Science.gov

Sample records for epoch dependent dark

  1. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    SciTech Connect

    Piattella, O.F.; Martins, D.L.A.; Casarini, L. E-mail: denilsonluizm@gmail.com

    2014-10-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100.

  2. Deformed matter bounce with dark energy epoch

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    We extend the loop quantum cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario," the Universe is contracting from an initial noncausal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, and thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential as what follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a rip singularity exists, where the scale factor and Hubble rate diverge; however, the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, first that the ordinary loop quantum cosmology matter bounce evolution stops, thus ending the infinite repetition of the ordinary matter bounce scenario. Second, the fact that both the pressure and the density become complex probably indicates that the description of the cosmic evolution within the theoretical context of loop quantum cosmology ceases to describe the physics of the system and possibly a more fundamental theory of quantum gravity is needed near the would be rip singularity. We describe the qualitative features of the model, and we also investigate how this cosmology could be realized by a viscous fluid in the context of loop quantum cosmology. In addition to this, we show how this deformed model can be realized by a canonical scalar field filled Universe, in the context of loop quantum cosmology. Finally, we demonstrate how the model can be generated by a vacuum F (R ) gravity.

  3. Elucidating dark energy with future 21 cm observations at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Takahashi, Tomo

    2017-02-01

    We investigate how precisely we can determine the nature of dark energy such as the equation of state (EoS) and its time dependence by using future observations of 21 cm fluctuations at the epoch of reionization (06.8lesssim zlesssim1) such as Square Kilometre Array (SKA) and Omniscope in combination with those from cosmic microwave background, baryon acoustic oscillation, type Ia supernovae and direct measurement of the Hubble constant. We consider several parametrizations for the EoS and find that future 21 cm observations will be powerful in constraining models of dark energy, especially when its EoS varies at high redshifts.

  4. Comparison of TaqMan and Epoch Dark Quenchers during real-time reverse transcription PCR.

    PubMed

    Daum, Luke T; Ye, Keying; Chambers, James P; Santiago, Jose; Hickman, John R; Barnes, William J; Kruzelock, Russell P; Atchley, Daniel H

    2004-06-01

    Several biotechnology companies have recently introduced novel quencher fluors for use with dual-labeled fluorogenic hydrolysis probes. The Epoch Dark Quencher trade mark fluorochrome consists of a non-fluorescent moiety capable of absorption at higher wavelengths (400-650 nm). The aim of this study was to: (1) evaluate the feasibility of using Epoch Dark Quencher fluorochromes in real-time PCR pathogen detection assays that were previously optimized with TaqMan (TAMRA) quenching fluors, and (2) compare the sensitivity based on cycle threshold (CT) between probes containing either TaqMan or Epoch Dark Quencher fluors. Our data indicate Epoch Dark Quencher probes can be used in place of TaqMan probes and their performance was not better than traditional TaqMan (TAMRA) quenchers. Marginal differences observed between quenching fluorochromes may arise from concentration differences during probe synthesis.

  5. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  6. Dark-ages Reionization & Galaxy Formation Simulation VIII. Suppressed growth of dark matter halos during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Angel, Paul W.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-01-01

    We investigate how the hydrostatic suppression of baryonic accretion affects the growth rate of dark matter halos during the Epoch of Reionization. By comparing halo properties in a simplistic hydrodynamic simulation in which gas only cools adiabatically, with its collisionless equivalent, we find that halo growth is slowed as hydrostatic forces prevent gas from collapsing. In our simulations, at the high redshifts relevant for reionization (between ˜6 and ˜11), halos that host dwarf galaxies (≲ 109M⊙) can be reduced by up to a factor of 2 in mass due to the hydrostatic pressure of baryons. Consequently, the inclusion of baryonic effects reduces the amplitude of the low mass tail of the halo mass function by factors of 2 to 4. In addition, we find that the fraction of baryons in dark matter halos hosting dwarf galaxies at high redshift never exceeds ˜90% of the cosmic baryon fraction. When implementing baryonic processes, including cooling, star formation, supernova feedback and reionization, the suppression effects become more significant with further reductions of ˜30% to 60%. Although convergence tests suggest that the suppression may become weaker in higher resolution simulations, this suppressed growth will be important for semi-analytic models of galaxy formation, in which the halo mass inherited from an underlying N-body simulation directly determines galaxy properties. Based on the adiabatic simulation, we provide tables to account for these effects in N-body simulations, and present a modification of the halo mass function along with explanatory analytic calculations.

  7. The Hubble Expansion is Isotropic in the Epoch of Dark Energy

    NASA Astrophysics Data System (ADS)

    Darling, Jeremy

    2015-01-01

    The isotropy of the universal Hubble expansion is a fundamental tenet of physical cosmology, but it has not been precisely tested during the current epoch, when dark energy is dominant. Anisotropic expansion will produce a shearing velocity field, causing objects to stream toward directions of faster expansion and away from directions of slower expansion. This work tests the basic cosmological assumption of isotropic expansion and thus the isotropy of dark energy. The simplest anisotropy will manifest as a quadrupolar curl-free proper motion vector field. We derive this theoretical signature using a tri-axial expanding metric with a flat geometry (Bianchi I model), generalizing and correcting previous work. We then employ the best current data, the Titov & Lambert [1] proper motion catalog of 429 objects, to measure the isotropy of universal expansion. We demonstrate that the Hubble expansion is isotropic to 7% (1 sigma), corresponding to streaming motions of 1 microarcsecond per year, in the best-constrained directions (-19% and +17% in the least-constrained directions) and does not significantly deviate from isotropy in any direction. The Gaia mission, which is expected to obtain proper motions for 500,000 quasars, will likely constrain the anisotropy below 1%, but this is still orders of magnitude larger than the history-integrated anisotropy constraint provided by the cosmic microwave background.We acknowledge support from the NSF grant AST-1411605.[1] Titov, O. & Lambert, S. 2013, A&A, 559, A95

  8. The Hubble expansion is isotropic in the epoch of dark energy

    NASA Astrophysics Data System (ADS)

    Darling, Jeremy

    2014-07-01

    The isotropy of the universal Hubble expansion is a fundamental tenet of physical cosmology, but it has not been precisely tested during the current epoch, when dark energy is dominant. Anisotropic expansion will produce a shearing velocity field, causing objects to stream towards directions of faster expansion and away from directions of slower expansion. This work tests the basic cosmological assumption of isotropic expansion and thus the isotropy of dark energy. The simplest anisotropy will manifest as a quadrupolar curl-free proper motion vector field. We derive this theoretical signature using a triaxial expanding metric with a flat geometry (Bianchi I model), generalizing and correcting previous work. We then employ the best current data, the Titov & Lambert proper motion catalogue of 429 objects, to measure the isotropy of universal expansion. We demonstrate that the Hubble expansion is isotropic to 7 per cent (1σ), corresponding to streaming motions of 1 μas yr-1, in the best-constrained directions (-19 and +17 per cent in the least-constrained directions) and does not significantly deviate from isotropy in any direction. The Gaia mission, which is expected to obtain proper motions for 500 000 quasars, will likely constrain the anisotropy below 1 per cent.

  9. Dark-ages Reionization and Galaxy Formation Simulation - VIII. Suppressed growth of dark matter haloes during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Angel, Paul W.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-05-01

    We investigate how the hydrostatic suppression of baryonic accretion affects the growth rate of dark matter haloes during the Epoch of Reionization. By comparing halo properties in a simplistic hydrodynamic simulation in which gas only cools adiabatically, with its collisionless equivalent, we find that halo growth is slowed as hydrostatic forces prevent gas from collapsing. In our simulations, at the high redshifts relevant for reionization (between ˜6 and ˜11), haloes that host dwarf galaxies (≲109 M⊙) can be reduced by up to a factor of 2 in mass due to the hydrostatic pressure of baryons. Consequently, the inclusion of baryonic effects reduces the amplitude of the low-mass tail of the halo mass function by factors of 2-4. In addition, we find that the fraction of baryons in dark matter haloes hosting dwarf galaxies at high redshift never exceeds ˜90 per cent of the cosmic baryon fraction. When implementing baryonic processes, including cooling, star formation, supernova feedback and reionization, the suppression effects become more significant with further reductions of 30-60 per cent. Although convergence tests suggest that the suppression may become weaker in higher resolution simulations, this suppressed growth will be important for semi-analytic models of galaxy formation, in which the halo mass inherited from an underlying N-body simulation directly determines galaxy properties. Based on the adiabatic simulation, we provide tables to account for these effects in N-body simulations and present a modification of the halo mass function along with explanatory analytic calculations.

  10. Light propagation with nonminimal couplings in a two-component cosmic dark fluid with an Archimedean-type force, and unlighted cosmological epochs

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Bochkarev, Vladimir V.; Lemos, José P. S.

    2012-03-01

    During the evolution of the universe there are at least two epochs during which electromagnetic waves cannot scan the universe’s internal structure to bring information to outside observers. The first epoch is when photons are in local thermodynamic equilibrium with other particles, and the second is when photon scattering by charged particles is strong. One can call these two periods of cosmological time as standard unlighted epochs. After the last scattering surface, photons become relic photons and turn into a source of information about the universe. Unlighted cosmic epochs can also appear when one considers nonminimal theories, i.e., theories in which the electromagnetic field is coupled in an intricate way with the cosmological gravitational field. By considering a cosmological model where the dark sector, i.e., the dark energy and dark matter, self-interacts via an Archimedean-type force, and taking into account a nonminimal coupling theory for the electromagnetic field, we discuss the appearance of unlighted epochs. In the framework of our nonminimal theory, a three-parameter nonminimal Einstein-Maxwell model, the curvature coupling can be formulated in terms of an effective refraction index n(t). Then, taking advantage of a well-known classical analogy, namely, in a medium with n2<0 electromagnetic waves do not propagate and their group velocity, i.e., energy transfer velocity, has zero value at the boundary of the corresponding zone, one can search for the unlighted epochs arising in the interacting dark fluid cosmological model. We study here, both analytically and numerically, cosmological models admitting unlighted epochs.

  11. The variation of the baryon-to-photon ratio during different cosmological epochs due to decay and annihilation of dark matter

    NASA Astrophysics Data System (ADS)

    Zavarygin, E. O.; Ivanchik, A. V.

    2015-12-01

    An influence of annihilation and decay of the dark matter particles on the baryon-to-photon ratio has been studied for different cosmological epochs. We consider the different parameter values of the dark matter particles such as mass, annihilation cross section, lifetime and so on. The obtained results are compared with the data which come from the Big Bang nucleosynthesis calculation and from the analysis of the anisotropy of the cosmic microwave background radiation. It has been shown that the modern value of the dark matter density ΩCDM = 0.26 is enough to provide the variation of the baryon-to-photon ratio up to Δη/η ∼ 0.01÷1 for decay of the dark matter particles, but it also leads to an excess of the diffuse gamma ray background. We use the observational data on the diffuse gamma ray background in order to determine our constraints on the model of the dark matter particle decay and on the corresponding variation of the baryon-to-photon ratio: Δη/η ≲ 10-5. It has been shown that the variation of the baryon-to-photon ratio caused by the annihilation of the dark matter particles is negligible during the cosmological epochs from Big Bang nucleosynthesis to the present epoch.

  12. Polarization leakage in epoch of reionization windows - II. Primary beam model and direction-dependent calibration

    NASA Astrophysics Data System (ADS)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; Ghosh, A.; Abdalla, F. B.; Brentjens, M. A.; de Bruyn, A. G.; Ciardi, B.; Gehlot, B. K.; Iliev, I. T.; Mevius, M.; Pandey, V. N.; Yatawatta, S.; Zaroubi, S.

    2016-11-01

    Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of Low Frequency ARray (LOFAR) in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C 295 field. We have found that the model beam has errors of ≤10 per cent on the predicted levels of leakage of ˜1 per cent within the field of view, i.e. if the leakage is taken out perfectly using this model the leakage will reduce to 10-3 of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction-dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.

  13. Dark-ages reionization and galaxy formation simulation - II. Spin and concentration parameters for dark matter haloes during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Angel, Paul W.; Poole, Gregory B.; Ludlow, Aaron D.; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-06-01

    We use high-resolution N-body simulations to study the concentration and spin parameters of dark matter haloes in the mass range 108 M⊙ h-1 < M < 1011 M⊙ h-1 and redshifts 5 < z < 10, corresponding to the haloes of galaxies thought to be responsible for reionization. We build a subsample of equilibrium haloes and contrast their properties to the full population that also includes unrelaxed systems. Concentrations are calculated by fitting both NFW and Einasto profiles to the spherically averaged density profiles of individual haloes. After removing haloes that are out of equilibrium, we find a z > 5 concentration-mass (c(M)) relation that is almost flat and well described by a simple power law for both NFW and Einasto fits. The intrinsic scatter around the mean relation is Δcvir ˜ 1 (or 20 per cent) at z = 5. We also find that the analytic model proposed by Ludlow et al. reproduces the mass and redshift dependence of halo concentrations. Our best-fitting Einasto shape parameter, α, depends on peak height, ν, in a manner that is accurately described by α = 0.0070ν2 + 0.1839. The distribution of the spin parameter, λ, has a weak dependence on equilibrium state; λ peaks at roughly ˜0.033 for our relaxed sample, and at ˜0.04 for the full population. The spin-virial mass relation has a mild negative correlation at high redshift.

  14. The SLUGGS survey: dark matter fractions at large radii and assembly epochs of early-type galaxies from globular cluster kinematics

    NASA Astrophysics Data System (ADS)

    Alabi, Adebusola B.; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean P.; Strader, Jay; Janz, Joachim; Usher, Christopher; Spitler, Lee R.; Bellstedt, Sabine; Ferré-Mateu, Anna

    2017-07-01

    We use globular cluster kinematics data, primarily from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, to measure the dark matter fraction (fDM) and the average dark matter density (<ρDM>) within the inner 5 effective radii (Re) for 32 nearby early-type galaxies (ETGs) with stellar mass log (M*/M⊙) ranging from 10.1 to 11.8. We compare our results with a simple galaxy model based on scaling relations as well as with cosmological hydrodynamical simulations where the dark matter profile has been modified through various physical processes. We find a high fDM (≥0.6) within 5 Re in most of our sample, which we interpret as a signature of a late mass assembly history that is largely devoid of gas-rich major mergers. However, around log (M*/M⊙) ˜ 11, there is a wide range of fDM which may be challenging to explain with any single cosmological model. We find tentative evidence that lenticulars (S0s), unlike ellipticals, have mass distributions that are similar to spiral galaxies, with decreasing fDM within 5 Re as galaxy luminosity increases. However, we do not find any difference between the <ρDM> of S0s and ellipticals in our sample, despite the differences in their stellar populations. We have also used <ρDM> to infer the epoch of halo assembly (z ˜ 2-4). By comparing the age of their central stars with the inferred epoch of halo formation, we are able to gain more insight into their mass assembly histories. Our results suggest a fundamental difference in the dominant late-phase mass assembly channel between lenticulars and elliptical galaxies.

  15. Context-dependent inhibition of unloaded muscles during the long-latency epoch.

    PubMed

    Nashed, Joseph Y; Kurtzer, Isaac L; Scott, Stephen H

    2015-01-01

    A number of studies have highlighted the sophistication of corrective responses in lengthened muscles during the long-latency epoch. However, in various contexts, unloading can occur, which requires corrective actions from a shortened muscle. Here, we investigate the sophistication of inhibitory responses in shortened muscles due to unloading. Our first experiment quantified the inhibitory responses following an unloading torque that displaced the hand either into or away from a peripheral target. We observed larger long-latency inhibitory responses when perturbed into the peripheral target compared with away from the target. In our second experiment, we characterized the degree of inhibition following unloading with respect to different levels of preperturbation muscle activity. We initially observed that the inhibitory activity during the short-latency epoch scaled with increased levels of preperturbation muscle activity. However, this scaling peaked early in the R2 epoch (∼ 50 ms) but then quickly diminished through the rest of the long-latency epoch. Finally, in experiment 3, we investigated whether inhibitory perturbation responses consider intersegmental dynamics of the limb. We quantified unloading responses for either pure shoulder or pure elbow torques that evoked similar motion at the shoulder but different elbow motion. The long-latency inhibitory response in the shoulder, unlike the short-latency, was greater for the shoulder torque compared with the response following an elbow torque, as previously observed for a loading response. Taken together, these results illustrate that the long-latency unloading response is capable of a similar level of complexity as observed when loads are applied to the limb.

  16. Monojet searches for momentum-dependent dark matter interactions

    NASA Astrophysics Data System (ADS)

    Barducci, Daniele; Bharucha, Aoife; Desai, Nishita; Frigerio, Michele; Fuks, Benjamin; Goudelis, Andreas; Kulkarni, Suchita; Polesello, Giacomo; Sengupta, Dipan

    2017-01-01

    We consider minimal dark matter scenarios featuring momentum-dependent couplings of the dark sector to the Standard Model. We derive constraints from existing LHC searches in the monojet channel, estimate the future LHC sensitivity for an integrated luminosity of 300 fb-1, and compare with models exhibiting conventional momentum-independent interactions with the dark sector. In addition to being well motivated by (composite) pseudo-Goldstone dark matter scenarios, momentum-dependent couplings are interesting as they weaken direct detection constraints. For a specific dark matter mass, the LHC turns out to be sensitive to smaller signal cross-sections in the momentum-dependent case, by virtue of the harder jet transverse-momentum distribution.

  17. Scale Dependence of Dark Energy Antigravity

    NASA Astrophysics Data System (ADS)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  18. Testing gravity using the environmental dependence of dark matter halos.

    PubMed

    Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2011-08-12

    In this Letter, we investigate the environmental dependence of dark matter halos in theories which attempt to explain the accelerated expansion of the Universe by modifying general relativity (GR). Using high-resolution N-body simulations in f(R) gravity models which recover GR in dense environments by virtue of the chameleon mechanism, we find a significant difference, which depends on the environment, between the lensing and dynamical masses of dark matter halos. This environmental dependence of the halo properties can be used as a smoking gun to test GR observationally.

  19. Explaining the dark energy, baryon and dark matter coincidence via domain-dependent random densities

    SciTech Connect

    McDonald, John

    2013-05-01

    The dark energy, dark matter and baryon densities in the Universe are observed to be similar, with a factor of no more than 20 between the largest and smallest densities. We show that this coincidence can be understood via superhorizon domains of randomly varying densities when the baryon density at initial collapse of galaxy-forming perturbations is determined by anthropic selection. The baryon and dark matter densities are assumed to be dependent on random variables θ{sub d} and θ{sub b} according to ρ{sub dm}∝θ{sub d}{sup α} and ρ{sub b}∝θ{sub b}{sup β}, while the effectively constant dark energy density is dependent upon a random variable φ{sub Q} according to ρ{sub Q}∝φ{sub Q}{sup n}. The ratio of the baryon density to the dark energy density at initial collapse, r{sub Q}, and the baryon-to-dark matter ratio, r, are then determined purely statistically, with no dependence on the anthropically-preferred baryon density. We compute the probability distribution for r{sub Q} and r and show that the observed values of r{sub Q} and r can be naturally understood within this framework. In particular, for the case α = 2, β = 1 and n = 4, which can be physically realized via a combination of axion dark matter, Affleck-Dine baryogenesis and frozen quintessence with a φ{sub Q}{sup 4} potential, the range of r{sub Q} and r which corresponds to the observed Universe is a quite natural, with a probability which is broadly similar to other ranges of r{sub Q} and r.

  20. Radial dependence of the dark matter distribution in M33

    NASA Astrophysics Data System (ADS)

    López Fune, E.; Salucci, P.; Corbelli, E.

    2017-06-01

    The stellar and gaseous mass distributions, as well as the extended rotation curve, in the nearby galaxy M33 are used to derive the radial distribution of dark matter density in the halo and to test cosmological models of galaxy formation and evolution. Two methods are examined to constrain the dark mass density profiles. The first method deals directly with fitting the rotation curve data in the range of galactocentric distances 0.24 ≤ r ≤ 22.72 kpc. Using the results of collisionless Λ cold dark matter numerical simulations, we confirm that the Navarro-Frenkel-White (NFW) dark matter profile provides a better fit to the rotation curve data than the cored Burkert profile (BRK) profile. The second method relies on the local equation of centrifugal equilibrium and on the rotation curve slope. In the aforementioned range of distances, we fit the observed velocity profile, using a function that has a rational dependence on the radius, and we derive the slope of the rotation curve. Then, we infer the effective matter densities. In the radial range 9.53 ≤ r ≤ 22.72 kpc, the uncertainties induced by the luminous matter (stars and gas) become negligible, because the dark matter density dominates, and we can determine locally the radial distribution of dark matter. With this second method, we tested the NFW and BRK dark matter profiles and we can confirm that both profiles are compatible with the data, even though in this case the cored BRK density profile provides a more reasonable value for the baryonic-to-dark matter ratio.

  1. The Power Spectrum Dependence of Dark Matter Halo Concentrations

    NASA Astrophysics Data System (ADS)

    Eke, Vincent R.; Navarro, Julio F.; Steinmetz, Matthias

    2001-06-01

    High-resolution N-body simulations are used to examine the power spectrum dependence of the concentration of galaxy-sized dark matter halos. It is found that dark halo concentrations depend on the amplitude of mass fluctuations as well as on the ratio of power between small and virial mass scales. This finding is consistent with the original results of Navarro, Frenk, and White (NFW) and allows their model to be extended to include power spectra substantially different from cold dark matter (CDM). In particular, the single-parameter model presented here fits the concentration dependence on halo mass for truncated power spectra, such as those expected in the warm dark matter scenario, and predicts a stronger redshift dependence for the concentration of CDM halos than proposed by NFW. The latter conclusion confirms recent suggestions by Bullock and coworkers, although this new modeling differs from theirs in detail. These findings imply that observational limits on the concentration, such as those provided by estimates of the dark matter content within individual galaxies, may be used to constrain the amplitude of mass fluctuations on galactic and subgalactic scales. The constraints on ΛCDM models posed by the dark mass within the solar circle in the Milky Way and by the zero point of the Tully-Fisher relation are revisited, with the result that neither data set is clearly incompatible with the ``concordance'' (Ω0=0.3, Λ0=0.7, σ8=0.9) ΛCDM cosmogony. This conclusion differs from that reached recently by Navarro and Steinmetz, a disagreement that can be traced to inconsistencies in the normalization of the ΛCDM power spectrum used in that work.

  2. Time-Dependent Dark Energy Density and Holographic DE Model with Interaction

    NASA Astrophysics Data System (ADS)

    Saadat, H.; Saadat, A. M.

    2011-05-01

    In this article we consider holographic dark energy model with interaction and space curvature. We calculate cosmic scale factor by using the time-dependent dark energy density. Then we obtain phenomenological interaction between holographic dark energy and matter.

  3. Directional Dependence for Dark Matter Annihilation in Extreme Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Valadie, O. Grahm; Tinsley, Todd

    2017-01-01

    This research explores the directional dependence that extreme magnetic fields have on the annihilation of dark matter into electron-positron pairs. We take the neutralino of the Minimally Supersymmetric Standard Model (MSSM) as our dark matter candidate and assume magnetic field strengths on the order of the critical field (Bc 1013 G). This is characteristic of extreme astrophysical environments in which dark matter may accumulate. We will present the results for the annihilation cross section at varying incoming particle direction. In addition, we will present how these results differ with neutralino mass and energy, as well as with the magnetic field strength. Our goal is to demonstrate the ways that the direction of the magnetic field affects the states of the final electron and positron. This work is supported by NASA/Arkansas Space Grant Consortium and the Hendrix Odyssey Program.

  4. Subwavelength optical lattices induced by position-dependent dark states

    SciTech Connect

    Sun Qingqing; Evers, Joerg; Kiffner, Martin; Zubairy, M. Suhail

    2011-05-15

    A method for the generation of subwavelength optical lattices based on multilevel dark states is proposed. The dark state is formed by a suitable combination of standing wave light fields, leading to position-dependent populations of the ground states. An additional field coupling dispersively to one of the ground states translates this position dependence into a subwavelength optical potential. We provide two semiclassical approaches to understand the involved physics, and demonstrate that they lead to identical results in a certain meaningful limit. Then we apply a Monte Carlo simulation technique to study the full quantum dynamics of the subwavelength trapping. Finally, we discuss the relevant time scales for the trapping, optimum conditions, and possible implementations.

  5. Time-dependent scalar fields as candidates for dark matter

    NASA Astrophysics Data System (ADS)

    Malakolkalami, B.; Mahmoodzadeh, A.

    2016-11-01

    In this paper, we study some properties of what is called the oscillaton, a spherically symmetric object made of a real time-dependent scalar field. Using an exponential scalar potential instead of a quadratic one discussed in previous works, as a new choice, we investigate the oscillaton properties with this potential. Solving the differential equation system resulting from the Einstein-Klein-Gordon equations reveals the importance of the oscillatons as candidates for dark matter. Meanwhile, a simplification called the stationary limit procedure is also carried out.

  6. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  7. The epoch of reionization

    NASA Astrophysics Data System (ADS)

    Benson, Andrew J.; Sugiyama, Naoshi; Nusser, Adi; Lacey, Cedric G.

