specific responses exhibiting the most efficient cross-recognition of amino acid-substituted variants were those strongly associated with delayed progression to disease. Not all epitopes restricted by the same HLA class I allele showed similar variant cross-recognition efficiency, consistent with the hypothesis that the reported associations between particular HLA class I alleles and rate of disease progression may be due to the quality of responses to certain "critical" epitopes. Irrespective of their efficiency of functional cross-recognition, CD8(+) T cells of all HIV-1 epitope specificities examined showed focused TCR usage. Furthermore, interpatient variability in variant cross-reactivity correlated well with use of different dominant TCR Vbeta families, suggesting that flexibility is not conferred by the overall clonal breadth of the response but instead by properties of the dominant TCR(s) used for epitope recognition. A better understanding of the features of T cell responses associated with long-term control of viral replication should facilitate rational vaccine design.

  9. HIV-1 epitope-specific CD8+ T cell responses strongly associated with delayed disease progression cross-recognize epitope variants efficiently.

    PubMed

    Turnbull, Emma L; Lopes, A Ross; Jones, Nicola A; Cornforth, David; Newton, Phillipa; Aldam, Diana; Pellegrino, Pierre; Turner, Jo; Williams, Ian; Wilson, Craig M; Goepfert, Paul A; Maini, Mala K; Borrow, Persephone

    2006-05-15

    The ability of HIV-1-specific CD8(+) T cell responses to recognize epitope variants resulting from viral sequence variation in vivo may affect the ease with which HIV-1 can escape T cell control and impact on the rate of disease progression in HIV-1-infected humans. Here, we studied the functional cross-reactivity of CD8 responses to HIV-1 epitopes restricted by HLA class I alleles associated with differential prognosis of infection. We show that the epitope-specific responses exhibiting the most efficient cross-recognition of amino acid-substituted variants were those strongly associated with delayed progression to disease. Not all epitopes restricted by the same HLA class I allele showed similar variant cross-recognition efficiency, consistent with the hypothesis that the reported associations between particular HLA class I alleles and rate of disease progression may be due to the quality of responses to certain "critical" epitopes. Irrespective of their efficiency of functional cross-recognition, CD8(+) T cells of all HIV-1 epitope specificities examined showed focused TCR usage. Furthermore, interpatient variability in variant cross-reactivity correlated well with use of different dominant TCR Vbeta families, suggesting that flexibility is not conferred by the overall clonal breadth of the response but instead by properties of the dominant TCR(s) used for epitope recognition. A better understanding of the features of T cell responses associated with long-term control of viral replication should facilitate rational vaccine design. PMID:16670322

  10. Comprehensive mapping of common immunodominant epitopes in the eastern equine encephalitis virus E2 protein recognized by avian antibody responses.

    PubMed

    Sun, Encheng; Zhao, Jing; Sun, Liang; Xu, Qingyuan; Yang, Tao; Qin, Yongli; Wang, Wenshi; Wei, Peng; Sun, Jing; Wu, Donglai

    2013-01-01

    Eastern equine encephalitis virus (EEEV) is a mosquito-borne virus that can cause both human and equine encephalitis with high case fatality rates. EEEV can also be widespread among birds, including pheasants, ostriches, emu, turkeys, whooping cranes and chickens. The E2 protein of EEEV and other Alphaviruses is an important immunogenic protein that elicits antibodies of diagnostic value. While many therapeutic and diagnostic applications of E2 protein-specific antibodies have been reported, the specific epitopes on E2 protein recognized by the antibody responses of different susceptible hosts, including avian species, remain poorly defined. In the present study, the avian E2-reactive polyclonal antibody (PAb) response was mapped to linear peptide epitopes using PAbs elicited in chickens and ducks following immunization with recombinant EEEV E2 protein and a series of 42 partially overlapping peptides covering the entire EEEV E2 protein. We identified 12 and 13 peptides recognized by the chicken and duck PAb response, respectively. Six of these linear peptides were commonly recognized by PAbs elicited in both avian species. Among them five epitopes recognized by both avian, the epitopes located at amino acids 211-226 and 331-352 were conserved among the EEEV antigenic complex, but not other associated alphaviruses, whereas the epitopes at amino acids 11-26, 30-45 and 151-166 were specific to EEEV subtype I. The five common peptide epitopes were not recognized by avian PAbs against Avian Influenza Virus (AIV) and Duck Plague Virus (DPV). The identification and characterization of EEEV E2 antibody epitopes may be aid the development of diagnostic tools and facilitate the design of epitope-based vaccines for EEEV. These results also offer information with which to study the structure of EEEV E2 protein. PMID:23922704

  11. Identification of surface-exposed B-cell epitopes recognized by Haemophilus influenzae type b P1-specific monoclonal antibodies.

    PubMed

    Panezutti, H; James, O; Hansen, E J; Choi, Y; Harkness, R E; Klein, M H; Chong, P

    1993-05-01

    A panel of P1 synthetic peptides was synthesized to map the surface-exposed epitopes of Haemophilus influenzae type b outer membrane protein P1 recognized by three murine monoclonal antibodies (MAbs 7C8, 3E12, and 6B1). By using peptide-specific enzyme-linked immunosorbent assays, MAbs 6B1, 7C8, and 3E12 were shown to recognize distinct epitopes localized within residues 60 to 88, 165 to 193, and 400 to 437 of mature P1, respectively. Since MAb 7C8 was shown previously to be protective against certain H. influenzae type b subtypes in the infant rat model of bacteremia, its cognate epitope was further characterized by using truncated peptide analogs. Fine mapping of the 7C8 epitope by competitive inhibition studies revealed that it was localized within residues 184 and 193.

  12. Epitope map of two polyclonal antibodies that recognize amyloid lesions in patients with Alzheimer's disease.

    PubMed Central

    Ghiso, J; Wisniewski, T; Vidal, R; Rostagno, A; Frangione, B

    1992-01-01

    Two synthetic peptides with sequences identical with those of fragments of the extracellular domain of the Alzheimer's-disease amyloid precursor protein (APP) were used to raise antibodies. SP28 comprises positions 597-624 of the APP695 isoform, whereas SP41 extends towards the N-terminus (amino acids 584-624) and contains the entire SP28 peptide. Using e.l.i.s.a. and inhibition experiments we identified the two beta-turn-containing segments 602-607 and 617-624 as the epitopes recognized by anti-SP41 and anti-SP28 respectively. Both antibodies immunolabelled amyloid lesions in brains from Alzheimer's-disease patients and patients with related disorders, whereas they were unreactive in control brains. However, when probed on immunoblots, anti-SP28 failed to detect full-length APP from baculovirus-infected Sf9 cells, and anti-SP41 reacted weakly compared with other anti-APP antisera. The data suggest that these antibodies are directed to conformational epitopes not existent in the native molecules but present after alternative APP processing. Images Fig. 4. Fig. 5. PMID:1372166

  13. Mapping of epitopes recognized by antibodies induced by immunization of mice with PspA and PspC.

    PubMed

    Vadesilho, Cintia F M; Ferreira, Daniela M; Gordon, Stephen B; Briles, David E; Moreno, Adriana T; Oliveira, Maria Leonor S; Ho, Paulo L; Miyaji, Eliane N

    2014-07-01

    Pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC) are important candidates for an alternative vaccine against pneumococcal infections. Since these antigens show variability, the use of variants that do not afford broad protection may lead to the selection of vaccine escape bacteria. Epitopes capable of inducing antibodies with broad cross-reactivities should thus be the preferred antigens. In this work, experiments using peptide arrays show that most linear epitopes recognized by antibodies induced in mice against different PspAs were located at the initial 44 amino acids of the mature protein and that antibodies against these linear epitopes did not confer protection against a lethal challenge. Conversely, linear epitopes recognized by antibodies to PspC included the consensus sequences involved in the interaction with human factor H and secretory immunoglobulin A (sIgA). Since linear epitopes of PspA were not protective, larger overlapping fragments containing 100 amino acids of PspA of strain Rx1 were constructed (fragments 1 to 7, numbered from the N terminus) to permit the mapping of antibodies with conformational epitopes not represented in the peptide arrays. Antibodies from mice immunized with fragments 1, 2, 4, and 5 were capable of binding onto the surface of pneumococci and mediating protection against a lethal challenge. The fact that immunization of mice with 100-amino-acid fragments located at the more conserved N-terminal region of PspA (fragments 1 and 2) induced protection against a pneumococcal challenge indicates that the induction of antibodies against conformational epitopes present at this region may be important in strategies for inducing broad protection against pneumococci. PMID:24807052

  14. Comprehensive Mapping of Common Immunodominant Epitopes in the West Nile Virus Nonstructural Protein 1 Recognized by Avian Antibody Responses

    PubMed Central

    Sun, Encheng; Zhao, Jing; Liu, Nihong; Yang, Tao; Xu, Qingyuan; Qin, Yongli; Bu, Zhigao; Yang, Yinhui; Lunt, Ross A.; Wang, Linfa; Wu, Donglai

    2012-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1) of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24) were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV) serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV), Newcastle Disease Virus (NDV), Duck Plague Virus (DPV) and Goose Parvovirus (GPV) antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and subunit vaccines

  15. Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes.

    PubMed

    Sukupolvi-Petty, Soila; Austin, S Kyle; Purtha, Whitney E; Oliphant, Theodore; Nybakken, Grant E; Schlesinger, Jacob J; Roehrig, John T; Gromowski, Gregory D; Barrett, Alan D; Fremont, Daved H; Diamond, Michael S

    2007-12-01

    Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.

  16. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein

    PubMed Central

    Hicar, Mark D.; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U.; Kalams, Spyros A.; Doranz, Benjamin J.; Spearman, Paul; Crowe, James E.

    2016-01-01

    Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063

  17. Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein.

    PubMed

    Hicar, Mark D; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U; Kalams, Spyros A; Doranz, Benjamin J; Spearman, Paul; Crowe, James E

    2016-01-01

    Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063

  18. Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein

    PubMed Central

    Gilman, Morgan S. A.; Moin, Syed M.; Mas, Vicente; Chen, Man; Patel, Nita K.; Kramer, Kari; Zhu, Qing; Kabeche, Stephanie C.; Kumar, Azad; Palomo, Concepción; Beaumont, Tim; Baxa, Ulrich; Ulbrandt, Nancy D.; Melero, José A.; Graham, Barney S.; McLellan, Jason S.

    2015-01-01

    Prevention efforts for respiratory syncytial virus (RSV) have been advanced due to the recent isolation and characterization of antibodies that specifically recognize the prefusion conformation of the RSV fusion (F) glycoprotein. These potently neutralizing antibodies are in clinical development for passive prophylaxis and have also aided the design of vaccine antigens that display prefusion-specific epitopes. To date, prefusion-specific antibodies have been shown to target two antigenic sites on RSV F, but both of these sites are also present on monomeric forms of F. Here we present a structural and functional characterization of human antibody AM14, which potently neutralized laboratory strains and clinical isolates of RSV from both A and B subtypes. The crystal structure and location of escape mutations revealed that AM14 recognizes a quaternary epitope that spans two protomers and includes a region that undergoes extensive conformational changes in the pre- to postfusion F transition. Binding assays demonstrated that AM14 is unique in its specific recognition of trimeric furin-cleaved prefusion F, which is the mature form of F on infectious virions. These results demonstrate that the prefusion F trimer contains potent neutralizing epitopes not present on monomers and that AM14 should be particularly useful for characterizing the conformational state of RSV F-based vaccine antigens. PMID:26161532

  19. Characterization of a Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent Epitope on the RSV Fusion Glycoprotein.

    PubMed

    Gilman, Morgan S A; Moin, Syed M; Mas, Vicente; Chen, Man; Patel, Nita K; Kramer, Kari; Zhu, Qing; Kabeche, Stephanie C; Kumar, Azad; Palomo, Concepción; Beaumont, Tim; Baxa, Ulrich; Ulbrandt, Nancy D; Melero, José A; Graham, Barney S; McLellan, Jason S

    2015-07-01

    Prevention efforts for respiratory syncytial virus (RSV) have been advanced due to the recent isolation and characterization of antibodies that specifically recognize the prefusion conformation of the RSV fusion (F) glycoprotein. These potently neutralizing antibodies are in clinical development for passive prophylaxis and have also aided the design of vaccine antigens that display prefusion-specific epitopes. To date, prefusion-specific antibodies have been shown to target two antigenic sites on RSV F, but both of these sites are also present on monomeric forms of F. Here we present a structural and functional characterization of human antibody AM14, which potently neutralized laboratory strains and clinical isolates of RSV from both A and B subtypes. The crystal structure and location of escape mutations revealed that AM14 recognizes a quaternary epitope that spans two protomers and includes a region that undergoes extensive conformational changes in the pre- to postfusion F transition. Binding assays demonstrated that AM14 is unique in its specific recognition of trimeric furin-cleaved prefusion F, which is the mature form of F on infectious virions. These results demonstrate that the prefusion F trimer contains potent neutralizing epitopes not present on monomers and that AM14 should be particularly useful for characterizing the conformational state of RSV F-based vaccine antigens. PMID:26161532

  20. Matrix-assisted laser desorption ionization/mass spectrometry mapping of human immunodeficiency virus-gp120 epitopes recognized by a limited polyclonal antibody.

    PubMed

    Jeyarajah, S; Parker, C E; Summer, M T; Tomer, K B

    1998-02-01

    In this study we have applied epitope excision and epitope extraction strategies, combined with matrix assisted laser desorption/ionization mass spectrometry, to determine the fine structure of epitopes recognized by a polyclonal antibody to human immunodeficiency virus envelope glycoprotein gp120. This is the first application of this approach to epitope mapping on a large, heavily glycosylated protein. In the epitope excision method, gp120 in the native form is first bound to the antibody immobilized on sepharose beads and cleaved with endoproteinase enzymes. In the epitope extraction method, the gp120 was first proteolytically cleaved and then allowed to react with the immobilized antibody. The fragments that remain bound to the antibody, after repeated washing to remove the unbound peptides, contain the antigenic region that is recognized by the antibody, and the bound peptides in both methods can be characterized by direct analysis of the immobilized antibody by matrix assisted laser desorption ionization/mass spectrometry. In this study we have carried out epitope excision and extraction experiments with three different enzymes and have identified residues 472-478 as a major epitope. In addition, antigenic regions containing minor epitopes have also been identified.

  1. Kinetics of HIV-1 CTL epitopes recognized by HLA I alleles in HIV-infected individuals at times near primary infection: the Provir/Latitude45 study.

    PubMed

    Papuchon, Jennifer; Pinson, Patricia; Guidicelli, Gwenda-Line; Bellecave, Pantxika; Thomas, Réjean; LeBlanc, Roger; Reigadas, Sandrine; Taupin, Jean-Luc; Baril, Jean Guy; Routy, Jean Pierre; Wainberg, Mark; Fleury, Hervé

    2014-01-01

    In patients responding successfully to ART, the next therapeutic step is viral cure. An interesting strategy is antiviral vaccination, particularly involving CD8 T cell epitopes. However, attempts at vaccination are dependent on the immunogenetic background of individuals. The Provir/Latitude 45 project aims to investigate which CTL epitopes in proviral HIV-1 will be recognized by the immune system when HLA alleles are taken into consideration. A prior study (Papuchon et al, PLoS ONE 2013) showed that chronically-infected patients under successful ART exhibited variations of proviral CTL epitopes compared to a reference viral strain (HXB2) and that a generic vaccine may not be efficient. Here, we investigated viral and/or proviral CTL epitopes at different time points in recently infected individuals of the Canadian primary HIV infection cohort and assessed the affinity of these epitopes for HLA alleles during the study period. An analysis of the results confirms that it is not possible to fully predict which epitopes will be recognized by the HLA alleles of the patients if the reference sequences and epitopes are taken as the basis of simulation. Epitopes may be seen to vary in circulating RNA and proviral DNA. Despite this confirmation, the overall variability of the epitopes was low in these patients who are temporally close to primary infection.

  2. Structural Basis of Differential Neutralization of DENV-1 Genotypes by an Antibody that Recognizes a Cryptic Epitope

    PubMed Central

    Austin, S. Kyle; Dowd, Kimberly A.; Shrestha, Bimmi; Nelson, Christopher A.; Edeling, Melissa A.; Johnson, Syd; Pierson, Theodore C.; Diamond, Michael S.; Fremont, Daved H.

    2012-01-01

    We previously developed a panel of neutralizing monoclonal antibodies against Dengue virus (DENV)-1, of which few exhibited inhibitory activity against all DENV-1 genotypes. This finding is consistent with reports observing variable neutralization of different DENV strains and genotypes using serum from individuals that experienced natural infection or immunization. Herein, we describe the crystal structures of DENV1-E111 bound to a novel CC′ loop epitope on domain III (DIII) of the E protein from two different DENV-1 genotypes. Docking of our structure onto the available cryo-electron microscopy models of DENV virions revealed that the DENV1-E111 epitope was inaccessible, suggesting that this antibody recognizes an uncharacterized virus conformation. While the affinity of binding between DENV1-E111 and DIII varied by genotype, we observed limited correlation with inhibitory activity. Instead, our results support the conclusion that potent neutralization depends on genotype-dependent exposure of the CC′ loop epitope. These findings establish new structural complexity of the DENV virion, which may be relevant for the choice of DENV strain for induction or analysis of neutralizing antibodies in the context of vaccine development. PMID:23055922

  3. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies1[S

    PubMed Central

    Tsiantoulas, Dimitrios; Perkmann, Thomas; Afonyushkin, Taras; Mangold, Andreas; Prohaska, Thomas A.; Papac-Milicevic, Nikolina; Millischer, Vincent; Bartel, Caroline; Hörkkö, Sohvi; Boulanger, Chantal M.; Tsimikas, Sotirios; Fischer, Michael B.; Witztum, Joseph L.; Lang, Irene M.; Binder, Christoph J.

    2015-01-01

    Oxidation-specific epitopes (OSEs) present on apoptotic cells and oxidized low density lipoprotein (OxLDL) represent danger-associated molecular patterns that are recognized by different arcs of innate immunity, including natural IgM antibodies. Here, we investigated whether circulating microparticles (MPs), which are small membrane vesicles released by apoptotic or activated cells, are physiological carriers of OSEs. OSEs on circulating MPs isolated from healthy donors and patients with ST-segment elevation myocardial infarction (STE-MI) were characterized by flow cytometry using a panel of OSE-specific monoclonal antibodies. We found that a subset of MPs carry OSEs on their surface, predominantly malondialdehyde (MDA) epitopes. Consistent with this, a majority of IgM antibodies bound on the surface of circulating MPs were found to have specificity for MDA-modified LDL. Moreover, we show that MPs can stimulate THP-1 (human acute monocytic leukemia cell line) and human primary monocytes to produce interleukin 8, which can be inhibited by a monoclonal IgM with specificity for MDA epitopes. Finally, we show that MDA+ MPs are elevated at the culprit lesion site of patients with STE-MI. Our results identify a subset of OSE+ MPs that are bound by OxLDL-specific IgM. These findings demonstrate a novel mechanism by which anti-OxLDL IgM antibodies could mediate protective functions in CVD. PMID:25525116

  4. Definition of human apolipoprotein A-I epitopes recognized by autoantibodies present in patients with cardiovascular diseases.

    PubMed

    Teixeira, Priscila Camillo; Ducret, Axel; Ferber, Philippe; Gaertner, Hubert; Hartley, Oliver; Pagano, Sabrina; Butterfield, Michelle; Langen, Hanno; Vuilleumier, Nicolas; Cutler, Paul

    2014-10-10

    Autoantibodies to apolipoprotein A-I (anti-apoA-I IgG) have been shown to be both markers and mediators of cardiovascular disease, promoting atherogenesis and unstable atherosclerotic plaque. Previous studies have shown that high levels of anti-apoA-I IgGs are independently associated with major adverse cardiovascular events in patients with myocardial infarction. Autoantibody responses to apoA-I can be polyclonal and it is likely that more than one epitope may exist. To identify the specific immunoreactive peptides in apoA-I, we have developed a set of methodologies and procedures to isolate, purify, and identify novel apoA-I endogenous epitopes. First, we generated high purity apoA-I from human plasma, using thiophilic interaction chromatography followed by enzymatic digestion specifically at lysine or arginine residues. Immunoreactivity to the different peptides generated was tested by ELISA using serum obtained from patients with acute myocardial infarction and high titers of autoantibodies to native apoA-I. The immunoreactive peptides were further sequenced by mass spectrometry. Our approach successfully identified two novel immunoreactive peptides, recognized by autoantibodies from patients suffering from myocardial infarction, who contain a high titer of anti-apoA-I IgG. The discovery of these epitopes may open innovative prognostic and therapeutic opportunities potentially suitable to improve current cardiovascular risk stratification.

  5. CMV-Specific T-cells Generated From Naïve T-cells Recognize Atypical Epitopes And May Be Protective in Vivo

    PubMed Central

    Hanley, Patrick J.; Melenhorst, Jan J.; Nikiforow, Sarah; Scheinberg, Phillip; Blaney, James W.; Demmler-Harrison, Gail; Cruz, C. Russell; Lam, Sharon; Krance, Robert A.; Leung, Kathryn S.; Martinez, Caridad A.; Liu, Hao; Heslop, Helen E.; Rooney, Cliona M.; Shpall, Elizabeth J.; Barrett, A. John; Rodgers, John R.; Bollard, Catherine M.

    2015-01-01

    Adoptive transfer of adult-seropositive, cytomegalovirus (CMV)-specific T-cells can effectively restore antiviral immunity after transplantation. Lack of CMV-specific memory T-cells in blood from CMV-seronegative adult and cord blood (CB) donors restricts the availability of donor-derived virus-specific T-cells for immunoprophylaxis. Here we demonstrate the feasibility of naïve-donor-derived CMV-specific T-cell therapy for transplant recipients. Primed naïve T-cells recognized only atypical epitopes and with a similar avidity to CMV-seropositive-derived T-cells recognizing typical epitopes, but T-cells from CMV-seropositive donors recognizing atypical epitopes had a lower avidity suggesting the loss of high-avidity T-cells over time. Clonotypic analysis revealed T-cells recognizing atypical CMVpp65 epitopes in the peripheral blood of recipients of CB grafts who did not develop CMV. T-cell receptors from atypical epitopes were most common in unmanipulated CB units explaining why these T-cells expanded. When infused to recipients, naïve donor-derived virus specific T-cells that recognized atypical epitopes were associated with prolonged periods of CMV-free survival and complete remission. PMID:25925682

  6. Structural Characterization of Viral Epitopes Recognized by Broadly Cross-Reactive Antibodies

    PubMed Central

    Lee, Peter S.; Wilson, Ian A.

    2015-01-01

    Influenza hemagglutinin (HA) is the major surface glycoprotein on influenza viruses and mediates viral attachment and subsequent fusion with host cells. The HA is the major target of the immune response, but due to its high level of variability, as evidenced by substantial antigenic diversity, it had been historically considered to elicit only a narrow, strain-specific antibody response. However, a recent explosion in the discovery of broadly neutralizing antibodies (bnAbs) to influenza virus has identified two major supersites of vulnerability on the HA through structural characterization of HA-antibody complexes. These commonly targeted epitopes are involved with receptor binding as well as the fusion machinery and, hence, are functionally conserved and less prone to mutation. These bnAbs can neutralize viruses by blocking infection or the spread of infection by preventing progeny release. Structural analyses of these bnAbs show they exhibit striking similarities and trends in recognition of the HA and use recurring recognition motifs, despite substantial differences in their germline genes. This information can be utilized in design of novel therapeutics as well as in immunogens for improved vaccines with greater breadth and efficacy. PMID:25037260

  7. Linking Single Domain Antibodies that Recognize Different Epitopes on the Same Target

    PubMed Central

    Glaven, Richard H.; Anderson, George P.; Zabetakis, Dan; Liu, Jinny L.; Long, Nina C.; Goldman, Ellen R.

    2012-01-01

    Single domain antibodies (sdAb) are the recombinantly expressed variable regions from the heavy-chain-only antibodies found in camelids and sharks. SdAb are able to bind antigens with high affinity, and most are capable of refolding after heat or chemical denaturation to bind antigen again. Starting with our previously isolated ricin binding sdAb determined to bind to four non-overlapping epitopes, we constructed a series of sdAb pairs, which were genetically linked through peptides of different length. We designed the series so that the sdAb are linked in both orientations with respect to the joining peptide. We confirmed that each of the sdAb in the constructs was able to bind to the ricin target, and have evidence that they are both binding ricin simultaneously. Through this work we determined that the order of genetically linked sdAb seems more important than the linker length. The genetically linked sdAb allowed for improved ricin detection with better limits of detection than the best anti-ricin monoclonal we evaluated, however they were not able to refold as well as unlinked component sdAb. PMID:25585631

  8. A human monoclonal antibody against HPV16 recognizes an immunodominant and neutralizing epitope partially overlapping with that of H16.V5

    PubMed Central

    Xia, Lin; Xian, Yangfei; Wang, Daning; Chen, Yuanzhi; Huang, Xiaofen; Bi, Xingjian; Yu, Hai; Fu, Zheng; Liu, Xinlin; Li, Shaowei; An, Zhiqiang; Luo, Wenxin; Zhao, Qinjian; Xia, Ningshao

    2016-01-01

    The presence of neutralizing epitopes in human papillomavirus (HPV) L1 virus-like particles (VLPs) is the structural basis of prophylactic vaccines. An anti-HPV16 neutralizing monoclonal antibody (N-mAb) 26D1 was isolated from a memory B cell of a human vaccinee. The pre-binding of heparan sulfate to VLPs inhibited the binding of both N-mAbs to the antigen, indicating that the epitopes are critical for viral cell attachment/entry. Hybrid VLP binding with surface loop swapping between types indicated the essential roles of the DE and FG loops for both 26D1 (DEa in particular) and H16.V5 binding. Specifically, Tyr135 and Val141 on the DEa loop were shown to be critical residues for 26D1 binding via site-directed mutagenesis. Partially overlap between the epitopes between 26D1 and H16.V5 was shown using pairwise epitope mapping, and their binding difference is demonstrated to be predominantly in DE loop region. In addition, 26D1 epitope is immunodominant epitope recognized by both antibodies elicited by the authentic virus from infected individuals and polyclonal antibodies from vaccinees. Overall, a partially overlapping but distinct neutralizing epitope from that of H16.V5 was identified using a human N-mAb, shedding lights to the antibody arrays as part of human immune response to vaccination and infection. PMID:26750243

  9. Characterization of a Discontinuous Epitope of the HIV Envelope Protein gp120 Recognized by a Human Monoclonal Antibody Using Chemical Modification and Mass Spectrometric Analysis

    PubMed Central

    Hager-Braun, Christine; Hochleitner, Elisabeth O.; Gorny, Miroslaw K.; Zolla-Pazner, Susan; Bienstock, Rachelle J.; Tomer, Kenneth B.

    2010-01-01

    A subset of the neutralizing anti-HIV antibodies recognize epitopes on the envelope protein gp120 of the human immunodeficiency virus. These epitopes are exposed during conformational changes when gp120 binds to its primary receptor CD4. Based on chemical modification of lysine and arginine residues followed by mass spectrometric analysis, we determined the epitope on gp120 recognized by the human monoclonal antibody 559/64-D, which was previously found to be specific for the CD4 binding domain. Twenty-four lysine and arginine residues in recombinant full-length glycosylated gp120 were characterized; the relative reactivities of two lysine residues and five arginine residues were affected by the binding of 559/64-D. The data show that the epitope is discontinuous and is located in the proximity of the CD4-binding site. Additionally, the reactivities of a residue that is located in the secondary receptor binding region and several residues distant from the CD4 binding site were also altered by Ab binding. These data suggest that binding of 559/64-D induced conformational changes which result in altered surface exposure of specific amino acids distant from the CD4-binding site. Consequently, binding of 559/64-D to gp120 affects not only the CD4-binding site, which is recognized as the epitope, but appears to have a global effect on surface exposed residues of the full-length glycosylated gp120. PMID:20434359

  10. Gluten-specific antibodies of celiac disease gut plasma cells recognize long proteolytic fragments that typically harbor T-cell epitopes

    PubMed Central

    Dørum, Siri; Steinsbø, Øyvind; Bergseng, Elin; Arntzen, Magnus Ø.; de Souza, Gustavo A.; Sollid, Ludvig M.

    2016-01-01

    This study aimed to identify proteolytic fragments of gluten proteins recognized by recombinant IgG1 monoclonal antibodies generated from single IgA plasma cells of celiac disease lesions. Peptides bound by monoclonal antibodies in complex gut-enzyme digests of gluten treated with the deamidating enzyme transglutaminase 2, were identified by mass spectrometry after antibody pull-down with protein G beads. The antibody bound peptides were long deamidated peptide fragments that contained the substrate recognition sequence of transglutaminase 2. Characteristically, the fragments contained epitopes with the sequence QPEQPFP and variants thereof in multiple copies, and they typically also harbored many different gluten T-cell epitopes. In the pull-down setting where antibodies were immobilized on a solid phase, peptide fragments with multivalent display of epitopes were targeted. This scenario resembles the situation of the B-cell receptor on the surface of B cells. Conceivably, B cells of celiac disease patients select gluten epitopes that are repeated multiple times in long peptide fragments generated by gut digestive enzymes. As the fragments also contain many different T-cell epitopes, this will lead to generation of strong antibody responses by effective presentation of several distinct T-cell epitopes and establishment of T-cell help to B cells. PMID:27146306

  11. A natural IgA-anti-F(ab')2gamma autoantibody occurring in healthy individuals and kidney graft recipients recognizes an IgG1 hinge region epitope.

    PubMed

    Terness, P; Navolan, D; Moroder, L; Siedler, F; Weyher, E; Kohl, I; Dufter, C; Welschof, M; Drugarin, D; Schneider, F; Opelz, G

    1996-11-01

    Natural anti-IgG autoantibodies are found both in healthy individuals and in patients with certain diseases. One group of these Abs recognizes epitopes located in the F(ab')2 region of the IgG molecule. The immunoregulatory role of these Abs in healthy individuals, graft rejection, and disease was previously studied, usually with a focus on the characterization of anti-idiotypic Abs. In the present study, we characterize the epitope recognized by an anti-F(ab')2gamma autoantibody of the IgA isotype, which occurs in the serum of healthy individuals and kidney transplant recipients. The autoantibody described herein reacts strongly with F(ab')2gamma but only poorly with Fab(gamma) fragments, a binding pattern pointing to an epitope located in the hinge region. Using synthetic peptides, we identified a conformational epitope that overlaps the middle and part of the lower hinge region. Structural analyses of peptide constructs showed that a defined conformation of the first three residues of the lower hinge is required for a full expression of the epitope. Binding of IgA to the hinge region of IgG1 covers part of the physiologically active Fc domain, immobilizes the Fab arms, and thereby can be expected to exert immunoregulatory functions.

  12. Identification of a conserved linear neutralizing epitope recognized by monoclonal antibody 9A9 against serotype A foot-and-mouth disease virus.

    PubMed

    Liang, Weifeng; Zhou, Guohui; Liu, Wenming; Yang, Baolin; Li, Chaosi; Wang, Haiwei; Yang, Decheng; Ma, Wenge; Yu, Li

    2016-10-01

    Foot-and-mouth disease (FMD), caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. In recent years, a series of outbreaks of serotype A FMD have occurred in many countries. High-affinity neutralizing antibodies against a conserved epitope have the potential to provide protective immunity against diverse subtypes of FMDV serotype A and to protect against future pandemics. In this study, we produced an A serotype FMDV-specific monoclonal antibody (MAb) against the viral capsid protein VP1, designated 9A9, that potently neutralized FMDV A/JLYS/CHA/2014 with a 50 % neutralization titer (NT50) of 4,096. GST-fusion proteins expressing truncated peptides of VP1 were subjected to Western blot analysis using MAb 9A9, and it was found that the peptide (143)RGDLGPLAARL(153) of VP1 was the minimal epitope for MAb 9A9 binding. Western blot analysis also revealed that the epitope peptide could be recognized by positive sera from serotype A FMDV-infected pigs and cattle. Subsequent alanine-scanning mutagenesis analysis revealed that residues Gly(147) and Leu(149) of the 9A9-recognized epitope are crucial for MAb 9A9 binding. Furthermore, under immunological pressure selected by MAb 9A9, a single amino acid residue replacement (L149P) occurred in a viral neutralization-escape mutant, which verified the location of a critical residue of this epitope at Leu(149). Importantly, the epitope (143)RGDLGPLAARL(153) was highly conserved among different topotypes of serotype A FMDV strains in sequence alignment analysis. Thus, the results of this study could have application potential in the development of epitope-based vaccines and a suitable MAb-based diagnostic method for detection of type A FMDV as well as quantitation of antibodies against FMDV serotype A. PMID:27422396

  13. Identification of two T-cell epitopes on the candidate Epstein-Barr virus vaccine glycoprotein gp340 recognized by CD4+ T-cell clones.

    PubMed Central

    Wallace, L E; Wright, J; Ulaeto, D O; Morgan, A J; Rickinson, A B

    1991-01-01

    Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a

  14. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses.

    PubMed

    Hu, Hongxing; Voss, Jarrod; Zhang, Guoliang; Buchy, Philippi; Zuo, Teng; Wang, Lulan; Wang, Feng; Zhou, Fan; Wang, Guiqing; Tsai, Cheguo; Calder, Lesley; Gamblin, Steve J; Zhang, Linqi; Deubel, Vincent; Zhou, Boping; Skehel, John J; Zhou, Paul

    2012-03-01

    Influenza A virus infection is a persistent threat to public health worldwide due to its ability to evade immune surveillance through rapid genetic drift and shift. Current vaccines against influenza A virus provide immunity to viral isolates that are similar to vaccine strains. High-affinity neutralizing antibodies against conserved epitopes could provide immunity to diverse influenza virus strains and protection against future pandemic viruses. In this study, by using a highly sensitive H5N1 pseudotype-based neutralization assay to screen human monoclonal antibodies produced by memory B cells from an H5N1-infected individual and molecular cloning techniques, we developed three fully human monoclonal antibodies. Among them, antibody 65C6 exhibited potent neutralization activity against all H5 clades and subclades except for subclade 7.2 and prophylactic and therapeutic efficacy against highly pathogenic avian influenza H5N1 viruses in mice. Studies on hemagglutinin (HA)-antibody complexes by electron microscopy and epitope mapping indicate that antibody 65C6 binds to a conformational epitope comprising amino acid residues at positions 118, 121, 161, 164, and 167 (according to mature H5 numbering) on the tip of the membrane-distal globular domain of HA. Thus, we conclude that antibody 65C6 recognizes a neutralization epitope in the globular head of HA that is conserved among almost all divergent H5N1 influenza stains. PMID:22238297

  15. Identification of a novel B-cell epitope of Hantaan virus glycoprotein recognized by neutralizing 3D8 monoclonal antibody.

    PubMed

    Yan, Guolin; Zhang, Yusi; Ma, Ying; Yi, Jing; Liu, Bei; Xu, Zhuwei; Zhang, Yun; Zhang, Chunmei; Zhang, Fanglin; Xu, Zhikai; Yang, Angang; Zhuang, Ran; Jin, Boquan

    2012-12-01

    Hantaan virus (HTNV), a member of the family Bunyaviridae, is a major agent causing haemorrhagic fever with renal syndrome, a high-mortality-rate disease threatening approximately 150 000 people around the world yearly. The 3D8 mAb displays a neutralizing activity to HTNV infection. In this study, the B-cell epitopes of HTNV glycoproteins (GPs) were finely mapped by peptide scanning. A new B-cell epitope (882)GFLCPEFPGSFRKKC(896) of HTNV, which locates on Gc, has been screened out from a set of 15-mer synthesized peptides covering the full-length of HTNV-GPs. It has been shown by the alanine-scanning technique that (885)C, (893)R, (894)K, (895)K and (896)C are the key amino acids of the binding sites of the GPs. The implications of identifying a novel B-cell epitope for hantavirus immunology and vaccinology are discussed.

  16. A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface.

    PubMed

    Fibriansah, Guntur; Tan, Joanne L; Smith, Scott A; de Alwis, Adamberage R; Ng, Thiam-Seng; Kostyuchenko, Victor A; Ibarra, Kristie D; Wang, Jiaqi; Harris, Eva; de Silva, Aravinda; Crowe, James E; Lok, Shee-Mei

    2014-03-01

    Dengue virus (DENV), which consists of four serotypes (DENV1-4), infects over 400 million people annually. Previous studies have indicated most human monoclonal antibodies (HMAbs) from dengue patients are cross-reactive and poorly neutralizing. Rare neutralizing HMAbs are usually serotype-specific and bind to quaternary structure-dependent epitopes. We determined the structure of DENV1 complexed with Fab fragments of a highly potent HMAb 1F4 to 6 Å resolution by cryo-EM. Although HMAb 1F4 appeared to bind to virus and not E proteins in ELISAs in the previous study, our structure showed that the epitope is located within an envelope (E) protein monomer, and not across neighboring E proteins. The Fab molecules bind to domain I (DI), and DI-DII hinge of the E protein. We also showed that HMAb 1F4 can neutralize DENV at different stages of viral entry in a cell type and receptor dependent manner. The structure reveals the mechanism by which this potent and specific antibody blocks viral infection. PMID:24421336

  17. Circulating anti-Tax cytotoxic T lymphocytes from human T-cell leukemia virus type I-infected people, with and without tropical spastic paraparesis, recognize multiple epitopes simultaneously.

    PubMed Central

    Parker, C E; Nightingale, S; Taylor, G P; Weber, J; Bangham, C R

    1994-01-01

    CD8+ T cells were freshly isolated from a human T-cell leukemia virus type I (HTLV-I)-infected patient with tropical spastic paraparesis. These cells, which were specific for HTLV-I Tax, simultaneously recognized a minimum of five, and possibly as many as seven, distinct peptide epitopes within the protein. A further Tax epitope was recognized after a short period of culture without exogenous peptide stimulation. All but one of these epitopes were clustered in the N-terminal third of Tax, and one of the epitopes was clearly immunodominant on two separate occasions of testing. Recognition of the immunodominant epitope was restricted by human leukocyte antigen (HLA) B15, and recognition of all the others was by HLA A2. Similar patterns of cytotoxic T lymphocyte recognition of the HLA A2-restricted Tax peptides in two healthy HTLV-I-seropositive individuals, each of whom carried the HLA A2 allele, were observed. PMID:7512153

  18. Pr1E11, a novel anti-TROP-2 antibody isolated by adenovirus-based antibody screening, recognizes a unique epitope.

    PubMed

    Ikeda, Masahiro; Yamaguchi, Miki; Kato, Kazunori; Nakamura, Kiminori; Shiina, Sagano; Ichikawa-Ando, Takako; Misaka, Hirofumi; Myojo, Kensuke; Nakamura, Kazuyasu; Sugimoto, Yoshiyuki; Hamada, Hirofumi

    2015-03-20

    TROP-2 is a type Ⅰ transmembrane glycoprotein that is highly expressed in various epithelial cancer cells, and its increased expression correlates with poor prognosis. Although several anti-TROP-2 antibodies have been described, they were found unsuitable for antitumor therapy use in vivo as naked antibodies. In this study, we established a novel anti-TROP-2 antibody, designated Pr1E11, from mice immunized with primary prostate cancer cells. Antibody screening was based on the infection activity of Adv-LacZ-FZ33, which displays an immunoglobulin G binding domain in the adenoviral fiber protein. We found that Pr1E11 specifically binds to TROP-2 with high affinity and recognizes diverse epithelial cancer cell lines and primary pancreatic cancer tissues. Epitope analysis using TROP-2 deletion mutants revealed that binding site of Pr1E11 is a cysteine-rich domain, a unique epitope compared with other available anti-TROP-2 antibodies. In addition, Pr1E11 exhibited low internalization activity, which may make it suitable for naked antibody therapeutics. Our results suggest that Pr1E11 may stimulate different biological activities from other anti-TROP-2 antibodies based on its unique binding epitope, and is a potential candidate for naked antibody therapeutics for various epithelial cancer treatments. PMID:25701778

  19. Target epitope in the Tax protein of human T-cell leukemia virus type I recognized by class I major histocompatibility complex-restricted cytotoxic T cells.

    PubMed

    Kannagi, M; Shida, H; Igarashi, H; Kuruma, K; Murai, H; Aono, Y; Maruyama, I; Osame, M; Hattori, T; Inoko, H

    1992-05-01

    A trans-acting regulatory gene product p40tax (Tax) of human T-cell leukemia virus type I (HTLV-I) is one of the main target antigens recognized by cytotoxic T lymphocytes (CTL) specific for HTLV-I. A CTL epitope within the Tax protein was identified in this report. HTLV-I-specific CD8+ CTL lines established from two HTLV-I carriers with HTLV-I-associated myelopathy or Sjögren syndrome were previously demonstrated to kill predominantly the target cells expressing HTLV-I Tax. The CTL from two patients showed significant levels of cytotoxicity to autologous target cells pulsed with a synthetic peptide of 24 amino acids corresponding to the amino-terminal sequences of the Tax protein. Allogeneic target cells were also sensitized for CTL by this peptide when the target cells have HLA-A2. Tax-specific cytotoxicity, detected as cytolysis of the target cells infected with vaccinia virus-HTLV-I recombinant expressing Tax protein, was almost completely inhibited by competitor cells pulsed with the synthetic peptide. This indicates that a major CTL epitope is present in this peptide. Further analysis using shorter peptides revealed that the core sequence of the CTL epitope was LLFGYPVYV at positions 11 through 19. This sequence can be aligned with the HLA-A2-specific motifs reported recently. PMID:1373197

  20. Proteomic Characterization of Helicobacter pylori CagA Antigen Recognized by Child Serum Antibodies and Its Epitope Mapping by Peptide Array

    PubMed Central

    Akada, Junko; Okuda, Masumi; Hiramoto, Narumi; Kitagawa, Takao; Zhang, Xiulian; Kamei, Shuichi; Ito, Akane; Nakamura, Mikiko; Uchida, Tomohisa; Hiwatani, Tomoko; Fukuda, Yoshihiro; Nakazawa, Teruko; Kuramitsu, Yasuhiro; Nakamura, Kazuyuki

    2014-01-01

    Serum antibodies against pathogenic bacteria play immunologically protective roles, and can be utilized as diagnostic markers of infection. This study focused on Japanese child serum antibodies against Helicobacter pylori, a chronically-infected gastric bacterium which causes gastric cancer in adults. Serological diagnosis for H. pylori infection is well established for adults, but it needs to be improved for children. Serum samples from 24 children, 22 H. pylori (Hp)-positive and 2 Hp-negative children, were used to catalogue antigenic proteins of a Japanese strain CPY2052 by two-dimensional electrophoresis followed by immunoblot and LC-MS/MS analysis. In total, 24 proteins were identified as candidate antigen proteins. Among these, the major virulence factor, cytotoxin-associated gene A protein (CagA) was the most reactive antigen recognized by all the Hp-positive sera even from children under the age of 3 years. The major antigenic part of CagA was identified in the middle region, and two peptides containing CagA epitopes were identified using a newly developed peptide/protein-combined array chip method, modified from our previous protein chip method. Each of the epitopes was found to contain amino acid residue(s) unique to East Asian CagA. Epitope analysis of CagA indicated importance of the regional CagA antigens for serodiagnosis of H. pylori infection in children. PMID:25141238

  1. Doubly Branched Hexasaccharide Epitope on the Cell Wall Polysaccharide of Group A Streptococci Recognized by Human and Rabbit Antisera

    PubMed Central

    Michon, Francis; Moore, Samuel L.; Kim, John; Blake, Milan S.; Auzanneau, France-Isabelle; Johnston, Blair D.; Johnson, Margaret A.; Pinto, B. Mario

    2005-01-01

    A number of epitope specificities associated with the cell wall polysaccharide antigen of group A streptococci were identified in a polyclonal rabbit antiserum induced in rabbits by whole group A streptococci and in polyclonal convalescent human antisera from children that had recovered from streptococcal A infections. The identification was achieved by using a series of synthetic oligosaccharides, glycoconjugates, and bacterial polysaccharide inhibitors to inhibit the binding of the group A helical polysaccharide to the polyclonal antisera. The exclusively dominant epitope expressed in the convalescent human antisera was the doubly branched extended helical hexasaccharide with the structure α-l-Rhap(1→2)[β-d-GlcpNAc(1→3)]α-l-Rhap(1→3)α-l-Rhap(1→2)[β-d-GlcpNAc(1→3)]α-l-Rhap. The hexasaccharide epitope also bound with the highest immunoreactivity to the rabbit antiserum. In contrast, the human antisera did not show significant binding to the singly branched pentasaccharide with the structure α-l-Rhap(1→2)α-l-Rhap(1→3)α-l-Rhap(1→2)[β-d-GlcpNAc(1→3)]α-l-Rhap or the branched trisaccharide α-l-Rhap(1→2)[β-d-GlcpNAc(1→3)]α-l-Rhap, although both these haptens bound significantly to the same rabbit antiserum, albeit with less immunoreactivity than the hexasaccharide. Inhibition studies using streptococcal group A and B rabbit antisera and the inhibitors indicated above also suggested that the group A carbohydrate, unlike the group B streptococcal polysaccharide, does not contain the disaccharide α-l-Rhap(1→2)α-l-Rhap motif at its nonreducing chain terminus, stressing the importance of mapping the determinant specificities of these two important streptococcal subcapsular group polysaccharides to fully understand the serological relationships between group A and group B streptococci. PMID:16177309

  2. Preparation and characterization of monoclonal antibodies recognizing unique epitopes on sexually differentiated rat liver cytochrome P-450 isozymes.

    PubMed

    Morgan, E T; Rönnholm, M; Gustafsson, J A

    1987-07-14

    Cytochrome P-450 isozymes P-450(16 alpha), P-450(15 beta), and P-450DEa are immunochemically related, as indicated by mutual cross-reactivity with polyclonal antibody preparations. We have isolated five monoclonal antibodies to P-450(15 beta) and one antibody to P-450(16 alpha) that show selectivity for the respective antigens. High frequencies of cross-reactivity were observed, indicating a high degree of homology among P-450(16 alpha), P-450(15 beta), and P-450DEa. All of the P-450(15 beta-specific antibodies bound to the same epitope, or closely grouped epitopes, supporting this conclusion. The specificity of each monoclonal antibody was characterized by enzyme-linked immunosorbent assay. Western immunoblotting, and antibody-Sepharose immunoadsorption of solubilized rat liver microsomes. Antibodies F22 and F23, which were apparently identical, were specific for P-450(15 beta) by these criteria. However, the apparent specificities of antibodies F3 and F20 for P-450(15 beta), and of M16 for P-450(16 alpha), were highly dependent on the analytical technique used. The five anti-P-450(15 beta) antibodies all inhibited the catalytic activity of microsomal P-450(15 beta), by a maximum of 70%. However, they also produced a similar inhibition of microsomal P-450(16 alpha-specific antibody M16 and F23 have a low-affinity interaction with an epitope on P-450(16 alpha). The P-450(16 alpha)-specific antibody M16 was not inhibitory. The results indicate that the apparent specificity of a monoclonal antibody for an antigen determined by, e.g., Western blotting does not allow the conclusive identification of a protein in another system, e.g., immunoprecipitation of in vitro translation reaction products.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Mapping of the putative epitope domain of Clonorchis sinensis paramyosin (CsPmy) recognized by CsPmy-specific immunoglobulin G in sera of human clonorchiasis.

    PubMed

    Kang, Jung-Mi; Ju, Hye-Lim; Lee, Jinyoung; Kim, Tae Im; Cho, Shin-Hyeong; Kim, Tong-Soo; Sohn, Woon-Mok; Na, Byoung-Kuk

    2015-05-01

    Paramyosin of Clonorchis sinensis (CsPmy) is a myofibrillar protein localized in subtegumental muscle, tegument, and the muscle layer surrounding the intestine of the parasite. Previously, we have identified that CsPmy reacted with sera of human clonorchiasis and this protein had a potential as a candidate antigen for serodiagnosis of clonorchiasis. However, we also found that CsPmy is able to bind to human immunoglobulin G (IgG) in non-specific manners, which can affect the diagnostic value of the protein. Here, we mapped CsPmy-specific IgG binding site on CsPmy to analyze the putative epitopes recognized by CsPmy-specific IgG in sera of human clonorchiasis. The fragmental expression of CsPmy followed by immunoblot analyses with sera from patients with clonorchiasis and non-specific human IgG revealed that the middle portion of CsPmy (CsPmyC: 301-600 amino acid residues) had epitopes responsible for CsPmy-specific IgG recognition. The precise CsPmy-specific IgG binding site was further narrowed down to a fragment (CsPmyC-2), which harbors 151 amino acid residues (375-525) of CsPmy. Specific antibodies for CsPmyC-2 were produced in rats after two-weeks of post-experimental infection. The CsPmyC-2 showed low levels of cross reactivity against the sera from patients with other helminth parasites. Our results suggested that CsPmyC-2 has real epitopes recognized by CsPmy-specific IgG in sera of human clonorchiasis and the fragment can be useful as a reliable serodiagnostic antigen to develop a serodiagnostic method for clonorchiasis. PMID:26099940

  4. Antibodies against Escherichia coli O24 and O56 O-Specific Polysaccharides Recognize Epitopes in Human Glandular Epithelium and Nervous Tissue

    PubMed Central

    Korzeniowska-Kowal, Agnieszka; Kochman, Agata; Gamian, Elżbieta; Lis-Nawara, Anna; Lipiński, Tomasz; Seweryn, Ewa; Ziółkowski, Piotr; Gamian, Andrzej

    2015-01-01

    Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, contains the O-polysaccharide, which is important to classify bacteria into different O-serological types within species. The O-polysaccharides of serotypes O24 and O56 of E. coli contain sialic acid in their structures, already established in our previous studies. Here, we report the isolation of specific antibodies with affinity chromatography using immobilized lipopolysaccharides. Next, we evaluated the reactivity of anti-O24 and anti-O56 antibody on human tissues histologically. The study was conducted under the assumption that the sialic acid based molecular identity of bacterial and tissue structures provides not only an understanding of the mimicry-based bacterial pathogenicity. Cross-reacting antibodies could be used to recognize specific human tissues depending on their histogenesis and differentiation, which might be useful for diagnostic purposes. The results indicate that various human tissues are recognized by anti-O24 and anti-O56 antibodies. Interestingly, only a single specific reactivity could be found in the anti-O56 antibody preparation. Several tissues studied were not reactive with either antibody, thus proving that the presence of cross-reactive antigens was tissue specific. In general, O56 antibody performed better than O24 in staining epithelial and nervous tissues. Positive staining was observed for both normal (ganglia) and tumor tissue (ganglioneuroma). Epithelial tissue showed positive staining, but an epitope recognized by O56 antibody should be considered as a marker of glandular epithelium. The reason is that malignant glandular tumor and its metastasis are stained, and also epithelium of renal tubules and glandular structures of the thyroid gland are stained. Stratified epithelium such as that of skin is definitely not stained. Therefore, the most relevant observation is that the epitope recognized by anti-O56 antibodies is a new marker

  5. Fluorometric titration approach for calibration of quantity of binding site of purified monoclonal antibody recognizing epitope/hapten nonfluorescent at 340 nm.

    PubMed

    Yang, Xiaolan; Hu, Xiaolei; Xu, Bangtian; Wang, Xin; Qin, Jialin; He, Chenxiong; Xie, Yanling; Li, Yuanli; Liu, Lin; Liao, Fei

    2014-06-17

    A fluorometric titration approach was proposed for the calibration of the quantity of monoclonal antibody (mcAb) via the quench of fluorescence of tryptophan residues. It applied to purified mcAbs recognizing tryptophan-deficient epitopes, haptens nonfluorescent at 340 nm under the excitation at 280 nm, or fluorescent haptens bearing excitation valleys nearby 280 nm and excitation peaks nearby 340 nm to serve as Förster-resonance-energy-transfer (FRET) acceptors of tryptophan. Titration probes were epitopes/haptens themselves or conjugates of nonfluorescent haptens or tryptophan-deficient epitopes with FRET acceptors of tryptophan. Under the excitation at 280 nm, titration curves were recorded as fluorescence specific for the FRET acceptors or for mcAbs at 340 nm. To quantify the binding site of a mcAb, a universal model considering both static and dynamic quench by either type of probes was proposed for fitting to the titration curve. This was easy for fitting to fluorescence specific for the FRET acceptors but encountered nonconvergence for fitting to fluorescence of mcAbs at 340 nm. As a solution, (a) the maximum of the absolute values of first-order derivatives of a titration curve as fluorescence at 340 nm was estimated from the best-fit model for a probe level of zero, and (b) molar quantity of the binding site of the mcAb was estimated via consecutive fitting to the same titration curve by utilizing such a maximum as an approximate of the slope for linear response of fluorescence at 340 nm to quantities of the mcAb. This fluorometric titration approach was proved effective with one mcAb for six-histidine and another for penicillin G.

  6. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid

    SciTech Connect

    Löfling, Jonas; Michael Lyi, Sangbom; Parrish, Colin R.; Varki, Ajit

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. - Highlights: ► Feline and canine parvoviruses recognize Neu5Gc but not Neu5Ac, which differ by one oxygen atom. ► The underlying linkage of these sialic acids does not affect recognition. ► Induced Neu5Gc expression on target cells that normally express Neu5Ac did not enhance infection. ► Thus, the conserved binding preference plays an important yet unknown role in in vivo infections. ► Population and breed variations in Neu5Gc expression occur, likely by regulating the gene CMAH.

  7. Mapping an epitope in EBNA‐1 that is recognized by monoclonal antibodies to EBNA‐1 that cross‐react with dsDNA

    PubMed Central

    Yadav, Pragya; Carr, Matthew T.; Yu, Ruby; Mumbey‐Wafula, Alice

    2016-01-01

    Abstract Introduction The Epstein Barr Virus (EBV) has been associated with the autoimmune disease, Systemic Lupus Erythematosus (SLE). EBV nuclear antigen‐I (EBNA‐1) is the major nuclear protein of EBV. We previously generated an IgG monoclonal antibody (MAb) to EBNA‐1, 3D4, and demonstrated that it cross‐reacts with double stranded DNA (dsDNA) and binds the 148 amino acid viral binding site (VBS) in the carboxyl region of EBNA‐1. The aim of the present study was to characterize another antibody to EBNA‐1 that cross‐reacts with dsDNA, compare its immunoglobulin genes to 3D4, and finely map the epitope in EBNA‐1 that is recognized by these cross‐reactive antibodies. Methods We generated an IgM MAb to EBNA‐1, 16D2, from EBNA‐1 injected mice and demonstrated by ELISA that it cross‐reacts with dsDNA and binds the 148 amino acid VBS. We sequenced the variable heavy and light chain genes of 3D4 and 16D2 and compared V gene usage. To more finely map the epitope in EBNA‐1 recognized by these MAbs, we examined their binding by ELISA to 15 overlapping peptides spanning the 148 amino acid domain. Results Sequence analysis revealed that 3D4 and 16D2 utilize different VH and VL genes but identical JH and Jk regions with minimal junctional diversity. This accounts for similarities in their CDR3 regions and may explain their similar dual binding specificity. Epitope mapping revealed 3D4 and 16D2 bind the same peptide in the VBS. Based on the crystal structure of EBNA‐1, we observed that this peptide resides at the base of an exposed proline rich loop in EBNA‐1. Conclusion We have demonstrated that two MAbs that bind EBNA‐1 and cross‐react with dsDNA, recognize the same peptide in the VBS. This peptide may serve as a mimetope for dsDNA and may be of diagnostic and therapeutic value in SLE.

  8. Mapping an epitope in EBNA‐1 that is recognized by monoclonal antibodies to EBNA‐1 that cross‐react with dsDNA

    PubMed Central

    Yadav, Pragya; Carr, Matthew T.; Yu, Ruby; Mumbey‐Wafula, Alice

    2016-01-01

    Abstract Introduction The Epstein Barr Virus (EBV) has been associated with the autoimmune disease, Systemic Lupus Erythematosus (SLE). EBV nuclear antigen‐I (EBNA‐1) is the major nuclear protein of EBV. We previously generated an IgG monoclonal antibody (MAb) to EBNA‐1, 3D4, and demonstrated that it cross‐reacts with double stranded DNA (dsDNA) and binds the 148 amino acid viral binding site (VBS) in the carboxyl region of EBNA‐1. The aim of the present study was to characterize another antibody to EBNA‐1 that cross‐reacts with dsDNA, compare its immunoglobulin genes to 3D4, and finely map the epitope in EBNA‐1 that is recognized by these cross‐reactive antibodies. Methods We generated an IgM MAb to EBNA‐1, 16D2, from EBNA‐1 injected mice and demonstrated by ELISA that it cross‐reacts with dsDNA and binds the 148 amino acid VBS. We sequenced the variable heavy and light chain genes of 3D4 and 16D2 and compared V gene usage. To more finely map the epitope in EBNA‐1 recognized by these MAbs, we examined their binding by ELISA to 15 overlapping peptides spanning the 148 amino acid domain. Results Sequence analysis revealed that 3D4 and 16D2 utilize different VH and VL genes but identical JH and Jk regions with minimal junctional diversity. This accounts for similarities in their CDR3 regions and may explain their similar dual binding specificity. Epitope mapping revealed 3D4 and 16D2 bind the same peptide in the VBS. Based on the crystal structure of EBNA‐1, we observed that this peptide resides at the base of an exposed proline rich loop in EBNA‐1. Conclusion We have demonstrated that two MAbs that bind EBNA‐1 and cross‐react with dsDNA, recognize the same peptide in the VBS. This peptide may serve as a mimetope for dsDNA and may be of diagnostic and therapeutic value in SLE. PMID:27621818

  9. Anti-platelet autoantibodies from ITP patients recognize an epitope in GPIIb/IIIa deduced by complementary hydropathy.

    PubMed Central

    De Souza, S J; Sabbaga, J; D'Amico, E; Pasqualini, R; Brentani, R

    1992-01-01

    Idiopathic thrombocytopenic purpura (ITP) is a frequent platelet disorder due to the presence of anti-platelet autoantibodies. Recently a fibronectin/fibrinogen receptor in platelets, integrin GPIIb/IIIa, has been implicated as the antigen in chronic ITP. To examine the epitopes involved in the autoimmune response against GPIIb/IIIa we have used concepts from the complementary hydropathy principle. We used the peptide Trp-Thr-Val-Pro-Thr-Ala, WTVPTA (deduced from the complementary nucleotide sequence to that which codes for the Arg-Gly-Asp, RGD, domain in fibronectin), to test the immunologic activity of ITP sera. Sera from 31 patients with clinically defined ITP were tested in ELISA for reactivity towards WTVPTA and affinity purified GPIIb/IIIa. Seventeen sera (57%) reacted strongly with the glycoprotein complex, five of which reacted with the peptide. By affinity chromatography of one of these sera, we were able to show that antibodies that bind to the peptide are within the population that binds to GPIIb/IIIa. Liquid phase competition experiments revealed that binding of ITP serum to WTVPTA was inhibited only by a hydropathically compatible peptide. Our data indicate that autoantibodies can bind to hydropathically generated antigenic determinants and thus, render these peptides clinically important as diagnostic tools. Images Figure 4 Figure 5 PMID:1371492

  10. A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein.

    PubMed

    Deng, Yong-Qiang; Dai, Jian-Xin; Ji, Guang-Hui; Jiang, Tao; Wang, Hua-Jing; Yang, Hai-ou; Tan, Weng-Long; Liu, Ran; Yu, Man; Ge, Bao-Xue; Zhu, Qing-Yu; Qin, E-De; Guo, Ya-Jun; Qin, Cheng-Feng

    2011-01-01

    Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1-4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the (98)DRXW(101) motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1-4, YFV, and WNV and confers protection from lethal challenge with DENV 1-4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans.

  11. The Thai phase III trial (RV144) vaccine regimen induces T cell responses that preferentially target epitopes within the V2 region of HIV-1 envelope.

    PubMed

    de Souza, Mark S; Ratto-Kim, Silvia; Chuenarom, Weerawan; Schuetz, Alexandra; Chantakulkij, Somsak; Nuntapinit, Bessara; Valencia-Micolta, Anais; Thelian, Doris; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Paris, Robert M; Kaewkungwal, Jaranit; Michael, Nelson L; Rerks-Ngarm, Supachai; Mathieson, Bonnie; Marovich, Mary; Currier, Jeffrey R; Kim, Jerome H

    2012-05-15

    The Thai HIV phase III prime/boost vaccine trial (RV144) using ALVAC-HIV (vCP1521) and AIDSVAX B/E was, to our knowledge, the first to demonstrate acquisition efficacy. Vaccine-induced, cell-mediated immune responses were assessed. T cell epitope mapping studies using IFN-γ ELISPOT was performed on PBMCs from HIV-1-uninfected vaccine (n = 61) and placebo (n = 10) recipients using HIV-1 Env peptides. Positive responses were measured in 25 (41%) vaccinees and were predominantly CD4(+) T cell-mediated. Responses were targeted within the HIV Env region, with 15 of 25 (60%) of vaccinees recognizing peptides derived from the V2 region of HIV-1 Env, which includes the α(4)β(7) integrin binding site. Intracellular cytokine staining confirmed that Env responses predominated (19 of 30; 63% of vaccine recipients) and were mediated by polyfunctional effector memory CD4(+) T cells, with the majority of responders producing both IL-2 and IFN-γ (12 of 19; 63%). HIV Env Ab titers were higher in subjects with IL-2 compared with those without IL-2-secreting HIV Env-specific effector memory T cells. Proliferation assays revealed that HIV Ag-specific T cells were CD4(+), with the majority (80%) expressing CD107a. HIV-specific T cell lines obtained from vaccine recipients confirmed V2 specificity, polyfunctionality, and functional cytolytic capacity. Although the RV144 T cell responses were modest in frequency compared with humoral immune responses, the CD4(+) T cell response was directed to HIV-1 Env and more particularly the V2 region.

  12. The Thai Phase III Trial (RV144) Vaccine Regimen Induces T Cell Responses that Preferentially Target Epitopes within the V2 Region of HIV-1 Envelope

    PubMed Central

    de Souza, Mark S.; Ratto-Kim, Silvia; Chuenarom, Weerawan; Schuetz, Alexandra; Chantakulkij, Somsak; Nuntapinit, Bessara; Valencia-Micolta, Anais; Thelian, Doris; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Paris, Robert M.; Kaewkungwal, Jaranit; Michael, Nelson L.; Rerks-Ngarm, Supachai; Mathieson, Bonnie; Marovich, Mary; Currier, Jeffrey R.; Kim, Jerome H.

    2012-01-01

    The Thai HIV phase III prime-boost trial (RV144) using ALVAC-HIV® (vCP1521) and AIDSVAX B/E® was, to our knowledge, the first to demonstrate acquisition efficacy. Vaccine-induced, cell-mediated immune responses were assessed. T cell epitope mapping studies using IFN-γ ELISPOT were performed on PBMC from HIV-1 uninfected vaccine (N=61) and placebo (N=10) recipients using HIV-1 Env peptides. Positive responses were measured in 25 (41%) vaccinees and were predominantly CD4+ T cell mediated. Responses were targeted within the HIV Env region, with 15/25 (60%) of vaccinees recognizing peptides derived from the V2 region of HIV-1 Env, which includes the α4β7 integrin binding site. Intracellular cytokine staining confirmed that Env responses predominated (19/30; 63% of vaccine recipients) and were mediated by polyfunctional effector memory CD4+ T cells, with the majority of responders producing both IL-2 and IFN-γ (12/19; 63%). HIV-Env Ab titers were higher in subjects with IL-2 compared to those without IL-2 secreting HIV-Env specific effector memory T cells. Proliferation assays revealed that HIV Ag-specific T cells were CD4+ with the majority (80%) expressing CD107a. HIV-specific T cell lines obtained from vaccine recipients confirmed V2 specificity, polyfunctionality and functional cytolytic capacity. While the RV144 T cell responses were modest in frequency compared to humoral immune responses, the CD4+ T cell response was directed to HIV-1 Env and more particularly the V2 region. PMID:22529301

  13. A panel of unique HLA-A2 mutant molecules define epitopes recognized by HLA-A2-specific antibodies and cytotoxic T lymphocytes.

    PubMed

    Hogan, K T; Clayberger, C; Bernhard, E J; Walk, S F; Ridge, J P; Parham, P; Krensky, A M; Engelhard, V H

    1989-03-15

    HLA-A2.1 and HLA-A2.3, which differ from one another at residues 149, 152, and 156, can be distinguished by the mAb CR11-351 and many allogeneic and xenogeneic CTL. Site-directed mutagenesis was used to incorporate several different amino acid substitutions at each of these positions in HLA-A2.1 to evaluate their relative importance to serologic and CTL-defined epitopes. Recognition by mAb CR11-351 was completely lost when Thr but not Pro was substituted for Ala149. A model to explain this result based on the 3-dimensional structure of HLA-A2.1 is presented. In screening eight other mAb, only the substitutions of Pro for Val152 or Gly for Leu156 led to the loss of mAb binding. Because other non-conservative substitutions at these same positions had no effect, these results suggest that the loss of serologic epitopes is in many cases due to a more indirect effect on molecular conformation. Specificity analysis using 28 HLA-A2.1-specific alloreactive and xenoreactive CTL clones showed 19 distinct patterns of recognition. The epitopes recognized by alloreactive CTL clones demonstrated a pronounced effect by all substitutions at residue 152, including the very conservation substitution of Ala for Val. Overall, the most disruptive substitution at amino acid residue 152 was Pro, followed by Glu, Gln, and then Ala. In contrast, substitutions at 156 had little or no effect on allogeneic CTL recognition, and most clones tolerated either Gly, Ser, or Trp at this position. Similar results were seen using a panel of murine HLA-A2.1-specific CTL clones, except that substitutions at position 156 had a greater effect. The most disruptive substitution was Trp, followed by Ser and then Gly. In addition, when assessed on the entire panel of CTL, the effects of Glu and Gln substitutions at position 152 demonstrated that the introduction of a charge difference is no more disruptive than a comparable change in side chain structure that does not alter charge. Taken together, these

  14. Alpha Actinin is Specifically Recognized by Multiple Sclerosis Autoantibodies Isolated Using an N-Glucosylated Peptide Epitope*

    PubMed Central

    Pandey, Shashank; Dioni, Ilaria; Lambardi, Duccio; Real-Fernandez, Feliciana; Peroni, Elisa; Pacini, Giulia; Lolli, Francesco; Seraglia, Roberta; Papini, Anna Maria; Rovero, Paolo

    2013-01-01

    Sophisticated approaches have recently led to the identification of novel autoantigens associated with Multiple Sclerosis (MuS), e.g. neurofascin, contactin, CNPase, and other T-cell receptor membrane anchored proteins. These putative antigens, although differing from the conventional myelin derivatives, are conceptually based on an animal model of experimental autoimmune encephalomyelitis. In this report we describe the identification of putative antigens based on their recognition by autoantibodies isolated from MuS patient serum. In a previous work from this laboratory we have shown that a peptide probe, named CSF114(Glc), specifically identifies serum autoantibodies in a subset of MuS patients, representing ∼30% of the patient population. The autoantibodies, purified from MuS patients' sera (six), through CSF114(Glc) affinity chromatography, detected three immunoreactive protein bands present in the rat brain. Proteomic analysis of the immunoreactive bands, involving MALDI and MS/MS techniques, revealed the presence of four proteins distinguishable by their mass: alpha fodrin, alpha actinin 1, creatine kinase, and CNPase. The immunoreactive profile of these rat brain proteins was compared with that of commercially available standard proteins by challenging against either CSF114(Glc) purified MuS autoantibodies, or monoclonal antibodies. Further discrimination among the rat brain proteins was provided by the following procedure: whereas monoclonal antibodies recognized all rat brain proteins, isolated MuS specific antibodies recognize only alpha actinin 1 as a putative antigen. In fact, alpha actinin 1 displayed a robust immunoreactive response against all MuS patients' sera examined, whereas the other three bands were not consistently detectable. Thus, alpha actinin 1, a cytoskeleton protein implicated in inflammatory/degenerative autoimmune diseases (lupus nephritis and autoimmune hepatitis) might be regarded as a novel MuS autoantigen, perhaps a prototypic

  15. Monoclonal antibody recognizing human melanoma-carcinoma cross-reacting oncofetal antigen epitopically associated with carcinoembryonic antigen.

    PubMed

    Liao, S K; Kwong, P C; Clarke, B J; Dent, P B; Ryan, E D; Khosravi, M J; Laferte, S; Krantz, M J

    1985-05-01

    By fusion of mouse NS1 myeloma cells with splenocytes from a BALB/c mouse immunized with human melanoma cells, an IgG1 monoclonal antibody, designated as 140.72, was produced. By the mixed hemadsorption antibody binding assay, 140.72 was shown to react with 17 of 20 melanoma cell lines and with 5 of 14 carcinoma cell lines. This antibody also reacted with 3 of 3 normal melanocyte cultures in much lower titers. It did not react with any of 35 other normal and malignant lines, including neuroblastoma, glioblastoma, sarcoma, teratoma, fibroblast, and lymphoid cell lines. Absorption with fresh melanoma and carcinoma homogenates confirmed the results of direct tests. Fetal reactivity of antibody 140.72 was determined by positive absorption with 10 of 11 tissue homogenates derived from different fetuses of 10-16 weeks' gestation. The reactivity of this antibody was completely removed by absorption with a highly purified preparation of carcinoembryonic antigen (CEA) derived from a colon carcinoma. The antigenic activity was detected in the culture medium of reactive cell lines. Immunoprecipitation analyses of melanoma and carcinoma cells indicated that the antigenic determinant recognized by antibody 140.72 is on a glycoprotein with an apparent molecular weight of 95,000-150,000 common to both serologically reactive cell types. Additionally, a 200,000-molecular-weight glycoprotein corresponding to the CEA molecule was detected only on the reactive carcinoma cells. These data confirmed previous findings obtained with polyclonal anti-CEA antisera for the existence of shared CEA-related antigenic determinants on human carcinomas and melanomas and provided additional molecular characterization of these glycoproteins. Further characterization of the molecules bearing the antigenic determinant recognized by antibody 140.72 should be performed with a view to exploring its potential in the immunodiagnosis and immunotherapy of patients with melanoma.

  16. Definition of the region on NS3 which contains multiple epitopes recognized by dengue virus serotype-cross-reactive and flavivirus-cross-reactive, HLA-DPw2-restricted CD4+ T cell clones.