    2006-07-01

    We have modelled the process of reionization of the intergalactic medium (IGM) by photoionization by galaxies, in order to learn what galaxy formation in the framework of the cold dark matter (CDM) model predicts for the epoch of reionization. We use a sophisticated semi-analytic model of galaxy formation to track the formation of these galaxies, their influence on the IGM and the back reaction of the state of the IGM on further galaxy formation. Our study represents a much more complete and physically consistent modelling of reionization than has been conducted in the past. In particular, compared to previous work by ourselves and others, our new calculations contain significant improvements in the modelling of the effects of reionization of the IGM on the collapse of baryons into dark matter haloes (this is now computed self-consistently from the properties of model galaxies), and in the model for the cooling and condensation of gas within haloes (our new model includes photoheating from a self-consistently computed ionizing background and also includes cooling due to molecular hydrogen). We find that reionization can be achieved by z ~ 10-20 in a ΛCDM cosmological model with σ8 ~ 0.9. However, a cosmological model with a running spectral index is only able to achieve reionization before z ~ 9, and thus be consistent with an optical depth of 0.1, if very extreme assumptions are made about the physics of feedback at high redshifts. We also consider the specific galaxy formation model recently discussed by Baugh et al., which includes a top-heavy initial mass function (IMF) in starbursts, and find that it is able to reionize the Universe by z ~ 12. The previous results assume that all of the ionizing photons produced by stars in galaxies are able to escape and ionize the IGM. If this is not the case, then the redshift of reionization could be substantially reduced. We find that extended periods of partial reionization and double reionizations can occur in models

  8. Superposed epoch analysis of vertical plasma flow and its relationship with FACs as observed by DMSP and CHAMP: IMF By and Bx dependence

    NASA Astrophysics Data System (ADS)

    Kervalishvili, Guram; Lühr, Hermann

    2016-04-01

    This study presents results of a superposed epoch analysis (SEA) method applied to vertical plasma flow and large-scale field aligned currents (FACs) in the Northern Hemisphere cusp region. Our study is based on DMSP (F13 and F15) and CHAMP satellite observations during the years 2001-2005. Interplanetary magnetic field (IMF) data were taken from the NASA/GSFC's OMNI online database. The dependence on IMF By and Bx component orientation is investigated, while the absolute amplitude of IMF Bz is selected to be less than 2 nT. Seasonal variations are also investigated with seasons defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). The reference time and location for the SEA method are taken from the vertical ion velocity peaks (> 100 m/s for upflow and <-100 m/s for downflow) detected by DMSP in the northern cusp region. Our analyses were performed in the magnetic latitude (MLat) and local time (MLT) coordinate system. In general the vertical plasma downflow is weaker than the upflow. This product, ion density times velocity, shows no dependence on the IMF By orientation, while its value increases towards local summer. The ion density is low in winter and increases towards local summer, while the vertical velocity is much higher in local winter than during equinoxes or local summer. The event number distribution (in MLat-MLT frame) of vertical ion velocity peaks shows no significant dependence on the given conditions. In case of large-scale FACs a clear dependence on IMF By orientation and local season emerges from SEA analysis. Similarly to the vertical plasma upflow, the amplitude of large-scale FACs is also increasing towards local summer. Large-scale FACs show an IMF By dependent regular pattern for upflow cases and no regular pattern for downflow cases in all considered cases.

  9. Prospects for detection of target-dependent annual modulation in direct dark matter searches

    SciTech Connect

    Nobile, Eugenio Del; Gelmini, Graciela B.; Witte, Samuel J. E-mail: gelmini@physics.ucla.edu

    2016-02-01

    Earth's rotation about the Sun produces an annual modulation in the expected scattering rate at direct dark matter detection experiments. The annual modulation as a function of the recoil energy E{sub R} imparted by the dark matter particle to a target nucleus is expected to vary depending on the detector material. However, for most interactions a change of variables from E{sub R} to v{sub min}, the minimum speed a dark matter particle must have to impart a fixed E{sub R} to a target nucleus, produces an annual modulation independent of the target element. We recently showed that if the dark matter-nucleus cross section contains a non-factorizable target and dark matter velocity dependence, the annual modulation as a function of v{sub min} can be target dependent. Here we examine more extensively the necessary conditions for target-dependent modulation, its observability in present-day experiments, and the extent to which putative signals could identify a dark matter-nucleus differential cross section with a non-factorizable dependence on the dark matter velocity.

  10. Quintessence in a quandary: Prior dependence in dark energy models

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Bull, Philip; Ferreira, Pedro G.; Pontzen, Andrew

    2014-11-01

    The archetypal theory of dark energy is quintessence: a minimally coupled scalar field with a canonical kinetic energy and potential. By studying random potentials, we show that quintessence imposes a restricted set of priors on the equation of state of dark energy. Focusing on the commonly used parametrization, w (a )≈w0+wa(1 -a ) , we show that there is a natural scale and direction in the (w0,wa) plane that distinguishes quintessence as a general framework. We calculate the expected information gain for a given survey and show that, because of the nontrivial prior information, it is a function of more than just the figure of merit. This allows us to make a quantitative case for novel survey strategies. We show that the scale of the prior sets target observational requirements for gaining significant information. This corresponds to a figure of merit FOM ≳200 , a requirement that future galaxy redshift surveys will meet.

  11. Energy dependence of direct detection cross section for asymmetric mirror dark matter

    SciTech Connect

    An Haipeng; Chen Shaolong; Mohapatra, Rabindra N.; Nussinov, Shmuel; Zhang Yue

    2010-07-15

    In a recent paper, four of the present authors proposed a class of dark matter models where generalized parity symmetry leads to equality of dark matter abundance with baryon asymmetry of the Universe and predicts dark matter mass to be around 5 GeV. In this paper, we explore how this model can be tested in direct search experiments. In particular, we point out that if the dark matter happens to be the mirror neutron, the direct detection cross section has the unique feature that it increases at low recoil energy unlike the case of conventional weakly interacting massive particles. It is also interesting to note that the predicted spin-dependent scattering could make significant contribution to the total direct detection rate, especially for light nucleus. With this scenario, one could explain recent DAMA and CoGeNT results.

  12. Updated constraints on velocity and momentum-dependent asymmetric dark matter

    SciTech Connect

    Vincent, Aaron C.; Scott, Pat; Serenelli, Aldo

    2016-11-04

    We present updated constraints on dark matter models with momentum-dependent or velocity-dependent interactions with nuclei, based on direct detection and solar physics. We improve our previous treatment of energy transport in the solar interior by dark matter scattering, leading to significant changes in fits to many observables. Based on solar physics alone, DM with a spin-independent q{sup 4} coupling provides the best fit to data, and a statistically satisfactory solution to the solar abundance problem. Once direct detection limits are accounted for however, the best solution is spin-dependent v{sup 2} scattering with a reference cross-section of 10{sup −35} cm{sup 2} (at a reference velocity of v{sub 0}=220 km s{sup −1}), and a dark matter mass of about 5 GeV.

  13. Updated constraints on velocity and momentum-dependent asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Vincent, Aaron C.; Scott, Pat; Serenelli, Aldo

    2016-11-01

    We present updated constraints on dark matter models with momentum-dependent or velocity-dependent interactions with nuclei, based on direct detection and solar physics. We improve our previous treatment of energy transport in the solar interior by dark matter scattering, leading to significant changes in fits to many observables. Based on solar physics alone, DM with a spin-independent q4 coupling provides the best fit to data, and a statistically satisfactory solution to the solar abundance problem. Once direct detection limits are accounted for however, the best solution is spin-dependent v2 scattering with a reference cross-section of 10-35 cm2 (at a reference velocity of v0=220 km s-1), and a dark matter mass of about 5 GeV.

  14. Darkness

    NASA Image and Video Library

    2014-12-22

    Saturn's main rings, seen here on their "lit" face, appear much darker than normal. That's because they tend to scatter light back toward its source -- in this case, the Sun. Usually, when taking images of the rings in geometries like this, exposures times are increased to make the rings more visible. Here, the requirement to not over-expose Saturn's lit crescent reveals just how dark the rings actually become. Scientists are interested in images in this sunward-facing ("high phase") geometry because the way that the rings scatter sunlight can tell us much about the ring particles' physical make-up. This view looks toward the sunlit side of the rings from about 6 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Jan. 12, 2014. The view was acquired at a distance of approximately 1.4 million miles (2.3 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 152 degrees. Image scale is 86 miles (138 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18294

  15. Halo-independent direct detection of momentum-dependent dark matter

    SciTech Connect

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M. E-mail: frandsen@cp3-origins.net

    2014-10-01

    We show that the momentum dependence of dark matter interactions with nuclei can be probed in direct detection experiments without knowledge of the dark matter velocity distribution. This is one of the few properties of DM microphysics that can be determined with direct detection alone, given a signal of dark matter in multiple direct detection experiments with different targets. Long-range interactions arising from the exchange of a light mediator are one example of momentum-dependent DM. For data produced from the exchange of a massless mediator we find for example that the mediator mass can be constrained to be ∼< 10 MeV for DM in the 20-1000 GeV range in a halo-independent manner.

  16. Limits on Momentum-Dependent Asymmetric Dark Matter with CRESST-II.

    PubMed

    Angloher, G; Bento, A; Bucci, C; Canonica, L; Defay, X; Erb, A; Feilitzsch, F V; Ferreiro Iachellini, N; Gorla, P; Gütlein, A; Hauff, D; Jochum, J; Kiefer, M; Kluck, H; Kraus, H; Lanfranchi, J-C; Loebell, J; Münster, A; Pagliarone, C; Petricca, F; Potzel, W; Pröbst, F; Reindl, F; Schäffner, K; Schieck, J; Schönert, S; Seidel, W; Stodolsky, L; Strandhagen, C; Strauss, R; Tanzke, A; Trinh Thi, H H; Türkoğlu, C; Uffinger, M; Ulrich, A; Usherov, I; Wawoczny, S; Willers, M; Wüstrich, M; Zöller, A

    2016-07-08

    The usual assumption in direct dark matter searches is to consider only the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles O(GeV/c^{2}), operators which carry additional powers of the momentum transfer q^{2} can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with a preferred mass of 3  GeV/c^{2} and a cross section of 10^{-37}  cm^{2}. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on CaWO_{4} to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.

  17. Dark focus of accommodation as dependent and independent variables in visual display technology

    NASA Technical Reports Server (NTRS)

    Jones, Sherrie; Kennedy, Robert; Harm, Deborah

    1992-01-01

    When independent stimuli are available for accommodation, as in the dark or under low contrast conditions, the lens seeks its resting position. Individual differences in resting positions are reliable, under autonomic control, and can change with visual task demands. We hypothesized that motion sickness in a flight simulator might result in dark focus changes. Method: Subjects received training flights in three different Navy flight simulators. Two were helicopter simulators entailed CRT presentation using infinity optics, one involved a dome presentation of a computer graphic visual projection system. Results: In all three experiments there were significant differences between dark focus activity before and after simulator exposure when comparisons were made between sick and not-sick pilot subjects. In two of these experiments, the average shift in dark focus for the sick subjects was toward increased myopia when each subject was compared to his own baseline. In the third experiment, the group showed an average shift outward of small amount and the subjects who were sick showed significantly less outward movement than those who were symptom free. Conclusions: Although the relationship is not a simple one, dark focus changes in simulator sickness imply parasympathetic activity. Because changes can occur in relation to endogenous and exogenous events, such measurement may have useful applications as dependent measures in studies of visually coupled systems, virtual reality systems, and space adaptation syndrome.

  18. The clustering of dark matter haloes: scale-dependent bias on quasi-linear scales

    NASA Astrophysics Data System (ADS)

    Jose, Charles; Lacey, Cedric G.; Baugh, Carlton M.

    2016-11-01

    We investigate the spatial clustering of dark matter haloes, collapsing from 1σ-4σ fluctuations, in the redshift range 0-5 using N-body simulations. The halo bias of high redshift haloes (z ≥ 2) is found to be strongly nonlinear and scale dependent on quasi-linear scales that are larger than their virial radii (0.5-10 Mpc h-1). However, at lower redshifts, the scale dependence of nonlinear bias is weaker and is of the order of a few per cent on quasi-linear scales at z ˜ 0. We find that the redshift evolution of the scale-dependent bias of dark matter haloes can be expressed as a function of four physical parameters: the peak height of haloes, the nonlinear matter correlation function at the scale of interest, an effective power-law index of the rms linear density fluctuations and the matter density of the universe at the given redshift. This suggests that the scale dependence of halo bias is not a universal function of the dark matter power spectrum, which is commonly assumed. We provide a fitting function for the scale-dependent halo bias as a function of these four parameters. Our fit reproduces the simulation results to an accuracy of better than 4 per cent over the redshift range 0 ≤ z ≤ 5. We also extend our model by expressing the nonlinear bias as a function of the linear matter correlation function. It is important to incorporate our results into the clustering models of dark matter haloes at any redshift, including those hosting early generations of stars and galaxies before reionization.

  19. G-corrected holographic dark energy model

    NASA Astrophysics Data System (ADS)

    Malekjani, M.; Honari-Jafarpour, M.

    2013-08-01

    Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant, G, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of G, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of G. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of G-corrected deceleration parameter for holographic dark energy model and show that the dependency of G on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for G-corrected holographic model and show that this model has a shorter distance from the observational point in s- r plane compare with original holographic dark energy model.

  20. Epoch of Reionisation

    NASA Astrophysics Data System (ADS)

    Barry, N.; Beardsley, A.; Bowman, J.; Briggs, F.; Byrne, R.; Carroll, P.; Hazelton, B.; Jacobs, D.; Jordan, C.; Kittiwisit, P.; Lanman, A.; Lenc, E.; Li, W.; Line, J.; McKinley, B.; Mitchell, D.; Morales, M.; Murray, S.; Paul, S.; Pindor, B.; Pober, J.; Rahimi, M.; Riding, J.; Sethi, S.; Shankar, U.; Subrahmanyan, R.; Sullivan, I.; Takahashi, K.; Thyagarajan, N.; Tingay, S.; Trott, C.; Wayth, R.; Webster, R.; Wyithe, S.

    2017-01-01

    The Murchison Widefield Array is designed to measure the fluctuations in the 21cm emission from neutral hydrogen during the Epoch of Reionisation. The new hex configuration is explicitly designed to test the predicted increase in sensitivity of redundant baselines. However the challenge of the new array is to understand calibration with the new configuration. We have developed two new pipelines to reduce the hex data, and will compare the results with previous datasets from the Phase 1 array. We have now processed 80 hours of data refining the data analysis through our two established Phase 1 pipelines. This proposal requests as much observing time as possible in semester 2017-A to (1) obtain a comparable hex dataset to test the sensitivity and systematic limits with redundant arrays, (2) establish the optimal observing strategy for an EoR detection, and (3) continue to explore observational strategies in the three EoR fields to advise the design of SKA-low experiments. Due to the proposed changes in the array during the upcoming semester, we have not requested a specific number of hours, but will optimise our observing program as availability of the telescope becomes clear. We note that this observing proposal implements the key scientific program that can benefit from the new hex configuration.

  1. Phases of cannibal dark matter

    DOE PAGES

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; ...

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector ismore » cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.« less

  2. Phases of cannibal dark matter

    SciTech Connect

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  3. Phases of cannibal dark matter

    NASA Astrophysics Data System (ADS)

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-12-01

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  4. Target dependence of the annual modulation in direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Del Nobile, Eugenio; Gelmini, Graciela B.; Witte, Samuel J.

    2015-06-01

    Due to Earth's revolution around the Sun, the expected scattering rate in direct dark matter searches is annually modulated. This modulation is expected to differ between experiments when given as a function of recoil energy ER, e.g. due to the gravitational focusing effect of the Sun. A better variable to compare results among experiments employing different targets is the minimum speed vmin a dark matter particle must have to impart a recoil energy ER to a target nucleus. It is widely believed that the modulation expressed as a function of vmin is common to all experiments, irrespective of the dark matter distribution. We point out that the annual modulation as a function of vmin, and in particular the times at which the rate is maximum and minimum, could be very different depending on the detector material. This would be an indication of a scattering cross section with nonfactorizable velocity and target material dependence. Observing an annual modulation with at least two different target elements would be necessary to identify this type of cross section.

  5. Spin-independent interferences and spin-dependent interactions with scalar dark matter

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Ochoa, F.

    2016-05-01

    We explore mechanisms of interferences under which the spin-independent interaction in the scattering of scalar dark matter with nucleus is suppressed in relation to the spin-dependent one. We offer a detailed derivation of the nuclear amplitudes based on the interactions with quarks in the framework of a nonuniversal U(1)' extension of the standard model. By assuming a range of parameters compatible with collider searches, electroweak observables and dark matter abundance, we find scenarios for destructive interferences with and without isospin symmetry. The model reveals solutions with mutually interfering scalar particles, canceling the effective spin-independent coupling with only scalar interactions, which requires an extra Higgs boson with mass M H > 125 GeV. The model also possesses scenarios with only vector interactions through two neutral gauge bosons, Z and Z', which do not exhibit interference effects. Due to the nonuniversality of the U(1)' symmetry, we distinguish two family structures of the quark sector with different numerical predictions. In one case, we obtain cross sections that pass all the Xenon-based detector experiments. In the other case, limits from LUX experiment enclose an exclusion region for dark matter between 9 and 800 GeV. We examine a third scenario with isospin-violating couplings where interferences between scalar and vector boson exchanges cancel the scattering. We provide solutions where interactions with Xenon-based detectors is suppressed for light dark matter, below 6 GeV, while interactions with Germanium- and Silicon-based detectors exhibit solutions up to the regions of interest for positive signals reported by CoGeNT and CDMS-Si experiments, and compatible with the observed DM relic density for DM mass in the range 8 .3-10 GeV. Spin-dependent interactions become the dominant source of scattering around the interference regions, where Maxwellian speed distribution is considered.

  6. Numerical analysis of the spin-dependent dark current in microcrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Brammer, T.; Stiebig, H.; Lips, K.

    2004-08-01

    We present a detailed analysis of the voltage dependence of dangling bond recombination in microcrystalline silicon p-i-n diodes observed in the forward dark current at room temperature by electrically detected magnetic resonance (EDMR). The EDMR response is numerically simulated with physically reasonable parameters that are well suited to fully describe the electronic behavior of the diodes. A sign reversal as observed for amorphous silicon diodes is predicted at high voltages. The basic mechanism causing the sign reversal is shown to be due to space charge. The high sensitivity of the EDMR response to various material parameters is demonstrated.

  7. Spin-dependent interpretation for possible signals of light dark matter

    SciTech Connect

    Buckley, Matthew R.; Lippincott, W. Hugh

    2013-09-01

    Signals broadly compatible with light (7-10 GeV) dark matter have been reported in three direct detection experiments: CoGeNT, DAMA/LIBRA, and CDMS-II silicon. These possible signals have been interpreted in the context of spin-independent interactions between the target nuclei and dark matter, although there is tension with null results, particularly from xenon-based experiments. In this paper, we demonstrate that the CoGeNT and CDMS-II silicon results are also compatible assuming a spin-dependent neutron interaction, though this is in tension with xenon-based experiments and PICASSO. The tension with the null results from XENON100 and XENON10 is approximately the same as for the spin-independent coupling. All three experimental signals can be made compatible through a combination of spin-dependent interactions with both the proton and neutron, although such a scenario increases the conflict with the null results of other experiments.

  8. Is Cold Dark Matter a Vacuum Effect?

    NASA Astrophysics Data System (ADS)

    Houlden, Michael A.

    Current theories about the Universe based on an FLRW model conclude that it is composed of ~4% normal matter, ~28 % dark matter and ~68% Dark Energy which is responsible for the well-established accelerated expansion: this model works extremely well. As the Universe expands the density of normal and dark matter decreases while the proportion of Dark Energy increases. This model assumes that the amount of dark matter, whose nature at present is totally unknown, has remained constant. This is a natural assumption if dark matter is a particle of some kind - WIMP, sterile neutrino, lightest supersysmmetric particle or axion, etc. - that must have emerged from the early high temperature phase of the Big Bang. This paper proposes that dark matter is not a particle such as these but a vacuum effect, and that the proportion of dark matter in the Universe is actually increasing with time. The idea that led to this suggestion was that a quantum process (possibly the Higgs mechanism) might operate in the nilpotent vacuum that Rowlands postulates is a dual space to the real space where Standard Model fundamental fermions (and we) reside. This could produce a vacuum quantum state that has mass, which interacts gravitationally, and such states would be `dark matter'. It is proposed that the rate of production of dark matter by this process might depend on local circumstances, such as the density of dark matter and/or normal matter. This proposal makes the testable prediction that the ratio of baryonic to dark matter varies with redshift and offers an explanation, within the framework of Rowlands' ideas, of the coincidence problem - why has cosmic acceleration started in the recent epoch at redshift z ~0.55 when the Dark Energy density first became equal to the matter density?. This process also offers a potential solution to the `missing baryon' problem.

  9. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS. II. DEPENDENCE ON NATURE DARK MATTER AND GRAVITY

    SciTech Connect

    Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio; Martínez-Medina, Luis A. E-mail: octavio@astro.unam.mx

    2015-05-20

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.

  10. The redshift dependence of the structure of massive Λ cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Navarro, Julio F.; Cole, Shaun; Frenk, Carlos S.; White, Simon D. M.; Springel, Volker; Jenkins, Adrian; Neto, Angelo F.

    2008-06-01

    We use two very large cosmological simulations to study how the density profiles of relaxed Λ cold dark matter dark haloes depend on redshift and on halo mass. We confirm that these profiles deviate slightly but systematically from the NFW form and are better approximated by the empirical formula, d logρ/d logr ~ rα, first used by Einasto to fit star counts in the Milky Way. The best-fitting value of the additional shape parameter, α, increases gradually with mass, from α ~ 0.16 for present-day galaxy haloes to α ~ 0.3 for the rarest and most massive clusters. Halo concentrations depend only weakly on mass at z = 0, and this dependence weakens further at earlier times. At z ~ 3 the average concentration of relaxed haloes does not vary appreciably over the mass range accessible to our simulations (M >~ 3 × 1011h-1Msolar). Furthermore, in our biggest simulation, the average concentration of the most massive, relaxed haloes is constant at ~ 3.5-4 for 0 <= z <= 3. These results agree well with those of Zhao et al. and support the idea that halo densities reflect the density of the universe at the time they formed, as proposed by Navarro, Frenk & White. With their original parameters, the NFW prescription overpredicts halo concentrations at high redshift. This shortcoming can be reduced by modifying the definition of halo formation time, although the evolution of the concentrations of Milky Way mass haloes is still not reproduced well. In contrast, the much-used revisions of the NFW prescription by Bullock et al. and Eke, Navarro & Steinmetz predict a steeper drop in concentration at the highest masses and stronger evolution with redshift than are compatible with our numerical data. Modifying the parameters of these models can reduce the discrepancy at high masses, but the overly rapid redshift evolution remains. These results have important implications for currently planned surveys of distant clusters.

  11. Picasso:. Search for Dark Matter in the Spin-Dependent Sector

    NASA Astrophysics Data System (ADS)

    Piro, M.-C.

    2011-06-01

    The PICASSO project is using superheated droplets of C4F10 for the direct detection of Dark Matter candidates in the spin-dependent (SD) sector. The total setup includes 32 detectors installed in the SNOLAB underground laboratory in Sudbury (Ontario, Canada). The present level of sensitivity is at 0.16 pb on protons at 90% C.L. (MW= 24GeV/c2) following an analysis of two detectors only. A concentrated effort in detector purification and a new fabrication procedure allowed an additional background reduction of about a factor of ten. In order to increase the sensitivity of the detectors, new discrimination tools were developed to distinguish between WIMP induced nuclear recoils and alpha decay background. We report preliminary results where an alpha background rejection of 80% could be achieved in the region where WIMP induced nuclear recoils are expected.

  12. Unrestrained caspase-dependent cell death caused by loss of Diap1 function requires the Drosophila Apaf-1 homolog, Dark.

    PubMed

    Rodriguez, Antony; Chen, Po; Oliver, Holt; Abrams, John M

    2002-05-01

    In mammals and Drosophila, apoptotic caspases are under positive control via the CED-4/Apaf-1/Dark adaptors and negative control via IAPs (inhibitor of apoptosis proteins). However, the in vivo genetic relationship between these opposing regulators is not known. In this study, we demonstrate that a dark mutation reverses catastrophic defects seen in Diap1 mutants and rescues cells specified for Diap1- regulated cell death in development and in response to genotoxic stress. We also find that dark function is required for hyperactivation of caspases which occurs in the absence of Diap1. Since the action of dark is epistatic to that of Diap1, these findings demonstrate that caspase-dependent cell death requires concurrent positive input through Apaf-1-like proteins together with disruption of IAP-caspase complexes.

  13. The recombination epoch revisited

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons.

  14. The quantum epoché.

    PubMed

    Pylkkänen, Paavo

    2015-12-01

    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy.

  15. Rotation of the Universe at different cosmological epochs

    NASA Astrophysics Data System (ADS)

    Chechin, L. M.

    2016-06-01

    A step-by-step foundation for the differential character of the Universe's rotation is presented. First, invoking the concept of spacetime foam with spin, it is reasonable to assume that the very early Universe can be described by the Dirac equation. Second, it is shown using the Ehrenfest theorem that, from a classical point of view, the early Universe can be described by the Papapetrou equations. Third, it is stressed that our Universe can perform only rotational motion. It is shown based on the spin part of the Papapetrou equations that the Universe's rotation depends appreciably on the physical properties of a specific cosmological epoch. The rotational angular velocity is calculated for three basic cosmological epochs: the matter-dominated epoch, the transition period (from domination of matter to domination of vacuum), and the vacuum-dominated epoch.

  16. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    SciTech Connect

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2009-08-03

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L {approx}> fL{sub *} galaxies follows the simple relation dN/dt {approx_equal} 0.03(1+f)Gyr{sup -1} (1+z){sup 2.1}. Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L{sub *} high-redshift galaxies ({approx} 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t < 100 Myr). This suggests that short-lived, merger-induced bursts of star formation should not contribute significantly to the global star formation rate at early times, in agreement with observational indications. In contrast, a fairly high fraction ({approx} 20%) of those z = 2 galaxies should have experienced a morphologically transformative merger within a virial dynamical time. We compare our results to observational merger rate estimates from both morphological indicators and pair-fraction based determinations between z = 0-2 and show that they are consistent with our predictions. However, we emphasize that great care must be made in these comparisons because the predicted observables depend very sensitively on galaxy luminosity, redshift, overall mass ratio, and uncertain relaxation timescales for merger remnants. We show that the majority of bright galaxies at z = 3 should have undergone a major

  17. Dependence of the non-linear mass power spectrum on the equationof state of dark energy

    NASA Astrophysics Data System (ADS)

    McDonald, Patrick; Trac, Hy; Contaldi, Carlo

    2006-02-01

    We present N-body simulation calculations of the dependence of the power spectrum of non-linear cosmological mass density fluctuations on the equation of state of the dark energy, w=p/ρ. At fixed linear theory power, increasing w leads to an increase in non-linear power, with the effect increasing with k. By k= 10hMpc-1, a model with w=-0.75 has ~12 per cent more power than a standard cosmological constant model (w=-1), while a model with w=-0.5 has ~33 per cent extra power (at z= 0). The size of the effect increases with increasing dark energy fraction, and to a lesser extent increasing power spectrum normalization, but is insensitive to the power spectrum shape (the numbers above are for Ωm= 0.281 and σ8= 0.897). A code quantifying the non-linear effect of varying w, as a function of k, z and other cosmological parameters, which should be accurate to a few per cent for k<~ 10hMpc-1 for models that fit the current observations, is available at http://www.cita.utoronto.ca/~pmcdonal/code.html. This paper also serves as an example of a detailed exploration of the numerical convergence properties of ratios of power spectra for different models, which can be useful because some kinds of numerical error cancel in a ratio. When precision calculations based on numerical simulations are needed for many different models, efficiency may be gained by breaking the problem into a calculation of the absolute prediction at a central point, and calculations of the relative change in the prediction with model parameters.

  18. Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia.

    PubMed

    Hemschemeier, Anja; Casero, David; Liu, Bensheng; Benning, Christoph; Pellegrini, Matteo; Happe, Thomas; Merchant, Sabeeha S

    2013-09-01

    Anaerobiosis is a stress condition for aerobic organisms and requires extensive acclimation responses. We used RNA-Seq for a whole-genome view of the acclimation of Chlamydomonas reinhardtii to anoxic conditions imposed simultaneously with transfer to the dark. Nearly 1.4 × 10(3) genes were affected by hypoxia. Comparing transcript profiles from early (hypoxic) with those from late (anoxic) time points indicated that cells activate oxidative energy generation pathways before employing fermentation. Probable substrates include amino acids and fatty acids (FAs). Lipid profiling of the C. reinhardtii cells revealed that they degraded FAs but also accumulated triacylglycerols (TAGs). In contrast with N-deprived cells, the TAGs in hypoxic cells were enriched in desaturated FAs, suggesting a distinct pathway for TAG accumulation. To distinguish transcriptional responses dependent on copper response regulator1 (CRR1), which is also involved in hypoxic gene regulation, we compared the transcriptomes of crr1 mutants and complemented strains. In crr1 mutants, ~40 genes were aberrantly regulated, reaffirming the importance of CRR1 for the hypoxic response, but indicating also the contribution of additional signaling strategies to account for the remaining differentially regulated transcripts. Based on transcript patterns and previous results, we conclude that nitric oxide-dependent signaling cascades operate in anoxic C. reinhardtii cells.

  19. Challenges in Cosmology from the Big Bang to Dark Energy, Dark Matter and Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    I review the current status of Big Bang Cosmology, with emphasis on current issues in dark matter, dark energy, and galaxy formation. These topics motivate many of the current goals of experimental cosmology which range from targeting the nature of dark energy and dark matter to probing the epoch of the first stars and galaxies.

  20. Frequency dependence of loss tangent of thermally annealed undoped lead iodide crystals in the dark

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud A.; Abdul-Gader Jafar, Mousa M.

    2006-10-01

    The effect of isothermal annealing ( T⩽120 °C) on the frequency dependence of the loss tangent, tan δ, of undoped lead iodide (PbI 2) crystals in the dark has been investigated in the range 0.1-15 kHz at different ambient temperatures ( T=15-120 °C) without and with DC biasing ( V⩽2 V). Thermal annealing of as-grown PbI 2 crystals modified both the magnitude and frequency dependence of their tan δ. The tan δ-ƒ data ( T=17 °C) of unbiased as-grown crystals were found to fit a tan δ∝ƒ - m dependence, with m˜0.94 in the range 100 Hz <ƒ<10 kHz. After annealing these crystals at T=70 °C for 1 h, the tan δ∝ƒ - m relation was obeyed for unbiased samples at any T over most of the frequency range studied, with the exponent m being reduced to around 0.55; a behavior that was also found for isothermally annealed PbI 2 crystals when were DC biased, but at high ambient temperatures. The tan δ- T data (ƒ=1 kHz) of the unbiased prolonged annealed ( T=120 °C) PbI 2 crystals exhibited two different thermally activated regimes, with activation energies Ea˜0.23 and 0.087 eV in the ranges 75-120 °C and 15-75 °C, respectively, which were related to trapping cationic Pb +2-vacancies/hole-impurity levels in the crystal band gap. An interpolytypic phase transformation of the 2H-PbI 2 upon isothermal annealing may not, however, be entirely excluded.

  1. Hydrogen Epoch of Reionization Array (HERA)

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; HERA

    2015-01-01

    The Hydrogen Epoch of Reionization Arrays (HERA - reionization.org) roadmap uses the unique properties of the neutral hydrogen (HI) 21cm line to probe our cosmic dawn: from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER - eor.berkeley.edu), the US-based Murchison Widefield Array (MWA - mwatelescope.org), and MIT Epoch of Reionization (MITEOR) teams along with the South African SKA-SA, University of KwaZulu Natal and the University of Cambridge Cavendish Laborabory. HERA has recently been awarded a National Science Foundation Mid-Scale Innovation Program grant to begin the next phase.HERA leverages the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of systematics and radio continuum foreground emission some four orders of magnitude brighter. With this understanding, we are now able to remove foregrounds to the limits of our sensitivity, culminating in the first physically meaningful upper limits. A redundant calibration algorithm from MITEOR improves the sensitivity of the approach.Building on this, the next stage of HERA incorporates a 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. HERA will be located in the radio quiet environment of the SKA site in the Karoo region of South Africa (where PAPER is currently located). It will have a sensitivity close to two orders of magnitude better than PAPER and the MWA to ensure a robust detection. With its sensitivity and broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the

  2. Oscillations of the F(R) dark energy in the accelerating universe

    NASA Astrophysics Data System (ADS)

    Elizalde, E.; Odintsov, S. D.; Sebastiani, L.; Zerbini, S.

    2012-02-01

    Oscillations of the F( R) dark energy around the phantom divide line, ω DE=-1, both during the matter era and also in the de Sitter epoch are investigated. The analysis during the de Sitter epoch is revisited by expanding the modified equations of motion around the de Sitter solution. Then, during the matter epoch, the time dependence of the dark energy perturbations is discussed by using two different local expansions. For high values of the red shift, the matter epoch is a stable point of the theory, giving the possibility to expand the F( R)-functions in terms of the dark energy perturbations. In the late-time matter era, the realistic case is considered where dark energy tends to a constant. The results obtained are confirmed by precise numerical computation on a specific model of exponential gravity. A novel and very detailed discussion is provided on the critical points in the matter era and on the relation of the oscillations with possible singularities.

  3. Interpretation of the gamma-ray excess and AMS-02 antiprotons: Velocity dependent dark matter annihilations

    NASA Astrophysics Data System (ADS)

    Jia, Lian-Bao

    2017-09-01

    The two messenger results of the GeV gamma-ray excess at the Galactic center and a probable antiproton excess in the recent AMS-02 observation suggest that these two anomalies may be owing to the same origin—the dark matter (DM) annihilation into b b ¯, while these results seem in tension with the dwarf spheroidal galaxy observations. To give a compatible explanation about it, we consider the pseudoscalar DM particles Sd+Sd- annihilating via Sd+Sd-→Sd0Sd0, with the process mediated by a new scalar ϕ and Sd0 quickly decaying into b b ¯. For the particles Sd+, Sd-, and Sd0 in a triplet with degenerate masses, the annihilation cross section of DM today is linearly dependent on the relative velocity vr, and thus constraints from the dwarf spheroidal galaxies are relaxed. The parameter spaces are derived with corresponding constraints. Though traces from the new sector seem challenging to be disclosed at the collider and in DM direct detections, the indirect search of the gamma-ray line from the Sd0's decay has the potential to shed light on DM annihilations, with the energy of the gamma-ray line ˜mSd0/2 , i.e. about 50-75 GeV.

  4. Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence

    NASA Astrophysics Data System (ADS)

    Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing

    2016-07-01

    Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.

  5. Thickness dependent charge transfer states and dark carriers density in vacuum deposited small molecule organic photocell

    NASA Astrophysics Data System (ADS)

    Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir

    2016-10-01

    We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.

  6. Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data

    SciTech Connect

    Etherington, J.; Thomas, D.; Maraston, C.; Sevilla-Noarbe, I.; Bechtol, K.; Pforr, J.; Pellegrini, P.; Gschwend, J.; Carnero Rosell, A.; Maia, M. A. G.; da Costa, L. N.; Benoit-Lévy, A.; Swanson, M. E. C.; Hartley, W. G.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Martini, P.; Melchior, P.; Miquel, R.; Mohr, J. J.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Vikram, V.; Walker, A. R.; Zhang, Y.

    2016-01-04

    Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric datasets that enable further investigation of the assembly of mass. In this study we use ~3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) dataset. From grizY photometry we derive galaxy stellar masses and absolute magnitudes, and determine the errors on these properties using Monte-Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75 we find that the fraction of massive galaxies is larger in high density environment than in low density environments. We show that the low density and high density components converge with increasing redshift up to z ~ 1.0 where the shapes of the mass function components are indistinguishable. As a result, our study shows how high density structures build up around massive galaxies through cosmic time.

  7. Light-dependent magnetoreception in birds: the crucial step occurs in the dark

    PubMed Central

    Wiltschko, Roswitha; Ahmad, Margaret; Nießner, Christine; Gehring, Dennis; Wiltschko, Wolfgang

    2016-01-01

    The Radical Pair Model proposes that the avian magnetic compass is based on spin-chemical processes: since the ratio between the two spin states singlet and triplet of radical pairs depends on their alignment in the magnetic field, it can provide information on magnetic directions. Cryptochromes, blue light-absorbing flavoproteins, with flavin adenine dinucleotide as chromophore, are suggested as molecules forming the radical pairs underlying magnetoreception. When activated by light, cryptochromes undergo a redox cycle, in the course of which radical pairs are generated during photo-reduction as well as during light-independent re-oxidation. This raised the question as to which radical pair is crucial for mediating magnetic directions. Here, we present the results from behavioural experiments with intermittent light and magnetic field pulses that clearly show that magnetoreception is possible in the dark interval, pointing to the radical pair formed during flavin re-oxidation. This differs from the mechanism considered for cryptochrome signalling the presence of light and rules out most current models of an avian magnetic compass based on the radical pair generated during photo-reduction. Using the radical pair formed during re-oxidation may represent a specific adaptation of the avian magnetic compass. PMID:27146685

  8. Asteroseismic constraints on asymmetric dark matter: Light particles with an effective spin-dependent coupling

    NASA Astrophysics Data System (ADS)

    Martins, André; Lopes, Ilídio; Casanellas, Jordi

    2017-01-01

    So far, direct detection searches have come up empty handed in their quest for dark matter (DM). Meanwhile, asteroseismology arises as a complementary tool to study DM, as its accumulation in a star can enhance energy transport by providing a conduction mechanism, producing significant changes in the stellar structure during the course of the star's evolution. The stellar core, particularly affected by the presence of DM, can be investigated through precise asteroseismic diagnostics. We modeled three stars including DM energy transport: the Sun; a slightly less massive and much older star, KIC 7871531 (0.85 M⊙ , 9.41 Gyr); and a more massive and younger one, KIC 8379927 (1.12 M⊙ , 1.82 Gyr). We considered both the case of weakly interactive massive particles, albeit with a low annihilation, and the case of asymmetric DM for which the number of trapped particles in the star can be much greater. By analyzing these models with asteroseismic separation ratios weighted towards the core, we found indications limiting the effective spin-dependent DM-proton coupling for masses of a few GeV. This independent result is very close to the most recent and most stringent direct detection DM constraints.

  9. Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment

    NASA Astrophysics Data System (ADS)

    Macciò, Andrea V.; Dutton, Aaron A.; van den Bosch, Frank C.; Moore, Ben; Potter, Doug; Stadel, Joachim

    2007-06-01

    We use a series of cosmological N-body simulations for a flat Λ cold dark matter (ΛCDM) cosmology to investigate the structural properties of dark matter haloes, at redshift zero, in the mass range 3 × 109h-1 <~ Mvir <~ 3 × 1013h-1Msolar. These properties include the concentration parameter, c, the spin parameter, λ, and the mean axis ratio, . For the concentration-mass relation we find c ~ M-0.11vir in agreement with the model proposed by Bullock et al., but inconsistent with the alternative model of Eke et al. The normalization of the concentration-mass relation, however, is 15 per cent lower than suggested by Bullock et al. The results for λ and are in good agreement with previous studies, when extrapolated to the lower halo masses probed here, while c and λ are anticorrelated, in that high-spin haloes have, on average, lower concentrations. In an attempt to remove unrelaxed haloes from the sample, we compute for each halo the offset parameter, xoff, defined as the distance between the most bound particle and the centre of mass, in units of the virial radius. Removing haloes with large xoff increases the mean concentration by ~10 per cent, lowers the mean spin parameter by ~15 per cent, and removes the most prolate haloes. In addition, it largely removes the anticorrelation between c and λ, though not entirely. We also investigate the relation between halo properties and their large-scale environment density. For low-mass haloes we find that more concentrated haloes live in denser environments than their less concentrated counterparts of the same mass, consistent with recent correlation function analyses. Note, however, that the trend is weak compared to the scatter. For the halo spin parameters we find no environment dependence, while there is a weak indication that the most spherical haloes reside in slightly denser environments. Finally, using a simple model for disc galaxy formation we show that haloes that host low surface brightness galaxies are

  10. Photometry in the dark: time dependent visibility of low intensity light sources.

    PubMed

    Poelman, Dirk; Smet, Philippe F

    2010-12-06

    This paper aims at describing the perceived brightness of persistent luminescent materials for emergency signage. In case of emergency, typically, a fully light adapted person is left in the dark, except for the emergency sign. The available photometric models cannot describe visibility of such light source, as they do not consider the slow dark adaptation of the human eye. The model proposed here fully takes into account the shift from photopic to scotopic vision, the related shift in spectral sensitivity and the dark adaptation. The resulting metric is a 'visibility index' and preliminary tests show that it more realistically describes the perceived brightness of persistent luminescent materials than the common photometric standards.

  11. Dark matter decaying into a Fermi sea of neutrinos

    NASA Astrophysics Data System (ADS)

    Bjælde, Ole Eggers; Das, Subinoy

    2010-08-01

    We study the possible decay of a coherently oscillating scalar field, interpreted as dark matter, into light fermions. Specifically, we consider a scalar field with sub-eV mass decaying into a Fermi sea of neutrinos. We recognize the similarity between our scenario and inflationary preheating where a coherently oscillating scalar field decays into standard model particles. Like the case of fermionic preheating, we find that Pauli blocking controls the dark matter decay into the neutrino sea. The radius of the Fermi sphere depends on the expansion of the universe leading to a time varying equation of state of dark matter. This makes the scenario very rich and we show that the decay rate might be different at different cosmological epochs. We categorize this in two interesting regimes and then study the cosmological perturbations to find the impact on structure formation. We find that the decay may help in alleviating some of the standard problems related to cold dark matter.

  12. Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures.

    PubMed

    Bayer, Florian; Zabler, Simon; Brendel, Christian; Pelzer, Georg; Rieger, Jens; Ritter, André; Weber, Thomas; Michel, Thilo; Anton, Gisela

    2013-08-26

    Over the recent years X-ray differential phase-contrast imaging was developed for the hard X-ray regime as produced from laboratory X-ray sources. The technique uses a grating-based Talbot-Lau interferometer and was shown to yield image contrast gain, which makes it very interesting to the fields of medical imaging and non-destructive testing, respectively. In addition to X-ray attenuation contrast, the differential phase-contrast and dark-field images provide different structural information about a specimen. For the dark-field even at length scales much smaller than the spatial resolution of the imaging system. Physical interpretation of the dark-field information as present in radiographic and tomographic (CT) images requires a detailed look onto the geometric orientation between specimen and the setup. During phase-stepping the drop in intensity modulation, due to local scattering effects within the specimen is reproduced in the dark-field signal. This signal shows strong dependencies on micro-porosity and micro-fibers if these are numerous enough in the object. Since a grating-interferometer using a common unidirectional line grating is sensitive to X-ray scattering in one plane only, the dark-field image is influenced by the fiber orientations with respect to the grating bars, which can be exploited to obtain anisotropic structural information. With this contribution, we attempt to extend existing models for 2D projections to 3D data by analyzing dark-field contrast tomography of anisotropically structured materials such as carbon fiber reinforced carbon (CFRC).

  13. Simulations of Time-Dependent Three-Dimensional Vortices with Application to Neptune's Great Dark SPOT

    NASA Astrophysics Data System (ADS)

    Lebeau, R. P.; Dowling, T. E.

    1997-07-01

    We use the EPIC atmospheric model, a primitive-equation, isentropic-coordinate GCM, to simulate time-dependent vortices under conditions similar to those found on Neptune. The vortices have roughly elliptical cross-sections and exhibit motions that resemble the behavior of Neptune's Great Dark Spot (GDS), including equatorward drift, nutating oscillations in aspect ratio and orientation angle, and quasi-periodic tail formation. The simulated vortices also exhibit complex, three-dimensional motions that may explain the occasional appearance of the GDS as two overlapping ellipses. We find that the meridional drift of the vortices is strongly correlated with the meridional gradient of the environmental potential vorticity, beta (*) . The correlation suggests that the drift rate of GDS-type vortices on Neptune, which can be monitored over the long term by the Hubble Space Telescope, is diagnostic of the vorticity gradient on the planet. The best fit to the Voyager GDS drift rate in our simulations corresponds to beta (*) ~ 2 x 10(-12) m(-1) s(-1) . This is about 1/3 of the value given by the zonal-wind profile of Sromovsky et\\ al. (1993), determined by fitting a polynomial in latitude to the cloud-tracking data. We calculate a new fit to the same data using Legendre polynomials (spherical harmonics), which yields a significantly lower value for beta (*) in the mid-latitudes. We show that vortex shape oscillations occur both in cases of zero background potential-vorticity gradient, corresponding to the conditions in analytical Kida-type models of oscillating vortices, and in cases of non-zero background gradient, corresponding to conditions that have not yet been investigated analytically. While the shape oscillations are qualitatively Kida-like, in detail they are distinctly different. We also use the EPIC model to examine the demise of GDS-type vortices that drift too close to the equator.

  14. Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data

    NASA Astrophysics Data System (ADS)

    Etherington, J.; Thomas, D.; Maraston, C.; Sevilla-Noarbe, I.; Bechtol, K.; Pforr, J.; Pellegrini, P.; Gschwend, J.; Carnero Rosell, A.; Maia, M. A. G.; da Costa, L. N.; Benoit-Lévy, A.; Swanson, M. E. C.; Hartley, W. G.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Martini, P.; Melchior, P.; Miquel, R.; Mohr, J. J.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Vikram, V.; Walker, A. R.; Zhang, Y.

    2017-04-01

    Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm, it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric data sets that enable further investigation of the assembly of mass. In this study, we use ∼3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) data set. From grizY photometry, we derive galaxy stellar masses and absolute magnitudes, and determine the errors on these properties using Monte Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75, we find that the fraction of massive galaxies is larger in high-density environment than in low-density environments. We show that the low-density and high-density components converge with increasing redshift up to z ∼ 1.0 where the shapes of the mass function components are indistinguishable. Our study shows how high-density structures build up around massive galaxies through cosmic time.

  15. Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data

    DOE PAGES

    Etherington, J.; Thomas, D.; Maraston, C.; ...

    2016-01-04

    Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric datasets that enable further investigation of the assembly of mass. In this study we use ~3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) dataset. From grizY photometry we derive galaxy stellar masses and absolutemore » magnitudes, and determine the errors on these properties using Monte-Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75 we find that the fraction of massive galaxies is larger in high density environment than in low density environments. We show that the low density and high density components converge with increasing redshift up to z ~ 1.0 where the shapes of the mass function components are indistinguishable. As a result, our study shows how high density structures build up around massive galaxies through cosmic time.« less

  16. Falsification of dark energy by fluid mechanics

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2011-11-01

    The 2011 Nobel Prize in Physics has been awarded for the discovery from observations of increased supernovae dimness interpreted as distance, so that the Universe expansion rate has changed from a rate decreasing since the big bang to one that is now increasing, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current stan- dard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts su- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.

  17. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.

    PubMed

    Reidel, Boris; Goldmann, Tobias; Giessl, Andreas; Wolfrum, Uwe

    2008-10-01

    In vertebrate rod photoreceptor cells, arrestin and the visual G-protein transducin move between the inner segment and outer segment in response to changes in light. This stimulus dependent translocation of signalling molecules is assumed to participate in long term light adaptation of photoreceptors. So far the cellular basis for the transport mechanisms underlying these intracellular movements remains largely elusive. Here we investigated the dependency of these movements on actin filaments and the microtubule cytoskeleton of photoreceptor cells. Co-cultures of mouse retina and retinal pigment epithelium were incubated with drugs stabilizing and destabilizing the cytoskeleton. The actin and microtubule cytoskeleton and the light dependent distribution of signaling molecules were subsequently analyzed by light and electron microscopy. The application of cytoskeletal drugs differentially affected the cytoskeleton in photoreceptor compartments. During dark adaptation the depolymerization of microtubules as well as actin filaments disrupted the translocation of arrestin and transducin in rod photoreceptor cells. During light adaptation only the delivery of arrestin within the outer segment was impaired after destabilization of microtubules. Movements of transducin and arrestin required intact cytoskeletal elements in dark adapting cells. However, diffusion might be sufficient for the fast molecular movements observed as cells adapt to light. These findings indicate that different molecular translocation mechanisms are responsible for the dark and light associated translocations of arrestin and transducin in rod photoreceptor cells.

  18. Field-dependent effective temperature and variable range hopping: Application to dark dc conductivity in doped a-Si:H

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. I.; Emelianova, E. V.; Adriaenssens, G. J.

    2003-05-01

    Field and temperature dependencies of the dark dc hopping conductivity are calculated for an algebraic energy distribution of localized states near the Fermi level. These dependencies are shown to merge in a universal dependence on a field-dependent effective temperature Teff. An analytical expression for Teff is derived. The analytic results agree quantitatively with experimental data obtained by Nebel et al. [Phys. Rev. B 46, 6803 (1992)] for boron- and phosphorous-doped a-Si:H. Although the effective temperature does depend upon a particular choice of the density-of-states (DOS) distribution this dependence is not very strong for DOS functions that are not too steep near the Fermi level.

  19. Epoch synchronization of random FH signals in broadband noise

    NASA Astrophysics Data System (ADS)

    Chung, Char-Dir; Polydoros, Andreas

    A scheme for epoch synchronization of random frequency-hopped signals in broadband noise is presented. This scheme operates on the power samples of the real-time autocorrelation function of the received waveform. The scheme takes advantage of the fact that power sampling in the correlation domain suppresses frequency and phase dependence, but preserves timing information, in order to construct a maximum-likelihood epoch estimation algorithm for which the hopping pattern need not be known. The conditional mean and variance of this estimator are derived analytically and a simple parameter is found to be adequate for measuring the estimation performance. Simulation results that confirm the analytical results are reported.

  20. Seeing in the dark - I. Multi-epoch alchemy

    NASA Astrophysics Data System (ADS)

    Huff, Eric M.; Hirata, Christopher M.; Mandelbaum, Rachel; Schlegel, David; Seljak, Uroš; Lupton, Robert H.

    2014-05-01

    Weak lensing by large-scale structure is an invaluable cosmological tool given that most of the energy density of the concordance cosmology is invisible. Several large ground-based imaging surveys will attempt to measure this effect over the coming decade, but reliable control of the spurious lensing signal introduced by atmospheric turbulence and telescope optics remains a challenging problem. We address this challenge with a demonstration that point spread function (PSF) effects on measured galaxy shapes in the Sloan Digital Sky Survey (SDSS) can be corrected with existing analysis techniques. In this work, we co-add existing SDSS imaging on the equatorial stripe in order to build a data set with the statistical power to measure cosmic shear, while using a rounding kernel method to null out the effects of the anisotropic PSF. We build a galaxy catalogue from the combined imaging, characterize its photometric properties and show that the spurious shear remaining in this catalogue after the PSF correction is negligible compared to the expected cosmic shear signal. We identify a new source of systematic error in the shear-shear autocorrelations arising from selection biases related to masking. Finally, we discuss the circumstances in which this method is expected to be useful for upcoming ground-based surveys that have lensing as one of the science goals, and identify the systematic errors that can reduce its efficacy.

  1. The Galaxy UV Luminosity Function before the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Mason, Charlotte A.; Trenti, Michele; Treu, Tommaso

    2015-11-01

    We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass-dependent, but redshift-independent, efficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at z > 10 (lookback time ≲500 Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations (0 ≲ z ≲ 10). The significant drop in luminosity density of currently detectable galaxies beyond z ˜ 8 is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth τ ={0.056}-0.010+0.007, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at z={7.84}-0.98+0.65. In addition, our model naturally produces smoothly rising star formation histories for galaxies with L ≲ L* in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at z > 10 we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope (α ˜ -3.5 at z ˜ 16). Finally, we construct forecasts for surveys with James Webb Space Telescope (JWST) and Wide-field Infrared Survey Telescope (WFIRST) and predict that galaxies out to z ˜ 14 will be observed. Galaxies at z > 15 will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.

  2. Simulations of time-dependent three-dimensional vortices with application to Neptune's Great Dark Spot

    NASA Astrophysics Data System (ADS)

    Lebeau, Raymond Paul, Jr.

    We use the EPIC atmospheric: model, a primitive-equation, isentropic-coordinate GCM, to simulate time-dependent vortices under conditions similar to those found on Neptune. The vortices have roughly elliptical cross- sections and exhibit motions that resemble the behavior of Neptune's Great Dark Spot (GDS), including equatorward drift, nutating oscillations in aspect ratio and orientation angle, and quasi-periodic tail formation. The simulated vortices also exhibit complex, three- dimensional motions that may explain the occasional appearance of the GDS as two overlapping ellipses. We find that the meridional drift of the vortices is strongly correlated with the meridional gradient of the environmental potential vorticity, β*. This result complements related studies of hurricane motions. The correlation suggests that the drift rate of GDS-type vortices on Neptune, which can be monitored over the long term by the Hubble Space Telescope (HST), is diagnostic of the vorticity gradient on the planet. The best fit to the Voyager GDS drift rate in our simulations corresponds to β*/approx2×10-12/ m-1s- 1. This is about 1/3 of the value given by the zonal- wind profile of Sromovsky et al. (1993), determined by fitting a polynomial in latitude to the cloud-tracking data. We calculate new fit to the same data using Legendre polynomials (spherical harmonics), which yields a significantly lower value for β*, more in line with our vortex-drift results. We show that vortex shape oscillations occur both in cases of zero background potential-vorticity gradient, corresponding to the conditions in analytical Kida-type models of oscillating vortices, and in cases of non-zero background gradient, corresponding to conditions that have not yet been investigated analytically. While the shape oscillations are qualitatively Kida-like, in detail they are distinctly different, suggesting that existing theory may not be sufficient to describe non-uniform, three- dimensional vortices. We

  3. Size-dependent photoconductivity and dark conductivity of m-axial GaN nanowires with small critical diameter

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yi; Chen, Reui-San; Chang, Fu-Chieh; Chen, Li-Chyong; Chen, Kuei-Hsien; Yang, Ying-Jay

    2009-10-01

    The size effects on both the photoconductivity and dark conductivity have been observed in m-axial GaN nanowires grown by chemical vapor deposition (CVD). For these nanowires with diameters at 50-130 nm, the products of carrier lifetime (τ) and mobility (μ) derived from the photocurrent measurements are typically at (2-8)×10-1 cm2/V, which are over two orders of magnitude higher than the maximal reported values [τμ=(1-5)×10-4 cm2/V] for their thin film counterparts. A significant decrease of τμ value at diameter below the critical values (dcrt) at 30-40 nm is observed. Similar size dependence is also found from the dark conductivity study. The temperature-dependent measurements further indicate two different thermal activation mechanisms in GaN nanowires with sizes above and below the dcrt. These results suggest a surface-dominant transport property in GaN nanowires both in dark and under light illumination due to the presence of surface depletion and band bending. Probable reasons leading to the smaller dcrt of the CVD-grown m-axial GaN nanowires, compared to the c-axial ones grown by molecular beam epitaxy are discussed as well.