    PubMed

    Okamoto, Y; Kurane, I; Leporati, A M; Ennis, F A

    1998-04-01

    The epitopes recognized by six CD4+ CD8- cytotoxic T lymphocyte (CTL) clones established from a dengue-3 virus-immune donor were defined. (i) Three CTL clones, JK10, JK34 and JK39, were cross-reactive for dengue virus types 1-4. (ii) One clone, JK28, was cross-reactive for dengue virus types 1-4 and West Nile virus. (iii) Two clones, JK26 and JK49, were cross-reactive for dengue virus types 1-4, West Nile virus and yellow fever virus. The clones, except for JK49, recognized the same epitope on NS3 in an HLA-DPw2-restricted fashion. The smallest synthetic peptide recognized by the five CTL clones was a 10 aa peptide which comprises aa 255-264 on dengue virus NS3. JK49 recognized the overlapping epitope which comprises aa 257-266 in an HLA-DPw2-restricted fashion. Analysis of T cell receptor (TCR) usage by these T cell clones revealed that (i) JK10 and JK34 use V alpha11, and JK34 and JK28 use V beta23, and (ii) the amino acid sequences of the V(D)J junctional region of the TCR were different among these five CTL clones. There were, however, single amino acid conservations among TCRs of some of these T cell clones. These results indicate that the region on NS3 which comprises aa 255-266 contains multiple epitopes recognized by dengue serotype-cross-reactive and flavivirus-cross-reactive CD4+ CTL in an HLA-DPw2-restricted fashion and that a single epitope can be recognized by T cells which have heterogeneous virus specificities.

  17. New High Affinity Monoclonal Antibodies Recognize Non-Overlapping Epitopes On Mesothelin For Monitoring And Treating Mesothelioma

    PubMed Central

    Zhang, Yi-Fan; Phung, Yen; Gao, Wei; Kawa, Seiji; Hassan, Raffit; Pastan, Ira; Ho, Mitchell

    2015-01-01

    Mesothelin is an emerging cell surface target in mesothelioma and other solid tumors. Most antibody drug candidates recognize highly immunogenic Region I (296–390) on mesothelin. Here, we report a group of high-affinity non-Region I rabbit monoclonal antibodies. These antibodies do not compete for mesothelin binding with the immunotoxin SS1P that binds Region I of mesothelin. One pair of antibodies (YP218 and YP223) is suitable to detect soluble mesothelin in a sandwich ELISA with high sensitivity. The new assay can also be used to measure serum mesothelin concentration in mesothelioma patients, indicating its potential use for monitoring patients treated with current antibody therapies targeting Region I. The antibodies are highly specific and sensitive in immunostaining of mesothelioma. To explore their use in tumor therapy, we have generated the immunotoxins based on the Fv of these antibodies. One immunotoxin (YP218 Fv-PE38) exhibits potent anti-tumor cytotoxicity towards primary mesothelioma cell lines in vitro and an NCI-H226 xenograft tumor in mice. Furthermore, we have engineered a humanized YP218 Fv that retains full binding affinity for mesothelin-expressing cancer cells. In conclusion, with their unique binding properties, these antibodies may be promising candidates for monitoring and treating mesothelioma and other mesothelin-expressing cancers. PMID:25996440

  18. Immunoprecipitation of Amyloid Fibrils by the Use of an Antibody that Recognizes a Generic Epitope Common to Amyloid Fibrils

    PubMed Central

    Greiner, Erin R.; Kelly, Jeffery W.; Palhano, Fernando L.

    2014-01-01

    Amyloid fibrils are associated with many maladies, including Alzheimer’s disease (AD). The isolation of amyloids from natural materials is very challenging because the extreme structural stability of amyloid fibrils makes it difficult to apply conventional protein science protocols to their purification. A protocol to isolate and detect amyloids is desired for the diagnosis of amyloid diseases and for the identification of new functional amyloids. Our aim was to develop a protocol to purify amyloid from organisms, based on the particular characteristics of the amyloid fold, such as its resistance to proteolysis and its capacity to be recognized by specific conformational antibodies. We used a two-step strategy with proteolytic digestion as the first step followed by immunoprecipitation using the amyloid conformational antibody LOC. We tested the efficacy of this method using as models amyloid fibrils produced in vitro, tissue extracts from C. elegans that overexpress Aβ peptide, and cerebrospinal fluid (CSF) from patients diagnosed with AD. We were able to immunoprecipitate Aβ1–40 amyloid fibrils, produced in vitro and then added to complex biological extracts, but not α-synuclein and gelsolin fibrils. This method was useful for isolating amyloid fibrils from tissue homogenates from a C. elegans AD model, especially from aged worms. Although we were able to capture picogram quantities of Aβ1–40 amyloid fibrils produced in vitro when added to complex biological solutions, we could not detect any Aβ amyloid aggregates in CSF from AD patients. Our results show that although immunoprecipitation using the LOC antibody is useful for isolating Aβ1–40 amyloid fibrils, it fails to capture fibrils of other amyloidogenic proteins, such as α-synuclein and gelsolin. Additional research might be needed to improve the affinity of these amyloid conformational antibodies for an array of amyloid fibrils without compromising their selectivity before application of this

  19. Autoantibody germ-line gene segment encodes V{sub H} and V{sub L} regions of a human anti-streptococcal monoclonal antibody recognizing streptococcal M protein and human cardiac myosin epitopes

    SciTech Connect

    Quinn, A.; Cunningham, M.W.; Adderson, E.E.

    1995-04-15

    Cross-reactivity of anti-streptococcal Abs with human cardiac myosin may result in sequelae following group A streptococcal infections. Molecular mimicry between group A streptococcal M protein and cardiac myosin may be the basis for the immunologic cross-reactivity. In this study, a cross-reactive human anti-streptococcal/antimyosin mAb (10.2.3) was characterized, and the myosin epitopes were recognized by the Ab identified. mAb 10.2.3 reacted with four peptides from the light meromyosin (LMM) tail fragment of human cardiac myosin, including LMM-10 (1411-1428), LMM-23 (1580-1597), LMM-27 (1632-1649), and LMM-30 (1671-1687). Only LMM-30 inhibited binding of mAb 10.2.3 to streptococcal M protein and human cardiac myosin. Human mAb 10.2.3 labeled cytoskeletal structures within rat heart cells in indirect immunofluorescence, and reacted with group A streptococci expressing various M protein serotypes, PepM5, and recombinant M protein. The nucleotide sequence of gene segments encoding the Ig heavy and light chain V region of mAb 10.2.3 was determined. The light chain V segment was encoded by a VK1 gene segment that was 98.5% identical with germ-line gene humig{sub K}Vi5. The V segment of the heavy chain was encoded by a V{sub H}3a gene segment that differed from the V{sub H}26 germ-line gene by a single base change. V{sub H}26 is expressed preferentially in early development and encodes autoantibodies with anti-DNA and rheumatoid factor specificities. Anti-streptococcal mAb 10.2.3 is an autoantibody encoded by V{sub H} and V{sub L} genes, with little or no somatic mutation. 63 refs., 11 figs.

  20. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria.

    PubMed

    Trdá, Lucie; Fernandez, Olivier; Boutrot, Freddy; Héloir, Marie-Claire; Kelloniemi, Jani; Daire, Xavier; Adrian, Marielle; Clément, Christophe; Zipfel, Cyril; Dorey, Stéphan; Poinssot, Benoit

    2014-03-01

    • The role of flagellin perception in the context of plant beneficial bacteria still remains unclear. Here, we characterized the flagellin sensing system flg22-FLAGELLIN SENSING 2 (FLS2) in grapevine, and analyzed the flagellin perception in the interaction with the endophytic plant growth-promoting rhizobacterium (PGPR) Burkholderia phytofirmans. • The functionality of the grapevine FLS2 receptor, VvFLS2, was demonstrated by complementation assays in the Arabidopsis thaliana fls2 mutant, which restored flg22-induced H₂O₂ production and growth inhibition. Using synthetic flg22 peptides from different bacterial origins, we compared recognition specificities between VvFLS2 and AtFLS2. • In grapevine, flg22-triggered immune responses are conserved and led to partial resistance against Botrytis cinerea. Unlike flg22 peptides derived from Pseudomonas aeruginosa or Xanthomonas campestris, flg22 peptide derived from B. phytofirmans triggered only a small oxidative burst, weak and transient defense gene induction and no growth inhibition in grapevine. Although, in Arabidopsis, all the flg22 epitopes exhibited similar biological activities, the expression of VvFLS2 into the fls2 background conferred differential flg22 responses characteristic for grapevine. • These results demonstrate that VvFLS2 differentially recognizes flg22 from different bacteria, and suggest that flagellin from the beneficial PGPR B. phytofirmans has evolved to evade this grapevine immune recognition system. PMID:24491115

  1. Epitopes of the Onchocerca volvulus RAL1 antigen, a member of the calreticulin family of proteins, recognized by sera from patients with onchocerciasis.

    PubMed Central

    Rokeach, L A; Zimmerman, P A; Unnasch, T R

    1994-01-01

    RAL1 is an antigen (Ag) encoded by the filarial nematode Onchocerca volvulus, the parasite causing onchocerciasis (river blindness). RAL1 shares 64.4% identity with the autoantigen calreticulin. The striking similarity of the parasite Ag and the human autoantigen has led to the hypothesis that RAL1 may induce a cross-reactive immune response to calreticulin, which in turn may be involved in the pathogenesis of onchocerciasis. To test this hypothesis, we explored the immune response to RAL1 recombinant Ag (RAL1 rAg) and human calreticulin in patients with O. volvulus infection. A total of 86% of the O. volvulus-infected individuals produced antibodies recognizing RAL1 rAg. Antibody reactivity to RAL1 rAg in patient sera was confined primarily to the central and carboxyl-terminal parts of the molecule. No significant correlations were found to associate recognition of RAL1 rAg, or any particular portion thereof, with a particular disease state. Antibodies against RAL1 thus appear to be produced as a general immune reaction to O. volvulus infection and do not necessarily lead to a cross-reacting response with the host protein. In contrast, 33% of the patient sera tested bound recombinant human calreticulin. All of these sera also recognized a polypeptide encompassing the carboxyl-terminal portion of the RAL1 rAg. These results suggest that recognition of an epitope encoded in the carboxyl-terminal portion of RAL1 is at least in part responsible for inducing a cross-reacting immune response to the host protein. Images PMID:7520419

  2. Monoclonal antibodies which recognize equatorial segment epitopes presented de novo following the A23187-induced acrosome reaction of guinea pig sperm.

    PubMed

    Allen, C A; Green, D P

    1995-02-01

    Acrosome-intact mammalian sperm can adhere to zona pellucida-free oocytes but are only capable of fusing if they have previously undergone the acrosome reaction. This suggests that the acrosome reaction results in presentation of at least one novel epitope which plays a role in sperm-oocyte fusion. Monoclonal antibodies were raised against unfixed acrosome-reacted guinea pig sperm and screened by indirect immunofluorescence for binding to the equatorial segment. They were back-screened against unfixed acrosome-intact sperm for absence of binding. Using this approach, two antibodies, G11 and M13, were identified which detect equatorial segment epitopes presented de novo by sperm following an A23187-induced acrosome reaction. The localization of these epitopes to the equatorial segment was confirmed at the ultrastructural level by indirect immunogold-labelling. Fluorescein isothiocyanate-labelled Fab fragments of these two antibodies also localized to the equatorial segment. Affinity chromatography and western blotting established that the two mAbs recognize the same proteins, which have M(r)s of 34, 46, 48 and 51 x 10(3). When sperm were induced to undergo the acrosome reaction with A23187 and incubated with their discharged acrosomal contents, a further band was produced with an M(r) of 30 x 10(3). Production of this band was inhibited in the combined presence of 100 microM phenylmethylsulphonyl fluoride and 100 microM p-aminobenzamidine even though these compounds do not inhibit acrosomal exocytosis. Neuraminidase and O-glycosidase were without effect on the proteins detected by antibodies G11 and M13. Endoglycosidase F, however, eliminated the bands of M(r) 46, 48 and 51 x 10(3) and replaced them with a strong band of M(r) 44 x 10(3) and two minor bands of M(r) 43 and 45 x 10(3). Formaldehyde fixation of acrosome-intact sperm caused partial rupture of the acrosome with loss of the characteristic rouleaux (stacks) of guinea pig sperm. Indirect labelling of these

  3. Three novel NY-ESO-1 epitopes bound to DRB1*0803, DQB1*0401 and DRB1*0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients.

    PubMed

    Mizote, Yu; Taniguchi, Taku; Tanaka, Kei; Isobe, Midori; Wada, Hisashi; Saika, Takashi; Kita, Shoichi; Koide, Yukari; Uenaka, Akiko; Nakayama, Eiichi

    2010-07-19

    Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87-100, DQB1*0401-restricted NY-ESO-1 95-107 and DRB1*0803-restricted NY-ESO-1 124-134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination.

  4. B-cell epitopes in NTS-DBL1α of PfEMP1 recognized by human antibodies in Rosetting Plasmodium falciparum.

    PubMed

    Albrecht, Letusa; Angeletti, Davide; Moll, Kirsten; Blomqvist, Karin; Valentini, Davide; D'Alexandri, Fabio Luiz; Maurer, Markus; Wahlgren, Mats

    2014-01-01

    Plasmodium falciparum is the most lethal of the human malaria parasites. The virulence is associated with the capacity of the infected red blood cell (iRBC) to sequester inside the deep microvasculature where it may cause obstruction of the blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to uninfected erythrocytes, has been found associated with severe malaria and found to be mediated by the NTS-DBL1α-domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1). Here we show that the reactivity of plasma of Cameroonian children with the surface of the FCR3S1.2-iRBC correlated with the capacity to disrupt rosettes and with the antibody reactivity with a recombinant PfEMP1 (NTS-DBL1α of IT4var60) expressed by parasite FCR3S1.2. The plasma-reactivity in a microarray, consisting of 96 overlapping 15-mer long peptides covering the NTS-DBL1α domain from IT4var60 sequence, was compared with their capacity to disrupt rosettes and we identified five peptides where the reactivity were correlated. Three of the peptides were localized in subdomain-1 and 2. The other two peptide-sequences were localized in the NTS-domain and in subdomain-3. Further, principal component analysis and orthogonal partial least square analysis generated a model that supported these findings. In conclusion, human antibody reactivity with short linear-peptides of NTS-DBL1α of PfEMP1 suggests subdomains 1 and 2 to hold anti-rosetting epitopes recognized by anti-rosetting antibodies. The data suggest rosetting to be mediated by the variable areas of PfEMP1 but also to involve structurally relatively conserved areas of the molecule that may induce biologically active antibodies.

  5. Linear B-cell epitopes in BthTX-1, BthTX-II and BthA-1, phospholipase A₂'s from Bothrops jararacussu snake venom, recognized by therapeutically neutralizing commercial horse antivenom.

    PubMed

    De-Simone, Salvatore G; Napoleão-Pego, Paloma; Teixeira-Pinto, Luiz A L; Santos, Jonathas D L; De-Simone, Thatiane S; Melgarejo, Anibal R; Aguiar, Aniesse S; Marchi-Salvador, Daniela P

    2013-09-01

    The benefits from treatment with antivenom sera are indubitable. However, the mechanism for toxin neutralization has not been completely elucidated. A mixture of anti-bothropic and anti-crotalic horse antivenom has been reported to be more effective in neutralizing the effects of Bothrops jararacussu snake venom than anti-bothropic antivenom alone. This study determined which regions in the three PLA₂s from B. jararacussu snake venom are bound by antibodies in tetravalent anti-bothropic and monovalent anti-crotalic commercial horse antivenom. Mapping experiments of BthTX-I, BthTX-II and BthA-I using two small libraries of 69 peptides each revealed six major IgG-binding epitopes that were recognized by both anti-bothropic and anti-crotalic horse antivenom. Two epitopes in BthTX-I were only recognized by the anti-bothropic horse antivenom, while anti-crotalic horse antivenom recognized four unique epitopes across the three PLA₂s. Our studies suggest that the harmful activities of the PLA₂s present in the venom of B. jararacussu are neutralized by the combinatorial treatment with both antivenom sera through their complementary binding sites, which provides a wide coverage on the PLA₂s. This is the first peptide microarray of PLA₂s from B. jararacussu snake venom to survey the performance of commercial horse antiophidic antivenom. Regions recognized by the protective antivenom sera are prime candidates for improved venom cocktails or a chimeric protein encoding the multiple epitopes to immunize animals as well as for designing future synthetic vaccines. PMID:23792452

  6. Chemical Characterization of N-Linked Oligosaccharide As the Antigen Epitope Recognized by an Anti-Sperm Auto-Monoclonal Antibody, Ts4.

    PubMed

    Yoshitake, Hiroshi; Hashii, Noritaka; Kawasaki, Nana; Endo, Shuichiro; Takamori, Kenji; Hasegawa, Akiko; Fujiwara, Hiroshi; Araki, Yoshihiko

    2015-01-01

    Ts4, an anti-sperm auto-monoclonal antibody, possesses immunoreactivity to the acrosomal region of mouse epididymal spermatozoa. In addition, the mAb shows specific immunoreactivity to reproduction-related regions such as testicular germ cells and early embryo. Our qualitative study previously showed that the antigen epitope for Ts4 contained a N-linked common oligosaccharide (OS) chain on testicular glycoproteins as determined by Western blotting for testicular glycoproteins after treatment with several glycohydrolases. Since the distribution of the Ts4-epitope is unique, the OS chain in Ts4-epitope may have role(s) in the reproductive process. The aim of this study was to clarify the molecular structure of the Ts4-epitope, particularly its OS moiety. Using Ts4 immunoprecipitation combined with liquid chromatography and multiple-stage mass spectrometry, the candidate carbohydrate structure in the Ts4-epitope is proposed to be N-linked fucosylated agalacto-biantennary with bisecting N-acetylglucosamine (GlcNAc) or with N-acetylgalactosamine-GlcNAc motif. Further binding analyses using various lectins against the mouse testicular Ts4-immunoprecipitants revealed that Phaseolus vulgaris erythroagglutinin and Pisum sativum agglutinin showed positive staining of the bands corresponding to Ts4 reactive proteins. Moreover, the immunoreactivity of Ts4 against the testicular extract was completely abrogated after digestion with β-N-acetylglucosaminidase. These results show that the Ts4-epitope contains agalacto-biantennary N-glycan with bisecting GlcNAc carrying fucose residues. PMID:26222427

  7. Chemical Characterization of N-Linked Oligosaccharide As the Antigen Epitope Recognized by an Anti-Sperm Auto-Monoclonal Antibody, Ts4

    PubMed Central

    Yoshitake, Hiroshi; Hashii, Noritaka; Kawasaki, Nana; Endo, Shuichiro; Takamori, Kenji; Hasegawa, Akiko; Fujiwara, Hiroshi; Araki, Yoshihiko

    2015-01-01

    Ts4, an anti-sperm auto-monoclonal antibody, possesses immunoreactivity to the acrosomal region of mouse epididymal spermatozoa. In addition, the mAb shows specific immunoreactivity to reproduction-related regions such as testicular germ cells and early embryo. Our qualitative study previously showed that the antigen epitope for Ts4 contained a N-linked common oligosaccharide (OS) chain on testicular glycoproteins as determined by Western blotting for testicular glycoproteins after treatment with several glycohydrolases. Since the distribution of the Ts4-epitope is unique, the OS chain in Ts4-epitope may have role(s) in the reproductive process. The aim of this study was to clarify the molecular structure of the Ts4-epitope, particularly its OS moiety. Using Ts4 immunoprecipitation combined with liquid chromatography and multiple-stage mass spectrometry, the candidate carbohydrate structure in the Ts4-epitope is proposed to be N-linked fucosylated agalacto-biantennary with bisecting N-acetylglucosamine (GlcNAc) or with N-acetylgalactosamine-GlcNAc motif. Further binding analyses using various lectins against the mouse testicular Ts4-immunoprecipitants revealed that Phaseolus vulgaris erythroagglutinin and Pisum sativum agglutinin showed positive staining of the bands corresponding to Ts4 reactive proteins. Moreover, the immunoreactivity of Ts4 against the testicular extract was completely abrogated after digestion with β-N-acetylglucosaminidase. These results show that the Ts4-epitope contains agalacto-biantennary N-glycan with bisecting GlcNAc carrying fucose residues. PMID:26222427

  8. An HLA-C-restricted CD8+ cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag.

    PubMed Central

    Littaua, R A; Oldstone, M B; Takeda, A; Debouck, C; Wong, J T; Tuazon, C U; Moss, B; Kievits, F; Ennis, F A

    1991-01-01

    A unique epitope on the gag protein of human immunodeficiency virus type 1 (HIV-1), located at amino acid 145 to 150, has been mapped by using a CD8+ cytotoxic T-lymphocyte (CTL) clone. This epitope is highly conserved among 18 HIV-1 strains. The HIV-1 gag-specific human leukocyte antigen (HLA) class I-restricted CD8+ CTL clone was generated from fresh peripheral blood mononuclear cells of an HIV-seropositive donor by stimulation with gamma-irradiated allogeneic peripheral blood mononuclear cells in the presence of an anti-CD3 monoclonal antibody and recombinant interleukin-2. This gag-specific CTL clone killed autologous target cells infected with a recombinant vaccinia virus containing the gag gene of HIV-1 and target cells pulsed with an authentic p24gag construct expressed in Escherichia coli. Fine specificity was determined by using a panel of overlapping 30-amino-acid-long synthetic peptides and subsequently using smaller peptides to precisely map the CTL domain on p24. The epitope is on a highly conserved region, and it overlaps with a major B-cell epitope of gag. This CD8+ T-cell epitope is restricted by HLA-Cw3, which has not been previously identified as a restricting element for human CTL responses. PMID:1712857

  9. Antibody-dependent cellular cytotoxicity-mediating antibodies from an HIV-1 vaccine efficacy trial target multiple epitopes and preferentially use the VH1 gene family.

    PubMed

    Bonsignori, Mattia; Pollara, Justin; Moody, M Anthony; Alpert, Michael D; Chen, Xi; Hwang, Kwan-Ki; Gilbert, Peter B; Huang, Ying; Gurley, Thaddeus C; Kozink, Daniel M; Marshall, Dawn J; Whitesides, John F; Tsao, Chun-Yen; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Kim, Jerome H; Michael, Nelson L; Tomaras, Georgia D; Montefiori, David C; Lewis, George K; DeVico, Anthony; Evans, David T; Ferrari, Guido; Liao, Hua-Xin; Haynes, Barton F

    2012-11-01

    The ALVAC-HIV/AIDSVAX-B/E RV144 vaccine trial showed an estimated efficacy of 31%. RV144 secondary immune correlate analysis demonstrated that the combination of low plasma anti-HIV-1 Env IgA antibodies and high levels of antibody-dependent cellular cytotoxicity (ADCC) inversely correlate with infection risk. One hypothesis is that the observed protection in RV144 is partially due to ADCC-mediating antibodies. We found that the majority (73 to 90%) of a representative group of vaccinees displayed plasma ADCC activity, usually (96.2%) blocked by competition with the C1 region-specific A32 Fab fragment. Using memory B-cell cultures and antigen-specific B-cell sorting, we isolated 23 ADCC-mediating nonclonally related antibodies from 6 vaccine recipients. These antibodies targeted A32-blockable conformational epitopes (n = 19), a non-A32-blockable conformational epitope (n = 1), and the gp120 Env variable loops (n = 3). Fourteen antibodies mediated cross-clade target cell killing. ADCC-mediating antibodies displayed modest levels of V-heavy (VH) chain somatic mutation (0.5 to 1.5%) and also displayed a disproportionate usage of VH1 family genes (74%), a phenomenon recently described for CD4-binding site broadly neutralizing antibodies (bNAbs). Maximal ADCC activity of VH1 antibodies correlated with mutation frequency. The polyclonality and low mutation frequency of these VH1 antibodies reveal fundamental differences in the regulation and maturation of these ADCC-mediating responses compared to VH1 bNAbs. PMID:22896626

  10. Direct binding to antigen-coated beads refines the specificity and cross-reactivity of four monoclonal antibodies that recognize polymorphic epitopes of HLA class I molecules

    PubMed Central

    Hilton, Hugo G; Parham, Peter

    2013-01-01

    Monoclonal antibodies with specificity for HLA class I determinants of HLA were originally characterized using serological assays in which the targets were cells expressing 3-6 HLA class I variants. Because of this complexity, the specificities of the antibodies were defined indirectly by correlation. Here we use a direct binding assay, in which the targets are synthetic beads coated with one of 111 HLA class I variants, representing the full range of HLA-A, -B and -C variation. We studied one monoclonal antibody with monomorphic specificity (W6/32) and four with polymorphic specificity (MA2.1, PA2.1, BB7.2 and BB7.1) and compared the results with those obtained previously. W6/32 reacted with all HLA class I variants. MA2.1 exhibits high specificity for HLA-A*02, -B*57 and -B*58, but also exhibited cross-reactivity with HLA-A*11 and -B*15:16. At low concentration (1μg/ml) PA2.1 and BB7.2 were both specific for HLA-A*02 and -A*69, and at high concentration (50μg/ml) exhibited significant cross-reactions with HLA-A*68, -A*23, and -A*24. BB7.1 exhibits specificity for HLA-B*07 and -B*42, as previously described, but reacts equally well with HLA-B*81, a rare allotype defined some 16 years after the description of BB7.1. The results obtained with cell-based and bead-based assays are consistent and, in combination with amino acid sequence comparison, increase understanding of the polymorphic epitopes recognized by the MA2.1, PA2.1, BB7.2 and BB7.1 antibodies. Comparison of two overlapping but distinctive bead sets from two sources gave similar results, but the overall levels of binding were significantly different. Several weaker reactions were observed with only one of the bead sets. PMID:23510417

  11. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    SciTech Connect

    Boonsathorn, Naphatsawan; Panthong, Sumolrat; Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya; Prachasupap, Apichai; Yasugi, Mayo; Ono, Ken-ichiro; and others

    2014-09-26

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

  12. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses.

    PubMed

    Boonsathorn, Naphatsawan; Panthong, Sumolrat; Koksunan, Sarawut; Chittaganpitch, Malinee; Phuygun, Siripaporn; Waicharoen, Sunthareeya; Prachasupap, Apichai; Sasaki, Tadahiro; Kubota-Koketsu, Ritsuko; Yasugi, Mayo; Ono, Ken-Ichiro; Arai, Yasuha; Kurosu, Takeshi; Sawanpanyalert, Pathom; Ikuta, Kazuyoshi; Watanabe, Yohei

    2014-09-26

    Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses. PMID:25204499

  13. An HLA-B27 Homodimer Specific Antibody Recognizes a Discontinuous Mixed-Disulfide Epitope as Identified by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Iuraşcu, Marius-Ionuţ; Marroquin Belaunzanar, Osiris; Cozma, Claudia; Petrausch, Ulf; Renner, Christoph; Przybylski, Michael

    2016-06-01

    HLA-B27 homodimer formation is believed to be a hallmark of HLA-B27 associated spondyloarthritides. Recently, we have generated a homodimer-specific monoclonal antibody (HD6) and have demonstrated that HLA-B27 homodimer complexes are present on monocytes of healthy HLA-B27 gene carriers at low levels, with significantly increased levels at active disease. The capability of the HD6 antibody to discriminate between correctly formed HLA-B27 heterotrimers and pathology-associated homodimers is striking and cannot be explained by the primary structure of HLA-B27. We hypothesized that HD6 accesses a unique epitope and used affinity-mass spectrometry for its identification. The HD6 antibody was immobilized on an activated sepharose affinity column, and HLA-B27 homodimer characterized for affinity. The epitope was identified by proteolytic epitope excision and MALDI mass spectrometry, and shown to comprise a discontinuous Cys-203- 257-Cys mixed-disulfide peptide structure that is not accessible in HLA-B27 heterotrimers due to protection by noncovalently linked β2-microglobulin. The epitope peptides were synthesized by solid phase peptide synthesis, and the two monomeric peptide components, HLA-B27(203-219) and HLA-B27(257-273), as well as the homo- and hetero-dimeric disulfide linked combinations prepared. The affinity binding constants KD towards the antibodies were determined using a surface acoustic wave (SAW) biosensor, and showed the highest affinity with a KD of approximately 40 nM to the HD6 antibody for the (203-219)-SS-(257-273) mixed disulfide epitope.

  14. Type 1 Diabetes at-risk children highly recognize Mycobacterium avium subspecies paratuberculosis epitopes homologous to human Znt8 and Proinsulin

    PubMed Central

    Niegowska, Magdalena; Rapini, Novella; Piccinini, Simona; Mameli, Giuseppe; Caggiu, Elisa; Manca Bitti, Maria Luisa; Sechi, Leonardo A.

    2016-01-01

    Mycobacterium avium subspecies paratuberculosis (MAP) has been previously associated to T1D as a putative environmental agent triggering or accelerating the disease in Sardinian and Italian populations. Our aim was to investigate the role of MAP in T1D development by evaluating levels of antibodies directed against MAP epitopes and their human homologs corresponding to ZnT8 and proinsulin (PI) in 54 T1D at-risk children from mainland Italy and 42 healthy controls (HCs). A higher prevalence was detected for MAP/ZnT8 pairs (62,96% T1D vs. 7,14% HCs; p < 0.0001) compared to MAP/PI epitopes (22,22% T1D vs. 9,52% HCs) and decreasing trends were observed upon time-point analyses for most peptides. Similarly, classical ZnT8 Abs and GADA decreased in a time-dependent manner, whereas IAA titers increased by 12%. Responses in 0–9 year-old children were stronger than in 10–18 age group (75% vs. 69,1%; p < 0.04). Younger age, female sex and concomitant autoimmune disorders contributed to a stronger seroreactivity suggesting a possible implication of MAP in multiple autoimmune syndrome. Cross-reactivity of the homologous epitopes was reflected by a high correlation coefficient (r2 > 0.8) and a pairwise overlap of positivity (>83% for MAP/ZnT8). PMID:26923214

  15. Epitope expression and partial structural characterization of F62 lipooligosaccharide (LOS) of Neisseria gonorrhoeae: IgM monoclonal antibodies (3F11 and 1-1-M) recognize non-reducing termini of the LOS components.

    PubMed

    Yamasaki, R; Nasholds, W; Schneider, H; Apicella, M A

    1991-11-01

    F62 LOS of Neisseria gonorrhoeae consists of two components. The higher molecular weight (MW) component is recognized by monoclonal antibody (MAb) 1-1-M and the smaller MW component by MAb 3F11. Epitope expression of the two LOS components and their partial structures were investigated by treating the F62 LOS with several glycosidases and then monitoring their antigenicity with the two mouse IgM MAbs. The 1-1-M-defined LOS component was cleaved with both beta-N-acetylhexosaminidase and endo-beta-galactosidase, and each cleavage resulted in the loss of expression of the 1-1-M-defined epitope. The N-acetylhexosamine (HexNAc) released by the hexosaminidase was found to be GalNAc, and the smaller oligosaccharide released by the endo enzyme was identified to be a dimer GalNAc beta----Gal. In contrast, the MAb 3F11-defined LOS component was not digested by the endo galactosidase, but it was cleaved with alpha and beta-galactosidase, and expression of the MAb 3F11-defined LOS epitope expression of the MAb 3F11-defined LOS was abolished by the treatment with each of two exo enzymes. MAb 3F11 bound to the 1-1-M-defined LOS component resulting from the removal of the beta-GalNAc residue, and the resulting LOS was further cleaved with beta-galactosidase, but not with alpha-galactosidase. From these results, we conclude the following: (1) MAbs 1-1-M and 3F11 both recognize the non-reducing termini of the LOS components; (2) the 1-1-M-defined LOS component has the GalNAc beta----Gal beta 1----4-Glc (or GlcNAc) structure, and the GalNAc beta----Gal residue is involved in the MAb 1-1-M-defined epitope; (3) the MAb 3F11-defined LOS component may not have a Gal beta 1----4GlcNAc beta 1----4Gal beta 1----4Glc structure within the molecule. However, it has beta-Gal residue at its non-reducing terminus, and this residue is involved in the MAb 3F11-defined epitope; (4) the two LOS components share a similar antigenic structure, and the 3F11-defined epitope structure is present in the

  16. Humans differ from other hominids in lacking an activating NK cell receptor that recognizes the C1 epitope of MHC class I.

    PubMed

    Moesta, Achim K; Graef, Thorsten; Abi-Rached, Laurent; Older Aguilar, Anastazia M; Guethlein, Lisbeth A; Parham, Peter

    2010-10-01

    Modulation of human NK cell function by killer cell Ig-like receptors (KIR) and MHC class I is dominated by the bipartite interactions of inhibitory lineage III KIR with the C1 and C2 epitopes of HLA-C. In comparison, the ligand specificities and functional contributions of the activating lineage III KIR remain poorly understood. Using a robust, sensitive assay of KIR binding and a representative panel of 95 HLA class I targets, we show that KIR2DS1 binds C2 with ~50% the avidity of KIR2DL1, whereas KIR2DS2, KIR2DS3, and KIR2DS5 have no detectable avidity for C1, C2, or any other HLA class I epitope. In contrast, the chimpanzee has activating C1- and C2-specific lineage III KIR with strong avidity, comparable to those of their paired inhibitory receptors. One variant of chimpanzee Pt-KIR3DS2, the activating C2-specific receptor, has the same avidity for C2 as does inhibitory Pt-KIR3DL4, and a second variant has ~73% the avidity. Chimpanzee Pt-KIR3DS6, the activating C1-specific receptor, has avidity for C1 that is ~70% that of inhibitory Pt-KIR2DL6. In both humans and chimpanzees we observe an evolutionary trend toward reducing the avidity of the activating C1- and C2-specific receptors through selective acquisition of attenuating substitutions. However, the extent of attenuation has been extreme in humans, as exemplified by KIR2DS2, an activating C1-specific receptor that has lost all detectable avidity for HLA class I. Supporting such elimination of activating C1-specific receptors as a uniquely human phenomenon is the presence of a high-avidity activating C1-specific receptor (Gg-KIR2DSa) in gorilla.

  17. B-cell epitopes recognized by Chinese water buffaloes (Bos buffelus) on the 22 kDa tegumental membrane-associated antigen (Sj-22) of the Asiatic bloodfluke, Schistosoma japonicum.

    PubMed

    Zhou, J; Waine, G J; Zeng, Q; Zeng, X; Yi, X; McManus, D P

    1999-01-01

    The 22.6 kDa tegumental membrane-associated antigen of schistosomes is of recognized importance in immunity to schistosomiasis. In China, bovines are known to play an important role in the transmission of Schistosoma japonicum. Ten buffaloes (Bos buffelus) were vaccinated with a recombinant form (reSj-22) of the S. japonicum 22.6 kDa tegumental antigen (Sj-22) and the sera were used to identify and map possible linear B-cell epitopes on this molecule using a series of 18 overlapping synthetic peptides (P1-P18). Sera from all of the ten vaccinated buffaloes reacted strongly with Sj-22 in western blots and in ELISA, while sera from a further ten adjuvant (Quil A) control buffaloes did not. Four peptides (P3, P8, P9 and P10) were predominantly recognized by at least 90% of the buffalo sera. This pattern of recognition is similar to that obtained in a previous study we undertook in mice immunized with the same antigen whereby peptides 3, 8, 9 and 10 were recognized by over 80% of CBA strain mice. The peptide most frequently recognized by mice (peptide 6), and mapping to an EF-hand calcium binding domain, was recognized by six of the ten vaccinated buffaloes. The major difference between buffaloes and mice occurred with peptide 1 which was recognized very frequently by all three strains of mice tested but was only weakly recognized by three of the ten buffaloes. This study provides a valuable reference for further study on the immunity stimulated by the 22.6 kDa tegumental antigen in the murine model and a natural bovine host of Schistosomiasis japonica.

  18. Cross-reactivity of antibodies to actin- depolymerizing factor/cofilin family proteins and identification of the major epitope recognized by a mammalian actin-depolymerizing factor/cofilin antibody.

    PubMed

    Shaw, Alisa E; Minamide, Laurie S; Bill, Christine L; Funk, Janel D; Maiti, Sankar; Bamburg, James R

    2004-08-01

    Members of the actin-depolymerizing factor (ADF)/cofilin family of proteins are expressed in all eukaryotic cells. In higher vertebrates, cells often express as many as three different ADF/cofilin genes and each of these proteins may be phosphorylated on serine 3, giving rise to up to six different species. Also, many avian, amphibian, and invertebrate systems have been useful in studying different aspects of ADF/cofilin function. Antibodies have been prepared against different members of the ADF/cofilin family, but no systematic examination of their cross-reactivity has been reported. Although ADF and cofilins within a single vertebrate species have about a 70% sequence homology, antibodies often differentiate between these proteins. Here, Western blotting was used with chemiluminescence substrates of different sensitivities to determine the relative immunoreactivities of different polyclonal rabbit antibodies and a mouse monoclonal antibody to purified ADF/cofilins from plants, protists, nematodes, insects, echinoderms, birds, and mammals. From immunocross-reactivities and sequence alignments, the principal epitope in mammalian ADF and cofilin-1 recognized by an antibody raised against avian ADF was identified. The specificity of an antibody to the phosphopeptide epitope of metazoan ADF/cofilins was confirmed by two-dimensional (2-D) immunoblot analysis. Futhermore, this bank of antibodies was used to identify by Western blotting a putative member of the ADF/cofilin family in the sea slug, Aplysia californica.

  19. Oxidation of defined antigens allows protein unfolding and increases both proteolytic processing and exposes peptide epitopes which are recognized by specific T cells.

    PubMed Central

    Carrasco-Marín, E; Paz-Miguel, J E; López-Mato, P; Alvarez-Domínguez, C; Leyva-Cobián, F

    1998-01-01

    The participation of oxidative mechanisms in major histocompatibility complex (MHC) class II-restricted antigen presentation was studied in vitro. In general, antigen processing is inhibited when peritoneal macrophages (MO) are incubated with scavengers of reactive oxygen intermediates (ROI): mannitol (an.OH scavenger), dimethylurea (DMTU, which reacts with H2O2 and HOCl) and NCO-700 (an epoxysuccinic acid derivative which inhibits oxidant production by activated phagocytes and can scavenge reactive oxygen species in both NaOCl and hypoxanthine (XOD) systems). However, neither rotenone and antimycins (inhibitors of O-2 production at the NADH dehydrogenase and ubiquinone-cytochrome b regions, respectively) nor aminoguanidine (an inducible nitric oxide synthase inhibitor) impaired antigen presentation, thus indirectly discarding the participation of mitochondrial oxidation and reactive nitrogen intermediates (RNI) in antigen processing. ROI scavengers do not inhibit the MHC class II-restricted presentation of antigens that need processing but have their disulphide bonds reduced. It can be shown that oxidation of protein antigens (either by chlorination or performic acid treatment) allow protein unfolding and enhance both processing and exposure of immunogenic epitopes to specific T cells. PMID:9824492

  20. A human monoclonal antibody, produced following in vitro immunization, recognizing an epitope shared by HLA-A2 subtypes and HLA-A28.

    PubMed

    Mulder, A; Kardol, M; Blom, J; Jolley, W B; Melief, C J; Bruning, H

    1993-07-01

    In vitro immunization and subsequent immortalization of peripheral blood cells of a multiparous woman has resulted in the production of a stable human mouse heterohybridoma, 5C2A2, secreting an HLA-A2/A28-specific human monoclonal antibody. Although possibly exposed to HLA-A2 by transfusions, the cell donor showed no HLA-A2-specific serum antibodies. The present protocol for in vitro immunization includes the elimination of suppressor cells from the responder cell population, the presence of irradiated allogeneic lymphocytes as a source of antigen, as well as stimuli--recombinant interleukin-2 and a B-cell specific nucleoside analogue--causing the proliferation of B lymphocytes, prior to immortalization. The ability of the antibody 5C2A2 to detect all known HLA-A2 subtypes, except A2.3, and A28, allows identification of the serological epitope on the HLA-A2 molecule. Application of this in vitro immunization method allows the production of a set of HLA monoclonal antibody-secreting human hybridomas, independent of the existence of serum HLA antibodies in the lymphocyte donors. PMID:7504327

  1. A galactosyl(alpha 1-3)mannose epitope on phospholipids of Leishmania mexicana and L. braziliensis is recognized by trypanosomatid-infected human sera.

    PubMed Central

    Avila, J L; Rojas, M

    1990-01-01

    An immunoglobulin M antibody reactive with galactosyl(alpha 1-3)mannose [Gal(alpha 1-3)Man] residues present on phospholipids extracted from Leishmania mexicana and L. braziliensis was found to be present in high titer in the serum of every normal individual studied. Periodate oxidation, acid hydrolysis, or acetylation suppressed immunoreactivity, suggesting that an oligosaccharide chain was responsible for antibody binding. Interaction occurs only with alpha-Gal terminal residues, since treatment of purified glycophospholipids with alpha-galactosidase but not with beta-galactosidase abolished it. Antibody bound to galactosyl(alpha 1-3)galactose-linked synthetic antigens but did not bind to the same residues present in rabbit, rat, and guinea pig erythrocytes or in murine laminin. Antigen-antibody binding was strongly blocked with Gal(alpha 1-3)Man and Gal(beta 1-4)Man. These results plus inhibition studies with several oligosaccharides suggest that they are indeed different from antibodies against the galactosyl(alpha 1-3)galactose residue. Anti-Gal(alpha 1-3)Man antibody values were significantly elevated in 89% of patients with diffuse cutaneous leishmaniasis, 84% of patients with localized cutaneous leishmaniasis, 69% of patients with mucocutaneous leishmaniasis, and 44 and 62% of patients with Trypanosoma cruzi or T. rangeli infection, respectively, but not in patients with 15 other different infectious and inflammatory diseases. Anti-Gal(alpha 1-3)Man antibody readily absorbed to American Leishmania and Trypanosoma culture forms, suggesting a surface membrane localization of reactive epitope. Gal(alpha 1-3)Man-bearing glycophospholipid was easily extracted from American Leishmania promastigotes and T. cruzi trypomastigotes as well as from American Trypanosoma culture forms. The possibility that this antibody arises against parasitic glycophospholipid-linked Gal(alpha 1-3)Man terminal residues is proposed. PMID:1696285

  2. Characterization of the epitope on murine T-cell receptor (TCR) alpha proteins recognized by H28-710 monoclonal antibody.

    PubMed

    Karaivanova, V; Suzuki, C; Howe, C; Kearse, K P

    1999-12-01

    Antigen recognition by alphabeta T lymphocytes is mediated via the multisubunit T-cell receptor (TCR) complex consisting of invariant CD3-gamma,delta,epsilon, and zeta chains associated with clonotypic TCRalpha,beta molecules. In the current report, we evaluated the molecular basis for recognition of murine TCRalpha proteins by H28-710 monoclonal antibody (MAb), specific for the constant region of murine TCRalpha chains. H28-710 is widely used in the study of the TCR complex as it is the only reagent currently available that recognizes all murine TCRalpha proteins, regardless of their clonotype. These data show that H28-710 is useful for the immunoprecipitation of TCRalpha proteins not associated with CD3 subunits, and that H28-710 effectively recognizes denatured TCRalpha proteins synthesized in several different cell types. Most importantly, these results demonstrate that H28 binding involves a serine/threonine-rich region between amino acids 150-177 on murine TCRalpha polypeptides.

  3. Specific immunotherapy modifies allergen-specific CD4+ T cell responses in an epitope-dependent manner

    PubMed Central

    Wambre, Erik; DeLong, Jonathan H.; James, Eddie A.; Torres-Chinn, Nadia; Pfützner, Wolfgang; Möbs, Christian; Durham, Stephen R.; Till, Stephen J.; Robinson, David; Kwok, William W.

    2014-01-01

    Background Understanding the mechanisms by which the immune system induces and controls allergic inflammation at the T cell epitope level is critical for the design of new allergy vaccine strategies. Objective To characterize allergen-specific T cell responses linked with allergy or peripheral tolerance and to determine how CD4+ T cell responses to individual allergen-derived epitopes change over allergen-specific immunotherapy (ASIT). Methods Timothy grass pollen (TGP) allergy was used as a model for studying grass pollen allergies. The breadth, magnitude, epitope hierarchy and phenotype of the DR04:01-restricted TGP-specific T cell responses in ten grass pollen allergic, five non-atopic and six allergy vaccine-treated individuals was determined using an ex vivo pMHCII-tetramer approach. Results CD4+ T cells in allergic individuals are directed to a broad range of TGP epitopes characterized by defined immunodominance hierarchy patterns and with distinct functional profiles that depend on the epitope recognized. Epitopes that are restricted specifically to either TH2 or TH1/TR1 responses were identified. ASIT was associated with preferential deletion of allergen-specific TH2 cells and without significant change in frequency of TH1/TR1 cells. Conclusions Preferential allergen-specific TH2-cells deletion after repeated high doses antigen stimulation can be another independent mechanism to restore tolerance to allergen during immunotherapy. PMID:24373351

  4. The sclerostin-neutralizing antibody AbD09097 recognizes an epitope adjacent to sclerostin's binding site for the Wnt co-receptor LRP6.

    PubMed

    Boschert, V; Frisch, C; Back, J W; van Pee, K; Weidauer, S E; Muth, E-M; Schmieder, P; Beerbaum, M; Knappik, A; Timmerman, P; Mueller, T D

    2016-08-01

    The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure-function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis. PMID:27558933

  5. Monoclonal antibody E-13 (M-810) to human cytomegalovirus recognizes an epitope encoded by exon 2 of the major immediate early gene.

    PubMed

    Mazeron, M C; Jahn, G; Plachter, B

    1992-10-01

    Monoclonal antibody (MAb) E-13 to human cytomegalovirus is used widely for diagnostic and fundamental studies, and has been shown to be directed against an immediate early (IE) protein(s). To determine which viral antigen is detected by MAb E-13, four subfragments from the open reading frame encoded by exons 2, 3 or 4 of IE-1 were cloned in the bacterial expression vector pROS. The resulting fusion proteins contained amino acids 77 to 491 encoded by mainly exon 4, amino acids 25 to 78 encoded by exon 3, amino acids 1 to 85 encoded by exons 2 and 3, and amino acids 1 to 24 encoded by exon 2. The reactivity of MAb E-13 with the fusion proteins was assayed by Western blotting. MAb E-13 was shown to react exclusively with proteins encoded by exon 2 and therefore recognizes IE proteins which contain the N-terminal amino acid sequence encoded by exon 2, namely the major 72K IE protein, the 82K to 86K IE-2 protein and the 52K to 55K IE-2 protein. MAb E-13 can be used to detect both IE-1- and IE-2-encoded proteins, which share the polypeptide encoded by exon 2. PMID:1383398

  6. The sclerostin-neutralizing antibody AbD09097 recognizes an epitope adjacent to sclerostin's binding site for the Wnt co-receptor LRP6

    PubMed Central

    Boschert, V.; Frisch, C.; Back, J. W.; van Pee, K.; Weidauer, S. E.; Muth, E.-M.; Schmieder, P.; Beerbaum, M.; Knappik, A.; Timmerman, P.

    2016-01-01

    The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure–function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis. PMID:27558933

  7. T cell epitopes and post-translationally modified epitopes in type 1 diabetes.

    PubMed

    McGinty, John W; Marré, Meghan L; Bajzik, Veronique; Piganelli, Jon D; James, Eddie A

    2015-11-01

    Type 1 diabetes (T1D) is an autoimmune disease in which progressive loss of self-tolerance, evidenced by accumulation of auto-antibodies and auto-reactive T cells that recognize diverse self-proteins, leads to immune-mediated destruction of pancreatic beta cells and loss of insulin secretion. In this review, we discuss antigens and epitopes in T1D and the role that post-translational modifications play in circumventing tolerance mechanisms and increasing antigenic diversity. Emerging data suggest that, analogous to other autoimmune diseases such as rheumatoid arthritis and celiac disease, enzymatically modified epitopes are preferentially recognized in T1D. Modifying enzymes such as peptidyl deiminases and tissue transglutaminase are activated in response to beta cell stress, providing a mechanistic link between post-translational modification and interactions with the environment. Although studies of such responses in the at-risk population have been limited, current data suggests that breakdown in tolerance through post-translational modification represents an important checkpoint in the development of T1D. PMID:26370701

  8. B and T cell immune response to small nuclear ribonucleoprotein particles in lupus mice: autoreactive CD4(+) T cells recognize a T cell epitope located within the RNP80 motif of the 70K protein.

    PubMed

    Monneaux, F; Briand, J P; Muller, S

    2000-08-01

    Systemic lupus erythematosus is characterized by the presence of high titers of autoantibodies reacting with various components of the U1 small nuclear ribonucleoprotein particle (snRNP). It has been suggested that these antibodies are produced by an antigen-driven mechanism under the dependence of antigen-specific T cells. To investigate the role of T cell help in this process, we sought, with 20 overlapping peptides, the Th epitopes on the U1-70K snRNP in unprimed H-2(k) MRL / lpr lupus mice and immunized CBA normal mice. The peptide 131 - 151 was recognized by both IgG autoantibodies and CD4(+) T cells from 7 - 9-week-old MRL / lpr mice. In this test, antigen-presenting cells (APC) from MRL / lpr mice were required; APC from naive CBA mice failed to stimulate CD4(+) cells from MRL / lpr mice. The potential role of MRL / lpr B cells as APC, the expression of MHC class II molecules at their surface and their activation state (expression of CD69, CD80 / B7-1 and CD86 / B7-2 molecules) were studied. Peptide 131 - 151 bound both I-A(k) and I-E(k) class II molecules and favored an IL-2-positive T cell response but not IFN-gamma, IL-6 and IL-10 secretion. Segment 131 - 151 is localized within the RNP80 motif and contains residues that are highly conserved in many nuclear, nucleolar and cytoplasmic RNA binding proteins.

  9. Core alpha1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts.

    PubMed

    Wilson, I B; Harthill, J E; Mullin, N P; Ashford, D A; Altmann, F

    1998-07-01

    Carbohydrates have been suggested to account for some IgE cross-reactions between various plant, insect, and mollusk extracts, while some IgG antibodies have been successfully raised against plant glycoproteins. A rat monoclonal antibody raised against elderberry abscission tissue (YZ1/2.23) and rabbit polyclonal antiserum against horseradish peroxidase were screened for reactivity in enzyme-linked immunosorbent assay against a range of plant glycoproteins and extracts as well as neoglycoproteins, bee venom phospholipase, and several animal glycoproteins. Of the oligosaccharides tested, Man3XylFucGlcNAc2(MMXF3) derived from horseradish peroxidase was the most potent inhibitor of the reactivity of both YZ1/2.23 and anti-horseradish peroxidase to native horseradish peroxidase glycoprotein. The reactivity of YZ1/2. 23 and anti-horseradish peroxidase against Sophora japonica lectin was most inhibited by a neoglycoconjugate of bromelain glycopeptide cross-linked to bovine serum albumin, while the defucosylated form of this conjugate was inactive as an inhibitor. A wide range of plant extracts was found to react against YZ1/2.23 and anti-horseradish peroxidase, with particularly high reactivities recorded for grass pollen and nut extracts. All these reactivities were inhibitable with the bromelain glycopeptide/bovine serum albumin conjugate. Bee venom phospholipase and whole bee venom reacted weakly with YZ1/2.23 but more strongly with anti-horseradish peroxidase in a manner inhibitable with the bromelain glycopeptide/bovine serum albumin conjugate, while hemocyanin from Helix pomatia reacted poorly with YZ1/2.23 but did react with anti-horseradish peroxidase. It is concluded that the alpha1, 3-fucose residue linked to the chitobiose core of plant glycoproteins is the most important residue in the epitope recognized by the two antibodies studied, but that the polyclonal anti-horseradish peroxidase antiserum also contains antibody populations that recognize the xylose

  10. Preferential recognition of the phosphorylated major linear B-cell epitope of La/SSB 349–368aa by anti-La/SSB autoantibodies from patients with systemic autoimmune diseases

    PubMed Central

    Terzoglou, A G; Routsias, J G; Avrameas, S; Moutsopoulos, H M; Tzioufas, A G

    2006-01-01

    Sera from patients with primary Sjögren Syndrome (pSS) or Systemic Lupus Erythematosus (SLE) often contain autoantibodies directed against La/SSB. The sequence 349–368aa represents the major B-cell epitope of La/SSB, also it contains, at position 366, a serine aminoacid residue which constitutes the main phosphorylation site of the protein. In this study we investigated the differential recognition of the 349–368aa epitope and its phosphorylated form by antibodies found in sera from patients with systemic autoimmune diseases. Peptides corresponding to the sequence of the unphosphorylated (pep349–368aa) and the phosphorylated form (pep349–368aaPh) of the La/SSB epitope 349–368aa, as well as to a truncated form spanning the sequence 349–364aa and lacking the phosphorylation site (pep349–364aa), were synthesized. Sera from 53 patients with pSS and SLE with anti-La/SSB specificity, 30 patients with pSS and SLE without anti-La/SSB antibodies, 25 patients with rheumatoid arthritis and 32 healthy individuals were investigated by ELISA experiments. Autoantibodies to pep349–368aaPh were detected in sera of anti-La/SSB positive patients with a higher prevalence compared to the pep349–368aa (66%versus 45%). Pep349–368aaPh inhibited the antibody binding almost completely (92%), while pep349–368aa inhibited the binding only partially (45%). Anti-La/SSB antibodies presented a higher relative avidity for the phosphorylated than the unphosphorylated peptide. Immunoadsorbent experiments using the truncated peptide pep349–364aa indicated that the flowthrough showed a selective specificity for pep349–368aaPh, while the eluted antibodies reacted with both peptide analogues of the La/SSB epitope. These data suggest that sera from pSS and SLE patients with anti-La/SSB reactivity possess autoantibodies that bind more frequently and with a higher avidity to the phosphorylated major B-cell epitope of the molecule. PMID:16734612

  11. What is a B-cell epitope?

    PubMed

    Van Regenmortel, Marc H V

    2009-01-01

    The antigenicity of proteins resides in different types of antigenic determinants known as continuous and discontinuous epitopes, cryptotopes, neotopes, and mimotopes. All epitopes have fuzzy boundaries and can be identified only by their ability to bind to certain antibodies. Antigenic cross-reactivity is a common phenomenon because antibodies are always able to recognize a considerable number of related epitopes. This places severe limits to the specificity of antibodies. Antigenicity, which is the ability of an epitope to react with an antibody, must be distinguished from its immunogenicity or ability to induce antibodies in a competent vertebrate host. Failure to make this distinction partly explains why no successful peptide-based vaccines have yet been developed. Methods for predicting the epitopes of proteins are discussed and the reasons for the low success rate of epitope prediction are analyzed.

  12. Immune recognition of citrullinated epitopes.

    PubMed

    Nguyen, Hai; James, Eddie A

    2016-10-01

    Conversion of arginine into citrulline is a post-translational modification that is observed in normal physiological processes. However, abnormal citrullination can provoke autoimmunity by generating altered self-epitopes that are specifically targeted by autoantibodies and T cells. In this review we discuss the recognition of citrullinated antigens in human autoimmune diseases and the role that this modification plays in increasing antigenic diversity and circumventing tolerance mechanisms. Early published work demonstrated that citrullinated proteins are specifically targeted by autoantibodies in rheumatoid arthritis and that citrullinated peptides are more readily presented to T cells by arthritis-susceptible HLA class II 'shared epitope' proteins. Emerging data support the relevance of citrullinated epitopes in other autoimmune diseases, including type 1 diabetes and multiple sclerosis, whose susceptible HLA haplotypes also preferentially present citrullinated peptides. In these settings, autoimmune patients have been shown to have elevated responses to citrullinated epitopes derived from tissue-specific antigens. Contrasting evidence implicates autophagy or perforin and complement-mediated membrane attack as inducers of ectopic citrullination. In either case, the peptidyl deiminases responsible for citrullination are activated in response to inflammation or insult, providing a mechanistic link between this post-translational modification and interactions with the environment and infection. As such, it is likely that immune recognition of citrullinated epitopes also plays a role in pathogen clearance. Indeed, our recent data suggest that responses to citrullinated peptides facilitate recognition of novel influenza strains. Therefore, increased understanding of responses to citrullinated epitopes may provide important insights about the initiation of autoimmunity and recognition of heterologous viruses. PMID:27531825

  13. Prediction of Antibody Epitopes.

    PubMed

    Nielsen, Morten; Marcatili, Paolo

    2015-01-01

    Antibodies recognize their cognate antigens in a precise and effective way. In order to do so, they target regions of the antigenic molecules that have specific features such as large exposed areas, presence of charged or polar atoms, specific secondary structure elements, and lack of similarity to self-proteins. Given the sequence or the structure of a protein of interest, several methods exploit such features to predict the residues that are more likely to be recognized by an immunoglobulin. Here, we present two methods (BepiPred and DiscoTope) to predict linear and discontinuous antibody epitopes from the sequence and/or the three-dimensional structure of a target protein. PMID:26424260

  14. Functional characterization of a monoclonal antibody epitope using a lambda phage display-deep sequencing platform

    PubMed Central

    Domina, Maria; Lanza Cariccio, Veronica; Benfatto, Salvatore; Venza, Mario; Venza, Isabella; Borgogni, Erica; Castellino, Flora; Midiri, Angelina; Galbo, Roberta; Romeo, Letizia; Biondo, Carmelo; Masignani, Vega; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2016-01-01

    We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb. We detected dozens of unique antibody-selected sequences, the most enriched of which (designated as FrC) could largely recapitulate the ability of fHbp to bind mAb 12C1. Computational analysis of the cumulative enrichment of single amino acids in the antibody-selected fragments identified two overrepresented stretches of residues (H248-K254 and S140-G154), whose presence was subsequently found to be required for binding of FrC to mAb 12C1. Collectively, these results suggest that the PROFILER technology can rapidly and reliably identify, in the context of complex conformational epitopes, discrete “hot spots” with a crucial role in antigen-antibody interactions, thereby providing useful clues for the functional characterization of the epitope. PMID:27530334

  15. Function and Potentials of M. tuberculosis Epitopes

    PubMed Central

    Ivanyi, Juraj

    2014-01-01

    Study of the function of epitopes of Mycobacterium tuberculosis antigens contributed significantly toward better understanding of the immunopathogenesis and to efforts for improving infection and disease control. Characterization of genetically permissively presented immunodominant epitopes has implications for the evolution of the host–parasite relationship, development of immunodiagnostic tests, and subunit prophylactic vaccines. Knowledge of the determinants of cross-sensitization, relevant to other pathogenic or environmental mycobacteria and to host constituents has advanced. Epitope-defined IFNγ assay kits became established for the specific detection of infection with tubercle bacilli both in humans and cattle. The CD4 T-cell epitope repertoire was found to be more narrow in patients with active disease than in latently infected subjects. However, differential diagnosis of active TB could not be made reliably merely on the basis of epitope recognition. The mechanisms by which HLA polymorphism can influence the development of multibacillary tuberculosis (TB) need further analysis of epitopes, recognized by Th2 helper cells for B-cell responses. Future vaccine development would benefit from better definition of protective epitopes and from improved construction and formulation of subunits with enhanced immunogenicity. Epitope-defined serology, due to its operational advantages is suitable for active case finding in selected high disease incidence populations, aiming for an early detection of infectious cases and hence for reducing the transmission of infection. The existing knowledge of HLA class I binding epitopes could be the basis for the construction of T-cell receptor-like ligands for immunotherapeutic application. Continued analysis of the functions of mycobacterial epitopes, recognized by T cells and antibodies, remains a fertile avenue in TB research. PMID:24715888

  16. Cross-Reactive Human Immunodeficiency Virus Type 1-Neutralizing Human Monoclonal Antibody That Recognizes a Novel Conformational Epitope on gp41 and Lacks Reactivity against Self-Antigens ▿

    PubMed Central

    Zhang, Mei-Yun; Vu, Bang K.; Choudhary, Anil; Lu, Hong; Humbert, Michael; Ong, Helena; Alam, Munir; Ruprecht, Ruth M.; Quinnan, Gerald; Jiang, Shibo; Montefiori, David C.; Mascola, John R.; Broder, Christopher C.; Haynes, Barton F.; Dimitrov, Dimiter S.

    2008-01-01

    Broadly cross-reactive human immunodeficiency virus (HIV)-neutralizing antibodies are infrequently elicited in infected humans. The two best-characterized gp41-specific cross-reactive neutralizing human monoclonal antibodies, 4E10 and 2F5, target linear epitopes in the membrane-proximal external region (MPER) and bind to cardiolipin and several other autoantigens. It has been hypothesized that, because of such reactivity to self-antigens, elicitation of 2F5 and 4E10 and similar antibodies by vaccine immunogens based on the MPER could be affected by tolerance mechanisms. Here, we report the identification and characterization of a novel anti-gp41 monoclonal antibody, designated m44, which neutralized most of the 22 HIV type 1 (HIV-1) primary isolates from different clades tested in assays based on infection of peripheral blood mononuclear cells by replication-competent virus but did not bind to cardiolipin and phosphatidylserine in an enzyme-linked immunosorbent assay and a Biacore assay nor to any protein or DNA autoantigens tested in Luminex assays. m44 bound to membrane-associated HIV-1 envelope glycoproteins (Envs), to recombinant Envs lacking the transmembrane domain and cytoplasmic tail (gp140s), and to gp41 structures containing five-helix bundles and six-helix bundles, but not to N-heptad repeat trimers, suggesting that the C-heptad repeat is involved in m44 binding. In contrast to 2F5, 4E10, and Z13, m44 did not bind to any significant degree to denatured gp140 and linear peptides derived from gp41, suggesting a conformational nature of the epitope. This is the first report of a gp41-specific cross-reactive HIV-1-neutralizing human antibody that does not have detectable reactivity to autoantigens. Its novel conserved conformational epitope on gp41 could be helpful in the design of vaccine immunogens and as a target for therapeutics. PMID:18480433

  17. Immunochemical identification of Brucella abortus lipopolysaccharide epitopes.

    PubMed Central

    Rojas, N; Freer, E; Weintraub, A; Ramirez, M; Lind, S; Moreno, E

    1994-01-01

    Sera from Brucella abortus-infected and -vaccinated bovines recognized four lipopolysaccharide (LPS) determinants: two in the O-polysaccharide (A and C), one in the core oligosaccharide from rough Brucella LPS (R), and one in lipid A (LA). From 46 different hybridomas secreting monoclonal antibodies (MAbs) against various LPS moieties, 9 different specificities were identified. Two epitopes, A and C/Y, were present in the O-polysaccharide. Two epitopes were found in the core oligosaccharide (R1 and R2) of rough Brucella LPS. MAbs against R1 and R2 epitopes reacted against LPS from different rough Brucella species; however, MAbs directed to the R2 epitope also reacted against enterobacterial LPS from deep rough mutants. Three epitopes (LA1, LA2, and LA3) were located in the lipid A backbone. Different sets of MAbs recognized two epitopes in the lipid A-associated outer membrane protein (LAOmp3-1 and LAOmp3-2). LPS preparations from smooth brucellae had small amounts of rough-type LPS. Although LPS from rough brucellae did not show smooth-type LPS in western blots (immunoblots), two hybridomas generated from mice immunized with rough B. abortus produced antibodies against smooth B. abortus LPS. Results are discussed in relation to the structure and function of B. abortus LPS and to previous findings on the epitopic density of the molecule. Images PMID:7496947

  18. MicroSPECT/CT imaging of primary human AML engrafted into the bone marrow and spleen of NOD/SCID mice using 111In-DTPA-NLS-CSL360 radioimmunoconjugates recognizing the CD123+ / CD131- epitope expressed by leukemia stem cells.

    PubMed

    Leyton, Jeffrey V; Williams, Brent; Gao, Catherine; Keating, Armand; Minden, Mark; Reilly, Raymond M

    2014-11-01

    Engraftment of primary human acute myeloid leukemia (AML) specimens into the bone marrow (BM) of NOD/SCID mice has been used to study leukemia biology and new treatments for the disease. CSL360 is a chimeric IgG1 monoclonal antibody that recognizes CD123 (IL-3 receptor α-subchain) expressed in the absence of CD131 (β-subchain), an epitope that is displayed by leukemia stem cells (LSCs). We are studying CSL360 modified with diethylenetriaminepentaacetic acid (DTPA) for complexing 111In and 13-mer nuclear translocation sequence (NLS) peptides to enable nuclear importation in LSCs for Auger electron radioimmunotherapy (RIT) of AML. We demonstrate that microSPECT/CT imaging using 111In-DTPA-NLS-CSL360 revealed engraftment of primary human AML specimens into the BM and spleen of NOD/SCID mice. Our results suggest that microSPECT/CT imaging is a powerful tool which enables non-invasive assessment of the engraftment of AML into NOD/SCID mice and in the current study specifically probes an epitope displayed by the LSC subpopulation. The targeting of 111In-DTPA-NLS-CSL360 to sites of AML engraftment in the NOD/SCID mouse model is encouraging for future RIT studies. Ultimately, SPECT imaging could be applied in AML patients to assess the delivery of 111In-DTPA-NLS-CSL360 to sites of leukemia and be combined with Auger electron RIT using the same agent targeting the LSC population as a "theranostic" pair.

  19. Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability.

    PubMed

    Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P; Takeda, Makoto

    2016-01-01

    Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors. PMID:27490564

  20. Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability

    PubMed Central

    Tahara, Maino; Bürckert, Jean-Philippe; Kanou, Kazuhiko; Maenaka, Katsumi; Muller, Claude P.; Takeda, Makoto

    2016-01-01

    Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors. PMID:27490564

  1. Fine mapping of epitopes by intradomain Kd/Dd recombinants

    PubMed Central

    1987-01-01

    11 intradomain recombinants between H-2Kd and H-2Dd were produced using an original technique based on in vivo recombination in Escherichia coli. After transfection into mouse L cells, all these recombinants were expressed at high levels on the cell surface. The specificities of 77 mAbs were examined on these cell lines. mAbs could be organized in 12 groups. In each group, a small number of amino acids participating in the recognized epitope(s) were identified. In a few instances, noncontinuous epitopes comprising amino acids belonging to different domains of the antigen were found. The data thus obtained are compatible with those produced in previous exon-shuffling experiments, but permit a much more precise definition of recognized epitope(s). PMID:2439641

  2. Recognizing faces.

    PubMed

    Ellis, H D

    1975-11-01

    Following a review of the stimulus and subject factors which have been found to affect recognition faces, the question of whether this process can be considered a special one is dealt with. Evidence from studies involving the development of face recognition, the recognition of inverted faces, and the clinical condition prosopagnosia is considered, and in each case found to be inadequate for the unequivocal conclusion that the processes underlying face recognition are qualitatively different from those employed in recognizing other pictorial material.

  3. A novel linear neutralizing epitope of hepatitis E virus.

    PubMed

    Tang, Zi-Min; Tang, Ming; Zhao, Min; Wen, Gui-Ping; Yang, Fan; Cai, Wei; Wang, Si-Ling; Zheng, Zi-Zheng; Xia, Ning-Shao

    2015-07-01

    Hepatitis E virus (HEV) is a serious public health problem that causes acute hepatitis in humans and is primarily transmitted through fecal and oral routes. The major anti-HEV antibody responses are against conformational epitopes located in a.a. 459-606 of HEV pORF2. All reported neutralization epitopes are present on the dimer domain constructed by this peptide. While looking for a neutralizing monoclonal antibody (MAb)-recognized linear epitope, we found a novel neutralizing linear epitope (L2) located in a.a. 423-437 of pORF2. Moreover, epitope L2 is proved non-immunodominant in the HEV-infection process. Using the hepatitis B virus core protein (HBc) as a carrier to display this novel linear epitope, we show herein that this epitope could induce a neutralizing antibody response against HEV in mice and could protect rhesus monkeys from HEV infection. Collectively, our results showed a novel non-immunodominant linear neutralizing epitope of hepatitis E virus, which provided additional insight of HEV vaccine. PMID:26051517

  4. Controlled CO preferential oxidation

    DOEpatents

    Meltser, M.A.; Hoch, M.M.

    1997-06-10

    Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

  5. Cytotoxic T cell recognition of allelic variants of HLA B35 bound to an Epstein-Barr virus epitope: influence of peptide conformation and TCR-peptide interaction.

    PubMed

    Khanna, R; Silins, S L; Weng, Z; Gatchell, D; Burrows, S R; Cooper, L

    1999-05-01

    Fine specificity analysis of HLA B35-restricted Epstein-Barr virus (EBV)-specific cytotoxic T lymphocyte (CTL) clones revealed a unique heterogeneity whereby one group of these clones cross-recognized an EBV epitope (YPLHEQHGM) on virus-infected cells expressing either HLA B*3501 or HLA B*3503, while another group cross-recognized this epitope in association with either HLA B*3502 or HLA B*3503. Peptide binding and titration studies ruled out the possibility that these differences were due to variation in the efficiency of peptide presentation by the HLA B35 alleles. Sequence analysis of the TCR genetic elements showed that these clonotypes either expressed BV12/AV3 or BV14/ADV17S1 heterodimers. Interestingly, CTL analysis with monosubstituted alanine mutants of the YPLHEQHGM epitope indicated that the BV12/AV3+ clones preferentially recognized residues towards the C terminus of the peptide, while the BV14/ADV17S1+ clones interacted with residues towards N terminus of the peptide. Molecular modelling of the MHC-peptide complexes suggests that the differences in two floor positions (114 and 116) of the HLA B35 alleles dictate different conformations of the peptide residues L3 and/or H7 and directly contribute in the discerning allele-specific immune recognition by the CTL clonotypes. These results provide evidence for a critical role for the selective interaction of the TCR with specific residues within the peptide epitope in the fine specificity of CTL recognition of allelic variants of an HLA molecule.

  6. Determination of epitopes by mass spectrometry.

    PubMed

    Hager-Braun, Christine; Tomer, Kenneth B

    2004-01-01

    As a response to an infection, the immune system produces antibodies. The determination of the antigenic structure recognized by the antibody through epitope mapping provides information about the interaction between antigen and antibody for the diagnosis of a disease on a molecular level, for characterizing the pathogenesis of the infectious material, and for the development of interfering drugs or preventative vaccines. Here we present the determination of the fine structure of the linear epitope located on the gp41 protein of the human immunodeficiency virus recognized by the monoclonal antibody 2F5. In this approach we coupled the antigen SOSgp140 to the antibody 2F5, which was covalently linked to an Fc-specific antibody immobilized on cyanogen bromide (CNBr)-activated Sepharose beads. Digestion of the antigen with endoproteinase LysC resulted in an affinity-bound peptide whose fine structure was characterized by digestion with carboxypeptidase Y and aminopeptidase M. All steps of this method were monitored by matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS). The epitope recognized by 2F5 was identified to be the 16-mer peptide with the sequence NEQELLELDKWASLWN.

  7. Caspr2 autoantibodies target multiple epitopes

    PubMed Central

    Olsen, Abby L.; Lai, Yongjie; Dalmau, Josep; Scherer, Steven S.