  4. Field Flows of Dark Energy

    SciTech Connect

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  5. pH dependence of Anabaena sensory rhodopsin: retinal isomer composition, rate of dark adaptation, and photochemistry.

    PubMed

    Rozin, Rinat; Wand, Amir; Jung, Kwang-Hwan; Ruhman, Sanford; Sheves, Mordechai

    2014-07-31

    Microbial rhodopsins are photoactive proteins, and their binding site can accommodate either all-trans or 13-cis retinal chromophore. The pH dependence of isomeric composition, dark-adaptation rate, and primary events of Anabaena sensory rhodopsin (ASR), a microbial rhodopsin discovered a decade ago, are presented. The main findings are: (a) Two pKa values of 6.5 and 4.0 assigned to two different protein residues are observed using spectroscopic titration experiments for both ground-state retinal isomers: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). The protonation states of these protein residues affect the absorption spectrum of the pigment and most probably the isomerization process of the retinal chromophore. An additional pKa value of 8.5 is observed only for 13C-ASR. (b) The isomeric composition of ASR is determined over a wide pH range and found to be almost pH-independent in the dark (>96% AT isomer) but highly pH-dependent in the light-adapted form. (c) The kinetics of dark adaptation is recorded over a wide pH range, showing that the thermal isomerization from 13C to AT retinal occurs much faster at high pH rather than under acidic conditions. (d) Primary photochemical events of ASR at pH 5 are recorded using VIS hyperspectral pump-probe spectroscopy with <100 fs resolution and compared with the previously recorded results at pH 7.5. For AT-ASR, these are shown to be almost pH-independent. However, photochemistry of 13C-ASR is pH-dependent and slowed down in acidic environments.

  6. Bistable dark soliton solution in dispersive media with a linear and quadratic intensity-depending refraction index change

    NASA Astrophysics Data System (ADS)

    Herrmann, Joachim

    1992-08-01

    An analytical dark soliton solution of the generalized nonlinear Schrödinger equation has been found for a dispersive medium with a linear and quadratic intensity depending refraction index change of the form n= n2| A| 2+ n4| A| 4. It i s shown that for the parameter range n2n4<0, and k″ 1n2>0, two-valued (bistable) soliton states exist, which describe undistorted hol es with the same width but two different amplitudes. Under certain conditions such two-valued soliton states show an unexpected behaviour at collisions, as soliton fusion and other effects.

  7. Temperature dependence electrical conduction of solution-processed CZTS films in dark and under light

    NASA Astrophysics Data System (ADS)

    Ghediya, Prashant R.; Chaudhuri, Tapas K.; Patel, K. C.

    2016-09-01

    Electrical conduction of solution-processed Cu2ZnSnS4 (CZTS) films has been reported in dark and under light in the temperature range of 85 to 300 K. The films show nearest neighbor hopping mode of transport at below 200 K, while above 200 K the films were dominated by thermionic emission over grain boundary barriers, following, Seto's model for polycrystalline films. The hopping energy and grain boundary barrier height of CZTS films are found be decreases under illumination due to the photoconductivity. The films were pure kesterite CZTS as revealed from X-Ray diffraction and Raman spectroscopy.

  8. Temporal dependence of transient dark counts in an avalanche photodiode: A solution for power-law behavior of afterpulsing

    NASA Astrophysics Data System (ADS)

    Akiba, M.; Tsujino, K.

    2016-08-01

    This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and its temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p-n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.

  9. Temporal dependence of transient dark counts in an avalanche photodiode: A solution for power-law behavior of afterpulsing

    SciTech Connect

    Akiba, M.; Tsujino, K.

    2016-08-08

    This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and its temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p–n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.

  10. Linear Covariance Analysis and Epoch State Estimators

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Carpenter, J. Russell

    2012-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  11. Linear Covariance Analysis and Epoch State Estimators

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Carpenter, J. Russell

    2014-01-01

    This paper extends in two directions the results of prior work on generalized linear covariance analysis of both batch least-squares and sequential estimators. The first is an improved treatment of process noise in the batch, or epoch state, estimator with an epoch time that may be later than some or all of the measurements in the batch. The second is to account for process noise in specifying the gains in the epoch state estimator. We establish the conditions under which the latter estimator is equivalent to the Kalman filter.

  12. Dependency between light intensity and refractive development under light-dark cycles.

    PubMed

    Cohen, Yuval; Belkin, Michael; Yehezkel, Oren; Solomon, Arieh S; Polat, Uri

    2011-01-01

    The emmetropization process involves fine-tuning the refractive state by altering the refractive components toward zero refraction. In this study, we provided light-dark cycle conditions at several intensities and examined the effect of light intensity on the progression of chicks' emmetropization. Chicks under high-, medium-, and low-light intensities (10,000, 500, and 50 lux, respectively) were followed for 90 days by retinoscopy, keratometry, as well as ultrasound measurements. Emmetropization was reached from days 30-50 and from days 50-60 for the low- and medium-intensity groups, respectively. On day 90, most chicks in the low-intensity group were myopic, with a mean refraction of -2.41D (95% confidence interval (CI) -2.9 to -1.8D), whereas no chicks in the high-intensity group developed myopia, but they exhibited a stable mean hyperopia of +1.1D. The medium-intensity group had a mean refraction of +0.03D. The low-intensity group had a deeper vitreous chamber depth and a longer axial length compared with the high-intensity group, and shifted refraction to the myopic side. The low-intensity group had a flatter corneal curvature, a deeper anterior chamber, and a thinner lens compared with the high-intensity group, and shifted refraction to the hyperopic side. In all groups the corneal power was correlated with the three examined levels of log light intensity for all examined times (e.g., day 20 r = 0.6 P < 0.0001, day 90 r = 0.56 P < 0.0001). Thus, under light-dark cycles, light intensity is an environmental factor that modulates the process of emmetropization, and the low intensity of ambient light is a risk factor for developing myopia.

  13. New Insight into the Cosmic Renaissance Epoch

    NASA Astrophysics Data System (ADS)

    2003-08-01

    VLT Discovers a Group of Early Inhabitants and Find Signs of Many More [1] Summary Using the ESO Very Large Telescope (VLT) , two astronomers from Germany and the UK [2] have discovered some of the most distant galaxies ever seen . They are located about 12,600 million light-years away. It has taken the light now recorded by the VLT about nine-tenths of the age of the Universe to traverse this huge distance. We therefore observe those galaxies as they were at a time when the Universe was very young, less than about 10% of its present age . At this time, the Universe was emerging from a long period known as the "Dark Ages" , entering the luminous "Cosmic Renaissance" epoch. Unlike previous studies which resulted in the discovery of a few, widely dispersed galaxies at this early epoch, the present study found at least six remote citizens within a small sky area, less than five per cent the size of the full moon! This allowed understanding the evolution of these galaxies and how they affect the state of the Universe in its youth. In particular, the astronomers conclude on the basis of their unique data that there were considerably fewer luminous galaxies in the Universe at this early stage than 500 million years later. There must therefore be many less luminous galaxies in the region of space that they studied, too faint to be detected in this study. It must be those still unidentified galaxies that emit the majority of the energetic photons needed to ionise the hydrogen in the Universe at that particularly epoch. PR Photo 25a/03 : Colour-composite of the sky field with the distant galaxies. PR Photo 25b/03 : Close-Up images of some of the most distant galaxies known in the Universe. PR Photo 25c/03 : Spectra of these galaxies. From the Big Bang to the Cosmic Renaissance Nowadays, the Universe is pervaded by energetic ultraviolet radiation, produced by quasars and hot stars. The short-wavelength photons liberate electrons from the hydrogen atoms that make up the

  14. Evolution of density and velocity profiles of dark matter and dark energy in spherical voids

    NASA Astrophysics Data System (ADS)

    Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij

    2017-02-01

    We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range ˜4-7 per cent when the value of equation-of-state parameter of dark energy w vary in the range from -0.8 to -1.2, and change within ˜1 per cent only when the value of effective sound speed of dark energy vary over all allowable range of its values.

  15. "Drinking in the dark" (DID) procedures: a model of binge-like ethanol drinking in non-dependent mice.

    PubMed

    Thiele, Todd E; Navarro, Montserrat

    2014-05-01

    This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called "drinking in the dark" (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes, Best, Belknap, Finn, and Crabbe (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2-4 h, beginning 3 h into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal's dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to

  16. Mars habitability: epochs, processes, remnants

    NASA Astrophysics Data System (ADS)

    Bibring, J.; Omega, T.

    2008-12-01

    history of inner planets along their first hundreds of millions years, at a time when the early bombardment took place, while maintaining habitable conditions which, at least on the Earth, led to the emergence of life. Did the impact rate steadily decreased, or did it drop a number of times, up to late events some 3.8/3.9 billion years ago, offering quiet epochs with biologically active standing water reservoirs in place? Mars is unique in offering means to study this era, as its history preserved sites recording this era with potentially biorelics still in place. The occurrence of phyllosilicate-rich sites offers the exciting perspective to address scientifically the question of the emergence of life elsewhere than on the Earth, and to decipher the processes that drove diverging evolutionary pathways for Mars and the Earth.

  17. Falsification of Dark Energy by Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2012-03-01

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating super- novae dimness, suggesting a remarkable reversal in the expansion rate of the Universe from a decrease to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanics and Herschel- Planck-Spitzer-Hubble etc. space telescope observations falsify both the accelerating ex- pansion rate and dark energy concepts. Kinematic viscosity is neglected in models of self-gravitational structure formation. Large plasma photon viscosity predicts protosu- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the gas protogalaxies fragment into Earth-mass rogue plan- ets in highly persistent, trillion-planet clumps (proto-globular-star-cluster PGCs). PGC planets freeze to form the dark matter of galaxies and merge to form their stars, giving the hydrogen triple-point (14 K) infrared emissions observed. Dark energy is a system- atic dimming error for Supernovae Ia caused by partially evaporated planets feeding hot white dwarf stars at the Chandrasekhar carbon limit. Planet atmospheres may or may not dim light from SNe-Ia events depending on the line of sight.

  18. Dark energy records in lensed cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Acquaviva, Viviana; Baccigalupi, Carlo

    2006-11-01

    We consider the weak lensing effect induced by linear cosmological perturbations on the cosmic microwave background (CMB) polarization anisotropies. We find that the amplitude of the lensing peak in the BB mode power spectrum is a faithful tracer of the dark energy dynamics at the onset of cosmic acceleration. This is due to two reasons. First, the lensing power is nonzero only at intermediate redshifts between the observer and the source, keeping record of the linear perturbation growth rate at the corresponding epoch. Second, the BB lensing signal is expected to dominate over the other sources. The lensing distortion on the TT and EE spectra do exhibit a similar dependence on the dark energy dynamics, although those are dominated by primary anisotropies. We investigate and quantify the effect by means of exact tracking quintessence models, as well as parameterizing the dark energy equation of state in terms of the present value (w0) and its asymptotic value in the past (w∞); in the interval allowed by the present constraints on dark energy, the variation of w∞ induces a significant change in the BB mode lensing amplitude. A Fisher matrix analysis, under conservative assumptions concerning the increase of the sample variance due to the lensing non-Gaussian statistics, shows that a precision of order 10% on both w0 and w∞ is achievable by the future experiments probing a large sky area with angular resolution and sensitivity appropriate to detect the lensing effect on the CMB angular power spectrum; the forecast precision reaches a few percent for highly dynamic models whose dark energy abundance at the epoch when lensing is most effective is sensibly larger than the present one, i.e. for w∞≳-0.5. These results show that the CMB can probe the differential redshift behavior of the dark energy equation of state, beyond its average.

  19. Reciprocal light-dark transcriptional control of nif and rbc expression and light-dependent posttranslational control of nitrogenase activity in Synechococcus sp. strain RF-1.

    PubMed

    Chow, T J; Tabita, F R

    1994-10-01

    Synechococcus sp. strain RF-1 exhibits a circadian rhythm of N2 fixation when cells are grown under a light-dark cycle, with nitrogenase activity observed only during the dark period. This dark-dependent activity correlated with nif gene transcription in strain RF-1. By using antibodies against dinitrogenase reductase (the Fe protein of the nitrogenase complex), it was found that there was a distinct shift in the mobility of this protein on sodium dodecyl sulfate gels during the light-dark cycle. The Fe protein was present only when cells were incubated in the dark. Upon illumination, there was a conversion of all Fe protein to a modified form, after which it rapidly disappeared from extracts. These studies indicated that all nitrogenase activity present during the dark cycle resulted from de novo synthesis of nitrogenase. Upon entering the light phase, cells appeared to quickly degrade the modified form of Fe protein, perhaps as a result of activating or inducing a protease. By contrast, transcription of the rbcL gene, which encodes the catalytic subunit of the key enzyme of CO2 fixation (a light-dependent process), was enhanced in the light.

  20. Photobody Localization of Phytochrome B Is Tightly Correlated with Prolonged and Light-Dependent Inhibition of Hypocotyl Elongation in the Dark.

    PubMed

    Van Buskirk, Elise K; Reddy, Amit K; Nagatani, Akira; Chen, Meng

    2014-06-01

    Photobody localization of Arabidopsis (Arabidopsis thaliana) phytochrome B (phyB) fused to green fluorescent protein (PBG) correlates closely with the photoinhibition of hypocotyl elongation. However, the amino-terminal half of phyB fused to green fluorescent protein (NGB) is hypersensitive to light despite its inability to localize to photobodies. Therefore, the significance of photobodies in regulating hypocotyl growth remains debatable. Accumulating evidence indicates that under diurnal conditions, photoactivated phyB persists into darkness to inhibit hypocotyl elongation. Here, we examine whether photobodies are involved in inhibiting hypocotyl growth in darkness by comparing the PBG and NGB lines after the red light-to-dark transition. Surprisingly, after the transition from 10 μmol m(-2) s(-1) red light to darkness, PBG inhibits hypocotyl elongation three times longer than NGB. The disassembly of photobodies in PBG hypocotyl nuclei correlates tightly with the accumulation of the growth-promoting transcription factor PHYTOCHROME-INTERACTING FACTOR3 (PIF3). Destabilizing photobodies by either decreasing the light intensity or adding monochromatic far-red light treatment before the light-to-dark transition leads to faster PIF3 accumulation and a dramatic reduction in the capacity for hypocotyl growth inhibition in PBG. In contrast, NGB is defective in PIF3 degradation, and its hypocotyl growth in the dark is nearly unresponsive to changes in light conditions. Together, our results support the model that photobodies are required for the prolonged, light-dependent inhibition of hypocotyl elongation in the dark by repressing PIF3 accumulation and by stabilizing the far-red light-absorbing form of phyB. Our study suggests that photobody localization patterns of phyB could serve as instructive cues that control light-dependent photomorphogenetic responses in the dark.

  1. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  2. The Nuclear Epoch of Laser Interactions

    SciTech Connect

    Borisov, Alex B.; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Zhao, Ji; Boguta, John; Longworth, James W.; Racz, Ervin; Rhodes, Charles K.

    2009-12-03

    The history of power compression is a series of developmental epochs that are (1) characteristically marked by a technological breakthrough and (2) generally separated by a factor of approx10{sup 10} in power density. Based on new advances in high-power coherent x-ray technology, the transition to a new nuclear epoch of laser interactions is presently commencing. Chief outcomes foreseen are (1) the generation of power densities in the 10{sup 28}-10{sup 30} W/cm{sup 3} realm, (2) the controlled induction of nuclear interactions, and (3) the production of new states and forms of nuclear matter.

  3. Spin-dependent limits from the DRIFT-IId directional dark matter detector

    NASA Astrophysics Data System (ADS)

    Daw, E.; Fox, J. R.; Gauvreau, J.-L.; Ghag, C.; Harmon, L. J.; Gold, M.; Lee, E. R.; Loomba, D.; Miller, E. H.; Murphy, A. Stj.; Paling, S. M.; Landers, J. M.; Pipe, M.; Pushkin, K.; Robinson, M.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Walker, D.

    2012-02-01

    Data are presented from the DRIFT-IId detector operated in the Boulby Underground Science Facility in England. A 0.8 m3 fiducial volume, containing partial pressures of 30 Torr CS2 and 10 Torr CF4, was exposed for a duration of 47.4 live-time days with sufficient passive shielding to provide a neutron free environment within the detector. The nuclear recoil events seen are consistent with a remaining low-level background from the decay of radon daughters attached to the central cathode of the detector. However, charge from such events must drift across the entire width of the detector, and thus display large diffusion upon reaching the readout planes of the device. Exploiting this feature, it is shown to be possible to reject energy depositions from these Radon Progeny Recoil events while still retaining sensitivity to fiducial-volume nuclear recoil events. The response of the detector is then interpreted, using the F nuclei content of the gas, in terms of sensitivity to proton spin-dependent WIMP-nucleon interactions, displaying a minimum in sensitivity cross section at 1.8 pb for a WIMP mass of 100 GeV/c2. This sensitivity was achieved without compromising the direction sensitivity of DRIFT.

  4. The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA)

    NASA Astrophysics Data System (ADS)

    Moustakas, Leonidas A.; Bolton, Adam J.; Booth, Jeffrey T.; Bullock, James S.; Cheng, Edward; Coe, Dan; Fassnacht, Christopher D.; Gorjian, Varoujan; Heneghan, Cate; Keeton, Charles R.; Kochanek, Christopher S.; Lawrence, Charles R.; Marshall, Philip J.; Metcalf, R. Benton; Natarajan, Priyamvada; Nikzad, Shouleh; Peterson, Bradley M.; Wambsganss, Joachim

    2008-07-01

    Dark matter in a universe dominated by a cosmological constant seeds the formation of structure and is the scaffolding for galaxy formation. The nature of dark matter remains one of the fundamental unsolved problems in astrophysics and physics even though it represents 85% of the mass in the universe, and nearly one quarter of its total mass-energy budget. The mass function of dark matter "substructure" on sub-galactic scales may be enormously sensitive to the mass and properties of the dark matter particle. On astrophysical scales, especially at cosmological distances, dark matter substructure may only be detected through its gravitational influence on light from distant varying sources. Specifically, these are largely active galactic nuclei (AGN), which are accreting super-massive black holes in the centers of galaxies, some of the most extreme objects ever found. With enough measurements of the flux from AGN at different wavelengths, and their variability over time, the detailed structure around AGN, and even the mass of the super-massive black hole can be measured. The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA) is a mission concept for a 1.5-m near-UV through near-IR space observatory that will be dedicated to frequent imaging and spectroscopic monitoring of ~100 multiply-imaged active galactic nuclei over the whole sky. Using wavelength-tailored dichroics with extremely high transmittance, efficient imaging in six channels will be done simultaneously during each visit to each target. The separate spectroscopic mode, engaged through a flip-in mirror, uses an image slicer spectrograph. After a period of many visits to all targets, the resulting multidimensional movies can then be analyzed to a) measure the mass function of dark matter substructure; b) measure precise masses of the accreting black holes as well as the structure of their accretion disks and their environments over several decades of physical scale; and c) measure a

  5. Biosynthesis of (bacterio)chlorophylls: ATP-dependent transient subunit interaction and electron transfer of dark operative protochlorophyllide oxidoreductase.

    PubMed

    Bröcker, Markus J; Wätzlich, Denise; Saggu, Miguel; Lendzian, Friedhelm; Moser, Jürgen; Jahn, Dieter

    2010-03-12

    Dark operative protochlorophyllide oxidoreductase (DPOR) catalyzes the light-independent two-electron reduction of protochlorophyllide a to form chlorophyllide a, the last common precursor of chlorophyll a and bacteriochlorophyll a biosynthesis. During ATP-dependent DPOR catalysis the homodimeric ChlL(2) subunit carrying a [4Fe-4S] cluster transfers electrons to the corresponding heterotetrameric catalytic subunit (ChlN/ChlB)(2), which also possesses a redox active [4Fe-4S] cluster. To investigate the transient interaction of both subcomplexes and the resulting electron transfer reactions, the ternary DPOR enzyme holocomplex comprising subunits ChlN, ChlB, and ChlL from the cyanobacterium Prochlorococcus marinus was trapped as an octameric (ChlN/ChlB)(2)(ChlL(2))(2) complex after incubation with the nonhydrolyzable ATP analogs adenosine 5'-(gamma-thio)triphosphate, adenosine 5'-(beta,gamma-imido)triphosphate, or MgADP in combination with AlF(4)(-). Additionally, a mutant ChlL(2) protein, with a deleted Leu(153) in the switch II region also allowed for the formation of a stable octameric complex. Furthermore, efficient complex formation required the presence of protochlorophyllide. Electron paramagnetic resonance spectroscopy of ternary DPOR complexes revealed a reduced [4Fe-4S] cluster located on ChlL(2), indicating that complete ATP hydrolysis is a prerequisite for intersubunit electron transfer. Circular dichroism spectroscopic experiments indicated nucleotide-dependent conformational changes for ChlL(2) after ATP binding. A nucleotide-dependent switch mechanism triggering ternary complex formation and electron transfer was concluded. From these results a detailed redox cycle for DPOR catalysis was deduced.

  6. Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA

    SciTech Connect

    Scopel, Stefano; Yoon, Kook-Hyun E-mail: koreasds@naver.com

    2016-02-01

    We discuss a scenario where the DAMA modulation effect is explained by a Weakly Interacting Massive Particle (WIMP) which upscatters inelastically to a heavier state and predominantly couples to the spin of protons. In this scenario constraints from xenon and germanium targets are evaded dynamically, due to the suppression of the WIMP coupling to neutrons, while those from fluorine targets are evaded kinematically, because the minimal WIMP incoming speed required to trigger upscatters off fluorine exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. In this scenario WIMP scatterings off sodium are usually sensitive to the large-speed tail of the WIMP velocity distribution and modulated fractions of the signal close to unity arise in a natural way. On the other hand, a halo-independent analysis with more conservative assumptions about the WIMP velocity distribution allows to extend the viable parameter space to configurations where large modulated fractions are not strictly necessary. We discuss large modulated fractions in the Maxwellian case showing that they imply a departure from the usual cosine time dependence of the expected signal in DAMA. However we explicitly show that the DAMA data is not sensitive to this distortion, both in time and frequency space, even in the extreme case of a 100 % modulated fraction. Moreover the same scenario provides an explanation of the maximum in the energy spectrum of the modulation amplitude detected by DAMA in terms of WIMPs whose minimal incoming speed matches the kinematic threshold for inelastic upscatters. For the elastic case the detection of such maximum suggests an inversion of the modulation phase below the present DAMA energy threshold, while this is not expected for inelastic scattering. This may allow to discriminate between the two scenarios in a future low-threshold analysis of the DAMA data.

  7. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  8. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  9. Spin-dependent constraints on blind spots for thermal singlino-higgsino dark matter with(out) light singlets

    NASA Astrophysics Data System (ADS)

    Badziak, Marcin; Olechowski, Marek; Szczerbiak, Paweł

    2017-07-01

    The LUX experiment has recently set very strong constraints on spin-independent interactions of WIMP with nuclei. These null results can be accommodated in NMSSM provided that the effective spin-independent coupling of the LSP to nucleons is suppressed. We investigate thermal relic abundance of singlino-higgsino LSP in these so-called spin-independent blind spots and derive current constraints and prospects for direct detection of spin-dependent interactions of the LSP with nuclei providing strong constraints on parameter space. We show that if the Higgs boson is the only light scalar the new LUX constraints set a lower bound on the LSP mass of about 300 GeV except for a small range around the half of Z 0 boson masses where resonant annihilation via Z 0 exchange dominates. XENON1T will probe entire range of LSP masses except for a tiny Z 0-resonant region that may be tested by the LZ experiment. These conclusions apply to general singlet-doublet dark matter annihilating dominantly to t\\overline{t} . Presence of light singlet (pseudo)scalars generically relaxes the constraints because new LSP (resonant and non-resonant) annihilation channels become important. Even away from resonant regions, the lower limit on the LSP mass from LUX is relaxed to about 250 GeV while XENON1T may not be sensitive to the LSP masses above about 400 GeV.

  10. Light-dependent, Dark-promoted Interaction between Arabidopsis Cryptochrome 1 and Phytochrome B Proteins*♦

    PubMed Central

    Hughes, Robert M.; Vrana, Justin D.; Song, Junqi; Tucker, Chandra L.

    2012-01-01

    Plant photoreceptors transduce environmental light cues to downstream signaling pathways, regulating a wide array of processes during growth and development. Two major plant photoreceptors with critical roles in photomorphogenesis are phytochrome B (phyB), a red/far-red absorbing photoreceptor, and cryptochrome 1 (CRY1), a UV-A/blue photoreceptor. Despite substantial genetic evidence for cross-talk between phyB and CRY1 pathways, a direct interaction between these proteins has not been observed. Here, we report that Arabidopsis phyB interacts directly with CRY1 in a light-dependent interaction. Surprisingly, the interaction is light-dissociated; CRY1 interacts specifically with the dark/far-red (Pr) state of phyB, but not with the red light-activated (Pfr) or the chromophore unconjugated form of the enzyme. The interaction is also regulated by light activation of CRY1; phyB Pr interacts only with the unstimulated form of CRY1 but not with the photostimulated protein. Further studies reveal that a small domain extending from the photolyase homology region (PHR) of CRY1 regulates the specificity of the interaction with different conformational states of phyB. We hypothesize that in plants, the phyB/CRY1 interaction may mediate cross-talk between the red/far-red- and blue/UV-sensing pathways, enabling fine-tuning of light responses to different spectral inputs. PMID:22577138

  11. Impeded Dark Matter

    SciTech Connect

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy; Wang, Xiao-Ping; Xue, Wei

    2016-12-12

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  12. Impeded Dark Matter

    DOE PAGES

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy; ...

    2016-12-12

    Here, we consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario \\Impeded Dark Matter". We also demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may evenmore » be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. Furthermore, for positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.« less

  13. Impeded Dark Matter

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-12-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario "Impeded Dark Matter". We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  14. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Lian Lim, Pey

    2010-09-01

    INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.In Cycle 18, this monitoring program has been reduced {compared to 11881} considering that there is also an external CTE monitoring program. High Resolution Camera {HRC} is not available for observations. First Pixel Response {FPR} exposures are removed because they only provide serial CTE for WFC, which is not that useful. Pseudo-bias exposures are removed because they are not used. Signal levels 300, 700, 1000, 30000, and 45000.electrons are removed to reduce total orbits. Number of exposures per setting are reduced to 1 only. Amps BC are removed since amp dependence is not an issue for EPER.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains 9 dark frames for each of the following exposure times: 33 s, 100 s, and 339 s. These short darks and the 1000 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness.This is a continuation of Program 12327 and is to be executed once a cycle.

  15. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation.

    PubMed

    Miyashita, Yo; Good, Allen G

    2008-01-01

    Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.

  16. Frozen-Flux Modelling for Epochs 1915 and 1980

    NASA Technical Reports Server (NTRS)

    OBrien, Michael S.; Constable, Catherine G.; Parker, Robert L.

    1997-01-01

    The frozen-flux hypothesis for the Earth's liquid core assumes that convective terms dominate diffusive terms in the induction equation governing the behaviour of the magnetic field at the surface of the core. While highly plausible on the basis of estimates of physical parameters, the hypothesis has been questioned. To study this hypothesis, we improve the method which tests the consistency of magnetic observations with the hypothesis by constructing simple, flux-conserving core-field models fitting the data at pairs of epochs. We introduce a new approach that fixes the patch configurations at each of the two epochs before inversion, so that each configuration is consistent with its respective data set but possesses the same patch topology. We expand upon the inversion algorithm, using quadratic programming to maintain the proper flux sign within patches; the modelling calculations are also extended to include data types that depend non-linearly on the model. Every test of a hypothesis depends on the characterization of the observational uncertainties; we undertake a thorough review of this question. For main-field models, the primary source of uncertainty comes from the crustal field. We base our analysis on statistical models of the crustal magnetization, adjusted to bring it into better conformity with our data set. The noise model permits us to take into account the correlations between the measurements and requires that a different weighting be given to horizontal and vertical components. It also indicates that the observations should be fit more closely than has been the practice heretofore. We apply the revised method to Magsat data from 1980 and survey and observatory data from 1915.5, two data sets believed to be particularly difficult to reconcile with the frozen-flux hypothesis. We compute a pair of simple, flux-conserving models that fit the averaged data from each epoch. We therefore conclude that present knowledge of the geomagnetic fields of 1980

  17. Dark and bright solitons for a three-dimensional Gross-Pitaevskii equation with distributed time-dependent coefficients in the Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Zhen, Hui-Ling; Wu, Xiao-Yu; Shan, Wen-Rui

    2017-02-01

    Under investigation in this paper is a three-dimensional Gross-Pitaevskii equation with the distributed time-dependent coefficients, which describes the phenomena associated with the three-dimensional Bose-Einstein condensation. Under the constraint α(t) = 2 β(t) , we obtain the bilinear forms, dark and bright N-soliton solutions via the Hirota method and symbolic computation, where t is the scaled time, α(t) and β(t) are the coefficients for the strength of the quadratic potential and diffraction, respectively. Specially, compared with the bright soliton solutions previously reported, we eliminate one constraint and obtain more soliton parameters. We give the existence constraints of the dark and bright N solitons, respectively. Choosing the diffraction and gain/loss coefficients, we observe the growth, decay, periodic oscillation, periodic collapse and revival of the dark and bright solitons. Relationships between the BEC time-dependent coefficients and soliton properties are studied. With the help of the asymptotic and graphic analysis, elastic interactions of the dark and bright two solitons are exhibited.

  18. Observing the epoch of galaxy formation

    PubMed Central

    Steidel, Charles C.

    1999-01-01

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years. PMID:10200244

  19. Foreword: Dark energy and CMB

    NASA Astrophysics Data System (ADS)

    Dodelson, Scott; Huterer, Dragan

    2015-03-01

    Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy.

  20. Formation of the spherical voids in the models of the universe with dark energy

    NASA Astrophysics Data System (ADS)

    Tsizh, M.; Novosyadlyj, B.

    2016-06-01

    We analyze evolution of cosmological perturbations which lead to the formation of large voids in the distribution of galaxies. We suppose that perturbations are spherical and main energetic components – radiation, matter and dark energy – are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations in the comoving to cosmological background reference frame for every component are obtained from equations of conservation and Einstein's ones and are integrated by modified Euler method with setting the initial conditions at the early stage of evolution in radiation-dominated epoch, when the scale of perturbation is mush larger than particle horizon. Obtained results illustrate dynamics of dark energy in the void region and its dependence on parameter of effective speed of sound of dark energy.

  1. On the importance of direct detection combined limits for spin independent and spin dependent dark matter interactions

    NASA Astrophysics Data System (ADS)

    Marcos, Cristina; Peiró, Miguel; Robles, Sandra

    2016-03-01

    In this work we show how the inclusion of dark matter (DM) direct detection upper bounds in a theoretically consistent manner can affect the allowed parameter space of a DM model. Traditionally, the limits from DM direct detection experiments on the elastic scattering cross section of DM particles as a function of their mass are extracted under simplifying assumptions. Relaxing the assumptions related to the DM particle nature, such as the neutron to proton ratio of the interactions, or the possibility of having similar contributions from the spin independent (SI) and spin dependent (SD) interactions can vary significantly the upper limits. Furthermore, it is known that astrophysical and nuclear uncertainties can also affect the upper bounds. To exemplify the impact of properly including all these factors, we have analysed two well motivated and popular DM scenarios: neutralinos in the NMSSM and a Z' portal with Dirac DM. We have found that the allowed parameter space of these models is subject to important variations when one includes both the SI and SD interactions at the same time, realistic neutron to proton ratios, as well as using different self-consistent speed distributions corresponding to popular DM halo density profiles, and distinct SD structure functions. Finally, we provide all the necessary information to include the upper bounds of SuperCDMS and LUX taking into account all these subtleties in the investigation of any particle physics model. The data for each experiment and example codes are available at this site http://goo.gl/1CDFYi, and their use is detailed in the appendices of this work.

  2. In search of the dark matter dark energy interaction: a kinematic approach

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ankan; Banerjee, Narayan

    2017-02-01

    The present work deals with a kinematic approach to modelling the late time dynamics of the universe. This approach is based upon the assumption of constant value of cosmological jerk parameter, which is the dimensionless representation of the third order time derivative of the scale factor. For the Λ CDM model, the value of jerk parameter is  ‑1 throughout the evolution history. Now any model dependent estimation of the value of the jerk parameter would indicate the deviation of the model from the cosmological constant. In the present work, it has also been shown that for a constant jerk parameter model, any deviation of its value from  ‑1 would not allow the dark matter to have an independent conservation, thus indicating an interaction between dark matter and dark energy. Statistical analysis with different observational data sets (namely the observational Hubble parameter data (OHD), the type Ia supernova data (SNe), and the baryon acoustic oscillation data (BAO)) lead to well constrained values of the jerk parameter and the model remains at a very close proximity of the Λ CDM. The possibility of interaction is found to be more likely at high redshift rather than at the present epoch.

  3. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2012-10-23

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  4. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A; Miller, Douglas R

    2014-03-18

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  5. Administering an epoch initiated for remote memory access

    DOEpatents

    Blocksome, Michael A.; Miller, Douglas R.

    2013-01-01

    Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.

  6. Role of defects and their complexes on the dependence of photoconductivity on dark resistivity of single ZnO microwires

    NASA Astrophysics Data System (ADS)

    Villafuerte, M.; Zamora, D. J.; Bridoux, G.; Ferreyra, J. M.; Meyer, M.; Heluani, S. P.

    2017-02-01

    We have studied the correlation between the photoconductivity and the dark resistivity of single ZnO microwires. We found that as-grown microwires with higher dark resistivities have higher photoconductivities. However, when the microwires are thermal treated in vacuum, this correlation is inverted. We have also analyzed the behavior of photoconductivity on protonated as-grown samples. We discuss the origin of these behaviors in terms of the interplay of oxygen and zinc vacancies and their complexes acting as recombination or trapping centers.

  7. Hydrogen Epoch of Reionization Array (HERA)

    NASA Astrophysics Data System (ADS)

    DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Beardsley, Adam P.; Bernardi, Gianni; Bowman, Judd D.; Bradley, Richard F.; Carilli, Chris L.; Cheng, Carina; de Lera Acedo, Eloy; Dillon, Joshua S.; Ewall-Wice, Aaron; Fadana, Gcobisa; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steve R.; Glendenning, Brian; Greig, Bradley; Grobbelaar, Jasper; Hazelton, Bryna J.; Hewitt, Jacqueline N.; Hickish, Jack; Jacobs, Daniel C.; Julius, Austin; Kariseb, MacCalvin; Kohn, Saul A.; Lekalake, Telalo; Liu, Adrian; Loots, Anita; MacMahon, David; Malan, Lourence; Malgas, Cresshim; Maree, Matthys; Martinot, Zachary; Mathison, Nathan; Matsetela, Eunice; Mesinger, Andrei; Morales, Miguel F.; Neben, Abraham R.; Patra, Nipanjana; Pieterse, Samantha; Pober, Jonathan C.; Razavi-Ghods, Nima; Ringuette, Jon; Robnett, James; Rosie, Kathryn; Sell, Raddwine; Smith, Craig; Syce, Angelo; Tegmark, Max; Thyagarajan, Nithyanandan; Williams, Peter K. G.; Zheng, Haoxuan

    2017-04-01

    The Hydrogen Epoch of Reionization Array (HERA) is a staged experiment to measure 21 cm emission from the primordial intergalactic medium (IGM) throughout cosmic reionization (z = 6-12), and to explore earlier epochs of our Cosmic Dawn (z ˜ 30). During these epochs, early stars and black holes heated and ionized the IGM, introducing fluctuations in 21 cm emission. HERA is designed to characterize the evolution of the 21 cm power spectrum to constrain the timing and morphology of reionization, the properties of the first galaxies, the evolution of large-scale structure, and the early sources of heating. The full HERA instrument will be a 350-element interferometer in South Africa consisting of 14 m parabolic dishes observing from 50 to 250 MHz. Currently, 19 dishes have been deployed on site and the next 18 are under construction. HERA has been designated as an SKA Precursor instrument. In this paper, we summarize HERA’s scientific context and provide forecasts for its key science results. After reviewing the current state of the art in foreground mitigation, we use the delay-spectrum technique to motivate high-level performance requirements for the HERA instrument. Next, we present the HERA instrument design, along with the subsystem specifications that ensure that HERA meets its performance requirements. Finally, we summarize the schedule and status of the project. We conclude by suggesting that, given the realities of foreground contamination, current-generation 21 cm instruments are approaching their sensitivity limits. HERA is designed to bring both the sensitivity and the precision to deliver its primary science on the basis of proven foreground filtering techniques, while developing new subtraction techniques to unlock new capabilities. The result will be a major step toward realizing the widely recognized scientific potential of 21 cm cosmology.

  8. Radiative Hydrodynamic Simulations of Reionization-Epoch Galaxies

    NASA Astrophysics Data System (ADS)

    Dave, Romeel

    2010-09-01

    We propose to use our newly-developed cosmological radiative hydrodynamical galaxy formation code to study the formation and evolution of galaxies at redshifts z>6 as seen with existing and upcoming HST/WFPC3 observations. We focus on the relationship between this galaxy population and the physics of reionizing the IGM. We will investigate four key questions:- Do models yield z>6 galaxies with physical & photometric properties as observed?- Can such early galaxies produce sufficient photons to reionize the universe by z~6?- What is topology and timeline of reionization, in relation to the galaxy population?- How do photoionization and superwind feedback interact to regulate early galaxies?Our code, MARCH, combines moment-based radiative transport with our advanced version of Gadget-2 to self-consistently evolve galaxies and intergalactic gas from the Dark Ages until the end of reionization. By extracting photometric properties and comparing to data using our Bayesian SED fitter SPOC, we can assess with formal statistics how well these simulations can reproduce observations of high-z galaxies. Building on preliminary model successes, we will investigate what such observations imply for how galaxies reionize the IGM, and what feedback processes must be active in order to reproduce the galaxy population and IGM evolution as observed. Our results will impact and support a wide range of HST programs designed to detect and characterize galaxies in the reionization epoch.

  9. Dark matter candidates

    SciTech Connect

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of. Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs.

  10. Geomagnetic polarity epochs: Nunivak Island, Alaska

    USGS Publications Warehouse

    Cox, A.; Dalrymple, G.B.

    1967-01-01

    New paleomagnetic and potassium-argon dating measurements have been made of basalt flows from Nunivak Island, Alaska, with the following results. (1) The best estimate of the age of the Brunhes/Matuyama polarity epoch boundary is found to be 0.694 m.y. (2) The best estimate of the age of the Gauss/Gilbert boundary is 3.32 m.y. (3) Three normally magnetized flows with ages from 0.93 to 0.88 m.y. are in accord with previous estimates of the age and duration of the Jaramillo normal event. (4) One normally magnetized flow with an age of 1.65 ?? 0.09 m.y. supplies additional evidence for the Gilsa?? normal event. (5) Two new normal events are identified within the Gilbert reversed epoch, the "Cochiti normal event" with an age of 3.7 m.y. and the "Nunivak normal event" with an age of 4.1 m.y. ?? 1967.

  11. Dark solitons for a (2+1)-dimensional coupled nonlinear Schrödinger system with time-dependent coefficients in an optical fiber

    NASA Astrophysics Data System (ADS)

    Su, Jing-Jing; Gao, Yi-Tian

    2017-04-01

    In this paper, under investigation is a (2 + 1)-dimensional coupled nonlinear Schrödinger system with time-dependent coefficients, which could describe the attosecond pulses in an optical fiber. Bilinear forms and dark soliton solutions are derived via the Hirota method. Effects of the perturbation function α(t) on the dynamics of the solitons, i.e., intensities, velocities and accelerations, are analyzed. With the choice of different perturbation functions, we obtain the linear, parabolic and quasi-periodical dark solitons. α(t) is also described as an energy input function to make the optical solitons continue to propagate with the initial velocity when a perturbation happens. To reduce the energy loss, the so-called ;optimal; energy input function is introduced to minimize the input energy, and we illustrate the elastic interaction between the two solitons graphically.

  12. Decaying Higgs Fields and Cosmological Dark Energy

    NASA Astrophysics Data System (ADS)

    Patla, B.; Nemiroff, R. J.

    2005-05-01

    The observed dark energy in the universe might give particles inertial mass. We investigate one realization of this idea, that the dark energy field might be a decayed scalar component of a scalar field in the early universe that creates inertial mass through spontaneous symmetry breaking, e.g. a Higgs field. To investigate this possibility, the cosmological Friedmann equation of energy balance is augmented in a standard way to incorporate a minimally coupled cosmological Higgs. For epochs where the expansion of the universe is driven by matter and radiation and not the scalar field, the observed hidden nature of the Higgs field can be codified into a single differential equation that we call the ``hidden higgs" condition. The resulting differential equation is solved for the time dependant scalar field and a simple and interesting solution is found analytically. Such a Higgs field decays from Planck scale energies rapidly and approximately exponentially from onset, leaving only the initially negligible constant term of the potential as a final cosmological constant. Such evolution replaces the hierarchy problem with the problem of explaining why such evolution is physically justified, leaving the coincidence problem still unresolved.

  13. Time dependant quantum efficiency and dark current measurements in an RF photocathode injector with a high quantum efficiency cathode

    SciTech Connect

    Fliller, R.P., III; Edwards, H.; Hartung, W.; /Michigan State U., NSCL

    2005-05-01

    Studies of photo-emission and field emission behavior in an RF gun have been carried out. Unexpected phenomena were observed. In situ changes in the cathode's quantum efficiency and dark current with time were seen during operation of the photo-injector. These changes were correlated with the magnetostatic field at the cathode. In addition, multipacting has been observed under certain conditions. Recent measurements indicate a correlation between multipacting and anomalous photo- and field emission behavior.

  14. Cosmological evolution with interaction between dark energy and dark matter

    NASA Astrophysics Data System (ADS)

    Bolotin, Yuri L.; Kostenko, Alexander; Lemets, Oleg A.; Yerokhin, Danylo A.

    2015-12-01

    In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe), with interacting dark energy and dark matter, have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model.

  15. Dipole of the Epoch of reionization 21-cm signal

    DOE PAGES

    Slosar, Anze

    2017-04-10

    The motion of the Solar System with respect to the cosmic rest frame modulates the monopole of the epoch of reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative of the monopole signal. We argue that although the signal is weaker by a factor of ~100, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Furthermore, an experimentmore » designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.« less

  16. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    SciTech Connect

    Fay, Stéphane

    2013-09-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.

  17. Mars - Epochal climate change and volatile history

    NASA Technical Reports Server (NTRS)

    Fanale, Fraser P.; Postawko, Susan E.; Pollack, James B.; Carr, Michael H.; Pepin, Robert O.

    1992-01-01

    The epochal climate change and volatile history of Mars are examined, with special attention given to evidence for and mechanisms of long-term climate change. Long-term climate change on Mars is indicated most directly by the presence, age, and distribution of the valley networks. They were almost certainly formed by running water, but it seems more likely that they were formed by groundwater sapping than by rainfall. It is argued to be physically plausible that a higher early intensity of surface insolation caused by a CO2 greenhouse effect could have overcompensated for an early weak sun and raised temperatures to the freezing point near the equator under favorable conditions of obliquity and eccentricity. This could account for the morphological changes.

  18. Orion: The Final Epoch (OrionTFE)

    NASA Astrophysics Data System (ADS)

    Megeath, Tom; Allen, Tom; Arce, Hector; Booker, Joseph; Calvet, Nuria; Flaherty, Kevin; Furlan, Elise; Fischer, Will; Gonzales, Beatriz; Gutermuth, Rob; Hartman, Lee; Henning, Thomas; Hora, Joe; Karnath, Nicole; Kim, Kyoung Hee; Kounkel, Marina; Mazur, Brian; Offner, Stella; Osorio, Mayra; Pillitteri, Ignazio; Pipher, Judy; Prchlik, Jakub; Rebull, Luisa; Terebey, Susan; Tobin, John; Stanke, Thomas; Stutz, Amelia; Watson, Dan; Wolk, Scott

    2016-08-01

    The Orion molecular clouds are an essential laboratory for studying low mass star formation over the broad range of environments in which they form. Starting with the Spitzer survey of Orion in 2004, more than a decade of observations with Spitzer, WISE, HST and Herschel, have accumulated an unparalleled characterization of the young stellar object population in Orion. We propose a final epoch of observations divided into two separate, complementary observations: A repeat of the entire Orion molecular cloud survey to 1.) identify ejected stars from clusters, 2.) measure the bulk proper motions of groups and clusters of stars, 3.) constrain the rate of luminous, accretion driven outbursts from both protostars and pre-main sequence stars with disks and 4.) use proper motions of IR Herbig-Haro knots as a fossil record of previous accretion events. A high cadence variability survey of the L1641 cloud extending the YSOVAR variability survey of the Orion Nebula Cluster across the Orion A cloud with the goals of 1.) constraining the star formation history of Orion A, 2.) studying the evolution of mid-IR variability from the protostellar to pre-main sequence phase, 3.) searching for periodicities in (nearly) edge-on protostars and disks due to orbiting clumps and structures from orbiting planets, and 4.) assessing whether inner disk processes - as traced by variability - are affected by their birth environment. This program completes an unparalleled, > 12 year multi-epoch, mid-IR study of the nearest large molecular cloud complex with both a wide spatial coverage and a uniformity that will not be exceeded in the forseeable future. It will place unique constraints on the highly dynamic processes that control low mass star formation, serve as a pathfinder to molecular cloud surveys of WFIRST, and provide well characterized targets needed to study mass accretion and planet formation around young low mass stars with SOFIA and JWST.

  19. Affordability Tradeoffs Under Uncertainty Using Epoch-Era Analysis

    DTIC Science & Technology

    2013-09-30

    33 Figure 26.   The Evaluated Attributes of Each Design in the Sojourner Epoch Figure 27. Note. See Figure 2 for units of measurement; negative...the Sojourner EpochFigure 28. ....................................................................................................... 34    All Six...stakeholders and analysts. The present study chooses only a few of the epochs created in Process 4: Mothership, Sea Support, and Sojourner . ^Åèìáëáíáçå

  20. Dark cosmic rays

    DOE PAGES

    Hu, Ping-Kai; Kusenko, Alexander; Takhistov, Volodymyr

    2017-02-22

    If dark matter particles have an electric charge, as in models of millicharged dark matter, such particles should be accelerated in the same astrophysical accelerators that produce ordinary cosmic rays, and their spectra should have a predictable rigidity dependence. Depending on the charge, the resulting “dark cosmic rays” can be detected as muon-like or neutrino-like events in Super-Kamiokande, IceCube, and other detectors. We present new limits and propose several new analyses, in particular, for the Super-Kamiokande experiment, which can probe a previously unexplored portion of the millicharged dark matter parameter space. Here, most of our results are fairly general andmore » apply to a broad class of dark matter models.« less

  1. How many dark energy parameters?

    SciTech Connect

    Linder, Eric V.; Huterer, Dragan

    2005-05-16

    For exploring the physics behind the accelerating universe a crucial question is how much we can learn about the dynamics through next generation cosmological experiments. For example, in defining the dark energy behavior through an effective equation of state, how many parameters can we realistically expect to tightly constrain? Through both general and specific examples (including new parametrizations and principal component analysis) we argue that the answer is 42 - no, wait, two. Cosmological parameter analyses involving a measure of the equation of state value at some epoch (e.g., w_0) and a measure of the change in equation of state (e.g., w') are therefore realistic in projecting dark energy parameter constraints. More elaborate parametrizations could have some uses (e.g., testing for bias or comparison with model features), but do not lead to accurately measured dark energy parameters.

  2. Constant darkness induces IL-6-dependent depression-like behavior through the NF-κB signaling pathway.

    PubMed

    Monje, Francisco J; Cabatic, Maureen; Divisch, Isabella; Kim, Eun-Jung; Herkner, Kurt R; Binder, Bernd R; Pollak, Daniela D

    2011-06-22

    Substantial experimental evidence indicates a major role for the circadian system in mood disorders. Additionally, proinflammatory cytokines have been proposed to be involved in the pathogenesis of depression. However, the molecular elements determining the functional interplay between these two systems in depression have not been described as yet. Here we investigate whether long-term light deprivation in the constant darkness (DD) paradigm affects depression-like behavior in mice and concomitantly modulates the levels of proinflammatory cytokines. We find that after 4 weeks of DD, mice display depression-like behavior, which is paralleled by reduced hippocampal cell proliferation. This chronobiologically induced depressive state is associated with elevated levels of plasma IL-6 (interleukin-6) and IL-6 and Il1-R1 (interleukin 1 receptor, type I) protein levels in the hippocampus and also alters hippocampal protein levels of the clock genes per2 and npas2. Using pharmacological blockers of the NF-κB pathway, we provide evidence that the effects of DD on depression-like behavior, on hippocampal cell proliferation, on altered expressional levels of brain and plasma IL-6, and on the modulation of clock gene expression are mediated through NF-κB signaling. Moreover, NF-κB activity is enhanced in hippocampal tissue of DD mice. Mice with a deletion of IL-6, one of the target genes of NF-κB, are resistant to DD-induced depression-like behavior, which suggests a pivotal role for this cytokine in the constant darkness mouse model of depression. We here first describe some of the molecular elements bridging chronobiological and inflammatory processes in the constant darkness mouse model of depression.

  3. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  4. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  5. Detection of a possible superluminous supernova in the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Abbott, Tim; Cooke, Jeff; Curtin, Chris; Katsiani, Antonios; Koekemoer, Anton; Tescari, Edoardo; Uddin, Syed; Wang, Lifan; Wyithe, Stuaet

    2017-04-01

    An interesting transient has been detected in one of our three Dark Energy Camera deep fields. Observations of these deep fields take advantage of the high red sensitivity of DECam on the Cerro Tololo Interamerican Observatory Blanco telescope. The survey includes the Y band with rest wavelength 1430{Å} at z = 6. Survey fields (the Prime field 0555-6130, the 16hr field 1600-75 and the SUDSS New Southern Field) are deeper in Y than other infrared surveys. They are circumpolar, allowing all night to be used efficiently, exploiting the moon tolerance of 1 micron observations to minimize conflict with the Dark Energy Survey. As an i-band dropout (meaning that the flux decrement shortward of Lyman alpha is in the i bandpass), the transient we report here is a supernova candidate with z 6, with a luminosity comparable to the brightest known current epoch superluminous supernova (i.e., 2 x 10^11 solar luminosities).

  6. Dark Matters

    ScienceCinema

    Joseph Silk

    2016-07-12

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  7. Japan: Three Epochs of Modern Education. Bulletin, 1959, No. 11

    ERIC Educational Resources Information Center

    Anderson, Ronald S.

    1959-01-01

    This study, one of the Office of Education series on education in other countries, is the third to be published as a result of on-the-spot reporting on Japanese education in its own setting. It covers primarily the initial modernization epoch, post-war democratization epoch, and the present period, with some information about the wartime period.…

  8. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    first of the four 8.2-m VLT Unit Telescopes. A first analysis of the new observations indicates that "evolved" galaxies were already present when the Universe was only 4 billion years old. This information is of great importance to our understanding of how the matter in the early Universe condensed and the first galaxies and stars came into being. While in the nearby Universe evolved galaxies are preferentially located in denser environments such as groups and clusters of galaxies, little is currently known about the distribution in space of such objects at early cosmic epochs. In order to be able to see such obscured and/or "evolved" galaxies in the early Universe, and to look for hitherto unknown galaxies beyond the limits of "deep-field" imaging in visible spectral bands, it is necessary to employ other observing techniques. The astronomers must search for such objects on large-field, very long-exposure sky images obtained in the near-infrared (NIR, wavelength 1-2 µm) region of the electromagnetic spectrum and at even longer wavelengths (> 10 µm) in the far-IR and in the sub-mm range. Such observations are beyond the capability of the infrared cameras installed on the world's 4-m class telescopes. However, the advent of the ISAAC instrument at the 8.2-m ANTU telescope has now opened new and exciting research opportunities in this direction for European astronomers. With ISAAC , it is possible to obtain "deep" NIR images in an unprecedentedly wide field of view, covering a sky area about 7 times larger than with the best instruments previously available on very large telescopes. Such observations also benefit greatly from the very good optical quality provided by the active optics control of the VLT, as well as the excellent Paranal site. The ISAAC/ANTU observations ESO PR Photo 06a/00 ESO PR Photo 06a/00 [Preview - JPEG: 400 x 427pix - 69k] [Normal - JPEG: 800 x 853 pix - 195k] [Full-Res - JPEG: 942 x 1004 pix - 635k] Caption : ESO PR Photo 06a/00 displays a 4

  9. Stellar core collapse. I - Infall epoch

    NASA Astrophysics Data System (ADS)

    van Riper, K. A.; Lattimer, J. M.