    2015-01-01

    Objective: To better understand the mechanisms of autoantibodies to the axonal protein contactin-associated protein-like 2 (Caspr2) by studying their target epitopes. Methods: A plasmid for expressing Caspr2 was modified so that the various extracellular subdomains were deleted individually and in groups. Cultured cells were transfected to express these constructs and assayed by immunofluorescence staining with a commercial Caspr2 antibody and a panel of patient sera known to react with Caspr2. Western blotting was also performed. The role of glycosylation in immunogenicity was tested with tunicamycin and PNGase F treatment. Results: Patient antibodies bound to the extracellular domain of Caspr2. Neither native protein structure nor glycosylation was required for immunoreactivity. Caspr2 constructs with single or multidomain deletions were expressed on the plasma membrane. All deletion constructs were recognized by patients' sera, although reactivity was significantly reduced with deletion of the discoidin-like subdomain and strongly reduced or abolished with larger deletions of multiple N-terminal subdomains. Caspr2 with all subdomains deleted except the discoidin-like domain was still recognized by the antibodies. Conclusion: Caspr2 autoantibodies recognize multiple target epitopes in the extracellular domain of Caspr2, including one in the discoidin-like domain. Reactivity for some epitopes is not dependent on glycosylation or native protein structure. PMID:26185774

  8. HLA-A02:01-Restricted Epitopes Identified from the Herpes Simplex Virus Tegument Protein VP11/12 Preferentially Recall Polyfunctional Effector Memory CD8+ T Cells from Seropositive Asymptomatic Individuals and Protect “Humanized” HLA-A*02:01 Transgenic Mice Against Ocular Herpes

    PubMed Central

    Srivastava, Ruchi; Khan, Arif A.; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P.; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T.; Huang, Jiawei; Scarfone, Vanessa M.; Nesburn, Anthony B.; Wechsler, Steven L.; BenMohamed, Lbachir

    2014-01-01

    The Herpes Simplex Virus type 1 virion tegument phosphoprotein 11/12 (HSV-1 VP11/12) is a major antigen targeted by CD8+ T cells from HSV-seropositive individuals. However, whether and which VP11/12-epitope-specific CD8+ T cells play a role in the “natural” protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8+ T cell epitopes from the 716 amino acids sequence of VP11/12. Three out of ten epitopes exhibited high to moderate binding affinity to HLA-A*02:01 molecules. In ten sequentially studied HLA-A*02:01 positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust and polyfunctional effector CD8+ T-cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107a/b cytotoxic degranulation, IFN-γ and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266–74, VP11/12220–228 and VP11/12702–710. Interestingly, ASYMP individuals had significantly higher proportion of CD45RAlowCCR7lowCD44highCD62LlowCD27lowCD28lowCD8+ effector memory T cells (TEM) specific to the three epitopes, compared to symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8+ TEM cell epitopes induced robust and polyfunctional epitope-specific CD8+ TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8+ T cells that should guide the development of an effective T-cell-based herpes vaccine. PMID:25617474

  9. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T; Huang, Jiawei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-03-01

    The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine. PMID:25617474

  10. HLA-A02:01-restricted epitopes identified from the herpes simplex virus tegument protein VP11/12 preferentially recall polyfunctional effector memory CD8+ T cells from seropositive asymptomatic individuals and protect humanized HLA-A*02:01 transgenic mice against ocular herpes.

    PubMed

    Srivastava, Ruchi; Khan, Arif A; Spencer, Doran; Vahed, Hawa; Lopes, Patricia P; Thai, Nhi Thi Uyen; Wang, Christine; Pham, Thanh T; Huang, Jiawei; Scarfone, Vanessa M; Nesburn, Anthony B; Wechsler, Steven L; BenMohamed, Lbachir

    2015-03-01

    The HSV type 1 tegument virion phosphoprotein (VP) 11/12 (VP11/12) is a major Ag targeted by CD8(+) T cells from HSV-seropositive individuals. However, whether and which VP11/12 epitope-specific CD8(+) T cells play a role in the "natural" protection seen in seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we used multiple prediction computer-assisted algorithms to identify 10 potential HLA-A*02:01-restricted CD8(+) T cell epitopes from the 718-aa sequence of VP11/12. Three of 10 epitopes exhibited high-to-moderate binding affinity to HLA-A*02:01 molecules. In 10 sequentially studied HLA-A*02:01-positive and HSV-1-seropositive ASYMP individuals, the most frequent, robust, and polyfunctional effector CD8(+) T cell responses, as assessed by a combination of tetramer frequency, granzyme B, granzyme K, perforin, CD107(a/b) cytotoxic degranulation, IFN-γ, and multiplex cytokines assays, were predominantly directed against three epitopes: VP11/1266-74, VP11/12220-228, and VP11/12702-710. Interestingly, ASYMP individuals had a significantly higher proportion of CD45RA(low)CCR7(low)CD44(high)CD62L(low)CD27(low)CD28(low)CD8(+) effector memory CD8(+) T cells (TEMs) specific to the three epitopes, compared with symptomatic individuals (with a history of numerous episodes of recurrent ocular herpetic disease). Moreover, immunization of HLA-A*02:01 transgenic mice with the three ASYMP CD8(+) TEM cell epitopes induced robust and polyfunctional epitope-specific CD8(+) TEM cells that were associated with a strong protective immunity against ocular herpes infection and disease. Our findings outline phenotypic and functional features of protective HSV-specific CD8(+) T cells that should guide the development of an effective T cell-based herpes vaccine.

  11. Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease.

    PubMed

    Hemmer, B; Gran, B; Zhao, Y; Marques, A; Pascal, J; Tzou, A; Kondo, T; Cortese, I; Bielekova, B; Straus, S E; McFarland, H F; Houghten, R; Simon, R; Pinilla, C; Martin, R

    1999-12-01

    Elucidating the cellular immune response to infectious agents is a prerequisite for understanding disease pathogenesis and designing effective vaccines. In the identification of microbial T-cell epitopes, the availability of purified or recombinant bacterial proteins has been a chief limiting factor. In chronic infectious diseases such as Lyme disease, immune-mediated damage may add to the effects of direct infection by means of molecular mimicry to tissue autoantigens. Here, we describe a new method to effectively identify both microbial epitopes and candidate autoantigens. The approach combines data acquisition by positional scanning peptide combinatorial libraries and biometric data analysis by generation of scoring matrices. In a patient with chronic neuroborreliosis, we show that this strategy leads to the identification of potentially relevant T-cell targets derived from both Borrelia burgdorferi and the host. We also found that the antigen specificity of a single T-cell clone can be degenerate and yet the clone can preferentially recognize different peptides derived from the same organism, thus demonstrating that flexibility in T-cell recognition does not preclude specificity. This approach has potential applications in the identification of ligands in infectious diseases, tumors and autoimmune diseases.

  12. Antigenic Analysis of Monoclonal Antibodies against Different Epitopes of σB Protein of Avian Reovirus

    PubMed Central

    Yin, Chun-hong; Qin, Li-ting; Sun, Mei-yu; Gao, Yu-long; Qi, Xiao-le; Gao, Hong-lei; Wang, Yong-qiang; Wang, Xiao-mei

    2013-01-01

    Background Avian reovirus (ARV) causes arthritis, tenosynovitis, runting-stunting syndrome (RSS), malabsorption syndrome (MAS) and immunosuppression in chickens. σB is one of the major structural proteins of ARV, which is able to induce group-specific antibodies against the virus. Methods and Results The present study described the identification of two linear B-cell epitopes in ARV σB through expressing a set of partially overlapping and consecutive truncated peptides spanning σB screened with two monoclonal antibodies (mAbs) 1F4 and 1H3-1.The data indicated that 21KTPACW26 (epitope A) and 32WDTVTFH38 (epitope B) were minimal determinants of the linear B cell epitopes. Antibodies present in the serum of ARV-positive chickens recognized the minimal linear epitopes in Western blot analyses. By sequence alignment analysis, we determined that the epitopes A and B were not conserved among ARV, duck reovirus (DRV) and turkey reovirus (TRV) strains. Western blot assays, confirmed that epitopes A and B were ARV-specific epitopes, and they could not react with the corresponding peptides of DRV and TRV. Conclusions and Significance We identified 21KTPACW26 and 32WDTVTFH38 as σB -specific epitopes recognized by mAbs 1F4 and 1H3-1, respectively. The results in this study may have potential applications in development of diagnostic techniques and epitope-based marker vaccines against ARV groups. PMID:24312314

  13. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6

    PubMed Central

    Wang, Yanhua; Wang, Guangxiang; Cai, Jian Ping

    2016-01-01

    The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents. PMID:27658594

  14. Identifying Novel B Cell Epitopes within Toxoplasma gondii GRA6.

    PubMed

    Wang, Yanhua; Wang, Guangxiang; Cai, Jian Ping

    2016-08-01

    The study of antigenic epitopes from Toxoplasma gondii has not only enhanced our understanding of the structure and function of antigens, the reactions between antigens and antibodies, and many other aspects of immunology, but it also plays a significant role in the development of new diagnostic reagents and vaccines. In the present study, T. gondii GRA6 epitopes were identified using bioinformatics tools and a synthetic peptide technique. The potential B cell epitopes of GRA6 predicted by bioinformatics tools concentrated upon 3 regions of GRA6, 1-20 aa, 44-103 aa, and 172-221 aa. Ten shorter peptides from the 3 regions were synthesized and assessed by ELISA using pig sera from different time points after infection. Three of the 10 peptides (amino acids 44-63, 172-191, and 192-211) tested were recognized by all sera and determined to be immunodominant B-cell epitopes of GRA6. The results indicated that we precisely and accurately located the T. gondii GRA6 epitopes using pig sera collected at different time points after infection. The identified epitopes may be very useful for further studies of epitope-based vaccines and diagnostic reagents. PMID:27658594

  15. Dissecting antibodies with regards to linear and conformational epitopes.

    PubMed

    Forsström, Björn; Axnäs, Barbara Bisławska; Rockberg, Johan; Danielsson, Hanna; Bohlin, Anna; Uhlen, Mathias

    2015-01-01

    An important issue for the performance and specificity of an antibody is the nature of the binding to its protein target, including if the recognition involves linear or conformational epitopes. Here, we dissect polyclonal sera by creating epitope-specific antibody fractions using a combination of epitope mapping and an affinity capture approach involving both synthesized peptides and recombinant protein fragments. This allowed us to study the relative amounts of antibodies to linear and conformational epitopes in the polyclonal sera as well as the ability of each antibody-fraction to detect its target protein in Western blot assays. The majority of the analyzed polyclonal sera were found to have most of the target-specific antibodies directed towards linear epitopes and these were in many cases giving Western blot bands of correct molecular weight. In contrast, many of the antibodies towards conformational epitopes did not bind their target proteins in the Western blot assays. The results from this work have given us insights regarding the nature of the antibody response generated by immunization with recombinant protein fragments and has demonstrated the advantage of using antibodies recognizing linear epitopes for immunoassay involving wholly or partially denatured protein targets. PMID:25816293

  16. Preferential Affirmative Action.

    ERIC Educational Resources Information Center

    Bell, Derrick A., Jr.

    1982-01-01

    Discusses the philosophical rationale for preferential affirmative action presented by Daniel C. Maguire in "A New American Justice." Maintains that self-interest bars present society's acceptance of Maguire's theories of justice, as demonstrated in negative reactions to the Harvard Law Review's affirmative action plan. (MJL)

  17. Against Preferential Treatment.

    ERIC Educational Resources Information Center

    Kekes, John

    1997-01-01

    Argues that preferential treatment of women and minorities in the selection of college faculty elevates a form of corruption to standard administrative practice by including people in academic life on the basis of characteristics irrelevant to teaching and research; and previous unjust treatment is inadequate justification for preferential…

  18. Targeting Non-classical Myelin Epitopes to Treat Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Wang, Xiaohua; Zhang, Jintao; Baylink, David J.; Li, Chih-Huang; Watts, Douglas M.; Xu, Yi; Qin, Xuezhong; Walter, Michael H.; Tang, Xiaolei

    2016-01-01

    Qa-1 epitopes, the peptides that bind to non-classical major histocompatibility complex Ib Qa-1 molecules and are recognized by Qa-1-restricted CD8+ regulatory T (Treg) cells, have been identified in pathogenic autoimmune cells that attack myelin sheath in experimental autoimmune encephalomyelitis (EAE, an animal model for multiple sclerosis [MS]). Additionally, immunization with such epitopes ameliorates the EAE. However, identification of such epitopes requires knowledge of the pathogenic autoimmune cells which are largely unknown in MS patients. Hence, we asked whether the CD8+ Treg cells could directly target the myelin sheath to ameliorate EAE. To address this question, we analyzed Qa-1 epitopes in myelin oligodendrocyte glycoprotein (MOG that is a protein in myelin sheath). Here, we report identification of a MOG-specific Qa-1 epitope. Immunization with this epitope suppressed ongoing EAE, which was abrogated by CD8+ T cell depletion. Additionally, the epitope immunization activated the epitope-specific CD8+ T cells which specifically accumulated in the CNS-draining cervical lymph nodes. Finally, CD8+ T cells primed by the epitope immunization transferred EAE suppression. Hence, this study reveals a novel regulatory mechanism mediated by the CD8+ Treg cells. We propose that immunization with myelin-specific HLA-E epitopes (human homologues of Qa-1 epitopes) is a promising therapy for MS. PMID:27796368

  19. Finding epitopes with computers.

    PubMed

    Malito, Enrico; Rappuoli, Rino

    2013-10-24

    The goal of structural vaccinology is to enable the design and engineering of improved antigens. In a recent issue of Chemistry & Biology, Gourlay and colleagues provided evidence that structure-based computational methods allow prediction of B cell epitopes, a crucial step for antigen selection and optimization in vaccine development.

  20. Expression of Aleutian mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions.

    PubMed Central

    Bloom, M E; Martin, D A; Oie, K L; Huhtanen, M E; Costello, F; Wolfinbarger, J B; Hayes, S F; Agbandje-McKenna, M

    1997-01-01

    The capsid proteins of the ADV-G isolate of Aleutian mink disease parvovirus (ADV) were expressed in 10 nonoverlapping segments as fusions with maltose-binding protein in pMAL-C2 (pVP1, pVP2a through pVP2i). The constructs were designed to capture the VP1 unique sequence and the portions analogous to the four variable surface loops of canine parvovirus (CPV) in individual fragments (pVP2b, pVP2d, pVP2e, and pVP2g, respectively). The panel of fusion proteins was immunoblotted with sera from mink infected with ADV. Seropositive mink infected with either ADV-TR, ADV-Utah, or ADV-Pullman reacted preferentially against certain segments, regardless of mink genotype or virus inoculum. The most consistently immunoreactive regions were pVP2g, pVP2e, and pVP2f, the segments that encompassed the analogs of CPV surface loops 3 and 4. The VP1 unique region was also consistently immunoreactive. These findings indicated that infected mink recognize linear epitopes that localized to certain regions of the capsid protein sequence. The segment containing the hypervariable region (pVP2d), corresponding to CPV loop 2, was also expressed from ADV-Utah. An anti-ADV-G monoclonal antibody and a rabbit anti-ADV-G capsid antibody reacted exclusively with the ADV-G pVP2d segment but not with the corresponding segment from ADV-Utah. Mink infected with ADV-TR or ADV-Utah also preferentially reacted with the pVP2d sequence characteristic of that virus. These results suggested that the loop 2 region may contain a type-specific linear epitope and that the epitope may also be specifically recognized by infected mink. Heterologous antisera were prepared against the VP1 unique region and the four segments capturing the variable surface loops of CPV. The antisera against the proteins containing loop 3 or loop 4, as well as the anticapsid antibody, neutralized ADV-G infectivity in vitro and bound to capsids in immune electron microscopy. These results suggested that regions of the ADV capsid proteins

  1. Controlled CO preferential oxidation

    DOEpatents

    Meltser, Mark A.; Hoch, Martin M.

    1997-01-01

    Method for controlling the supply of air to a PROX reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference therebetween correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference.

  2. Vaccine Focusing to Cross-Subtype HIV-1 gp120 Variable Loop Epitopes

    PubMed Central

    Cardozo, Timothy; Wang, Shixia; Jiang, Xunqing; Kong, Xiang-Peng; Hioe, Catarina; Krachmarov, Chavdar

    2014-01-01

    We designed synthetic, epitope-focused immunogens that preferentially display individual neutralization epitopes targeted by cross-subtype anti-HIV V3 loop neutralizing monoclonal antibodies (mAbs). Vaccination of rabbits with these immunogens resulted in the elicitation of distinct polyclonal serum Abs that exhibit cross-subtype neutralization specificities mimicking the mAbs that guided the design. Our results prove the principle that a predictable range of epitope-specific polyclonal cross-subtype HIV-1 neutralizing Abs can be intentionally elicited in mammals by vaccination. The precise boundaries of the epitopes and conformational flexibility in the presentation of the epitopes in the immunogen appeared to be important for successful elicitation. This work may serve as a starting point for translating the activities of human broadly neutralizing anti-HIV-1 monoclonal antibodies (bNAbs) into matched immunogens that can contribute to an efficacious HIV-1 vaccine. PMID:25045827

  3. Immunochemical characterization of two thyroid-stimulating hormone beta-subunit epitopes.

    PubMed Central

    Fairlie, W D; Stanton, P G; Hearn, M T

    1995-01-01

    The epitopes of human thyroid-stimulating hormone (hTSH) recognized by two murine monoclonal antibodies (MAbs), designated MAb 279 and MAb 299, have been characterized. These MAbs are highly specific for the beta-subunit of TSH. The epitope recognized by MAb 279 appears to be completely conserved between bovine and human TSH and partially conserved in the porcine species. The TSH beta-subunit epitope recognized by MAb 299 is only partially conserved between the human, bovine and porcine species. Both MAbs are capable of inhibiting the binding of TSH to its receptor in a TSH radioreceptor assay, indicating that the epitopes either coincide or are located close to the TSH beta-subunit receptor-binding sites. The carbohydrate moieties of the TSH beta-subunit appear to play little or no role in the epitope recognition by MAb 279 or MAb 299 while the integrity of the disulphide bonds are essential. The epitopic recognition may also involve lysine residues, as determined by the immunoreactivity with both MAbs following citraconylation of TSH. In addition, the amino acid sequence region between residues bTSH beta 34-44 could be excised by trypsin digestion of bovine TSH beta (bTSH beta) without eliminating epitopic recognition by either MAb. These results provide further insight into the relationship between the structure of the TSH beta-subunit epitopes and location of the receptor-binding sites. Images Figure 2 PMID:7538754

  4. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves' Disease.

    PubMed

    Inaba, Hidefumi; De Groot, Leslie J; Akamizu, Takashi

    2016-01-01

    Graves' disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments. PMID:27602020

  5. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves’ Disease

    PubMed Central

    Inaba, Hidefumi; De Groot, Leslie J.; Akamizu, Takashi

    2016-01-01

    Graves’ disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments.

  6. Thyrotropin Receptor Epitope and Human Leukocyte Antigen in Graves’ Disease

    PubMed Central

    Inaba, Hidefumi; De Groot, Leslie J.; Akamizu, Takashi

    2016-01-01

    Graves’ disease (GD) is an organ-specific autoimmune disease, and thyrotropin (TSH) receptor (TSHR) is a major autoantigen in this condition. Since the extracellular domain of human TSHR (TSHR-ECD) is shed into the circulation, TSHR-ECD is a preferentially immunogenic portion of TSHR. Both genetic factors and environmental factors contribute to development of GD. Inheritance of human leukocyte antigen (HLA) genes, especially HLA-DR3, is associated with GD. TSHR-ECD protein is endocytosed into antigen-presenting cells (APCs), and processed to TSHR-ECD peptides. These peptide epitopes bind to HLA-class II molecules, and subsequently the complex of HLA-class II and TSHR-ECD epitope is presented to CD4+ T cells. The activated CD4+ T cells secrete cytokines/chemokines that stimulate B-cells to produce TSAb, and in turn hyperthyroidism occurs. Numerous studies have been done to identify T- and B-cell epitopes in TSHR-ECD, including (1) in silico, (2) in vitro, (3) in vivo, and (4) clinical experiments. Murine models of GD and HLA-transgenic mice have played a pivotal role in elucidating the immunological mechanisms. To date, linear or conformational epitopes of TSHR-ECD, as well as the molecular structure of the epitope-binding groove in HLA-DR, were reported to be related to the pathogenesis in GD. Dysfunction of central tolerance in the thymus, or in peripheral tolerance, such as regulatory T cells, could allow development of GD. Novel treatments using TSHR antagonists or mutated TSHR peptides have been reported to be effective. We review and update the role of immunogenic TSHR epitopes and HLA in GD, and offer perspectives on TSHR epitope specific treatments. PMID:27602020

  7. Functional and structural characterization of neutralizing epitopes of measles virus hemagglutinin protein.

    PubMed

    Tahara, Maino; Ito, Yuri; Brindley, Melinda A; Ma, Xuemin; He, Jilan; Xu, Songtao; Fukuhara, Hideo; Sakai, Kouji; Komase, Katsuhiro; Rota, Paul A; Plemper, Richard K; Maenaka, Katsumi; Takeda, Makoto

    2013-01-01

    Effective vaccination programs have dramatically reduced the number of measles-related deaths globally. Although all the available data suggest that measles eradication is biologically feasible, a structural and biochemical basis for the single serotype nature of measles virus (MV) remains to be provided. The hemagglutinin (H) protein, which binds to two discrete proteinaceous receptors, is the major neutralizing target. Monoclonal antibodies (MAbs) recognizing distinct epitopes on the H protein were characterized using recombinant MVs encoding the H gene from different MV genotypes. The effects of various mutations on neutralization by MAbs and virus fitness were also analyzed, identifying the location of five epitopes on the H protein structure. Our data in the present study demonstrated that the H protein of MV possesses at least two conserved effective neutralizing epitopes. One, which is a previously recognized epitope, is located near the receptor-binding site (RBS), and thus MAbs that recognize this epitope blocked the receptor binding of the H protein, whereas the other epitope is located at the position distant from the RBS. Thus, a MAb that recognizes this epitope did not inhibit the receptor binding of the H protein, rather interfered with the hemagglutinin-fusion (H-F) interaction. This epitope was suggested to play a key role for formation of a higher order of an H-F protein oligomeric structure. Our data also identified one nonconserved effective neutralizing epitope. The epitope has been masked by an N-linked sugar modification in some genotype MV strains. These data would contribute to our understanding of the antigenicity of MV and support the global elimination program of measles. PMID:23115278

  8. Generation of antiserum to specific epitopes.

    PubMed

    Marchion, D C; Manning, D S; Shafer, W M; Judd, R C

    1996-12-01

    The ability to prevent disease by immunization with subunit vaccines that incorporate specific epitopes was demonstrated by DiMarchi et al. (1), who used a synthetic peptide to protect cattle against foot-and-mouth disease. However, generation of antibody to peptide antigens is often difficult owing to the small molecular mass and limited chemical complexity. We tested the hypothesis that recombinant DNA and synthetic peptide techniques would make it possible to stimulate vigorous immune responses to specific epitopes of an outer membrane protein of Neisseria gonorrhoeae. The MtrC AP1 sequence from the invariant MtrC gonococcal lipoprotein was genetically fused to maltose binding protein. The resultant fusion protein was used as the primary immunogen to stimulate MtrC AP1-specific antiserum. To enhance antibody production specific to MtrC AP1, boosting immunizations were performed with synthetic MtrC AP1 sequence contained in a multiple antigenic peptide system immunogen. The MtrC AP1-specific antiserum strongly recognized the MtrC protein on Western blots and appeared to bind native MtrC protein in situ. The generation of antibody in this fashion provides the technology to produce antibody to defined epitopes of any protein, including those found in the gonococcal outer membrane. The ability of those antibodies to inhibit bacterial growth or to activate complement protein can then be tested.

  9. Focusing the immune response on the V3 loop, a neutralizing epitope of the HIV-1 gp120 envelope

    SciTech Connect

    Zolla-Pazner, Susan Cohen, Sandra Sharpe; Krachmarov, Chavdar; Wang, Shixia; Pinter, Abraham; Lu, Shan

    2008-03-15

    Rabbits were immunized with a novel regimen designed to focus the immune response on a single neutralizing epitope of HIV-1 gp120 and thereby preferentially induce neutralizing antibodies (Abs). Animals were primed with gp120 DNA from a clade A Env bearing the GPGR V3 motif and/or a clade C Env bearing the GPGQ V3 motif, and boosted with one or more fusion proteins containing V3 sequences from clades A, B and/or C. Immune sera neutralized three of four Tier 1 primary isolates, including strains heterologous to the immunizing strains, and potent cross-clade-neutralizing activity was demonstrated against V3 chimeric pseudoviruses carrying in a Tier 1 Env, the consensus V3 sequences from clades A1, AG, B, AE, or F. The broadest and most potent neutralizing responses were elicited with the clade C gp120 DNA and a combination of V3-fusion proteins from clades A, B and C. Neutralizing activity was primarily due to V3-specific Abs. The results demonstrate that the immune response can be focused on a neutralizing epitope and show that the anti-V3 Abs induced recognize a diverse set of V3 loops.

  10. Monoclonal antibodies that define neutralizing epitopes of pertussis toxin: conformational dependence and epitope mapping.

    PubMed Central

    Lang, A B; Ganss, M T; Cryz, S J

    1989-01-01

    The epitope specificities of 13 hybridomas secreting monoclonal antibodies (MAbs) specific for pertussis toxin (PT) is described. Hybridoma lines were derived by the fusion of spleen cells from mice immunized with native PT, Formalin-detoxified PT, or isolated PT subunits (S1 to S5) with the myeloma line X63-Ag8.653. Five MAbs showed a toxin-neutralizing ability, which was demonstrated by use of a Chinese hamster ovary cell assay system and by a NAD glycohydrolase assay. All five toxin-neutralizing MAbs demonstrated high specificities for and reactivities with native PT but were unable to bind to denatured PT. One MAb was able to neutralize the enzymatic activity of PT. The other four neutralizing MAbs inhibited the binding of PT or PT subunits to the surface of Chinese hamster ovary cells, as shown by an immunofluorescence assay. All neutralizing MAbs reacted with purified S2-S4 or S3-S4 dimers but not with S4 alone. Three MAbs which recognized a common epitope shared by S2 and S3 (which are about 70% homologous at the DNA level) and one MAb which recognized S4 were not neutralizing. Isolated S2-S4 and S3-S4 dimers bound to Chinese hamster ovary cells. These results indicate that the majority of critical epitopes which elicit neutralizing antibody are conformation dependent. Images PMID:2474500

  11. Determination of B-Cell Epitopes in Patients with Celiac Disease: Peptide Microarrays

    PubMed Central

    Choung, Rok Seon; Marietta, Eric V.; Van Dyke, Carol T.; Brantner, Tricia L.; Rajasekaran, John; Pasricha, Pankaj J.; Wang, Tianhao; Bei, Kang; Krishna, Karthik; Krishnamurthy, Hari K.; Snyder, Melissa R.; Jayaraman, Vasanth; Murray, Joseph A.

    2016-01-01

    Background Most antibodies recognize conformational or discontinuous epitopes that have a specific 3-dimensional shape; however, determination of discontinuous B-cell epitopes is a major challenge in bioscience. Moreover, the current methods for identifying peptide epitopes often involve laborious, high-cost peptide screening programs. Here, we present a novel microarray method for identifying discontinuous B-cell epitopes in celiac disease (CD) by using a silicon-based peptide array and computational methods. Methods Using a novel silicon-based microarray platform with a multi-pillar chip, overlapping 12-mer peptide sequences of all native and deamidated gliadins, which are known to trigger CD, were synthesized in situ and used to identify peptide epitopes. Results Using a computational algorithm that considered disease specificity of peptide sequences, 2 distinct epitope sets were identified. Further, by combining the most discriminative 3-mer gliadin sequences with randomly interpolated3- or 6-mer peptide sequences, novel discontinuous epitopes were identified and further optimized to maximize disease discrimination. The final discontinuous epitope sets were tested in a confirmatory cohort of CD patients and controls, yielding 99% sensitivity and 100% specificity. Conclusions These novel sets of epitopes derived from gliadin have a high degree of accuracy in differentiating CD from controls, compared with standard serologic tests. The method of ultra-high-density peptide microarray described here would be broadly useful to develop high-fidelity diagnostic tests and explore pathogenesis. PMID:26824466

  12. Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding.

    PubMed Central

    Wyatt, R; Moore, J; Accola, M; Desjardin, E; Robinson, J; Sodroski, J

    1995-01-01

    The binding of human immunodeficiency virus type 1 (HIV-1) to the cellular receptor CD4 has been suggested to induce conformational changes in the viral envelope glycoproteins that promote virus entry. Conserved, discontinuous epitopes on the HIV-1 gp120 glycoprotein recognized by the 17b, 48d, and A32 antibodies are preferentially exposed upon the binding of soluble CD4 (sCD4). The binding of the 17b and 48d antibodies to the gp120 glycoprotein can also be enhanced by the binding of the A32 antibody. Here we constructed HIV-1 gp120 mutants in which the variable segments of the V1/V2 and V3 structures were deleted, individually or in combination, while the 17b, 48d, and A32 epitopes were retained. The effects of the variable loop deletions on the function of the HIV-1 envelope glycoproteins and on the exposure of epitopes induced by sCD4 or A32 binding to the monomeric gp120 glycoprotein were examined. The variable-loop-deleted envelope glycoproteins were able to mediate virus entry, albeit at lower efficiencies than those of the wild-type glycoproteins. Thus, the V1/V2 and V3 variable sequences contribute to the efficiency of HIV-1 entry but are not absolutely required for the process. Neither the V1/V2 nor V3 loops were necessary for the increase in exposure of the 17b/48d epitopes induced by binding of the A32 monoclonal antibody. By contrast, induction of the 17b, 48d, and A32 epitopes by sCD4 binding apparently involves a movement of the V1/V2 loops, which in the absence of CD4 partially mask these epitopes on the native gp120 monomer. The results obtained with a mutant glycoprotein containing a deletion of the V1 loop alone indicated that the contribution of the V2 loop to these phenomena was more significant than that of the V1 sequences. These results suggest that the V1/V2 loops, which have been previously implicated in CD4-modulated, postattachment steps in HIV-1 entry, contribute to CD4-induced gp120 conformational changes detected by the 17b, 48d, and A

  13. Allergen structures and epitopes.

    PubMed

    Meno, K H

    2011-07-01

    Human type 1 hypersensitivity diseases such as allergic rhinoconjunctivitis are characterized by allergen-specific IgE antibodies produced in allergic individuals after allergen exposure. IgE antibodies bound to receptors on the surface of effector cells trigger an allergic response by interacting with three-dimensional (conformational) epitopes on the allergen surface. Crystal structures are available for complexes of antibody specifically bound to five allergens, from birch pollen, bee venom, cockroach, cow's milk and timothy grass pollen. The details of the antibody-allergen interaction extending all the way to atomic resolution are available from such complexes. In vitro investigations using recombinant monoclonal antibodies and human basophils show that binding affinity is a key to triggering the allergic response. Continued molecular characterization of antibody-allergen interactions is paving the way for the use of recombinant allergens in allergen-specific diagnosis and immunotherapy. PMID:21668845

  14. Structure of viral B-cell epitopes.

    PubMed

    Van Regenmortel, M H

    1990-01-01

    Four categories of viral epitopes can be distinguished that have been designated cryptotopes, neotopes, metatopes and neutralization epitopes. Specific examples of each epitope type are presented and the methods used for locating their positions in viral proteins are described. The epitopes of four well-characterized viruses, namely poliovirus, foot-and-mouth disease virus, influenza virus and tobacco mosaic virus are briefly described.

  15. Mechanisms of HIV protein degradation into epitopes: implications for vaccine design.

    PubMed

    Rucevic, Marijana; Boucau, Julie; Dinter, Jens; Kourjian, Georgio; Le Gall, Sylvie

    2014-08-21

    The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.

  16. Preferential Remedies for Employment Discrimination

    ERIC Educational Resources Information Center

    Edwards, Harry T.; Zaretsky, Barry L.

    1975-01-01

    An overview of the problem of preferential remedies to achieve equal employment opportunities for women and minority groups. Contends that "color blindness" will not end discrimination but that some form of "color conscious" affirmative action program must be employed. Temporary preferential treatment is justified, according to the author, by the…

  17. Epitope Mapping of Avian Influenza M2e Protein: Different Species Recognise Various Epitopes

    PubMed Central

    Hasan, Noor Haliza; Ignjatovic, Jagoda; Tarigan, Simson; Peaston, Anne; Hemmatzadeh, Farhid

    2016-01-01

    A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development. PMID:27362795

  18. Identification of a variant antigenic neutralizing epitope in hypervariable region 1 of avian leukosis virus subgroup J.

    PubMed

    Hou, Minbo; Zhou, Defang; Li, Gen; Guo, Huijun; Liu, Jianzhu; Wang, Guihua; Zheng, Qiankun; Cheng, Ziqiang

    2016-03-01

    Avian leukosis virus subgroup J (ALV-J) is a hypervariable oncogenic retrovirus that causes great economic loss in poultry. Antigenic variations in the variable regions make the development of an effective vaccine a challenging task. In the present study, we identified a variant antigenic neutralizing epitope using reverse vaccinology methods. First, we predicted the B-cell epitopes in gp85 gene of ALV-J strains by DNAman and bioinformatics. Fourteen candidate epitopes were selected and linked in tandem with glycines or serines as a multi-epitope gene. The expressed protein of multi-epitope gene can induce high-titer antibody that can recognize nature ALV-J and neutralize the infectivity of ALV-J strains. Next, we identified a high effective epitope using eight overlapping fragments of gp85 gene reacting with mAb 2D5 and anti-multi-epitope sera. The identified epitope contained one of the predicted epitopes and localized in hyervariable region 1 (hr1), indicating a variant epitope. To better understand if the variants of the epitope have a good antigenicity, we synthesized four variants to react with mAb 2D5 and anti-ALV-J sera. The result showed that all variants could react with the two kinds of antibodies though they showed different antigenicity, while could not react with ALV-J negative sera. Thus, the variant antigenic neutralizing epitope was determined as 137-LRDFIA/E/TKWKS/GDDL/HLIRPYVNQS-158. The result shows a potential use of this variant epitopes as a novel multi-epitope vaccine against ALV-J in poultry.

  19. [Study on the B cell linear epitopes of rabies virus CVS-11 nucleoprotein].

    PubMed

    Lv, Xin-Jun; Shen, Xin-Xin; Yu, Peng-Cheng; Li, Hao; Wang, Li-Hua; Tang, Qing; Liang, Guo-Dong

    2014-05-01

    To study the B cell linear epitopes of rabies virus CVS-11 nucleoprotein, peptides were synthesized according to the amino acid sequences of B cell linear epitopes. Linear epitopes predicted by bioinformatics analysis were evaluated with immunological techniques. Indirect enzyme-linked immunosorbent assay showed that titers of antibodies to peptides (355-369 and 385-400 residues of rabies virus CVS-11 nucleoprotein) were above 1:12 800 in mouse sera. The antibodies recognized denatured rabies virus CVS-11 nucleoprotein in Western blot analysis. Purified anti-peptide antibodies recognized natural rabies virus CVS-11 nucleoprotein in BHK-21 cells in indirect fluorescent antibody test. The 355-369 and 385-400 residues of rabies virus CVS-11 nucleoprotein were validated as B cell linear epitopes.

  20. Plasmodium vivax Promiscuous T-Helper Epitopes Defined and Evaluated as Linear Peptide Chimera Immunogens

    PubMed Central

    Caro-Aguilar, Ivette; Rodríguez, Alexandra; Calvo-Calle, J. Mauricio; Guzmán, Fanny; De la Vega, Patricia; Elkin Patarroyo, Manuel; Galinski, Mary R.; Moreno, Alberto

    2002-01-01

    Clinical trials of malaria vaccines have confirmed that parasite-derived T-cell epitopes are required to elicit consistent and long-lasting immune responses. We report here the identification and functional characterization of six T-cell epitopes that are present in the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) and bind promiscuously to four different HLA-DRB1∗ alleles. Each of these peptides induced lymphoproliferative responses in cells from individuals with previous P. vivax infections. Furthermore, linear-peptide chimeras containing the promiscuous PvMSP-1 T-cell epitopes, synthesized in tandem with the Plasmodium falciparum immunodominant circumsporozoite protein (CSP) B-cell epitope, induced high specific antibody titers, cytokine production, long-lasting immune responses, and immunoglobulin G isotype class switching in BALB/c mice. A linear-peptide chimera containing an allele-restricted P. falciparum T-cell epitope with the CSP B-cell epitope was not effective. Two out of the six promiscuous T-cell epitopes exhibiting the highest anti-peptide response also contain B-cell epitopes. Antisera generated against these B-cell epitopes recognize P. vivax merozoites in immunofluorescence assays. Importantly, the anti-peptide antibodies generated to the CSP B-cell epitope inhibited the invasion of P. falciparum sporozoites into human hepatocytes. These data and the simplicity of design of the chimeric constructs highlight the potential of multimeric, multistage, and multispecies linear-peptide chimeras containing parasite promiscuous T-cell epitopes for malaria vaccine development. PMID:12065487

  1. Identification of IgE sequential epitopes of lentil (Len c 1) by peptide microarray immunoassay

    PubMed Central

    Vereda, Andrea; Andreae, Doerthe A.; Lin, Jing; Shreffler, Wayne G.; Ibañez, Maria Dolores; Cuesta-Herranz, Javier; Bardina, Luda; Sampson, Hugh A.

    2010-01-01

    Background Lentils are oftentimes responsible for allergic reactions to legumes in Mediterranean children. Though the primary sequence of the major allergen, Len c 1 is known, the location of the IgE binding epitopes remains undefined. Objective We sought to identify IgE-binding epitopes of Len c 1 and relate epitope binding to clinical characteristics. Methods 135 peptides corresponding to the primary sequence of Len c 1 were probed with sera from 33 lentil-allergic individuals and 15 non-atopic controls by means of microarray immunoassay. Lentil-specific IgE, Skin Prick Tests and clinical reactions to lentil were determined. Epitopes were defined as overlapping signal above inter- and intra-slide cut-offs and confirmed by inhibition assays using a peptide from the respective region. Hierarchical clustering of microarray data was used to correlate binding patterns with clinical findings. Results The lentil-allergic patients specifically recognized IgE-binding epitopes located in the C-terminal region, between peptide 107 and 135. Inhibition experiments confirmed the specificity of IgE binding in this region, identifying different epitopes. Linkage of cluster results with clinical data and lentil specific IgE levels displayed a positive correlation between lentil-specific IgE levels, epitope recognition and respiratory symptoms. Modeling based on the three-dimensional structure of a homologous soy vicilin suggests that the Len c 1 epitopes identified are exposed on the surface of the molecule. Conclusion Several IgE-binding sequential epitopes of Len c 1 have been identified. Epitopes are located in the C-terminal region, and are predicted to be exposed on the surface of the protein. Epitope diversity is positively correlated with IgE levels, pointing to a more polyclonal IgE response. PMID:20816193

  2. Epitope specific T-cell responses against influenza A in a healthy population.

    PubMed

    Savic, Miloje; Dembinski, Jennifer L; Kim, Yohan; Tunheim, Gro; Cox, Rebecca J; Oftung, Fredrik; Peters, Bjoern; Mjaaland, Siri

    2016-02-01

    Pre-existing human CD4(+) and CD8(+) T-cell-mediated immunity may be a useful correlate of protection against severe influenza disease. Identification and evaluation of common epitopes recognized by T cells with broad cross-reactivity is therefore important to guide universal influenza vaccine development, and to monitor immunological preparedness against pandemics. We have retrieved an optimal combination of MHC class I and class II restricted epitopes from the Immune Epitope Database (www.iedb.org), by defining a fitness score function depending on prevalence, sequence conservancy and HLA super-type coverage. Optimized libraries of CD4(+) and CD8(+) T-cell epitopes were selected from influenza antigens commonly present in seasonal and pandemic influenza strains from 1934 to 2009. These epitope pools were used to characterize human T-cell responses in healthy donors using interferon-γ ELISPOT assays. Upon stimulation, significant CD4(+) and CD8(+) T-cell responses were induced, primarily recognizing epitopes from the conserved viral core proteins. Furthermore, the CD4(+) and CD8(+) T cells were phenotypically characterized regarding functionality, cytotoxic potential and memory phenotype using flow cytometry. Optimized sets of T-cell peptide epitopes may be a useful tool to monitor the efficacy of clinical trials, the immune status of a population to predict immunological preparedness against pandemics, as well as being candidates for universal influenza vaccines.

  3. GAD65 epitope mapping and search for novel autoantibodies in GAD-associated neurological disorders.

    PubMed

    Fouka, P; Alexopoulos, H; Akrivou, S; Trohatou, O; Politis, P K; Dalakas, M C

    2015-04-15

    Antibodies against Glutamic-acid-decarboxylase (GAD65) are seen in various CNS excitability disorders including stiff-person syndrome, cerebellar ataxia, encephalitis and epilepsy. To explore pathogenicity, we examined whether distinct epitope specificities or other co-existing antibodies may account for each disorder. The epitope recognized by all 27 tested patients, irrespective of clinical phenotype, corresponded to the catalytic core of GAD. No autoantibodies against known GABAergic antigens were found. In a screen for novel specificities using live hippocampal neurons, three epilepsy patients, but no other, were positive. We conclude that no GAD-specific epitope defines any neurological syndrome but other antibody specificities may account for certain phenotypes.

  4. Identification and Phylogeny of the First T Cell Epitope Identified from a Human Gut Bacteroides Species.

    PubMed

    Perez-Muñoz, Maria Elisa; Joglekar, Payal; Shen, Yi-Ju; Shen, Yi-Ji; Chang, Kuan Y; Peterson, Daniel A

    2015-01-01

    Host T cell reactivity toward gut bacterial epitopes has been recognized as part of disease pathogenesis. However, the specificity of T cells that recognize this vast number of epitopes has not yet been well described. After colonizing a C57BL/6J germ-free mouse with the human gut symbiotic bacteria Bacteroides thetaiotaomicron, we isolated a T cell that recognized these bacteria in vitro. Using this T cell, we mapped the first known non-carbohydrate T cell epitope within the phylum Bacteroidetes. The T cell also reacted to two other additional Bacteroides species. We identified the peptide that stimulated the T cell by using a genetic approach. Genomic data from the epitope-positive and epitope-negative bacteria explain the cross-reactivity of the T cell to multiple species. This epitope degeneracy should shape our understanding of the T cell repertoire stimulated by the complex microbiome residing in the gastrointestinal tract in both healthy and disease states. PMID:26637014

  5. Unconventional T-cell recognition of an arthritogenic epitope of proteoglycan aggrecan released from degrading cartilage.

    PubMed

    Falconer, Jane; Mahida, Rahul; Venkatesh, Divya; Pearson, Jeffrey; Robinson, John H

    2016-04-01

    It has been proposed that peptide epitopes bind to MHC class II molecules to form distinct structural conformers of the same MHC II-peptide complex termed type A and type B, and that the two conformers of the same peptide-MHC II complex are recognized by distinct CD4 T cells, termed type A and type B T cells. Both types recognize short synthetic peptides but only type A recognize endosomally processed intact antigen. Type B T cells that recognize self peptides from exogenously degraded proteins have been shown to escape negative selection during thymic development and so have the potential to contribute to the pathogenesis of autoimmunity. We generated and characterized mouse CD4 T cells specific for an arthritogenic epitope of the candidate joint autoantigen proteoglycan aggrecan. Cloned T-cell hybridomas specific for a synthetic peptide containing the aggrecan epitope showed two distinct response patterns based on whether they could recognize processed intact aggrecan. Fine mapping demonstrated that both types of T-cell recognized the same core epitope. The results are consistent with the generation of aggrecan-specific type A and type B T cells. Type B T cells were activated by supernatants released from degrading cartilage, indicating the presence of antigenic extracellular peptides or fragments of aggrecan. Type B T cells could play a role in the pathogenesis of proteoglycan-induced arthritis in mice, a model for rheumatoid arthritis, by recognizing extracellular peptides or protein fragments of joint autoantigens released by inflamed cartilage. PMID:26581676

  6. CD8(+) T cell cross-reactivity profiles and HIV-1 immune escape towards an HLA-B35-restricted immunodominant Nef epitope.

    PubMed

    Motozono, Chihiro; Miles, John J; Hasan, Zafrul; Gatanaga, Hiroyuki; Meribe, Stanley C; Price, David A; Oka, Shinichi; Sewell, Andrew K; Ueno, Takamasa

    2013-01-01

    Antigen cross-reactivity is an inbuilt feature of the T cell compartment. However, little is known about the flexibility of T cell recognition in the context of genetically variable pathogens such as HIV-1. In this study, we used a combinatorial library containing 24 billion octamer peptides to characterize the cross-reactivity profiles of CD8(+) T cells specific for the immunodominant HIV-1 subtype B Nef epitope VY8 (VPLRPMTY) presented by HLA-B(*)35∶01. In conjunction, we examined naturally occurring antigenic variations within the VY8 epitope. Sequence analysis of plasma viral RNA isolated from 336 HIV-1-infected individuals revealed variability at position (P) 3 and P8 of VY8; Phe at P8, but not Val at P3, was identified as an HLA-B(*)35∶01-associated polymorphism. VY8-specific T cells generated from several different HIV-1-infected patients showed unique and clonotype-dependent cross-reactivity footprints. Nonetheless, all T cells recognized both the index Leu and mutant Val at P3 equally well. In contrast, competitive titration assays revealed that the Tyr to Phe substitution at P8 reduced T cell recognition by 50-130 fold despite intact peptide binding to HLA-B(*)35∶01. These findings explain the preferential selection of Phe at the C-terminus of VY8 in HLA-B(*)35∶01(+) individuals and demonstrate that HIV-1 can exploit the limitations of T cell recognition in vivo.

  7. 3D-Epitope-Explorer (3DEX): localization of conformational epitopes within three-dimensional structures of proteins.

    PubMed

    Schreiber, Andreas; Humbert, Michael; Benz, Alexander; Dietrich, Ursula

    2005-07-15

    Neutralizing antibodies often recognize conformational, discontinuous epitopes. Linear peptides mimicking such conformational epitopes can be selected from phage display peptide libraries by screening with the respective antibodies. However, it is difficult to localize these "mimotopes" within the three-dimensional (3D) structures of the target proteins. Knowledge of conformational epitopes of neutralizing antibodies would help to design antigens able to elicit protective immune responses. Therefore, we provide here a software that allows to localize linear peptide sequences within 3D structures of proteins. The 3D-Epitope-Explorer (3DEX) software allows to map conformational epitopes in 3D protein structures based on an algorithm that takes into account the physicochemical neighborhood of C(alpha)- or C(beta)-atoms of individual amino acids. A given amino acid of a peptide sequence is localized within the protein and the software searches within predefined distances for the amino acids neighboring that amino acid in the peptide. Surface exposure of the amino acids can also be taken into consideration. The procedure is then repeated for the remaining amino acids of the peptide. The introduction of a joker function allows to map peptide mimotopes, which do not necessarily have 100% sequence homology to the protein. Using this software we were able to localize mimotopes selected from phage displayed peptide libraries with polyclonal antibodies from HIV-positive patient plasma within the 3D structure of gp120, the exterior glycoprotein of HIV-1. We also analyzed two recently published peptide sequences corresponding to known conformational epitopes to further confirm the integrity of 3DEX.

  8. Emergence of a Norovirus GII.4 Strain Correlates with Changes in Evolving Blockade Epitopes

    PubMed Central

    Lindesmith, Lisa C.; Costantini, Verónica; Swanstrom, Jesica; Debbink, Kari; Donaldson, Eric F.; Vinjé, Jan

    2013-01-01

    The major capsid protein of norovirus GII.4 strains is evolving rapidly, resulting in epidemic strains with altered antigenicity. GII.4.2006 Minerva strains circulated at pandemic levels in 2006 and persisted at lower levels until 2009. In 2009, a new GII.4 variant, GII.4.2009 New Orleans, emerged and since then has become the predominant strain circulating in human populations. To determine whether changes in evolving blockade epitopes correlate with the emergence of the GII.4.2009 New Orleans strains, we compared the antibody reactivity of a panel of mouse monoclonal antibodies (MAbs) against GII.4.2006 and GII.4.2009 virus-like particles (VLPs). Both anti-GII.4.2006 and GII.4.2009 MAbs effectively differentiated the two strains by VLP-carbohydrate ligand blockade assay. Most of the GII.4.2006 MAbs preferentially blocked GII.4.2006, while all of the GII.4.2009 MAbs preferentially blocked GII.4.2009, although 8 of 12 tested blockade MAbs blocked both VLPs. Using mutant VLPs designed to alter predicted antigenic epitopes, binding of seven of the blockade MAbs was impacted by alterations in epitope A, identifying residues 294, 296, 297, 298, 368, and 372 as important antigenic sites in these strains. Convalescent-phase serum collected from a GII.4.2009 outbreak confirmed the immunodominance of epitope A, since alterations of epitope A affected serum reactivity by 40%. These data indicate that the GII.4.2009 New Orleans variant has evolved a key blockade epitope, possibly allowing for at least partial escape from protective herd immunity and provide epidemiological support for the utility of monitoring changes in epitope A in emergent strain surveillance. PMID:23269783

  9. CD45 epitope mapping of human CD1a+ dendritic cells and peripheral blood dendritic cells.

    PubMed Central

    Wood, G. S.; Freudenthal, P. S.; Edinger, A.; Steinman, R. M.; Warnke, R. A.

    1991-01-01

    The authors studied the pattern of leukocyte common antigen (CD45) epitope expression on dendritic cells in sections of human epidermis, tonsillar epithelium, dermatopathic lymph nodes, and in isolates from blood. The monoclonal antibodies (MAb) used were specific for all known CD45 epitopes, including the seven different CD45 common epitopes as well as the four known CD45R epitopes (two CD45RA, one CD45RB, and one CD45RO). Dendritic cells in all sites were uniformly reactive for the CD45 common epitopes tested except 2B11, which may recognize a CD45R rather than CD45 epitope. By single-label immunoperoxidase and double-label immunofluorescence epitope mapping of CD1a+ dendritic cells in tissue sections, it was generally difficult or impossible to detect expression of CD45RA, CD45RB, CD45RO, or 2B11. In blood dendritic cells, however, low levels of these CD45R epitopes were detected consistently using single-label immunoperoxidase staining of cytocentrifuge preparations. Monocytes were similar to blood dendritic cells except that the staining with MAb to CD45RO and 2B11 was slightly stronger. The authors conclude that dendritic cells differ from most subpopulations of lymphocytes in that CD45 common epitopes are readily detectable but the existing RA, RB, and RO epitopes are either undetectable or expressed at relatively low levels. These studies raise the possibility that CD1a+ dendritic cells may express a novel dominant CD45 isoform. Images Figure 1 Figure 2 PMID:1711291

  10. Identification and translational validation of novel mammaglobin-A CD8 T cell epitopes

    PubMed Central

    Soysal, S. D.; Kan-Mitchell, J.; Huarte, E.; Zhang, X.; Wilkinson-Ryan, I.; Fleming, T.; Tiriveedhi, V.; Mohanakumar, T.; Li, L.; Herndon, J.; Oertli, D.; Goedegebuure, S. P.; Gillanders, W. E.

    2015-01-01

    Mammaglobin-A (MAM-A) is a secretory protein that is overexpressed in 80 % of human breast cancers. Its near-universal expression in breast cancer as well as its exquisite tissue specificity makes it an attractive target for a breast cancer prevention vaccine, and we recently initiated a phase 1 clinical trial of a MAM-A DNA vaccine. Previously, we have identified multiple MAM-A CD8 T cell epitopes using a reverse immunology candidate epitope approach based on predicted binding, but to date no attempt has been made to identify epitopes using an unbiased approach. In this study, we used human T cells primed in vitro with autologous dendritic cells expressing MAM-A to systematically identify MAM-A CD8 T cell epitopes. Using this unbiased approach, we identified three novel HLA-A2-restricted MAM-A epitopes. CD8 T cells specific for these epitopes are able to recognize and lyse human breast cancer cells in a MAM-A-specific, HLA-A2-dependent fashion. HLA-A2+/MAM-A+ breast cancer patients have an increased prevalence of CD8 T cells specific for these novel MAM-A epitopes, and vaccination with a MAM-A DNA vaccine significantly increases the number of these CD8 T cells. The identification and translational validation of novel MAM-A epitopes has important implications for the ongoing clinical development of vaccine strategies targeting MAM-A. The novel MAM-A epitopes represent attractive targets for epitope-based vaccination strategies, and can also be used to monitor immune responses. Taken together these studies provide additional support for MAM-A as an important therapeutic target for the prevention and treatment of breast cancer. PMID:25212176

  11. Neutralizing human monoclonal antibodies to conformational epitopes of human T-cell lymphotropic virus type 1 and 2 gp46.

    PubMed Central

    Hadlock, K G; Rowe, J; Perkins, S; Bradshaw, P; Song, G Y; Cheng, C; Yang, J; Gascon, R; Halmos, J; Rehman, S M; McGrath, M S; Foung, S K

    1997-01-01

    Ten human monoclonal antibodies derived from peripheral B cells of a patient with human T-cell lymphotropic virus (HTLV)-associated myelopathy are described. One monoclonal antibody recognized a linear epitope within the carboxy-terminal 43 amino acids of HTLV gp21, and two monoclonal antibodies recognized linear epitopes within HTLV type 1 (HTLV-1) gp46. The remaining seven monoclonal antibodies recognized denaturation-sensitive epitopes within HTLV-1 gp46 that were expressed on the surfaces of infected cells. Two of these antibodies also bound to viable HTLV-2 infected cells and immunoprecipitated HTLV-2 gp46. Virus neutralization was determined by syncytium inhibition assays. Eight monoclonal antibodies, including all seven that recognized denaturation-sensitive epitopes within HTLV-1 gp46, possessed significant virus neutralization activity. By competitive inhibition analysis it was determined that these antibodies recognized at least four distinct conformational epitopes within HTLV-1 gp46. These findings indicate the importance of conformational epitopes within HTLV-1 gp46 in mediating a neutralizing antibody response to HTLV infection. PMID:9223472

  12. Insights into the biological features of the antigenic determinants recognized by four monoclonal antibodies in redia and adult stages of the liver fluke Fasciola hepatica.

    PubMed

    Alba, Annia; Sánchez, Jorge; Hernández, Hilda; Mosqueda, Maryani; Rodríguez, Suanel Y; Capó, Virginia; Otero, Oscar; Alfonso, Carlos; Marcet, Ricardo; Sarracent, Jorge

    2016-09-01

    Fasciola hepatica is a digenean trematode which infects a wide variety of domestic animals and also humans. Previous studies have demonstrated that four monoclonal antibodies (Mabs) against the total extract of F. hepatica redia (named as 1E4, 6G11, 4E5 and 4G11) also recognized the excretion - secretion antigens (ES Ag) of adult parasites, which is a biologically-relevant mixture of molecules with functional roles during infection and immune evasion on definitive hosts. In the present report we describe the partial characterization of the epitopes recognized by these Mabs by heat treatment, mercaptoethanol reduction, pronase proteolysis and sodium peryodate oxidation, which suggested their predominant protein and conformational nature. Also, a comparative study using immunodetection assays on crude extracts and on histological sections of both rediae and adults of F. hepatica were performed to explore the expression pattern of the antigenic determinants in these developmental stages. From these experiments it was found that the Mabs reacted most likely with the same proteins of approximately 64 and 105 kDa present on both rediae and adult's extracts. However, the 1E4, 6G11 and 4E5 Mabs also recognized other molecules of the total extract of F. hepatica adults, a fact that constitutes an evidence of the antigenic variation between both stages and points at a certain biological relevance of the recognized antigenic determinants. Immunolocalization studies on histological sections revealed that all Mabs reacted with the tegument of F. hepatica in both rediae and adults stages, while the epitopes recognized by 1E4, 6G11 and 4E5 antibodies were also preferentially localized in the intestinal caeca and in different organs of the reproductive system of adult specimens. The immunogenicity of these antigenic determinants, their conserved status among different stages of the life cycle of F. hepatica and their presence in both tegument and ES Ag of adult parasites

  13. The conformational specificity of viral epitopes.

    PubMed

    Van Regenmortel, M H

    1992-12-15

    Four types of antigenic sites found in viruses are discussed: cryptotopes, neotopes, metatopes and neutralization epitopes. The role played by conformation on the specificity of viral epitopes is illustrated in the case of tobacco mosaic virus and influenza virus. It appears that mechanisms reminiscent of induced fit contribute to the recognition of viral epitopes by antibodies.

  14. CD8(+) T cells of Listeria monocytogenes-infected mice recognize both linear and spliced proteasome products.

    PubMed

    Platteel, Anouk C M; Mishto, Michele; Textoris-Taube, Kathrin; Keller, Christin; Liepe, Juliane; Busch, Dirk H; Kloetzel, Peter M; Sijts, Alice J A M

    2016-05-01

    CD8(+) T cells responding to infection recognize pathogen-derived epitopes presented by MHC class-I molecules. While most of such epitopes are generated by proteasome-mediated antigen cleavage, analysis of tumor antigen processing has revealed that epitopes may also derive from proteasome-catalyzed peptide splicing (PCPS). To determine whether PCPS contributes to epitope processing during infection, we analyzed the fragments produced by purified proteasomes from a Listeria monocytogenes polypeptide. Mass spectrometry identified a known H-2K(b) -presented linear epitope (LLO296-304 ) in the digests, as well as four spliced peptides that were trimmed by ERAP into peptides with in silico predicted H-2K(b) binding affinity. These spliced peptides, which displayed sequence similarity with LLO296-304 , bound to H-2K(b) molecules in cellular assays and one of the peptides was recognized by CD8(+) T cells of infected mice. This spliced epitope differed by one amino acid from LLO296-304 and double staining with LLO296-304 - and spliced peptide-folded MHC multimers showed that LLO296-304 and its spliced variant were recognized by the same CD8(+) T cells. Thus, PCPS multiplies the variety of peptides that is processed from an antigen and leads to the production of epitope variants that can be recognized by cross-reacting pathogen-specific CD8(+) T cells. Such mechanism may reduce the chances for pathogen immune evasion.

  15. CD8(+) T cells of Listeria monocytogenes-infected mice recognize both linear and spliced proteasome products.

    PubMed

    Platteel, Anouk C M; Mishto, Michele; Textoris-Taube, Kathrin; Keller, Christin; Liepe, Juliane; Busch, Dirk H; Kloetzel, Peter M; Sijts, Alice J A M

    2016-05-01

    CD8(+) T cells responding to infection recognize pathogen-derived epitopes presented by MHC class-I molecules. While most of such epitopes are generated by proteasome-mediated antigen cleavage, analysis of tumor antigen processing has revealed that epitopes may also derive from proteasome-catalyzed peptide splicing (PCPS). To determine whether PCPS contributes to epitope processing during infection, we analyzed the fragments produced by purified proteasomes from a Listeria monocytogenes polypeptide. Mass spectrometry identified a known H-2K(b) -presented linear epitope (LLO296-304 ) in the digests, as well as four spliced peptides that were trimmed by ERAP into peptides with in silico predicted H-2K(b) binding affinity. These spliced peptides, which displayed sequence similarity with LLO296-304 , bound to H-2K(b) molecules in cellular assays and one of the peptides was recognized by CD8(+) T cells of infected mice. This spliced epitope differed by one amino acid from LLO296-304 and double staining with LLO296-304 - and spliced peptide-folded MHC multimers showed that LLO296-304 and its spliced variant were recognized by the same CD8(+) T cells. Thus, PCPS multiplies the variety of peptides that is processed from an antigen and leads to the production of epitope variants that can be recognized by cross-reacting pathogen-specific CD8(+) T cells. Such mechanism may reduce the chances for pathogen immune evasion. PMID:26909514

  16. Facile fabrication and instant application of miniaturized antibody-decorated affinity columns for higher-order structure and functional characterization of TRIM21 epitope peptides.

    PubMed

    Al-Majdoub, M; Opuni, K F M; Koy, C; Glocker, M O

    2013-11-01

    Both epitope excision and epitope extraction methods, combined with mass spectrometry, generate precise informations on binding surfaces of full-length proteins, identifying sequential (linear) or assembled (conformational) epitopes, respectively. Here, we describe the one-step fabrication and application of affinity columns using reversibly immobilized antibodies with highest flexibility with respect to antibody sources and lowest sample amount requirements (fmol range). Depending on the antibody source, we made use of protein G- or protein A-coated resins as support materials. These materials are packed in pipet tips and in combination with a programmable multichannel pipet form a highly efficient epitope mapping system. In addition to epitope identification, the influence of epitope structure modifications on antibody binding specificities could be studied in detail with synthetic peptides. Elution of epitope peptides was optimized such that mass spectrometric analysis was feasible after a single desalting step. Epitope peptides were identified by accurate molecular mass determinations or by partial amino acid sequence analysis. In addition, charge state comparison or ion mobility analysis of eluted epitope peptides enabled investigation of higher-order structures. The epitope peptide of the TRIM21 (TRIM: tripartite motif) autoantigen that is recognized by a polyclonal antibody was determined as assembling an "L-E-Q-L" motif on an α-helix. Secondary structure determination by circular dichroism spectroscopy and structure modeling are in accordance with the mass spectrometric results and the antigenic behavior of the 17-mer epitope peptide variants from the full-length autoantigen. PMID:24094071

  17. Functional Antagonism of Human CD40 Achieved by Targeting a Unique Species-Specific Epitope.

    PubMed

    Yamniuk, Aaron P; Suri, Anish; Krystek, Stanley R; Tamura, James; Ramamurthy, Vidhyashankar; Kuhn, Robert; Carroll, Karen; Fleener, Catherine; Ryseck, Rolf; Cheng, Lin; An, Yongmi; Drew, Philip; Grant, Steven; Suchard, Suzanne J; Nadler, Steven G; Bryson, James W; Sheriff, Steven

    2016-07-17

    Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications. PMID:27216500

  18. Rotavirus VP7 epitope chimeric proteins elicit cross-immunoreactivity in guinea pigs.

    PubMed

    Zhao, Bingxin; Pan, Xiaoxia; Teng, Yumei; Xia, Wenyue; Wang, Jing; Wen, Yuling; Chen, Yuanding

    2015-10-01

    VP7 of group A rotavirus (RVA) contains major neutralizing epitopes. Using the antigenic protein VP6 as the vector, chimeric proteins carrying foreign epitopes have been shown to possess good immunoreactivity and immunogenicity. In the present study, using modified VP6 as the vector, three chimeric proteins carrying epitopes derived from VP7 of RVA were constructed. The results showed that the chimeric proteins reacted with anti-VP6 and with SA11 and Wa virus strains. Antibodies from guinea pigs inoculated with the chimeric proteins recognized VP6 and VP7 of RVA and protected mammalian cells from SA11 and Wa infection in vitro. The neutralizing activities of the antibodies against the chimeric proteins were significantly higher than those against the vector protein VP6F. Thus, development of chimeric vaccines carrying VP7 epitopes using VP6 as a vector could be a promising alternative to enhance immunization against RVAs.

  19. Selection of SARS-Coronavirus-specific B cell epitopes by phage peptide library screening and evaluation of the immunological effect of epitope-based peptides on mice

    SciTech Connect

    Yu Hua; Jiang Lifang . E-mail: jianglf909@yahoo.com.cn; Fang Danyun; Yan Huijun; Zhou Jingjiao; Zhou Junmei; Liang Yu; Gao Yang; Zhao, Wei; Long Beiguo

    2007-03-15

    Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosen for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed.

  20. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis

    PubMed Central

    Binder, Christoph J.; Hartvigsen, Karsten; Chang, Mi-Kyung; Miller, Marina; Broide, David; Palinski, Wulf; Curtiss, Linda K.; Corr, Maripat; Witztum, Joseph L.

    2004-01-01

    During atherogenesis, LDL is oxidized, generating various oxidation-specific neoepitopes, such as malondialdehyde-modified (MDA-modified) LDL (MDA-LDL) or the phosphorylcholine (PC) headgroup of oxidized phospholipids (OxPLs). These epitopes are recognized by both adaptive T cell–dependent (TD) and innate T cell–independent type 2 (TI-2) immune responses. We previously showed that immunization of mice with MDA-LDL induces a TD response and atheroprotection. In addition, a PC-based immunization strategy that leads to a TI-2 expansion of innate B-1 cells and secretion of T15/EO6 clonotype natural IgM antibodies, which bind the PC of OxPLs within oxidized LDL (OxLDL), also reduces atherogenesis. T15/EO6 antibodies inhibit OxLDL uptake by macrophages. We now report that immunization with MDA-LDL, which does not contain OxPL, unexpectedly led to the expansion of T15/EO6 antibodies. MDA-LDL immunization caused a preferential expansion of MDA-LDL–specific Th2 cells that prominently secreted IL-5. In turn, IL-5 provided noncognate stimulation to innate B-1 cells, leading to increased secretion of T15/EO6 IgM. Using a bone marrow transplant model, we also demonstrated that IL-5 deficiency led to decreased titers of T15/EO6 and accelerated atherosclerosis. Thus, IL-5 links adaptive and natural immunity specific to epitopes of OxLDL and protects from atherosclerosis, in part by stimulating the expansion of atheroprotective natural IgM specific for OxLDL. PMID:15286809

  1. Inadequate Reference Datasets Biased toward Short Non-epitopes Confound B-cell Epitope Prediction.

    PubMed

    Rahman, Kh Shamsur; Chowdhury, Erfan Ullah; Sachse, Konrad; Kaltenboeck, Bernhard

    2016-07-01

    X-ray crystallography has shown that an antibody paratope typically binds 15-22 amino acids (aa) of an epitope, of which 2-5 randomly distributed amino acids contribute most of the binding energy. In contrast, researchers typically choose for B-cell epitope mapping short peptide antigens in antibody binding assays. Furthermore, short 6-11-aa epitopes, and in particular non-epitopes, are over-represented in published B-cell epitope datasets that are commonly used for development of B-cell epitope prediction approaches from protein antigen sequences. We hypothesized that such suboptimal length peptides result in weak antibody binding and cause false-negative results. We tested the influence of peptide antigen length on antibody binding by analyzing data on more than 900 peptides used for B-cell epitope mapping of immunodominant proteins of Chlamydia spp. We demonstrate that short 7-12-aa peptides of B-cell epitopes bind antibodies poorly; thus, epitope mapping with short peptide antigens falsely classifies many B-cell epitopes as non-epitopes. We also show in published datasets of confirmed epitopes and non-epitopes a direct correlation between length of peptide antigens and antibody binding. Elimination of short, ≤11-aa epitope/non-epitope sequences improved datasets for evaluation of in silico B-cell epitope prediction. Achieving up to 86% accuracy, protein disorder tendency is the best indicator of B-cell epitope regions for chlamydial and published datasets. For B-cell epitope prediction, the most effective approach is plotting disorder of protein sequences with the IUPred-L scale, followed by antibody reactivity testing of 16-30-aa peptides from peak regions. This strategy overcomes the well known inaccuracy of in silico B-cell epitope prediction from primary protein sequences.

  2. Fine mapping and conservation analysis of linear B-cell epitopes of peste des petits ruminants virus nucleoprotein.

    PubMed

    Yu, Ruisong; Fan, Xiaoming; Xu, Wanxiang; Li, Wentao; Dong, Shijuan; Zhu, Yumin; He, Yaping; Tang, Haiping; Du, Rong; Li, Zhen

    2015-01-30

    Nucleoprotein (NP) is the most abundant and highly immunogenic protein of morbillivirus, and is presently the basis of most diagnostic assays for peste des petits ruminants virus (PPRV). In this study, fine epitope mapping and conservation analysis of linear B-cell epitopes on the PPRV NP has been undertaken using biosynthetic peptides. Nineteen linear B-cell epitopes were identified and their corresponding minimal motifs were located on the NP of PPRV China/Tibet/Geg/07-30. Conservation analysis indicated that ten of the 19 minimal motifs were conserved among 46 PPRV strains. Peptides containing the minimal motifs were recognized using anti-PPRV serum from a goat immunized with PPRV vaccine strain Nigeria 75/1. Identified epitopes and their motifs improve our understanding of the antigenic characteristics of PPRV NP and provide a basis for the development of epitope-based diagnostic assays. PMID:25465659

  3. Macaque Monoclonal Antibodies Targeting Novel Conserved Epitopes within Filovirus Glycoprotein

    PubMed Central

    Keck, Zhen-Yong; Enterlein, Sven G.; Howell, Katie A.; Vu, Hong; Shulenin, Sergey; Warfield, Kelly L.; Froude, Jeffrey W.; Araghi, Nazli; Douglas, Robin; Biggins, Julia; Lear-Rooney, Calli M.; Wirchnianski, Ariel S.; Lau, Patrick; Wang, Yong; Herbert, Andrew S.; Dye, John M.; Glass, Pamela J.; Holtsberg, Frederick W.; Foung, Steven K. H.

    2015-01-01

    ABSTRACT Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species. The antibodies recognize novel neutralizing and nonneutralizing epitopes on the filovirus glycoprotein, including conserved conformational epitopes within the core regions of the GP1 subunit and a novel linear epitope within the glycan cap. We further report the first filovirus antibody binding to a highly conserved epitope within the fusion loop of ebolavirus and marburgvirus species. One of the antibodies binding to the core GP1 region of all ebolavirus species and with lower affinity to MARV GP cross neutralized both SUDV and EBOV, the most divergent ebolavirus species. In a mouse model of EBOV infection, this antibody provided 100% protection when administered in two doses and partial, but significant, protection when given once at the peak of viremia 3 days postinfection. Furthermore, we describe novel cocktails of antibodies with enhanced protective efficacy compared to individual MAbs. In summary, the present work describes multiple novel, cross-reactive filovirus epitopes and innovative combination concepts that challenge the current therapeutic models. IMPORTANCE Filoviruses are among the most deadly human pathogens. The 2014-2015 outbreak of Ebola virus disease (EVD) led to more than 27,000 cases and 11,000 fatalities. While there are five species of Ebolavirus and several strains of marburgvirus, the current immunotherapeutics primarily target Ebola virus

  4. Recognizing medical emergencies

    MedlinePlus

    Medical emergencies - how to recognize them ... According to the American College of Emergency Physicians, the following are warning signs of a medical emergency: Bleeding that will not stop Breathing problems ( difficulty breathing , shortness of breath ) ...