    1981-10-01

    Simulations of the collapse of the central iron core of a 15-solar-mass spherically symmetric star are reported. In this paper the infall epoch, between the onset of collapse and core bounce, is considered. The models use the recent equation of state of Lamb, Lattimer, Pethick, and Ravenhall and general-relativistic hydrodynamics. The electron capture rates on nuclei proceed rapidly for densities less than 10 to the 11th g/cu cm, but are suppressed at higher densities where the neutron number of the nucleus, N, exceeds 40 (Fuller, Fowler, and Newman). Neutrino transport is treated by a leakage scheme. The effects of changes in the neutrino trapping density and of qualitative changes in the electron capture reactions on the evolution are explored. Greater lepton loss during collapse leads to larger pressure deficits, more rapid collapse, and smaller inner homologous cores. The entropy change during the infall is small, the absolute value of delta s being less than 0.8. The mass of inner core is given, to about 20%, by the formula of Goldreich and Weber. Because the collapsing core is far from equilibrium, the effects of general relativity are small.

  10. Fingerprinting dark energy

    SciTech Connect

    Sapone, Domenico; Kunz, Martin

    2009-10-15

    Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar-field models) which is often generically called 'dark energy'. We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.

  11. Interacting dark energy: Dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Golchin, Hanif; Jamali, Sara; Ebrahimi, Esmaeil

    We investigate the impacts of interaction between dark matter (DM) and dark energy (DE) in the context of two DE models, holographic (HDE) and ghost dark energy (GDE). In fact, using the dynamical system analysis, we obtain the cosmological consequence of several interactions, considering all relevant component of universe, i.e. matter (dark and luminous), radiation and DE. Studying the phase space for all interactions in detail, we show the existence of unstable matter-dominated and stable DE-dominated phases. We also show that linear interactions suffer from the absence of standard radiation-dominated epoch. Interestingly, this failure resolved by adding the nonlinear interactions to the models. We find an upper bound for the value of the coupling constant of the interaction between DM and DE as b < 0.57in the case of holographic model, and b < 0.61 in the case of GDE model, to result in a cosmological viable matter-dominated epoch. More specifically, this bound is vital to satisfy instability and deceleration of matter-dominated epoch.

  12. XENON10/100 dark matter constraints in comparison with CoGeNT and DAMA: Examining the L{sub eff} dependence

    SciTech Connect

    Savage, Christopher; Gelmini, Graciela; Gondolo, Paolo; Freese, Katherine

    2011-03-01

    We consider the compatibility of DAMA/LIBRA, CoGeNT, XENON10 and XENON100 results for spin-independent (SI) dark matter weakly interacting massive particles, particularly at low masses ({approx}10 GeV), assuming a standard dark matter halo. The XENON bounds depend on the scintillation efficiency factor L{sub eff} for which there is considerable uncertainty. Thus we consider various extrapolations for L{sub eff} at low energy. With the L{sub eff} measurements we consider, XENON100 results are found to be insensitive to the low-energy extrapolation. We find the strongest bounds are from XENON10, rather than XENON100, due to the lower energy threshold. For reasonable choices of L{sub eff} and for the case of SI elastic scattering, XENON10 is incompatible with the DAMA/LIBRA 3{sigma} region and severely constrains the 7-12 GeV WIMP mass region of interest published by the CoGeNT Collaboration.

  13. A NEOWISE Survey of Quasars in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Fan, Xiaohui

    exposure catalogs are available as standard data product. We will use Tractor pipeline to carry out coadded forced photometry of NEOWISE images to generate joint photometric catalog of mid-IR (NEOWISE), near-IR (UHS and VHS) and optical (DECaLS,MzLS, DES, PS1) imaging. The new catalog will reach 0.6-0.8 mag deeper than the current ALLWISE catalog; This is the key to the success of our program. The catalog will be made publicly available to the community. Our program will establish the first large sample of quasars at the peak of reionization era. The sample will be used to measure the density of luminous quasars and their BH masses at z>=7, and place constraint on the existence of z>8 quasars. These measurements will test whether super-Eddington accretion or direct formation of intermediate-mass BHs are needed for early BH growth. Current quasar observations indicate that neutral fraction of the IGM increased from 10^-3 at z=7 quasar sample, definitively measure the IGM neutral fraction at z 7-8, and probe whether the reionization process resembles a phase transition of the IGM or follows a more gradual pattern in this crural cosmic epoch. This ADAP program is primarily based on new reduction and analysis of archival data from NASA's WISE mission. Studies of the formation of the earliest galaxies and BHs, the end of cosmic dark ages and the epoch of reionization is among the key science goals of NASA's Cosmic Origin Program and one of the highest priorities of the NASA Astrophysics Roadmap and ASTRO20/20 decadal survey. The new quasars discovered in our survey will be prime targets for detailed JWST follow-up observations to study reionization history, and provide valuable insight into the design of high-redsift quasar and galaxy surveys using WFIRST.

  14. Investigation of the epoch state filter. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Edwards, J. A.

    1972-01-01

    A navigation filtering technique has been formulated using as state variables the initial or epoch position and velocity of the spacecraft. The estimate of this initial state is then improved by filtering new measurements. The current state may be obtained by a conic extrapolation of the epoch state. Results of a digital computer simulation of the epoch state filter show that this formulation of the navigational problem results in less computer run time and less computer storage space than conventional techniques. The errors produced by this technique have been demonstrated to be comparable to those obtained by conventional maximum-likelihood filtering.

  15. Dark strings

    SciTech Connect

    Vachaspati, Tanmay

    2009-09-15

    Recent astrophysical observations have motivated novel theoretical models of the dark matter sector. A class of such models predicts the existence of GeV scale cosmic strings that communicate with the standard model sector by Aharonov-Bohm interactions with electrically charged particles. We discuss the cosmology of these 'dark strings' and investigate possible observational signatures. More elaborate dark sector models are argued to contain hybrid topological defects that may also have observational signatures.

  16. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  17. Dark energy models in LRS Bianchi type-II space-time in the new perspective of time-dependent deceleration parameter

    NASA Astrophysics Data System (ADS)

    Maurya, Dinesh Chandra; Zia, Rashid; Pradhan, Anirudh

    Before 1998, it was usually expected that the universe was expanding with a constant rate or the expansion was slowing down. In 1998, the surprising discovery based on type Ia supernovae, that the rate of expansion of the universe is increasing, forced the researchers to reconsider the various cosmological models proposed so far. The current study is also an effort to revisit the LRS Bianchi type-II, dark energy (DE) model by taking time-dependent deceleration parameter (DP) instead of constant DP. We have assumed the variable scale factor a(t) = [sinh(αt)] 1 n, which gives the variable DP as q(t) = nsech2(αt) - 1, with these considerations, the solutions of field equations are calculated. Various parameters of DE models are also calculated, and it is found that these are consistent with the recent observations.

  18. Energy Dissipation of Energetic Electrons in the Inhomogeneous Intergalactic Medium during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Kaurov, Alexander A.

    2016-06-01

    We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes, we take into account the inverse Compton (IC) scattering of the electrons on the cosmic microwave background photons, which is the dominant channel of energy loss for electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between hydrogen and helium ionizations depends on the initial energy of an electron; (3) the local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of the atomic cross-section becomes important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.

  19. With or without light: comparing the reaction mechanism of dark-operative protochlorophyllide oxidoreductase with the energetic requirements of the light-dependent protochlorophyllide oxidoreductase

    PubMed Central

    2014-01-01

    The addition of two electrons and two protons to the C17=C18 bond in protochlorophyllide is catalyzed by a light-dependent enzyme relying on NADPH as electron donor, and by a light-independent enzyme bearing a (Cys)3Asp-ligated [4Fe–4S] cluster which is reduced by cytoplasmic electron donors in an ATP-dependent manner and then functions as electron donor to protochlorophyllide. The precise sequence of events occurring at the C17=C18 bond has not, however, been determined experimentally in the dark-operating enzyme. In this paper, we present the computational investigation of the reaction mechanism of this enzyme at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. The reaction mechanism begins with single-electron reduction of the substrate by the (Cys)3Asp-ligated [4Fe–4S], yielding a negatively-charged intermediate. Depending on the rate of Fe–S cluster re-reduction, the reaction either proceeds through double protonation of the single-electron-reduced substrate, or by alternating proton/electron transfer. The computed reaction barriers suggest that Fe–S cluster re-reduction should be the rate-limiting stage of the process. Poisson–Boltzmann computations on the full enzyme–substrate complex, followed by Monte Carlo simulations of redox and protonation titrations revealed a hitherto unsuspected pH-dependence of the reaction potential of the Fe–S cluster. Furthermore, the computed distributions of protonation states of the His, Asp and Glu residues were used in conjuntion with single-point ONIOM computations to obtain, for the first time, the influence of all protonation states of an enzyme on the reaction it catalyzes. Despite exaggerating the ease of reduction of the substrate, these computations confirmed the broad features of the reaction mechanism obtained with the medium-sized models, and afforded valuable insights on the influence of the titratable amino acids on each reaction step. Additional comparisons of the energetic features of the

  20. With or without light: comparing the reaction mechanism of dark-operative protochlorophyllide oxidoreductase with the energetic requirements of the light-dependent protochlorophyllide oxidoreductase.

    PubMed

    Silva, Pedro J

    2014-01-01

    The addition of two electrons and two protons to the C17=C18 bond in protochlorophyllide is catalyzed by a light-dependent enzyme relying on NADPH as electron donor, and by a light-independent enzyme bearing a (Cys)3Asp-ligated [4Fe-4S] cluster which is reduced by cytoplasmic electron donors in an ATP-dependent manner and then functions as electron donor to protochlorophyllide. The precise sequence of events occurring at the C17=C18 bond has not, however, been determined experimentally in the dark-operating enzyme. In this paper, we present the computational investigation of the reaction mechanism of this enzyme at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. The reaction mechanism begins with single-electron reduction of the substrate by the (Cys)3Asp-ligated [4Fe-4S], yielding a negatively-charged intermediate. Depending on the rate of Fe-S cluster re-reduction, the reaction either proceeds through double protonation of the single-electron-reduced substrate, or by alternating proton/electron transfer. The computed reaction barriers suggest that Fe-S cluster re-reduction should be the rate-limiting stage of the process. Poisson-Boltzmann computations on the full enzyme-substrate complex, followed by Monte Carlo simulations of redox and protonation titrations revealed a hitherto unsuspected pH-dependence of the reaction potential of the Fe-S cluster. Furthermore, the computed distributions of protonation states of the His, Asp and Glu residues were used in conjuntion with single-point ONIOM computations to obtain, for the first time, the influence of all protonation states of an enzyme on the reaction it catalyzes. Despite exaggerating the ease of reduction of the substrate, these computations confirmed the broad features of the reaction mechanism obtained with the medium-sized models, and afforded valuable insights on the influence of the titratable amino acids on each reaction step. Additional comparisons of the energetic features of the reaction

  1. The effect of epoch length on estimated EEG functional connectivity and brain network organisation

    NASA Astrophysics Data System (ADS)

    Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan

    2016-06-01

    Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 s versus 4-8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain

  2. Cosmological viability conditions for f(T) dark energy models

    SciTech Connect

    Setare, M.R.; Mohammadipour, N. E-mail: N.Mohammadipour@uok.ac.ir

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  3. Dark energy view of inflation

    SciTech Connect

    Ilic, Stephane; Kunz, Martin; Liddle, Andrew R.; Frieman, Joshua A.

    2010-05-15

    Traditionally, inflationary models are analyzed in terms of parameters such as the scalar spectral index n{sub s} and the tensor to scalar ratio r, while dark energy models are studied in terms of the equation of state parameter w. Motivated by the fact that both deal with periods of accelerated expansion, we study the evolution of w during inflation, in order to derive observational constraints on its value during an earlier epoch likely dominated by a dynamic form of dark energy. We find that the cosmic microwave background and large-scale structure data is consistent with w{sub inflation}=-1 and provides an upper limit of 1+w < or approx. 0.02. Nonetheless, an exact de Sitter expansion with a constant w=-1 is disfavored since this would result in n{sub s}=1.

  4. Estimating Noise in the Hydrogen Epoch of Reionization Array

    NASA Astrophysics Data System (ADS)

    Englund Mathieu, Philip; HERA Team

    2017-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope dedicated to observing large scale structure during and prior to the epoch of reionization. Once completed, HERA will have unprecedented sensitivity to the 21-cm signal from hydrogen reionization. This poster will present time- and frequency-subtraction methods and results from a preliminary analysis of the noise characteristics of the nineteen-element pathfinder array.

  5. EPIC Simulations of Time-Dependent, Three-Dimensional Vortices with Application to Neptune's Great Dark SPOT

    NASA Astrophysics Data System (ADS)

    LeBeau, R. P.; Dowling, T. E.

    1998-04-01

    We use the EPIC general circulation model, described in the companion paper by Dowlinget al.(1998.Icarus132, 221-238), to simulate large vortices under conditions similar to those found on Neptune. The vortices are anticyclones with roughly elliptical cross sections and exhibit motions that resemble the behavior of Neptune's Great Dark Spot (GDS), including equatorward drift, oscillations in aspect ratio and orientation angle, and tail formation. The vortices also exhibit three-dimensional motions that may explain the occasional appearance of the GDS as two overlapping ellipses. We find that the meridional drift of the vortices is correlated with the meridional gradient of the background absolute vorticity, β*. This result complements studies of hurricane drift. The correlation suggests that the drift rate of GDS-type vortices on Neptune, which can be monitored over the long term by the Hubble Space Telescope (HST), is diagnostic of the vorticity gradient on the planet. The best fit to the Voyager GDS drift rate in our simulations corresponds to β* ≈ 2 × 10-12m-1s-1. This is about{1}/{3}of the value given by the zonal-wind profile determined by fitting an even polynomial in latitude to the cloud-tracking data (Sromovskyet al.1993). Refitting the data with spherical harmonics (Legendre polynomials) yields a value for β* that is about{1}/{2}of the Sromovskyet al.value, and more in line with our vortex-drift results. We show that vortex shape oscillations occur both in the case β* = 0, corresponding to the analytical model of Kida (1981), and for β* > 0. Interpreting the shape oscillations is more complicated than interpreting meridional drift because shape oscillations are sensitive to the distribution of vorticity in the vortex as well as in the environment. Rossby-wave dispersion strongly affects the model vortices that drift too close to the equator. The vortices disrupt before reaching the equator, dispersing into waves that propagate in both the southern

  6. Dark matter and dark radiation

    SciTech Connect

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-15

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant {alpha}-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on {alpha}-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies {alpha}-circumflex < or approx. 10{sup -3} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  7. Can cosmic structure form without dark matter?

    PubMed

    Dodelson, Scott; Liguori, Michele

    2006-12-08

    One of the prime pieces of evidence for dark matter is the observation of large overdense regions in the Universe. To account for this observation, perturbations had to have grown since recombination by a factor greater than (1+z*) approximately 1180 where z* is the epoch of recombination. This enhanced growth does not happen in general relativity, and so dark matter is needed in the standard theory. We show here that enhanced growth can occur in alternatives to general relativity, in particular, in Bekenstein's relativistic version of modified Newtonian dynamics.

  8. Brightest Cluster Galaxies at the Present Epoch

    NASA Astrophysics Data System (ADS)

    Lauer, Tod R.; Postman, Marc; Strauss, Michael A.; Graves, Genevieve J.; Chisari, Nora E.

    2014-12-01

    We have obtained photometry and spectroscopy of 433 z <= 0.08 brightest cluster galaxies (BCGs) in a full-sky survey of Abell clusters to construct a BCG sample suitable for probing deviations from the local Hubble flow. The BCG Hubble diagram over 0 < z < 0.08 is consistent to within 2% of the Hubble relation specified by a Ω m = 0.3, Λ = 0.7 cosmology. This sample allows us to explore the structural and photometric properties of BCGs at the present epoch, their location in their hosting galaxy clusters, and the effects of the cluster environment on their structure and evolution. We revisit the Lm -α relation for BCGs, which uses α, the log-slope of the BCG photometric curve of growth, to predict the metric luminosity in an aperture with 14.3 kpc radius, Lm , for use as a distance indicator. Residuals in the relation are 0.27 mag rms. We measure central stellar velocity dispersions, σ, of the BCGs, finding the Faber-Jackson relation to flatten as the metric aperture grows to include an increasing fraction of the total BCG luminosity. A three-parameter "metric plane" relation using α and σ together gives the best prediction of Lm , with 0.21 mag residuals. The distribution of projected spatial offsets, rx of BCGs from the X-ray-defined cluster center is a steep γ = -2.33 power law over 1 < rx < 103 kpc. The median offset is ~10 kpc, but ~15% of the BCGs have rx > 100 kpc. The absolute cluster-dispersion normalized BCG peculiar velocity |ΔV 1|/σ c follows an exponential distribution with scale length 0.39 ± 0.03. Both Lm and α increase with σ c . The α parameter is further moderated by both the spatial and velocity offset from the cluster center, with larger α correlated with the proximity of the BCG to the cluster mean velocity or potential center. At the same time, position in the cluster has little effect on Lm . Likewise, residuals from the metric plane show no correlation with either the spatial or velocity offset from the cluster center. The

  9. BRIGHTEST CLUSTER GALAXIES AT THE PRESENT EPOCH

    SciTech Connect

    Lauer, Tod R.; Postman, Marc; Strauss, Michael A.; Graves, Genevieve J.; Chisari, Nora E.

    2014-12-20

    We have obtained photometry and spectroscopy of 433 z ≤ 0.08 brightest cluster galaxies (BCGs) in a full-sky survey of Abell clusters to construct a BCG sample suitable for probing deviations from the local Hubble flow. The BCG Hubble diagram over 0 < z < 0.08 is consistent to within 2% of the Hubble relation specified by a Ω {sub m} = 0.3, Λ = 0.7 cosmology. This sample allows us to explore the structural and photometric properties of BCGs at the present epoch, their location in their hosting galaxy clusters, and the effects of the cluster environment on their structure and evolution. We revisit the L{sub m} -α relation for BCGs, which uses α, the log-slope of the BCG photometric curve of growth, to predict the metric luminosity in an aperture with 14.3 kpc radius, L{sub m} , for use as a distance indicator. Residuals in the relation are 0.27 mag rms. We measure central stellar velocity dispersions, σ, of the BCGs, finding the Faber-Jackson relation to flatten as the metric aperture grows to include an increasing fraction of the total BCG luminosity. A three-parameter ''metric plane'' relation using α and σ together gives the best prediction of L{sub m} , with 0.21 mag residuals. The distribution of projected spatial offsets, r{sub x} of BCGs from the X-ray-defined cluster center is a steep γ = –2.33 power law over 1 < r{sub x} < 10{sup 3} kpc. The median offset is ∼10 kpc, but ∼15% of the BCGs have r{sub x} > 100 kpc. The absolute cluster-dispersion normalized BCG peculiar velocity |ΔV {sub 1}|/σ {sub c} follows an exponential distribution with scale length 0.39 ± 0.03. Both L{sub m} and α increase with σ {sub c}. The α parameter is further moderated by both the spatial and velocity offset from the cluster center, with larger α correlated with the proximity of the BCG to the cluster mean velocity or potential center. At the same time, position in the cluster has little effect on L{sub m} . Likewise, residuals from the metric plane

  10. Resonant Dark Matter

    SciTech Connect

    Bai, Yang; Fox, Patrick J.; /Fermilab

    2009-09-01

    It is usually assumed that dark matter direct detection is sensitive to a large fraction of the dark matter (DM) velocity distribution. We propose an alternative form of dark matter-nucleus scattering which only probes a narrow range of DM velocities due to the existence of a resonance, a DM-nucleus bound state, in the scattering - resonant dark matter (rDM). The scattering cross section becomes highly element dependent, has increased modulation and as a result can explain the DAMA/LIBRA results whilst not being in conflict with other direct detection experiments. We describe a simple model that realizes the dynamics of rDM, where the DM is the neutral component of a fermionic weak triplet whose charged partners differ in mass by approximately 10 MeV.

  11. Notes on an interacting holographic dark energy model in a closed universe

    SciTech Connect

    Mohseni Sadjadi, H; Vadood, N E-mail: mohsenisad@ut.ac.ir

    2008-08-15

    We consider an interacting holographic dark energy model in Friedmann-Robertson-Walker spacetime with positive spatial curvature and investigate the behavior of the geometric parameter and dark energy density in an accelerated expanding epoch. We also derive some conditions needed to cross the phantom dividing line in this model.

  12. On the Longevity of current epoch Compact Group-like Associations in a ΛCDM Cosmology

    NASA Astrophysics Data System (ADS)

    Tamayo, F. J.; Aceves, H.

    2017-10-01

    The survival time of initially compact associations of galaxy-size dark matter halos, obtained at the present epoch from a series of ΛCDM cosmological simulations, is studied by means of dynamical N-body simulations. The time evolution of such systems from the present epoch up to 5 Gyr into the future is followed. We find that out of 14 initial compact associations only 1 (≈ 10%) suffers a full merger, and the others still have at least two discernible members in such a time span, although they have suffered multiple mergers. Our results support the hypothesis that the majority of current compact galaxy groups will not suffer a complete merger within the next few gigayears, and that some of them (≈ 10%) may even evolve without a single merger. We conclude that no overmerging problem exists in compact groups.

  13. The effects of phencyclidine (PCP) on anxiety-like behavior in the elevated plus maze and the light-dark exploration test are age dependent, sexually dimorphic, and task dependent.

    PubMed

    Turgeon, Sarah M; Kim, Daniel; Pritchard, Melissa; Salgado, Sanjay; Thaler, Alison

    2011-11-01

    Previous research in our laboratory revealed sexually dimorphic effects of prior exposure to phencyclidine (PCP) on elevated plus maze behavior. In an attempt to examine the developmental time course of this effect and determine the extent to which it generalizes to other anxiety paradigms, young adult (61-64 days old) and adult (96-107 days old) male and female rats were treated with PCP (15 mg/kg) or saline. Following a two week withdrawal period, animals were tested in either the elevated plus maze (EPM) or a light-dark exploration (LD) test. In adults, both tests revealed a sexually dimorphic effect driven by PCP-induced decreases in anxiety in females as indicated by increased time spent in the open arms of the EPM and in the lit compartment of the LD test and increased anxiety in males as indicated by decreased time spent in the lit compartment of the LD. In young animals, PCP pretreatment decreased open arm exploration in the elevated plus maze, indicating increased anxiety. However, PCP increased time spent in the light compartment in the light-dark exploration test, indicating decreased anxiety. Corticosterone levels measured 15 min after the onset of the EPM failed to reveal an association between the behavioral effects of PCP and corticosterone levels. The results in adults substantiate the previously observed sexually dimorphic effect of PCP on elevated plus maze behavior in adults and indicate that the effect generalizes to another anxiety paradigm. The results in the younger animals suggest an age dependent effect of PCP on anxiety in general and indicate that behaviors in the elevated plus maze and the light-dark exploration test reflect dissociable psychobiological states. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Dark catalysis

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub

    2017-08-01

    Recently it was shown that dark matter with mass of order the weak scale can be charged under a new long-range force, decoupled from the Standard Model, with only weak constraints from early Universe cosmology. Here we consider the implications of an additional charged particle C that is light enough to lead to significant dissipative dynamics on galactic times scales. We highlight several novel features of this model, which can be relevant even when the C particle constitutes only a small fraction of the number density (and energy density). We assume a small asymmetric abundance of the C particle whose charge is compensated by a heavy X particle so that the relic abundance of dark matter consists mostly of symmetric X and bar X, with a small asymmetric component made up of X and C. As the universe cools, it undergoes asymmetric recombination binding the free Cs into (XC) dark atoms efficiently. Even with a tiny asymmetric component, the presence of C particles catalyzes tight coupling between the heavy dark matter X and the dark photon plasma that can lead to a significant suppression of the matter power spectrum on small scales and lead to some of the strongest bounds on such dark matter theories. We find a viable parameter space where structure formation constraints are satisfied and significant dissipative dynamics can occur in galactic haloes but show a large region is excluded. Our model shows that subdominant components in the dark sector can dramatically affect structure formation.

  15. COPPER RESPONSE REGULATOR1–Dependent and –Independent Responses of the Chlamydomonas reinhardtii Transcriptome to Dark Anoxia[W

    PubMed Central

    Hemschemeier, Anja; Casero, David; Liu, Bensheng; Benning, Christoph; Pellegrini, Matteo; Happe, Thomas; Merchant, Sabeeha S.

    2013-01-01

    Anaerobiosis is a stress condition for aerobic organisms and requires extensive acclimation responses. We used RNA-Seq for a whole-genome view of the acclimation of Chlamydomonas reinhardtii to anoxic conditions imposed simultaneously with transfer to the dark. Nearly 1.4 × 103 genes were affected by hypoxia. Comparing transcript profiles from early (hypoxic) with those from late (anoxic) time points indicated that cells activate oxidative energy generation pathways before employing fermentation. Probable substrates include amino acids and fatty acids (FAs). Lipid profiling of the C. reinhardtii cells revealed that they degraded FAs but also accumulated triacylglycerols (TAGs). In contrast with N-deprived cells, the TAGs in hypoxic cells were enriched in desaturated FAs, suggesting a distinct pathway for TAG accumulation. To distinguish transcriptional responses dependent on COPPER RESPONSE REGULATOR1 (CRR1), which is also involved in hypoxic gene regulation, we compared the transcriptomes of crr1 mutants and complemented strains. In crr1 mutants, ∼40 genes were aberrantly regulated, reaffirming the importance of CRR1 for the hypoxic response, but indicating also the contribution of additional signaling strategies to account for the remaining differentially regulated transcripts. Based on transcript patterns and previous results, we conclude that nitric oxide–dependent signaling cascades operate in anoxic C. reinhardtii cells. PMID:24014546

  16. On direct and indirect searches for dark matter

    NASA Astrophysics Data System (ADS)

    Belikov, Alexander

    In addition to gamma rays, dark matter annihilation products can include energetic electrons which inverse Compton scatter with the cosmic microwave background to produce a diffuse extragalactic background of gamma rays and X-rays. In this dissertation we present an estimate of the extragalactic background flux of gamma rays including inverse Compton photons for a number of annihilation channels and review its dependence on such factors as the halo density profile, the mass-concentration ratio and others and find that the uncertainty of the estimate can reach about two orders of magnitude. For models in which the dark matter particles annihilate primarily to electrons or muons, the measurements of Fermi Gamma Ray Telescope and COMPTEL can provide significant constraints on the annihilation cross section. We also study the effect of dark matter annihilation during the epoch of reionization. Although empirical evidence indicates that the universe's gas had become ionized by redshift z ≈ 6, the astrophysical models of sources of reionization remain poorly constrained. We explore the possibility that dark matter annihilations may have played a significant role in this process. Energetic electrons produced in these annihilations can scatter with the cosmic microwave background to generate relatively low energy gamma rays, which ionize and heat gas far more efficiently than higher energy prompt photons. On the side of indirect detection, recent observations by the CoGeNT collaboration (as well as long standing observations by DAMA/LIBRA) suggest the presence of a ˜ 5--10 GeV dark matter particle with a somewhat large elastic scattering cross section with nucleons (sigma ˜ 10 -40 cm2). Simple extensions of the MSSM, however, such as the extension of the MSSM by a chiral singlet superfield allow for the possibility that the dark matter is made up of a light singlino that interacts largely through the exchange of a fairly light (˜30--70 GeV) singlet-like scalar higgs

  17. The Photosynthetic Dark Reactions Do Not Operate in the Dark.

    ERIC Educational Resources Information Center

    Lonergan, Thomas A.