  5. Human L-selectin preferentially binds synthetic glycosulfopeptides modeled after endoglycan and containing tyrosine sulfate residues and sialyl Lewis x in core 2 O-glycans

    PubMed Central

    Leppänen, Anne; Parviainen, Ville; Ahola-Iivarinen, Elina; Kalkkinen, Nisse; Cummings, Richard D

    2010-01-01

    Endoglycan is a mucin-like glycoprotein expressed by endothelial cells and some leukocytes and is recognized by L-selectin, a C-type lectin important in leukocyte trafficking and extravasation during inflammation. Here, we show that recombinant L-selectin and human T lymphocytes expressing L-selectin bind to synthetic glycosulfopeptides (GSPs). These synthetic glycosulfopeptides contain 37 amino acid residues modeled after the N-terminus of human endoglycan and contain one or two tyrosine sulfates (TyrSO3) along with a nearby core-2-based Thr-linked O-glycan with sialyl Lewis x (C2-SLex). TyrSO3 at position Y118 was more critical for binding than at Y97. C2-SLex at T124 was required for L-selectin recognition. Interestingly, under similar conditions, neither L-selectin nor T lymphocytes showed appreciable binding to the sulfated carbohydrate epitope 6-sulfo-SLex. P-selectin also bound to endoglycan-based GSPs but with lower affinity than toward GSPs modeled after PSGL-1, the physiological ligand for P- and L-selectin that is expressed on leukocytes. These results demonstrate that TyrSO3 residues in association with a C2-SLex moiety within endoglycan and PSGL-1 are preferentially recognized by L-selectin. PMID:20507883

  6. Preferential Nucleation during Polymorphic Transformations

    PubMed Central

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-01-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and therefore nucleation more probable - with increasing number of special OR’s. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material. PMID:27484579

  7. Preferential Nucleation during Polymorphic Transformations

    NASA Astrophysics Data System (ADS)

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-08-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and therefore nucleation more probable - with increasing number of special OR’s. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.

  8. Preferential Nucleation during Polymorphic Transformations.

    PubMed

    Sharma, H; Sietsma, J; Offerman, S E

    2016-08-03

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR's) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR's with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller - and therefore nucleation more probable - with increasing number of special OR's. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.

  9. Preferential Nucleation during Polymorphic Transformations.

    PubMed

    Sharma, H; Sietsma, J; Offerman, S E

    2016-01-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR's) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR's with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller - and therefore nucleation more probable - with increasing number of special OR's. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material. PMID:27484579

  10. Antibody-defined epitopes on HLA-DQ alleles reacting with antibodies induced during pregnancy and the design of a DQ eplet map.

    PubMed

    Duquesnoy, Rene J; Hönger, Gideon; Hösli, Irene; Marrari, Marilyn; Schaub, Stefan

    2016-10-01

    The concept that HLA antibodies recognize epitopes is leading to new approaches of HLA matching at the epitope level. HLA-DQ plays an important role and many studies have identified structurally defined DQ epitopes specifically recognized by antibodies; they have been recorded in the International HLA Epitope Registry http://www.epregistry.com.br but the list is still incomplete. Pregnancy offers an attractive model to study antibody responses to HLA epitopes. The current analysis was done on 42 DQ-reactive post-pregnancy sera tested in binding assays with a panel of DQ heterodimers. The reactivity of 29 sera corresponded fully to the presence of antibody-verified DQA and DQB epitopes recorded in the Registry. Analysis of the remaining 13 sera led to the identification of additional antibody-defined DQB and DQA epitopes. We have designed the first version of an eplet map for DQ alleles which includes antibody-defined DQA and DQB epitopes and shows sequence positions with polymorphic residues which can be used in HLA epitology studies to identify new antibody-defined DQ epitopes. PMID:27374949

  11. Epitope predictions indicate the presence of two distinct types of epitope-antibody-reactivities determined by epitope profiling of intravenous immunoglobulins.

    PubMed

    Luštrek, Mitja; Lorenz, Peter; Kreutzer, Michael; Qian, Zilliang; Steinbeck, Felix; Wu, Di; Born, Nadine; Ziems, Bjoern; Hecker, Michael; Blank, Miri; Shoenfeld, Yehuda; Cao, Zhiwei; Glocker, Michael O; Li, Yixue; Fuellen, Georg; Thiesen, Hans-Jürgen

    2013-01-01

    Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine, and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around. Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.sysmed-immun.eu/EAR.

  12. Protective CD4 T cells targeting cryptic epitopes of Mycobacterium tuberculosis resist infection-driven terminal differentiation.

    PubMed

    Woodworth, Joshua S; Aagaard, Claus Sindbjerg; Hansen, Paul R; Cassidy, Joseph P; Agger, Else Marie; Andersen, Peter

    2014-04-01

    CD4 T cells are crucial to the control of Mycobacterium tuberculosis infection and are a key component of current vaccine strategies. Conversely, immune-mediated pathology drives disease, and recent evidence suggests that adaptive and innate responses are evolutionarily beneficial to M. tuberculosis. We compare the functionality of CD4 T cell responses mounted against dominant and cryptic epitopes of the M. tuberculosis 6-kDa early secreted Ag (ESAT-6) before and postinfection. Protective T cells against cryptic epitopes not targeted during natural infection were induced by vaccinating mice with a truncated ESAT-6 protein, lacking the dominant epitope. The ability to generate T cells that recognize multiple cryptic epitopes was MHC-haplotype dependent, including increased potential via heterologous MHC class II dimers. Before infection, cryptic epitope-specific T cells displayed enhanced proliferative capacity and delayed cytokine kinetics. After aerosol M. tuberculosis challenge, vaccine-elicited CD4 T cells expanded and recruited to the lung. In chronic infection, dominant epitope-specific T cells developed a terminal differentiated KLRG1(+)/PD-1(lo) surface phenotype that was significantly reduced in the cryptic epitope-specific T cell populations. Dominant epitope-specific T cells in vaccinated animals developed into IFN-γ- and IFN-γ,TNF-α-coproducing effector cells, characteristic of the endogenous response. In contrast, cryptic epitope-specific CD4 T cells maintained significantly greater IFN-γ(+)TNF-α(+)IL-2(+) and TNF-α(+)IL-2(+) memory-associated polyfunctionality and enhanced proliferative capacity. Vaccine-associated IL-17A production by cryptic CD4 T cells was also enhanced, but without increased neutrophilia/pathology. Direct comparison of dominant/cryptic epitope-specific CD4 T cells within covaccinated mice confirmed the superior ability of protective cryptic epitope-specific T cells to resist M. tuberculosis infection-driven T cell

  13. Epitope Mapping of Neutralizing Monoclonal Antibodies to Human Interferon-γ Using Human-Bovine Interferon-γ Chimeras

    PubMed Central

    Zuber, Bartek; Rudström, Karin; Ehrnfelt, Cecilia

    2016-01-01

    Our aim was to identify conformational epitopes, recognized by monoclonal antibodies (mAbs) made against human (h) interferon (IFN)-γ. Based on the mAbs' (n = 12) ability to simultaneously bind hIFN-γ in ELISA, 2 epitope clusters with 5 mAbs in each were defined; 2 mAbs recognized unique epitopes. Utilizing the mAbs' lack of reactivity with bovine (b) IFN-γ, epitopes were identified using 7 h/bIFN-γ chimeras where the helical regions (A-F) or the C terminus were substituted with bIFN-γ residues. Chimeras had a N-terminal peptide tag enabling the analysis of mAb recognition of chimeras in ELISA. The 2 mAb clusters mapped to region A and E, respectively; the epitopes of several mAbs also involved additional regions. MAbs in cluster A neutralized, to various degrees, IFN-γ-mediated activation of human cells, in line with the involvement of region A in the IFN-γ receptor interaction. MAbs mapping to region E displayed a stronger neutralizing capacity although this region has not been directly implicated in the receptor interaction. The results corroborate earlier studies and provide a detailed picture of the link between the epitope specificity and neutralizing capacity of mAbs. They further demonstrate the general use of peptide-tagged chimeric proteins as a powerful and straightforward method for efficient mapping of conformational epitopes. PMID:27336613

  14. Epitope Mapping of Neutralizing Monoclonal Antibodies to Human Interferon-γ Using Human-Bovine Interferon-γ Chimeras.

    PubMed

    Zuber, Bartek; Rudström, Karin; Ehrnfelt, Cecilia; Ahlborg, Niklas

    2016-09-01

    Our aim was to identify conformational epitopes, recognized by monoclonal antibodies (mAbs) made against human (h) interferon (IFN)-γ. Based on the mAbs' (n = 12) ability to simultaneously bind hIFN-γ in ELISA, 2 epitope clusters with 5 mAbs in each were defined; 2 mAbs recognized unique epitopes. Utilizing the mAbs' lack of reactivity with bovine (b) IFN-γ, epitopes were identified using 7 h/bIFN-γ chimeras where the helical regions (A-F) or the C terminus were substituted with bIFN-γ residues. Chimeras had a N-terminal peptide tag enabling the analysis of mAb recognition of chimeras in ELISA. The 2 mAb clusters mapped to region A and E, respectively; the epitopes of several mAbs also involved additional regions. MAbs in cluster A neutralized, to various degrees, IFN-γ-mediated activation of human cells, in line with the involvement of region A in the IFN-γ receptor interaction. MAbs mapping to region E displayed a stronger neutralizing capacity although this region has not been directly implicated in the receptor interaction. The results corroborate earlier studies and provide a detailed picture of the link between the epitope specificity and neutralizing capacity of mAbs. They further demonstrate the general use of peptide-tagged chimeric proteins as a powerful and straightforward method for efficient mapping of conformational epitopes. PMID:27336613

  15. T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity.

    PubMed

    Moise, Leonard; Beseme, Sarah; Tassone, Ryan; Liu, Rui; Kibria, Farzana; Terry, Frances; Martin, William; De Groot, Anne S

    2016-05-01

    T cells are extensively trained on 'self' in the thymus and then move to the periphery, where they seek out and destroy infections and regulate immune response to self-antigens. T cell receptors (TCRs) on T cells' surface recognize T cell epitopes, short linear strings of amino acids presented by antigen-presenting cells. Some of these epitopes activate T effectors, while others activate regulatory T cells. It was recently discovered that T cell epitopes that are highly conserved on their TCR face with human genome sequences are often associated with T cells that regulate immune response. These TCR-cross-conserved or 'redundant epitopes' are more common in proteins found in pathogens that have co-evolved with humans than in other non-commensal pathogens. Epitope redundancy might be the link between pathogens and autoimmune disease. This article reviews recently published data and addresses epitope redundancy, the "elephant in the room" for vaccine developers and T cell immunologists.

  16. Role of N- or C-terminal biotinylation in autoantibody recognition of citrullin containing filaggrin epitope peptides in rheumatoid arthritis.

    PubMed

    Babos, Fruzsina; Szarka, Eszter; Nagy, György; Majer, Zsuzsa; Sármay, Gabriella; Magyar, Anna; Hudecz, Ferenc

    2013-05-15

    Here, we report on the synthesis, conformational analysis, and autoantibody binding properties of new sets of rheumatoid arthritis (RA) specific biotin-peptide conjugates derived from filaggrin epitope peptides. The biotin with or without a linker was attached to the Cit or Arg containing epitope core ((311)TXGRS(315)) or epitope region ((306)SHQESTXGXSXGRSGRSGS(324)) peptide (where X = Cit), through an amide bond at the N- or C-terminal of the epitopes. Antibody binding was detected by indirect enzyme-linked immunosorbent assay (ELISA) using sera from RA, Systemic lupus erythematosus (SLE) patients, as well as healthy individuals, and the secondary structure of conjugates was investigated by electronic circular dichroism (ECD). We found that autoantibodies from RA patients recognize specifically both filaggrin epitope region ((306)SHQESTXGXSXGRSGRSGS(324)) and short epitope core ((311)TXGRS(315)) peptides. Our data also indicate that the positioning of the biotin label within a peptide sequence can markedly influence the antibody binding, but the length of the linker incorporated has essentially no effect on the recognition. ECD experiments demonstrate that the Arg/Cit change does not influence the solution conformation of the peptide conjugates. However, the presence and position of the biotin moiety has a pronounced effect on the conformation of the 5-mer epitope core peptides, while it does not alter the secondary structure of the 19-mer epitope region peptides. PMID:23617702

  17. The epitopes that cause cross-reactions between peanuts and tree nuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many peanut allergic individuals also have allergies to tree nuts. Our previous work has shown that there are epitopes with different amino acid sequences, but similar physical and chemical properties are recognized by the same IgE molecule. Anti-Ara h 2 monoclonal antibodies were produced. They we...

  18. T helper cell recognition of muscle acetylcholine receptor in myasthenia gravis. Epitopes on the gamma and delta subunits.

    PubMed Central

    Manfredi, A A; Protti, M P; Dalton, M W; Howard, J F; Conti-Tronconi, B M

    1993-01-01

    We tested the response of CD4+ cells and/or total lymphocytes from the blood of 22 myasthenic patients and 10 healthy controls to overlapping synthetic peptides, 20 residues long, to screen the sequence of the gamma and delta subunits of human muscle acetylcholine receptor (AChR). The gamma subunit is part of the AChR expressed in embryonic muscle and is substituted in the AChRs of most adult muscles by an epsilon subunit. The delta subunit is present in both embryonic and adult AChRs. Adult extrinsic ocular muscles, which are preferentially and sometimes uniquely affected by myasthenic symptoms, and thymus, which has a still obscure but important role in the pathogenesis of myasthenia gravis, express the embryonic gamma subunit. Anti-AChR CD4+ responses were more easily detected after CD8+ depletion. All responders recognized epitopes on both the gamma and delta subunits and had severe symptoms. In four patients the CD4+ cell response was tested twice, when the symptoms were severe and during a period of remission. Consistently, the response was only detectable, or larger, when the patients were severely affected. Images PMID:7688757

  19. Molecular modeling application on hapten epitope prediction: an enantioselective immunoassay for ofloxacin optical isomers.

    PubMed

    Mu, Hongtao; Lei, Hongtao; Wang, Baoling; Xu, Zhenlin; Zhang, Chijian; Ling, Li; Tian, Yuanxin; Hu, Jinsheng; Sun, Yuanming

    2014-08-01

    To deepen our understanding of the physiochemical principles that govern hapten-antibody recognition, ofloxacin enantiomers were chosen as a model for epitope prediction of small molecules. In this study, two monoclonal antibodies (mAbs) mAb-WR1 and mAb-MS1 were raised against R-ofloxacin and S-ofloxacin, respectively. The enantioselective mAbs have a high sensitivity and specificity, and the enantioselectivity is not affected by heterologous coating format reactions. The epitopes of the ofloxacin isomers were predicted using the hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) approaches. The results consistently show that the epitope of the chiral hapten should be primarily composed of the oxazine ring and the piperazinyl ring and mAbs recognize the hapten from the side of this moiety. The enantioselectivity of mAbs is most likely due to the steric hindrance caused by the stereogenic center of the epitope. Modeling of chiral hapten-protein mimics reveals that ofloxacin isomers remain upright on the surface of the carrier protein. Suggestions to improve the enantioselectivity of antibodies against ofloxacin isomers were also proposed. This study provided a simple, efficient, and general method for predicting the epitopes of small molecules via molecular modeling. The epitope predictions for small molecules may create a theoretical guide for hapten design.

  20. Multiplex localization of sequential peptide epitopes by use of a planar microbead chip.

    PubMed

    Schmidt, Carsten; Rödiger, Stefan; Gruner, Melanie; Moncsek, Anja; Stohwasser, Ralf; Hanack, Katja; Schierack, Peter; Schröder, Christian

    2016-02-18

    Epitope mapping is crucial for the characterization of protein-specific antibodies. Commonly, small overlapping peptides are chemically synthesized and immobilized to determine the specific peptide sequence. In this study, we report the use of a fast and inexpensive planar microbead chip for epitope mapping. We developed a generic strategy for expressing recombinant peptide libraries instead of using expensive synthetic peptide libraries. A biotin moiety was introduced in vivo at a defined peptide position using biotin ligase. Peptides in crude Escherichia coli lysate were coupled onto streptavidin-coated microbeads by incubation, thereby avoiding tedious purification procedures. For read-out we used a multiplex planar microbead chip with size- and fluorescence-encoded microbead populations. For epitope mapping, up to 18 populations of peptide-loaded microbeads (at least 20 microbeads per peptide) displaying the primary sequence of a protein were analyzed simultaneously. If an epitope was recognized by an antibody, a secondary fluorescence-labeled antibody generated a signal that was quantified, and the mean value of all microbeads in the population was calculated. We mapped the epitopes for rabbit anti-PA28γ (proteasome activator 28γ) polyclonal serum, for a murine monoclonal antibody against PA28γ, and for a murine monoclonal antibody against the hamster polyoma virus major capsid protein VP1 as models. In each case, the identification of one distinct peptide sequence out of up to 18 sequences was possible. Using this approach, an epitope can be mapped multiparametrically within three weeks.

  1. Strategies to Query and Display Allergy-Derived Epitope Data from the Immune Epitope Database

    PubMed Central

    Vaughan, Kerrie; Peters, Bjoern; Larche, Mark; Pomes, Anna; Broide, David; Sette, Alessandro

    2013-01-01

    The recognition of specific epitopes on allergens by antibodies and T cells is a key element in allergic processes. Analysis of epitope data may be of interest for basic immunopathology or for potential application in diagnostics or immunotherapy. The Immune Epitope Database (IEDB) is a freely available repository of epitope data from infectious disease agents, as well as epitopes defined for allergy, autoimmunity, and transplantation. The IEDB curates the experiments associated with each epitope and thus provides a variety of different ways to search the data. This review aims to demonstrate the utility of the IEDB and its query strategies, including searching by epitope structure (peptidic/nonpeptidic), by assay methodology, by host, by the allergen itself, or by the organism from which the allergen was derived. Links to tools for visualization of 3-D structures, epitope prediction, and analyses of B and T cell reactivity by host response frequency score are also highlighted. PMID:23172234

  2. Ligand-induced Epitope Masking

    PubMed Central

    Mould, A. Paul; Askari, Janet A.; Byron, Adam; Takada, Yoshikazu; Jowitt, Thomas A.; Humphries, Martin J.

    2016-01-01

    We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking. PMID:27484800

  3. Towards in silico prediction of immunogenic epitopes.

    PubMed

    Flower, Darren R

    2003-12-01

    As torrents of new data now emerge from microbial genomics, bioinformatic prediction of immunogenic epitopes remains challenging but vital. In silico methods often produce paradoxically inconsistent results: good prediction rates on certain test sets but not others. The inherent complexity of immune presentation and recognition processes complicates epitope prediction. Two encouraging developments - data driven artificial intelligence sequence-based methods for epitope prediction and molecular modeling methods based on three-dimensional protein structures - offer hope for the future. PMID:14644141

  4. Variable epitope library carrying heavily mutated survivin-derived CTL epitope variants as a new class of efficient vaccine immunogen tested in a mouse model of breast cancer

    PubMed Central

    NoeDominguez-Romero, Allan; Zamora-Alvarado, Rubén; Servín-Blanco, Rodolfo; Pérez-Hernández, Erendira G; Castrillon-Rivera, Laura E; Munguia, Maria Elena; Acero, Gonzalo; Govezensky, Tzipe; Gevorkian, Goar; Manoutcharian, Karen

    2014-01-01

    The antigenic variability of tumor cells leading to dynamic changes in cancer epitope landscape along with escape from immune surveillance by down-regulating tumor antigen expression/presentation and immune tolerance are major obstacles for the design of effective vaccines. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response as well as HIV-neutralizing antibodies. In this proof-of-concept study, we tested immunogenic properties and anti-tumor effects of the VELs bearing survivin-derived CTL epitope (GWEPDDNPI) variants in an aggressive metastatic mouse 4T1 breast tumor model. The constructed VELs had complexities of 10,500 and 8,000 individual members, generated as combinatorial M13 phage display and synthetic peptide libraries, respectively, with structural composition GWXPXDXPI, where X is any of 20 natural amino acids. Statistically significant tumor growth inhibition was observed in BALB/c mice immunized with the VELs in both prophylactic and therapeutic settings. Vaccinated mice developed epitope-specific spleen cell and CD8+ IFN-γ+ T-cell responses that recognize more than 50% of the panel of 87 mutated epitope variants, as demonstrated in T-cell proliferation assays and FACS analysis. These data indicate the feasibility of the application of this new class of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against cancer. PMID:25483665

  5. Variable epitope library carrying heavily mutated survivin-derived CTL epitope variants as a new class of efficient vaccine immunogen tested in a mouse model of breast cancer.

    PubMed

    NoeDominguez-Romero, Allan; Zamora-Alvarado, Rubén; Servín-Blanco, Rodolfo; Pérez-Hernández, Erendira G; Castrillon-Rivera, Laura E; Munguia, Maria Elena; Acero, Gonzalo; Govezensky, Tzipe; Gevorkian, Goar; Manoutcharian, Karen

    2014-01-01

    The antigenic variability of tumor cells leading to dynamic changes in cancer epitope landscape along with escape from immune surveillance by down-regulating tumor antigen expression/presentation and immune tolerance are major obstacles for the design of effective vaccines. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response as well as HIV-neutralizing antibodies. In this proof-of-concept study, we tested immunogenic properties and anti-tumor effects of the VELs bearing survivin-derived CTL epitope (GWEPDDNPI) variants in an aggressive metastatic mouse 4T1 breast tumor model. The constructed VELs had complexities of 10,500 and 8,000 individual members, generated as combinatorial M13 phage display and synthetic peptide libraries, respectively, with structural composition GWXPXDXPI, where X is any of 20 natural amino acids. Statistically significant tumor growth inhibition was observed in BALB/c mice immunized with the VELs in both prophylactic and therapeutic settings. Vaccinated mice developed epitope-specific spleen cell and CD8+ IFN-γ+ T-cell responses that recognize more than 50% of the panel of 87 mutated epitope variants, as demonstrated in T-cell proliferation assays and FACS analysis. These data indicate the feasibility of the application of this new class of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against cancer.

  6. Generation and Characterization of Monoclonal Antibodies against a Cyclic Variant of Hepatitis C Virus E2 Epitope 412-422

    PubMed Central

    Sandomenico, Annamaria; Leonardi, Antonio; Berisio, Rita; Sanguigno, Luca; Focà, Giuseppina; Focà, Annalia; Ruggiero, Alessia; Doti, Nunzianna; Muscariello, Livio; Barone, Daniela; Farina, Claudio; Owsianka, Ania; Vitagliano, Luigi

    2016-01-01

    ABSTRACT The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a β-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a β-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit

  7. Common antiviral cytotoxic t-lymphocyte epitope for diverse arenaviruses.

    PubMed

    Oldstone, M B; Lewicki, H; Homann, D; Nguyen, C; Julien, S; Gairin, J E

    2001-07-01

    Members of the Arenaviridae family have been isolated from mammalian hosts in disparate geographic locations, leading to their grouping as Old World types (i.e., lymphocytic choriomeningitis virus [LCMV], Lassa fever virus [LFV], Mopeia virus, and Mobala virus) and New World types (i.e., Junin, Machupo, Tacaribe, and Sabia viruses) (C. J. Peters, M. J. Buchmeier, P. E. Rollin, and T. G. Ksiazek, p. 1521-1551, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996; P. J. Southern, p. 1505-1519, in B. N. Fields, D. M. Knipe, and P. M. Howley [ed.], Fields virology, 3rd ed., 1996). Several types in both groups-LFV, Junin, Machupo, and Sabia viruses-cause severe and often lethal human diseases. By sequence comparison, we noted that eight Old World and New World arenaviruses share several amino acids with the nucleoprotein (NP) that consists of amino acids (aa) 118 to 126 (NP 118-126) (RPQASGVYM) of LCMV that comprise the immunodominant cytotoxic T-lymphocyte (CTL) epitope for H-2(d) mice (32). This L(d)-restricted epitope constituted >97% of the total bulk CTLs produced in the specific antiviral or clonal responses of H-2(d) BALB mice. NP 118-126 of the Old World arenaviruses LFV, Mopeia virus, and LCMV and the New World arenavirus Sabia virus bound at high affinity to L(d). The primary H-2(d) CTL anti-LCMV response as well as that of a CTL clone responsive to LCMV NP 118-126 recognized target cells coated with NP 118-126 peptides derived from LCMV, LFV, and Mopeia virus but not Sabia virus, indicating that a common functional NP epitope exists among Old World arenaviruses. Use of site-specific amino acid exchanges in the NP CTL epitope among these arenaviruses identified amino acids involved in major histocompatibility complex binding and CTL recognition.

  8. Comprehensive mapping of a novel NS1 epitope conserved in flaviviruses within the Japanese encephalitis virus serocomplex.

    PubMed

    Hua, Rong-Hong; Liu, Li-Ke; Huo, Hong; Li, Ye-Nan; Guo, Li-Ping; Wang, Xiao-Lei; Qin, Cheng-Feng; Bu, Zhi-Gao

    2014-06-24

    Nonstructural protein-1 (NS1) of the Japanese encephalitis virus (JEV) is an immunogenic protein that is a potential candidate for the development of vaccines and diagnostic reagents. NS1 is known to be more specific than the E protein in serological testing of flavivirus infections. However, NS1 exhibits cross-reactivity among flaviviruses even within the same genus and more so within a serocomplex. However, the cross-reactive epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of a linear B-cell epitope that is common and specific to the JEV serocomplex of Flaviviridae. We generated an NS1-specific monoclonal antibody that cross-reacts with the West Nile virus (WNV) NS1 protein by immunizing mice with recombinant JEV NS1. For epitope mapping, 51 partially overlapping peptides spanning the entire NS1 protein were expressed with a glutathione S-transferase (GST) tag and screened using monoclonal antibodies. Two linear epitope-containing peptides were identified using enzyme-linked immunosorbent assay (ELISA). By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, we successfully identified the smallest unit of the linear epitope required to react with the monoclonal antibody. The linear epitope was located in amino acids residues ²²⁷ETHTLW²³². Furthermore, results of the sequence alignment revealed that the epitope was highly conserved among JEV strains. Notably, the epitope is highly conserved among viruses of the JEV serocomplex. Furthermore, the homologous regions on NS1 proteins from dengue viruses showed no cross-reactivity with the monoclonal antibodies. The epitope was recognized by antisera against the WNV but not against the dengue virus. This novel JEV serocomplex-specific linear B-cell epitope of NS1 would be helpful in the development of new vaccines and diagnostic assays. PMID:24631788

  9. Studies of epitope restriction on myeloperoxidase (MPO), an important antigen in systemic vasculitis

    PubMed Central

    SHORT, A K; LOCKWOOD, C M

    1997-01-01

    Anti-neutrophil cytoplasmic antibodies are important components of the inflammatory response in patients with systemic vasculitis. Their role in the pathogenesis of these conditions remains incompletely defined. Several antigens have been identified, and MPO is one of the most important. To gain more understanding of the immune mechanisms involved, we were keen to see if the antibody response to MPO was restricted, or whether there was a general loss of tolerance to the whole surface of the molecule. To study the epitopes we employed both ELISA and biosensor technology, and were able to demonstrate restriction both in the number and localization of the epitopes being recognized. PMID:9367412

  10. Information filtering via preferential diffusion.

    PubMed

    Lü, Linyuan; Liu, Weiping

    2011-06-01

    Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlooking the significance of diversity and novelty that indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on a user-object bipartite network. Numerical analyses on two benchmark data sets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

  11. Information filtering via preferential diffusion

    NASA Astrophysics Data System (ADS)

    Lü, Linyuan; Liu, Weiping

    2011-06-01

    Recommender systems have shown great potential in addressing the information overload problem, namely helping users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including the heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlooking the significance of diversity and novelty that indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on a user-object bipartite network. Numerical analyses on two benchmark data sets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.

  12. Epitope topography controls bioactivity in supramolecular nanofibers

    PubMed Central

    Sur, Shantanu; Tantakitti, Faifan; Matson, John B.; Stupp, Samuel I.

    2015-01-01

    Incorporating bioactivity into artificial scaffolds using peptide epitopes present in the extracellular matrix (ECM) is a well-known approach. A common strategy has involved epitopes that provide cells with attachment points and external cues through interaction with integrin receptors. Although a variety of bioactive sequences have been identified so far, less is known about their optimal display in a scaffold. We report here on the use of self-assembled peptide amphiphile (PA) nanofiber matrices to investigate the impact of spatial presentation of the fibronectin derived epitope RGDS on cell response. Using one, three, or five glycine residues, RGDS epitopes were systematically spaced out from the surface of the rigid nanofibers. We found that cell morphology was strongly affected by the separation of the epitope from the nanofiber surface, with the longest distance yielding the most cell-spreading, bundling of actin filaments, and a round-to-polygonal transformation of cell shape. Cell response to this type of epitope display was also accompanied with activated integrin-mediated signaling and formation of stronger adhesions between cells and substrate. Interestingly, unlike length, changing the molecular flexibility of the linker had minimal influence on cell behavior on the substrate for reasons that remain poorly understood. The use in this study of high persistence length nanofibers rather than common flexible polymers allows us to conclude that epitope topography at the nanoscale structure of a scaffold influences its bioactive properties independent of epitope density and mechanical properties. PMID:25745558

  13. Recognizing Battered Wife Syndrome

    PubMed Central

    Swanson, Richard W.

    1985-01-01

    Battered wife syndrome is difficult to detect because the women usually do not volunteer the diagnosis. They often present with vague somatic complaints such as headache, lower back pain, abdominal pain, pelvic pain and dyspareunia. Four case histories demonstrate the difficulty in recognizing the cause of these complaints. The diagnosis was often missed because straight-forward, non-threatening, open-ended questions were not asked initially. The family physician's primary role is to identify the syndrome and initiate psychotherapy. Psychotherapy is centred on reversing “learned helplessness” and developing a new self-concept. This can be enhanced by an interval or transition house. PMID:21274067

  14. Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering

    PubMed Central

    Zhang, Jian; Zhao, Xiaowei; Sun, Pingping; Gao, Bo; Ma, Zhiqiang

    2014-01-01

    B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use. PMID:25045691

  15. Conformational B-cell epitopes prediction from sequences using cost-sensitive ensemble classifiers and spatial clustering.

    PubMed

    Zhang, Jian; Zhao, Xiaowei; Sun, Pingping; Gao, Bo; Ma, Zhiqiang

    2014-01-01

    B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use. PMID:25045691

  16. Identification of a conserved B-cell epitope on the GapC protein of Streptococcus dysgalactiae.

    PubMed

    Zhang, Limeng; Zhou, Xue; Fan, Ziyao; Tang, Wei; Chen, Liang; Dai, Jian; Wei, Yuhua; Zhang, Jianxin; Yang, Xuan; Yang, Xijing; Liu, Daolong; Yu, Liquan; Zhang, Hua; Wu, Zhijun; Yu, Yongzhong; Sun, Hunan; Cui, Yudong

    2015-01-01

    Streptococcus dysgalactiae (S. dysgalactia) GapC is a highly conserved surface dehydrogenase among the streptococcus spp., which is responsible for inducing protective antibody immune responses in animals. However, the B-cell epitope of S. dysgalactia GapC have not been well characterized. In this study, a monoclonal antibody 1F2 (mAb1F2) against S. dysgalactiae GapC was generated by the hybridoma technique and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12) for mapping the linear B-cell epitope. The mAb1F2 recognized phages displaying peptides with the consensus motif TRINDLT. Amino acid sequence of the motif exactly matched (30)TRINDLT(36) of the S. dysgalactia GapC. Subsequently, site-directed mutagenic analysis further demonstrated that residues R31, I32, N33, D34 and L35 formed the core of (30)TRINDLT(36), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1F2. The epitope (30)TRINDLT(36) showed high homology among different streptococcus species. Overall, our findings characterized a conserved B-cell epitope, which will be useful for the further study of epitope-based vaccines.

  17. Monoclonal antibodies against human immunodeficiency virus type 1 integrase: epitope mapping and differential effects on integrase activities in vitro.

    PubMed Central

    Nilsen, B M; Haugan, I R; Berg, K; Olsen, L; Brown, P O; Helland, D E

    1996-01-01

    Human immunodeficiency virus type 1 (HIV-1) integrase (IN) catalyzes the integration of viral DNA into the host chromosome, an essential step in retroviral replication. As a tool to study the structure and function of this enzyme, monoclonal antibodies (MAbs) against HIV-1 IN were produced. Epitope mapping demonstrated that the 17 MAbs obtained could be divided into seven different groups, and the selection of MAbs representing these groups were tested for their effect on in vitro activities of IN. Four groups of MAbs recognized epitopes within the region of amino acids (aa) 1 to 16, 17 to 38, or 42 to 55 in and around the conserved HHCC motif near the N terminus of IN. MAbs binding to these epitopes inhibited end processing and DNA joining and either stimulated or had little effect on disintegration and reintegration activities of IN. Two MAbs binding to epitopes within the region of aa 56 to 102 in the central core or aa 186 to 250 in the C-terminal half of the protein showed only minor effects on the in vitro activities of IN. Three Mabs which recognized on epitope within the region of aa262 to 271 of HIV-1 IN cross-reacted with HIV-2 IN. MAbs binding to this epitope clearly inhibited end processing and DNA joining and stimulated or had little effect on disintegration. In contrast to the N-terminal-specific MAbs, these C-terminal-specific MAbs abolished reintegration activity of IN. PMID:8627677

  18. Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors

    NASA Astrophysics Data System (ADS)

    Yang, Kyung-Ae; Barbu, Mihaela; Halim, Marlin; Pallavi, Payal; Kim, Benjamin; Kolpashchikov, Dmitry M.; Pecic, Stevan; Taylor, Steven; Worgall, Tilla S.; Stojanovic, Milan N.

    2014-11-01

    Oligonucleotide-based receptors or aptamers can interact with small molecules, but the ability to achieve high-affinity and specificity of these interactions depends strongly on functional groups or epitopes displayed by the binding targets. Some classes of targets are particularly challenging: for example, monosaccharides have scarce functionalities and no aptamers have been reported to recognize, let alone distinguish from each other, glucose and other hexoses. Here we report aptamers that differentiate low-epitope targets such as glucose, fructose or galactose by forming ternary complexes with high-epitope organic receptors for monosaccharides. In a follow-up example, we expand this method to isolate high-affinity oligonucleotides against aromatic amino acids complexed in situ with a nonspecific organometallic receptor. The method is general and enables broad clinical use of aptamers for the detection of small molecules in mix-and-measure assays, as demonstrated by monitoring postprandial waves of phenylalanine in human subjects.

  19. Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors.

    PubMed

    Yang, Kyung-Ae; Barbu, Mihaela; Halim, Marlin; Pallavi, Payal; Kim, Benjamin; Kolpashchikov, Dmitry M; Pecic, Stevan; Taylor, Steven; Worgall, Tilla S; Stojanovic, Milan N

    2014-11-01

    Oligonucleotide-based receptors or aptamers can interact with small molecules, but the ability to achieve high-affinity and specificity of these interactions depends strongly on functional groups or epitopes displayed by the binding targets. Some classes of targets are particularly challenging: for example, monosaccharides have scarce functionalities and no aptamers have been reported to recognize, let alone distinguish from each other, glucose and other hexoses. Here we report aptamers that differentiate low-epitope targets such as glucose, fructose or galactose by forming ternary complexes with high-epitope organic receptors for monosaccharides. In a follow-up example, we expand this method to isolate high-affinity oligonucleotides against aromatic amino acids complexed in situ with a nonspecific organometallic receptor. The method is general and enables broad clinical use of aptamers for the detection of small molecules in mix-and-measure assays, as demonstrated by monitoring postprandial waves of phenylalanine in human subjects. PMID:25343606

  20. Unravelling viral camouflage: approaches to the study and characterization of conformational epitopes.

    PubMed

    Augustin, T; Cehlar, O; Skrabana, R; Majerova, P; Hanes, J

    2015-06-01

    Antibodies are broadly used in clinical and basic research. Many of monoclonal antibodies are successfully adopted for therapeutic and diagnostic targeting of viral pathogens. Efficacy of antiviral neutralizing or protective antibodies depends on their ability to recognize epitopes interfering with viral infection. However, viruses are able to incessantly change their antigenic determinants to escape surveillance of humoral immune system and therefore the successful antiviral therapies require continuous development. Characterization of interactions of antibodies with prevalently conformational viral epitopes is important for understanding antibody mode of action and can help to identify conserved regions that may be exploited in designing new vaccines and virus neutralizing antibodies. In this article, we are reviewing techniques in use for characterization of conformational epitopes of monoclonal antibodies with focus on viruses.

  1. Recognition and Sensing of Low-Epitope Targets via Ternary Complexes with Oligonucleotides and Synthetic Receptors

    PubMed Central

    Yang, Kyung-Ae; Barbu, Michaela; Halim, Marlin; Pallavi, Payal; Kim, Benjamin; Kolpashchikov, Dmitry; Pecic, Stevan; Taylor, Steven; Worgall, Tilla S.; Stojanovic, Milan N.

    2015-01-01

    Oligonucleotide-based receptors or aptamers can interact with small molecules, but the ability to achieve high-affinity and selectivity of these interactions depends strongly on functional groups or epitopes displayed by the binding targets. Some classes of targets are particularly challenging: for example, monosaccharides have scarce functionalities and no aptamers have been reported to recognize, let alone distinguish from each other, glucose and other hexoses. Here we report aptamers that differentiate low-epitope targets such as glucose, fructose, or galactose by forming ternary complexes with high-epitope organic receptors for monosaccharides. In a follow-up example, we expand this method to isolate high-affinity oligonucleotides against aromatic amino acids complexed in situ with a non-specific organometallic receptor. The method is general and enables broad clinical use of aptamers for detection of small molecules in mix-and-measure assays, as demonstrated by monitoring postprandial waves of phenylalanine in human subjects. PMID:25343606

  2. Unravelling viral camouflage: approaches to the study and characterization of conformational epitopes.

    PubMed

    Augustin, T; Cehlar, O; Skrabana, R; Majerova, P; Hanes, J

    2015-06-01

    Antibodies are broadly used in clinical and basic research. Many of monoclonal antibodies are successfully adopted for therapeutic and diagnostic targeting of viral pathogens. Efficacy of antiviral neutralizing or protective antibodies depends on their ability to recognize epitopes interfering with viral infection. However, viruses are able to incessantly change their antigenic determinants to escape surveillance of humoral immune system and therefore the successful antiviral therapies require continuous development. Characterization of interactions of antibodies with prevalently conformational viral epitopes is important for understanding antibody mode of action and can help to identify conserved regions that may be exploited in designing new vaccines and virus neutralizing antibodies. In this article, we are reviewing techniques in use for characterization of conformational epitopes of monoclonal antibodies with focus on viruses. PMID:26104327

  3. Disulfide-bonded discontinuous epitopes on the glycoprotein of vesicular stomatitis virus (New Jersey serotype).

    PubMed

    Grigera, P R; Keil, W; Wagner, R R

    1992-06-01

    Intrachain disulfide bonds between paired cysteines in the glycoprotein (G) of vesicular stomatitis virus (VSV) are required for the recognition of discontinuous epitopes by specific monoclonal antibodies (MAbs) (W. Keil and R. R. Wagner, Virology 170:392-407, 1989). Cleavage by Staphylococcus aureus V8 protease of the 517-amino-acid VSV-New Jersey G protein, limited to the glutamic acid at residue 110, resulted in a protein (designated GV8) with greatly retarded migration by polyacrylamide gel electrophoresis (PAGE) under nonreducing conditions. By Western blot (immunoblot) analysis, protein GV8 was found to lose discontinuous epitope IV, which maps within the first 193 NH2-terminal amino acids. These data, coupled with those obtained by PAGE migration of a vector-expressed, truncated protein (G1-193) under reducing and nonreducing conditions, lead us to postulate the existence of a major loop structure within the first 193 NH2-terminal amino acids of the G protein, possibly anchored by a disulfide bond between cysteine 108 and cysteine 169, encompassing epitope IV. Site-directed mutants in which 10 of the 12 cysteines were individually converted to serines in vaccinia virus-based vectors expressing these single-site mutant G proteins were also constructed, each of which was then tested by immunoprecipitation for its capacity to recognize epitope-specific MAbs. These results showed that mutations in NH2-terminal cysteines 130, 174, and, to a lesser extent, 193 all resulted in the loss of neutralization epitope VIII. A mutation at NH2-terminal cysteine 130 also resulted in the loss of neutralization epitope VII, as did a mutation at cysteine 108 to a lesser extent. Both epitopes VII and VIII disappeared when mutations were made in COOH-distal cysteine 235, 240, or 273, the general map locations of epitopes VII and VIII. These studies also reveal that distal, as well as proximal, cysteine residues markedly influence the disulfide-bond secondary structure, which

  4. Recognizing the Trends

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott

    2016-01-01

    Solar system planetary science has traditionally focused on understanding in depth individual planets. While there have been some efforts at synergy, most studies have focused on understanding the details of individual planets. Now that we are in the era of exoplanet science, with thousands of known planets and hundreds that have been characterized to varying degrees, the systematics of planetary science are becoming apparent. This also means that, for the first time, what had previously been seen as individual quirks of solar system planets are instead being recognized as part of the normal range of planetary behavior. In my talk I will consider a number of such characteristics and explain how we are now starting to understand their true context. In particular I will discuss the atmospheric composition, clouds, hazes, and winds of giant planets, trace gasses in the atmosphere of Venus, and the presence and absence of atmospheres on various terrestrial worlds.

  5. Induction of Epitope-Specific Neutralizing Antibodies against West Nile Virus▿

    PubMed Central

    Oliphant, Theodore; Nybakken, Grant E.; Austin, S. Kyle; Xu, Qing; Bramson, Jonathan; Loeb, Mark; Throsby, Mark; Fremont, Daved H.; Pierson, Theodore C.; Diamond, Michael S.

    2007-01-01

    Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies. PMID:17715236

  6. Induction of epitope-specific neutralizing antibodies against West Nile virus.

    PubMed

    Oliphant, Theodore; Nybakken, Grant E; Austin, S Kyle; Xu, Qing; Bramson, Jonathan; Loeb, Mark; Throsby, Mark; Fremont, Daved H; Pierson, Theodore C; Diamond, Michael S

    2007-11-01

    Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies.

  7. Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding

    SciTech Connect

    Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; Kamin-Lewis, Roberta; Al-Darmarki, Salma; Flinko, Robin; Lovo, Elena; Wu, Xueji; Robinson, James E.; Seaman, Michael S.; Fouts, Timothy R.; Gallo, Robert C.; DeVico, Anthony L.; Lewis, George K.

    2012-12-13

    The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain; and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.

  8. Diverse specificity and effector function among human antibodies to HIV-1 envelope glycoprotein epitopes exposed by CD4 binding

    DOE PAGES

    Guan, Yongjun; Pazgier, Marzena; Sajadi, Mohammad M.; Kamin-Lewis, Roberta; Al-Darmarki, Salma; Flinko, Robin; Lovo, Elena; Wu, Xueji; Robinson, James E.; Seaman, Michael S.; et al

    2012-12-13

    The HIV-1 envelope glycoprotein (Env) undergoes conformational transitions consequent to CD4 binding and coreceptor engagement during viral entry. The physical steps in this process are becoming defined, but less is known about their significance as targets of antibodies potentially protective against HIV-1 infection. Here we probe the functional significance of transitional epitope exposure by characterizing 41 human mAbs specific for epitopes exposed on trimeric Env after CD4 engagement. These mAbs recognize three epitope clusters: cluster A, the gp120 face occluded by gp41 in trimeric Env; cluster B, a region proximal to the coreceptor-binding site (CoRBS) and involving the V1/V2 domain;more » and cluster C, the coreceptor-binding site. The mAbs were evaluated functionally by antibody-dependent, cell-mediated cytotoxicity (ADCC) and for neutralization of Tiers 1 and 2 pseudoviruses. All three clusters included mAbs mediating ADCC. However, there was a strong potency bias for cluster A, which harbors at least three potent ADCC epitopes whose cognate mAbs have electropositive paratopes. Cluster A epitopes are functional ADCC targets during viral entry in an assay format using virion-sensitized target cells. In contrast, only cluster C contained epitopes that were recognized by neutralizing mAbs. There was significant diversity in breadth and potency that correlated with epitope fine specificity. In contrast, ADCC potency had no relationship with neutralization potency or breadth for any epitope cluster. In conclusion, Fc-mediated effector function and neutralization coselect with specificity in anti-Env antibody responses, but the nature of selection is distinct for these two antiviral activities.« less

  9. Do Karstic Unsaturated Zones Have the Fastest Preferential Flow?

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Perkins, K. S.

    2013-12-01

    There is strong evidence that unsaturated-zone travel times for preferential flow, unlike those for diffuse flow, mostly fall within a relatively small range, even for a wide variety of media and conditions [Nimmo, 2007, Water Resources Research]. We have calculated travel times for preferential flow observations published in the last seven years, finding a range of travel velocities with a greater maximum than was previously recognized. The instances of faster transport, however, are predominantly for karst or other materials in which water flow may strongly influence the creation and development of preferential flow paths. These findings motivate a hypothesis: in media where the matrix is soluble, erodible, or otherwise vulnerable to enlargement by flowing water, this flow acts to reduce flow impediments within a macropore network. This might be thought of as a sculpting process in which water carves its conduit into a smoother, larger, less constrictive shape, as discussed in connection with soil pipes [Jones, 2010, Hydrological Processes]. Known developmental processes of karst and epikarst are consistent with this hypothesis. Its acceptance would open doors to expanded use of optimality and thermodynamic principles to understand and predict preferential flow. It also could lead to new modes of hydraulic characterization of subsurface media with regard to unsaturated flow, which are much needed as the difficulty of measuring hydraulic properties of the unsaturated zone is a major barrier to the advance of hydrologic science. In practical terms, a new guideline may be justified: in unsaturated karst or other materials in which flowing water may enhance flowpaths, preferential transport rates in general may be several times faster than through media without such pore-developmental processes.

  10. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans

    PubMed Central

    Chou, Meng-Yun; Fogelstrand, Linda; Hartvigsen, Karsten; Hansen, Lotte F.; Woelkers, Douglas; Shaw, Peter X.; Choi, Jeomil; Perkmann, Thomas; Bäckhed, Fredrik; Miller, Yury I.; Hörkkö, Sohvi; Corr, Maripat; Witztum, Joseph L.; Binder, Christoph J.

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis. PMID:19363291

  11. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans.

    PubMed

    Chou, Meng-Yun; Fogelstrand, Linda; Hartvigsen, Karsten; Hansen, Lotte F; Woelkers, Douglas; Shaw, Peter X; Choi, Jeomil; Perkmann, Thomas; Bäckhed, Fredrik; Miller, Yury I; Hörkkö, Sohvi; Corr, Maripat; Witztum, Joseph L; Binder, Christoph J

    2009-05-01

    Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of oxidized lipoproteins and apoptotic cells. Adaptive immune responses to various oxidation-specific epitopes play an important role in atherogenesis. However, accumulating evidence suggests that these epitopes are also recognized by innate receptors, such as scavenger receptors on macrophages, and plasma proteins, such as C-reactive protein (CRP). Here, we provide multiple lines of evidence that oxidation-specific epitopes constitute a dominant, previously unrecognized target of natural Abs (NAbs) in both mice and humans. Using reconstituted mice expressing solely IgM NAbs, we have shown that approximately 30% of all NAbs bound to model oxidation-specific epitopes, as well as to atherosclerotic lesions and apoptotic cells. Because oxidative processes are ubiquitous, we hypothesized that these epitopes exert selective pressure to expand NAbs, which in turn play an important role in mediating homeostatic functions consequent to inflammation and cell death, as demonstrated by their ability to facilitate apoptotic cell clearance. These findings provide novel insights into the functions of NAbs in mediating host homeostasis and into their roles in health and diseases, such as chronic inflammatory diseases and atherosclerosis.

  12. NEP: web server for epitope prediction based on antibody neutralization of viral strains with diverse sequences.

    PubMed

    Chuang, Gwo-Yu; Liou, David; Kwong, Peter D; Georgiev, Ivelin S

    2014-07-01

    Delineation of the antigenic site, or epitope, recognized by an antibody can provide clues about functional vulnerabilities and resistance mechanisms, and can therefore guide antibody optimization and epitope-based vaccine design. Previously, we developed an algorithm for antibody-epitope prediction based on antibody neutralization of viral strains with diverse sequences and validated the algorithm on a set of broadly neutralizing HIV-1 antibodies. Here we describe the implementation of this algorithm, NEP (Neutralization-based Epitope Prediction), as a web-based server. The users must supply as input: (i) an alignment of antigen sequences of diverse viral strains; (ii) neutralization data for the antibody of interest against the same set of antigen sequences; and (iii) (optional) a structure of the unbound antigen, for enhanced prediction accuracy. The prediction results can be downloaded or viewed interactively on the antigen structure (if supplied) from the web browser using a JSmol applet. Since neutralization experiments are typically performed as one of the first steps in the characterization of an antibody to determine its breadth and potency, the NEP server can be used to predict antibody-epitope information at no additional experimental costs. NEP can be accessed on the internet at http://exon.niaid.nih.gov/nep. PMID:24782517

  13. NEP: web server for epitope prediction based on antibody neutralization of viral strains with diverse sequences.

    PubMed

    Chuang, Gwo-Yu; Liou, David; Kwong, Peter D; Georgiev, Ivelin S

    2014-07-01

    Delineation of the antigenic site, or epitope, recognized by an antibody can provide clues about functional vulnerabilities and resistance mechanisms, and can therefore guide antibody optimization and epitope-based vaccine design. Previously, we developed an algorithm for antibody-epitope prediction based on antibody neutralization of viral strains with diverse sequences and validated the algorithm on a set of broadly neutralizing HIV-1 antibodies. Here we describe the implementation of this algorithm, NEP (Neutralization-based Epitope Prediction), as a web-based server. The users must supply as input: (i) an alignment of antigen sequences of diverse viral strains; (ii) neutralization data for the antibody of interest against the same set of antigen sequences; and (iii) (optional) a structure of the unbound antigen, for enhanced prediction accuracy. The prediction results can be downloaded or viewed interactively on the antigen structure (if supplied) from the web browser using a JSmol applet. Since neutralization experiments are typically performed as one of the first steps in the characterization of an antibody to determine its breadth and potency, the NEP server can be used to predict antibody-epitope information at no additional experimental costs. NEP can be accessed on the internet at http://exon.niaid.nih.gov/nep.

  14. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization

    PubMed Central

    Newell, Evan W; Sigal, Natalia; Nair, Nitya; Kidd, Brian A; Greenberg, Harry B; Davis, Mark M

    2013-01-01

    It is currently not possible to predict which epitopes will be recognized by T cells in different individuals. This is a barrier to the thorough analysis and understanding of T-cell responses after vaccination or infection. Here, by combining mass cytometry with combinatorial peptide–MHC tetramer staining, we have developed a method allowing the rapid and simultaneous identification and characterization of T cells specific for many epitopes. We use this to screen up to 109 different peptide–MHC tetramers in a single human blood sample, while still retaining at least 23 labels to analyze other markers of T-cell phenotype and function. Among 77 candidate rotavirus epitopes, we identified six T-cell epitopes restricted to human leukocyte antigen (HLA)-A*0201 in the blood of healthy individuals. T cells specific for epitopes in the rotavirus VP3 protein displayed a distinct phenotype and were present at high frequencies in intestinal epithelium. This approach should be useful for the comprehensive analysis of T-cell responses to infectious diseases or vaccines. PMID:23748502

  15. Schistosoma mansoni shares a protective carbohydrate epitope with keyhole limpet hemocyanin

    PubMed Central

    1987-01-01

    The glycanic epitope of the 38,000 Mr Schistosoma mansoni schistosomula major immunogen defined by the IPLSm1 protective mAb was identified in the hemocyanin of the marine mollusc Megathura crenulata, better known as KLH. This antigenic community was exploited to investigate further the biological properties of this epitope. KLH was shown to strongly inhibit the binding of IPLSm1 mAb to its 38,000 Mr target antigen. Immunization of naive LOU rats with KLH elicited the production of anti- S. mansoni antibodies capable of immunoprecipitating the 38,000 Mr schistosomulum antigen. Antibodies to KLH mediated a marked eosinophil- dependent cytotoxicity and passively transferred immunity towards S. mansoni infection. Finally, rats immunized with KLH were significantly protected against a challenge with S. mansoni cercariae. The deglycosylation of KLH completely abolishes its immunological and functional KLH properties, indicating the participation of an oligosaccharidic epitope of the native KLH that is also recognized by the sera of S. mansoni-infected patients. These observations provide new opportunities of access to the well-defined structure of a glycanic epitope potentially available for the immunoprophylaxis and seroepidemiology of schistosomiasis, and a new approach to the isotypic response towards a well-chemically defined epitope. PMID:2434601

  16. Identification of MAGE-C1 (CT-7) epitopes for T-cell therapy of multiple myeloma

    PubMed Central

    Anderson, Larry D.; Cook, Danielle R.; Yamamoto, Tori N.; Berger, Carolina; Maloney, David G.; Riddell, Stanley R.

    2011-01-01

    Multiple myeloma is incurable with standard therapies but is susceptible to a T-cell-mediated graft versus myeloma effect after allogeneic stem cell transplantation. We sought to identify myeloma-specific antigens that might be used for T-cell immunotherapy of myeloma. MAGE-C1 (CT-7) is a cancer-testis antigen that is expressed by tumor cells in >70% of myeloma patients and elicits a humoral response in up to 93% of patients with CT-7+ myeloma. No CD8+ T-cell epitopes have been described for CT-7, so we used a combination of reverse immunology and immunization of HLA-A2 transgenic mice with a novel cell-based vaccine to identify three immunogenic epitopes of CT-7 that are recognized by human CD8+ T-cells. CT-7-specific T-cells recognizing two of these peptides are able to recognize myeloma cells as well as CT-7 gene-transduced tumor cells, demonstrating that these epitopes are naturally processed and presented by tumor cells. This is the first report of the identification of immunogenic CD8+ T-cell epitopes of MAGE-C1 (CT-7), which is the most commonly expressed cancer-testis antigen found in myeloma, and these epitopes may be promising candidate targets for vaccination or T-cell therapy of myeloma or other CT-7+ malignancies. PMID:21461886

  17. Production, Characterization, and Epitope Mapping of Monoclonal Antibodies Against Different Subtypes of Rabbit Hemorrhagic Disease Virus (RHDV)

    PubMed Central

    Kong, Desheng; Liu, Jiasen; Jiang, Qian; Yu, Zuo; Hu, Xiaoliang; Guo, Dongchun; Huang, Qianqian; Jiao, Meihui; Qu, Liandong

    2016-01-01

    In 2010, a new rabbit hemorrhagic disease virus (RHDV) variant, designated RHDV2, was identified for the first time in Italy. Studies have shown that RHDV2 differs from RHDV1 (traditional RHDV) in terms of its antigenic profile and genetic characteristics. The VP60 protein of RHDV is a structural protein that plays important roles in viral replication, assembly, and immunogenicity. In this study, we immunized BALB/c mice with recombinant VP60 proteins from different RHDV subtypes. After three rounds of subcloning, type-specific positive hybridoma clones of RHDV1 and RHDV2 were further identified by an enzyme-linked immunosorbent assay, Western blotting, and an indirect immunofluorescence assay. Finally, three monoclonal antibodies (MAbs) (1D6, 1H2, and 3F2) that only recognize RHDV1, and four MAbs (1G2, 2C1, 3B7, and 5D6) that only recognize RHDV2 were identified. The epitopes recognized by these MAbs were mapped by Western blotting. Sequence analysis showed that the epitope sequences recognized by 1D6, 1H2, and 3F2 are highly conserved (98%) among RHDV1 strains, whereas the epitope sequences recognized by 1G2, 2C1, 3B7, and 5D6 are 100% conserved among RHDV2 strains. The high conservation of the epitope sequence showed that the screened MAbs were type-specific, and that they could distinguish different RHDV subtypes. PMID:26878800

  18. 15 CFR 700.14 - Preferential scheduling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE NATIONAL SECURITY INDUSTRIAL BASE REGULATIONS DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Industrial Priorities § 700.14 Preferential scheduling. (a)...

  19. Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen.

    PubMed

    Malito, Enrico; Faleri, Agnese; Lo Surdo, Paola; Veggi, Daniele; Maruggi, Giulietta; Grassi, Eva; Cartocci, Elena; Bertoldi, Isabella; Genovese, Alessia; Santini, Laura; Romagnoli, Giacomo; Borgogni, Erica; Brier, Sébastien; Lo Passo, Carla; Domina, Maria; Castellino, Flora; Felici, Franco; van der Veen, Stijn; Johnson, Steven; Lea, Susan M; Tang, Christoph M; Pizza, Mariagrazia; Savino, Silvana; Norais, Nathalie; Rappuoli, Rino; Bottomley, Matthew J; Masignani, Vega

    2013-02-26

    Mapping of epitopes recognized by functional monoclonal antibodies (mAbs) is essential for understanding the nature of immune responses and designing improved vaccines, therapeutics, and diagnostics. In recent years, identification of B-cell epitopes targeted by neutralizing antibodies has facilitated the design of peptide-based vaccines against highly variable pathogens like HIV, respiratory syncytial virus, and Helicobacter pylori; however, none of these products has yet progressed into clinical stages. Linear epitopes identified by conventional mapping techniques only partially reflect the immunogenic properties of the epitope in its natural conformation, thus limiting the success of this approach. To investigate antigen-antibody interactions and assess the potential of the most common epitope mapping techniques, we generated a series of mAbs against factor H binding protein (fHbp), a key virulence factor and vaccine antigen of Neisseria meningitidis. The interaction of fHbp with the bactericidal mAb 12C1 was studied by various epitope mapping methods. Although a 12-residue epitope in the C terminus of fHbp was identified by both Peptide Scanning and Phage Display Library screening, other approaches, such as hydrogen/deuterium exchange mass spectrometry (MS) and X-ray crystallography, showed that mAb 12C1 occupies an area of ∼1,000 Å(2) on fHbp, including >20 fHbp residues distributed on both N- and C-terminal domains. Collectively, these data show that linear epitope mapping techniques provide useful but incomplete descriptions of B-cell epitopes, indicating that increased efforts to fully characterize antigen-antibody interfaces are required to understand and design effective immunogens.

  20. Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen

    PubMed Central

    Malito, Enrico; Faleri, Agnese; Lo Surdo, Paola; Veggi, Daniele; Maruggi, Giulietta; Grassi, Eva; Cartocci, Elena; Bertoldi, Isabella; Genovese, Alessia; Santini, Laura; Romagnoli, Giacomo; Borgogni, Erica; Brier, Sébastien; Lo Passo, Carla; Domina, Maria; Castellino, Flora; Felici, Franco; van der Veen, Stijn; Johnson, Steven; Lea, Susan M.; Tang, Christoph M.; Pizza, Mariagrazia; Savino, Silvana; Norais, Nathalie; Rappuoli, Rino; Bottomley, Matthew J.; Masignani, Vega

    2013-01-01

    Mapping of epitopes recognized by functional monoclonal antibodies (mAbs) is essential for understanding the nature of immune responses and designing improved vaccines, therapeutics, and diagnostics. In recent years, identification of B-cell epitopes targeted by neutralizing antibodies has facilitated the design of peptide-based vaccines against highly variable pathogens like HIV, respiratory syncytial virus, and Helicobacter pylori; however, none of these products has yet progressed into clinical stages. Linear epitopes identified by conventional mapping techniques only partially reflect the immunogenic properties of the epitope in its natural conformation, thus limiting the success of this approach. To investigate antigen–antibody interactions and assess the potential of the most common epitope mapping techniques, we generated a series of mAbs against factor H binding protein (fHbp), a key virulence factor and vaccine antigen of Neisseria meningitidis. The interaction of fHbp with the bactericidal mAb 12C1 was studied by various epitope mapping methods. Although a 12-residue epitope in the C terminus of fHbp was identified by both Peptide Scanning and Phage Display Library screening, other approaches, such as hydrogen/deuterium exchange mass spectrometry (MS) and X-ray crystallography, showed that mAb 12C1 occupies an area of ∼1,000 Å2 on fHbp, including >20 fHbp residues distributed on both N- and C-terminal domains. Collectively, these data show that linear epitope mapping techniques provide useful but incomplete descriptions of B-cell epitopes, indicating that increased efforts to fully characterize antigen–antibody interfaces are required to understand and design effective immunogens. PMID:23396847

  1. Fine mapping of a linear epitope on EDIII of Japanese encephalitis virus using a novel neutralizing monoclonal antibody.

    PubMed

    Deng, Wen-Lei; Guan, Chi-Yu; Liu, Ke; Zhang, Xiao-Min; Feng, Xiu-Li; Zhou, Bin; Su, Xiao-Dong; Chen, Pu-Yan

    2014-01-22

    The domain III (EDIII) of the envelope protein of Japanese encephalitis virus (JEV) is proposed to play an essential role in JEV replication and infection; it is involved in binding to host receptors and contains specific epitopes that elicit neutralizing antibodies. However, most previous studies have not provided detailed molecular information about the functional epitopes on JEV EDIII protein. In this study, we described a monoclonal antibody (mAb 2B4) we produced and characterized by IFA, PRNT, ELISA and Western blot analyses. The results showed that mAb 2B4 was specific to JEV EDIII protein and possessed high neutralization activity against JEV in vitro. Furthermore, we found that the motif, (394)HHWH(397), was the minimal unit of the linear epitope recognized by mAb 2B4 through screening a phage-displayed random 12-mer peptide library. Using sequence alignment analysis it was found that this motif was highly conserved among JEV strains and was present in West Nile Virus (WNV). Indeed, ELISA data showed that this epitope could be recognized by both JEV-positive swine serum and WNV-positive swine serum. Notably, this linear epitope was highly hydrophilic and was located within the terminal end of a β-pleated sheet of EDIII. An analysis of the spatial conformation supported the possibility of inducing specific antibodies to this epitope. Taken together, we identified (394)HHWH(397) as an EDIII-specific linear epitope recognized by mAb 2B4, which would be beneficial for studying the pathogenic mechanism of JEV; and mAb 2B4 was also a potential diagnostic and therapeutic reagent. PMID:24184444

  2. How legumes recognize rhizobia.

    PubMed

    Via, Virginia Dalla; Zanetti, María Eugenia; Blanco, Flavio

    2016-01-01

    Legume plants have developed the capacity to establish symbiotic interactions with soil bacteria (known as rhizobia) that can convert N2 to molecular forms that are incorporated into the plant metabolism. The first step of this relationship is the recognition of bacteria by the plant, which allows to distinguish potentially harmful species from symbiotic partners. The main molecular determinant of this symbiotic interaction is the Nod Factor, a diffusible lipochitooligosaccharide molecule produced by rhizobia and perceived by LysM receptor kinases; however, other important molecules involved in the specific recognition have emerged over the years. Secreted exopolysaccharides and the lipopolysaccharides present in the bacterial cell wall have been proposed to act as signaling molecules, triggering the expression of specific genes related to the symbiotic process. In this review we will briefly discuss how transcriptomic analysis are helping to understand how multiple signaling pathways, triggered by the perception of different molecules produced by rhizobia, control the genetic programs of root nodule organogenesis and bacterial infection. This knowledge can help to understand how legumes have evolved to recognize and establish complex ecological relationships with particular species and strains of rhizobia, adjusting gene expression in response to identity determinants of bacteria. PMID:26636731

  3. Molecular cloning and epitope analysis of the peanut allergen Ara h 3.

    PubMed

    Rabjohn, P; Helm, E M; Stanley, J S; West, C M; Sampson, H A; Burks, A W; Bannon, G A

    1999-02-01

    Peanut allergy is a significant IgE-mediated health problem because of the increased prevalence, potential severity, and chronicity of the reaction. Following our characterization of the two peanut allergens Ara h 1 and Ara h 2, we have isolated a cDNA clone encoding a third peanut allergen, Ara h 3. The deduced amino acid sequence of Ara h 3 shows homology to 11S seed-storage proteins. The recombinant form of this protein was expressed in a bacterial system and was recognized by serum IgE from approximately 45% of our peanut-allergic patient population. Serum IgE from these patients and overlapping, synthetic peptides were used to map the linear, IgE-binding epitopes of Ara h 3. Four epitopes, between 10 and 15 amino acids in length, were found within the primary sequence, with no obvious sequence motif shared by the peptides. One epitope is recognized by all Ara h 3-allergic patients. Mutational analysis of the epitopes revealed that single amino acid changes within these peptides could lead to a reduction or loss of IgE binding. By determining which amino acids are critical for IgE binding, it might be possible to alter the Ara h 3 cDNA to encode a protein with a reduced IgE-binding capacity. These results will enable the design of improved diagnostic and therapeutic approaches for food-hypersensitivity reactions.

  4. A continuous peptide epitope reacting with pandemic influenza AH1N1 predicted by bioinformatic approaches.

    PubMed

    Carrillo-Vazquez, Jonathan P; Correa-Basurto, José; García-Machorro, Jazmin; Campos-Rodríguez, Rafael; Moreau, Violaine; Rosas-Trigueros, Jorge L; Reyes-López, Cesar A; Rojas-López, Marlon; Zamorano-Carrillo, Absalom

    2015-09-01

    Computational identification of potential epitopes with an immunogenic capacity challenges immunological research. Several methods show considerable success, and together with experimental studies, the efficiency of the algorithms to identify potential peptides with biological activity has improved. Herein, an epitope was designed by combining bioinformatics, docking, and molecular dynamics simulations. The hemagglutinin protein of the H1N1 influenza pandemic strain served as a template, owing to the interest of obtaining a scheme of immunization. Afterward, we performed enzyme-linked immunosorbent assay (ELISA) using the epitope to analyze if any antibodies in human sera before and after the influenza outbreak in 2009 recognize this peptide. Also, a plaque reduction neutralization test induced by virus-neutralizing antibodies and the IgG determination showed the biological activity of this computationally designed peptide. The results of the ELISAs demonstrated that the serum of both prepandemic and pandemic recognized the epitope. Moreover, the plaque reduction neutralization test evidenced the capacity of the designed peptide to neutralize influenza virus in Madin-Darby canine cells.

  5. A continuous peptide epitope reacting with pandemic influenza AH1N1 predicted by bioinformatic approaches.

    PubMed

    Carrillo-Vazquez, Jonathan P; Correa-Basurto, José; García-Machorro, Jazmin; Campos-Rodríguez, Rafael; Moreau, Violaine; Rosas-Trigueros, Jorge L; Reyes-López, Cesar A; Rojas-López, Marlon; Zamorano-Carrillo, Absalom

    2015-09-01

    Computational identification of potential epitopes with an immunogenic capacity challenges immunological research. Several methods show considerable success, and together with experimental studies, the efficiency of the algorithms to identify potential peptides with biological activity has improved. Herein, an epitope was designed by combining bioinformatics, docking, and molecular dynamics simulations. The hemagglutinin protein of the H1N1 influenza pandemic strain served as a template, owing to the interest of obtaining a scheme of immunization. Afterward, we performed enzyme-linked immunosorbent assay (ELISA) using the epitope to analyze if any antibodies in human sera before and after the influenza outbreak in 2009 recognize this peptide. Also, a plaque reduction neutralization test induced by virus-neutralizing antibodies and the IgG determination showed the biological activity of this computationally designed peptide. The results of the ELISAs demonstrated that the serum of both prepandemic and pandemic recognized the epitope. Moreover, the plaque reduction neutralization test evidenced the capacity of the designed peptide to neutralize influenza virus in Madin-Darby canine cells. PMID:25788327

  6. Thioreductase-Containing Epitopes Inhibit the Development of Type 1 Diabetes in the NOD Mouse Model

    PubMed Central

    Malek Abrahimians, Elin; Vander Elst, Luc; Carlier, Vincent A.; Saint-Remy, Jean-Marie

    2016-01-01

    Autoreactive CD4+ T cells recognizing islet-derived antigens play a primary role in type 1 diabetes. Specific suppression of such cells therefore represents a strategic target for the cure of the disease. We have developed a methodology by which CD4+ T cells acquire apoptosis-inducing properties on antigen-presenting cells after cognate recognition of natural sequence epitopes. We describe here that inclusion of a thiol-disulfide oxidoreductase (thioreductase) motif within the flanking residues of a single MHC class II-restricted GAD65 epitope induces GAD65-specific cytolytic CD4+ T cells (cCD4+ T). The latter, obtained either in vitro or by active immunization, acquire an effector memory phenotype and lyse APCs by a Fas–FasL interaction. Furthermore, cCD4+ T cells eliminate by apoptosis activated bystander CD4+ T cells recognizing alternative epitopes processed by the same APC. Active immunization with a GAD65 class II-restricted thioreductase-containing T cell epitope protects mice from diabetes and abrogates insulitis. Passive transfer of in vitro-elicited cCD4+ T cells establishes that such cells are efficient in suppressing autoimmunity. These findings provide strong evidence for a new vaccination strategy to prevent type 1 diabetes. PMID:26973647

  7. Epitope specificity of human immunodeficiency virus-1 antibody dependent cellular cytotoxicity [ADCC] responses.

    PubMed

    Pollara, Justin; Bonsignori, Mattia; Moody, M Anthony; Pazgier, Marzena; Haynes, Barton F; Ferrari, Guido

    2013-07-01

    Antibody dependent cellular cytotoxicity [ADCC] has been suggested to play an important role in control of Human Immunodeficiency Virus-1 [HIV-1] viral load and protection from infection. ADCC antibody responses have been mapped to multiple linear and conformational epitopes within the HIV-1 envelope glycoproteins gp120 and gp41. Many epitopes targeted by antibodies that mediate ADCC overlap with those recognized by antibodies capable of virus neutralization. In addition, recent studies conducted with human monoclonal antibodies derived from HIV-1 infected individuals and HIV-1 vaccine-candidate vaccinees have identified a number of antibodies that lack the ability to capture primary HIV-1 isolates or mediate neutralizing activity, but are able to bind to the surface of infected CD4+ T cells and mediate ADCC. Of note, the conformational changes in the gp120 that may not exclusively relate to binding of the CD4 molecule are important in exposing epitopes recognized by ADCC responses. Here we discuss the HIV-1 envelope epitopes targeted by ADCC antibodies in the context of the potential protective capacities of ADCC. PMID:24191939

  8. The Use of the Immune Epitope Database to Study Autoimmune Epitope Data Related to Alopecia Areata.

    PubMed

    Sette, Alessandro; Paul, Sinu; Vaughan, Kerrie; Peters, Bjoern

    2015-11-01

    The Immune Epitope Database (IEDB) is a repository of published epitope data for infectious diseases, allergy, transplantation and autoimmunity. Herein we provide an introduction to the IEDB search interface, focusing on data related to autoimmune diseases, including alopecia areata (AA). We demonstrate how common questions related can be answered, such as how to search for specific autoantigens, epitope sequences, response types (B- and/or T-cell assays), or host, as well as how to search for epitopes of known major histocompatibility complex restriction and for data related to a specific disease. Our survey of the data found that while as a whole Autoimmunity-specific records represent a significant portion (∼30%); epitopes reported for AA are remarkably few, just 23 epitopes from six antigens. This reveals a significant knowledge gap for AA, and suggests that additional mapping of epitopes and identification of novel AA-associated autoantigens is warranted. Citing recently published examples, we show how bioinformatic, proteomic, and technological advances make it now increasingly feasible to identify epitopes and novel antigens in human disease. The goal herein was to increase awareness of the IEDB as a free resource for the scientific community and to demonstrate its use in finding (existing) and analyzing (prediction) epitope data. PMID:26551944

  9. 22 CFR 1422.21 - Preferential voting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Preferential voting. 1422.21 Section 1422.21 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY; GENERAL... PROCEEDINGS § 1422.21 Preferential voting. In any election in which more than two choices are on the...

  10. 22 CFR 1422.21 - Preferential voting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Preferential voting. 1422.21 Section 1422.21 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY; GENERAL... PROCEEDINGS § 1422.21 Preferential voting. In any election in which more than two choices are on the...

  11. IMMUNOCAT-a data management system for epitope mapping studies.

    PubMed

    Chung, Jo L; Sun, Jian; Sidney, John; Sette, Alessandro; Peters, Bjoern

    2010-01-01

    To enable rationale vaccine design, studies of molecular and cellular mechanisms of immune recognition need to be linked with clinical studies in humans. A major challenge in conducting such translational research studies lies in the management and integration of large amounts and various types of data collected from multiple sources. For this purpose, we have established "IMMUNOCAT", an interactive data management system for the epitope discovery research projects conducted by our group. The system provides functions to store, query, and analyze clinical and experimental data, enabling efficient, systematic, and integrative data management. We demonstrate how IMMUNOCAT is utilized in a large-scale research contract that aims to identify epitopes in common allergens recognized by T cells from human donors, in order to facilitate the rational design of allergy vaccines. At clinical sites, demographic information and disease history of each enrolled donor are captured, followed by results of an allergen skin test and blood draw. At the laboratory site, T cells derived from blood samples are tested for reactivity against a panel of peptides derived from common human allergens. IMMUNOCAT stores results from these T cell assays along with MHC:peptide binding data, results from RAST tests for antibody titers in donor serum, and the respective donor HLA typing results. Through this system, we are able to perform queries and integrated analyses of the various types of data. This provides a case study for the use of bioinformatics and information management techniques to track and analyze data produced in a translational research study aimed at epitope identification.

  12. Impact of HLA-B alleles, epitope binding affinity, functional avidity, and viral coinfection on the immunodominance of virus-specific CTL responses.

    PubMed

    Bihl, Florian; Frahm, Nicole; Di Giammarino, Loriana; Sidney, John; John, Mina; Yusim, Karina; Woodberry, Tonia; Sango, Kaori; Hewitt, Hannah S; Henry, Leah; Linde, Caitlyn H; Chisholm, John V; Zaman, Tauheed M; Pae, Eunice; Mallal, Simon; Walker, Bruce D; Sette, Alessandro; Korber, Bette T; Heckerman, David; Brander, Christian

    2006-04-01

    Immunodominance is variably used to describe either the most frequently detectable response among tested individuals or the strongest response within a single individual, yet factors determining either inter- or intraindividual immunodominance are still poorly understood. More than 90 individuals were tested against 184 HIV- and 92 EBV-derived, previously defined CTL epitopes. The data show that HLA-B-restricted epitopes were significantly more frequently recognized than HLA-A- or HLA-C-restricted epitopes. HLA-B-restricted epitopes also induced responses of higher magnitude than did either HLA-A- or HLA-C-restricted epitopes, although this comparison only reached statistical significance for EBV epitopes. For both viruses, the magnitude and frequency of recognition were correlated with each other, but not with the epitope binding affinity to the restricting HLA allele. The presence or absence of HIV coinfection did not impact EBV epitope immunodominance patterns significantly. Peptide titration studies showed that the magnitude of responses was associated with high functional avidity, requiring low concentration of cognate peptide to respond in in vitro assays. The data support the important role of HLA-B alleles in antiviral immunity and afford a better understanding of the factors contributing to inter- and intraindividual immunodominance.

  13. Epitope mapping for monoclonal antibodies recognizing tuber necrotic isolates of Potato virus Y

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato virus Y (PVY) is an important viral pathogen of potato responsible for reducing tuber yield and quality across the globe. The PVYN and PVYNTN strains, the latter of which induces potato tuber necrotic ringspot disease (PTNRD), are regulated for international potato trade, and have been routin...

  14. Identification of CD4+ T-cell epitopes on iron-regulated surface determinant B of Staphylococcus aureus.

    PubMed

    Yu, Simiao; Zhang, Hua; Yao, Di; Liu, Wei; Wang, Xintong; Chen, Xiaoting; Wei, Yuhua; Zhang, Zhenghai; Wang, Jiannan; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Cui, Yudong

    2015-12-01

    Iron-regulated surface determinant B (IsdB) of Staphylococcus aureus (S. aureus) is a highly conserved surface protein that can induce protective CD4(+) T-cell immune response. A pivotal role of CD4(+) T-cells in effective immunity against S. aureus infection has been proved, but CD4(+) T-cell epitopes on the S. aureus IsdB have not been well identified. In this study, MHC binding assay was firstly used to predict CD4(+) T-cell epitopes on S. aureus IsdB protein, and six peptides were synthesized to validate the probable epitopes. Two novel IsdB CD4(+) T-cell epitopes, P1 (residues 159-178) and P4 (residues 287-306), were for the first time identified using CD4(+) T-cells obtained from IsdB-immunized C57BL/6 (H-2(b)) and BALB/c (H-2(d)) mice spleen based on cell proliferation and cytokines response. The results showed that P1 and P4 emulsified in Freund's adjuvant (FA) induced much higher cell proliferation compared with PBS emulsified in FA. CD4(+) T-cells stimulated with peptides P1 and P4 secreted significantly higher levels of IFN-γ and IL-17A. However, the level of the cytokine IL-4 almost remained unchanged, suggesting that P1 and P4 preferentially elicited polarized Th1-type responses. In addition, BALB/c mice just respond to P4 not P1, while C57BL/6 mice respond to P1 not P4, implying that epitope P1 and P4 were determined as H-2(b) and H-2(d) restricted epitope, respectively. Taken together, our data may provide an explanation of the IsdB-induced protection against S. aureus and highlight the possibility of developing the epitope-based vaccine against the S. aureus.

  15. HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence.

    PubMed

    Wang, Yuge; Kapoor, Pratibha; Parks, Robert; Silva-Sanchez, Aaron; Alam, S Munir; Verkoczy, Laurent; Liao, Hua-Xin; Zhuang, Yingxin; Burrows, Peter; Levinson, Michael; Elgavish, Ada; Cui, Xiangqin; Haynes, Barton F; Schroeder, Harry

    2016-02-01

    Complementarity Determining Region 3 of the immunoglobulin (Ig) H chain (CDR-H3) lies at the center of the antigen-binding site where it often plays a decisive role in antigen recognition and binding. Amino acids encoded by the diversity (DH) gene segment are the main component of CDR-H3. Each DH has the potential to rearrange into one of six DH reading frames (RFs), each of which exhibits a characteristic amino acid hydrophobicity signature that has been conserved among jawed vertebrates by natural selection. A preference for use of RF1 promotes the incorporation of tyrosine into CDR-H3 while suppressing the inclusion of hydrophobic or charged amino acids. To test the hypothesis that these evolutionary constraints on DH sequence influence epitope recognition, we used mice with a single DH that has been altered to preferentially use RF2 or inverted RF1. B cells in these mice produce a CDR-H3 repertoire that is enriched for valine or arginine in place of tyrosine. We serially immunized this panel of mice with gp140 from HIV-1 JR-FL isolate and then used enzyme-linked immunosorbent assay (ELISA) or peptide microarray to assess antibody binding to key or overlapping HIV-1 envelope epitopes. By ELISA, serum reactivity to key epitopes varied by DH sequence. By microarray, sera with Ig CDR-H3s enriched for arginine bound to linear peptides with a greater range of hydrophobicity but had a lower intensity of binding than sera containing Ig CDR-H3s enriched for tyrosine or valine. We conclude that patterns of epitope recognition and binding can be heavily influenced by DH germ line sequence. This may help explain why antibodies in HIV-infected patients must undergo extensive somatic mutation in order to bind to specific viral epitopes and achieve neutralization. PMID:26687685

  16. Antibody Recognition of a Highly Conserved Influenza Virus Epitope

    SciTech Connect

    Ekiert, Damian C.; Bhabha, Gira; Elsliger, Marc-André; Friesen, Robert H.E.; Jongeneelen, Mandy; Throsby, Mark; Goudsmit, Jaap; Wilson, Ian A.; Scripps; Crucell

    2009-05-21

    Influenza virus presents an important and persistent threat to public health worldwide, and current vaccines provide immunity to viral isolates similar to the vaccine strain. High-affinity antibodies against a conserved epitope could provide immunity to the diverse influenza subtypes and protection against future pandemic viruses. Cocrystal structures were determined at 2.2 and 2.7 angstrom resolutions for broadly neutralizing human antibody CR6261 Fab in complexes with the major surface antigen (hemagglutinin, HA) from viruses responsible for the 1918 H1N1 influenza pandemic and a recent lethal case of H5N1 avian influenza. In contrast to other structurally characterized influenza antibodies, CR6261 recognizes a highly conserved helical region in the membrane-proximal stem of HA1 and HA2. The antibody neutralizes the virus by blocking conformational rearrangements associated with membrane fusion. The CR6261 epitope identified here should accelerate the design and implementation of improved vaccines that can elicit CR6261-like antibodies, as well as antibody-based therapies for the treatment of influenza.

  17. Epitope fluctuations in the human papillomavirus are under dynamic allosteric control: a computational evaluation of a new vaccine design strategy.

    PubMed

    Singharoy, Abhishek; Polavarapu, Abhigna; Joshi, Harshad; Baik, Mu-Hyun; Ortoleva, Peter

    2013-12-11

    The dynamic properties of the capsid of the human papillomavirus (HPV) type 16 were examined using classical molecular dynamics simulations. By systematically comparing the structural fluctuations of the capsid protein, a strong dynamic allosteric connection between the epitope containing loops and the h4 helix located more than 50 Å away is identified, which was not recognized thus far. Computer simulations show that restricting the structural fluctuations of the h4 helix is key to rigidifying the epitopes, which is thought to be required for eliciting a proper immune response. The allostery identified in the components of the HPV is nonclassical because the mean structure of the epitope carrying loops remains unchanged, but as a result of allosteric effect the structural fluctuations are altered significantly, which in turn changes the biochemical reactivity profile of the epitopes. Exploiting this novel insight, a new vaccine design strategy is proposed wherein a relatively small virus capsid fragment is deposited on a silica nanoparticle in such a way that the fluctuations of the h4 helix are suppressed. The structural and dynamic properties of the epitope carrying loops on this hybrid nanoparticle match the characteristics of epitopes found on the full virus-like particle precisely, suggesting that these nanoparticles may serve as potent, cost-effective, and safe alternatives to traditionally developed vaccines. The structural and dynamic properties of the hybrid nanoparticle are examined in detail to establish the general concepts of the proposed new design. PMID:24199651

  18. Combination of In Silico Methods in the Search for Potential CD4(+) and CD8(+) T Cell Epitopes in the Proteome of Leishmania braziliensis.

    PubMed

    E Silva, Rafael de Freitas; Ferreira, Luiz Felipe Gomes Rebello; Hernandes, Marcelo Zaldini; de Brito, Maria Edileuza Felinto; de Oliveira, Beatriz Coutinho; da Silva, Ailton Alvaro; de-Melo-Neto, Osvaldo Pompílio; Rezende, Antônio Mauro; Pereira, Valéria Rêgo Alves

    2016-01-01

    The leishmaniases are neglected tropical diseases widespread throughout the globe, which are caused by protozoans from the genus Leishmania and are transmitted by infected phlebotomine flies. The development of a safe and effective vaccine against these diseases has been seen as the best alternative to control and reduce the number of cases. To support vaccine development, this work has applied an in silico approach to search for high potential peptide epitopes able to bind to different major histocompatibility complex Class I and Class II (MHC I and MHC II) molecules from different human populations. First, the predicted proteome of Leishmania braziliensis was compared and analyzed by modern linear programs to find epitopes with the capacity to trigger an immune response. This approach resulted in thousands of epitopes derived from 8,000 proteins conserved among different Leishmania species. Epitopes from proteins similar to those found in host species were excluded, and epitopes from proteins conserved between different Leishmania species and belonging to surface proteins were preferentially selected. The resulting epitopes were then clustered, to avoid redundancies, resulting in a total of 230 individual epitopes for MHC I and 2,319 for MHC II. These were used for molecular modeling and docking with MHC structures retrieved from the Protein Data Bank. Molecular docking then ranked epitopes based on their predicted binding affinity to both MHC I and II. Peptides corresponding to the top 10 ranked epitopes were synthesized and evaluated in vitro for their capacity to stimulate peripheral blood mononuclear cells (PBMC) from post-treated cutaneous leishmaniasis patients, with PBMC from healthy donors used as control. From the 10 peptides tested, 50% showed to be immunogenic and capable to stimulate the proliferation of lymphocytes from recovered individuals. PMID:27621732

  19. Combination of In Silico Methods in the Search for Potential CD4+ and CD8+ T Cell Epitopes in the Proteome of Leishmania braziliensis

    PubMed Central

    e Silva, Rafael de Freitas; Ferreira, Luiz Felipe Gomes Rebello; Hernandes, Marcelo Zaldini; de Brito, Maria Edileuza Felinto; de Oliveira, Beatriz Coutinho; da Silva, Ailton Alvaro; de-Melo-Neto, Osvaldo Pompílio; Rezende, Antônio Mauro; Pereira, Valéria Rêgo Alves

    2016-01-01

    The leishmaniases are neglected tropical diseases widespread throughout the globe, which are caused by protozoans from the genus Leishmania and are transmitted by infected phlebotomine flies. The development of a safe and effective vaccine against these diseases has been seen as the best alternative to control and reduce the number of cases. To support vaccine development, this work has applied an in silico approach to search for high potential peptide epitopes able to bind to different major histocompatibility complex Class I and Class II (MHC I and MHC II) molecules from different human populations. First, the predicted proteome of Leishmania braziliensis was compared and analyzed by modern linear programs to find epitopes with the capacity to trigger an immune response. This approach resulted in thousands of epitopes derived from 8,000 proteins conserved among different Leishmania species. Epitopes from proteins similar to those found in host species were excluded, and epitopes from proteins conserved between different Leishmania species and belonging to surface proteins were preferentially selected. The resulting epitopes were then clustered, to avoid redundancies, resulting in a total of 230 individual epitopes for MHC I and 2,319 for MHC II. These were used for molecular modeling and docking with MHC structures retrieved from the Protein Data Bank. Molecular docking then ranked epitopes based on their predicted binding affinity to both MHC I and II. Peptides corresponding to the top 10 ranked epitopes were synthesized and evaluated in vitro for their capacity to stimulate peripheral blood mononuclear cells (PBMC) from post-treated cutaneous leishmaniasis patients, with PBMC from healthy donors used as control. From the 10 peptides tested, 50% showed to be immunogenic and capable to stimulate the proliferation of lymphocytes from recovered individuals.

  20. Combination of In Silico Methods in the Search for Potential CD4+ and CD8+ T Cell Epitopes in the Proteome of Leishmania braziliensis

    PubMed Central

    e Silva, Rafael de Freitas; Ferreira, Luiz Felipe Gomes Rebello; Hernandes, Marcelo Zaldini; de Brito, Maria Edileuza Felinto; de Oliveira, Beatriz Coutinho; da Silva, Ailton Alvaro; de-Melo-Neto, Osvaldo Pompílio; Rezende, Antônio Mauro; Pereira, Valéria Rêgo Alves

    2016-01-01

    The leishmaniases are neglected tropical diseases widespread throughout the globe, which are caused by protozoans from the genus Leishmania and are transmitted by infected phlebotomine flies. The development of a safe and effective vaccine against these diseases has been seen as the best alternative to control and reduce the number of cases. To support vaccine development, this work has applied an in silico approach to search for high potential peptide epitopes able to bind to different major histocompatibility complex Class I and Class II (MHC I and MHC II) molecules from different human populations. First, the predicted proteome of Leishmania braziliensis was compared and analyzed by modern linear programs to find epitopes with the capacity to trigger an immune response. This approach resulted in thousands of epitopes derived from 8,000 proteins conserved among different Leishmania species. Epitopes from proteins similar to those found in host species were excluded, and epitopes from proteins conserved between different Leishmania species and belonging to surface proteins were preferentially selected. The resulting epitopes were then clustered, to avoid redundancies, resulting in a total of 230 individual epitopes for MHC I and 2,319 for MHC II. These were used for molecular modeling and docking with MHC structures retrieved from the Protein Data Bank. Molecular docking then ranked epitopes based on their predicted binding affinity to both MHC I and II. Peptides corresponding to the top 10 ranked epitopes were synthesized and evaluated in vitro for their capacity to stimulate peripheral blood mononuclear cells (PBMC) from post-treated cutaneous leishmaniasis patients, with PBMC from healthy donors used as control. From the 10 peptides tested, 50% showed to be immunogenic and capable to stimulate the proliferation of lymphocytes from recovered individuals. PMID:27621732

  1. Combination of In Silico Methods in the Search for Potential CD4(+) and CD8(+) T Cell Epitopes in the Proteome of Leishmania braziliensis.

    PubMed

    E Silva, Rafael de Freitas; Ferreira, Luiz Felipe Gomes Rebello; Hernandes, Marcelo Zaldini; de Brito, Maria Edileuza Felinto; de Oliveira, Beatriz Coutinho; da Silva, Ailton Alvaro; de-Melo-Neto, Osvaldo Pompílio; Rezende, Antônio Mauro; Pereira, Valéria Rêgo Alves

    2016-01-01

    The leishmaniases are neglected tropical diseases widespread throughout the globe, which are caused by protozoans from the genus Leishmania and are transmitted by infected phlebotomine flies. The development of a safe and effective vaccine against these diseases has been seen as the best alternative to control and reduce the number of cases. To support vaccine development, this work has applied an in silico approach to search for high potential peptide epitopes able to bind to different major histocompatibility complex Class I and Class II (MHC I and MHC II) molecules from different human populations. First, the predicted proteome of Leishmania braziliensis was compared and analyzed by modern linear programs to find epitopes with the capacity to trigger an immune response. This approach resulted in thousands of epitopes derived from 8,000 proteins conserved among different Leishmania species. Epitopes from proteins similar to those found in host species were excluded, and epitopes from proteins conserved between different Leishmania species and belonging to surface proteins were preferentially selected. The resulting epitopes were then clustered, to avoid redundancies, resulting in a total of 230 individual epitopes for MHC I and 2,319 for MHC II. These were used for molecular modeling and docking with MHC structures retrieved from the Protein Data Bank. Molecular docking then ranked epitopes based on their predicted binding affinity to both MHC I and II. Peptides corresponding to the top 10 ranked epitopes were synthesized and evaluated in vitro for their capacity to stimulate peripheral blood mononuclear cells (PBMC) from post-treated cutaneous leishmaniasis patients, with PBMC from healthy donors used as control. From the 10 peptides tested, 50% showed to be immunogenic and capable to stimulate the proliferation of lymphocytes from recovered individuals.

  2. The molecular relationship between antigenic domains and epitopes on hCG.

    PubMed

    Berger, Peter; Lapthorn, Adrian J

    2016-08-01

    Antigenic domains are defined to contain a limited number of neighboring epitopes recognized by antibodies (Abs) but their molecular relationship remains rather elusive. We thoroughly analyzed the antigenic surface of the important pregnancy and tumor marker human chorionic gonadotropin (hCG), a cystine knot (ck) growth factor, and set antigenic domains and epitopes in molecular relationships to each other. Antigenic domains on hCG, its free hCGα and hCGβ subunits are dependent on appropriate inherent molecular features such as molecular accessibility and protrusion indices that determine bulging structures accessible to Abs. The banana-shaped intact hCG comprises ∼7500Å(2) of antigenic surface with minimally five antigenic domains that encompass a continuum of overlapping non-linear composite epitopes, not taking into account the C-terminal peptide extension of hCGβ (hCGβCTP). Epitopes within an antigenic domain are defined by specific Abs, that bury nearly 1000Å(2) of surface accessible area on the antigen and recognize a few up to 15 amino acid (aa) residues, whereby between 2 and 5 of these provide the essential binding energy. Variability in Ab binding modes to the contact aa residues are responsible for the variation in affinity and intra- and inter-species specificity, e.g. cross-reactions with luteinizing hormone (LH). Each genetically distinct fragment antigen binding (Fab) defines its own epitope. Consequently, recognition of the same epitope by different Abs is only possible in cases of genetically identical sequences of its binding sites. Due to combinatorial V(D)J gene segment variability of heavy and light chains, Abs defining numerous epitopes within an antigenic domain can be generated by different individuals and species. Far more than hundred Abs against the immuno-dominant antigenic domains of either subunit at both ends of the hCG-molecule, the tips of peptide loops one and three (Ł1+3) protruding from the central ck, encompassing h

  3. The molecular relationship between antigenic domains and epitopes on hCG.

    PubMed

    Berger, Peter; Lapthorn, Adrian J

    2016-08-01

    Antigenic domains are defined to contain a limited number of neighboring epitopes recognized by antibodies (Abs) but their molecular relationship remains rather elusive. We thoroughly analyzed the antigenic surface of the important pregnancy and tumor marker human chorionic gonadotropin (hCG), a cystine knot (ck) growth factor, and set antigenic domains and epitopes in molecular relationships to each other. Antigenic domains on hCG, its free hCGα and hCGβ subunits are dependent on appropriate inherent molecular features such as molecular accessibility and protrusion indices that determine bulging structures accessible to Abs. The banana-shaped intact hCG comprises ∼7500Å(2) of antigenic surface with minimally five antigenic domains that encompass a continuum of overlapping non-linear composite epitopes, not taking into account the C-terminal peptide extension of hCGβ (hCGβCTP). Epitopes within an antigenic domain are defined by specific Abs, that bury nearly 1000Å(2) of surface accessible area on the antigen and recognize a few up to 15 amino acid (aa) residues, whereby between 2 and 5 of these provide the essential binding energy. Variability in Ab binding modes to the contact aa residues are responsible for the variation in affinity and intra- and inter-species specificity, e.g. cross-reactions with luteinizing hormone (LH). Each genetically distinct fragment antigen binding (Fab) defines its own epitope. Consequently, recognition of the same epitope by different Abs is only possible in cases of genetically identical sequences of its binding sites. Due to combinatorial V(D)J gene segment variability of heavy and light chains, Abs defining numerous epitopes within an antigenic domain can be generated by different individuals and species. Far more than hundred Abs against the immuno-dominant antigenic domains of either subunit at both ends of the hCG-molecule, the tips of peptide loops one and three (Ł1+3) protruding from the central ck, encompassing h

  4. Production of mouse monoclonal antibody against Streptococcus dysgalactiae GapC protein and mapping its conserved B-cell epitope.

    PubMed

    Zhang, Limeng; Zhang, Hua; Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Zhu, Zhanbo; Cui, Yudong

    2015-02-01

    Streptococcus dysgalactiae (S. dysgalactiae) GapC protein is a protective antigen that induces partial immunity against S. dysgalactiae infection in animals. To identify the conserved B-cell epitope of S. dysgalactiae GapC, a mouse monoclonal antibody 1E11 (mAb1E11) against GapC was generated and used to screen a phage-displayed 12-mer random peptide library (Ph.D.-12). Eleven positive clones recognized by mAb1E11 were identified, most of which matched the consensus motif TGFFAKK. Sequence of the motif exactly matched amino acids 97-103 of the S. dysgalactiae GapC. In addition, the epitope (97)TGFFAKK(103) showed high homology among different streptococcus species. Site-directed mutagenic analysis further confirmed that residues G98, F99, F100 and K103 formed the core of (97)TGFFAKK(103), and this core motif was the minimal determinant of the B-cell epitope recognized by the mAb1E11. Collectively, the identification of conserved B-cell epitope within S. dysgalactiae GapC highlights the possibility of developing the epitope-based vaccine.

  5. Identification of a novel Aleutian mink disease virus B-cell epitope using a monoclonal antibody against VP2 protein.

    PubMed

    Yi, Li; Cheng, Yuening; Zhang, Miao; Cao, Zhigang; Tong, Mingwei; Cheng, Shipeng; Yan, Xijun

    2016-09-01

    Aleutian mink disease virus (AMDV) is a parvovirus that causes an immune complex-mediated disease in minks. Capsid protein VP2 is a major structural viral protein and can be used to diagnose AMDV. In this study, a specific monoclonal antibody, 1M13, was produced against the AMDV VP2 protein (amino acids 291-502). A linear VP2-protein epitope was identified by subjecting a series of partially overlapping synthesized peptides to be enzyme-linked immunosorbent assay (ELISA) analysis. The results indicated that (386)HLQQNFSTRYIYD(398) was the minimal linear epitope that could be recognized by mAb 1M13. ELISA assays revealed that mink anti-AMDV sera could also recognize the minimal linear epitope. Sequence alignments demonstrated that the linear epitope is highly conserved among AMDV strains except (386)H and is less conserved among Raccoon dog amdovirus, Gray fox amdovirus, Red fox amdovirus, Bat parvovirus and Mink enteritis parvovirus. Taken together, the generation of this VP2-specific mAb with a defined linear peptide epitope may have potential applications in the development of suitable diagnostic techniques for AMDV. PMID:27354304

  6. Identification and characterization of a native epitope common to norovirus strains GII/4, GII/7 and GII/8.

    PubMed

    Li, Xiao; Zhou, Rong; Wang, Youshao; Sheng, Huiying; Tian, Xingui; Li, Haitao; Qiu, Hongling

    2009-03-01

    Norovirus is an important cause of acute non-bacterial gastroenteritis in humans. The norovirus genus is comprised of at least five genogroups based on sequence differences. The norovirus genogroup II (GII/4) strain is recognized as the predominant genotype worldwide. We expressed a 60 kDa full-length recombinant capsid protein of norovirus GII/4 in Escherichia coli and generated three monoclonal antibodies (MAbs) against it. Western blotting indicated that all three MAbs had reactivity against the recombinant capsid protein and a 58 kDa native capsid protein of norovirus obtained from stool samples. MAb-capture ELISA showed that MAb detected segmental strains within GII antigens in clinical material. To identify the existent range of this epitope, epitope analyses were processed by expressing 12 amino acids of the GST-fusion peptides. The epitope analyses revealed that the MAb N2C3 recognized a continuous native epitope (55)WIRNNF(60) in the shell domain, which not only belongs to strain GII/4, but also to strains GII/7 and GII/8. This is a new native epitope to be reported for norovirus GII/4.

  7. Physical detection of influenza A epitopes identifies a stealth subset on human lung epithelium evading natural CD8 immunity.

    PubMed

    Keskin, Derin B; Reinhold, Bruce B; Zhang, Guang Lan; Ivanov, Alexander R; Karger, Barry L; Reinherz, Ellis L

    2015-02-17

    Vaccines eliciting immunity against influenza A viruses (IAVs) are currently antibody-based with hemagglutinin-directed antibody titer the only universally accepted immune correlate of protection. To investigate the disconnection between observed CD8 T-cell responses and immunity to IAV, we used a Poisson liquid chromatography data-independent acquisition MS method to physically detect PR8/34 (H1N1), X31 (H3N2), and Victoria/75 (H3N2) epitopes bound to HLA-A*02:01 on human epithelial cells following in vitro infection. Among 32 PR8 peptides (8-10mers) with predicted IC50 < 60 nM, 9 were present, whereas 23 were absent. At 18 h postinfection, epitope copies per cell varied from a low of 0.5 for M13-11 to a high of >500 for M1(58-66) with PA, HA, PB1, PB2, and NA epitopes also detected. However, aside from M1(58-66), natural CD8 memory responses against conserved presented epitopes were either absent or only weakly observed by blood Elispot. Moreover, the functional avidities of the immunodominant M1(58-66)/HLA-A*02:01-specific T cells were so poor as to be unable to effectively recognize infected human epithelium. Analysis of T-cell responses to primary PR8 infection in HLA-A*02:01 transgenic B6 mice underscores the poor avidity of T cells recognizing M1(58-66). By maintaining high levels of surface expression of this epitope on epithelial and dendritic cells, the virus exploits the combination of immunodominance and functional inadequacy to evade HLA-A*02:01-restricted T-cell immunity. A rational approach to CD8 vaccines must characterize processing and presentation of pathogen-derived epitopes as well as resultant immune responses. Correspondingly, vaccines may be directed against "stealth" epitopes, overriding viral chicanery.

  8. Preferential Solvation in Binary and Ternary Mixtures.

    PubMed

    Pallewela, Gayani N; Smith, Paul E

    2015-12-24

    Preferential solvation has become a useful tool to help characterize and understand the properties of liquid mixtures. Here, we provide a new quantitative measure of preferential solvation in binary and ternary mixtures that uses Kirkwood-Buff integrals as input, but differs from traditional measures. The advantages of the new measure are highlighted and compared with established literature approaches. Molecular dynamics simulations are performed to further investigate the nature of binary mixtures, as described by the new and existing measures of preferential solvation. It is shown that the new measure of preferential solvation is rigorous, has a simple physical interpretation, can be easily related to the underlying thermodynamic properties of the mixture, and naturally leads to zero values for ideal mixtures.

  9. Characterization of specific antigenic epitopes and the nuclear export signal of the Porcine circovirus 2 ORF3 protein.

    PubMed

    Gu, Jinyan; Wang, Lun; Jin, Yulan; Lin, Cui; Wang, Huijuan; Zhou, Niu; Xing, Gang; Liao, Min; Zhou, Jiyong

    2016-02-29

    Porcine circovirus 2 (PCV2) is the etiological agent of postweaning multisystemic wasting syndrome. PCV2 ORF3 protein is a nonstructural protein known to induce apoptosis, but little is known about the biological function of ORF3 protein. Therefore, we undertook this study to map ORF3 protein epitopes recognized by a panel of monoclonal antibodies (mAbs) and to characterize putative nuclear localization (NLS) and nuclear export (NES) sequences in ORF3. The linear epitopes targeted by two previously published mAbs 3B1 and 1H3 and a novel mouse mAb 3C3 were defined using overlapping pools of peptides. Here, we find that ORF3 in PCV2 infected cells contains a conformational epitope targeted by the antibody 3C3, which is distinct from linear epitopes recognized by the antibodies 3B1 and 1H3 in recombinant ORF3 protein. These results suggest that the linear epitope recognized by 3B1 and 1H3 is masked in PCV2 infected cells, and that the conformational epitope is unique to PCV2 infection. Furthermore, we find that ORF3 protein expressed in cytoplasm in early stages of PCV2 infection and then accumulated in nucleus over time. Moreover, we localize a NES at the N-terminus (residues 1-35aa) of ORF3 which plays critical role in nuclear export activity. These findings provide a novel insight that deepens our understanding of the biological function of PCV2 ORF3. PMID:26854343

  10. MHC Class I-Presented T Cell Epitopes Identified by Immunoproteomics Analysis Are Targets for a Cross Reactive Influenza-Specific T Cell Response

    PubMed Central

    Testa, James S.; Shetty, Vivekananda; Hafner, Julie; Nickens, Zacharie; Kamal, Shivali; Sinnathamby, Gomathinayagam; Philip, Ramila

    2012-01-01

    Influenza virus infection and the resulting complications are a significant global public health problem. Improving humoral immunity to influenza is the target of current conventional influenza vaccines, however, these are generally not cross-protective. On the contrary, cell-mediated immunity generated by primary influenza infection provides substantial protection against serologically distinct viruses due to recognition of cross-reactive T cell epitopes, often from internal viral proteins conserved between viral subtypes. Efforts are underway to develop a universal flu vaccine that would stimulate both the humoral and cellular immune responses leading to long-lived memory. Such a universal vaccine should target conserved influenza virus antibody and T cell epitopes that do not vary from strain to strain. In the last decade, immunoproteomics, or the direct identification of HLA class I presented epitopes, has emerged as an alternative to the motif prediction method for the identification of T cell epitopes. In this study, we used this method to uncover several cross-specific MHC class I specific T cell epitopes naturally presented by influenza A-infected cells. These conserved T cell epitopes, when combined with a cross-reactive antibody epitope from the ectodomain of influenza M2, generate cross-strain specific cell mediated and humoral immunity. Overall, we have demonstrated that conserved epitope-specific CTLs could recognize multiple influenza strain infected target cells and, when combined with a universal antibody epitope, could generate virus specific humoral and T cell responses, a step toward a universal vaccine concept. These epitopes also have potential as new tools to characterize T cell immunity in influenza infection, and may serve as part of a universal vaccine candidate complementary to current vaccines. PMID:23144892

  11. Identification of a Neutralizing Epitope within Antigenic Domain 5 of Glycoprotein B of Human Cytomegalovirus

    PubMed Central

    Wiegers, Anna-Katharina; Sticht, Heinrich; Winkler, Thomas H.; Britt, William J.

    2014-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is an important, ubiquitous pathogen that causes severe clinical disease in immunocompromised individuals, such as organ transplant recipients and infants infected in utero. The envelope glycoprotein B (gB) of HCMV is a major antigen for the induction of virus-neutralizing antibodies. We have begun to define target structures within gB that are recognized by virus-neutralizing antibodies. Antigenic domain 5 (AD-5) of gB has been identified as an important target for neutralizing antibodies in studies using human monoclonal antibodies (MAbs). Anti-AD-5 MAbs share a target site on gB, despite originating from different, healthy, HCMV-infected donors. Mutational analysis of AD-5 identified tyrosine 280 in combination with other surface-exposed residues (the YNND epitope) as critical for antibody binding. The YNND epitope is strictly conserved among different HCMV strains. Recombinant viruses carrying YNND mutations in AD-5 were resistant to virus-neutralizing MAbs. Competition enzyme-linked immunosorbent assays (ELISAs) with human HCMV-convalescent-phase sera from unselected donors confirmed the conserved antibody response for the YNND epitope in HCMV-infected individuals and, because a significant fraction of the gB AD-5 response was directed against the YNND epitope, further argued that this epitope is a major target of anti-AD-5 antibody responses. In addition, affinity-purified polyclonal anti-AD-5 antibodies prepared from individual sera showed reactivity to AD-5 and neutralization activity toward gB mutant viruses that were similar to those of AD-5-specific MAbs. Taken together, our data indicate that the YNND epitope represents an important target for anti-gB antibody responses as well as for anti-AD-5 virus-neutralizing antibodies. IMPORTANCE HCMV is a major global health concern, and a vaccine to prevent HCMV disease is a widely recognized medical need. Glycoprotein B of HCMV is an important target for neutralizing

  12. Localization and Characterization of Flavivirus Envelope Glycoprotein Cross-Reactive Epitopes

    PubMed Central

    Crill, Wayne D.; Chang, Gwong-Jen J.

    2004-01-01

    The flavivirus E glycoprotein, the primary antigen that induces protective immunity, is essential for membrane fusion and mediates binding to cellular receptors. Human flavivirus infections stimulate virus species-specific as well as flavivirus cross-reactive immune responses. Flavivirus cross-reactive antibodies in human sera create a serious problem for serodiagnosis, especially for secondary flavivirus infections, due to the difficulty of differentiating primary from secondary cross-reactive serum antibodies. The presence of subneutralizing levels of flavivirus cross-reactive serum antibodies may result in a dramatic increase in the severity of secondary flavivirus infections via antibody-dependent enhancement. An understanding of flavivirus E-glycoprotein cross-reactive epitopes is therefore critical for improving public health responses to these serious diseases. We identified six E-glycoprotein residues that are incorporated into three distinct flavivirus cross-reactive epitopes. Two of these epitopes which are recognized by distinct monoclonal antibodies contain overlapping continuous residues located within the highly conserved fusion peptide. The third epitope consists of discontinuous residues that are structurally related to the strictly conserved tryptophan at dengue virus serotype 2 E-glycoprotein position 231. PMID:15564505

  13. T-cell recognition is shaped by epitope sequence conservation in the host proteome and microbiome.

    PubMed

    Bresciani, Anne; Paul, Sinu; Schommer, Nina; Dillon, Myles B; Bancroft, Tara; Greenbaum, Jason; Sette, Alessandro; Nielsen, Morten; Peters, Bjoern

    2016-05-01

    Several mechanisms exist to avoid or suppress inflammatory T-cell immune responses that could prove harmful to the host due to targeting self-antigens or commensal microbes. We hypothesized that these mechanisms could become evident when comparing the immunogenicity of a peptide from a pathogen or allergen with the conservation of its sequence in the human proteome or the healthy human microbiome. Indeed, performing such comparisons on large sets of validated T-cell epitopes, we found that epitopes that are similar with self-antigens above a certain threshold showed lower immunogenicity, presumably as a result of negative selection of T cells capable of recognizing such peptides. Moreover, we also found a reduced level of immune recognition for epitopes conserved in the commensal microbiome, presumably as a result of peripheral tolerance. These findings indicate that the existence (and potentially the polarization) of T-cell responses to a given epitope is influenced and to some extent predictable based on its similarity to self-antigens and commensal antigens.

  14. Evaluation of a multi-epitope subunit vaccine against avian leukosis virus subgroup J in chickens.

    PubMed

    Xu, Qingqing; Ma, Xingjiang; Wang, Fangkun; Li, Hongmei; Zhao, Xiaomin

    2015-12-01

    The intricate sequence and antigenic variability of avian leukosis virus subgroup J (ALV-J) have led to unprecedented difficulties in the development of vaccines. Much experimental evidence demonstrates that ALV-J mutants have caused immune evasion and pose a challenge for traditional efforts to develop effective vaccines. To investigate the potential of a multi-epitope vaccination strategy to prevent chickens against ALV-J infections, a recombinant chimeric multi-epitope protein X (rCMEPX) containing both immunodominant B and T epitope concentrated domains selected from the major structural protein of ALV-J using bioinformatics approach was expressed in Escherichia coli Rosetta (DE3). Its immunogenicity and protective efficacy was studied in chickens. The results showed that rCMEPX could elicit neutralizing antibodies and cellular responses, and antibodies induced by rCMEPX could specifically recognize host cell naturally expressed ALV-J proteins, which indicated that the rCMEPX is a good immunogen. Challenge experiments showed 80% chickens that received rCMEPX were well protected against ALV-J challenge. This is the first report of a chimeric multi-epitope protein as a potential immunogen against ALV-J.

  15. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  16. Deciphering the molecular bases of the biological effects of antibodies against Interleukin-2: a versatile platform for fine epitope mapping.

    PubMed

    Rojas, Gertrudis; Pupo, Amaury; Leon, Kalet; Avellanet, Janet; Carmenate, Tania; Sidhu, Sachdev

    2013-01-01

    Elucidating the network of interactions established by Interleukin-2 is a key step to understanding its role as a master regulator of the immune system. Binding of this cytokine by specific antibodies gives rise to different classes of immune complexes that boost or inhibit immune responses. The molecular bases of such functional dichotomy are likely related to the nature of the recognized epitopes, making it necessary to perform fine epitope mapping studies. The current work was aimed at developing a versatile platform to do so. This was accomplished by display of human and mouse Interleukin-2 on filamentous phages, together with extensive mutagenesis of both antigens and high throughput screening of binding properties of more than 200 variants. Detailed molecular pictures of the epitopes were thus delineated for four antibodies against either human or mouse Interleukin-2, which refined and, in some cases, modified the conclusions derived from previous mapping studies with peptide libraries. Overlapping surface patches on mouse Interleukin-2 that also coincide with the predicted interface between the cytokine and its receptor alpha chain were shown to be recognized by two monoclonal antibodies that promote enhancement of immune responses, shedding new light on the structural bases of their biological activity. Our strategy was powerful enough to reveal multiple binding details and could be used to map the epitopes recognized by other antibodies and to explore additional interactions involving Interleukin-2 and related cytokines, thus contributing to our understanding of the complex structure-function relationships within the immune system.

  17. Identification of multirestricted immunodominant regions recognized by cytolytic T lymphocytes in the human immunodeficiency virus type 1 Nef protein.

    PubMed

    Culmann-Penciolelli, B; Lamhamedi-Cherradi, S; Couillin, I; Guegan, N; Levy, J P; Guillet, J G; Gomard, E

    1994-11-01

    Peripheral blood mononuclear cells from a large number of human immunodeficiency virus (HIV)-seropositive donors were used to analyze the CD8+ T-cell response to each part of the Nef protein of HIV-1/LAI. This report identifies an immunodominant region (amino acids 73 to 144) in the Nef protein that was recognized by 97% of the NEF responder donors. This peptide sequence was dissected into four epitopic regions (amino acids 73 to 82, 83 to 97, 113 to 128, and 126 to 144), each of which was recognized under different HLA class I restrictions. Short overlapping peptides were used to sensitive the target cells for cytolysis and so to determine if these epitopic regions were multirestricted. Each region was found to contain several epitopes recognized with different HLA molecules. Thus, the central region of the Nef protein, a regulatory protein expressed early in HIV-infected cells, is rich in epitopic sequences which are found to be similar in many infected individuals and which can be recognized in association with at least ten HLA class I molecules. Their implications for the vaccination of humans with peptide sequences are discussed.

  18. Genetic mapping of a highly variable norovirus GII.4 blockade epitope: potential role in escape from human herd immunity.

    PubMed

    Debbink, Kari; Donaldson, Eric F; Lindesmith, Lisa C; Baric, Ralph S

    2012-01-01

    Noroviruses account for 96% of viral gastroenteritis cases worldwide, with GII.4 strains responsible >80% of norovirus outbreaks. Histo-blood group antigens (HBGAs) are norovirus binding ligands, and antigenic and preferential HBGA binding profiles vary over time as new GII.4 strains emerge. The capsid P2 subdomain facilitates HBGA binding, contains neutralizing antibody epitopes, and likely evolves in response to herd immunity. To identify amino acids regulating HBGA binding and antigenic differences over time, we created chimeric virus-like particles (VLPs) between the GII.4-1987 and GII.4-2006 strains by exchanging amino acids in putative epitopes and characterized their antigenic and HBGA binding profiles using anti-GII.4-1987 and -2006 mouse monoclonal antibodies (MAbs) and polyclonal sera, 1988 outbreak human sera, and synthetic HBGAs. The exchange of amino acids 393 to 395 between GII.4-1987 and GII.4-2006 resulted in altered synthetic HBGA binding compared to parental strains. Introduction of GII.4-1987 residues 294, 297 to 298, 368, and 372 (epitope A) into GII.4-2006 resulted in reactivity with three anti-GII.4-1987 MAbs and reduced reactivity with four anti-GII.4-2006 MAbs. The three anti-GII.4-1987 MAbs also blocked chimeric VLP-HBGA interaction, while an anti-GII.4-2006 blocking antibody did not, indicating that epitope A amino acids comprise a potential neutralizing epitope for GII.4-1987 and GII.4-2006. We also tested GII.4-1987-immunized mouse polyclonal sera and 1988 outbreak human sera for the ability to block chimeric VLP-HBGA interaction and found that epitope A amino acids contribute significantly to the GII.4-1987 blockade response. Our data provide insights that help explain the emergence of new GII.4 epidemic strains over time, may aid development of norovirus therapeutics, and may help predict the emergence of future epidemic strains.

  19. Preferential sampling in veterinary parasitological surveillance.

    PubMed

    Cecconi, Lorenzo; Biggeri, Annibale; Grisotto, Laura; Berrocal, Veronica; Rinaldi, Laura; Musella, Vincenzo; Cringoli, Giuseppe; Catelan, Dolores

    2016-01-01

    In parasitological surveillance of livestock, prevalence surveys are conducted on a sample of farms using several sampling designs. For example, opportunistic surveys or informative sampling designs are very common. Preferential sampling refers to any situation in which the spatial process and the sampling locations are not independent. Most examples of preferential sampling in the spatial statistics literature are in environmental statistics with focus on pollutant monitors, and it has been shown that, if preferential sampling is present and is not accounted for in the statistical modelling and data analysis, statistical inference can be misleading. In this paper, working in the context of veterinary parasitology, we propose and use geostatistical models to predict the continuous and spatially-varying risk of a parasite infection. Specifically, breaking with the common practice in veterinary parasitological surveillance to ignore preferential sampling even though informative or opportunistic samples are very common, we specify a two-stage hierarchical Bayesian model that adjusts for preferential sampling and we apply it to data on Fasciola hepatica infection in sheep farms in Campania region (Southern Italy) in the years 2013-2014.

  20. On preferential flow and its measurement

    SciTech Connect

    Luxmoore, R.J.

    1991-01-01

    Preferential flow is a useful generic term for describing the process whereby water movement through a porous medium follows favored routes bypassing other parts of the medium. This term does not give any indication of the pore scales involved. Sometimes macropore flow is used to describe preferential flow and this term implies that large pores of some sort are conductive. There is no consensus definition of what constitutes a macropore so one needs to carefully determine what is meant when that term is used. The main focus of this report is on the measurement and characterization of preferential flow through structured soils, however, preferred path flow also occurs in sandy soils. Fingering flow in soils, a result of wetting front instability, is a third type of preferential flow that occurs in porous media with more or less random pore arrangement. There may not be any physically defined channels in the soil to account for this type of flow. A larger scale flow described as funnel flow by Kung et al. (1990) results from profile heterogeneity. Low permeability layers or coarse lenses in a profile may restrict vertical drainage redirecting flow laterally through specific regions of the profile (like a funnel). Water repellency can also be a factor in the development of preferential flow. 34 refs.

  1. Discovering Preferential Patterns in Sectoral Trade Networks.

    PubMed

    Cingolani, Isabella; Piccardi, Carlo; Tajoli, Lucia

    2015-01-01

    We analyze the patterns of import/export bilateral relations, with the aim of assessing the relevance and shape of "preferentiality" in countries' trade decisions. Preferentiality here is defined as the tendency to concentrate trade on one or few partners. With this purpose, we adopt a systemic approach through the use of the tools of complex network analysis. In particular, we apply a pattern detection approach based on community and pseudocommunity analysis, in order to highlight the groups of countries within which most of members' trade occur. The method is applied to two intra-industry trade networks consisting of 221 countries, relative to the low-tech "Textiles and Textile Articles" and the high-tech "Electronics" sectors for the year 2006, to look at the structure of world trade before the start of the international financial crisis. It turns out that the two networks display some similarities and some differences in preferential trade patterns: they both include few significant communities that define narrow sets of countries trading with each other as preferential destinations markets or supply sources, and they are characterized by the presence of similar hierarchical structures, led by the largest economies. But there are also distinctive features due to the characteristics of the industries examined, in which the organization of production and the destination markets are different. Overall, the extent of preferentiality and partner selection at the sector level confirm the relevance of international trade costs still today, inducing countries to seek the highest efficiency in their trade patterns.

  2. Discovering Preferential Patterns in Sectoral Trade Networks.

    PubMed

    Cingolani, Isabella; Piccardi, Carlo; Tajoli, Lucia

    2015-01-01

    We analyze the patterns of import/export bilateral relations, with the aim of assessing the relevance and shape of "preferentiality" in countries' trade decisions. Preferentiality here is defined as the tendency to concentrate trade on one or few partners. With this purpose, we adopt a systemic approach through the use of the tools of complex network analysis. In particular, we apply a pattern detection approach based on community and pseudocommunity analysis, in order to highlight the groups of countries within which most of members' trade occur. The method is applied to two intra-industry trade networks consisting of 221 countries, relative to the low-tech "Textiles and Textile Articles" and the high-tech "Electronics" sectors for the year 2006, to look at the structure of world trade before the start of the international financial crisis. It turns out that the two networks display some similarities and some differences in preferential trade patterns: they both include few significant communities that define narrow sets of countries trading with each other as preferential destinations markets or supply sources, and they are characterized by the presence of similar hierarchical structures, led by the largest economies. But there are also distinctive features due to the characteristics of the industries examined, in which the organization of production and the destination markets are different. Overall, the extent of preferentiality and partner selection at the sector level confirm the relevance of international trade costs still today, inducing countries to seek the highest efficiency in their trade patterns. PMID:26485163

  3. Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity.

    PubMed

    Burks, A W; Shin, D; Cockrell, G; Stanley, J S; Helm, R M; Bannon, G A

    1997-04-15

    Peanut allergy is a significant health problem because of the prevelance and potential severity of the allergic reaction. Serum IgE from patients with documented peanut hypersensitivity reactions and overlapping peptides were used to identify the IgE-binding epitopes on the major peanut allergen, Ara h 1. At least twenty-three different linear IgE-binding epitopes, located throughout the length of the Ara h 1 protein, were identified. All of the epitopes were 6-10 amino acids in length, but there was no obvious sequence motif shared by all peptides. Four of the peptides appeared to be immunodominant IgE-binding epitopes in that they were recognized by serum from more than 80% of the patients tested and bound more IgE than any of the other Ara h 1 epitopes. Mutational analysis of the immunodominant epitopes revealed that single amino acid changes within these peptides had dramatic effects on IgE-binding characteristics. The identification and determination of the IgE-binding capabilities of core amino acids in epitopes on the Ara h 1 protein will make it possible to address the pathophysiologic and immunologic mechanisms regarding peanut hypersensitivity reactions specifically and food hypersensitivity in general.

  4. The Relationship between B-cell Epitope and Mimotope Sequences.

    PubMed

    Zhang, Chunhua; Li, Yunyun; Tang, Weina; Zhou, Zhiguo; Sun, Pingping; Ma, Zhiqiang

    2016-01-01

    B-cell epitope is a group of residues which is on the surface of an antigen. It invokes humoral responses. Locating B-cell epitope is important for effective vaccine design, and the development of diagnostic reagents. Mimotope-based B-cell epitope prediction method is a kind of conformational B-cell epitope prediction, and the core idea of the method is mapping the mimotope sequences which are obtained from a random phage display library. However, current mimotope-based B-cell epitope prediction methods cannot maintain a high degree of satisfaction in the circumstances of employing only mimotope sequences. In this study, we did a multi-perspective analysis on parameters for conformational B-cell epitopes and characteristics between epitope and mimotope on a benchmark datasets which contains 67 mimotope sets, corresponding to 40 unique complex structures. In these 67 cases, there are 25 antigen-antibody complexes and 42 protein-protein interactions. We analyzed the two parts separately. The results showed the mimotope sequences do have some epitope features, but there are also some epitope properties that mimotope sequences do not contain. In addition, the numbers of epitope segments with different lengths were obviously different between the antigen-antibody complexes and the protein-protein interactions. This study reflects how similar do mimotope sequence and genuine epitopes have; and evaluates existing mimotope-based B-cell epitope prediction methods from a novel viewpoint.

  5. The Relationship between B-cell Epitope and Mimotope Sequences.

    PubMed

    Zhang, Chunhua; Li, Yunyun; Tang, Weina; Zhou, Zhiguo; Sun, Pingping; Ma, Zhiqiang

    2016-01-01

    B-cell epitope is a group of residues which is on the surface of an antigen. It invokes humoral responses. Locating B-cell epitope is important for effective vaccine design, and the development of diagnostic reagents. Mimotope-based B-cell epitope prediction method is a kind of conformational B-cell epitope prediction, and the core idea of the method is mapping the mimotope sequences which are obtained from a random phage display library. However, current mimotope-based B-cell epitope prediction methods cannot maintain a high degree of satisfaction in the circumstances of employing only mimotope sequences. In this study, we did a multi-perspective analysis on parameters for conformational B-cell epitopes and characteristics between epitope and mimotope on a benchmark datasets which contains 67 mimotope sets, corresponding to 40 unique complex structures. In these 67 cases, there are 25 antigen-antibody complexes and 42 protein-protein interactions. We analyzed the two parts separately. The results showed the mimotope sequences do have some epitope features, but there are also some epitope properties that mimotope sequences do not contain. In addition, the numbers of epitope segments with different lengths were obviously different between the antigen-antibody complexes and the protein-protein interactions. This study reflects how similar do mimotope sequence and genuine epitopes have; and evaluates existing mimotope-based B-cell epitope prediction methods from a novel viewpoint. PMID:26715528

  6. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV.

    PubMed

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J; Leser, George P; Lamb, Robert A; Crowe, James E; Jardetzky, Theodore S

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  7. Mapping of Lol p I allergenic epitopes by using murine monoclonal antibodies.

    PubMed

    Mourad, W; Bernier, D; Jobin, M; Hébert, J

    1989-11-01

    Murine monoclonal antibodies (MAbs) against three non-overlapping epitopes of Lol p I allergen were previously produced and subsequently used for purification of the allergen. In the present study, these MAbs were further characterized, and the biological activity of the purified allergen assessed. The three MAbs were of the IgG isotype and carried a kappa light chain. Their affinity constants were in the range of 7.4-15.1 x 10(-9) mol/l. Purified Lol p I kept its biological activity, as shown by its ability to induce histamine release by basophils of Lol p I-sensitive patients. The profiles of histamine release induced by either Lol p I or crude Lolium perenne extracts were comparable. This observation suggests that human IgE bound to basophils are polyspecific which has been confirmed by immunoblot and inhibition assay. Our data indicated also that Lol p I possesses a major allergenic epitope recognized by all human serum IgE tested. This epitope seems to be partially shared by those recognized by the three MAbs. Finally, preincubation of Lol p I with either one of the Mabs did not affect significantly the basophil-histamine release induced by the purified allergen. This suggests that Lol p I possesses allergenic sites other than the one shared by MAbs and IgE Abs.

  8. A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV

    PubMed Central

    Wen, Xiaolin; Pickens, Jennifer; Mousa, Jarrod J.; Leser, George P.; Lamb, Robert A.; Crowe, James E.; Jardetzky, Theodore S.

    2016-01-01

    Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the prophylactic monoclonal antibody palivizumab, onto HMPV F, generating a chimeric protein displaying epitopes of both viruses. We demonstrate that the resulting chimeric protein (RPM-1) is recognized by both anti-RSV and anti-HMPV F neutralizing antibodies indicating that it can be used to map the epitope specificity of antibodies raised against both viruses. Mice immunized with the RPM-1 chimeric antigen generate robust neutralizing antibody responses to MPV but weak or no cross-reactive recognition of RSV F, suggesting that grafting of the single palivizumab epitope stimulates a comparatively limited antibody response. The RPM-1 protein provides a new tool for characterizing the immune responses resulting from RSV and HMPV infections and provides insights into the requirements for developing a chimeric subunit vaccine that could induce robust and balanced immunity to both virus infections. PMID:27224013

  9. Preferential flow occurs in unsaturated conditions

    USGS Publications Warehouse

    Nimmo, John R.

    2012-01-01

    Because it commonly generates high-speed, high-volume flow with minimal exposure to solid earth materials, preferential flow in the unsaturated zone is a dominant influence in many problems of infiltration, recharge, contaminant transport, and ecohydrology. By definition, preferential flow occurs in a portion of a medium – that is, a preferred part, whether a pathway, pore, or macroscopic subvolume. There are many possible classification schemes, but usual consideration of preferential flow includes macropore or fracture flow, funneled flow determined by macroscale heterogeneities, and fingered flow determined by hydraulic instability rather than intrinsic heterogeneity. That preferential flow is spatially concentrated associates it with other characteristics that are typical, although not defining: it tends to be unusually fast, to transport high fluxes, and to occur with hydraulic disequilibrium within the medium. It also has a tendency to occur in association with large conduits and high water content, although these are less universal than is commonly assumed. Predictive unsaturated-zone flow models in common use employ several different criteria for when and where preferential flow occurs, almost always requiring a nearly saturated medium. A threshold to be exceeded may be specified in terms of the following (i) water content; (ii) matric potential, typically a value high enough to cause capillary filling in a macropore of minimum size; (iii) infiltration capacity or other indication of incipient surface ponding; or (iv) other conditions related to total filling of certain pores. Yet preferential flow does occur without meeting these criteria. My purpose in this commentary is to point out important exceptions and implications of ignoring them. Some of these pertain mainly to macropore flow, others to fingered or funneled flow, and others to combined or undifferentiated flow modes.

  10. Reverse preferential spread in complex networks

    NASA Astrophysics Data System (ADS)

    Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio

    2012-08-01

    Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.

  11. Measuring preferential attachment in evolving networks

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Néda, Z.; Barabási, A. L.

    2003-02-01

    A key ingredient of many current models proposed to capture the topological evolution of complex networks is the hypothesis that highly connected nodes increase their connectivity faster than their less connected peers, a phenomenon called preferential attachment. Measurements on four networks, namely the science citation network, Internet, actor collaboration and science coauthorship network indicate that the rate at which nodes acquire links depends on the node's degree, offering direct quantitative support for the presence of preferential attachment. We find that for the first two systems the attachment rate depends linearly on the node degree, while for the last two the dependence follows a sublinear power law.

  12. Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones.

    PubMed Central

    Meinl, E; Weber, F; Drexler, K; Morelle, C; Ott, M; Saruhan-Direskeneli, G; Goebels, N; Ertl, B; Jechart, G; Giegerich, G

    1993-01-01

    The human T cell response to the myelin basic protein (MBP) has been studied with respect to T cell receptor (TCR) usage, HLA class II restriction elements, and epitope specificity using a total of 215 long-term MBP-specific T cell lines (TCL) isolated from the peripheral blood of 13 patients with multiple sclerosis (MS) and 10 healthy donors. In most donors, the anti-MBP response was exceedingly heterogeneous. Using a panel of overlapping synthetic peptides spanning the entire length of human MBP, at least 26 epitopes recognized by human TCL could be distinguished. The MBP domain most commonly recognized was sequence 80-105 (31% of MS TCL, and 24% of control TCL). Sequence 29-48 was recognized more frequently by control-derived TCL (24%) than by TCL from MS patients (5%). The MBP epitopes were recognized in the context of DRB1 *0101, DRB5*0101, DRB1*1501, DRB1*0301, DRB1*0401, DRB1*1402, and DRB3*0102, as demonstrated using a panel of DR gene-transfected L cells. The TCR gene usage was also heterogeneous. V beta 5.2, a peptide of which is currently being used in a clinical trial for treatment of MS patients, was expressed by only one of our TCL. However, within this complex pattern of MBP-specific T cell responses, a minority of MS patients were found to exhibit a more restricted response with respect to their TCL epitope specificity. In these patients 75-87% of the TCL responded to a single, patient-specific cluster of immunodominant T cell epitopes located within a small (20-amino acid) domain of MBP. These nested clusters of immunodominant epitopes were noted within the amino acids 80-105, 108-131, and 131-153. The T cell response to the immunodominant epitopes was not monoclonal, but heterogeneous, with respect to fine specificity, TCR usage, and even HLA restriction. In one patient (H.K.), this restricted epitope profile remained stable for > 2 yr. The TCR beta chain sequences of TCL specific for the immunodominant region of HK are consistent with an

  13. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames

    PubMed Central

    1996-01-01

    An increasing amount of evidence has shown that epitopes restricted to MHC class I molecules and recognized by CTL need not be encoded in a primary open reading frame (ORF). Such epitopes have been demonstrated after stop codons, in alternative reading frames (RF) and within introns. We have used a series of frameshifts (FS) introduced into the Influenza A/PR/8 /34 nucleoprotein (NP) gene to confirm the previous in vitro observations of cryptic epitope expression, and show that they are sufficiently expressed to prime immune responses in vivo. This presentation is not due to sub-dominant epitopes, transcription from cryptic promoters beyond the point of the FS, or internal initiation of translation. By introducing additional mutations to the construct exhibiting the most potent presentation, we have identified initiation codon readthrough (termed scanthrough here, where the scanning ribosome bypasses the conventional initiation codon, initiating translation further downstream) as the likely mechanism of epitope production. Further mutational analysis demonstrated that, while it should operate during the expression of wild-type (WT) protein, scanthrough does not provide a major source of processing substrate in our system. These findings suggest (i) that the full array of self- and pathogen-derived epitopes available during thymic selection and infection has not been fully appreciated and (ii) that cryptic epitope expression should be considered when the specificity of a CTL response cannot be identified or in therapeutic situations when conventional CTL targets are limited, as may be the case with latent viral infections and transformed cells. Finally, initiation codon readthrough provides a plausible explanation for the presentation of exocytic proteins by MHC class I molecules. PMID:8879204

  14. Type- and Subcomplex-Specific Neutralizing Antibodies against Domain III of Dengue Virus Type 2 Envelope Protein Recognize Adjacent Epitopes▿

    PubMed Central

    Sukupolvi-Petty, Soila; Austin, S. Kyle; Purtha, Whitney E.; Oliphant, Theodore; Nybakken, Grant E.; Schlesinger, Jacob J.; Roehrig, John T.; Gromowski, Gregory D.; Barrett, Alan D.; Fremont, Daved H.; Diamond, Michael S.

    2007-01-01

    Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials. PMID:17881453

  15. Localization of immunodominant epitopes within the "a" determinant of hepatitis B surface antigen using monoclonal antibodies.

    PubMed

    Golsaz-Shirazi, Forough; Mohammadi, Hamed; Amiri, Mohammad Mehdi; Khoshnoodi, Jalal; Kardar, Gholam Ali; Jeddi-Tehrani, Mahmood; Shokri, Fazel

    2016-10-01

    The common "a" determinant is the major immunodominant region of hepatitis B surface antigen (HBsAg) shared by all serotypes and genotypes of hepatitis B virus (HBV). Antibodies against this region are thought to confer protection against HBV and are essential for viral clearance. Mutations within the "a" determinant may lead to conformational changes in this region, which can affect the binding of neutralizing antibodies. There is an increasing concern about identification and control of mutant viruses which is possible by comprehensive structural investigation of the epitopes located within this region. Anti-HBs monoclonal antibodies (mAbs) against different epitopes of HBsAg are a promising tool to meet this goal. In the present study, 19 anti-HBs mAbs were employed to map epitopes localized within the "a" determinant, using a panel of recombinant mutant HBsAgs. The topology of the epitopes was analyzed by competitive enzyme-linked immunosorbent assay (ELISA). Our results indicate that all of the mAbs seem to recognize epitopes within or in the vicinity of the "a" determinant of HBsAg. Different patterns of binding with mutant forms were observed with different mAbs. Amino acid substitutions at positions 123, 126, 129, 144, and 145 dramatically reduced the reactivity of antibodies with HBsAg. The T123N mutation had the largest impact on antibody binding to HBsAg. The reactivity pattern of our panel of mAbs with mutant forms of HBsAg could have important clinical implications for immunoscreening, diagnosis of HBV infection, design of a new generation of recombinant HB vaccines, and immunoprophylaxis of HBV infection as an alternative to therapy with hepatitis B immune globulin (HBIG). PMID:27439498

  16. Analysis of the functional epitopes on different HLA-A2 molecules.

    PubMed

    Goulmy, E; van der Poel, J; Giphart, M; van Rood, J J

    1984-01-01

    Recent studies show that the serologically defined HLA-A2 molecule can be subdivided according to functional and biochemical characteristics. By the use of various HLA-A2-specific cytotoxic T lymphocytes (CTLs) and isoelectric focusing, the serologically homogeneous HLA-A2 molecule can be divided into four subtypes. The polymorphism of the serologically defined HLA-A2 molecule has also been demonstrated by the use of HLA-A2-restricted CTLs. This study was designed to analyze the functional epitopes on different HLA-A2 molecules with special regard to the recognition patterns of different types of HLA-A2-restricted CTLs directed against minor histocompatibility (minor H) antigens. Fifteen so-called HLA-A2 variants belonging to distinct HLA-A2 subtypes were tested as target cells in the cell-mediated lympholysis (CML) assay against (1) HLA-A2-restricted antiminor H-Y CTLs, (2) HLA-A2 and -B7-restricted antiminor H-Y CTLs, and (3) HLA-A2, -Bw62 and -B27-restricted antiminor "HA" CTLs. We found that those three CTLs recognized only one of those HLA-A2 variants. Furthermore, positive reactions by the antiminor H CTLs were only observed on those variant cells which carried, in addition to the HLA-A2 variant, either another "normal" HLA-A2 molecule or another required restricting class I molecule necessary for associative recognition. These results indicate that the absence of HLA-A2 normal allotypic target determinant(s) leads to the loss of epitope(s) necessary for recognition of minor H-Y and minor "HA" transplantation antigens by HLA-restricted CTLs. We can conclude from the present study that HLA-A2-restricted antiminor H CTLs use, in general, the same epitope (or cluster of epitopes) for cellular recognition as alloimmune HLA-A2-specific CTLs. PMID:6204938

  17. Heligmosomoides polygyrus elicits a dominant nonprotective antibody response directed against restricted glycan and peptide epitopes.

    PubMed

    Hewitson, James P; Filbey, Kara J; Grainger, John R; Dowle, Adam A; Pearson, Mark; Murray, Janice; Harcus, Yvonne; Maizels, Rick M

    2011-11-01

    Heligmosomoides polygyrus is a widely used gastrointestinal helminth model of long-term chronic infection in mice, which has not been well-characterized at the antigenic level. We now identify the major targets of the murine primary Ab response as a subset of the secreted products in H. polygyrus excretory-secretory (HES) Ag. An immunodominant epitope is an O-linked glycan (named glycan A) carried on three highly expressed HES glycoproteins (venom allergen Ancylostoma-secreted protein-like [VAL]-1, -2, and -5), which stimulates only IgM Abs, is exposed on the adult worm surface, and is poorly represented in somatic parasite extracts. A second carbohydrate epitope (glycan B), present on both a non-protein high molecular mass component and a 65-kDa molecule, is widely distributed in adult somatic tissues. Whereas the high molecular mass component and 65-kDa molecules bear phosphorylcholine, the glycan B epitope itself is not phosphorylcholine. Class-switched IgG1 Abs are found to glycan B, but the dominant primary IgG1 response is to the polypeptides of VAL proteins, including also VAL-3 and VAL-4. Secondary Ab responses include the same specificities while also recognizing VAL-7. Although vaccination with HES conferred complete protection against challenge H. polygyrus infection, mAbs raised against each of the glycan epitopes and against VAL-1, VAL-2, and VAL-4 proteins were unable to do so, even though these specificities (with the exception of VAL-2) are also secreted by tissue-phase L4 larvae. The primary immune response in susceptible mice is, therefore, dominated by nonprotective Abs against a small subset of antigenic epitopes, raising the possibility that these act as decoy specificities that generate ineffective humoral immunity. PMID:21964031

  18. Babesia bigemina: identification of B cell epitopes associated with parasitized erythrocytes.

    PubMed

    Vidotto, O; McElwain, T F; Machado, R Z; Perryman, L E; Suarez, C E; Palmer, G H

    1995-12-01

    Rhoptries are involved in host cell invasion and rhoptry polypeptides, including the Babesia bigemina rhoptry-associated protein-1 (RAP-1), are targets for protective immune responses. Polyclonal antisera produced against isolated rhoptries is directed predominantly against RAP-1 and reacts with both the merozoite and the membrane of parasitized erythrocytes. To determine whether these B cell epitopes associated with the parasitized erythrocyte are derived from RAP-1 or, alternatively, from previously undetected merozoite polypeptides, monoclonal antibodies (mAbs) were generated from mice immunized with rhoptries isolated from the JG-29 clone of the Mexico strain. The anti-RAP-1 mAbs bound only merozoites in a punctate immunofluorescence pattern. A second group of four mAbs, none of which were reactive with RAP-1, bound the parasitized erythrocyte. Two of these latter mAbs, 64/44.17.3 and 64/05.7.2, reacted only with parasitized erythrocytes that had been permeabilized. MAb 64/44.17.3 bound a 54-kDa merozoite polypeptide while 64/05.7.2 bound a > or = 225-kDa merozoite polypeptide. MAbs 64/32.8.5 and 64/38.5.3 recognized epitopes on 17.5- and 76-kDa polypeptides exposed on the external surface of intact parasitized erythrocytes. The results indicate that the identified RAP-1 epitopes are not associated with the erythrocyte cytoskeleton or membrane and that anti-RAP-1 immunity is most likely generated against the free merozoite. All new mAbs reacted with every B. bigemina strain tested (Mexico, Puerto Rico, St. Croix, Texcoco, Jaboticabal). The conservation of RAP-1 epitopes among these strains supports the continued testing of RAP-1 as a vaccine component. In addition, the identification of epitopes expressed on the surface of erythrocytes infected with all five strains provides new candidate immunogens.

  19. CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria

    PubMed Central

    Beck, Christina M.; Willett, Julia L. E.; Kim, Jeff J.; Low, David A.; Hayes, Christopher S.

    2016-01-01

    Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. PMID:27723824

  20. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response.

    PubMed

    Charles-Niño, Claudia; Pedroza-Roldan, Cesar; Viveros, Monica; Gevorkian, Goar; Manoutcharian, Karen

    2011-07-18

    The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens.

  1. Properties of cryptic epitopes and their corresponding antibodies as indicated by the study of human and ovine growth hormones.

    PubMed

    Loureiro, M E; Marino, V J; Mathieu, P A; Duhalde, M; Roguin, L P; Peña, C; Retegui, L A

    2007-01-01

    Antibodies (Ab) directed to hidden antigenic determinants (cryptotopes) are undesirable because they are not neutralizing. Additionally, we have previously demonstrated a close association between the extent of Ab to cryptic determinants and the expression of autoantibodies (autoAb) under some experimental conditions. Thus, the first objective of this work was to establish the physicochemical characteristics of Ab to cryptotopes and the second one was to examine the structural features of cryptic epitopes themselves. Using human and ovine growth hormones (hGH and oGH) as antigenic models and competition ELISA under different conditions of temperature, pH or ionic strength, we did not find any difference between the binding properties of anti-cryptic epitope antibodies (Ab) and anti-native epitope Ab. Then, using synthetic peptides and tryptic digests and direct and competition ELISAs we studied the structures of cryptic hGH and oGH epitopes. Isolated peptides either in solution or adsorbed on microplates failed to react. Partially digested hGH was recognized only when insolubilized on microplates, and anti-oGH Ab only reacted with a large fragment of the hormone either in solution or insolubilized. These results indicate that, at least in the case of hGH and oGH, cryptic epitopes are not simple linear sequences, as commonly referred without any evidence, but new exposed conformational structures different from those found in the native antigen.