    2000-01-01

    Discusses the common misconception persistent in high school and college level introductory biology texts that "dark reactions" of the Calvin cycle actually occur in the dark. Explains that they are indirectly dependent on the presence of light for their activity. (ASK)

  18. The Photosynthetic Dark Reactions Do Not Operate in the Dark.

    ERIC Educational Resources Information Center

    Lonergan, Thomas A.

    2000-01-01

    Discusses the common misconception persistent in high school and college level introductory biology texts that "dark reactions" of the Calvin cycle actually occur in the dark. Explains that they are indirectly dependent on the presence of light for their activity. (ASK)

  19. A Lyman Break Galaxy in the Epoch of Reionization from Hubble Space Telescope (HST) Grism Spectroscopy

    NASA Technical Reports Server (NTRS)

    Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel K.; Gardner, Jonathan P.; Dickinson, Mark; Pirzkal, Norbert; Spinrad, Hyron; Reddy, Naveen; Dey, Arjun; Hathi, Nimish; hide

    2013-01-01

    Slitless grism spectroscopy from space offers dramatic advantages for studying high redshift galaxies: high spatial resolution to match the compact sizes of the targets, a dark and uniform sky background, and simultaneous observation over fields ranging from five square arcminutes (HST) to over 1000 square arcminutes (Euclid). Here we present observations of a galaxy at z = 6.57 the end of the reioinization epoch identified using slitless HST grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically) and reconfirmed with Keck + DEIMOS. This high redshift identification is enabled by the depth of the PEARS survey. Substantially higher redshifts are precluded for PEARS data by the declining sensitivity of the ACS grism at greater than lambda 0.95 micrometers. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms.

  20. Dark coupling

    SciTech Connect

    Gavela, M.B.; Hernández, D.; Honorez, L. Lopez; Mena, O.; Rigolin, S. E-mail: d.hernandez@uam.es E-mail: omena@ific.uv.es

    2009-07-01

    The two dark sectors of the universe—dark matter and dark energy—may interact with each other. Background and linear density perturbation evolution equations are developed for a generic coupling. We then establish the general conditions necessary to obtain models free from non-adiabatic instabilities. As an application, we consider a viable universe in which the interaction strength is proportional to the dark energy density. The scenario does not exhibit ''phantom crossing'' and is free from instabilities, including early ones. A sizeable interaction strength is compatible with combined WMAP, HST, SN, LSS and H(z) data. Neutrino mass and/or cosmic curvature are allowed to be larger than in non-interacting models. Our analysis sheds light as well on unstable scenarios previously proposed.

  1. Dark Matter

    ERIC Educational Resources Information Center

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  2. Dark Matter

    ERIC Educational Resources Information Center

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  3. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  4. Dark matter universe

    NASA Astrophysics Data System (ADS)

    Bahcall, Neta A.

    2015-10-01

    Most of the mass in the universe is in the form of dark matter-a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations-from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology-a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)-fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  5. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  6. A simple model linking galaxy and dark matter evolution

    SciTech Connect

    Birrer, Simon; Lilly, Simon; Amara, Adam; Paranjape, Aseem; Refregier, Alexandre E-mail: simon.lilly@phys.ethz.ch

    2014-09-20

    We construct a simple phenomenological model for the evolving galaxy population by incorporating predefined baryonic prescriptions into a dark matter hierarchical merger tree. The model is based on the simple gas-regulator model introduced by Lilly et al., coupled with the empirical quenching rules of Peng et al. The simplest model already does quite well in reproducing, without re-adjusting the input parameters, many observables, including the main sequence sSFR-mass relation, the faint end slope of the galaxy mass function, and the shape of the star forming and passive mass functions. Similar to observations and/or the recent phenomenological model of Behroozi et al., which was based on epoch-dependent abundance-matching, our model also qualitatively reproduces the evolution of the main sequence sSFR(z) and SFRD(z) star formation rate density relations, the M{sub s} – M{sub h} stellar-to-halo mass relation, and the SFR – M{sub h} relation. Quantitatively the evolution of sSFR(z) and SFRD(z) is not steep enough, the M{sub s} – M{sub h} relation is not quite peaked enough, and, surprisingly, the ratio of quenched to star forming galaxies around M* is not quite high enough. We show that these deficiencies can simultaneously be solved by ad hoc allowing galaxies to re-ingest some of the gas previously expelled in winds, provided that this is done in a mass-dependent and epoch-dependent way. These allow the model galaxies to reduce an inherent tendency to saturate their star formation efficiency, which emphasizes how efficient galaxies around M* are in converting baryons into stars and highlights the fact that quenching occurs at the point when galaxies are rapidly approaching the maximum possible efficiency of converting baryons into stars.

  7. Interacting dark energy: The role of microscopic feedback in the dark sector

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.

    2015-04-01

    We investigate the impact on the classical dynamics of dark matter particles and dark energy of a nonminimal coupling in the dark sector, assuming that the mass of the dark matter particles is coupled to a dark energy scalar field. We show that standard results can be recovered only if the space-time variation of the dark energy scalar field is sufficiently smooth on the characteristic length scale of the dark matter particles, and we determine the associated constraint dependent on both the mass and radius of the dark matter particles and the coupling to the dark energy scalar field. We further show, using field theory numerical simulations, that a violation of such constraint results in a microscopic feedback effect strongly affecting the dynamics of dark matter particles, with a potential impact on structure formation and on the space-time evolution of the dark energy equation of state.

  8. Effect of Light/Dark Cycle on Wheel Running and Responding Reinforced by the Opportunity to Run Depends on Postsession Feeding Time

    ERIC Educational Resources Information Center

    Belke, T. W.; Mondona, A. R.; Conrad, K. M.; Poirier, K. F.; Pickering, K. L.

    2008-01-01

    Do rats run and respond at a higher rate to run during the dark phase when they are typically more active? To answer this question, Long Evans rats were exposed to a response-initiated variable interval 30-s schedule of wheel-running reinforcement during light and dark cycles. Wheel-running and local lever-pressing rates increased modestly during…

  9. MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2011-10-01

    This proposal monitors the behavior of the dark current in each of the MAMA detectors, to look for evidence of change in the dark rate, indicative of detector problems developing.The basic monitor takes two 1300s TIME-TAG darks bi-weekly with each detector. The pairs of exposures for each detector are linked so that they are taken at opposite ends of the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.For both detectors, additional blocks of exposures are taken once a year. These are groups of three 1314 s TIME-TAG darks for each of the MAMA detectors, distributed over a single SAA free interval. This will give more information on the brightness of the FUV MAMA dark current as a function of the amount of time that the HV has been on, and for the NUV MAMA will give a better measure of the short term temperature dependence.

  10. MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2010-09-01

    This proposal monitors the behavior of the dark current in each of the MAMA detectors, to look for evidence of change in the dark rate, indicative of detector problems developing.The basic monitor takes two 1300s TIME-TAG darks bi-weekly with each detector. The pairs of exposures for each detector are linked so that they are taken at opposite ends of the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.For both detectors, additional blocks of exposures are taken once a year. These are groups of three 1314 s TIME-TAG darks for each of the MAMA detectors, distributed over a single SAA free interval. This will give more information on the brightness of the FUV MAMA dark current as a function of the amount of time that the HV has been on, and for the NUV MAMA will give a better measure of the short term temperature dependence.

  11. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    SciTech Connect

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W. E-mail: gfuller@ucsd.edu E-mail: mparis@lanl.gov

    2015-05-01

    We show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.

  12. Estimating Asteroid Thermal Inertia from Multi-epoch Observations

    NASA Astrophysics Data System (ADS)

    MacLennan, Eric M.; Emery, Joshua P.

    2014-11-01

    Granular material, or regolith, is observed to be ubiquitous on asteroid surfaces. To date, two feasible mechanisms of regolith generation have been proposed: recurrent impacts and thermal fracturing. By combining thermal infrared observations and a thermophysical model (TPM), the thermal inertia of an asteroid surface can be used to infer its physical properties, including the average regolith grain size. With the regolith properties of a large population of diverse asteroids (i.e. different spectral class, size, rotation period etc.), information regarding the details of regolith generation can be inferred.Traditional thermal inertia determination methods use a TPM with a previously derived asteroid shape model and spin axis for constraining the observed surface temperature distribution. TPMs invoke the heat diffusion equation to calculate surface temperatures for a rotating asteroid. An asteroid spin axis provide the boundary condition needed to calculate the surface energy balance in a TPM. However the limited amount of objects with a shape model and thermal infrared observations inhibit the number of thermal inertias that can potentially be calculated. Here, a technique using WISE (12 & 22 μm) observations taken before or after opposition is employed to derive thermal inertias of asteroids without using a shape model. By gathering thermal infrared data at multiple viewing geometries the temperature distribution, thus thermal inertia, is constrained.We first demonstrate the validity of this method on objects with a previously determined shape model and spin axis from the DAMIT website. Our analyses show that not knowing an asteroid’s shape does not significantly affect the resulting thermal inertia estimates. Additionally, we apply our TPM to WISE multi-epoch thermal observations to place estimates for the thermal inertia for more than 100 objects. The set of objects used samples many sizes, spectral classes and rotation periods, which may be important

  13. NUV MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2013-10-01

    The basic monitor takes two 1300s TIME-TAG darks bi-weekly.. The pairs of exposures are linked so that they are taken about 6 hours apart in the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.

  14. NUV MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2012-10-01

    The basic monitor takes two 1300s TIME-TAG darks bi-weekly.. The pairs of exposures are linked so that they are taken about 6 hours apart in the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.

  15. Negative effects on survival and performance of Norway spruce seedlings colonized by dark septate root endophytes are primarily isolate-dependent.

    PubMed

    Tellenbach, Christoph; Grünig, Christoph R; Sieber, Thomas N

    2011-09-01

    Root endophytes are common and genetically highly diverse suggesting important ecological roles. Yet, relative to above-ground endophytes, little is known about them. Dark septate endophytic fungi of the Phialocephala fortinii s.l.-Acephala applanata species complex (PAC) are ubiquitous root colonizers of conifers and Ericaceae, but their ecological function is largely unknown. Responses of Norway spruce seedlings of two seed provenances to inoculations with isolates of four PAC species were studied in vitro. In addition, isolates of Phialocephala subalpina from two populations within and one outside the natural range of Norway spruce were also included to study the effect of the geographic origin of P. subalpina on host response. The interaction of PAC with Norway spruce ranged from neutral to highly virulent and was primarily isolate-dependent. Variation in virulence was much higher within than among species, nonetheless only isolates of P. subalpina were highly virulent. Disease caused by P. subalpina genotypes from the native range of Norway spruce was more severe than that induced by genotypes from outside the natural distribution of Norway spruce. Virulence was not correlated with the phylogenetic relatedness of the isolates but was positively correlated with the extent of fungal colonization as measured by quantitative real-time PCR.

  16. Declinations in the Almagest: accuracy, epoch, and observers

    NASA Astrophysics Data System (ADS)

    Brandt, John C.; Zimmer, Peter; Jones, Patricia B.

    2014-11-01

    Almagest declinations attributed to Timocharis, Aristyllos, Hipparchus, and Ptolemy are investigated through comparisons of the reported declinations with the declinations computed from modern positions translated to the earlier epochs. Consistent results indicate an observational accuracy of ≈ 0.1° and epochs of: Timocharis, c. 298 BC; Aristyllos, c. 256 BC, and Hipparchus, c. 128 BC.The ≈ 42-year difference between Aristyllos and Timocharis is confirmed to be statistically significant. The declinations attributed to Ptolemy were likely two distinct groups—observations taken c. AD 57 and observations taken c. AD 128. The later observations could have been taken by Ptolemy himself.

  17. The Anthropocene: a new epoch of geological time?

    PubMed

    Zalasiewicz, Jan; Williams, Mark; Haywood, Alan; Ellis, Michael

    2011-03-13

    Anthropogenic changes to the Earth's climate, land, oceans and biosphere are now so great and so rapid that the concept of a new geological epoch defined by the action of humans, the Anthropocene, is widely and seriously debated. Questions of the scale, magnitude and significance of this environmental change, particularly in the context of the Earth's geological history, provide the basis for this Theme Issue. The Anthropocene, on current evidence, seems to show global change consistent with the suggestion that an epoch-scale boundary has been crossed within the last two centuries.

  18. Use of Apollo 17 Epoch Neutron Spectrum as a Benchmark in Testing LEND Collimated Sensor

    NASA Technical Reports Server (NTRS)

    Chin, Gordon; Sagdeev, R.; Milikh, G.

    2011-01-01

    The Apollo 17 neutron experiment LPNE provided a unique set of data on production of neutrons in the Lunar soil bombarded by Galactic Cosmic Rays (GCR). It serves as valuable "ground-truth" in the age of orbital remote sensing. We used the neutron data attributed to Apollo 17 epoch as a benchmark for testing the LEND's collimated sensor, as introduced by the geometry of collimator and efficiency of He3 counters. The latter is defined by the size of gas counter and pressure inside it. The intensity and energy spectrum of neutrons escaping the lunar surface are dependent on incident flux of Galactic Cosmic Rays (GCR) whose variability is associated with Solar Cycle and its peculiarities. We obtain first the share of neutrons entering through the field of view of collimator as a fraction of the total neutron flux by using the angular distribution of neutron exiting the Moon described by our Monte Carlo code. We computed next the count rate of the 3He sensor by using the neutron energy spectrum from McKinney et al. [JGR, 2006] and by consider geometry and gas pressure of the LEND sensor. Finally the neutron count rate obtained for the Apollo 17 epoch characterized by intermediate solar activity was adjusted to the LRO epoch characterized by low solar activity. It has been done by taking into account solar modulation potential, which affects the GCR flux, and in turn changes the neutron albedo flux.

  19. Origin of ΔN{sub eff} as a result of an interaction between dark radiation and dark matter

    SciTech Connect

    Bjaelde, Ole Eggers; Das, Subinoy; Moss, Adam E-mail: subinoy@physik.rwth-aachen.de

    2012-10-01

    Results from the Wilkinson Microwave Anisotropy Probe (WMAP), Atacama Cosmology Telescope (ACT) and recently from the South Pole Telescope (SPT) have indicated the possible existence of an extra radiation component in addition to the well known three neutrino species predicted by the Standard Model of particle physics. In this paper, we explore the possibility of the apparent extra dark radiation being linked directly to the physics of cold dark matter (CDM). In particular, we consider a generic scenario where dark radiation, as a result of an interaction, is produced directly by a fraction of the dark matter density effectively decaying into dark radiation. At an early epoch when the dark matter density is negligible, as an obvious consequence, the density of dark radiation is also very small. As the Universe approaches matter radiation equality, the dark matter density starts to dominate thereby increasing the content of dark radiation and changing the expansion rate of the Universe. As this increase in dark radiation content happens naturally after Big Bang Nucleosynthesis (BBN), it can relax the possible tension with lower values of radiation degrees of freedom measured from light element abundances compared to that of the CMB. We numerically confront this scenario with WMAP+ACT and WMAP+SPT data and derive an upper limit on the allowed fraction of dark matter decaying into dark radiation.

  20. Asymmetric dark matter and effective number of neutrinos

    NASA Astrophysics Data System (ADS)

    Kitabayashi, Teruyuki; Kurosawa, Yoshihiro

    2016-02-01

    We study the effect of the MeV-scale asymmetric dark matter annihilation on the effective number of neutrinos Neff at the epoch of the big bang nucleosynthesis. If the asymmetric dark matter χ couples more strongly to the neutrinos ν than to the photons γ and electrons e-, Γχ γ ,χ e≪Γχ ν , or Γχ γ ,χ e≫Γχ ν, the lower mass limit on the asymmetric dark matter is about 18 MeV for Neff≃3.0 .

  1. Assisted dark energy

    SciTech Connect

    Ohashi, Junko; Tsujikawa, Shinji

    2009-11-15

    Cosmological scaling solutions, which give rise to a scalar-field density proportional to a background fluid density during radiation and matter eras, are attractive to alleviate the energy scale problem of dark energy. In the presence of multiple scalar fields, the scaling solution can exit to the epoch of cosmic acceleration through the so-called assisted inflation mechanism. We study cosmological dynamics of a multifield system in details with a general Lagrangian density p={sub i=1}{sup n}X{sub i}g(X{sub i}e{sup {lambda}{sub i}}{sup {phi}{sub i}}), where X{sub i}=-({nabla}{phi}{sub i}){sup 2}/2 is the kinetic energy of the ith field {phi}{sub i}, {lambda}{sub i} is a constant, and g is an arbitrary function in terms of Y{sub i}=X{sub i}e{sup {lambda}{sub i}}{sup {phi}{sub i}}. This covers most of the scalar-field models of dark energy proposed in literature that possess scaling solutions. Using the bound coming from big-bang nucleosynthesis and the condition under which each field cannot drive inflation as a single component of the universe, we find the following features: (i) a transient or eternal cosmic acceleration can be realized after the scaling matter era, (ii) a thawing property of assisting scalar fields is crucial to determine the evolution of the field equation of state w{sub {phi}}, and (iii) the field equation of state today can be consistent with the observational bound w{sub {phi}}<-0.8 in the presence of multiple scalar fields.

  2. Understanding the dark matter-light connection at high redshifts

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Soo

    Deep, wide-field surveys have enhanced our understanding of galaxy formation and its close connection to the large-scale structures of dark matter in the universe. At high redshifts ( z > 2), in particular, where it is not possible to observe dark matter structures in other methods such as gravitational lensing or galaxy rotation curves, study of galaxy clustering provides a unique view into the formation of galaxies in large look-back times. In this thesis, I present a clustering study of star-forming galaxies at high redshifts ( z ~ 3- 5), observed and selected from two of the deepest multi-wavelength photometric data to date. First, I show that the UV luminosity (or star formation rate) of these galaxies scales closely with the degree of spatial clustering at all cosmic epochs probed from these surveys. In conjunction with the current, well- established theoretical framework of cold dark matter cosmology, this implies that star formation rate is primarily determined by the total mass of the virialized dark matter structures, or dark matter halos. In addition, I show that the measures of galaxy correlation function exhibits a strong upturn on small scales, which cannot be explained with the clustering of halos hosting these galaxies alone. This strongly suggests that multiple galaxies can share a single massive dark matter halo. A simple scaling law between the number of galaxy occupants and halo mass is sufficient to successfully reproduce the observed shape of the correlation function. However, there is uncertainty in drawing physical parameters of the halo-galaxy association which depends on the assumed form of the scaling law, or the halo occupation distribution (HOD). Physical interpretations are further exacerbated by the unknown degree of "fairness" that color-selected galaxies represent. I present an alternative approach which requires precise measurements of both the luminosity function and correlation function (of various luminosity thresholds). By

  3. Holographic Ricci Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2012-03-01

    In this paper, we consider holographic Ricci dark energy model, and by using general relativity equations obtain time-dependent density of the Universe. We show that the resulting density in independent of space curvature.

  4. Dark Areas

    NASA Image and Video Library

    2015-09-10

    This 220-mile (350-kilometer) wide view of Pluto from NASA's New Horizons spacecraft illustrates the incredible diversity of surface reflectivities and geological landforms on the dwarf planet. The image includes dark, ancient heavily cratered terrain; bright, smooth geologically young terrain; assembled masses of mountains; and an enigmatic field of dark, aligned ridges that resemble dunes; its origin is under debate. The smallest visible features are 0.5 miles (0.8 kilometers) in size. This image was taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19933

  5. Investigating Dark Matter using Dwarf Spheroidals

    NASA Astrophysics Data System (ADS)

    Martinez, Gregory David

    Milky Way satellite galaxies have many desirable characteristics (there are dark matter dominated, relatively close by, and have low intrinsic flux) that make these galaxies ideal laboratories for testing dark matter theories. We introduce a comprehensive analysis of multi-epoch stellar line-of-sight velocities to determine the intrinsic velocity dispersion of the ultrafaint satellites of the Milky Way. Our method includes a simultaneous Bayesian analysis of both membership probabilities and the contribution of binary orbital motion to the observed velocity dispersion within a 14-parameter likelihood. We also present a general methodology for determining the gamma-ray flux from annihilation of dark matter particles in Milky Way satellite galaxies with emphasis on expections from the Fermi/GLAST satellite telescope. All relevant astrophysical and particle physics parameter space is explored. We include a detailed analysis of the boost from halo substructure and discuss its affect on indirect detection prospects.

  6. Shedding light on baryonic dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.

  7. THE RELATIVE ABUNDANCE OF ISOLATED CLUSTERS AS A PROBE OF DARK ENERGY

    SciTech Connect

    Lee, Jounghun

    2012-06-10

    Those galaxy clusters that do not belong to superclusters are referred to as isolated clusters. Their relative abundance at a given epoch may be a powerful constraint of the dark energy equation of state since it depends strongly on how fast the structures grow on the largest scale in the universe. We note that the mass function of isolated clusters can be separately evaluated through modification of the recently developed Corasaniti-Achitouv (CA) theory according to which the stochastic collapse barrier is quantified by two coefficients: the drifting average coefficient ({beta}) and the diffusion coefficient (D{sub B} ). Regarding {beta} in the CA formalism as an adjustable parameter and assuming that the formation of isolated clusters corresponds to the case of D{sub B} = 0, we determine the mass function of isolated clusters by fitting the numerical results from the MICE simulations to the modified CA formula. It is found that the best-fit value of {beta} changes with redshift and that the CA mass function with D{sub B} = 0 agrees very well with the numerical results at various redshifts. Defining the relative abundance of isolated clusters, {xi}{sub I}, as the ratio of the cumulative mass function of isolated clusters to that of non-isolated clusters at a given epoch, we finally show how sensitively {xi}{sub I} changes with the dark energy equation of state. It is also discussed how {xi}{sub I} can help break the degeneracy between the dark energy equation of state and the other key cosmological parameters.

  8. Sub-Daily Polar Motion During Epoch '92 with GPS

    NASA Technical Reports Server (NTRS)

    Ibanez-Meier, R.; Freedman, A. P.; Lichten, S. M.; Lindqwister, U. J.; Gross, R. S.; Herring, T. A.

    1994-01-01

    Data from a worldwide Global Positioning System (GPS) tracking network spanning six days during the EPOCH '92 campaign are used to estimate variations of the Earth's pole position every 30 minutes. The resulting polar motion time series is compared with estimates derived from very long baseline interferometry (VLBI) observations.

  9. The Utility of Shorter Epochs in Direct Motion Monitoring

    ERIC Educational Resources Information Center

    Dorsey, Karen; Herrin, Jeph; Krumholz, Harlan; Irwin, Melinda

    2009-01-01

    This cross-sectional study using direct motion monitoring evaluated whether short epochs increased estimates of moderate or vigorous physical activity (MPA or VPA) and enhanced differences in daily VPA comparing overweight (OW) and nonoverweight (NOW) children. Seventy-seven children (ages 8-10 years) wore accelerometers for 7 days. We calculated…

  10. Dark Spots

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Dark spots (left) and 'fans' appear to scribble dusty hieroglyphics on top of the Martian south polar cap in two high-resolution Mars Global Surveyor, Mars Orbiter Camera images taken in southern spring. Each image is about 3-kilometers wide (2-miles).

  11. Axion dark matter, solitons and the cusp-core problem

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Pop, Ana-Roxana

    2015-08-01

    Self-gravitating bosonic fields can support stable and localized (solitonic) field configurations. Such solitons should be ubiquitous in models of axion dark matter, with their characteristic mass and size depending on some inverse power of the axion mass, ma. Using a scaling symmetry and the uncertainty principle, the soliton core size can be related to the central density and axion mass in a universal way. Solitons have a constant central density due to pressure support, unlike the cuspy profile of cold dark matter (CDM). Consequently, solitons composed of ultralight axions (ULAs) may resolve the `cusp-core' problem of CDM. In dark matter (DM) haloes, thermodynamics will lead to a CDM-like Navarro-Frenk-White (NFW) profile at large radii, with a central soliton core at small radii. Using Monte Carlo techniques to explore the possible density profiles of this form, a fit to stellar kinematical data of dwarf spheroidal galaxies is performed. The data favour cores, and show no preference concerning the NFW part of the halo. In order for ULAs to resolve the cusp-core problem (without recourse to baryon feedback, or other astrophysical effects) the axion mass must satisfy ma < 1.1 × 10-22 eV at 95 per cent C.L. However, ULAs with ma ≲ 1 × 10-22 eV are in some tension with cosmological structure formation. An axion solution to the cusp-core problem thus makes novel predictions for future measurements of the epoch of reionization. On the other hand, improved measurements of structure formation could soon impose a Catch 22 on axion/scalar field DM, similar to the case of warm DM.

  12. Density fluctuations from the quark-hadron epoch and primordial nucleosynthesis

    SciTech Connect

    Fuller, G.M.; Mathews, G.J.; Alcock, C.R.

    1987-12-01

    We present a simple thermodynamic model of the quark-hadron transition in the early universe and use this model to estimate how the size of isothermal baryon number fluctuations which emerge from this epoch depend on the temperature of the transition and other uncertain quantities of the underlying QCD physics. We calculate primordial nucleosynthesis in the presence of these fluctuations and find that ..cap omega.. = 1 in baryons is possible only if the measured abundances of /sup 7/Li and /sup 2/H reflect substantial destruction during the evolution of the galaxy. 29 refs., 7 figs.

  13. Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization?

    PubMed

    Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun

    2013-04-12

    The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).

  14. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission.