  2. Characterization of HPV16 L1 loop domains in the formation of a type-specific, conformational epitope

    PubMed Central

    Olcese, Vanessa A; Chen, Yan; Schlegel, Richard; Yuan, Hang

    2004-01-01

    Background Virus-like particles (VLPs) formed by the human papillomavirus (HPV) L1 capsid protein are currently being tested in clinical trials as prophylactic vaccines against genital warts and cervical cancer. The efficacy of these vaccines is critically dependent upon L1 type-specific conformational epitopes. To investigate the molecular determinants of the HPV16 L1 conformational epitope recognized by monoclonal antibody 16A, we utilized a domain-swapping approach to generate a series of L1 proteins composed of a canine oral papillomavirus (COPV) L1 backbone containing different regions of HPV16 L1. Results Gross domain swaps, which did not alter the ability of L1 to assemble into VLPs, demonstrated that the L1 N-terminus encodes at least a component of the 16A antigenic determinant. Finer epitope mapping, using GST-L1 fusion proteins, mapped the 16A epitope to the L1 variable regions I and possibly II within the N-terminus. Conclusions These results suggest that non-contiguous loop regions of L1 display critical components of a type-specific, conformational epitope. PMID:15260888

  3. Structure-Based Design of a Protein Immunogen that Displays an HIV-1 gp41 Neutralizing Epitope

    SciTech Connect

    Stanfield, Robyn L.; Julien, Jean-Philippe; Pejchal, Robert; Gach, Johannes S.; Zwick, Michael B.; Wilson, Ian A.

    2012-06-27

    Antibody Z13e1 is a relatively broadly neutralizing anti-human immunodeficiency virus type 1 antibody that recognizes the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Based on the crystal structure of an MPER epitope peptide in complex with Z13e1 Fab, we identified an unrelated protein, interleukin (IL)-22, with a surface-exposed region that is structurally homologous in its backbone to the gp41 Z13e1 epitope. By grafting the gp41 Z13e1 epitope sequence onto the structurally homologous region in IL-22, we engineered a novel protein (Z13-IL22-2) that contains the MPER epitope sequence for use as a potential immunogen and as a reagent for the detection of Z13e1-like antibodies. The Z13-IL22-2 protein binds Fab Z13e1 with a K{sub d} of 73 nM. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is faithfully replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, leaving open the question of whether conformational changes upon binding occur in the Fab, in Z13-IL-22, or in both.

  4. Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction.

    PubMed

    de Lalla, C; Sturniolo, T; Abbruzzese, L; Hammer, J; Sidoli, A; Sinigaglia, F; Panina-Bordignon, P

    1999-08-15

    Although atopic allergy affects epitopes that were able to stimulate T cells from atopic patients. We generated a panel of Lol p5a-specific T cell clones, the majority of which recognized the peptides in a cross-reactive fashion. The computational prediction of DR ligands might thus allow the design of T cell epitopes with potential useful application in novel immunotherapy strategies.

  5. Epitope analysis of Ara h 2 and Ara h 6: characteristic patterns of IgE-binding fingerprints among individuals with similar clinical histories

    PubMed Central

    Otsu, K.; Guo, R.; Dreskin, S. C.

    2015-01-01

    Summary Background Ara h 2 and Ara h 6 are moderately homologous and highly potent peanut allergens. Objective To identify IgE-binding linear epitopes of Ara h 6, compare them to those of Ara h 2, and to stratify binding based on clinical histories. Methods Thirty highly peanut-allergic subjects were stratified by clinical history. Sera were diluted to contain the same amount of anti-peanut IgE. IgE binding to overlapping 20-mer peptides of Ara h 2 and Ara h 6 was assessed using microarrays. Results Each subject had a unique IgE-binding fingerprint to peptides; these data were coalesced into epitope binding. IgE from subjects with a history of more severe reactions (n = 19) had a smaller frequency of binding events (BEs) for both Ara h 2 (52 BEs of 152 (19×8epitopes) possible BEs and Ara h 6 (13 BEs of 133 (19×7 epitopes) possible BEs) compared to IgE from those with milder histories (n = 11) (Ara h 2: 47 BEs of 88 (11×8 epitopes) possible BEs, P < 0.01; Ara h 6: 25 BEs of 77 (11×7 epitopes) possible BEs, P < 0.001). Using an unsupervised hierarchal cluster analysis, subjects with similar histories tended to cluster. We have tentatively identified a high-risk pattern of binding to peptides of Ara h 2 and Ara h 6, predominantly in subjects with a history of more severe reactions (OR = 12.6; 95% CI: 2.0–79.5; P < 0.01). Conclusions and Clinical Relevance IgE from patients with more severe clinical histories recognize fewer linear epitopes of Ara h 2 and Ara h 6 than do subjects with milder reactions and bind these epitopes in characteristic patterns. Close examination of IgE binding to epitopes of Ara h 2 and Ara h 6 may have prognostic value. PMID:25213872

  6. High-resolution autoreactive epitope mapping and structural modeling of the 65 kDa form of human glutamic acid decarboxylase.

    PubMed

    Schwartz, H L; Chandonia, J M; Kash, S F; Kanaani, J; Tunnell, E; Domingo, A; Cohen, F E; Banga, J P; Madec, A M; Richter, W; Baekkeskov, S

    1999-04-16

    The smaller isoform of the GABA-synthesizing enzyme, glutamic acid decarboxylase 65 (GAD65), is unusually susceptible to becoming a target of autoimmunity affecting its major sites of expression, GABA-ergic neurons and pancreatic beta-cells. In contrast, a highly homologous isoform, GAD67, is not an autoantigen. We used homolog-scanning mutagenesis to identify GAD65-specific amino acid residues which form autoreactive B-cell epitopes in this molecule. Detailed mapping of 13 conformational epitopes, recognized by human monoclonal antibodies derived from patients, together with two and three-dimensional structure prediction led to a model of the GAD65 dimer. GAD65 has structural similarities to ornithine decarboxylase in the pyridoxal-5'-phosphate-binding middle domain (residues 201-460) and to dialkylglycine decarboxylase in the C-terminal domain (residues 461-585). Six distinct conformational and one linear epitopes cluster on the hydrophilic face of three amphipathic alpha-helices in exons 14-16 in the C-terminal domain. Two of those epitopes also require amino acids in exon 4 in the N-terminal domain. Two distinct epitopes reside entirely in the N-terminal domain. In the middle domain, four distinct conformational epitopes cluster on a charged patch formed by amino acids from three alpha-helices away from the active site, and a fifth epitope resides at the back of the pyridoxal 5'-phosphate binding site and involves amino acid residues in exons 6 and 11-12. The epitopes localize to multiple hydrophilic patches, several of which also harbor DR*0401-restricted T-cell epitopes, and cover most of the surface of the protein. The results reveal a remarkable spectrum of human autoreactivity to GAD65, targeting almost the entire surface, and suggest that native folded GAD65 is the immunogen for autoreactive B-cells. PMID:10222205

  7. Theoretical analysis of the neuraminidase epitope of the Mexican A H1N1 influenza strain, and experimental studies on its interaction with rabbit and human hosts.

    PubMed

    Loyola, Paola Kinara Reyes; Campos-Rodríguez, R; Bello, Martiniano; Rojas-Hernández, S; Zimic, Mirko; Quiliano, Miguel; Briz, Verónica; Muñoz-Fernández, M Angeles; Tolentino-López, Luis; Correa-Basurto, Jose

    2013-05-01

    The neuraminidase (NA) epitope from the Mexican AH1N1 influenza virus was identified by using sequences registered at the GenBank during the peak of a pandemic (from April 2009 to October 2010). First, NA protein sequences were submitted for multiple alignment analysis, and their three-dimensional models (3-D) were then built by using homology modeling. The most common sequence (denominated wild-type) and its mutants were submitted to linear and nonlinear epitope predictors, which included the major histocompatibility complex type II (MHC II) and B-cell peptides. The epitope prediction was in accordance with evolutionary behavior and some protein structural properties. The latter included a low NA mutation rate, NA 3-D surface exposure, and the presence of high hindrance side chain residues. After selecting the epitope, docking studies and molecular dynamics (MD) simulations were used to explore interactions between the epitope and MHC II. Afterward, several experimental assays were performed to validate the theoretical study by using antibodies from humans (infected by pandemic H1N1) and rabbits (epitope vaccination). The results show 119 complete sequences that were grouped into 28 protein sequences according to their identity (one wild-type and 27 representative mutants (1-5 mutations)). The predictors yielded several epitopes, with the best fit being the one located in the C-terminal region. Theoretical methods demonstrated that the selected epitope reached the P4, P6, P7, and P9 pockets of MHC II, whereas the experimental evidence indicates that the epitope is recognized by human antibodies and also by rabbit antibodies immunized with the peptide.

  8. The Probabilistic Nature of Preferential Choice

    ERIC Educational Resources Information Center

    Rieskamp, Jorg

    2008-01-01

    Previous research has developed a variety of theories explaining when and why people's decisions under risk deviate from the standard economic view of expected utility maximization. These theories are limited in their predictive accuracy in that they do not explain the probabilistic nature of preferential choice, that is, why an individual makes…

  9. Nanobody Binding to a Conserved Epitope Promotes Norovirus Particle Disassembly

    PubMed Central

    Koromyslova, Anna D.

    2014-01-01

    ABSTRACT Human noroviruses are icosahedral single-stranded RNA viruses. The capsid protein is divided into shell (S) and protruding (P) domains, which are connected by a flexible hinge region. There are numerous genetically and antigenically distinct noroviruses, and the dominant strains evolve every other year. Vaccine and antiviral development is hampered by the difficulties in growing human norovirus in cell culture and the continually evolving strains. Here, we show the X-ray crystal structures of human norovirus P domains in complex with two different nanobodies. One nanobody, Nano-85, was broadly reactive, while the other, Nano-25, was strain specific. We showed that both nanobodies bound to the lower region on the P domain and had nanomolar affinities. The Nano-85 binding site mainly comprised highly conserved amino acids among the genetically distinct genogroup II noroviruses. Several of the conserved residues also were recognized by a broadly reactive monoclonal antibody, which suggested this region contained a dominant epitope. Superposition of the P domain nanobody complex structures into a cryoelectron microscopy particle structure revealed that both nanobodies bound at occluded sites on the particles. The flexible hinge region, which contained ∼10 to 12 amino acids, likely permitted a certain degree of P domain movement on the particles in order to accommodate the nanobodies. Interestingly, the Nano-85 binding interaction with intact particles caused the particles to disassemble in vitro. Altogether, these results suggested that the highly conserved Nano-85 binding epitope contained a trigger mechanism for particle disassembly. Principally, this epitope represents a potential site of norovirus vulnerability. IMPORTANCE We characterized two different nanobodies (Nano-85 and Nano-25) that bind to human noroviruses. Both nanobodies bound with high affinities to the lower region of the P domain, which was occluded on intact particles. Nano-25 was

  10. The U4 Antibody Epitope on Human Papillomavirus 16 Identified by Cryo-electron Microscopy

    PubMed Central

    Guan, Jian; Bywaters, Stephanie M.; Brendle, Sarah A.; Lee, Hyunwook; Ashley, Robert E.; Christensen, Neil D.

    2015-01-01

    ABSTRACT The human papillomavirus (HPV) major structural protein L1 composes capsomers that are linked together through interactions mediated by the L1 C terminus to constitute a T=7 icosahedral capsid. H16.U4 is a type-specific monoclonal antibody recognizing a conformation-dependent neutralizing epitope of HPV thought to include the L1 protein C terminus. The structure of human papillomavirus 16 (HPV16) complexed with H16.U4 fragments of antibody (Fab) was solved by cryo-electron microscopy (cryo-EM) image reconstruction. Atomic structures of virus and Fab were fitted into the corresponding cryo-EM densities to identify the antigenic epitope. The antibody footprint mapped predominately to the L1 C-terminal arm with an additional contact point on the side of the capsomer. This footprint describes an epitope that is presented capsid-wide. However, although the H16.U4 epitope suggests the presence of 360 potential binding sites exposed in the capsid valley between each capsomer, H16.U4 Fab bound only to epitopes located around the icosahedral five-fold vertex of the capsid. Thus, the binding characteristics of H16.U4 defined in this study showed a distinctive selectivity for local conformation-dependent interactions with specific L1 invading arms between five-fold related capsomers. IMPORTANCE Human papillomavirus 16 (HPV16) is the most prevalent oncogenic genotype in HPV-associated anogenital and oral cancers. Here we use cryo-EM reconstruction techniques to solve the structures of the HPV16 capsid complexes using H16.U4 fragment of antibody (Fab). Different from most other antibodies directed against surface loops, H16.U4 monoclonal antibody is unique in targeting the C-terminal arm of the L1 protein. This monoclonal antibody (MAb) is used throughout the HPV research community in HPV serological and vaccine development and to define mechanisms of HPV uptake. The unique binding mode of H16.U4 defined here shows important conformation-dependent interactions within

  11. Biochemical, Biophysical and IgE-Epitope Characterization of the Wheat Food Allergen, Tri a 37

    PubMed Central

    Pahr, Sandra; Selb, Regina; Weber, Milena; Focke-Tejkl, Margarete; Hofer, Gerhard; Dordić, Andela; Keller, Walter; Papadopoulos, Nikolaos G.; Giavi, Stavroula; Mäkelä, Mika; Pelkonen, Anna; Niederberger, Verena; Vrtala, Susanne; Valenta, Rudolf

    2014-01-01

    Wheat is an important staple food and potent allergen source. Recently, we isolated a cDNA coding for wheat alpha-purothionin which is recognized by wheat food allergic patients at risk for severe wheat-induced allergy. The purpose of the present study was the biochemical, biophysical and IgE epitope characterization of recombinant alpha-purothionin. Synthetic genes coding for alpha-purothionin were expressed in a prokaryotic system using Escherichia coli and in a eukaryotic expression system based on baculovirus-infected Sf9-insect cells. Recombinant proteins were purified and characterized by SDS-PAGE, mass spectrometry, circular dichroism, chemical cross-linking and size exclusion chromatography. Five overlapping peptid were synthesized for epitope mapping. Alpha-purothionin-specific rabbit antibodies were raised to perform IgE-inhibition experiments and to study the resistance to digestion. The IgE reactivity of the proteins and peptides from ten wheat food allergic patients was studied in non-denaturing RAST-based binding assays. Alpha-purothionin was expressed in the prokaryotic (EcTri a 37) and in the eukaryotic system (BvTri a 37) as a soluble and monomeric protein. However, circular dichroism analysis revealed that EcTri a 37 was unfolded whereas BvTri a 37 was a folded protein. Both proteins showed comparable IgE-reactivity and the epitope mapping revealed the presence of sequential IgE epitopes in the N-terminal basic thionin domain (peptide1:KSCCRSTLGRNCYNLCRARGAQKLCAGVCR) and in the C-terminal acidic extension domain (peptide3:KGFPKLALESNSDEPDTIEYCNLGCRSSVC, peptide4:CNLGCRSSVCDYMVNAAADDEEMKLYVEN). Natural Tri a 37 was digested under gastric conditions but resistant to duodenal digestion. Immunization with EcTri a 37 induced IgG antibodies which recognized similar epitopes as IgE antibodies from allergic patients and inhibited allergic patients' IgE binding. Reactivity to Tri a 37 does not require a folded protein and the presence of sequential Ig

  12. Biochemical, biophysical and IgE-epitope characterization of the wheat food allergen, Tri a 37.

    PubMed

    Pahr, Sandra; Selb, Regina; Weber, Milena; Focke-Tejkl, Margarete; Hofer, Gerhard; Dordić, Andela; Keller, Walter; Papadopoulos, Nikolaos G; Giavi, Stavroula; Mäkelä, Mika; Pelkonen, Anna; Niederberger, Verena; Vrtala, Susanne; Valenta, Rudolf

    2014-01-01

    Wheat is an important staple food and potent allergen source. Recently, we isolated a cDNA coding for wheat alpha-purothionin which is recognized by wheat food allergic patients at risk for severe wheat-induced allergy. The purpose of the present study was the biochemical, biophysical and IgE epitope characterization of recombinant alpha-purothionin. Synthetic genes coding for alpha-purothionin were expressed in a prokaryotic system using Escherichia coli and in a eukaryotic expression system based on baculovirus-infected Sf9-insect cells. Recombinant proteins were purified and characterized by SDS-PAGE, mass spectrometry, circular dichroism, chemical cross-linking and size exclusion chromatography. Five overlapping peptide were synthesized for epitope mapping. Alpha-purothionin-specific rabbit antibodies were raised to perform IgE-inhibition experiments and to study the resistance to digestion. The IgE reactivity of the proteins and peptides from ten wheat food allergic patients was studied in non-denaturing RAST-based binding assays. Alpha-purothionin was expressed in the prokaryotic (EcTri a 37) and in the eukaryotic system (BvTri a 37) as a soluble and monomeric protein. However, circular dichroism analysis revealed that EcTri a 37 was unfolded whereas BvTri a 37 was a folded protein. Both proteins showed comparable IgE-reactivity and the epitope mapping revealed the presence of sequential IgE epitopes in the N-terminal basic thionin domain (peptide1:KSCCRSTLGRNCYNLCRARGAQKLCAGVCR) and in the C-terminal acidic extension domain (peptide3:KGFPKLALESNSDEPDTIEYCNLGCRSSVC, peptide4:CNLGCRSSVCDYMVNAAADDEEMKLYVEN). Natural Tri a 37 was digested under gastric conditions but resistant to duodenal digestion. Immunization with EcTri a 37 induced IgG antibodies which recognized similar epitopes as IgE antibodies from allergic patients and inhibited allergic patients' IgE binding. Reactivity to Tri a 37 does not require a folded protein and the presence of sequential Ig

  13. Epitope Analysis of Anti-Myeloperoxidase Antibodies in Patients with ANCA-Associated Vasculitis

    PubMed Central

    Gou, Shen-Ju; Xu, Peng-Cheng; Chen, Min; Zhao, Ming-Hui

    2013-01-01

    Objective Increasing evidences have suggested the pathogenic role of anti-neutrophil cytoplasmic antibodies (ANCA) directing myeloperoxidase (MPO) in ANCA-associated vasculitis (AAV). The current study aimed to analyze the association between the linear epitopes of MPO-ANCA and clinicopathological features of patients with AAV. Methods Six recombinant linear fragments, covering the whole length amino acid sequence of a single chain of MPO, were produced from E.coli. Sera from 77 patients with AAV were collected at presentation. 13 out of the 77 patients had co-existence of serum anti-GBM antibodies. Ten patients also had sequential sera during follow up. The epitope specificities were detected by enzyme-linked immunosorbent assay using the recombinant fragments as solid phase ligands. Results Sera from 45 of the 77 (58.4%) patients with AAV showed a positive reaction to one or more linear fragments of the MPO chain. The Birmingham Vasculitis Activity Scores and the sera creatinine were significantly higher in patients with positive binding to the light chain fragment than that in patients without the binding. The epitopes recognized by MPO-ANCA from patients with co-existence of serum anti-GBM antibodies were mainly located in the N-terminus of the heavy chain. In 5 out of the 6 patients, whose sera in relapse recognize linear fragments, the reactivity to linear fragments in relapse was similar to that of initial onset. Conclusion The epitope specificities of MPO-ANCA were associated with disease activity and some clinicopathological features in patients with ANCA-associated vasculitis. PMID:23577119

  14. Molecular Determinants of T Cell Epitope Recognition to the Common Timothy Grass Allergen

    PubMed Central

    Oseroff, Carla; Sidney, John; Kotturi, Maya F.; Kolla, Ravi; Alam, Rafeul; Broide, David H.; Wasserman, Stephen I.; Weiskopf, Daniela; McKinney, Denise M.; Chung, Jo L.; Petersen, Arnd; Grey, Howard; Peters, Bjoern; Sette, Alessandro

    2012-01-01

    We investigated the molecular determinants of allergen-derived T cell epitopes in humans utilizing the Phleum pratense (Timothy grass) allergens (Phl p). PBMCs from allergic individuals were tested in ELISPOT assays with overlapping peptides spanning known Phl p allergens. A total of 43 distinct antigenic regions were recognized, illustrating the large breadth of grass-specific T cell epitopes. Th2 cytokines (as represented by IL-5) were predominant, whereas IFN-γ, IL-10, and IL-17 were detected less frequently. Responses from specific immunotherapy treatment individuals were weaker and less consistent, yet similar in epitope specificity and cytokine pattern to allergic donors, whereas nonallergic individuals were essentially nonreactive. Despite the large breadth of recognition, nine dominant antigenic regions were defined, each recognized by multiple donors, accounting for 51% of the total response. Multiple HLA molecules and loci restricted the dominant regions, and the immunodominant epitopes could be predicted using bioinformatic algorithms specific for 23 common HLA-DR, DP, and DQ molecules. Immunodominance was also apparent at the Phl p Ag level. It was found that 52, 19, and 14% of the total response was directed to Phl p 5, 1, and 3, respectively. Interestingly, little or no correlation between Phl p-specific IgE levels and T cell responses was found. Thus, certain intrinsic features of the allergen protein might influence immunogenicity at the level of T cell reactivity. Consistent with this notion, different Phl p Ags were associated with distinct patterns of IL-5, IFN-γ, IL-10, and IL-17 production. PMID:20554959

  15. Characterization and Formulation of Multiple Epitope-Specific Neutralizing Monoclonal Antibodies for Passive Immunization against Cryptosporidiosis

    PubMed Central

    Schaefer, Deborah A.; Auerbach-Dixon, Beth A.; Riggs, Michael W.

    2000-01-01

    The coccidian parasite Cryptosporidium parvum causes diarrhea in humans, calves, and other mammals. Neither immunization nor parasite-specific pharmaceuticals that are consistently effective against this organism are available. While polyclonal antibodies against whole C. parvum reduce infection, their efficacy and predictability are suboptimal. We hypothesized that passive immunization against cryptosporidiosis could be improved by using neutralizing monoclonal antibodies (MAbs) targeting functionally defined antigens on the infective stages. We previously reported that the apical complex and surface-exposed zoite antigens CSL, GP25-200, and P23 are critical in the infection process and are therefore rational targets. In the present study, a panel of 126 MAbs generated against affinity-purified CSL, GP25-200, and P23 was characterized to identify the most efficacious neutralizing MAb formulation targeting each antigen. To identify neutralizing MAbs, sporozoite infectivity following exposure to individual MAbs was assessed by enzyme-linked immunosorbent assay. Of 126 MAbs evaluated, 47 had neutralizing activity. These were then evaluated individually in oocyst-challenged neonatal mice, and 14 MAbs having highly significant efficacy were identified for further testing in formulations. Epitope specificity assays were performed to determine if candidate MAbs recognized the same or different epitopes. Formulations of two or three neutralizing MAbs, each recognizing distinct epitopes, were then evaluated. A formulation of MAbs 3E2 (anti-CSL [αCSL]), 3H2 (αGP25-200), and 1E10 (αP23) provided highly significant additive efficacy over that of either individual MAbs or combinations of two MAbs and reduced intestinal infection by 86 to 93%. These findings indicate that polyvalent neutralizing MAb formulations targeting epitopes on defined antigens may provide optimal passive immunization against cryptosporidiosis. PMID:10768951

  16. Dogs recognize dog and human emotions.

    PubMed

    Albuquerque, Natalia; Guo, Kun; Wilkinson, Anna; Savalli, Carine; Otta, Emma; Mills, Daniel

    2016-01-01

    The perception of emotional expressions allows animals to evaluate the social intentions and motivations of each other. This usually takes place within species; however, in the case of domestic dogs, it might be advantageous to recognize the emotions of humans as well as other dogs. In this sense, the combination of visual and auditory cues to categorize others' emotions facilitates the information processing and indicates high-level cognitive representations. Using a cross-modal preferential looking paradigm, we presented dogs with either human or dog faces with different emotional valences (happy/playful versus angry/aggressive) paired with a single vocalization from the same individual with either a positive or negative valence or Brownian noise. Dogs looked significantly longer at the face whose expression was congruent to the valence of vocalization, for both conspecifics and heterospecifics, an ability previously known only in humans. These results demonstrate that dogs can extract and integrate bimodal sensory emotional information, and discriminate between positive and negative emotions from both humans and dogs. PMID:26763220

  17. Dogs recognize dog and human emotions.

    PubMed

    Albuquerque, Natalia; Guo, Kun; Wilkinson, Anna; Savalli, Carine; Otta, Emma; Mills, Daniel

    2016-01-01

    The perception of emotional expressions allows animals to evaluate the social intentions and motivations of each other. This usually takes place within species; however, in the case of domestic dogs, it might be advantageous to recognize the emotions of humans as well as other dogs. In this sense, the combination of visual and auditory cues to categorize others' emotions facilitates the information processing and indicates high-level cognitive representations. Using a cross-modal preferential looking paradigm, we presented dogs with either human or dog faces with different emotional valences (happy/playful versus angry/aggressive) paired with a single vocalization from the same individual with either a positive or negative valence or Brownian noise. Dogs looked significantly longer at the face whose expression was congruent to the valence of vocalization, for both conspecifics and heterospecifics, an ability previously known only in humans. These results demonstrate that dogs can extract and integrate bimodal sensory emotional information, and discriminate between positive and negative emotions from both humans and dogs.

  18. Identification of a linear B-cell epitope on the avian leukosis virus P27 protein using monoclonal antibodies.

    PubMed

    Li, Xiaofei; Qin, Liting; Zhu, Haibo; Sun, Yingjun; Cui, Xuezhi; Gao, Yadong; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2016-10-01

    Avian leukosis virus (ALV) is an avian oncogenic retrovirus that can induce various clinical tumors. The capsid protein P27 is the group-specific antigen of ALV and has many viral antigen sites that are easy to detect. In this study, we produced a monoclonal antibody (mAb), 3A9, that is specific for the P27 protein. A series of partially overlapping peptides were screened to define (181)PPSAR(185) as the minimal linear epitope recognized by mAb 3A9. The identified epitope could be recognized by chicken anti-ALV and mouse anti-ALV P27 sera. The epitope was highly conserved among a number of ALV-A, ALV-B and ALV-J strains. MAb 3A9 might be a valuable tool for the development of new immunodiagnostic approaches for ALV, and the defined linear epitope might help further our understanding of the antigenic structure of the P27 protein. PMID:27438076

  19. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta.

    PubMed

    Gómez, Isabel; Arenas, Iván; Benitez, Itzel; Miranda-Ríos, Juan; Becerril, Baltazar; Grande, Ricardo; Almagro, Juan Carlos; Bravo, Alejandra; Soberón, Mario

    2006-11-10

    The Bacillus thuringiensis Cry toxins are specific to different insects. In Manduca sexta cadherin (Bt-R1) and aminopeptidase-N (APN) proteins are recognized as Cry1A receptors. Previous work showed that Cry1Ab binds to Bt-R1 promoting the formation of a pre-pore oligomer that binds to APN leading to membrane insertion. In this work we characterized the binding epitopes involved in the sequential interaction of Cry1Ab with Bt-R1 and APN. A Cry1Ab immune M13 phage repertoire was constructed using antibody gene transcripts of bone marrow or spleen from a rabbit immunized with Cry1Ab. We identified antibodies that recognize domain II loop 3 (scFvL3-3) or beta16-beta22 (scFvM22) in domain III. Enzyme-linked immunosorbent assay and toxin overlay binding competition assays in the presence of scFvL3-3, scFvM22, or synthetic peptides showed that domain II loop 3 is an important epitope for interaction with Bt-R1 receptor, whereas domain III beta16 is involved in the interaction with APN. Both scFvL3-3 and scFvM22 lowered the toxicity of Cry1Ab to M. sexta larvae indicating that interaction with both receptors is important for in vivo toxicity. scFvL3-3 and anti-loop2 scFv (scFv73) promoted the formation of the pre-pore oligomer in contrast to scFvM22. In addition, scFvL3-3 and scFv73 preferentially recognized the monomeric toxin rather than the pre-pore suggesting a conformational change in domain II loops upon oligomerization. These results indicate for the first time that both receptor molecules participate in Cry1Ab toxin action in vivo: first the monomeric toxin binds to Bt-R1 through loops 2 and 3 of domain II promoting the formation of the pre-pore inducing some structural changes, then the pre-pore interacts with APN through beta-16 of domain III promoting membrane insertion and cell death.

  20. Multiple HLA Epitopes Contribute to Type 1 Diabetes Susceptibility

    PubMed Central

    Roark, Christina L.; Anderson, Kirsten M.; Simon, Lucas J.; Schuyler, Ronald P.; Aubrey, Michael T.; Freed, Brian M.

    2014-01-01

    Disease susceptibility for type 1 diabetes is strongly associated with the inheritance of specific HLA alleles. However, conventional allele frequency analysis can miss HLA associations because many alleles are rare. In addition, disparate alleles that have similar peptide-binding sites, or shared epitopes, can be missed. To identify the HLA shared epitopes associated with diabetes, we analyzed high-resolution genotyping for class I and class II loci. The HLA epitopes most strongly associated with susceptibility for disease were DQB1 A57, DQA1 V76, DRB1 H13, and DRB1 K71, whereas DPB1 YD9,57, HLA-B C67, and HLA-C YY9,116 were more weakly associated. The HLA epitopes strongly associated with resistance were DQB1 D57, DQA1 Y80, DRB1 R13, and DRB1 A71. A dominant resistance phenotype was observed for individuals bearing a protective HLA epitope, even in the presence of a susceptibility epitope. In addition, an earlier age of disease onset correlated with significantly greater numbers of susceptibility epitopes and fewer resistance epitopes (P < 0.0001). The prevalence of both DQ and DR susceptibility epitopes was higher in patients than in control subjects and was not exclusively a result of linkage disequilibrium, suggesting that multiple HLA epitopes may work together to increase the risk of developing diabetes. PMID:24357703

  1. Recognizing Prefixes in Scientific Quantities

    ERIC Educational Resources Information Center

    Sokolowski, Andrzej

    2015-01-01

    Although recognizing prefixes in physical quantities is inherent for practitioners, it might not be inherent for students, who do not use prefixes in their everyday life experiences. This deficiency surfaces in AP Physics exams. For example, readers of an AP Physics exam reported "a common mistake of incorrectly converting nanometers to…

  2. Do You Recognize This Parent?

    ERIC Educational Resources Information Center

    Wallace, Edna

    1997-01-01

    Suggests effective ways to work with parents who may be permissive, busy, detached, overprotective, or negative. Recommends that child care professionals be sensitive and understanding, recognize other demands on parents' time and communicate competitively with them, use terms parents understand, accept various levels of parental involvement, be…

  3. Satellite observed preferential states in soil moisture

    NASA Astrophysics Data System (ADS)

    Vilasa, Luis U.; De Jeu, Richard A. M.; Dolman, Han A. J.; Wang, Guojie

    2013-04-01

    This study presents observational evidence for the existence of preferential states in soil moisture content. Recently there has been much debate about the existence, location and explanations for preferential states in soil moisture. A number of studies have provided evidence either in support or against the hypothesis of a positive feedback mechanism between soil moisture and subsequent precipitation in certain regions. Researchers who support the hypothesis that preferential states in soil moisture holds information about land atmosphere feedback base their theory on the impact of soil moisture on the evaporation process. Evaporation recycles moisture to the atmosphere and soil moisture has a direct impact on the supply part of this process but also on the partitioning of the available energy for evaporation. According to this theory, the existence of soil moisture bimodality can be used as an indication of possible land-atmosphere feedbacks, to be compared with model simulations of soil moisture feedbacks. On the other hand, other researchers argue that seasonality in the meteorological conditions in combination with the non-linearity of soil moisture response alone can induce bimodality. In this study we estimate the soil moisture bimodality at a global scale as derived from the recently available 30+ year ESA Climate Change Initative satellite soil moisture dataset. An Expectation-Maximization iterative algorithm is used to find the best Gaussian Mixture Model, pursuing the highest likelihood for soil moisture bimodality. With this approach we mapped the regions where bi-modal probability distribution of soil moisture appears for each month for the period between 1979-2010. These bimodality areas are analyzed and compared to maps of model simulations of soil moisture feedbacks. The areas where more than one preferential state exists compare surprisingly well with the map of land-atmosphere coupling strength from model simulations. This approach might

  4. Discovering Preferential Patterns in Sectoral Trade Networks

    PubMed Central

    Cingolani, Isabella; Piccardi, Carlo; Tajoli, Lucia

    2015-01-01

    We analyze the patterns of import/export bilateral relations, with the aim of assessing the relevance and shape of “preferentiality” in countries’ trade decisions. Preferentiality here is defined as the tendency to concentrate trade on one or few partners. With this purpose, we adopt a systemic approach through the use of the tools of complex network analysis. In particular, we apply a pattern detection approach based on community and pseudocommunity analysis, in order to highlight the groups of countries within which most of members’ trade occur. The method is applied to two intra-industry trade networks consisting of 221 countries, relative to the low-tech “Textiles and Textile Articles” and the high-tech “Electronics” sectors for the year 2006, to look at the structure of world trade before the start of the international financial crisis. It turns out that the two networks display some similarities and some differences in preferential trade patterns: they both include few significant communities that define narrow sets of countries trading with each other as preferential destinations markets or supply sources, and they are characterized by the presence of similar hierarchical structures, led by the largest economies. But there are also distinctive features due to the characteristics of the industries examined, in which the organization of production and the destination markets are different. Overall, the extent of preferentiality and partner selection at the sector level confirm the relevance of international trade costs still today, inducing countries to seek the highest efficiency in their trade patterns. PMID:26485163

  5. Brucella melitensis T Cell Epitope Recognition in Humans with Brucellosis in Peru

    PubMed Central

    Cannella, Anthony P.; Arlehamn, Cecilia S. Lindestam; Sidney, John; Patra, Kailash P.; Torres, Katherine; Tsolis, Renee M.; Liang, Li; Felgner, Philip L.; Saito, Mayuko; Gotuzzo, Eduardo; Gilman, Robert H.; Sette, Alessandro

    2014-01-01

    Brucella melitensis, one of the causative agents of human brucellosis, causes acute, chronic, and relapsing infection. While T cell immunity in brucellosis has been extensively studied in mice, no recognized human T cell epitopes that might provide new approaches to classifying and prognosticating B. melitensis infection have ever been delineated. Twenty-seven pools of 500 major histocompatibility complex class II (MHC-II) restricted peptides were created by computational prediction of promiscuous MHC-II CD4+ T cell derived from the top 50 proteins recognized by IgG in human sera on a genome level B. melitensis protein microarray. Gamma interferon (IFN-γ) and interleukin-5 (IL-5) enzyme-linked immunospot (ELISPOT) analyses were used to quantify and compare Th1 and Th2 responses of leukapheresis-obtained peripheral blood mononuclear cells from Peruvian subjects cured after acute infection (n = 9) and from patients who relapsed (n = 5). Four peptide epitopes derived from 3 B. melitensis proteins (BMEI 1330, a DegP/HtrA protease; BMEII 0029, type IV secretion system component VirB5; and BMEII 0691, a predicted periplasmic binding protein of a peptide transport system) were found repeatedly to produce significant IFN-γ ELISPOT responses in both acute-infection and relapsing patients; none of the peptides distinguished the patient groups. IL-5 responses against the panel of peptides were insignificant. These experiments are the first to systematically identify B. melitensis MHC-II-restricted CD4+ T cell epitopes recognized by the human immune response, with the potential for new approaches to brucellosis diagnostics and understanding the immunopathogenesis related to this intracellular pathogen. PMID:24126518

  6. Localization and characterization of serologic epitopes on HLA-A2.

    PubMed

    Hogan, K T; Brown, S L

    1992-03-01

    A panel of cells expressing 68 different mutant HLA-A2 genes was generated by site-directed mutagenesis and DNA-mediated gene transfer in order to define the regions of class I MHC molecules that contribute to the epitopes recognized by mAb. Each of the variant HLA-A2 molecules differed from HLA-A2.1 by a single amino acid substitution. The substitutions were located in both the alpha-helices and beta-strands of the alpha 1 and alpha 2 domains, and included residues that are highly polymorphic and that are conserved. All but five of the variant HLA-A2 molecules were expressed at levels that ranged from approximately 25%-100% the levels found for HLA-A2.1. The remaining five variants had no detectable expression and all involved substitutions at highly conserved residues. Eleven mAbs with specificities that ranged from highly HLA-A2 specific to monomorphic were analyzed for their ability to bind the variant HLA-A2 molecules. The results demonstrate that the binding of five of 11 mAbs could be mapped to the alpha 1 and alpha 2 domains. MA2.1 was the only antibody mapped to the alpha 1 domain. CR11-351 and A2,A28M1 recognized an overlapping epitope at the amino terminal end of the alpha 2-helix, and PA2.1 and BB7.2 recognized an overlapping epitope that includes the carboxy terminus of the alpha 2-helix and a turn on one of the underlying beta-strands. These results demonstrate that positions located on the surface of the molecule, but not within the peptide-binding cleft of the molecule, are important in serological specificities. PMID:1377666

  7. Proof of principle for epitope-focused vaccine design.

    PubMed

    Correia, Bruno E; Bates, John T; Loomis, Rebecca J; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J; Stevens, Eric; Schroeter, Alexandria; Chen, Man; Macpherson, Skye; Serra, Andreia M; Adachi, Yumiko; Holmes, Margaret A; Li, Yuxing; Klevit, Rachel E; Graham, Barney S; Wyatt, Richard T; Baker, David; Strong, Roland K; Crowe, James E; Johnson, Philip R; Schief, William R

    2014-03-13

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  8. Proof of principle for epitope-focused vaccine design

    PubMed Central

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Christopher; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-01-01

    Summary Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Multiple major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus (RSV), that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for research and development of a human RSV vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets including antigenically highly variable pathogens such as HIV and influenza. PMID:24499818

  9. Proof of principle for epitope-focused vaccine design

    NASA Astrophysics Data System (ADS)

    Correia, Bruno E.; Bates, John T.; Loomis, Rebecca J.; Baneyx, Gretchen; Carrico, Chris; Jardine, Joseph G.; Rupert, Peter; Correnti, Colin; Kalyuzhniy, Oleksandr; Vittal, Vinayak; Connell, Mary J.; Stevens, Eric; Schroeter, Alexandria; Chen, Man; MacPherson, Skye; Serra, Andreia M.; Adachi, Yumiko; Holmes, Margaret A.; Li, Yuxing; Klevit, Rachel E.; Graham, Barney S.; Wyatt, Richard T.; Baker, David; Strong, Roland K.; Crowe, James E.; Johnson, Philip R.; Schief, William R.

    2014-03-01

    Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus, that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for the research and development of a human respiratory syncytial virus vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets, including antigenically highly variable pathogens such as human immunodeficiency virus and influenza.

  10. Do Infants Recognize the Arcimboldo Images as Faces? Behavioral and Near-Infrared Spectroscopic Study

    ERIC Educational Resources Information Center

    Kobayashi, Megumi; Otsuka, Yumiko; Nakato, Emi; Kanazawa, So; Yamaguchi, Masami K.; Kakigi, Ryusuke

    2012-01-01

    Arcimboldo images induce the perception of faces when shown upright despite the fact that only nonfacial objects such as vegetables and fruits are painted. In the current study, we examined whether infants recognize a face in the Arcimboldo images by using the preferential looking technique and near-infrared spectroscopy (NIRS). In the first…

  11. Immunogenic Gal alpha 1----3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania.

    PubMed

    Avila, J L; Rojas, M; Galili, U

    1989-04-15

    Anti-Gal is a natural antibody present in unusually high concentrations in human sera. It constitutes as much as 1% of circulating IgG and displays a distinct specificity for the Gal alpha 1----3Gal carbohydrate epitope. In the present study, we have found in the sera of patients with Chagas' disease and Leishmania infection anti-Gal titers 10- and 16-fold higher than that of healthy or bacteria-infected individuals. This increase in anti-Gal titer seemed to be the result of a specific immune response toward parasitic Gal alpha 1----3Gal epitopes. Binding studies of affinity chromatography-purified anti-Gal antibodies to Trypanosoma cruzi and American Leishmania parasites indeed demonstrated the presence of Gal alpha 1----3Gal epitopes on these parasites. This finding was supported by the observed binding to the parasites of two additional Gal alpha 1----3Gal recognizing molecules: the mAb Gal-13, and the lectin, Bandeiraea simplicifolia I B4. Furthermore, the binding of both anti-Gal antibody and of the B. simplicifolia I B4 lectin could be inhibited by galactose, and not glucose. In addition, removal of the terminal alpha-galactosyl residues from the parasites by pretreatment with alpha-galactosidase, or the oxidation of the binding epitopes by periodate prevented the subsequent binding of both the antibody and the lectin. A crude leishmanial lipid extract readily bound these three reagents, suggesting that at least part of these epitopes are of a glycolipid nature. These Gal alpha 1----3Gal epitopes may thus serve as an antigenic source for the excess production of anti-Gal. In view of the naturally high level of anti-Gal in humans and its binding to T. cruzi and Leishmania, it is argued that these antibodies may contribute to the natural defense against the invasion of such parasites.

  12. Recognizing Body Dysmorphic Disorder (Dysmorphophobia)

    PubMed Central

    Varma, Anukriti; Rastogi, Rajesh

    2015-01-01

    Dysmorphophobia is a psychiatric condition which frequently presents in the clinics of dermatologists and plastic surgeons. This disorder (also called body dysmorphic disorder) is troublesome to the patient whilst being confusing for the doctor. This commonly undiagnosed condition can be detected by a few simple steps. Timely referral to a psychiatrist benefits most patients suffering from it. This article describes with a case vignette, how to recognize body dysmorphic disorder presenting in the dermatological or aesthetic surgery set up. Diagnostic criteria, eitiology, approach to patient, management strategy and when to refer are important learning points. The importance of recognizing this disorder timely and referring the patient to the psychiatrist for appropriate treatment is crucial. This article covers all aspects of body dysmorphic disorder relevant to dermatologists and plastic surgeons and hopes to be useful in a better understanding of this disorder. PMID:26644741

  13. Automatic Target Recognizer Database Requirements

    NASA Astrophysics Data System (ADS)

    Power, David R.

    1987-09-01

    Data representative of imaging sensors and scenarios which form the inputs for automatic target recognizers (ATRs) is critical to their development, testing and performance evaluation. The Data Base Committee of the Automatic Target Recognizer Working Group provides a forum and produces products to assist collection, distribution and use of data for development of military ATR systems. Examples discussed in the paper include digital image data exchange format specifications. Requirements for ground and image truth data have been the subject of surveys. Such inputs are intended as recommendations for consideration by imagery data collection activities whose products are potentially useful for ATR development. Other topics concerning collection, reduction, use and exchange of imaging sensor data are outlined but not discussed in detail.

  14. Recognizing Prefixes in Scientific Quantities

    NASA Astrophysics Data System (ADS)

    Sokolowski, Andrzej

    2015-09-01

    Although recognizing prefixes in physical quantities is inherent for practitioners, it might not be inherent for students, who do not use prefixes in their everyday life experiences. This deficiency surfaces in AP Physics exams. For example, readers of an AP Physics exam reported "a common mistake of incorrectly converting nanometers to meters." Similar students' mistakes were reported also by AP Chemistry readers "as in previous years, students still had difficulty converting kJ to J." While traditional teaching focuses on memorizing the symbols of prefixes, little attention is given to helping learners recognize a prefix in a given quantity. I noticed in my teaching practice that by making the processes of identifying prefixes more explicit, students make fewer mistakes on unit conversion. Thus, this paper presents an outline of a lesson that focuses on prefix recognition. It is designed for a first-year college physics class; however, its key points can be addressed to any group of physics students.

  15. Human CD8(+) T Cells Target Multiple Epitopes in Respiratory Syncytial Virus Polymerase.

    PubMed

    Burbulla, Daniel; Günther, Patrick S; Peper, Janet K; Jahn, Gerhard; Dennehy, Kevin M

    2016-06-01

    Respiratory syncytial virus (RSV) infection is a serious health problem in young children, immunocompromised patients, and the elderly. The development of novel prevention strategies, such as a vaccine to RSV, is a high priority. One strategy is to design a peptide-based vaccine that activates appropriate CD8(+) T-cell responses. However, this approach is limited by the low number of RSV peptide epitopes defined to date that activate CD8(+) T cells. We aimed to identify peptide epitopes that are presented by common human leukocyte antigen types (HLA-A*01, -A*02, and -B*07). We identify one novel HLA-A*02-restricted and two novel HLA-A*01-restricted peptide epitopes from RSV polymerase. Peptide-HLA multimer staining of specific T cells from healthy donor peripheral blood mononuclear cell, the memory phenotype of such peptide-specific T cells ex vivo, and functional IFNγ responses in short-term stimulation assays suggest that these peptides are recognized during RSV infection. Such peptides are candidates for inclusion into a peptide-based RSV vaccine designed to stimulate defined CD8(+) T-cell responses.

  16. Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization.

    PubMed Central

    Stewart, P L; Chiu, C Y; Huang, S; Muir, T; Zhao, Y; Chait, B; Mathias, P; Nemerow, G R

    1997-01-01

    Interaction of the adenovirus penton base protein with alpha v integrins promotes virus entry into host cells. The location of the integrin binding sequence Arg-Gly-Asp (RGD) on human type 2 adenovirus (Ad2) was visualized by cryo-electron microscopy (cryo-EM) and image reconstruction using a mAb (DAV-1) which recognizes a linear epitope, IRGDTFATR. The sites for DAV-1 binding corresponded to the weak density above each of the five 22 A protrusions on the adenovirus penton base protein. Modeling of a Fab fragment crystal structure into the adenovirus-Fab cryo-EM density indicated a large amplitude of motion for the Fab and the RGD epitope. An unexpected finding was that Fab fragments, but not IgG antibody molecules, inhibited adenovirus infection. Steric hindrance from the adenovirus fiber and a few bound IgG molecules, as well as epitope mobility, most likely prevent binding of IgG antibodies to all five RGD sites on the penton base protein within the intact virus. These studies indicate that the structure of the adenovirus particle facilitates interaction with cell integrins, whilst restricting binding of potentially neutralizing antibodies. PMID:9135136

  17. Recognizing species, present and past.

    PubMed

    Tattersall, Ian

    2014-01-01

    Nobody disputes that nature is meaningfully "packaged" in some way. But debate persists over exactly how (and even whether) the boundaries dividing taxa should (can) be drawn. At one end of the scale, some zealots abstrusely deny real existence to higher taxa.(1) At the other, laborers at the taxonomic rock-face confront genuine challenges in recognizing and delineating the species that systematists agree constitute the most fundamental unit of taxonomic analysis.

  18. Cytotoxic T lymphocytes from cattle immunized against Theileria parva exhibit pronounced cross-reactivity among different strain-specific epitopes of the Tp1 antigen.

    PubMed

    Steinaa, L; Saya, R; Awino, E; Toye, P

    2012-02-15

    The protozoan parasite Theileria parva causes a usually fatal disease in cattle, known as East Coast fever. Cattle can be vaccinated by injecting live parasites simultaneously with long acting oxytetracycline (the infection and treatment method, ITM). The immunity induced by ITM is believed to be mediated by cytotoxic T lymphocytes (CTL). Although effective, the ITM vaccine has disadvantages such as the need for a liquid nitrogen cold chain and a complex production process, which may be overcome by the development of a subunit vaccine. However, the high level of antigenic polymorphism among different strains of T. parva may hinder the development of a subunit vaccine aimed at induction of a protective CTL response. In this study, the CTL cross-reactivity among T. parva strains was examined. The Tp1(214-224) epitope has previously been shown to be recognized by cattle of the A18 BoLA type. Three different variants of this epitope have been identified from different T. parva strains. Here, bulk CTL and CTL clones were generated from two animals using both the live sporozoite vaccine composed of three different strains and a Muguga strain for immunization. The cross-reactivity of these CTL with the three variant Tp1 epitopes was examined in interferon gamma ELISPOT assays and CTL killing assays. CD8(+) cells from both animals cross-reacted with the three variant CTL epitopes in interferon gamma ELISPOT assays, although the CD8(+) cells from the Muguga-immunized animal showed a more epitope restricted response. Clones from the vaccine immunized animal showed diverse response patterns with clones responding to each variant peptide. Although some variability in the cytotoxic response was observed, overall strong cross-reactivity among the variant Tp1 epitopes was seen in both animals. Such epitope polymorphism does not, in this case, serve as a potential challenge in a putative subunit vaccine as it would be sufficient to only include one of the variant epitopes.

  19. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition.

    PubMed

    Hoffmann, Thomas; Krackhardt, Angela M; Antes, Iris

    2015-07-01

    T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation.

  20. A Conserved Epitope Mapped with a Monoclonal Antibody against the VP3 Protein of Goose Parvovirus by Using Peptide Screening and Phage Display Approaches

    PubMed Central

    Li, Chenxi; Liu, Hongyu; Li, Jinzhe; Liu, Dafei; Meng, Runze; Zhang, Qingshan; Shaozhou, Wulin; Bai, Xiaofei; Zhang, Tingting; Liu, Ming; Zhang, Yun

    2016-01-01

    Background Waterfowl parvovirus (WPV) infection causes high mortality and morbidity in both geese (Anser anser) and Muscovy ducks (Cairina moschata), resulting in significant losses to the waterfowl industries. The VP3 protein of WPV is a major structural protein that induces neutralizing antibodies in the waterfowl. However, B-cell epitopes on the VP3 protein of WPV have not been characterized. Methods and Results To understand the antigenic determinants of the VP3 protein, we used the monoclonal antibody (mAb) 4A6 to screen a set of eight partially expressed overlapping peptides spanning VP3. Using western blotting and an enzyme-linked immunosorbent assay (ELISA), we localized the VP3 epitope between amino acids (aa) 57 and 112. To identify the essential epitope residues, a phage library displaying 12-mer random peptides was screened with mAb 4A6. Phage clone peptides displayed a consensus sequence of YxRFHxH that mimicked the sequence 82Y/FNRFHCH88, which corresponded to amino acid residues 82 to 88 of VP3 protein of WPVs. mAb 4A6 binding to biotinylated fragments corresponding to amino acid residues 82 to 88 of the VP3 protein verified that the 82FxRFHxH88 was the VP3 epitope and that amino acids 82F is necessary to retain maximal binding to mAb 4A6. Parvovirus-positive goose and duck sera reacted with the epitope peptide by dot blotting assay, revealing the importance of these amino acids of the epitope in antibody-epitope binding reactivity. Conclusions and Significance We identified the motif FxRFHxH as a VP3-specific B-cell epitope that is recognized by the neutralizing mAb 4A6. This finding might be valuable in understanding of the antigenic topology of VP3 of WPV. PMID:27191594

  1. Immunoinformatics prediction of linear epitopes from Taenia solium TSOL18

    PubMed Central

    Zimic, Mirko; Gutiérrez, Andrés Hazaet; Gilman, Robert Hugh; López, César; Quiliano, Miguel; Evangelista, Wilfredo; Gonzales, Armando; García, Héctor Hugo; Sheen, Patricia

    2011-01-01

    Cysticercosis is a public health problem in several developing countries. The oncosphere protein TSOL18 is the most immunogenic and protective antigen ever reported against porcine cysticercosis, although no specific epitope has been identified to account for these properties. Recent evidence suggests that protection might be associated with conformational epitopes. Linear epitopes from TSOL18 were computationally predicted and evaluated for immunogenicity and protection against porcine cysticercosis. A synthetic peptide was designed based on predicted linear B cell and T cell epitopes that are exposed on the surface of the theoretically modeled structure of TSOL18. Three surface epitopes from TSOL18 were predicted as immunogenic. A peptide comprising a linear arrangement of these epitopes was chemically synthesized. The capacity of the synthetic peptide to protect pigs against an oral challenge with Taenia solium proglottids was tested in a vaccine trial. The synthetic peptide was able to produce IgG antibodies in pigs and was associated to a reduction of the number of cysts, although was not able to provide complete protection, defined as the complete absence of cysts in necropsy. This study demonstrated that B cell and T cell predicted epitopes from TSOL18 were not able to completely protect pigs against an oral challenge with Taenia solium proglottids. Therefore, other linear epitopes or eventually conformational epitopes may be responsible for the protection conferred by TSOL18. PMID:21738328

  2. Using patient serum to epitope map soybean glycinins reveals common epitopes shared with many legumes and tree nuts.

    PubMed

    Saeed, Hanaa; Gagnon, Christine; Cober, Elroy; Gleddie, Steve

    2016-02-01

    Soybean consumption is increasing in many Western diets; however, recent reviews suggest that the prevalence of soy allergy can be as high as 0.5% for the general population and up to 13% for children. The immunoglobulin-E (IgE) binding of sera from six soy-sensitive adult human subjects to soybean proteins separated by 2D gel electrophoresis was studied. Synthetic peptide sets spanning the mature glycinin subunit A2 and A3 primary sequences were used to map the IgE-binding regions. Putative epitopes identified in this study were also localized on glycinin hexamer models using bioinformatics software. We identified linear IgE-binding epitopes of the major storage protein Gly m 6 by screening individual soy-sensitive patient sera. These epitopes were then further analysed by 3D in silico model localization and compared to other plant storage protein epitopes. Web-based software applications were also used to study the ability to accurately predict epitopes with mixed results. A total of nine putative IgE-binding epitopes were identified in the glycinin A3 (A3.1-A3.3) and A2 (A2.1-A2.6) subunits. Most patients' sera IgE bound to only one or two epitopes, except for one patient's serum which bound to four different A2 epitopes. Two epitopes (A3.2 and A2.4) overlapped with a previously identified epitope hot spot of 11S globulins from other plant species. Most epitopes were predicted to be exposed on the surface of the 3D model of the glycinin hexamer. Amino acid sequence alignments of soybean acidic glycinins and other plant globulins revealed one dominant epitope hot spot among the four reported hot spots. This study may be helpful for future development of soy allergy immunotherapy and diagnosis.

  3. A case study of preferential bestiality (zoophilia).

    PubMed

    Earls, Christopher M; Lalumière, Martin L

    2002-01-01

    Humans show a wide array of sexual preferences and behaviors. Although most humans prefer and have sex with consenting adults of the opposite sex, some individuals have unconventional preferences with regard to the sex or age of sexual partners, or with regard to the nature of sexual activities. In this paper, we describe a rare case of preferential bestiality, or zoophilia. The client meets the most stringent criteria for the diagnosis of zoophilia. In particular, his phallometrically measured arousal pattern shows a sexual preference for horses over other species, including humans.

  4. Identification of B-cell epitopes on the S4 subunit of pertussis toxin.

    PubMed Central

    Ibsen, P H; Holm, A; Petersen, J W; Olsen, C E; Heron, I

    1993-01-01

    The main purpose of the present study was to identify B-cell epitopes on the S4 subunit of pertussis toxin (PT) by the synthetic peptide approach. Two strategies were followed: (i) screening of two series of overlapping peptides (12- and 25-residue peptides) covering the entire S4 sequence by a panel of murine monoclonal anti-PT antibodies and various polyclonal anti-PT antisera in an enzyme-linked immunosorbent assay (ELISA), and (ii) analysis of the S4 amino acid sequence by a predictive algorithm followed by synthesis and immunization of mice with the predicted peptides coupled to diphtheria toxoid. The anti-peptide conjugate antisera were tested in an ELISA for cross-reactivity with native PT, B oligomer, and S4. Screening of the free peptides in an ELISA by the PT antisera indicated the presence of six B-cell epitope-containing domains covered by residues 18 to 32, 33 to 46, 39 to 52, 51 to 65, 71 to 84, and 91 to 106. None of the peptides, however, were recognized by the monoclonal anti-PT antibodies in an ELISA. Immunization with six computer-predicted peptides (B1 to B6) and three potential T-cell epitopes (T1 to T3) gave rise to very high antibody responses towards the homologous conjugates. With the exception of the anti-T1/diphtheria toxoid antisera, all anti-peptide conjugate antisera cross-reacted with PT in an ELISA at different levels. None of these anti-peptide conjugate antisera, however, showed any PT-neutralizing effect as measured by the Chinese hamster ovary cell assay and the leukocytosis-promoting activity test. The results of the present study suggest that discontinuous epitopes are predominant in the S4 subunit of native PT. PMID:7684728

  5. Multiple independent IgE epitopes on the highly allergenic grass pollen allergen Phl p 5

    PubMed Central

    Levin, M; Rotthus, S; Wendel, S; Najafi, N; Källström, E; Focke-Tejkl, M; Valenta, R; Flicker, S; Ohlin, M

    2014-01-01

    Background Group 5 allergens are small proteins that consist of two domains. They belong to the most potent respiratory allergens. Objective To determine the binding sites and to study allergic patients' IgE recognition of the group 5 allergen (Phl p 5) from timothy grass pollen using human monoclonal IgE antibodies that have been isolated from grass pollen allergic patients. Methods Using recombinant isoallergens, fragments, mutants and synthetic peptides of Phl p 5, as well as peptide-specific antibodies, the interaction of recombinant human monoclonal IgE and Phl p 5 was studied using direct binding and blocking assays. Cross-reactivity of monoclonal IgE with group 5 allergens in several grasses was studied and inhibition experiments with patients' polyclonal IgE were performed. Results Monoclonal human IgE showed extensive cross-reactivity with group 5 allergens in several grasses. Despite its small size of 29 kDa, four independent epitope clusters on isoallergen Phl p 5.0101, two in each domain, were recognized by human IgE. Isoallergen Phl p 5.0201 carried two of these epitopes. Inhibition studies with allergic patients' polyclonal IgE suggest the presence of additional IgE epitopes on Phl p 5. Conclusions & Clinical Relevance Our results reveal the presence of a large number of independent IgE epitopes on the Phl p 5 allergen explaining the high allergenic activity of this protein and its ability to induce severe allergic symptoms. High-density IgE recognition may be a general feature of many potent allergens and form a basis for the development of improved diagnostic and therapeutic procedures in allergic disease. PMID:25262820

  6. Expression of Epitope-Tagged Proteins in Mammalian Cells in Culture.

    PubMed

    Bhatt, Jay M; Styers, Melanie L; Sztul, Elizabeth

    2016-01-01

    Before the advent of molecular methods to tag proteins, visualization of proteins within cells required the use of antibodies directed against the protein of interest. Thus, only proteins for which antibodies were available could be visualized. Epitope tagging allows the detection of all proteins with existing sequence information, irrespective of the availability of antibodies directed against them. This technique involves the generation of DNA constructs that express the protein of interest tagged with an epitope that can be recognized by a commercially available antibody. Proteins can be tagged with a wide variety of epitopes using commercially available vectors that allow expression in mammalian cells. Epitope-tagged proteins are easily transfected into mammalian cell lines and, in most cases, tightly mimic the behavior of the endogenous protein. Tagged proteins exogenously expressed in cells provide different types of information depending on the subsequent detection approaches. Using immunofluorescence and immunoelectron microscopy with anti-tag antibodies, relative to known markers of cellular organelles, can provide information on the subcellular localization of the tagged protein and may provide clues regarding the protein's function. Immunofluorescence with anti-tag antibodies can also be utilized to assess the tagged protein's responses to cellular signals and pharmacological treatments. Immunoprecipitations with anti-tag antibodies can recover protein complexes containing the protein of interest, resulting in the identification of interacting proteins. Recovery of tagged proteins on affinity matrices allows their purification for use in biochemical assays. In addition, specialized fluorescent tags, such as the green fluorescent protein (GFP) allow the analysis of cellular dynamics in live cells in real time. PMID:27515071

  7. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses

    PubMed Central

    Shorter, Shayla K.; Schnell, Frederick J.; McMaster, Sean R.; Pinelli, David F.; Andargachew, Rakieb; Evavold, Brian D.

    2016-01-01

    T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant. PMID:26915099

  8. Plant-based production of two chimeric monoclonal IgG antibodies directed against immunodominant epitopes of Vibrio cholerae lipopolysaccharide.

    PubMed

    Levinson, Kara J; Giffen, Samantha R; Pauly, Michael H; Kim, Do H; Bohorov, Ognian; Bohorova, Natasha; Whaley, Kevin J; Zeitlin, Larry; Mantis, Nicholas J

    2015-07-01

    We have produced and characterized two chimeric human IgG1 monoclonal antibodies that bind different immunodominant epitopes on Vibrio cholerae lipopolysaccharide (LPS). MAb 2D6 IgG1 recognizes Ogawa O-polysaccharide antigen, while mAb ZAC-3 IgG1 recognizes core/lipid A moiety of Ogawa and Inaba LPS. Both antibodies were expressed using a Nicotiana benthamiana-based rapid antibody-manufacturing platform (RAMP) and evaluated in vitro for activities associated with immunity to V. cholerae, including vibriocidal activity, bacterial agglutination and motility arrest.

  9. Therapeutic Vaccination against the Rhesus Lymphocryptovirus EBNA-1 Homologue, rhEBNA-1, Elicits T Cell Responses to Novel Epitopes in Rhesus Macaques

    PubMed Central

    Silveira, Eduardo L. V.; Fogg, Mark H.; Leskowitz, Rachel M.; Ertl, Hildegund C.; Wiseman, Roger W.; O'Connor, David H.; Lieberman, Paul; Wang, Fred

    2013-01-01

    Epstein-Barr virus (EBV) is a vaccine/immunotherapy target due to its association with several human malignancies. EBNA-1 is an EBV protein consistently expressed in all EBV-associated cancers. Herein, EBNA-1-specific T cell epitopes were evaluated after AdC–rhEBNA-1 immunizations in chronically lymphocryptovirus-infected rhesus macaques, an EBV infection model. Preexisting rhEBNA-1-specific responses were augmented in 4/12 animals, and new epitopes were recognized in 5/12 animals after vaccinations. This study demonstrated that EBNA-1-specific T cells can be expanded by vaccination. PMID:24089556

  10. Brandon RHA recognized for energy efficiency.

    PubMed

    Waddington, Kent; Neal, Gordon

    2002-01-01

    In a recent national competition recognizing leadership in energy efficiency and greenhouse gas education, Brandon Regional Health Authority was recognized for conscientious use of resources. PMID:12357581

  11. Preventing and Recognizing Prescription Drug Abuse

    MedlinePlus

    ... Abuse » Preventing and recognizing prescription drug abuse Prescription Drug Abuse Email Facebook Twitter Preventing and recognizing prescription drug abuse To ensure proper medical care, patients should discuss ...

  12. Preferential Flow in Fractured Welded Tuffs

    SciTech Connect

    Salve, Rohit

    2004-08-15

    To better understand preferential flow in fractured rock, we carried out an in situ field experiment in the Exploratory Studies Facility at Yucca Mountain, Nevada. This experiment involved the release of {approx} 22 m3 of ponded water (at a pressure head of {approx} 0.04 m) over a period of 7 months, directly onto a 12 m2 infiltration plot located on a fractured welded tuff surface. As water was released, changes in moisture content were monitored along horizontal boreholes located in the formation {approx} 19-22 m below. Distinct flow zones, varying in flow velocity, wetted cross-sectional area, and extent of lateral movement, intercepted the monitoring boreholes. There was also evidence of water being diverted above the ceiling of a cavity in the immediate vicinity of the monitoring boreholes. Observations from this field experiment suggest that isolated conduits, each encompassing a large number of fractures, develop within the fractured rock formation to form preferential flow paths that persist if there is a continuous supply of water. In addition, in fractured welded tuffs the propensity for fracture-matrix interactions is significantly greater than that suggested by existing conceptual models,in which flow occurs along a section of fracture surfaces. An overriding conclusion is that field investigations at spatial scales of tens of meters provide data critical to the fundamental understanding of flow in fractured rock.

  13. Protective epitopes of the Plasmodium falciparum SERA5 malaria vaccine reside in intrinsically unstructured N-terminal repetitive sequences.

    PubMed

    Yagi, Masanori; Bang, Gilles; Tougan, Takahiro; Palacpac, Nirianne M Q; Arisue, Nobuko; Aoshi, Taiki; Matsumoto, Yoshitsugu; Ishii, Ken J; Egwang, Thomas G; Druilhe, Pierre; Horii, Toshihiro

    2014-01-01

    The malaria vaccine candidate antigen, SE36, is based on the N-terminal 47 kDa domain of Plasmodium falciparum serine repeat antigen 5 (SERA5). In epidemiological studies, we have previously shown the inhibitory effects of SE36 specific antibodies on in vitro parasite growth and the negative correlation between antibody level and malaria symptoms. A phase 1 b trial of the BK-SE36 vaccine in Uganda elicited 72% protective efficacy against symptomatic malaria in children aged 6-20 years during the follow-up period 130-365 days post-second vaccination. Here, we performed epitope mapping with synthetic peptides covering the whole sequence of SE36 to identify and map dominant epitopes in Ugandan adult serum presumed to have clinical immunity to P. falciparum malaria. High titer sera from the Ugandan adults predominantly reacted with peptides corresponding to two successive N-terminal regions of SERA5 containing octamer repeats and serine rich sequences, regions of SERA5 that were previously reported to have limited polymorphism. Affinity purified antibodies specifically recognizing the octamer repeats and serine rich sequences exhibited a high antibody-dependent cellular inhibition (ADCI) activity that inhibited parasite growth. Furthermore, protein structure predictions and structural analysis of SE36 using spectroscopic methods indicated that N-terminal regions possessing inhibitory epitopes are intrinsically unstructured. Collectively, these results suggest that strict tertiary structure of SE36 epitopes is not required to elicit protective antibodies in naturally immune Ugandan adults. PMID:24886718

  14. Protective Epitopes of the Plasmodium falciparum SERA5 Malaria Vaccine Reside in Intrinsically Unstructured N-Terminal Repetitive Sequences

    PubMed Central

    Tougan, Takahiro; Palacpac, Nirianne M. Q.; Arisue, Nobuko; Aoshi, Taiki; Matsumoto, Yoshitsugu; Ishii, Ken J.; Egwang, Thomas G.; Druilhe, Pierre; Horii, Toshihiro

    2014-01-01

    The malaria vaccine candidate antigen, SE36, is based on the N-terminal 47 kDa domain of Plasmodium falciparum serine repeat antigen 5 (SERA5). In epidemiological studies, we have previously shown the inhibitory effects of SE36 specific antibodies on in vitro parasite growth and the negative correlation between antibody level and malaria symptoms. A phase 1 b trial of the BK-SE36 vaccine in Uganda elicited 72% protective efficacy against symptomatic malaria in children aged 6–20 years during the follow-up period 130–365 days post–second vaccination. Here, we performed epitope mapping with synthetic peptides covering the whole sequence of SE36 to identify and map dominant epitopes in Ugandan adult serum presumed to have clinical immunity to P. falciparum malaria. High titer sera from the Ugandan adults predominantly reacted with peptides corresponding to two successive N-terminal regions of SERA5 containing octamer repeats and serine rich sequences, regions of SERA5 that were previously reported to have limited polymorphism. Affinity purified antibodies specifically recognizing the octamer repeats and serine rich sequences exhibited a high antibody-dependent cellular inhibition (ADCI) activity that inhibited parasite growth. Furthermore, protein structure predictions and structural analysis of SE36 using spectroscopic methods indicated that N-terminal regions possessing inhibitory epitopes are intrinsically unstructured. Collectively, these results suggest that strict tertiary structure of SE36 epitopes is not required to elicit protective antibodies in naturally immune Ugandan adults. PMID:24886718

  15. Conservation Analysis of Dengue Virus T-cell Epitope-Based Vaccine Candidates Using Peptide Block Entropy

    PubMed Central

    Olsen, Lars Rønn; Zhang, Guang Lan; Keskin, Derin B.; Reinherz, Ellis L.; Brusic, Vladimir

    2011-01-01

    Broad coverage of the pathogen population is particularly important when designing CD8+ T-cell epitope vaccines against viral pathogens. Traditional approaches are based on combinations of highly conserved T-cell epitopes. Peptide block entropy analysis is a novel approach for assembling sets of broadly covering antigens. Since T-cell epitopes are recognized as peptides rather than individual residues, this method is based on calculating the information content of blocks of peptides from a multiple sequence alignment of homologous proteins rather than using the information content of individual residues. The block entropy analysis provides broad coverage of variant antigens. We applied the block entropy analysis method to the proteomes of the four serotypes of dengue virus (DENV) and found 1,551 blocks of 9-mer peptides, which cover 99% of available sequences with five or fewer unique peptides. In contrast, the benchmark study by Khan et al. (2008) resulted in 165 conserved 9-mer peptides. Many of the conserved blocks are located consecutively in the proteins. Connecting these blocks resulted in 78 conserved regions. Of the 1551 blocks of 9-mer peptides 110 comprised predicted HLA binder sets. In total, 457 subunit peptides that encompass the diversity of all sequenced DENV strains of which 333 are T-cell epitope candidates. PMID:22566858

  16. Antarctic skuas recognize individual humans.

    PubMed

    Lee, Won Young; Han, Yeong-Deok; Lee, Sang-Im; Jablonski, Piotr G; Jung, Jin-Woo; Kim, Jeong-Hoon

    2016-07-01

    Recent findings report that wild animals can recognize individual humans. To explain how the animals distinguish humans, two hypotheses are proposed. The high cognitive abilities hypothesis implies that pre-existing high intelligence enabled animals to acquire such abilities. The pre-exposure to stimuli hypothesis suggests that frequent encounters with humans promote the acquisition of discriminatory abilities in these species. Here, we examine individual human recognition abilities in a wild Antarctic species, the brown skua (Stercorarius antarcticus), which lives away from typical human settlements and was only recently exposed to humans due to activities at Antarctic stations. We found that, as nest visits were repeated, the skua parents responded at further distances and were more likely to attack the nest intruder. Also, we demonstrated that seven out of seven breeding pairs of skuas selectively responded to a human nest intruder with aggression and ignored a neutral human who had not previously approached the nest. The results indicate that Antarctic skuas, a species that typically inhabited in human-free areas, are able to recognize individual humans who disturbed their nests. Our findings generally support the high cognitive abilities hypothesis, but this ability can be acquired during a relatively short period in the life of an individual as a result of interactions between individual birds and humans.

  17. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages

    PubMed Central

    Machkovech, Heather M.; Bedford, Trevor; Suchard, Marc A.

    2015-01-01

    ABSTRACT Numerous experimental studies have demonstrated that CD8+ T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8+ T cells. Here we use a novel computational approach to test for selection in CD8+ T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8+ T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8+ T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8+ T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. IMPORTANCE There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8+ T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  18. Mutant MHC class II epitopes drive therapeutic immune responses to cancer

    PubMed Central

    Kreiter, Sebastian; Vormehr, Mathias; van de Roemer, Niels; Diken, Mustafa; Löwer, Martin; Diekmann, Jan; Boegel, Sebastian; Schrörs, Barbara; Vascotto, Fulvia; Castle, John C.; Tadmor, Arbel D.; Schoenberger, Stephen P.; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient’s tumour possesses a unique set of mutations (‘the mutanome’) that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient’s individual tumour-specific mutations1. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4+ T cells. Vaccination with such CD4+ immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4+ T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo-epitope

  19. Autoantibody recognition mechanisms of p53 epitopes

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2016-06-01

    There is an urgent need for economical blood based, noninvasive molecular biomarkers to assist in the detection and diagnosis of cancers in a cost-effective manner at an early stage, when curative interventions are still possible. Serum autoantibodies are attractive biomarkers for early cancer detection, but their development has been hindered by the punctuated genetic nature of the ten million known cancer mutations. A landmark study of 50,000 patients (Pedersen et al., 2013) showed that a few p53 15-mer epitopes are much more sensitive colon cancer biomarkers than p53, which in turn is a more sensitive cancer biomarker than any other protein. The function of p53 as a nearly universal "tumor suppressor" is well established, because of its strong immunogenicity in terms of not only antibody recruitment, but also stimulation of autoantibodies. Here we examine dimensionally compressed bioinformatic fractal scaling analysis for identifying the few sensitive epitopes from the p53 amino acid sequence, and show how it could be used for early cancer detection (ECD). We trim 15-mers to 7-mers, and identify specific 7-mers from other species that could be more sensitive to aggressive human cancers, such as liver cancer. Our results could provide a roadmap for ECD.

  20. Preferential brain homing following intranasal administration of Trypanosoma cruzi.

    PubMed

    Caradonna, Kacey; Pereiraperrin, Mercio

    2009-04-01

    The Chagas' disease parasite Trypanosoma cruzi commonly infects humans through skin abrasions or mucosa from reduviid bug excreta. Yet most studies on animal models start with subcutaneous or intraperitoneal injections, a distant approximation of the skin abrasion route. We show here that atraumatic placement of T. cruzi in the mouse nasal cavity produced low parasitemia, high survival rates, and preferential brain invasion compared to the case with subcutaneously injected parasites. Brain invasion was particularly prominent in the basal ganglia, peaked at a time when parasitemia was no longer detectable, and elicited a relatively large number of inflammatory foci. Yet, based on motor behavioral parameters and staining with Fluoro-Jade C, a dye that specifically recognizes apoptotic and necrotic neurons, brain invasion did not cause neurodegenerative events, in contrast to the neurodegeneration in the enteric nervous system. The results indicate that placement of T. cruzi on the mucosa in the mouse nasal cavity establishes a systemic infection with a robust yet harmless infection of the brain, seemingly analogous to disease progression in humans. The model may facilitate studies designed to understand mechanisms underlying T. cruzi infection of the central nervous system. PMID:19168740

  1. Preferential Brain Homing following Intranasal Administration of Trypanosoma cruzi▿

    PubMed Central

    Caradonna, Kacey; PereiraPerrin, Mercio

    2009-01-01

    The Chagas’ disease parasite Trypanosoma cruzi commonly infects humans through skin abrasions or mucosa from reduviid bug excreta. Yet most studies on animal models start with subcutaneous or intraperitoneal injections, a distant approximation of the skin abrasion route. We show here that atraumatic placement of T. cruzi in the mouse nasal cavity produced low parasitemia, high survival rates, and preferential brain invasion compared to the case with subcutaneously injected parasites. Brain invasion was particularly prominent in the basal ganglia, peaked at a time when parasitemia was no longer detectable, and elicited a relatively large number of inflammatory foci. Yet, based on motor behavioral parameters and staining with Fluoro-Jade C, a dye that specifically recognizes apoptotic and necrotic neurons, brain invasion did not cause neurodegenerative events, in contrast to the neurodegeneration in the enteric nervous system. The results indicate that placement of T. cruzi on the mucosa in the mouse nasal cavity establishes a systemic infection with a robust yet harmless infection of the brain, seemingly analogous to disease progression in humans. The model may facilitate studies designed to understand mechanisms underlying T. cruzi infection of the central nervous system. PMID:19168740

  2. IMMUNODOMINANT EPITOPE AND PROPERTIES OF PYROGLUTAMATE-MODIFIED Aβ-SPECIFIC ANTIBODIES PRODUCED IN RABBITS

    PubMed Central

    Acero, G.; Manoutcharian, K.; Vasilevko, V.; Munguia, M.E.; Govezensky, T.; Coronas, G.; Luz-Madrigal, A.; Cribbs, DH.; Gevorkian, G.

    2009-01-01

    N-truncated and N-modified forms of amyloid beta (Aß) peptide are found in diffused and dense core plaques in Alzheimer’s disease (AD) and Down’s syndrome patients as well as transgenic mouse models of AD. Although the pathological significance of these shortened forms Aβ is not completely understood, previous studies have demonstrated that these peptides are significantly more resistant to degradation, aggregate more rapidly in vitro and exhibit similar or, in some cases, increased toxicity in hippocampal neuronal cultures compared to the full-length peptides. In the present study we further investigated the mechanisms of toxicity of one of the most abundant Ntruncated/modified Aβ peptide bearing amino-terminal pyroglutamate at position 3 (AβN3(pE)). We demonstrated that AβN3(pE) oligomers induce phosphatidyl serine externalization and membrane damage in SH-SY5Y cells. Also, we produced AβN3(pE)-specific polyclonal antibodies in rabbit and identified an immunodominant epitope recognized by anti-AβN3(pE) antibodies. Our results are important for developing new immunotherapeutic compounds specifically targeting AβN3(pE) aggregates since the most commonly used immunogens in the majority of vaccines for AD have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Aβ, which is absent in N-amino truncated peptides. PMID:19545911

  3. Immunodominant epitope and properties of pyroglutamate-modified Abeta-specific antibodies produced in rabbits.

    PubMed

    Acero, G; Manoutcharian, K; Vasilevko, V; Munguia, M E; Govezensky, T; Coronas, G; Luz-Madrigal, A; Cribbs, D H; Gevorkian, G

    2009-08-18

    N-truncated and N-modified forms of amyloid beta (Abeta) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as transgenic mouse models of AD. Although the pathological significance of these shortened forms Abeta is not completely understood, previous studies have demonstrated that these peptides are significantly more resistant to degradation, aggregate more rapidly in vitro and exhibit similar or, in some cases, increased toxicity in hippocampal neuronal cultures compared to the full length peptides. In the present study we further investigated the mechanisms of toxicity of one of the most abundant N-truncated/modified Abeta peptide bearing amino-terminal pyroglutamate at position 3 (AbetaN3(pE)). We demonstrated that AbetaN3(pE) oligomers induce phosphatidyl serine externalization and membrane damage in SH-SY5Y cells. Also, we produced AbetaN3(pE)-specific polyclonal antibodies in rabbit and identified an immunodominant epitope recognized by anti-AbetaN3(pE) antibodies. Our results are important for developing new immunotherapeutic compounds specifically targeting AbetaN3(pE) aggregates since the most commonly used immunogens in the majority of vaccines for AD have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Abeta, which is absent in N-amino truncated peptides.

  4. Recognition of Naegleriae ameba surface protein epitopes by anti-human CD45 antibodies.

    PubMed

    Ravine, Terrence J; Polski, Jacek M; Jenkins, James

    2010-04-01

    Phagocytosis is a highly conserved mechanism exhibited by both free-living amebas and mammalian blood cells. Similarities demonstrated by either cell type during engulfment of the same bacterial species may imply analogous surface proteins involved in receptor-mediated endocytosis. The increased availability of anti-human leukocyte antibodies or clusters of differentiation (CD) markers used in conjunction with flow cytometric (FCM) and/or immunohistochemical (IHC) analysis provides investigators with a relatively easy method to screen different cell populations for comparable plasma membrane proteins. In this study, we incubated Naegleria and Acanthamoeba amebas with several directly conjugated anti-human leukocyte monoclonal antibodies (mAb) for similarly recognized amebic epitopes. CD marker selection was based upon a recognized role of each mAb in phagocyte activation and/or uptake of bacteria. These included CD14, CD45, and CD206. In FCM, only one CD45 antibody demonstrated strong reactivity with both Naegleria fowleri and Naegleria gruberi that was not expressed in similarly tested Acanthamoeba species. Additional testing of N. gruberi by IHC demonstrated reactivity to a different CD45 antibody. Our results suggest a possible utility of using anti-human leukocyte antibodies to screen amebic cells for similarly expressed protein epitopes. In doing so, several important items must be considered when selecting potential mAbs for testing to increase the probability of a positive result.

  5. Classification epitopes in groups based on their protein family

    PubMed Central

    2015-01-01

    Background The humoral immune system response is based on the interaction between antibodies and antigens for the clearance of pathogens and foreign molecules. The interaction between these proteins occurs at specific positions known as antigenic determinants or B-cell epitopes. The experimental identification of epitopes is costly and time consuming. Therefore the use of in silico methods, to help discover new epitopes, is an appealing alternative due the importance of biomedical applications such as vaccine design, disease diagnostic, anti-venoms and immune-therapeutics. However, the performance of predictions is not optimal been around 70% of accuracy. Further research could increase our understanding of the biochemical and structural properties that characterize a B-cell epitope. Results We investigated the possibility of linear epitopes from the same protein family to share common properties. This hypothesis led us to analyze physico-chemical (PCP) and predicted secondary structure (PSS) features of a curated dataset of epitope sequences available in the literature belonging to two different groups of antigens (metalloproteinases and neurotoxins). We discovered statistically significant parameters with data mining techniques which allow us to distinguish neurotoxin from metalloproteinase and these two from random sequences. After a five cross fold validation we found that PCP based models obtained area under the curve values (AUC) and accuracy above 0.9 for regression, decision tree and support vector machine. Conclusions We demonstrated that antigen's family can be inferred from properties within a single group of linear epitopes (metalloproteinases or neurotoxins). Also we discovered the characteristics that represent these two epitope groups including their similarities and differences with random peptides and their respective amino acid sequence. These findings open new perspectives to improve epitope prediction by considering the specific antigen

  6. Bioinformatics analysis of the epitope regions for norovirus capsid protein

    PubMed Central

    2013-01-01

    Background Norovirus is the major cause of nonbacterial epidemic gastroenteritis, being highly prevalent in both developing and developed countries. Despite of the available monoclonal antibodies (MAbs) for different sub-genogroups, a comprehensive epitope analysis based on various bioinformatics technology is highly desired for future potential antibody development in clinical diagonosis and treatment. Methods A total of 18 full-length human norovirus capsid protein sequences were downloaded from GenBank. Protein modeling was performed with program Modeller 9.9. The modeled 3D structures of capsid protein of norovirus were submitted to the protein antigen spatial epitope prediction webserver (SEPPA) for predicting the possible spatial epitopes with the default threshold. The results were processed using the Biosoftware. Results Compared with GI, we found that the GII genogroup had four deletions and two special insertions in the VP1 region. The predicted conformational epitope regions mainly concentrated on N-terminal (1~96), Middle Part (298~305, 355~375) and C-terminal (560~570). We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. Conclusions The predicted conformational epitope regions of norovirus VP1 mainly concentrated on N-terminal, Middle Part and C-terminal. We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. The overlapping with experimental epitopes indicates the important role of latest computational technologies. With the fast development of computational immunology tools, the bioinformatics pipeline will be more and more critical to vaccine design. PMID:23514273

  7. Preferential attachment in multiple trade networks.

    PubMed

    Foschi, Rachele; Riccaboni, Massimo; Schiavo, Stefano

    2014-08-01

    In this paper we develop a model for the evolution of multiple networks which is able to replicate the concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing more trade opportunities at a given level of complexity and of starting to trade more complex goods are both proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative results. A calibration exercise shows that our model replicates the same concentration level of world trade as well as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple networks.

  8. Growth fluctuation in preferential attachment dynamics

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yasuhiro

    2016-04-01

    In the Yule-Simon process, creation and selection of words follows the preferential attachment mechanism, resulting in a power-law growth in the cumulative number of individual word occurrences as well as the power-law population distribution of the vocabulary. This is derived using mean-field approximation, assuming a continuum limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically, and confirm that those probability distributions are well supported by the numerical experiments.

  9. Preferential attachment in multiple trade networks

    NASA Astrophysics Data System (ADS)

    Foschi, Rachele; Riccaboni, Massimo; Schiavo, Stefano

    2014-08-01

    In this paper we develop a model for the evolution of multiple networks which is able to replicate the concentrated and sparse nature of world trade data. Our model is an extension of the preferential attachment growth model to the case of multiple networks. Countries trade a variety of goods of different complexity. Every country progressively evolves from trading less sophisticated to high-tech goods. The probabilities of capturing more trade opportunities at a given level of complexity and of starting to trade more complex goods are both proportional to the number of existing trade links. We provide a set of theoretical predictions and simulative results. A calibration exercise shows that our model replicates the same concentration level of world trade as well as the sparsity pattern of the trade matrix. We also discuss a set of numerical solutions to deal with large multiple networks.

  10. A case study of preferential bestiality.

    PubMed

    Earls, Christopher M; Lalumière, Martin L

    2009-08-01

    In a previous article, we presented phallometric data to illustrate a case of preferential bestiality or zoophilia (Earls & Lalumière, Sex Abuse: J Res Treat, 14:83-88, 2002). Based on the available literature, we argued that a marked preference for having sex with animals over sex with humans is extremely rare. In the present article, we describe a second case of zoophilia that challenges the widely held assumptions that men who have sex with animals are generally of below average intelligence and come from rural areas. In addition, we provide a brief review of a burgeoning quantitative literature using large groups of zoophiles recruited from internet sources. Although estimates of the prevalence of zoophilia are not possible at this time, it appears that zoophilia is not as rare as once thought and shares many features with other atypical sexual interests.

  11. Growth fluctuation in preferential attachment dynamics.

    PubMed

    Hashimoto, Yasuhiro

    2016-04-01

    In the Yule-Simon process, creation and selection of words follows the preferential attachment mechanism, resulting in a power-law growth in the cumulative number of individual word occurrences as well as the power-law population distribution of the vocabulary. This is derived using mean-field approximation, assuming a continuum limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically, and confirm that those probability distributions are well supported by the numerical experiments.

  12. B Epitope Multiplicity and B/T Epitope Orientation Influence Immunogenicity of Foot-and-Mouth Disease Peptide Vaccines

    PubMed Central

    Blanco, Esther; Cubillos, Carolina; Moreno, Noelia; Bárcena, Juan; de la Torre, Beatriz G.; Andreu, David

    2013-01-01

    Synthetic peptides incorporating protective B- and T-cell epitopes are candidates for new safer foot-and-mouth disease (FMD) vaccines. We have reported that dendrimeric peptides including four copies of a B-cell epitope (VP1 136 to 154) linked to a T-cell epitope (3A 21 to 35) of FMD virus (FMDV) elicit potent B- and T-cell specific responses and confer protection to viral challenge, while juxtaposition of these epitopes in a linear peptide induces less efficient responses. To assess the relevance of B-cell epitope multivalency, dendrimers bearing two (B2T) or four (B4T) copies of the B-cell epitope from type O FMDV (a widespread circulating serotype) were tested in CD1 mice and showed that multivalency is advantageous over simple B-T-epitope juxtaposition, resulting in efficient induction of neutralizing antibodies and optimal release of IFNγ. Interestingly, the bivalent B2T construction elicited similar or even better B- and T-cell specific responses than tetravalent B4T. In addition, the presence of the T-cell epitope and its orientation were shown to be critical for the immunogenicity of the linear juxtaposed monovalent peptides analyzed in parallel. Taken together, our results provide useful insights for a more accurate design of FMD subunit vaccines. PMID:24454475

  13. Mapping Antigenic Epitopes on the Human Bocavirus Capsid

    PubMed Central

    Kailasan, Shweta; Garrison, Jamie; Ilyas, Maria; Chipman, Paul; McKenna, Robert; Kantola, Kalle; Söderlund-Venermo, Maria; Kučinskaitė-Kodzė, Indrė; Žvirblienė, Aurelija

    2016-01-01

    ABSTRACT Human bocaviruses (HBoV1 to -4) are emerging pathogens associated with pneumonia and/or diarrhea in young children. Currently, there is no treatment or vaccination, so there is a need to study these pathogens to understand their disease mechanisms on a molecular and structural level for the development of control strategies. Here, we report the structures of six HBoV monoclonal antibody (MAb) fragment complexes, HBoV1-15C6, HBoV2-15C6, HBoV4-15C6, HBoV1-4C2, HBoV1-9G12, and HBoV1-12C1, determined by cryo-electron microscopy and three-dimensional image reconstruction to 18.0- to 8.5-Å resolution. Of these, the 15C6 MAb cross-reacted with HBoV1, HBoV2, and HBoV4, while the 4C2, 12C1, and 9G12 MAbs recognized only HBoV1. Pseudoatomic modeling mapped the 15C6 footprint to the capsid surface DE and HI loops, at the 5-fold axis and the depression surrounding it, respectively, which are conserved motifs in Parvoviridae. The footprints for 4C2, 12C1, and 9G12 span the surface loops that assemble portions of the 2-/5-fold wall (a raised surface feature between the 2-fold and 5-fold axes of symmetry) and the shoulder of the 3-fold protrusions. The MAb footprints, cross reactive and strain specific, coincide with regions with high and low sequence/structural identities, respectively, on the capsid surfaces of the HBoVs and identify potential regions for the development of peptide vaccines for these viruses. IMPORTANCE Human bocaviruses (HBoVs) may cause severe respiratory and gastrointestinal infections in young children. The nonenveloped parvovirus capsid carries determinants of host and tissue tropism, pathogenicity, genome packaging, assembly, and antigenicity important for virus infection. This information is currently unavailable for the HBoVs and other bocaparvoviruses. This study identifies three strain-specific antigenic epitopes on the HBoV1 capsid and a cross-reactive epitope on the HBoV1, HBoV2, and HBoV4 capsids using structures of capsid

  14. The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance

    PubMed Central

    Macher, Bruce A.; Galili, Uri

    2008-01-01

    In 1985, we reported that a naturally occurring human antibody (anti-Gal), produced as the most abundant antibody (1% of immunoglobulins) throughout the life of all individuals, recognizes a carbohydrate epitope Galα1-3Galβ1-4GlcNAc-R (the α-gal epitope). Since that time, an extensive literature has developed on discoveries related to the α-gal epitope and the anti-Gal antibody, including the barrier they form in xenotransplantation and their reciprocity in mammalian evolution. This review covers these topics and new avenues of clinical importance related to this (α-gal epitope/anti-Gal) unique antigen/antibody system in improving the efficacy of viral vaccines and in immunotherapy against cancer. PMID:18047841

  15. Proximal glycans outside of the epitopes regulate the presentation of HIV-1 envelope gp120 helper epitopes1

    PubMed Central

    Li, Hualin; Xu, Chong-Feng; Blais, Steven; Wan, Qi; Zhang, Hui-Tang; Landry, Samuel J.; Hioe, Catarina E.

    2010-01-01

    Glycosylation of HIV-1 envelope gp120 determines not only the proper structure, but also the immune responses against this antigen. While glycans may be part of specific epitopes or shield other epitopes from T cells and antibodies, this study provides evidence for a different immunomodulatory function of glycans associated with gp120 residues N230 and N448. These glycans are required for efficient MHC class II-restricted presentation of nearby CD4 T-cell epitopes, even though they are not part of the epitopes. The glycans do not affect CD4 T cell recognition of more distant epitopes, and are not essential for the proper folding and function of gp120. Data on CD4 T-cell recognition of N448 mutants combined with proteolysis analyses and surface electrostatic potential calculation around residue N448 support the notion that N448-glycan near the epitope's C-terminus renders the site to be surface accessible and allows its efficient processing. In contrast, the N230-glycan contributes to the nearby epitope presentation at a step other than the proteolytic processing of the epitope. Hence, N-glycans can determine CD4 T-cell recognition of nearby gp120 epitopes by regulating the different steps in the MHC class II processing and presentation pathway after APCs acquire the intact gp120 antigen exogenously. Modifications of amino acids bearing glycans at the C termini of gp120 helper epitopes may prove to be a useful strategy for enhancing the immunogenicity of HIV-1 envelope gp120. PMID:19414790

  16. Identification of novel rabbit hemorrhagic disease virus B-cell epitopes and their interaction with host histo-blood group antigens.

    PubMed

    Song, Yanhua; Wang, Fang; Fan, Zhiyu; Hu, Bo; Liu, Xing; Wei, Houjun; Xue, Jiabin; Xu, Weizhong; Qiu, Rulong

    2016-02-01

    Rabbit haemorrhagic disease, caused by rabbit hemorrhagic disease virus (RHDV), results in the death of millions of adult rabbits worldwide, with a mortality rate that exceeds 90%. The sole capsid protein, VP60, is divided into shell (S) and protruding (P) domains, and the more exposed P domain likely contains determinants for cell attachment and antigenic diversity. Nine mAbs against VP60 were screened and identified. To map antigenic epitopes, a set of partially overlapping and consecutive truncated proteins spanning VP60 were expressed. The minimal determinants of the linear B-cell epitopes of VP60 in the P domain, N(326)PISQV(331), D(338)MSFV(342) and K(562)STLVFNL(569), were recognized by one (5H3), four (1B8, 3D11, 4C2 and 4G2) and four mAbs (1D4, 3F7, 5G2 and 6B2), respectively. Sequence alignment showed epitope D(338)MSFV(342) was conserved among all RHDV isolates. Epitopes N(326)PISQV(331) and K(562)STLVFNL(569) were highly conserved among RHDV G1-G6 and variable in RHDV2 strains. Previous studies demonstrated that native viral particles and virus-like particles (VLPs) of RHDV specifically bound to synthetic blood group H type 2 oligosaccharides. We established an oligosaccharide-based assay to analyse the binding of VP60 and epitopes to histo-blood group antigens (HBGAs). Results showed VP60 and its epitopes (aa 326-331 and 338-342) in the P2 subdomain could significantly bind to blood group H type 2. Furthermore, mAbs 1B8 and 5H3 could block RHDV VLP binding to synthetic H type 2. Collectively, these two epitopes might play a key role in the antigenic structure of VP60 and interaction of RHDV and HBGA. PMID:26612210

  17. Study of the epitope structure of purified Dac G I and Lol p I, the major allergens of Dactylis glomerata and Lolium perenne pollens, using monoclonal antibodies.

    PubMed

    Mourad, W; Mécheri, S; Peltre, G; David, B; Hébert, J

    1988-11-15

    The use of mAb allowed us to further analyze the cross-reactivity between purified Dac g I and Lol p I, the major allergens of Dactylis glomerata (cocksfoot) and Lolium perenne (Rye grass), respectively. It was first shown, using IEF, followed by immunoprinting, that serum IgE antibodies from most grass-sensitive patients recognize both Dac g I and Lol p I. Second, three different anti-Lol p I mAb, 290A-167, 348A-6, and 539A-6, and one anti-Dac g I mAb, P3B2 were all shown to react with Dac g I and Lol p I, indicating that the two molecules share common epitopes. Epitope specificity of the mAb was determined by competitive binding inhibition of a given labeled mAb to solid phase fixed Dac g I or Lol p I by the mAb. The results indicated that the four mAb are directed against four different and non-overlapping epitopes present on both allergens. Using double-binding RIA, our data strongly suggest that the common epitopes are not repetitive on both molecules. In addition to their similar physicochemical characteristics, such as isolectric points and m.w., Dac g I and Lol p I share four identical epitopes. Binding inhibition of human IgE to Lol p I and Dac g I by the mAb was also assessed. The results indicated that each mAb was able to inhibit such reactions to variable degree but no additive inhibition was observed when two mAb of different specificities were used in combination, suggesting that the human IgE binding site is partially shared by each epitope recognized by the four mAb.

  18. Bypass of carrier-induced epitope-specific suppression using a T-helper epitope.

    PubMed Central

    Sad, S; Rao, K; Arora, R; Talwar, G P; Raghupathy, R

    1992-01-01

    A gonadotropin-releasing hormone (GnRH)-based vaccine is being developed as a method for non-surgical immunotherapy as immunization with this vaccine results in atrophy of the prostate. This vaccine, a conjugate of GnRH and diphtheria toxoid (DT), provides a unique hapten-carrier system for investigating the influence of carrier presensitization on antibody responses to self haptens. In a recent communication we showed that preimmunization with carriers diphtheria toxoid and tetanus toxoid results in a strain-dependent inhibition of anti-GnRH responses in mice and that T cells from carrier-presensitized mice are responsible for anti-haptenic suppression. In the present report we describe a strategy for bypassing DT-induced epitopic suppression using a T-helper epitope from DT. PMID:1383134

  19. The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation.

    PubMed Central

    Cyster, J G; Shotton, D M; Williams, A F

    1991-01-01

    Leukosialin (CD43) is a major glycoprotein of T lymphocytes whose extracellular domain of 224 amino acids contains on average one O-linked carbohydrate unit per three amino acids. This suggests an unfolded structure for the extracellular domain which has now been established to extend to a length of 45 nm by transmission electron microscopy following low angle rotary shadowing. The antigenicity of rat leukosialin has been studied using nine monoclonal antibodies (MAbs) whose binding is differentially affected by the cell type on which leukosialin is expressed and by the removal of sialic acid. From these observations it appears that the epitopes are affected by glycosylation, yet seven of the nine MAbs reacted clearly with the extracellular domain of leukosialian expressed in an unglycosylated form in Escherichia coli. The MAbs showing this positive reaction included three of the four antibodies whose epitopes were affected by neuraminidase treatment of leukosialin. It thus appears that linear protein epitopes are recognized and that some of these can be modified in the native structure by glycosylation. The positions of the antigenic determinants have been mapped by expressing fusion proteins of different lengths and the identity of one epitope was proven by the binding of two MAbs to an octapeptide expressed as a fusion protein. For three MAbs, the location of epitopes in the native protein was confirmed by electron microscopy of shadowed leukosialin--Fab complexes. Overall it is concluded that leukosialin is a major component at the periphery of the T lymphocyte and that despite its high level of glycosylation, protein determinants are exposed that could be ligands in cell interactions. Images PMID:1706994

  20. Patr-A and B, the orthologues of HLA-A and B, present hepatitis C virus epitopes to CD8+ cytotoxic T cells from two chronically infected chimpanzees

    PubMed Central

    1996-01-01

    Common chimpanzees (Pan troglodytes) infected with hepatitis C virus (HCV) show a disease progression similar to that observed for human patients. Although most infected animals develop a chronic hepatitis, virus persistence is associated with an ongoing immune response, for which the beneficial or detrimental effects are uncertain. Lines of virus-specific cytotoxic CD8+ T lymphocytes (CTL) have been previously established from liver biopsies of two common chimpanzees chronically infected with HCV-1. The viral epitopes recognized by six lines of CTL have been defined using synthetic peptides and shown to consist of 8 to 9-residue peptides derived from various viral proteins. Five of the epitopes derive from sequences that vary among strains of HCV. The majority of the corresponding variant epitopes from different HCV strains were either recognized less efficiently or not at all by the CTL, suggesting their response may have limited potential for controlling replication of HCV variants. Complementary DNAs encoding class I alleles of the two common chimpanzees, Patr-A, -B, and -C were cloned, sequenced, and transfected individually into a class I- deficient human cell line. Analysis of peptide presentation by the class I transfectants to CTL identified the Patr class I allotypes that present the six epitopes defined here and an additional epitope defined previously. The assignment of epitopes to class I allotypes based upon analysis of the transfected cells correlates precisely with the segregation of antigen-presenting function within a panel of common chimpanzee cell lines and the expression of class I heavy chains as defined by isoelectric focusing. Five of the HCV-1 epitopes are presented by Patr-B allotypes, two epitopes are presented by a Patr-A allotype, and none is presented by Patr-C allotypes. PMID:8666933

  1. Preparation of High-Efficiency Cytochrome c-Imprinted Polymer on the Surface of Magnetic Carbon Nanotubes by Epitope Approach via Metal Chelation and Six-Membered Ring.

    PubMed

    Qin, Ya-Ping; Li, Dong-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2016-04-27

    A novel epitope molecularly imprinted polymer on the surface of magnetic carbon nanotubes (MCNTs@EMIP) was successfully fabricated to specifically recognize target protein cytochrome c (Cyt C) with high performance. The peptides sequences corresponding to the surface-exposed C-terminus domains of Cyt C was selected as epitope template molecule, and commercially available zinc acrylate and ethylene glycol dimethacrylate (EGDMA) were employed as functional monomer and cross-linker, respectively, to synthesize MIP via free radical polymerization. The epitope was immobilized via metal chelation and six-membered ring formed between the functional monomer and the hydroxyl and amino groups of the epitope. The resulting MCNTs@EMIP exhibited specific recognition ability toward target Cyt C including more satisfactory imprinting factor (about 11.7) than that of other reported imprinting methods. In addition, the MCNTs@EMIP demonstrated a high adsorption amount (about 780.0 mg g(-1)) and excellent selectivity. Besides, the magnetic property of the support material made the processes easy and highly efficient by assistance of an external magnetic field. High-performance liquid chromatography analysis of Cyt C in bovine blood real sample and protein mixture indicated that the specificity was not affected by other competitive proteins, which forcefully stated that the MCNTs@EMIP had potential to be applied in bioseparation area. In brief, this study provided a new protocol to detect target protein in complex sample via epitope imprinting approach and surface imprinting strategy.

  2. Chimeric Epitope Vaccine from Multistage Antigens for Lymphatic Filariasis.

    PubMed

    Anugraha, G; Madhumathi, J; Prince, P R; Prita, P J Jeya; Khatri, V K; Amdare, N P; Reddy, M V R; Kaliraj, P

    2015-10-01

    Lymphatic filariasis, a mosquito-borne parasitic disease, affects more than 120 million people worldwide. Vaccination for filariasis by targeting different stages of the parasite will be a boon to the existing MDA efforts of WHO which required repeated administration of the drug to reduce the infection level and sustained transmission. Onset of a filaria-specific immune response achieved through antigen vaccines can act synergistically with these drugs to enhance the parasite killing. Multi-epitope vaccine approach has been proved to be successful against several parasitic diseases as it overcomes the limitations associated with the whole antigen vaccines. Earlier results from our group suggested the protective efficacy of multi-epitope vaccine comprising two immunodominant epitopes from Brugia malayi antioxidant thioredoxin (TRX), several epitopes from transglutaminase (TGA) and abundant larval transcript-2 (ALT-2). In this study, the prophylactic efficacy of the filarial epitope protein (FEP), a chimera of selective epitopes identified from our earlier study, was tested in a murine model (jird) of filariasis with L3 larvae. FEP conferred a significantly (P < 0.0001) high protection (69.5%) over the control in jirds. We also observed that the multi-epitope recombinant construct (FEP) induces multiple types of protective immune responses, thus ensuring the successful elimination of the parasite; this poses FEP as a potential vaccine candidate. PMID:26179420

  3. Chimeric Epitope Vaccine from Multistage Antigens for Lymphatic Filariasis.

    PubMed

    Anugraha, G; Madhumathi, J; Prince, P R; Prita, P J Jeya; Khatri, V K; Amdare, N P; Reddy, M V R; Kaliraj, P

    2015-10-01

    Lymphatic filariasis, a mosquito-borne parasitic disease, affects more than 120 million people worldwide. Vaccination for filariasis by targeting different stages of the parasite will be a boon to the existing MDA efforts of WHO which required repeated administration of the drug to reduce the infection level and sustained transmission. Onset of a filaria-specific immune response achieved through antigen vaccines can act synergistically with these drugs to enhance the parasite killing. Multi-epitope vaccine approach has been proved to be successful against several parasitic diseases as it overcomes the limitations associated with the whole antigen vaccines. Earlier results from our group suggested the protective efficacy of multi-epitope vaccine comprising two immunodominant epitopes from Brugia malayi antioxidant thioredoxin (TRX), several epitopes from transglutaminase (TGA) and abundant larval transcript-2 (ALT-2). In this study, the prophylactic efficacy of the filarial epitope protein (FEP), a chimera of selective epitopes identified from our earlier study, was tested in a murine model (jird) of filariasis with L3 larvae. FEP conferred a significantly (P < 0.0001) high protection (69.5%) over the control in jirds. We also observed that the multi-epitope recombinant construct (FEP) induces multiple types of protective immune responses, thus ensuring the successful elimination of the parasite; this poses FEP as a potential vaccine candidate.

  4. Definition of an optimal cytotoxic T lymphocyte epitope in the latently expressed Kaposi's sarcoma-associated herpesvirus kaposin protein.

    PubMed

    Brander, C; O'Connor, P; Suscovich, T; Jones, N G; Lee, Y; Kedes, D; Ganem, D; Martin, J; Osmond, D; Southwood, S; Sette, A; Walker, B D; Scadden, D T

    2001-07-15

    Cytotoxic T lymphocytes (CTL) recognize and kill virus-infected cells and contribute to immunologic control of viral replication. For many herpesviruses (e.g., Epstein-Barr and cytomegalovirus), virus-specific CTL responses can be readily detected in infected persons, but CTL responses against Kaposi's sarcoma-associated herpesvirus (KSHV) appear to be weak and remain poorly characterized. Using a human leukocyte antigen (HLA) binding motif-based epitope prediction algorithm, we identified 37 HLA-A*0201 binding peptides from 8 KSHV open-reading frames (ORFs). After in vitro stimulation of peripheral blood mononuclear cells from KSHV-infected persons, CTL responses against 1 peptide in the KSHV kaposin protein (ORF K12) were detected in 2 HLA-A*0201-positive subjects. The optimal CTL epitope was identified by HLA restriction analysis and peptide titration assays. These data describe a latent phase viral gene product targeted by CTL that may be relevant for KSHV immunopathogenesis.

  5. Monoclonal antibody characterization of the 195-kilodalton major surface glycoprotein of Plasmodium falciparum malaria schizonts and merozoites: identification of additional processed products and a serotype-restricted repetitive epitope.

    PubMed

    Lyon, J A; Haynes, J D; Diggs, C L; Chulay, J D; Haidaris, C G; Pratt-Rossiter, J

    1987-02-01

    The gp195 from Camp strain parasites was characterized with eight monoclonal antibodies (MAb) that recognize different epitopes on gp195 and three of its merozoite-associated processed products. Four MAb (3H7, 3B10, 7F1, and 4G12) reacted with different epitopes on the 45-kDa glycosylated product (gp45), shown by differences in their reactivities with soluble and immunoblotted gp45. One MAb (7H10) reacted with a conformational epitope probably formed as a result of the interaction of gp45 with a nonglycosylated 45-kDa product (p45). Three other MAb (3D3, 7B11, and 7B2) reacted with different epitopes on a nonglycosylated 83-kDa product (p83), shown by differences in their reactivities against various parasite isolates in immunofluorescent antibody assays. Immunoprecipitation of antigens that were pulse-labeled with [3H]isoleucine and chased with cold isoleucine showed that p45 and gp45 were processed products of gp195 and p83 was sequentially processed into smaller fragments of 73 and 67 kDa (p73 and p67). Immunoblots showed that the 7B11 and 7B2 epitopes were present on p83, p73, and p67, but that the 3D3 epitope was present only on p83 and p73. A two-site immunoassay showed the 3D3 epitope to be repetitive. The 3D3 and 7B11 epitopes were serotype restricted (present in seven and 24 of 33 isolates, respectively), but the other five epitopes were common to all isolates tested. The gp195 and its processed products have Mr that are consistent with the Mr of a number of antigens shown previously to be associated with the immune complexes that are formed when merozoites are agglutinated by antibodies contained in some growth inhibitory immune sera.

  6. Recognizing child maltreatment in Bangladesh.

    PubMed

    Khan, N Z; Lynch, M A

    1997-08-01

    Concern is increasing in Bangladesh over child abuse, neglect, and exploitation. Children from all walks of life are being treated at the Child Development Center (CDC) Dhaka Shishu Hospital for neurodevelopmental problems resulting from abuse and neglect. Efforts to protect children from sexual harassment result in girls being isolated at home or married at an early age. Some young brides are eventually abandoned and forced into prostitution. Early marriage reflects the lack of acknowledgement of a period of adolescence and the belief that puberty is a marker of adulthood. Many girls aged 8-16 are employed as live-in domestic servants, and many suffer sexual as well as emotional abuse. Garment factories, on the other hand, offer girls an escape from extreme poverty, domestic service, and early marriage but are threatened by forces that condemn child labor. Rather than ending such opportunities, employers should be encouraged to provide employees with educational and welfare facilities. The CDC seeks to explore the extent and depth of the problem of child abuse while recognizing the special circumstances at work in Bangladesh. It is also necessary to raise awareness of these issues and of the discrepancies between the law and cultural practices. For example, the legal marriage age of 18 years for a woman and 21 years for a man is often ignored. Additional forms of abuse receiving the attention of women's organizations and human rights groups include the trafficking of children. A network of concerned organizations should be created to work against the child abuse, neglect, and exploitation that Bangladesh has pledged to overcome by signing the UN Convention on the Rights of the Child.

  7. N-Propionylated Group B Meningococcal Polysaccharide Mimics a Unique Bactericidal Capsular Epitope in Group B Neisseria meningitidis

    PubMed Central

    Pon, Robert A.; Lussier, Michele; Yang, Qing-Ling; Jennings, Harold J.

    1997-01-01

    The N-propionylated group B meningococcal polysaccharide (NPrGBMP) mimics a unique protective epitope on the surface of group B meningococci (GBM) and Escherichia coli K1. Using a series of monoclonal antibodies (mAbs) induced by the NPrGBMP–monomeric tetanus toxoid (TT) conjugate vaccine it was demonstrated that mAbs having specificities for both extended and conventional short segments of the NPrGBMP were formed, but only the former were bactericidal, and/or gave passive protection against live challenge by GBM. The failure of mAbs specific for short epitopes to protect was further established when (NeuPr)4–TT was used as the vaccine. Of all the mAbs produced that were specific for short internal segments of the NPrGBMP, none were protective, despite the fact that most of them cross-react with the GBM capsular polysaccharide. In contrast, most of the protective mAbs produced by NPrGBMP– TT did not recognize the group B meningococcal polysaccharide (GBMP) unless it was present in its aggregated high molecular weight form. The bactericidal epitope mimicked by the NPrGBMP was shown to be ubiquitous in the capsule of both GBM and E. coli K1 using immunogold labeling techniques and, because of its unique properties, its identification could be significant in the development of a comprehensive conjugate vaccine against group B meningococcal meningitis. This is because most known human α(2–8)-polysialic acid self-antigens can be accommodated in 30–50 α(2–8)-linked sialic acid residues, which is roughly equivalent to an 11-kD length of the GBMP. It has been hypothesized that the formation of the protective epitope on the surface of GBM is due to the interaction of helical segments of the GBMP with another molecule and that the protective epitope is mimicked by the NPrGBMP. Support for the above hypothesis is provided by the fact that the protective NPrGBMP epitope has a similar unusual length dependency to that of the GBMP epitope. PMID:9166422

  8. Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach

    SciTech Connect

    Amniai, Laziza; Lippens, Guy; Landrieu, Isabelle

    2011-09-09

    Highlights: {yields} pThr231 of the Tau protein is necessary for the binding of the AT180 antibody. {yields} pSer235 of the Tau protein does not interfere with the AT180 recognition of pThr231. {yields} Epitope mapping is efficiently achieved by combining NMR and FRET spectroscopy. -- Abstract: We present here the characterization of the epitope recognized by the AT180 monoclonal antibody currently used to define an Alzheimer's disease (AD)-related pathological form of the phosphorylated Tau protein. Some ambiguity remains as to the exact phospho-residue(s) recognized by this monoclonal: pThr231 or both pThr231 and pSer235. To answer this question, we have used a combination of nuclear magnetic resonance (NMR) and fluorescence spectroscopy to characterize in a qualitative and quantitative manner the phospho-residue(s) essential for the epitope recognition. Data from the first step of NMR experiments are used to map the residues bound by the antibodies, which were found to be limited to a few residues. A fluorophore is then chemically attached to a cystein residue introduced close-by the mapped epitope, at arginine 221, by mutagenesis of the recombinant protein. The second step of Foerster resonance energy transfer (FRET) between the AT180 antibody tryptophanes and the phospho-Tau protein fluorophore allows to calculate a dissociation constant Kd of 30 nM. We show that the sole pThr231 is necessary for the AT180 recognition of phospho-Tau and that phosphorylation of Ser235 does not interfere with the binding.

  9. Identification of a Highly Conserved Epitope on Avian Influenza Virus Non-Structural Protein 1 Using a Peptide Microarray.

    PubMed

    Sun, Jiashan; Wang, Xiurong; Wen, Xuexia; Bao, Hongmei; Shi, Lin; Tao, Qimeng; Jiang, Yongping; Zeng, Xianying; Xu, Xiaolong; Tian, Guobin; Zheng, Shimin; Chen, Hualan

    2016-01-01

    Avian influenza virus (AIV) non-structural protein 1 (NS1) is a multifunctional protein. It is present at high levels in infected cells and can be used for AIV detection and diagnosis. In this study, we generated monoclonal antibody (MAb) D7 against AIV NS1 protein by immunization of BALB/c mice with purified recombinant NS1 protein expressed in Escherichia coli. Isotype determination revealed that the MAb was IgG1/κ-type subclass. To identify the epitope of the MAb D7, the NS1 protein was truncated into a total of 225 15-mer peptides with 14 amino acid overlaps, which were spotted for a peptide microarray. The results revealed that the MAb D7 recognized the consensus DAPF motif. Furthermore, the AIV NS1 protein with the DAPF motif deletion was transiently expressed in 293T cells and failed to react with MAb D7. Subsequently, the DAPF motif was synthesized with an elongated GSGS linker at both the C- and N-termini. The MAb D7 reacted with the synthesized peptide both in enzyme-linked immunosorbent assay (ELISA) and dot-blot assays. From these results, we concluded that DAPF motif is the epitope of MAb D7. To our knowledge, this is the first report of a 4-mer epitope on the NS1 protein of AIV that can be recognized by MAb using a peptide microarray, which is able to simplify epitope identification, and that could serve as the basis for immune responses against avian influenza.

  10. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy.

    PubMed Central

    Nguyen, T M; Morris, G E

    1993-01-01

    The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random "libraries" of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25-60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1-41, and we now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes. Images Figure 4 Figure 1 PMID:7684887

  11. Identification of a Highly Conserved Epitope on Avian Influenza Virus Non-Structural Protein 1 Using a Peptide Microarray

    PubMed Central

    Wen, Xuexia; Bao, Hongmei; Shi, Lin; Tao, Qimeng; Jiang, Yongping; Zeng, Xianying; Xu, Xiaolong; Tian, Guobin; Zheng, Shimin; Chen, Hualan

    2016-01-01

    Avian influenza virus (AIV) non-structural protein 1 (NS1) is a multifunctional protein. It is present at high levels in infected cells and can be used for AIV detection and diagnosis. In this study, we generated monoclonal antibody (MAb) D7 against AIV NS1 protein by immunization of BALB/c mice with purified recombinant NS1 protein expressed in Escherichia coli. Isotype determination revealed that the MAb was IgG1/κ-type subclass. To identify the epitope of the MAb D7, the NS1 protein was truncated into a total of 225 15-mer peptides with 14 amino acid overlaps, which were spotted for a peptide microarray. The results revealed that the MAb D7 recognized the consensus DAPF motif. Furthermore, the AIV NS1 protein with the DAPF motif deletion was transiently expressed in 293T cells and failed to react with MAb D7. Subsequently, the DAPF motif was synthesized with an elongated GSGS linker at both the C- and N-termini. The MAb D7 reacted with the synthesized peptide both in enzyme-linked immunosorbent assay (ELISA) and dot-blot assays. From these results, we concluded that DAPF motif is the epitope of MAb D7. To our knowledge, this is the first report of a 4-mer epitope on the NS1 protein of AIV that can be recognized by MAb using a peptide microarray, which is able to simplify epitope identification, and that could serve as the basis for immune responses against avian influenza. PMID:26938453

  12. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy

    SciTech Connect

    Nguyen thi Man; Morris, G.E. )

    1993-06-01

    The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random [open quotes]libraries[close quotes] of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25--60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1--41, and the authors now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes. 38 refs., 2 figs., 4 tabs.

  13. Measles Virus Epitope Presentation by HLA: Novel Insights into Epitope Selection, Dominance, and Microvariation

    PubMed Central

    Schellens, Ingrid M.; Meiring, Hugo D.; Hoof, Ilka; Spijkers, Sanne N.; Poelen, Martien C. M.; van Gaans-van den Brink, Jacqueline A. M.; Costa, Ana I.; Vennema, Harry; Keşmir, Can; van Baarle, Debbie; van Els, Cécile A. C. M.

    2015-01-01

    Immunity to infections with measles virus (MV) can involve vigorous human leukocyte antigen (HLA) class I-restricted CD8+ cytotoxic T cell (CTL) responses. MV, albeit regarded monotypic, is known to undergo molecular evolution across its RNA genome. To address which regions of the MV proteome are eligible for recognition by CD8+ CTLs and how different HLA class I loci contribute to the epitope display, we interrogated the naturally processed and presented MV peptidome extracted from cell lines expressing in total a broad panel of 16 different common HLA-A, -B, and -C molecules. The repertoire and abundance of MV peptides were bona fide identified by nanoHPLC–MS/MS. ­Eighty-nine MV peptides were discovered and assignment to an HLA-A, -B, or -C allele, based on HLA-peptide affinity prediction, was in most cases successful. Length variation and presentation by multiple HLA class I molecules was common in the MV peptidome. More than twice as many unique MV epitopes were found to be restricted by HLA-B than by HLA-A, while MV peptides with supra-abundant expression rates (>5,000 cc) were rather associated with HLA-A and HLA-C. In total, 59 regions across the whole MV proteome were identified as targeted by HLA class I. Sequence coverage by epitopes was highest for internal proteins transcribed from the MV-P/V/C and -M genes and for hemagglutinin. At the genome level, the majority of the HLA class I-selected MV epitopes represented codons having a higher non-synonymous mutation rate than silent mutation rate, as established by comparison of a set of 58 unique full length MV genomes. Interestingly, more molecular variation was seen for the epitopes expressed at rates ≥1,000 cc. These data for the first time indicate that HLA class I broadly samples the MV proteome and that CTL pressure may contribute to the genomic evolution of MV. PMID:26579122

  14. The response dynamics of preferential choice.

    PubMed

    Koop, Gregory J; Johnson, Joseph G

    2013-12-01

    The ubiquity of psychological process models requires an increased degree of sophistication in the methods and metrics that we use to evaluate them. We contribute to this venture by capitalizing on recent work in cognitive science analyzing response dynamics, which shows that the bearing information processing dynamics have on intended action is also revealed in the motor system. This decidedly "embodied" view suggests that researchers are missing out on potential dependent variables with which to evaluate their models-those associated with the motor response that produces a choice. The current work develops a method for collecting and analyzing such data in the domain of decision making. We first validate this method using widely normed stimuli from the International Affective Picture System (Experiment 1), and demonstrate that curvature in response trajectories provides a metric of the competition between choice options. We next extend the method to risky decision making (Experiment 2) and develop predictions for three popular classes of process model. The data provided by response dynamics demonstrate that choices contrary to the maxim of risk seeking in losses and risk aversion in gains may be the product of at least one "online" preference reversal, and can thus begin to discriminate amongst the candidate models. Finally, we incorporate attentional data collected via eye-tracking (Experiment 3) to develop a formal computational model of joint information sampling and preference accumulation. In sum, we validate response dynamics for use in preferential choice tasks and demonstrate the unique conclusions afforded by response dynamics over and above traditional methods.

  15. Preferential solvation: dividing surface vs excess numbers.

    PubMed

    Shimizu, Seishi; Matubayasi, Nobuyuki

    2014-04-10

    How do osmolytes affect the conformation and configuration of supramolecular assembly, such as ion channel opening and actin polymerization? The key to the answer lies in the excess solvation numbers of water and osmolyte molecules; these numbers are determinable solely from experimental data, as guaranteed by the phase rule, as we show through the exact solution theory of Kirkwood and Buff (KB). The osmotic stress technique (OST), in contrast, purposes to yield alternative hydration numbers through the use of the dividing surface borrowed from the adsorption theory. However, we show (i) OST is equivalent, when it becomes exact, to the crowding effect in which the osmolyte exclusion dominates over hydration; (ii) crowding is not the universal driving force of the osmolyte effect (e.g., actin polymerization); (iii) the dividing surface for solvation is useful only for crowding, unlike in the adsorption theory which necessitates its use due to the phase rule. KB thus clarifies the true meaning and limitations of the older perspectives on preferential solvation (such as solvent binding models, crowding, and OST), and enables excess number determination without any further assumptions. PMID:24689966

  16. Preferential solvation: dividing surface vs excess numbers.

    PubMed

    Shimizu, Seishi; Matubayasi, Nobuyuki

    2014-04-10

    How do osmolytes affect the conformation and configuration of supramolecular assembly, such as ion channel opening and actin polymerization? The key to the answer lies in the excess solvation numbers of water and osmolyte molecules; these numbers are determinable solely from experimental data, as guaranteed by the phase rule, as we show through the exact solution theory of Kirkwood and Buff (KB). The osmotic stress technique (OST), in contrast, purposes to yield alternative hydration numbers through the use of the dividing surface borrowed from the adsorption theory. However, we show (i) OST is equivalent, when it becomes exact, to the crowding effect in which the osmolyte exclusion dominates over hydration; (ii) crowding is not the universal driving force of the osmolyte effect (e.g., actin polymerization); (iii) the dividing surface for solvation is useful only for crowding, unlike in the adsorption theory which necessitates its use due to the phase rule. KB thus clarifies the true meaning and limitations of the older perspectives on preferential solvation (such as solvent binding models, crowding, and OST), and enables excess number determination without any further assumptions.

  17. Identification of cytotoxic T lymphocyte epitopes on swine viruses: multi-epitope design for universal T cell vaccine.

    PubMed

    Liao, Yu-Chieh; Lin, Hsin-Hung; Lin, Chieh-Hua; Chung, Wen-Bin

    2013-01-01

    Classical swine fever (CSF), foot-and-mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are the primary diseases affecting the pig industry globally. Vaccine induced CD8(+) T cell-mediated immune response might be long-lived and cross-serotype and thus deserve further attention. Although large panels of synthetic overlapping peptides spanning the entire length of the polyproteins of a virus facilitate the detection of cytotoxic T lymphocyte (CTL) epitopes, it is an exceedingly costly and cumbersome approach. Alternatively, computational predictions have been proven to be of satisfactory accuracy and are easily performed. Such a method enables the systematic identification of genome-wide CTL epitopes by incorporating epitope prediction tools in analyzing large numbers of viral sequences. In this study, we have implemented an integrated bioinformatics pipeline for the identification of CTL epitopes of swine viruses including the CSF virus (CSFV), FMD virus (FMDV) and PRRS virus (PRRSV) and assembled these epitopes on a web resource to facilitate vaccine design. Identification of epitopes for cross protections to different subtypes of virus are also reported in this study and may be useful for the development of a universal vaccine against such viral infections among the swine population. The CTL epitopes identified in this study have been evaluated in silico and possibly provide more and wider protection in compared to traditional single-reference vaccine design. The web resource is free and open to all users through http://sb.nhri.org.tw/ICES. PMID:24358361

  18. Characterization of immunologic properties of a second HLA-A2 epitope from a granule protease in CML patients and HLA-A2 transgenic mice

    PubMed Central

    Lacey, Simon F.; La Rosa, Corinna; Kaltcheva, Teodora; Srivastava, Tumul; Seidel, Aprille; Zhou, Wendi; Rawal, Ravindra; Hagen, Katharine; Krishnan, Aparna; Longmate, Jeff; Andersson, Helen A.; St. John, Lisa; Bhatia, Ravi; Pullarkat, Vinod; Forman, Stephen J.; Cooper, Laurence J. N.; Molldrem, Jeffrey

    2011-01-01

    The serine proteases, neutrophil elastase (HNE) and proteinase 3 (PR3), are aberrantly expressed in human myeloid leukemias. T-cell responses to these proteins have been correlated with remission in patients with chronic myeloid leukemia (CML). Human PR3/HNE-specific CD8+ T cells predominantly recognize a nonameric HLA-A2–restricted T-cell epitope called PR1 which is conserved in both Ags. However, CML patients have CD8+ T cells in peripheral blood recognizing an additional HLA-A2 epitope termed PR2. To assess immunologic properties of these Ags, novel recombinant vaccinia viruses (rVV) expressing PR3 and HNE were evaluated in HLA-A2 transgenic (Tg) mice (HHDII). Immunization of HHDII mice with rVV-PR3 elicited a robust PR3-specific CD8+ T-cell response dominated by recognition of PR2, with minimal recognition of the PR1 epitope. This result was unexpected, because the PR2 peptide has been reported to bind poorly to HLA. To account for these findings, we proposed that HHDII mice negatively selected PR1-specific T cells because of the presence of this epitope within murine PR3 and HNE, leading to immunodominance of PR2-specific responses. PR2-specific splenocytes are cytotoxic to targets expressing naturally processed PR3, though PR1-specific splenocytes are not. We conclude that PR2 represents a functional T-cell epitope recognized in mice and human leukemia patients. These studies are registered at www.clinicaltrials.gov as NCT00716911. PMID:21719601

  19. Identification of a Conserved Linear B-Cell Epitope of Streptococcus dysgalactiae GapC Protein by Screening Phage-Displayed Random Peptide Library

    PubMed Central

    Fan, Ziyao; Zhou, Xue; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Wang, Xintong; Zhu, Zhanbo; Cui, Yudong

    2015-01-01

    The GapC of Streptococcus dysgalactiae (S. dysgalactiae) is a highly conserved surface protein that can induce protective humoral immune response in animals. However, B-cell epitopes on the S. dysgalactiae GapC have not been well identified. In this study, a monoclonal antibody (mAb5B7) against the GapC1-150 protein was prepared. After passive transfer, mAb5B7 could partially protect mice against S. dysgalactiae infection. Eleven positive phage clones recognized by mAb5B7 were identified by screening phage-displayed random 12-peptide library, most of which matched the consensus motif DTTQGRFD. The motif sequence exactly matches amino acids 48-55 of the S. dysgalactiae GapC protein. In addition, the motif 48DTTQGRFD55 shows high homology among various streptococcus species. Site-directed mutagenic analysis further confirmed that residues D48, T50, Q51, G52 and F54 formed the core motif of 48DTTQGRFD55. This motif was the minimal determinant of the B-cell epitope recognized by the mAb5B7. As expected, epitope-peptide evoked protective immune response against S. dysgalactiae infection in immunized mice. Taken together, this identified conserved B-cell epitope within S. dysgalactiae GapC could provide very valuable insights for vaccine design against S. dysgalactiae infection. PMID:26121648

  20. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus.

    PubMed

    McLellan, Jason S; Correia, Bruno E; Chen, Man; Yang, Yongping; Graham, Barney S; Schief, William R; Kwong, Peter D

    2011-06-24

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 Å resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.

  1. Design and Characterization of Epitope-Scaffold Immunogens That Present the Motavizumab Epitope from Respiratory Syncytial Virus

    SciTech Connect

    McLellan, Jason S.; Correia, Bruno E.; Chen, Man; Yang, Yongping; Graham, Barney S.; Schief, William R.; Kwong, Peter D.

    2012-06-28

    Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in infants, but an effective vaccine has not yet been developed. An ideal vaccine would elicit protective antibodies while avoiding virus-specific T-cell responses, which have been implicated in vaccine-enhanced disease with previous RSV vaccines. We propose that heterologous proteins designed to present RSV-neutralizing antibody epitopes and to elicit cognate antibodies have the potential to fulfill these vaccine requirements, as they can be fashioned to be free of viral T-cell epitopes. Here we present the design and characterization of three epitope-scaffolds that present the epitope of motavizumab, a potent neutralizing antibody that binds to a helix-loop-helix motif in the RSV fusion glycoprotein. Two of the epitope-scaffolds could be purified, and one epitope-scaffold based on a Staphylococcus aureus protein A domain bound motavizumab with kinetic and thermodynamic properties consistent with the free epitope-scaffold being stabilized in a conformation that closely resembled the motavizumab-bound state. This epitope-scaffold was well folded as assessed by circular dichroism and isothermal titration calorimetry, and its crystal structure (determined in complex with motavizumab to 1.9 {angstrom} resolution) was similar to the computationally designed model, with all hydrogen-bond interactions critical for binding to motavizumab preserved. Immunization of mice with this epitope-scaffold failed to elicit neutralizing antibodies but did elicit sera with F binding activity. The elicitation of F binding antibodies suggests that some of the design criteria for eliciting protective antibodies without virus-specific T-cell responses are being met, but additional optimization of these novel immunogens is required.

  2. Exceptionally long CDR3H of bovine scFv antigenized with BoHV-1 B-epitope generates specific immune response against the targeted epitope.

    PubMed

    Pasman, Yfke; Soliman, Caroline; Ramsland, Paul A; Kaushik, Azad K

    2016-09-01

    We discovered that some bovine antibodies are amongst the largest known to exist due to the presence of an exceptionally long CDR3H (≥49 amino acids) with multiple cysteines that provide a unique knob and stalk structure to the antigen binding site. The large CDR3H size, unlike mouse and human, provides a suitable platform for antigenization with large configurational B-epitopes. Here we report the identification of a B-epitope on the gC envelope protein of bovine herpes virus type-1 (BoHV-1) recognized by a bovine IgG1 antibody. The identified 156 amino acid long gC fragment (gC156) was expressed as a recombinant protein. Subsequently, a functional scFv fragment with a 61 amino-acid long CDR3H (scFv1H12) was expressed such that gC156 was grafted into the CDR3H, replacing the "knob" region (gC156scFv1H12 or Ag-scFv). Importantly, the Ag-scFv could be recognized by a neutralizing antibody fragment (scFv3-18L), which suggests that the engraftment of gC156 into the CDR3H of 1H12 maintained the native conformation of the BoHV-1 B-epitope. A 3D model of gC156 was generated using fold-recognition approaches and this was grafted onto the CDR3H stalk of the 1H12 Fab crystal structure to predict the 3D structure of the Ag-scFv. The grafted antigen in Ag-scFv is predicted to have a compact conformation with the ability to protrude into the solvent. Upon immunization of bovine calves, the antigenized scFv (gC156scFv1H12) induced a higher antibody response as compared to free recombinant gC156. These observations suggest that antigenization of bovine scFv with an exceptionally long CDR3H provides a novel approach to developing the next generation of vaccines against infectious agents that require induction of protective humoral immunity. PMID:27497190

  3. The repertoire of glycosphingolipids recognized by Vibrio cholerae.

    PubMed

    Benktander, John; Ångström, Jonas; Karlsson, Hasse; Teymournejad, Omid; Lindén, Sara; Lebens, Michael; Teneberg, Susann

    2013-01-01

    The binding of cholera toxin to the ganglioside GM1 as the initial step in the process leading to diarrhea is nowadays textbook knowledge. In contrast, the knowledge about the mechanisms for attachment of Vibrio cholerae bacterial cells to the intestinal epithelium is limited. In order to clarify this issue, a large number of glycosphingolipid mixtures were screened for binding of El Tor V. cholerae. Several specific interactions with minor complex non-acid glycosphingolipids were thereby detected. After isolation of binding-active glycosphingolipids, characterization by mass spectrometry and proton NMR, and comparative binding studies, three distinct glycosphingolipid binding patterns were defined. Firstly, V. cholerae bound to complex lacto/neolacto glycosphingolipids with the GlcNAcβ3Galβ4GlcNAc sequence as the minimal binding epitope. Secondly, glycosphingolipids with a terminal Galα3Galα3Gal moiety were recognized, and the third specificity was the binding to lactosylceramide and related compounds. V. cholerae binding to lacto/neolacto glycosphingolipids, and to the other classes of binding-active compounds, remained after deletion of the chitin binding protein GbpA. Thus, the binding of V. cholerae to chitin and to lacto/neolacto containing glycosphingolipids represents two separate binding specificities. PMID:23349777

  4. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes.

    PubMed

    Connelley, Timothy K; Li, Xiaoying; MacHugh, Niall; Colau, Didier; Graham, Simon P; van der Bruggen, Pierre; Taracha, Evans L; Gill, Andy; Morrison, William Ivan

    2016-10-01

    Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant.

  5. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes.

    PubMed

    Connelley, Timothy K; Li, Xiaoying; MacHugh, Niall; Colau, Didier; Graham, Simon P; van der Bruggen, Pierre; Taracha, Evans L; Gill, Andy; Morrison, William Ivan

    2016-10-01

    Immunity against Theileria parva is associated with CD8 T-cell responses that exhibit immunodominance, focusing the response against limited numbers of epitopes. As candidates for inclusion in vaccines, characterization of responses against immunodominant epitopes is a key component in novel vaccine development. We have previously demonstrated that the Tp249-59 and Tp1214-224 epitopes dominate CD8 T-cell responses in BoLA-A10 and BoLA-18 MHC I homozygous animals, respectively. In this study, peptide-MHC I tetramers for these epitopes, and a subdominant BoLA-A10-restricted epitope (Tp298-106 ), were generated to facilitate accurate and rapid enumeration of epitope-specific CD8 T cells. During validation of these tetramers a substantial proportion of Tp249-59 -reactive T cells failed to bind the tetramer, suggesting that this population was heterogeneous with respect to the recognized epitope. We demonstrate that Tp250-59 represents a distinct epitope and that tetramers produced with Tp50-59 and Tp49-59 show no cross-reactivity. The Tp249-59 and Tp250-59 epitopes use different serine residues as the N-terminal anchor for binding to the presenting MHC I molecule. Molecular dynamic modelling predicts that the two peptide-MHC I complexes adopt structurally different conformations and Tcell receptor β sequence analysis showed that Tp249-59 and Tp250-59 are recognized by non-overlapping T-cell receptor repertoires. Together these data demonstrate that although differing by only a single residue, Tp249-59 and Tp250-59 epitopes form distinct ligands for T-cell receptor recognition. Tetramer analysis of T. parva-specific CD8 T-cell lines confirmed the immunodominance of Tp1214-224 in BoLA-A18 animals and showed in BoLA-A10 animals that the Tp249-59 epitope response was generally more dominant than the Tp250-59 response and confirmed that the Tp298-106 response was subdominant. PMID:27317384

  6. Mapping of epitopes on Poa p I and Lol p I allergens with monoclonal antibodies.

    PubMed

    Lin, Z W; Ekramoddoullah, A K; Jaggi, K S; Dzuba-Fischer, J; Rector, E; Kisil, F T

    1990-01-01

    Allergen Poa p I isolated from the dialysed aqueous extract of Kentucky blue grass pollen by affinity chromatography with an anti-Lol p I murine monoclonal antibody (MAb) 290A-167 was previously shown to consist of a 35.8-kilodalton (kD) component with a pI of 6.4, designated as Poa p Ia, and a 33-kD component with a pI of 9.1, designated as Poa p Ib. The present study reports on the comparative antigenic analyses of these two components, using MAbs produced separately against Poa p I and Lol p I. Thus, anti-Poa p I MAbs 60 and 61 and anti-Lol p I MAb 290A-167 recognized Poa p Ia and Poa p Ib whereas anti-Poa p I MAbs 62, 63 and 64 and anti-Lol p I MAb 348A-6 recognized only Poa p Ia. The specificities of the MAbs were further resolved by comparing their respective abilities to inhibit the binding of 125I-Poa p I or 125I-Lol p I to the different MAbs prepared in the form of solid phase. These studies revealed that at least 4 distinct epitopes (designated as E1, E2, E3 and E4) were shared by both Poa p I and Lol p I. All 4 epitopes were present on Poa p Ia whereas only E1 and E3 were detected on Poa p Ib. E1 was recognized by MAbs 60 and 61, E2 by MAbs 62, 63 and 64, E3 by MAb 290A-167 and E4 by MAb 348A-6.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Benchmarking B cell epitope prediction: underperformance of existing methods.

    PubMed

    Blythe, Martin J; Flower, Darren R

    2005-01-01

    Sequence profiling is used routinely to predict the location of B-cell epitopes. In the postgenomic era, the need for reliable epitope prediction is clear. We assessed 484 amino acid propensity scales in combination with ranges of plotting parameters to examine exhaustively the correlation of peaks and epitope location within 50 proteins mapped for polyclonal responses. After examining more than 10(6) combinations, we found that even the best set of scales and parameters performed only marginally better than random. Our results confirm the null hypothesis: Single-scale amino acid propensity profiles cannot be used to predict epitope location reliably. The implication for studies using such methods is obvious. PMID:15576553

  8. Kinesin-II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena.

    PubMed

    Brown, J M; Marsala, C; Kosoy, R; Gaertig, J

    1999-10-01

    We cloned two genes, KIN1 and KIN2, encoding kinesin-II homologues from the ciliate Tetrahymena thermophila and constructed strains lacking either KIN1 or KIN2 or both genes. Cells with a single disruption of either gene showed partly overlapping sets of defects in cell growth, motility, ciliary assembly, and thermoresistance. Deletion of both genes resulted in loss of cilia and arrests in cytokinesis. Mutant cells were unable to assemble new cilia or to maintain preexisting cilia. Double knockout cells were not viable on a standard medium but could be grown on a modified medium on which growth does not depend on phagocytosis. Double knockout cells could be rescued by transformation with a gene encoding an epitope-tagged Kin1p. In growing cells, epitope-tagged Kin1p preferentially accumulated in cilia undergoing active assembly. Kin1p was also detected in the cell body but did not show any association with the cleavage furrow. The cell division arrests observed in kinesin-II knockout cells appear to be induced by the loss of cilia and resulting cell paralysis.

  9. Evaluation of conformational epitopes on thyroid peroxidase by antipeptide antibody binding and mutagenesis

    PubMed Central

    GORA, M; GARDAS, A; WIKTOROWICZ, W; HOBBY, P; WATSON, P F; WEETMAN, A P; SUTTON, B J; BANGA, J P

    2004-01-01

    Autoantibodies to thyroid peroxidase (TPO) recognize predominantly conformational epitopes, which are restricted to two distinct determinants, termed immunodominant domain region (IDR) A and B. These dominant determinants reside in the region with structural homology to myeloperoxidase (MPO)-like domain and may extend into the adjacent complement control protein (CCP) domain. We have explored the location of these determinants on the MPO-like domain of the structural model of TPO, by identifying exposed hydrophilic loops that are potential candidates for the autoantigenic sites, generating rabbit antipeptide antisera, and competing with well characterized murine monoclonal antibodies (mabs) specific for these two IDRs. We recently defined the location of IDR-B, and here report our findings on the location of IDR-A and its relationship to IDR-B, defined with a new panel of 15 antipeptide antisera. Moreover, in combination with single amino acid replacements by in vitro mutagenesis, we have defined the limits of the IDR-B region on the TPO model. The combination of antisera to peptides P12 (aa 549–563), P14 (aa 599–617) and P18 (aa 210–225) inhibited the binding of the mab specific for IDR-A (mab 2) by 75. The same combination inhibited the binding of autoantibodies to native TPO from 67 to 94% (mean 81·5%) at autoantibody levels of 5 IU. Fabs prepared from the antipeptide IgG and pooled in this combination were also effective in competition assays, thus defining the epitopes more precisely. IDR-A was found to lie immediately adjacent to IDR-B and thus the two immunodominant epitopes form an extended patch on the surface of TPO. Finally, by single amino acid mutagenesis, we show that IDR-B extends to residue N642, thus further localizing the boundary of this autoantigenic region on the structural model. PMID:15030525

  10. Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination.

    PubMed Central

    Chen, Q; Esterbauer, H; Jürgens, G

    1992-01-01

    Oxidation of human low-density lipoprotein (LDL) was found to be accompanied by the generation of various reactive aldehydes. One of them, 4-hydroxynonenal (HNE), was shown to modify LDL to a form which represents a good model of oxidized LDL (ox-LDL). In order to investigate the epitopes newly formed on HNE-modified LDL, a polyvalent antiserum to HNE-LDL [anti-(HNE-LDL)] was raised in rabbits and the non-specific components were removed with native LDL coupled to CNBr-Sepharose 4B. Competitive fluorescence immunoassay analysis showed that anti-(HNE-LDL) recognized HNE-LDL, copper-oxidized LDL, HNE-albumin and to a lower extent HNE-modified high-density lipoprotein 3 (HNE-HDL3) and ox-HDL3 but not native LDL. A certain degree of cross-reactivity of the antibody with LDLs modified by either hexanal or 2,4-heptadienal was found. No reaction was obtained with LDL labelled with malondialdehyde. From the abilities of HNE-modified poly(L-amino acids) to compete with HNE-LDL for binding to anti-(HNE-LDL), it is postulated that lysine, tyrosine, arginine and histidine are involved in the formation of HNE-derived epitopes on apolipoprotein B (apo B). Using a double-sandwich fluorescence immunoassay [capture antibody: anti-(apo B); detection antibody: anti-(HNE-LDL)] we found that the HNE-derived epitopes were expressed at a far higher degree in ox-LDL and HNE-LDL than in native LDL. PMID:1280111

  11. Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes

    SciTech Connect

    Gray, Sean A.; Barr, John R.; Kalb, Suzanne R.; Marks, James D.; Baird, Cheryl L.; Cangelosi, Gerard A.; Miller, Keith D.; Feldhaus, Michael J.

    2011-10-01

    A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 170 nM. Epitope binning showed that the three unique clones recognized at least two epitopes that were distinct from one another and from the detection MAbs. After production in E. coli, the scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigen. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.

  12. Conserved epitopes of influenza A virus inducing protective immunity and their prospects for universal vaccine development.

    PubMed

    Staneková, Zuzana; Varečková, Eva

    2010-11-30

    Influenza A viruses belong to the best studied viruses, however no effective prevention against influenza infection has been developed. The emerging of still new escape variants of influenza A viruses causing epidemics and periodic worldwide pandemics represents a threat for human population. Therefore, current, hot task of influenza virus research is to look for a way how to get us closer to a universal vaccine. Combination of chosen conserved antigens inducing cross-protective antibody response with epitopes activating also cross-protective cytotoxic T-cells would offer an attractive strategy for improving protection against drift variants of seasonal influenza viruses and reduces the impact of future pandemic strains. Antigenically conserved fusion-active subunit of hemagglutinin (HA2 gp) and ectodomain of matrix protein 2 (eM2) are promising candidates for preparation of broadly protective HA2- or eM2-based vaccine that may aid in pandemic preparedness. Overall protective effect could be achieved by contribution of epitopes recognized by cytotoxic T-lymphocytes (CTL) that have been studied extensively to reach much broader control of influenza infection. In this review we present the state-of-art in this field. We describe known adaptive immune mechanisms mediated by influenza specific B- and T-cells involved in the anti-influenza immune defense together with the contribution of innate immunity. We discuss the mechanisms of neutralization of influenza infection mediated by antibodies, the role of CTL in viral elimination and new approaches to develop epitope based vaccine inducing cross-protective influenza virus-specific immune response.

  13. Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes

    PubMed Central

    1995-01-01

    We and others have previously reported that melanoma-specific, cytotoxic T lymphocytes (CTL) define a minimum of six class I-presented peptide epitopes common to most HLA-A2+ melanomas. Here we show that three of these peptide epitopes are coordinately recognized by a CTL clone obtained by limiting dilution from the peripheral blood of an HLA- A2+ melanoma patient. Tandem mass spectrometry was used to characterize and sequence one of these three naturally processed melanoma peptides. One of the potential forms of the deduced peptide sequence (XXTVXXGVX, X = I or L) matches positions 32-40 of the recently identified melanoma gene MART-1/Melan-A. This peptide (p939; ILTVILGVL) binds to HLA-A2 with an intermediate-to-low affinity and is capable of sensitizing the HLA-A2+ T2 cell line to lysis by CTL lines and clones derived from five different melanoma patients. A relative high frequency of anti-p939- specific effector cells appear to be present in situ in HLA-A2+ melanoma patients, since p939 is also recognized by freshly isolated tumor infiltrating lymphocytes. p939 represents a good candidate for the development of peptide-based immunotherapies for the treatment of patients with melanoma. PMID:7807017

  14. Vaccine-elicited Human T Cells Recognizing Conserved Protein Regions Inhibit HIV-1

    PubMed Central

    Borthwick, Nicola; Ahmed, Tina; Ondondo, Beatrice; Hayes, Peter; Rose, Annie; Ebrahimsa, Umar; Hayton, Emma-Jo; Black, Antony; Bridgeman, Anne; Rosario, Maximillian; Hill, Adrian VS; Berrie, Eleanor; Moyle, Sarah; Frahm, Nicole; Cox, Josephine; Colloca, Stefano; Nicosia, Alfredo; Gilmour, Jill; McMichael, Andrew J; Dorrell, Lucy; Hanke, Tomáš

    2014-01-01

    Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4+ cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8+ T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro. PMID:24166483

  15. Strategic Use of Epitope Matching to Improve Outcomes.

    PubMed

    Wiebe, Chris; Nickerson, Peter

    2016-10-01

    Understanding the events leading to allorecognition and the subsequent effector pathways engaged is key for the development of strategies to prolong graft survival. Optimizing patient outcomes will require 2 major advancements: (1) minimizing premature death with a functioning graft in the patients with stable graft function, and (2) maximizing graft survival by avoiding the aforementioned allorecognition. This necessitates personalized immunosuppression to avoid known metabolic side effects, risk for infection, and malignancy, while holding the alloimmune system in check. Since the beginning of transplant a key strategy to achieve this goal is to minimize HLA mismatching between donor and recipient. What has not evolved is any refinement in our evaluation of HLA relatedness between donor and recipient when HLA mismatch exists. Donor-recipient HLA mismatch at the amino acid level can now be determined. These mismatches serve as potential epitopes for de novo donor specific antibody development and correlate with late rejection and graft loss. It is in this context that HLA epitope analysis is considered as a strategy to permit safe immunosuppression minimization to improve patient outcomes through: (1) improved allocation schemes that favor donor-recipient pairs with a low HLA epitope mismatch load (especially at the class II loci) or avoiding specific epitope mismatches known to be highly immunogenic and (2) immunosuppressive minimization in patients with low epitope mismatch loads or without highly immunogenic epitope mismatches.

  16. Computational elucidation of potential antigenic CTL epitopes in Ebola virus.

    PubMed

    Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep

    2015-12-01

    Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates.

  17. Student Incentives and Preferential Treatment in College Admissions

    ERIC Educational Resources Information Center

    Pastine, Ivan; Pastine, Tuvana

    2012-01-01

    We consider a framework in which the optimal admissions policy of a purely academic-quality oriented college implements preferential treatment in favor of the student from the deprived socioeconomic background which maximizes the competition between candidates. We find that the exact form of the preferential treatment admissions policy matters for…

  18. Preferential Option for the Poor: Making a Pedagogical Choice

    ERIC Educational Resources Information Center

    Kirylo, James D.

    2006-01-01

    When children are sick, hurt, or in desperate need, parents/caregivers naturally make preferential options for them. Yet, as it relates to social justice, particularly when working with students from marginalized and poverty situations, the concept of making a preferential option in a school setting is not as clear. However, a school setting is a…

  19. Identification of human viral protein-derived ligands recognized by individual MHCI-restricted T-cell receptors.

    PubMed

    Szomolay, Barbara; Liu, Jie; Brown, Paul E; Miles, John J; Clement, Mathew; Llewellyn-Lacey, Sian; Dolton, Garry; Ekeruche-Makinde, Julia; Lissina, Anya; Schauenburg, Andrea J; Sewell, Andrew K; Burrows, Scott R; Roederer, Mario; Price, David A; Wooldridge, Linda; van den Berg, Hugo A

    2016-07-01

    Evidence indicates that autoimmunity can be triggered by virus-specific CD8(+) T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8(+) T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8(+) T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8(+) T-cell clones are highly focused on their index peptide sequence and that 'CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8(+) T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases.

  20. Identification of human viral protein-derived ligands recognized by individual MHCI-restricted T-cell receptors

    PubMed Central

    Szomolay, Barbara; Liu, Jie; Brown, Paul E; Miles, John J; Clement, Mathew; Llewellyn-Lacey, Sian; Dolton, Garry; Ekeruche-Makinde, Julia; Lissina, Anya; Schauenburg, Andrea J; Sewell, Andrew K; Burrows, Scott R; Roederer, Mario; Price, David A; Wooldridge, Linda; van den Berg, Hugo A

    2016-01-01

    Evidence indicates that autoimmunity can be triggered by virus-specific CD8+ T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8+ T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8+ T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8+ T-cell clones are highly focused on their index peptide sequence and that ‘CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8+ T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases. PMID:26846725

  1. Identification of human viral protein-derived ligands recognized by individual MHCI-restricted T-cell receptors.

    PubMed

    Szomolay, Barbara; Liu, Jie; Brown, Paul E; Miles, John J; Clement, Mathew; Llewellyn-Lacey, Sian; Dolton, Garry; Ekeruche-Makinde, Julia; Lissina, Anya; Schauenburg, Andrea J; Sewell, Andrew K; Burrows, Scott R; Roederer, Mario; Price, David A; Wooldridge, Linda; van den Berg, Hugo A

    2016-07-01

    Evidence indicates that autoimmunity can be triggered by virus-specific CD8(+) T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8(+) T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8(+) T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8(+) T-cell clones are highly focused on their index peptide sequence and that 'CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8(+) T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases. PMID:26846725

  2. Recognition of multiple antibody epitopes throughout Borrelia burgdorferi p66, a candidate adhesin, in patients with early or late manifestations of Lyme disease.

    PubMed

    Ntchobo, H; Rothermel, H; Chege, W; Steere, A C; Coburn, J

    2001-03-01

    Antibody responses to p66, a candidate integrin ligand of Borrelia burgdorferi, were studied in 79 patients with early or late manifestations of Lyme disease. The central portion of p66 was previously shown to contain all of the information required for specific recognition of beta3-chain integrins, but work by others had suggested that the C-terminal portion of the protein contains a single surface-exposed, immunodominant loop. In examining antibody responses to full-length p66 and to three overlapping fragments of the protein, we found that the majority of Lyme disease patients had immunoglobulin M (IgM) and/or IgG responses to p66 and that, particularly early in the disease, epitopes throughout p66 were recognized. Among patients with later manifestations of the illness, antibody responses to the C-terminal portion of the protein were more prominent. These results demonstrate that Lyme disease patient sera recognize epitopes throughout p66.

  3. Identification and characterization of CD4⁺ T-cell epitopes on GapC protein of Streptococcus dysgalactiae.

    PubMed

    Yao, Di; Zhang, Hua; Wang, Xintong; Yu, Simiao; Wei, Yuhua; Liu, Wei; Wang, Jiannan; Chen, Xiaoting; Zhang, Zhenghai; Sun, Hunan; Yu, Liquan; Ma, Jinzhu; Tong, Chunyu; Song, Baifen; Cui, Yudong

    2016-02-01

    The GapC protein is highly conserved surface dehydrogenase among Streptococcus dysgalactiae (S. dysgalactiae) and is shown to be involved in bacterial virulence. Immunization of GapC protein can induce specific CD4(+) T-cell immune responses and protect against S. dysgalactiae infection. However, there are no studies to identify immunodominant CD4(+) T-cell epitopes on GapC protein. In this study, in silico MHC affinity measurement method was firstly used to predict potential CD4(+) T-cell epitopes on GapC protein. Six predictive 15-mer peptides were synthesized and two novel GapC CD4(+) T-cell epitopes, GapC63-77 and GapC96-110, were for the first time identified using CD4(+) T-cells obtained from GapC-immunized BALB/c (H-2(d)) and C57BL/6 (H-2(b)) mice spleen based on cell proliferation and cytokines response. The results showed that peptides containing 63-77 and 96-110 induced significant antigen-specific CD4(+) T-cells proliferation response in vivo. At the same time, high levels of IFN-γ and IL-17A, as well as moderate levels of IL-10 and IL-4 were detected in CD4(+) T-cells isolated from both GapC and peptide-immunized mice in vivo, suggesting that GapC63-77 and GapC96-110 preferentially elicited polarized Th1/Th17-type responses. The characterization of GapC CD4(+) T-cell epitopes not only helps us understand its protective immunity, but also contributes to design effective T-cell epitope-based vaccine against S. dysgalactiae infection.

  4. Identification, characterization, and synthesis of peptide epitopes and a recombinant six-epitope protein for Trichomonas vaginalis serodiagnosis

    PubMed Central

    Alderete, JF; Neace, Calvin J

    2013-01-01

    There is a need for a rapid, accurate serodiagnostic test useful for both women and men infected by Trichomonas vaginalis, which causes the number one sexually transmitted infection (STI). Women and men exposed to T. vaginalis make serum antibody to fructose-1,6-bisphosphate aldolase (ALD), α-enolase (ENO), and glyceraldehyde-3-phosphate dehydrogenase (GAP). We identified, by epitope mapping, the common and distinct epitopes of each protein detected by the sera of women patients with trichomonosis and by the sera of men highly seropositive to the immunogenic protein α-actinin (positive control sera). We analyzed the amino acid sequences to determine the extent of identity of the epitopes of each protein with other proteins in the databanks. This approach identified epitopes unique to T. vaginalis, indicating these peptide-epitopes as possible targets for a serodiagnostic test. Individual or combinations of 15-mer peptide epitopes with low to no identity with other proteins were reactive with positive control sera from both women and men but were unreactive with negative control sera. These analyses permitted the synthesis of a recombinant His6 fusion protein of 111 amino acids with an Mr of ~13.4 kDa, which consisted of 15-mer peptides of two distinct epitopes each for ALD, ENO, and GAP. This recombinant protein was purified by affinity chromatography. This composite protein was detected by enzyme-linked immunosorbent assay (ELISA), dot blots, and immunoblots, using positive control sera from women and men. These data indicate that it is possible to identify epitopes and that either singly, in combination, or as a composite protein represent targets for a point-of-care serodiagnostic test for T. vaginalis. PMID:27471691

  5. Identification and characterization of genus-specific epitopes of Serpulina species using monoclonal antibodies.

    PubMed

    Achacha, M; Mittal, K R

    1996-01-01

    Four murine monoclonal antibodies (mAbs) designated as C9E8, A10, G12, and G8 which recognized both Serpulina hyodysenteriae and S. innocens were produced and characterized. The mAbs reacted with whole cell antigens in ELISA, indirect immunofluorescence and immunoblot assays. The mAbs did not show any cross reactivity in rapid dot ELISA or immunoblot assay with Leptospira icterohemorrhagiae, Campylobacter jejuni and Escherichia coli. Treatment of whole cell suspension with proteinase K and sodium periodate indicated that the reacting epitopes of the mAbs were protein in nature. The genus-specific antigens were identified as heat-stable proteins with molecular weight in the range of 26 to 45 kDa. Immunofluorescence and immunogold labelling studies showed that the antibody-binding epitopes were exposed on the outer-surface of the spirochaetal cell wall. The mAbs inhibited growth of reference strains of both S. hyodysenteriae and S. innocens in vitro but failed to cause agglutination. The detection of spirochaetal forms directly in fecal smears or paraffin-embeded tissue sections from experimentally infected pigs indicated that such mAbs were potentially useful for the diagnosis of swine spirochaetosis. This is the first report of mAbs identifying and characterizing common antigens of porcine Serpulina.

  6. Maturation-Induced Cloaking of Neutralization Epitopes on HIV-1 Particles

    PubMed Central

    Joyner, Amanda S.; Willis, Jordan R.; Crowe, James E.; Aiken, Christopher

    2011-01-01

    To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER. PMID:21931551

  7. Innate sensing of oxidation-specific epitopes in health and disease.

    PubMed

    Binder, Christoph J; Papac-Milicevic, Nikolina; Witztum, Joseph L

    2016-08-01

    Ageing, infections and inflammation result in oxidative stress that can irreversibly damage cellular structures. The oxidative damage of lipids in membranes or lipoproteins is one of these deleterious consequences that not only alters lipid function but also leads to the formation of neo-self epitopes - oxidation-specific epitopes (OSEs) - which are present on dying cells and damaged proteins. OSEs represent endogenous damage-associated molecular patterns that are recognized by pattern recognition receptors and the proteins of the innate immune system, and thereby enable the host to sense and remove dangerous biological waste and to maintain homeostasis. If this system is dysfunctional or overwhelmed, the accumulation of OSEs can trigger chronic inflammation and the development of diseases, such as atherosclerosis and age-related macular degeneration. Understanding the molecular components and mechanisms that are involved in this process will help to identify individuals with an increased risk of developing chronic inflammation, and will also help to indicate novel modes of therapeutic intervention. PMID:27346802

  8. Anti-idiotypic antibodies function as a surrogate surface epitope of Brugia malayi infective larvae.

    PubMed

    Carlow, C K; Busto, P; Storey, N; Philipp, M

    1990-07-01

    Anti-idiotypic (AB2) antibodies were generated in rabbits following immunization with a murine IgM monoclonal antibody (AB1) recognizing a surface determinant of Brugia malayi infective stage larvae. AB2 specifically inhibited the binding of AB1 to B. malayi larvae. Furthermore, AB2 had the ability to mimic the original antigen since mice immunized with AB2 possessed serum antibodies (AB3) specific for the B. malayi surface determinant. The presence of anti-surface antibodies (AB3 and AB1) induced either by AB2 immunization or by administration of AB1, did not alter the outcome of an intraperitoneal infection of B. malayi larvae in BABL/c mice when compared to untreated animals. AB3 antibodies like AB1, were IgM, thus indicating an isotype restricted response to the B. malayi epitope. There were no detectable cell mediated responses to the surface determinant in mice immunized with AB2, assessed by lymphocyte blastogenesis or IL3 production in vitro in response to the idiotope as presented by living larvae. The lack of cellular responses and/or the previously demonstrated rapid shedding of the epitope may explain the inability of AB1 or AB2 to protect mice against larval challenge in this study.

  9. Generation and characterization of antibodies specific for caspase-cleaved neo-epitopes: a novel approach

    PubMed Central

    Ai, X; Butts, B; Vora, K; Li, W; Tache-Talmadge, C; Fridman, A; Mehmet, H

    2011-01-01

    Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity. PMID:21881607

  10. Identification of Novel HLA-A2-Restricted Human Immunodeficiency Virus Type 1-Specific Cytotoxic T-Lymphocyte Epitopes Predicted by the HLA-A2 Supertype Peptide-Binding Motif

    PubMed Central

    Altfeld, Marcus A.; Livingston, Brian; Reshamwala, Neha; Nguyen, Phuong T.; Addo, Marylyn M.; Shea, Amy; Newman, Mark; Fikes, John; Sidney, John; Wentworth, Peggy; Chesnut, Robert; Eldridge, Robert L.; Rosenberg, Eric S.; Robbins, Gregory K.; Brander, Christian; Sax, Paul E.; Boswell, Steve; Flynn, Theresa; Buchbinder, Susan; Goulder, Philip J. R.; Walker, Bruce D.; Sette, Alessandro; Kalams, Spyros A.

    2001-01-01

    Virus-specific cytotoxic T-lymphocyte (CTL) responses are critical in the control of human immunodeficiency virus type 1 (HIV-1) infection and will play an important part in therapeutic and prophylactic HIV-1 vaccines. The identification of virus-specific epitopes that are efficiently recognized by CTL is the first step in the development of future vaccines. Here we describe the immunological characterization of a number of novel HIV-1-specific, HLA-A2-restricted CTL epitopes that share a high degree of conservation within HIV-1 and a strong binding to different alleles of the HLA-A2 superfamily. These novel epitopes include the first reported CTL epitope in the Vpr protein. Two of the novel epitopes were immunodominant among the HLA-A2-restricted CTL responses of individuals with acute and chronic HIV-1 infection. The novel CTL epitopes identified here should be included in future vaccines designed to induce HIV-1-specific CTL responses restricted by the HLA-A2 superfamily and will be important to assess in immunogenicity studies in infected persons and in uninfected recipients of candidate HIV-1 vaccines. PMID:11152503

  11. T cell epitope-based allergy vaccines.

    PubMed

    Larché, Mark

    2011-01-01

    Specific immunotherapy (SIT) with extracts containing intact allergen molecules is clinically efficacious, but associated with frequent adverse events related to the allergic sensitization of the patient. As a result, treatment is initiated in an incremental dose fashion which ultimately achieves a plateau (maintenance dose) that may be continued for several years. Reduction of allergic adverse events may allow safer and more rapid treatment Thus, many groups have developed and evaluated strategies to reduce allergenicity whilst maintaining immunogenicity, the latter being required to achieve specific modulation of the immune response. Peptide immunotherapy can be used to target T and/or B cells in an antigen-specific manner. To date, only approaches that target T cells have been clinically evaluated. Short, synthetic peptides representing immunodominant T cell epitopes of major allergens are able to modulate allergen-specific T cell responses in the absence of IgE cross linking and activation of effector cells. Here we review clinical and mechanistic studies associated with peptide immunotherapy targeting allergy to cats or to bee venom. 

  12. [Preparation of monoclonal antibodies against enterovirus type 71 with an epitope-incorporated adenovirus type 3 vector].

    PubMed

    Fan, Ye; Tian, Xingui; Xue, Chunyan; Liu, Minglong; Zhou, Zhichao; Li, Xiao; Li, Chenyang; Zhou, Rong

    2016-08-01

    Objective To develop the monoclonal antibodies (mAbs) against enterovirus type 71 (EV71). Methods Two neutralization epitopes, SP70 and SP55, from EV71 were cloned into the hexon gene of adenovirus type 3 to generate a recombinant adenovirus type 3 (R1R2A3) presenting SP70 and SP55 antigens. BALB/c mice were immunized with the R1R2A3. The mAbs were developed with hybridoma technology and were analyzed with microneutralizing assay, indirect ELISA, Western blotting and direct immunofluorescence assay (DFA). Results The study obtained four hybridoma cell clones, 2C4, D2C9, I2G2 and I12C3. ELISA showed that the titer of D2C9 against EV71 was 1:8 000 000 and the titers of 2C4, I2G2, and I12C3 all were 1:500 000. ELISA and Western blotting demonstrated that all mAbs could specifically recognize the VP1 of EV71. In addition, D2C9 recognized the SP70 epitope, and 2C4, I12C3 and I2G2 all recognized the SP55 epitope. DFA revealed that all mAbs could react with EV71, but not with Coxsackie virus A16 (CoxA16). Conclusion Four mAbs against EV71 have been developed successfully, and all of them could react with EV71 rather than CoxA16. PMID:27412945

  13. Novel HLA-B27-restricted epitopes from Chlamydia trachomatis generated upon endogenous processing of bacterial proteins suggest a role of molecular mimicry in reactive arthritis.

    PubMed

    Alvarez-Navarro, Carlos; Cragnolini, Juan J; Dos Santos, Helena G; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A

    2013-09-01

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na(+)-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27(+) cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330-338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211-223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211-223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA.

  14. Quantitative and epitope-specific antigenicity analysis of the human papillomavirus 6 capsid protein in aqueous solution or when adsorbed on particulate adjuvants.

    PubMed

    Li, Min; Wang, Xin; Cao, Lu; Lin, Zhijie; Wei, Minxi; Fang, Mujin; Li, Shaowei; Zhang, Jun; Xia, Ningshao; Zhao, Qinjian

    2016-08-17

    Human papillomavirus (HPV) 6 is a human pathogen which causes genital warts. Recombinant virus-like particle (VLP) based antigens are the active components in prophylactic vaccines to elicit functional antibodies. The binding and functional characteristics of a panel of 15 murine monoclonal antibodies (mAbs) against HPV6 was quantitatively assessed. Elite conformational indicators, recognizing the conformational epitopes, are also elite viral neutralizers as demonstrated with their viral neutralization efficiency (5 mAbs with neutralization titer below 4ng/mL) in a pseudovirion (PsV)-based system. The functionality of a given mAb is closely related to the nature of the corresponding epitope, rather than the apparent binding affinity to antigen. The epitope-specific antigenicity assays can be used to assess the binding activity of PsV or VLP preparations to neutralizing mAbs. These mAb-based assays can be used for process monitoring and for product release and characterization to confirm the existence of functional epitopes in purified antigen preparations. Due to the particulate nature of the alum adjuvants, the vaccine antigen adsorbed on adjuvants was considered largely as "a black box" due to the difficulty in analysis and visualization. Here, a novel method with fluorescence-based high content imaging for visualization and quantitating the immunoreactivity of adjuvant-adsorbed VLPs with neutralizing mAbs was developed, in which antigen desorption was not needed. The facile and quantitative in situ antigenicity analysis was amendable for automation. The integrity of a given epitope or two non-overlapping epitopes on the recombinant VLPs in their adjuvanted form can be assessed in a quantitative manner for cross-lot or cross-product comparative analysis with minimal manipulation of samples. PMID:27426626

  15. Novel HLA-B27-restricted Epitopes from Chlamydia trachomatis Generated upon Endogenous Processing of Bacterial Proteins Suggest a Role of Molecular Mimicry in Reactive Arthritis*

    PubMed Central

    Alvarez-Navarro, Carlos; Cragnolini, Juan J.; Dos Santos, Helena G.; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A.

    2013-01-01

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na+-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27+ cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330–338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211–223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211–223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA. PMID:23867464

  16. Mapping the conformational epitope of a neutralizing antibody (AcV1) directed against the AcMNPV GP64 protein

    SciTech Connect

    Zhou Jian; Blissard, Gary W. . E-mail: gwb1@cornell.edu

    2006-09-01

    The envelope glycoprotein GP64 of Autographa californica nucleopolyhedrovirus (AcMNPV) is necessary and sufficient for the acid-induced membrane fusion activity that is required for fusion of the budded virus (BV) envelope and the endosome membrane during virus entry. Infectivity of the budded virus (BV) is neutralized by AcV1, a monoclonal antibody (MAb) directed against GP64. Prior studies indicated that AcV1 recognizes a conformational epitope and does not inhibit virus attachment to the cell, but instead inhibits entry at a step following virus attachment. We found that AcV1 recognition of GP64 was lost upon exposure of GP64 to low pH (pH 4.5) and restored by returning GP64 to pH 6.2. In addition, the AcV1 epitope was lost upon denaturation of GP64 in SDS, but the AcV1 epitope was restored by refolding the protein in the absence of SDS. Using truncated GP64 proteins expressed in insect cells, we mapped the AcV1 epitope to a 24 amino acid region in the central variable domain of GP64. When sequences within the mapped AcV1 epitope were substituted with a c-Myc epitope and the resulting construct was used to replace wt GP64 in recombinant AcMNPV viruses, the modified GP64 protein appeared to function normally. However, an anti-c-Myc monoclonal antibody did not neutralize infectivity of those viruses. Because binding of the c-Myc MAb to the same site in the GP64 sequence did not result in neutralization, these studies suggest that AcV1 neutralization may result from a specific structural constraint caused by AcV1 binding and not simply by steric hindrance caused by antibody binding at this position in GP64.

  17. Protein structure plays a critical role in peanut allergen stability and may determine immunodominant IgE-binding epitopes.

    PubMed

    Sen, Moon; Kopper, Randall; Pons, Laurent; Abraham, Edathara C; Burks, A Wesley; Bannon, Gary A

    2002-07-15

    Hypersensitivity to peanuts is a reaction mediated by IgE Abs in response to several peanut protein allergens. Among these allergenic proteins, Ara h 2 is one of the most commonly recognized allergens. Ara h 2 is a 17-kDa protein that has eight cysteine residues that could form up to four disulfide bonds. Circular dichroism studies showed substantial changes in the secondary and tertiary structures of the reduced Ara h 2 as compared with the native protein. Upon treatment with trypsin, chymotrypsin, or pepsin, a number of relatively large fragments are produced that are resistant to further enzymatic digestion. These resistant Ara h 2 peptide fragments contain intact IgE-binding epitopes and several potential enzyme cut sites that are protected from the enzymes by the compact structure of the protein. The enzyme-treated allergen remains essentially intact despite the action of proteases until the fragments are dissociated when the disulfide linkages are reduced. Amino acid sequence analysis of the resistant protein fragments indicates that they contain most of the immunodominant IgE-binding epitopes. These results provide a link between allergen structure and the immunodominant IgE-binding epitopes within a population of food-allergic individuals.

  18. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGES

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  19. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    SciTech Connect

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; Pawlowski, Nikolaus; Knaute, Tobias; Zerweck, Johannes; Korber, Bette T.; Barouch, Dan H.

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth of IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.

  20. Phage display and hybridoma generation of antibodies to human CXCR2 yields antibodies with distinct mechanisms and epitopes.

    PubMed

    Rossant, Christine J; Carroll, Danielle; Huang, Ling; Elvin, John; Neal, Frances; Walker, Edward; Benschop, Joris J; Kim, Eldar E; Barry, Simon T; Vaughan, Tristan J

    2014-01-01

    Generation of functional antibodies against integral membrane proteins such as the G-protein coupled receptor CXCR2 is technically challenging for several reasons, including limited epitope accessibility, the requirement for a lipid environment to maintain structure and their existence in dynamic conformational states. Antibodies to human CXCR2 were generated by immunization in vivo and by in vitro selection methods. Whole cell immunization of transgenic mice and screening of phage display libraries using CXCR2 magnetic proteoliposomes resulted in the isolation of antibodies with distinct modes of action. The hybridoma-derived antibody fully inhibited IL-8 and Gro-α responses in calcium flux and β-arrestin recruitment assays. The phage-display derived antibodies were allosteric antagonists that showed ligand dependent differences in functional assays. The hybridoma and phage display antibodies did not cross-compete in epitope competition assays and mapping using linear and CLIPS peptides confirmed that they recognized distinct epitopes of human CXCR2. This illustrates the benefits of using parallel antibody isolation approaches with different antigen presentation methods to successfully generate functionally and mechanistically diverse antagonistic antibodies to human CXCR2. The method is likely to be broadly applicable to other complex membrane proteins.

  1. Invertebrate host-parasite relationships: convergent evolution of a tropomyosin epitope between Schistosoma sp., Fasciola hepatica, and certain pulmonate snails.

    PubMed

    Weston, D; Allen, B; Thakur, A; LoVerde, P T; Kemp, W M

    1994-05-01

    Monoclonal antibodies (mAb) directed against Schistosoma mansoni tropomyosin isoform, SMTM (Xu et al. Experimental Parasitology 69, 373-392, 1989), were used to test for cross-reactivity with Biomphalaria glabrata antigens. One mAb (1F10) recognized antigens of 39, 41, and 80 kDa in a snail head/foot antigen preparation but not a hepatopancreas antigen preparation. Another mAb (1C1) cross-reacted with a 39-kDa antigen in the head/foot extract but not in the hepatopancreas extract. Epitope mapping revealed the 1F10 epitope to be between amino acids 135 and 188 of both Bg39 (Dissous et al. Molecular and Biochemical Parasitology 43, 245-256, 1990) and BgTMII (Weston and Kemp, Experimental Parasitology 76, 358-370, 1993), while the 1C1 epitope was located between amino acids 189 and 213 of BgTMII. Various invertebrate species, including members from Trematoda, Pulmonata, Annelida, and Arthropoda, were tested for cross-reactivity with the monoclonal antibodies. While the 1F10 mAb displayed broad invertebrate cross-reactivity, the 1C1 mAb cross-reactivity was restricted to schistosomes, F. hepatica, and the pulmonate snails B. glabrata and Physa sp. PMID:7512930

  2. The challenges and opportunities for the development of a T-cell epitope-based herpes simplex vaccine.

    PubMed

    Kuo, Tiffany; Wang, Christine; Badakhshan, Tina; Chilukuri, Sravya; BenMohamed, Lbachir

    2014-11-28

    Herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) infections have been prevalent since the ancient Greek times. To this day, they still affect a staggering number of over a billion individuals worldwide. HSV-1 infections are predominant than HSV-2 infections and cause potentially blinding ocular herpes, oro-facial herpes and encephalitis. HSV-2 infections cause painful genital herpes, encephalitis, and death in newborns. While prophylactic and therapeutic HSV vaccines remain urgently needed for centuries, their development has been difficult. During the most recent National Institute of Health (NIH) workshop titled "Next Generation Herpes Simplex Virus Vaccines: The Challenges and Opportunities", basic researchers, funding agencies, and pharmaceutical representatives gathered: (i) to assess the status of herpes vaccine research; and (ii) to identify the gaps and propose alternative approaches in developing a safe and efficient herpes vaccine. One "common denominator" among previously failed clinical herpes vaccine trials is that they either used a whole virus or a whole viral protein, which contain both "pathogenic symptomatic" and "protective asymptomatic" antigens and epitopes. In this report, we continue to advocate developing "asymptomatic" epitope-based sub-unit vaccine strategies that selectively incorporate "protective asymptomatic" epitopes which: (i) are exclusively recognized by effector memory CD4(+) and CD8(+) T cells (TEM cells) from "naturally" protected seropositive asymptomatic individuals; and (ii) protect human leukocyte antigen (HLA) transgenic animal models of ocular and genital herpes. We review the role of animal models in herpes vaccine development and discuss their current status, challenges, and prospects.

  3. Mapping of murine IgE epitopes involved in IgE-Fc epsilon receptor interactions.

    PubMed

    Schwarzbaum, S; Nissim, A; Alkalay, I; Ghozi, M C; Schindler, D G; Bergman, Y; Eshhar, Z

    1989-06-01

    The generation of anti-IgE monoclonal antibodies has permitted the identification of various serological epitopes on the IgE molecule. The relationship of the sites on IgE recognized by such antibodies to the Fc epsilon receptor (Fc epsilon R) interaction site has been determined using cross-inhibition studies. However, interpretation of this type of experiment is limited by problems of steric hindrance. Thus, to accomplish precise mapping on the IgE molecule of the Fc epsilon R interaction site and the binding sites of various anti-IgE mAb, we employed site-directed mutagenesis of the IgE heavy chain gene. To this end we have constructed and expressed a recombinant murine constant epsilon heavy chain (C epsilon) gene bearing a (4-hydroxy-3-nitrophenyl)acetic acid (NP)-binding VH region. Several site-specific mutants in the C epsilon 3 and C epsilon 4 domains of this recombinant C epsilon gene were prepared and expressed by transfection into the light chain-producing J558L myeloma cell line. The resulting IgE antibodies were tested for binding to mast cells and to various anti-IgE mAb. The mutants produced include a proline to histidine point mutant at amino acid residue 404 in the C epsilon 3 domain, a mutant with a truncated C epsilon 4 domain, a mutant with a 45 amino acid deletion in the carboxy end of C epsilon 3, and a chimeric human C epsilon in which the human C epsilon 3 was replaced by the homologous mouse C epsilon 3 domain. These mutants have permitted the localization, to the C epsilon 3 domain, of the epitopes recognized by the 84.1C and 95.3 anti-IgE mAb. The 84.1C mAb recognizes a site on IgE which is identical or very close to the Fc epsilon R binding site, and 95.3 recognizes a site on IgE which is related, but not identical to the Fc epsilon R binding site. The antigenic determinant recognized by the 51.3 mAb, which is inefficient at blocking the IgE-Fc epsilon R interaction, has been mapped to the C epsilon 4 domain. When tested for binding to

  4. Recognition of Linear B-Cell Epitope of Betanodavirus Coat Protein by RG-M18 Neutralizing mAB Inhibits Giant Grouper Nervous Necrosis Virus (GGNNV) Infection

    PubMed Central

    Chen, Chien-Wen; Wu, Ming-Shan; Huang, Yi-Jen; Cheng, Chao-An; Chang, Chi-Yao

    2015-01-01

    Betanodavirus is a causative agent of viral nervous necrosis syndrome in many important aquaculture marine fish larvae, resulting in high global mortality. The coat protein of Betanodavirus is the sole structural protein, and it can assemble the virion particle by itself. In this study, we used a high-titer neutralizing mAB, RG-M18, to identify the linear B-cell epitope on the viral coat protein. By mapping a series of recombinant proteins generated using the E. coli PET expression system, we demonstrated that the linear epitope recognized by RG-M18 is located at the C-terminus of the coat protein, between amino acid residues 195 and 338. To define the minimal epitope region, a set of overlapping peptides were synthesized and evaluated for RG-M18 binding. Such analysis identified the 195VNVSVLCR202 motif as the minimal epitope. Comparative analysis of Alanine scanning mutagenesis with dot-blotting and ELISA revealed that Valine197, Valine199, and Cysteine201 are critical for antibody binding. Substitution of Leucine200 in the RGNNV, BFNNV, and TPNNV genotypes with Methionine200 (thereby simulating the SJNNV genotype) did not affect binding affinity, implying that RG-M18 can recognize all genotypes of Betanodaviruses. In competition experiments, synthetic multiple antigen peptides of this epitope dramatically suppressed giant grouper nervous necrosis virus (GGNNV) propagation in grouper brain cells. The data provide new insights into the protective mechanism of this neutralizing mAB, with broader implications for Betanodavirus vaccinology and antiviral peptide drug development. PMID:25938761

  5. Capitalizing on knowledge of hepatitis C virus neutralizing epitopes for rational vaccine design.

    PubMed

    Kong, Leopold; Jackson, Kelli N; Wilson, Ian A; Law, Mansun

    2015-04-01

    Hepatitis C virus infects nearly 3% of the world's population and is often referred as a silent epidemic. It is a leading cause of liver cirrhosis and hepatocellular carcinoma in endemic countries. Although antiviral drugs are now available, they are not readily accessible to marginalized social groups and developing nations that are disproportionally impacted by HCV. To stop the HCV pandemic, a vaccine is needed. Recent advances in HCV research have provided new opportunities for studying HCV neutralizing antibodies and their subsequent use for rational vaccine design. It is now recognized that neutralizing antibodies to conserved antigenic sites of the virus can cross-neutralize diverse HCV genotypes and protect against infection in vivo. Structural characterization of the neutralizing epitopes has provided valuable information for design of candidate immunogens.

  6. Epitope-mapped monoclonal antibodies as tools for functional and morphological analyses of the human urokinase receptor in tumor tissue.

    PubMed Central

    Luther, T.; Magdolen, V.; Albrecht, S.; Kasper, M.; Riemer, C.; Kessler, H.; Graeff, H.; Müller, M.; Schmitt, M.

    1997-01-01

    uPAR (CD87), the receptor for the urokinase-type plasminogen activator (uPA) facilitates tumor cell invasion and metastasis by focusing uPA proteolytic activity to the cell surface. As uPAR exists in various molecular forms, it is desirable to use well defined antibodies for analyses of uPAR antigen expression in human malignant tumors by immunological methods. Therefore, twelve monoclonal antibodies (MAbs) directed against uPAR were generated by using nonglycosylated, recombinant human uPAR (spanning amino acids 1 to 284), expressed in Escherichia coli, as the immunogen. The reaction pattern of these MAbs with the immunogen and a series of carboxyl-terminally truncated versions of uPAR demonstrated that at least six different epitopes of uPAR are recognized. All MAbs reacted under reducing conditions in immunoblot analyses with E. coli-expressed uPA and also with highly glycosylated, functionally intact, recombinant human uPAR expressed in Chinese hamster ovary (CHO) cells. Seven of the MAbs recognized CHO uPAR under nonreducing conditions as well. By flow cytofluorometric analyses, three of these MAbs were shown to bind to native human uPAR present on the cell surface of monocytoid U937 cells with MAb IIIF10 being the best. Saturation of uPAR with uPA on U937 cells completely blocked interaction of MAb IIIF10 with uPAR (mapped epitope, amino acids 52 to 60 of domain I of uPAR). In turn, preincubation of U937 cells with MAb IIIF10 efficiently reduced binding of uPA to uPAR, indicating that the epitope detected by MAb IIIF10 is located within or closely to the uPA-binding site of uPAR, and thus, this site may be a target to influence uPA/uPAR-mediated proteolysis in tumors. Binding of MAbs IID7 or IIIB11 (mapped epitope, amino acids 125 to 132 of domain II of uPAR) to uPAR is not affected when uPAR is occupied by uPA. As these MAbs reacted strongly with cellular uPAR antigen in formalin-fixed paraffin-embedded tumor sections, the domain-II-specific antibodies IID7

  7. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis

    PubMed Central

    1995-01-01

    Cytotoxic T lymphocytes (CTL) are thought to contribute to viral clearance and liver cell injury during hepatitis B virus (HBV) infection. Using a strategy involving the in vitro stimulation of peripheral blood mononuclear cells (PBMC) with HBV-derived synthetic peptides containing HLA-A2.1, -A31, and -Aw68 binding motifs, we have previously described CTL responses to several epitopes within the HBV nucleocapsid and envelope antigens in patients with acute hepatitis. In this study we define six HLA-A2-restricted CTL epitopes located in the highly conserved reverse transcriptase and RNase H domains of the viral polymerase protein, and we show that the CTL response to polymerase is polyclonal, multispecific, and mediated by CD8+ T cells in patients with acute viral hepatitis, but that it is not detectable in patients with chronic HBV infection or uninfected healthy blood donors. Importantly, the peptide-activated CTL recognize target cells that express endogenously synthesized polymerase protein, suggesting that these peptides represent naturally processed viral epitopes. DNA sequence analysis of the viruses in patients who did not respond to peptide stimulation indicated that CTL nonresponsiveness was not due to infection by viral variants that differed in sequences from the synthetic peptides. CTL specific for one of the epitopes were unable to recognize several naturally occurring viral variants, except at high peptide concentration, underlining the HBV subtype specificity of this response. Furthermore, CTL responses against polymerase, core, and envelope epitopes were detectable for more than a year after complete clinical recovery and seroconversion, reflecting either the persistence of trace amounts of virus or the presence of long lived memory CTL in the absence of viral antigen. Finally, we demonstrated that wild type viral DNA and RNA can persist indefinitely, in trace quantities, in the serum and PBMC after complete clinical and serological recovery

  8. Toward Effective HIV Vaccination INDUCTION OF BINARY EPITOPE REACTIVE ANTIBODIES WITH BROAD HIV NEUTRALIZING ACTIVITY

    SciTech Connect

    Nishiyama, Yasuhiro; Planque, Stephanie; Mitsuda, Yukie; Nitti, Giovanni; Taguchi, Hiroaki; Jin, Lei; Symersky, Jindrich; Boivin, Stephane; Sienczyk, Marcin; Salas, Maria; Hanson, Carl V.; Paul, Sudhir

    2009-11-23

    We describe murine monoclonal antibodies (mAbs) raised by immunization with an electrophilic gp120 analog (E-gp120) expressing the rare ability to neutralize genetically heterologous human immunodeficiency virus (HIV) strains. Unlike gp120, E-gp120 formed covalent oligomers. The reactivity of gp120 and E-gp120 with mAbs to reference neutralizing epitopes was markedly different, indicating their divergent structures. Epitope mapping with synthetic peptides and electrophilic peptide analogs indicated binary recognition of two distinct gp120 regions by anti-E-gp120 mAbs, the 421-433 and 288-306 peptide regions. Univalent Fab and single chain Fv fragments expressed the ability to recognize both peptides. X-ray crystallography of an anti-E-gp120 Fab fragment revealed two neighboring cavities, the typical antigen-binding cavity formed by the complementarity determining regions (CDRs) and another cavity dominated by antibody heavy chain variable (VH) domain framework (FR) residues. Substitution of the FR cavity VH Lys-19 residue by an Ala residue resulted in attenuated binding of the 421-433 region peptide probe. The CDRs and VH FR replacement/silent mutation ratios exceeded the ratio for a random mutation process, suggesting adaptive development of both putative binding sites. All mAbs studied were derived from VH1 family genes, suggesting biased recruitment of the V gene germ line repertoire by E-gp120. The conserved 421-433 region of gp120 is essential for HIV binding to host CD4 receptors. This region is recognized weakly by the FR of antibodies produced without exposure to HIV, but it usually fails to induce adaptive synthesis of neutralizing antibodies. We present models accounting for improved CD4-binding site recognition and broad HIV neutralizing activity of the mAbs, long sought goals in HIV vaccine development.

  9. Molecular and immunological characterization and IgE epitope mapping of Pen n 18, a major allergen of Penicillium notatum.

    PubMed Central

    Yu, Chia-Jung; Chen, Yen-Ming; Su, Song-Nan; Forouhar, Farhad; Lee, Shu-Hua; Chow, Lu-Ping

    2002-01-01

    The mould genus, Penicillium, is a significant source of environmental aero-allergens. A major allergen from Penicillium notatum, Pen n 18, was identified by two-dimensional immunoblotting using monoclonal antibody G11A10, raised against the vacuolar serine protease of Penicillium citrinum, followed by matrix-assisted laser-desorption ionization-time-of-flight MS analysis of the peptide digest. Pen n 18 was then cloned and the amino acid sequence deduced from the cDNA sequence. The cDNA encoded a 494 amino acid protein, considerably larger than mature Pen n 18, the differences being due to the N- and C-terminal prosequences. The deduced amino acid sequence showed extensive similarity with those of vacuolar serine proteases from various fungi. The Pen n 18 coding sequence was expressed in Escherichia coli as a His-tagged fusion protein and purified by Ni(2+)-chelate affinity chromatography. On immunoblots, the purified recombinant protein specifically bound IgE from mould-allergic patients, and cross-inhibition assays demonstrated the presence of common IgE-binding epitopes on Pen n 18 and a major allergen of P. citrinum, Pen c 18. When mapping of the allergenic epitopes was performed, at least nine different linear IgE-binding epitopes, located throughout the Pen n 18 protein, were identified. Of these, peptide C12, located in the N-terminal region of the molecule, was recognized by serum from 75% of the patients tested and therefore appears to be an immunodominant IgE-binding epitope. PMID:11964171

  10. Targeting of influenza epitopes to murine CR1/CR2 using single-chain antibodies.

    PubMed

    Prechl, J; Tchorbanov, A; Horváth, A; Baiu, D C; Hazenbos, W; Rajnavölgyi, E; Kurucz, I; Capel, P J; Erdei, A

    1999-05-01

    Single-chain variable fragment (scFv) antibodies are genetically engineered molecules comprising the variable regions responsible for specific binding. scFv that recognize certain surface molecules on professional antigen presenting cells could therefore be suitable for targeting Ag to these cells. We have produced an scFv that recognizes murine complement receptors 1 and 2 (CR1/CR2) and genetically fused it with different numbers of influenza hemagglutinin peptides which contain both B and T cell epitopes. The CR1/CR2 specific hybridoma 7G6 was used for RT-PCR to obtain the variable regions, which were then combined to create an scFv fragment. The influenza hemagglutinin intersubunit peptide HA317-41 (IP) was engineered to the N terminus of the scFv in one, two or three copies. The so obtained IP(1-3)7G6scFv still bound the complement receptors; the peptides in the construct were recognized by the peptide specific monoclonal IP2-11-1 on Western blots and ELISAs. The CR1/CR2 positive B lymphomas A20 and 2PK3 presented the peptide to an I-Ed restricted IP specific T cell hybridoma more efficiently when incubated with the IP(1)7G6 constructs as compared to the free peptide. The results suggest that scFv could work as targeting devices in subunit vaccines.

  11. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope.

    PubMed Central

    Denecke, J; De Rycke, R; Botterman, J

    1992-01-01

    We studied protein sorting signals which are responsible for the retention of reticuloplasmins in the lumen of the plant endoplasmic reticulum (ER). A non-specific passenger protein, previously shown to be secreted by default, was used as a carrier for such signals. Tagging with C-terminal tetrapeptide sequences of mammalian (KDEL) and yeast (HDEL) reticuloplasmins led to effective accumulation of the protein chimeras in the lumen of the plant ER. Some single amino acid substitutions within the tetrapeptide tag (-SDEL, -KDDL, -KDEI and -KDEV) can cause a complete loss of its function as a retention signal, demonstrating the high specificity of the retention machinery. However, other modifications confer efficient (-RDEL) or partial (-KEEL) retention. It is also shown that the efficiency of protein retention is not significantly impaired by an increased ligand concentration in plants. The efficiently retained chimeras (-KDEL, -HDEL and -RDEL) were shown to be recognized by a monoclonal antibody directed against the C-terminus of the mammalian reticuloplasmin protein disulfide isomerase (PDI). The recognized epitope is also present in several putative reticuloplasmins in microsomal fractions of plant and mammalian cells, suggesting that the antibodies recognize an important structural determinant of the retention signal. In addition, data are discussed which support the view that upstream sequences beyond the C-terminal tetrapeptide can influence or may be part of the structure of reticuloplasmin retention signals. Images PMID:1376250

  12. Targeting of influenza epitopes to murine CR1/CR2 using single-chain antibodies.

    PubMed

    Prechl, J; Tchorbanov, A; Horváth, A; Baiu, D C; Hazenbos, W; Rajnavölgyi, E; Kurucz, I; Capel, P J; Erdei, A

    1999-05-01

    Single-chain variable fragment (scFv) antibodies are genetically engineered molecules comprising the variable regions responsible for specific binding. scFv that recognize certain surface molecules on professional antigen presenting cells could therefore be suitable for targeting Ag to these cells. We have produced an scFv that recognizes murine complement receptors 1 and 2 (CR1/CR2) and genetically fused it with different numbers of influenza hemagglutinin peptides which contain both B and T cell epitopes. The CR1/CR2 specific hybridoma 7G6 was used for RT-PCR to obtain the variable regions, which were then combined to create an scFv fragment. The influenza hemagglutinin intersubunit peptide HA317-41 (IP) was engineered to the N terminus of the scFv in one, two or three copies. The so obtained IP(1-3)7G6scFv still bound the complement receptors; the peptides in the construct were recognized by the peptide specific monoclonal IP2-11-1 on Western blots and ELISAs. The CR1/CR2 positive B lymphomas A20 and 2PK3 presented the peptide to an I-Ed restricted IP specific T cell hybridoma more efficiently when incubated with the IP(1)7G6 constructs as compared to the free peptide. The results suggest that scFv could work as targeting devices in subunit vaccines. PMID:10408376

  13. Immunoinformatics and epitope prediction in the age of genomic medicine.

    PubMed

    Backert, Linus; Kohlbacher, Oliver

    2015-11-20

    Immunoinformatics involves the application of computational methods to immunological problems. Prediction of B- and T-cell epitopes has long been the focus of immunoinformatics, given the potential translational implications, and many tools have been developed. With the advent of next-generation sequencing (NGS) methods, an unprecedented wealth of information has become available that requires more-advanced immunoinformatics tools. Based on information from whole-genome sequencing, exome sequencing and RNA sequencing, it is possible to characterize with high accuracy an individual's human leukocyte antigen (HLA) allotype (i.e., the individual set of HLA alleles of the patient), as well as changes arising in the HLA ligandome (the collection of peptides presented by the HLA) owing to genomic variation. This has allowed new opportunities for translational applications of epitope prediction, such as epitope-based design of prophylactic and therapeutic vaccines, and personalized cancer immunotherapies. Here, we review a wide range of immunoinformatics tools, with a focus on B- and T-cell epitope prediction. We also highlight fundamental differences in the underlying algorithms and discuss the various metrics employed to assess prediction quality, comparing their strengths and weaknesses. Finally, we discuss the new challenges and opportunities presented by high-throughput data-sets for the field of epitope prediction.

  14. Recombinant expression and epitope mapping of grass pollen allergens.

    PubMed

    Suphioglu, C; Smith, P M; Ong, E K; Knox, R B; Singh, M B

    1996-01-01

    We have studied the expression of recombinant forms of Group 1 allergens from rye-grass and Bermuda grass pollens. Recombinant Lol p 1 expressed in bacteria bound serum IgE from allergic patients. Based on analysis of fragments of the Lol p 1 cDNA clone, the major IgE-reactive epitope has been mapped to the C-terminus. However, although SDS-denatured natural Cyn d 1 (from Bermuda grass) bound IgE, the full or partial recombinant proteins expressed in bacteria did not bind IgE. We have since expressed Cyn d 1 in the yeast Pichia pastoris and restored IgE binding. cDNA clones encoding two isoforms of Lol p 5, Lol p 5A and Lol p 5B, have been expressed in bacteria and resulting polypeptides show IgE-binding. Random fragments of these clones have been generated and when expressed as partial recombinant proteins in bacteria, allowed us to identify the major IgE-binding epitopes. The allergenic epitopes were localised towards the C-terminal half of the molecule. Although both isoforms shared similar IgE-reactive epitopes, Lol p 5B did not recognise the Lol p 5A-specific monoclonal antibody A7. At sequence level, there appear to be several amino acid differences between the antigenic epitopes of these two isoallergens. These results aid in the design of diagnostics and in grass pollen immunotherapy.

  15. Accurate identification of paraprotein antigen targets by epitope reconstruction

    PubMed Central

    Sompuram, Seshi R.; Bastas, Gerassimos; Vani, Kodela

    2008-01-01

    We describe the first successful clinical application of a new discovery technology, epitope-mediated antigen prediction (E-MAP), to the investigation of multiple myeloma. Until now, there has been no reliable, systematic method to identify the cognate antigens of paraproteins. E-MAP is a variation of previous efforts to reconstruct the epitopes of paraproteins, with the significant difference that it provides enough epitope sequence data so as to enable successful protein database searches. We first reconstruct the paraprotein's epitope by analyzing the peptides that strongly bind. Then, we compile the data and interrogate the nonredundant protein database, searching for a close match. As a clinical proof-of-concept, we apply this technology to uncovering the protein targets of para-proteins in multiple myeloma (MM). E-MAP analysis of 2 MM paraproteins identified human cytomegalovirus (HCMV) as a target in both. E-MAP sequence analysis determined that one para-protein binds to the AD-2S1 epitope of HCMV glycoprotein B. The other binds to the amino terminus of the HCMV UL-48 gene product. We confirmed these predictions using immunoassays and immunoblot analyses. E-MAP represents a new investigative tool for analyzing the role of chronic antigenic stimulation in B-lymphoproliferative disorders. PMID:17878398

  16. Ab and T cell epitopes of influenza A virus, knowledge and opportunities

    PubMed Central

    Bui, Huynh-Hoa; Peters, Bjoern; Assarsson, Erika; Mbawuike, Innocent; Sette, Alessandro

    2007-01-01

    The Immune Epitope Database and Analysis Resources (IEDB) (www.immuneepitope.org) was recently developed to capture epitope related data. IEDB also hosts various bioinformatics tools that can be used to identify novel epitopes as well as to analyze and visualize existing epitope data. Herein, a comprehensive analysis was undertaken (i) to compile and inventory existing knowledge regarding influenza A epitopes and (ii) to determine possible cross-reactivities of identified epitopes among avian H5N1 and human influenza strains. At present, IEDB contains >600 different epitopes derived from 58 different strains and 10 influenza A proteins. By using the IEDB analysis resources, conservancy analyses were performed, and several conserved and possibly cross-reactive epitopes were identified. Significant gaps in the current knowledge were also revealed, including paucity of Ab epitopes in comparison with T cell epitopes, limited number of epitopes reported for avian influenza strains/subtypes, and limited number of epitopes reported from proteins other than hemagglutinin and nucleoprotein. This analysis provides a resource for researchers to access existing influenza epitope data. At the same time, the analysis illustrates gaps in our collective knowledge that should inspire directions for further study of immunity against the influenza A virus. PMID:17200302

  17. Higher-Order Neural Networks Recognize Patterns

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen

    1996-01-01

    Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.

  18. Vitrification: Machines learn to recognize glasses

    NASA Astrophysics Data System (ADS)

    Ceriotti, Michele; Vitelli, Vincenzo

    2016-05-01

    The dynamics of a viscous liquid undergo a dramatic slowdown when it is cooled to form a solid glass. Recognizing the structural changes across such a transition remains a major challenge. Machine-learning methods, similar to those Facebook uses to recognize groups of friends, have now been applied to this problem.

  19. Teaching Students to Recognize Irony

    ERIC Educational Resources Information Center

    Milner, Joseph O.; Hawkins, Robin H.; Milner, Lucy M.

    2014-01-01

    This article exposes the problem of using declarative rather than procedural knowledge to help K--12 students recognize irony in stories. It offers commonplace procedures drawn from students' everyday language experience together with more abstract irony clues to help students recognize irony in stories and increase their story comprehension.…

  20. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition.

    PubMed

    Hoffmann, Thomas; Krackhardt, Angela M; Antes, Iris

    2015-07-01

    T-cell receptors (TCR) play an important role in the adaptive immune system as they recognize pathogen- or cancer-based epitopes and thus initiate the cell-mediated immune response. Therefore there exists a growing interest in the optimization of TCRs for medical purposes like adoptive T-cell therapy. However, the molecular mechanisms behind T-cell signaling are still predominantly unknown. For small sets of TCRs it was observed that the angle between their Vα- and Vβ-domains, which bind the epitope, can vary and might be important for epitope recognition. Here we present a comprehensive, quantitative study of the variation in the Vα/Vβ interdomain-angle and its influence on epitope recognition, performing a systematic bioinformatics analysis based on a representative set of experimental TCR structures. For this purpose we developed a new, cuboid-based superpositioning method, which allows a unique, quantitative analysis of the Vα/Vβ-angles. Angle-based clustering led to six significantly different clusters. Analysis of these clusters revealed the unexpected result that the angle is predominantly influenced by the TCR-clonotype, whereas the bound epitope has only a minor influence. Furthermore we could identify a previously unknown center of rotation (CoR), which is shared by all TCRs. All TCR geometries can be obtained by rotation around this center, rendering it a new, common TCR feature with the potential of improving the accuracy of TCR structure prediction considerably. The importance of Vα/Vβ rotation for signaling was confirmed as we observed larger variances in the Vα/Vβ-angles in unbound TCRs compared to epitope-bound TCRs. Our results strongly support a two-step mechanism for TCR-epitope: First, preformation of a flexible TCR geometry in the unbound state and second, locking of the Vα/Vβ-angle in a TCR-type specific geometry upon epitope-MHC association, the latter being driven by rotation around the unique center of rotation. PMID:26185983

  1. Antibody specific epitope prediction-emergence of a new paradigm.

    PubMed

    Sela-Culang, Inbal; Ofran, Yanay; Peters, Bjoern

    2015-04-01

    The development of accurate tools for predicting B-cell epitopes is important but difficult. Traditional methods have examined which regions in an antigen are likely binding sites of an antibody. However, it is becoming increasingly clear that most antigen surface residues will be able to bind one or more of the myriad of possible antibodies. In recent years, new approaches have emerged for predicting an epitope for a specific antibody, utilizing information encoded in antibody sequence or structure. Applying such antibody-specific predictions to groups of antibodies in combination with easily obtainable experimental data improves the performance of epitope predictions. We expect that further advances of such tools will be possible with the integration of immunoglobulin repertoire sequencing data.

  2. Epitope-Specific Binder Design by Yeast Surface Display.

    PubMed

    Mann, Jasdeep K; Park, Sheldon

    2015-01-01

    Yeast surface display is commonly used to engineer affinity and design novel molecular interaction. By alternating positive and negative selections, yeast display can be used to engineer binders that specifically interact with the target protein at a defined site. Epitope-specific binders can be useful as inhibitors if they bind the target molecule at functionally important sites. Therefore, an efficient method of engineering epitope specificity should help with the engineering of inhibitors. We describe the use of yeast surface display to design single domain monobodies that bind and inhibit the activity of the kinase Erk-2 by targeting a conserved surface patch involved in protein-protein interaction. The designed binders can be used to disrupt signaling in the cell and investigate Erk-2 function in vivo. The described protocol is general and can be used to design epitope-specific binders of an arbitrary protein. PMID:26060073

  3. Common food allergens and their IgE-binding epitopes.

    PubMed

    Matsuo, Hiroaki; Yokooji, Tomoharu; Taogoshi, Takanori

    2015-10-01

    Food allergy is an adverse immune response to certain kinds of food. Although any food can cause allergic reactions, chicken egg, cow's milk, wheat, shellfish, fruit, and buckwheat account for 75% of food allergies in Japan. Allergen-specific immunoglobulin E (IgE) antibodies play a pivotal role in the development of food allergy. Recent advances in molecular biological techniques have enabled the efficient analysis of food allergens. As a result, many food allergens have been identified, and their molecular structure and IgE-binding epitopes have also been identified. Studies of allergens have demonstrated that IgE antibodies specific to allergen components and/or the peptide epitopes are good indicators for the identification of patients with food allergy, prediction of clinical severity and development of tolerance. In this review, we summarize our current knowledge regarding the allergens and IgE epitopes in the well-researched allergies to chicken egg, cow's milk, wheat, shrimp, and peanut.

  4. Preferential phenotypic association linked with cooperation in paper wasps.

    PubMed

    Tibbetts, E A; Injaian, A

    2013-11-01

    Animals can influence their social environment by preferentially associating with certain conspecifics. Such preferential association has gained increasing theoretical attention, as it may influence social evolution and population dynamics. However, relatively little empirical work has examined the occurrence of preferential association and its effects on cooperative group formation. Here, we test the factors associated with cooperative group formation in Polistes dominulus nest-founding queen wasps. P. dominulus are a good system to study preferential association, as foundresses can nest alone or in groups and group membership is flexible. We found that both social and environmental factors were associated with partner choice. First, facial patterns were associated with cooperation. Wasps with more similar facial patterns were more likely to cooperate than wasps with less similar facial patterns. This preferential phenotypic association fits the theoretical criteria for the evolution of tag-based cooperation. Season was also associated with cooperation; wasps on early-season nests were more likely to cooperate than wasps on late-season nests. High levels of aggression by nest owners during initial interactions were also correlated with lower probabilities of subsequent cooperation, suggesting that nest owners have some control over group membership. Other factors including body weight, weight similarity and nest productivity were not linked with cooperation. Overall, multiple factors influence cooperation in paper wasps, including facial pattern similarity. The occurrence of preferential phenotypic association in paper wasps is quite interesting and may influence the evolution of cooperation and population divergence in this group.

  5. Antigenic presentation of heterologous epitopes engineered into the outer surface-exposed helix 4 loop region of human papillomavirus L1 capsomeres

    PubMed Central

    Murata, Yoshihiko; Lightfoote, Paula M; Rose, Robert C; Walsh, Edward E

    2009-01-01

    Background Human papillomavirus (HPV) L1 capsid proteins can self-assemble into pentamers (capsomeres) that are immunogenic and can elicit neutralizing antibodies. Structural modelling of L1 inter-pentameric interactions predicts that helix 4 (h4) of each of the five L1 monomers project laterally and outwards from the pentamer. We sought to utilize HPV L1 capsomeres as a vaccine platform by engineering heterologous epitopes within L1 derivatives deleted for h4 domain. Results We used baculovirus – infected Trichoplusia ni cells and ultracentrifugation to synthesize and purify three 16L1 derivatives: one bearing a short deletion (amino acids 404–436) encompassing the h4 domain, and two others, each bearing a conserved neutralizing epitope of the human respiratory syncytial virus (RSV) fusion (F) protein (residues 255–278 and 423–436) that was substituted for the deleted L1 h4 domain residues. Each of the three capsomere derivatives was recognized by anti-L1 antibodies, while two bearing the RSV F-derived moieties were recognized by anti-RSV F antibodies. All three L1 derivatives formed ring-like structures that were similar in morphology and size to those described for native 16L1 capsomeres. When injected into mice, each of the capsomere derivatives was immunogenic with respect to L1 protein, and immunization with chimeric L1-RSV F pentamers resulted in RSV non-neutralizing antisera that recognized purified RSV F protein in immunoblots. Conclusion HPV L1 monomers bearing heterologous epitopes within the L1 h4 region can self-assemble into capsomeres that elicit antibody response against such non-HPV encoded epitopes. Thus, the L1 h4 region can function as a novel antigen display site within the L1 pentamer, which in turn may serve as a potential vaccine template. PMID:19538743

  6. Recognition of new citrulline-containing peptide epitopes by autoantibodies produced in vivo and in vitro by B cells of rheumatoid arthritis patients

    PubMed Central

    Szarka, Eszter; Babos, Fruzsina; Magyar, Anna; Huber, Krisztina; Szittner, Zoltán; Papp, Krisztián; Prechl, József; Pozsgay, Judit; Neer, Zsuzsa; Ádori, Monika; Nagy, György; Rojkovich, Bernadette; Gáti, Tamás; Kelemen, Judit; Baka, Zsuzsanna; Brózik, Márta; Pazár, Borbála; Poór, Gyula; Hudecz, Ferenc; Sármay, Gabriella

    2014-01-01

    Anti-citrullinated peptide/protein antibodies (ACPAs) are highly sensitive and specific markers of rheumatoid arthritis (RA). Identification of peptide epitopes that may detect different subgroups of RA patients might have diagnostic and prognostic significance. We have investigated citrulline- and arginine-containing peptide pairs derived from filaggrin, collagen or vimentin, and compared this citrulline-peptide panel with the serological assays conventionally used to detect ACPAs. Furthermore, we studied if the same citrulline-peptides identify antibody-secreting cells in in vitro cultures of RA B cells. Recognition of citrulline- and arginine-containing filaggrin, vimentin and collagen peptide epitopes were tested by Multipin ELISA system, by indirect ELISA and by a peptide-specific microarray. B cells were purified from blood by negative selection; antibody-producing cells were enumerated by ELISPOT assay. The panel composed of citrulline-peptide epitopes of filaggrin, collagen and vimentin was recognized by RA sera with a sensitivity and specificity comparable with the currently used tests. Moreover, the combined citrulline-peptide panel including the new short epitope peptide of filaggrin, fil311-315, also identified nearly one-third of RA cases that were negative for antibodies against cyclic citrullinated peptides, mutated citrullinated vimentin or for rheumatoid factor. The results with the peptide-specific microarray have shown that although most ACPAs recognizing the four citrulline peptides are IgG, some of them specifically recognizing citrulline-containing filaggrin peptides (fil311–315 and fil306–326) are IgM, and so may be produced either by newly formed activated B cells or by unswitched B memory cells. Furthermore, the citrulline-peptides of filaggrin and vimentin detect ACPA-producing cells, and so could also be applied to study the B cells of RA patients. PMID:24116744

  7. Recognition of new citrulline-containing peptide epitopes by autoantibodies produced in vivo and in vitro by B cells of rheumatoid arthritis patients.

    PubMed

    Szarka, Eszter; Babos, Fruzsina; Magyar, Anna; Huber, Krisztina; Szittner, Zoltán; Papp, Krisztián; Prechl, József; Pozsgay, Judit; Neer, Zsuzsa; Ádori, Monika; Nagy, György; Rojkovich, Bernadette; Gáti, Tamás; Kelemen, Judit; Baka, Zsuzsanna; Brózik, Márta; Pazár, Borbála; Poór, Gyula; Hudecz, Ferenc; Sármay, Gabriella

    2014-02-01

    Anti-citrullinated peptide/protein antibodies (ACPAs) are highly sensitive and specific markers of rheumatoid arthritis (RA). Identification of peptide epitopes that may detect different subgroups of RA patients might have diagnostic and prognostic significance. We have investigated citrulline- and arginine-containing peptide pairs derived from filaggrin, collagen or vimentin, and compared this citrulline-peptide panel with the serological assays conventionally used to detect ACPAs. Furthermore, we studied if the same citrulline-peptides identify antibody-secreting cells in in vitro cultures of RA B cells. Recognition of citrulline- and arginine-containing filaggrin, vimentin and collagen peptide epitopes were tested by Multipin ELISA system, by indirect ELISA and by a peptide-specific microarray. B cells were purified from blood by negative selection; antibody-producing cells were enumerated by ELISPOT assay. The panel composed of citrulline-peptide epitopes of filaggrin, collagen and vimentin was recognized by RA sera with a sensitivity and specificity comparable with the currently used tests. Moreover, the combined citrulline-peptide panel including the new short epitope peptide of filaggrin, fil311-315, also identified nearly one-third of RA cases that were negative for antibodies against cyclic citrullinated peptides, mutated citrullinated vimentin or for rheumatoid factor. The results with the peptide-specific microarray have shown that although most ACPAs recognizing the four citrulline peptides are IgG, some of them specifically recognizing citrulline-containing filaggrin peptides (fil311-315 and fil306-326) are IgM, and so may be produced either by newly formed activated B cells or by unswitched B memory cells. Furthermore, the citrulline-peptides of filaggrin and vimentin detect ACPA-producing cells, and so could also be applied to study the B cells of RA patients. PMID:24116744

  8. Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof

    DOEpatents

    Stupp, Samuel I.; Guler, Mustafa O.

    2008-11-18

    Branched peptide amphiphilic compounds incorporating one or residues providing a pendant amino group for coupling one or more epitope sequences thereto, such compounds and related compositions for enhanced epitope presentation.

  9. Epitope-specific tolerance induction with an engineered immunoglobulin.

    PubMed Central

    Zambidis, E T; Scott, D W

    1996-01-01

    Isologous and heterologous immunoglobulins have been shown to be extremely effective as tolerogenic carriers for nearly 30 years. The efficacy of these proteins is due in part to their long half-life in vivo, as well as their ability to crosslink surface IgM with Fc receptors. The concept of using IgG as a carrier molecule to induce unresponsiveness in the adult immune system has been exploited for simple haptens, such as nucleosides, as well as for peptides. To further evaluate the in vivo potential of these molecules for inducing tolerance to a defined epitope, we have engineered a fusion protein of mouse IgG1 with the immunodominant epitope 12-26 from bacteriophage lambda cI repressor protein. This 15-mer, which contains both a B-cell and T-cell epitope, has been fused in-frame to the N terminus of a mouse heavy chain IgG1 construct, thus creating a "genetic hapten-carrier" system. We describe a novel in vitro and in vivo experimental system for studying the feasibility of engineered tolerogens, consisting of a recombinant flagellin challenge antigen and a murine IgG1 tolerogen, both expressing the lambda repressor epitope 12-26. Herein, we show that peptide-grafted IgG molecules injected i.v., or expressed by transfected, autologous B cells, can efficiently modulate the cellular and humoral immune responses to immunodominant epitopes. This model displays the feasibility of "tailor-designing" immune responses to whole antigens by selecting epitopes for either tolerance or immunity. Images Fig. 1 Fig. 5 PMID:8643522

  10. MUC1 glycopeptide epitopes predicted by computational glycomics

    PubMed Central

    SONG, WEI; DELYRIA, ELIZABETH S.; CHEN, JIEQING; HUANG, WEI; LEE, JUN SOO; MITTENDORF, ELIZABETH A.; IBRAHIM, NUHAD; RADVANYI, LASZLO G.; LI, YUNSEN; LU, HONGZHOU; XU, HUAXI; SHI, YINQIANG; WANG, LAI-XI; ROSS, JEREMY A.; RODRIGUES, SILAS P.; ALMEIDA, IGOR C.; YANG, XIFENG; QU, JIN; SCHOCKER, NATHANIEL S.; MICHAEL, KATJA; ZHOU, DAPENG

    2012-01-01

    Bioinformatic tools and databases for glycobiology and glycomics research are playing increasingly important roles in functional studies. However, to verify hypotheses generated by computational glycomics with empirical functional assays is only an emerging field. In this study, we predicted glycan epitopes expressed by a cancer-derived mucin, MUC1, by computational glycomics. MUC1 is expressed by tumor cells with a deficiency in glycosylation. Although numerous diagnostic reagents and cancer vaccines have been designed based on abnormally glycosylated MUC1 sequences, the glycan and peptide sequences responsible for immune responses in vivo are poorly understood. The immunogenicity of synthetic MUC1 glycopeptides bearing Tn or sialyl-Tn antigens have been studied in mouse models, while authentic glyco-epitopes expressed by tumor cells remain unclear. To examine the immunogenicity of authentic cancer derived MUC1 glyco-epitopes, we expressed membrane bound forms of MUC1 tandem repeats in Jurkat, a mutant cancer cell line deficient of mucin-type core-1 β1–3 galactosyltransferase activity, and immunized mice with cancer cells expressing authentic MUC1 glyco-epitopes. Antibody responses to individual glyco-epitopes were determined by chemically synthesized candidate MUC1 glycopeptides predicted through computational glycomics. Monoclonal antibodies can be generated toward chemically synthesized glycopeptide sequences. With RPAPGS(Tn)TAPPAHG as an example, a monoclonal antibody 16A, showed 25-fold higher binding to glycosylated peptide (EC50=9.278±1.059 ng/ml) compared to its non-glycosylated form (EC50=247.3±16.29 ng/ml) as measured by ELISA experiments with plate-bound peptides. A library of monoclonal antibodies toward authentic MUC1 glycopeptide epitopes may be a valuable tool for studying glycan and peptide sequences in cancer, as well as reagents for diagnosis and therapy. PMID:23023583

  11. Antibody protection reveals extended epitopes on the human TSH receptor.

    PubMed

    Latif, Rauf; Teixeira, Avelino; Michalek, Krzysztof; Ali, M Rejwan; Schlesinger, Max; Baliram, Ramkumarie; Morshed, Syed A; Davies, Terry F

    2012-01-01

    Stimulating, and some blocking, antibodies to the TSH receptor (TSHR) have conformation-dependent epitopes reported to involve primarily the leucine rich repeat region of the ectodomain (LRD). However, successful crystallization of TSHR residues 22-260 has omitted important extracellular non-LRD residues including the hinge region which connects the TSHR ectodomain to the transmembrane domain and which is involved in ligand induced signal transduction. The aim of the present study, therefore, was to determine if TSHR antibodies (TSHR-Abs) have non-LRD binding sites outside the LRD. To obtain this information we employed the method of epitope protection in which we first protected TSHR residues 1-412 with intact TSHR antibodies and then enzymatically digested the unprotected residues. Those peptides remaining were subsequently delineated by mass spectrometry. Fourteen out of 23 of the reported stimulating monoclonal TSHR-Ab crystal contact residues were protected by this technique which may reflect the higher binding energies of certain residues detected in this approach. Comparing the protected epitopes of two stimulating TSHR-Abs we found both similarities and differences but both antibodies also contacted the hinge region and the amino terminus of the TSHR following the signal peptide and encompassing cysteine box 1 which has previously been shown to be important for TSH binding and activation. A monoclonal blocking TSHR antibody revealed a similar pattern of binding regions but the residues that it contacted on the LRD were again distinct. These data demonstrated that conformationally dependent TSHR-Abs had epitopes not confined to the LRDs but also incorporated epitopes not revealed in the available crystal structure. Furthermore, the data also indicated that in addition to overlapping contact regions within the LRD, there are unique epitope patterns for each of the antibodies which may contribute to their functional heterogeneity. PMID:22957097