    PubMed

    Burdett, Jonathan J; Gosztola, David; Bardeen, Christopher J

    2011-12-07

    The excited state dynamics of polycrystalline tetracene films are studied using femtosecond transient absorption in combination with picosecond fluorescence, continuing work reported in an earlier paper [J. J. Burdett, A. M. Muller, D. Gosztola, and C. J. Bardeen, J. Chem. Phys. 133, 144506 (2010)]. A study of the intensity dependence of the singlet state decay is conducted to understand the origins of the discrepancy between the broadband transient absorption and fluorescence experiments seen previously. High-sensitivity single channel transient absorption experiments allow us to compare the transient absorption dynamics to the fluorescence dynamics measured at identical laser fluences. At high excitation densities, an exciton-exciton annihilation rate constant of ~1 × 10(-8) cm(3) s(-1) leads to rapid singlet decays, but at excitation densities of 2 × 10(17) cm(-3) or less the kinetics of the transient absorption match those of the fluorescence. At these lower excitation densities, both measurements confirm that the initially excited singlet state relaxes with a decay time of 80 ± 3 ps, not 9.2 ps as claimed in the earlier paper. In order to investigate the origin of the singlet decay, the wavelength-resolved fluorescence dynamics were measured at 298 K, 77 K, and 4 K. A high-energy J-type emitting species undergo a rapid (~100 ps) decay at all temperatures, while at 77 K and 4 K additional species with H-type and J-type emission lineshapes have much longer lifetimes. A global analysis of the wavelength-dependent decays shows that the initial ~100 ps decay occurs to a dark state and not via energy transfer to lower energy bright states. Varying the excitation wavelength from 400 nm to 510 nm had no effect on the fast decay, suggesting that there is no energy threshold for the initial singlet relaxation. The presence of different emitting species at different temperatures means that earlier interpretations of the fluorescence behavior in terms of one singlet

  15. Inflationary imprints on dark matter

    NASA Astrophysics Data System (ADS)

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z2 symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ†Φ s2. Dark matter relic density is generated non-thermally for λ lesssim 10-7. We show that the dark matter yield crucially depends on the inflationary scale. For H~ 1010 GeV we find that the singlet self-coupling and mass should lie in the regime λsgtrsim 10-9 and mslesssim 50 GeV to avoid dark matter overproduction.

  16. Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds

    NASA Astrophysics Data System (ADS)

    Sims, Peter H.; Lentati, Lindley; Alexander, Paul; Carilli, Chris L.

    2016-11-01

    We construct foreground simulations comprising spatially correlated extragalactic and diffuse Galactic emission components and calculate the `intrinsic' (instrument-free) two-dimensional spatial power spectrum and the cylindrically and spherically averaged three-dimensional k-space power spectra of the Epoch of Reionization (EoR) and our foreground simulations using a Bayesian power spectral estimation framework. This leads us to identify a model-dependent region of optimal signal estimation for our foreground and EoR models, within which the spatial power in the EoR signal relative to the foregrounds is maximized. We identify a target field-dependent region, in k-space, of intrinsic foreground power spectral contamination at low k⊥ and k∥ and a transition to a relatively foreground-free intrinsic EoR window in the complement to this region. The contaminated region of k-space demonstrates that simultaneous estimation of the EoR and foregrounds is important for obtaining statistically robust estimates of the EoR power spectrum; biased results will be obtained from methodologies that ignore their covariance. Using simulated observations with frequency-dependent uv-coverage and primary beam, with the former derived for the Hydrogen Epoch of Reionization Array in 37-antenna and 331-antenna configuration, we recover instrumental power spectra consistent with their intrinsic counterparts. We discuss the implications of these results for optimal strategies for unbiased estimation of the EoR power spectrum.

  17. Dark scenarios

    NASA Astrophysics Data System (ADS)

    Ahonen, Pasi; Alahuhta, Petteri; Daskala, Barbara; Delaitre, Sabine; Hert, Paul De; Lindner, Ralf; Maghiros, Ioannis; Moscibroda, Anna; Schreurs, Wim; Verlinden, Michiel

    In this chapter, we present four "dark scenarios" that highlight the key socio-economic, legal, technological and ethical risks to privacy, identity, trust, security and inclusiveness posed by new AmI technologies. We call them dark scenarios, because they show things that could go wrong in an AmI world, because they present visions of the future that we do not want to become reality. The scenarios expose threats and vulnerabilities as a way to inform policy-makers and planners about issues they need to take into account in developing new policies or updating existing legislation. Before presenting the four scenarios and our analysis of each, we describe the process of how we created the scenarios as well as the elements in our methodology for analysing the scenarios.

  18. Neutrino signals from dark matter

    NASA Astrophysics Data System (ADS)

    Erkoca, Arif Emre

    Large-scale neutrino telescopes will be powerful tools to observe multitude of mysterious phenomena happening in the Universe. The dark matter puzzle is listed as one of them. In this study, indirect detection of dark matter via neutrino signals is presented. The upward muon, the contained muon and the hadronic shower fluxes are calculated, assuming annihilation/decay of the dark matter in the core of the astrophysical objects and in the Galactic center. Direct neutrino production and secondary neutrino production from the decay of Standard Model particles produced in the annihilation/decay of dark matter are studied. The results are contrasted to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss for the upward muon flux. The dependence of the dark matter signals on the density profile, the dark matter mass and the detector threshold are discussed. Different dark matter models (gravitino, Kaluza-Klein and leptophilic) which can account for recent observations of some indirect searches are analyzed regarding their detection in the kilometer size neutrino detectors in the near future. Muon and shower rates and the minimum observation times in order to reach 2sigma detection significance are evaluated, with the result suggesting that the optimum cone half angles chosen about the Galactic center are about 10° (50°) for the muon (shower) events. A detailed analysis shows that for the annihilating dark matter models such as the leptophilic and Kaluza-Klein models, upward and contained muon as well as showers yield promising signals for dark matter detection in just a few years of observation, whereas for decaying dark matter models, the same observation times can only be reached with showers. The analytical results for the final fluxes are also obtained as well as parametric forms for the muon and shower fluxes for the dark matter models considered in this study.

  19. Dark matter

    PubMed Central

    Peebles, P. James E.

    2015-01-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  20. Dark matter.

    PubMed

    Peebles, P James E

    2015-10-06

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again.

  1. Earth-mass dark-matter haloes as the first structures in the early Universe.

    PubMed

    Diemand, J; Moore, B; Stadel, J

    2005-01-27

    The Universe was nearly smooth and homogeneous before a redshift of z = 100, about 20 million years after the Big Bang. After this epoch, the tiny fluctuations imprinted upon the matter distribution during the initial expansion began to collapse because of gravity. The properties of these fluctuations depend on the unknown nature of dark matter, the determination of which is one of the biggest challenges in present-day science. Here we report supercomputer simulations of the concordance cosmological model, which assumes neutralino dark matter (at present the preferred candidate), and find that the first objects to form are numerous Earth-mass dark-matter haloes about as large as the Solar System. They are stable against gravitational disruption, even within the central regions of the Milky Way. We expect over 10(15) to survive within the Galactic halo, with one passing through the Solar System every few thousand years. The nearest structures should be among the brightest sources of gamma-rays (from particle-particle annihilation).

  2. Dark Matter Decay between Phase Transitions at the Weak Scale.

    PubMed

    Baker, Michael J; Kopp, Joachim

    2017-08-11

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  3. Dark Matter Decay between Phase Transitions at the Weak Scale

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Kopp, Joachim

    2017-08-01

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S3 and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S3 potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  4. Dark energy and doubly coupled bigravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine; Noller, Johannes

    2017-05-01

    We analyse the late time cosmology and the gravitational properties of doubly coupled bigravity in the constrained vielbein formalism (equivalent to the metric formalism) when the mass of the massive graviton is of the order of the present Hubble rate. We focus on one of the two branches of background cosmology where the ratio between the scale factors of the two metrics is algebraically determined. We find that the late time physics depends on the mass of the graviton, which dictates the future asymptotic cosmological constant. The Universe evolves from a matter dominated epoch to a dark energy dominated era where the equation of state of dark energy can always be made close to  -1 now by appropriately tuning the graviton mass. We also analyse the perturbative spectrum of the theory in the quasi-static approximation, well below the strong coupling scale where no instability is present, and we show that there are five scalar degrees of freedom, two vectors and two gravitons. In Minkowski space, where the four Newtonian potentials vanish, the theory manifestly reduces to one massive and one massless graviton. In a cosmological FRW background for both metrics, four of the five scalars are Newtonian potentials which lead to a modification of gravity on large scales. The fifth one gives rise to a ghost which decouples from pressure-less matter in the quasi-static approximation. In this scalar sector, gravity is modified with effects on both the growth of structure and the lensing potential. In particular, we find that the Σ parameter governing the Poisson equation of the weak lensing potential can differ from one in the recent past of the Universe. Overall, the nature of the modification of gravity at low energy, which reveals itself in the growth of structure and the lensing potential, is intrinsically dependent on the couplings to matter and the potential term of the vielbeins. We also find that the time variation of Newton’s constant in the Jordan frame can

  5. Geographical features of global water cycle during warm geological epochs

    SciTech Connect

    Georgiadi, A.G.

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  6. Studies on rod horizontal cell S-potential in dependence of the dark/light adapted state: a comparative study in Cyprinus carpio and Scyliorhinus canicula retinas.

    PubMed

    Villa, P; Bedmar, M D; Barón, M

    1991-01-01

    Changes in light sensitivity, response time-course and electrical coupling of rod driven horizontal cells (RHC) were examined in the dark and light adapted states by intracellular recording. Comparative analyses were made of two fishes from different photic environments. RHC of Cyprinus carpio and external horizontal cells (EHC) of Scyliorhinus canicula retinas showed similar changes of their electrical responses to light stimuli when the dark-adapted retina was light-adapted: a decrease in sensitivity, an acceleration in the response time-course and an increase in the coupling strength.

  7. Phytochrome and Seed Germination. I. Temperature Dependence and Relative P(FR) Levels in the Germination of Dark-germinating Tomato Seeds.

    PubMed

    Mancinelli, A L; Yaniv, Z; Smith, P

    1967-03-01

    Germination of the dark-germinating seeds of 3 varieties of tomato is controlled by the phytochrome system. Germination is inhibited by far red radiation and repromoted by red applied after far red. At low temperatures, 17 to 20 degrees , a single, low energy far red irradiation is sufficient to inhibit germination in all 3 varieties. At higher temperatures far red is less effective in the inhibition of the germination of the tomato seeds. The phytochrome fraction present as P(FR) in the dark-germinating seeds of the Ace variety is about 40% of the total phytochrome present.

  8. Comparing Simulations and Observations of Reionization-Epoch Galaxies

    NASA Astrophysics Data System (ADS)

    Dave, Romeel; Finlator, Kristian

    2006-05-01

    We propose to test and constrain models of early galaxy formation through comparisons with observations of reionization-epoch (z>6) galaxies observed using Spitzer. The goals are to (1) Make predictions for z>6 objects using state-of-the-art cosmological hydrodynamic simulations of galaxy formation tailored to study the reionization epoch; (2) Develop a publicly-available tool called SPOC designed to obtain detailed constraints on physical properties of observed galaxies through comparisons with simulated galaxy catalogs; and (3) Use SPOC to test and constrain models of galaxy formation through comparisons with rapidly- advancing observations in the new frontier of early universe studies. The results of this study will yield deeper insights into the galaxy formation process at these mostly unexplored epochs, with implications for understanding the formation of massive galaxies, studying the topology and evolution of IGM reionization, and designing future surveys to detect first objects. The SPOC tool will facilitate a closer connection between observations and theory by enabling the community to interpret data within the framework of current hierarchical structure formation models, in turn providing detailed tests of these models that is essential for driving the field forward.

  9. Epoch-based Entropy for Early Screening of Alzheimer's Disease.

    PubMed

    Houmani, N; Dreyfus, G; Vialatte, F B

    2015-12-01

    In this paper, we introduce a novel entropy measure, termed epoch-based entropy. This measure quantifies disorder of EEG signals both at the time level and spatial level, using local density estimation by a Hidden Markov Model on inter-channel stationary epochs. The investigation is led on a multi-centric EEG database recorded from patients at an early stage of Alzheimer's disease (AD) and age-matched healthy subjects. We investigate the classification performances of this method, its robustness to noise, and its sensitivity to sampling frequency and to variations of hyperparameters. The measure is compared to two alternative complexity measures, Shannon's entropy and correlation dimension. The classification accuracies for the discrimination of AD patients from healthy subjects were estimated using a linear classifier designed on a development dataset, and subsequently tested on an independent test set. Epoch-based entropy reached a classification accuracy of 83% on the test dataset (specificity = 83.3%, sensitivity = 82.3%), outperforming the two other complexity measures. Furthermore, it was shown to be more stable to hyperparameter variations, and less sensitive to noise and sampling frequency disturbances than the other two complexity measures.

  10. The cosmological constant and cold dark matter

    NASA Astrophysics Data System (ADS)

    Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1990-12-01

    It is argued here that the success of the cosmological cold dark matter (CDM) model can be retained and the new observations of very large scale cosmological structures can be accommodated in a spatially flat cosmology in which as much as 80 percent of the critical density is provided by a positive cosmological constant. In such a universe, expansion was dominated by CDM until a recent epoch, but is now governed by the cosmological constant. This constant can also account for the lack of fluctuations in the microwave background and the large number of certain kinds of objects found at high redshift.

  11. Re-ionization and decaying dark matter

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1991-01-01

    Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.

  12. Temperature variation in the dark cosmic fluid in the late universe

    NASA Astrophysics Data System (ADS)

    Brevik, Iver

    2016-03-01

    A one-component dark energy fluid model of the late universe is considered (w < -1) when the fluid, initially assumed laminar, makes a transition into a turbulent state of motion. Spatial isotropy is assumed so that only the bulk viscosities are included (ζ in the laminar epoch and ζturb in the turbulent epoch). Both viscosities are assumed to be constants. We derive a formula, new as far as we know, for the time dependence of the temperature T(t) in the laminar case when viscosity is included. Assuming that the laminar/turbulent transition takes place at some time ts before the big rip is reached, we then analyze the positive temperature jump experienced by the fluid at t = t∗ if ζturb > ζ. This is just as one would expect physically. The corresponding entropy production is also considered. A special point emphasized in the paper is the analogy that exists between the cosmic fluid and a so-called Maxwell fluid in viscoelasticity.

  13. Analysis of dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-05-01

    As the law of unity of opposites of the Philosophy tells us, the bright material exists, the dark matter also exists. Dark matter and dark energy should allow the law of unity of opposites. The Common attributes of the matter is radiation, then common attributes of dark matter must be absorb radiation. Only the rotation speed is lower than the speed of light radiation, can the matter radiate, since the speed of the matter is lower than the speed of light, so the matter is radiate; The rotate speed of the dark matter is faster than the light , so the dark matter doesn't radiate, it absorbs radiation. The energy that the dark matter absorb radiation produced (affect the measurement of time and space distribution of variations) is dark energy, so the dark matter produce dark energy only when it absorbs radiation. Dark matter does not radiate, two dark matters does not exist inevitably forces, and also no dark energy. Called the space-time ripples, the gravitational wave is bent radiation, radiation particles should be graviton, graviton is mainly refers to the radiation particles whose wavelength is small. Dark matter, dark energy also confirms the existence of the law of symmetry.

  14. Transient and late time attractor tachyon dark energy: Can we distinguish it from quintessence?

    SciTech Connect

    Ali, Amna; Sami, M.; Sen, A. A.

    2009-06-15

    The string inspired tachyon field can serve as a candidate of dark energy. Its equation of state parameter w varies from 0 to -1. In the case of tachyon field potential V({phi}){yields}0 slower (faster) than 1/{phi}{sup 2} at infinity, dark energy (dark matter) is a late time attractor. We investigate the tachyon dark energy models under the assumption that w is close to -1. We find that all the models exhibit unique behavior around the present epoch which is exactly the same as that of the thawing quintessence.

  15. The brown dwarf atmosphere monitoring (BAM) project - II. Multi-epoch monitoring of extremely cool brown dwarfs

    NASA Astrophysics Data System (ADS)

    Rajan, A.; Patience, J.; Wilson, P. A.; Bulger, J.; De Rosa, R. J.; Ward-Duong, K.; Morley, C.; Pont, F.; Windhorst, R.

    2015-04-01

    With the discovery of Y dwarfs by the WISE mission, the population of field brown dwarfs now extends to objects with temperatures comparable to those of Solar system planets. To investigate the atmospheres of these newly identified brown dwarfs, we have conducted a pilot study monitoring an initial sample of three late-T dwarfs (T6.5, T8 and T8.5) and one Y dwarf (Y0) for infrared photometric variability at multiple epochs. With J-band imaging, each target was observed for a period of 1.0-4.5 h per epoch, which covers a significant fraction of the expected rotational period. These measurements represent the first photometric monitoring for these targets. For three of the four targets (2M1047, Ross 458C and WISE0458), multi-epoch monitoring was performed, with the time span between epochs ranging from a few hours to ˜2 years. During the first epoch, the T8.5 target WISE0458 exhibited variations with a remarkable min-to-max amplitude of 13 per cent, while the second epoch light curve taken ˜2 years later did not note any variability to a 3 per cent upper limit. With an effective temperature of ˜600 K, WISE0458 is the coldest variable brown dwarf published to date, and combined with its high and variable amplitude makes it a fascinating target for detailed follow-up. The three remaining targets showed no significant variations, with a photometric precision between 0.8 and 20.0 per cent, depending on the target brightness. Combining the new results with previous multi-epoch observations of brown dwarfs with spectral types of T5 or later, the currently identified variables have locations on the colour-colour diagram better matched by theoretical models incorporating cloud opacities rather than cloud-free atmospheres. This preliminary result requires further study to determine if there is a definitive link between variability among late-T dwarfs and their location on the colour-colour diagram.

  16. Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Amirhashchi, H.; Saha, Bijan

    2011-09-01

    A new dark energy model in anisotropic Bianchi type-I (B-I) space-time with time dependent equation of state (EoS) parameter and constant deceleration parameter has been investigated in the present paper. The Einstein's field equations have been solved by applying a variation law for generalized Hubble's parameter (Berman in Il Nuovo Cimento B 74:182, 1983) which generates two types of solutions, one is of power-law type and other is of the exponential form. The existing range of the dark energy EoS parameter ω for derived model is found to be in good agreement with the three recent observations (i) SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004) and (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. Ser. 180:225, 2009 and Komatsu et al. in Astrophys. J. Suppl. Ser. 180:330, 2009). The cosmological constant Λ is found to be a decreasing function of time and it approaches a small positive value at the present epoch which is corroborated by results from recent supernovae Ia observations. It has also been suggested that the dark energy that explains the observed accelerating universe may arise due to the contribution to the vacuum energy of the EoS in a time dependent background. Geometric and kinematic properties of the model and the behaviour of the anisotropy of the dark energy have been carried out.

  17. Gamma rays from ultracompact primordial dark matter minihalos.

    PubMed

    Scott, Pat; Sivertsson, Sofia

    2009-11-20

    Ultracompact minihalos have been proposed as a new class of dark matter structure. They would be produced by phase transitions in the early Universe or features in the inflaton potential, and constitute nonbaryonic massive compact halo objects today. We examine the prospects of detecting these minihalos in gamma rays if dark matter can self-annihilate. We compute present-day fluxes from minihalos produced in the e{+}e{-} annihilation epoch and the QCD and electroweak phase transitions. Even at a distance of 4 kpc, minihalos from the e{+}e{-} epoch would be eminently detectable today by the Fermi satellite or air Cerenkov telescopes, or even in archival EGRET data. Within 2 kpc, they would appear as extended sources to Fermi. At 4 kpc, minihalos from the QCD transition have similar predicted fluxes to dwarf spheroidal galaxies, so might also be detectable by present or upcoming experiments.

  18. Detecting superlight dark matter with Fermi-degenerate materials

    SciTech Connect

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue; Zurek, Kathryn M.

    2016-08-08

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O(keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ~10–3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.

  19. Detecting superlight dark matter with Fermi-degenerate materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue; Zurek, Kathryn M.

    2016-08-01

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O (keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O (meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ˜ 10-3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.

  20. Detecting superlight dark matter with Fermi-degenerate materials

    DOE PAGES

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue; ...

    2016-08-08

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O(keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ~10–3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order tomore » detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.« less

  1. The First dark microhalos

    SciTech Connect

    Zhao, HongSheng; Taylor, James E.; Silk, Joseph; Hooper, Dan; /Oxford U. /Fermilab

    2005-08-01

    Earth-mass dark matter halos are likely to have been the first bound structures to form in the Universe. Whether such objects have survived to the present day in galaxies depends on, among other factors, the rate of encounters with normal stars. In this letter, we estimate the amount of tidal heating and mass loss in microhalos as a result of stellar encounters. We find that while microhalos are only mildly heated in dwarf galaxies of low stellar density, and they should have been completely destroyed in bulge or M32-like regions of high stellar density. In disk galaxies, such as the Milky Way, the disruption rate depends strongly on the orbital parameters of the microhalo; while stochastic radial orbits in triaxial Galactic potential are destroyed first, systems on non-planar retrograde orbits with large pericenters survive the longest. Since many microhalos lose a significant fraction of their material to unbound tidal streams, the final dark matter distribution in the solar neighborhood is better described as a superposition of microstreams rather than as a set of discrete spherical clumps in an otherwise homogeneous medium. Different morphologies of microhalos have implications for direct and indirect dark matter detection experiments.

  2. Repeated exposure of male mice to low doses of lipopolysaccharide: dose and time dependent development of behavioral sensitization and tolerance in an automated light-dark anxiety test.

    PubMed

    Banasikowski, Tomek J; Cloutier, Caylen J; Ossenkopp, Klaus-Peter; Kavaliers, Martin

    2015-06-01

    Although lipopolysaccharide (LPS) is widely used to examine immune behavior relationships there has been little consideration of the effects of low doses and the roles of sensitization and, or tolerance. Here low doses of LPS (1.0, 5.0 and 25.0 μg/kg) were peripherally administered to male mice on Days 1, 4, 28 and 32 after a baseline recording of anxiety-like behaviors in an automated light-dark apparatus (total time in the light chamber, number of light-dark transitions, nose pokes into the light chamber). LPS at 1.0 μg/kg, while having no significant effects on anxiety-like behaviors in the light-dark test on Days 1 and 4, displayed sensitization with the mice exhibiting significantly enhanced anxiety-like responses on Days 28 and 32. LPS at 5.0 μg/kg had no consistent significant effects on anxiety-like behavior on Days 1 and 4, with sensitization and enhanced anxiety-like behaviors on Day 28 followed by tolerance on Day 32. LPS at 25 μg/kg significantly enhanced anxiety-like behaviors on Day 1, followed by tolerance on Day 4, which was not evident by Day 28 and re-emerged on Day 32. There was a similar overall pattern of sensitization and tolerance for LPS-induced decreases in locomotor activity in the safe dark chamber, without, however, any significant effects on activity in the riskier light chamber. This shows that low doses of LPS induce anxiety-like behavior and these effects are subject to sensitization and tolerance in a dose, context, and time related manner.

  3. A dark energy view of inflation

    SciTech Connect

    Ilic, Stephane; Kunz, Martin; Liddle, Andrew R.; Frieman, Joshua A.; /Fermilab /Chicago U.

    2010-02-01

    Traditionally, inflationary models are analyzed in terms of parameters such as the scalar spectral index n{sub s} and the tensor to scalar ratio r, while dark energy models are studied in terms of the equation of state parameter w. Motivated by the fact that both deal with periods of accelerated expansion, we study the evolution of w during inflation, in order to derive observational constraints on its value during an earlier epoch likely dominated by a dynamic form of dark energy. We find that the cosmic microwave background and large-scale structure data is consistent with w{sub inflation} = -1 and provides an upper limit of 1 + w {le} 0.02. Nonetheless, an exact de Sitter expansion with a constant w = -1 is disfavored since this would result in n{sub s} = 1.

  4. Interacting dark sector with variable vacuum energy

    NASA Astrophysics Data System (ADS)

    Chimento, Luis P.; Richarte, Martín G.; García, Iván E. Sánchez

    2013-10-01

    We examine a cosmological scenario where dark matter is coupled to a variable vacuum energy while baryons and photons are two decoupled components for a spatially flat Friedmann-Robertson-Walker spacetime. We apply the χ2 method to the updated observational Hubble data for constraining the cosmological parameters and analyze the amount of dark energy in the radiation era. We show that our model fulfills the severe bound of Ωx(z≃1100)<0.009 at the 2σ level, so it is consistent with the recent analysis that includes cosmic microwave background anisotropy measurements from the Planck survey, the Atacama Cosmology Telescope, and the South Pole Telescope along with the future constraints achievable by the Euclid and CMBPol experiments, and fulfills the stringent bound Ωx(z≃1010)<0.04 at the 2σ level in the big-bang nucleosynthesis epoch.

  5. 'Anthropocene': An Ethical Crisis, Not a Geological Epoch

    NASA Astrophysics Data System (ADS)

    Cuomo, Chris

    2017-04-01

    The term 'anthropocene' has gained enormous popularity among scientists who believe we are in a global phase distinguished by the extensive and lasting impacts of social activities on Earth's sedimentary record and vital systems. Beyond its widespread informal use, a working group of the International Union of Geological Sciences seeks to formalize the term to name a new geological epoch, implying that the Holocene epoch has ended. I argue that the move to formalize the 'anthropocene' and to declare the demise of the Holocene is premature and ethically misguided, at best, and that the very name 'anthropocene' obscures rather than illuminates the serious moral and political/economic implications of the dire warnings evident in recent stratigraphic and ecological changes. If human-caused mass extinction and other ecological catastrophes are serious harms, ethical responses are required. Instead, the move to formalize the idea of an 'anthropocene' epoch treats dire ethical warnings as an opportunity to redefine the current dangerous situation as a new status quo. Have we met our responsibilities to protect Holocene Earth? This presentation will focus on the ethical implications of using the power and discourse of geology to demote Holocene ecological states from their role as the foundational benchmarks for guiding and assessing human relationships with nature and other species. Have geoscientists adequately consulted the biological, ecological and social sciences before declaring the end of the Holocene epoch? Upon what do we base environmental ethics if the Holocene is considered past history? I will also examine the ethical dimensions of naming the so-called 'anthropocene', asking: who is the presumed 'anthro' in the 'anthropocene'? Are the phenomena identified with the 'anthropocene' (nuclear fallout, mass species endangerment, ocean acidification, fossil fuel pollution, deforestation, mining) definitive accomplishments of the human species? Should the practices

  6. The joint US/UK 1990 epoch world magnetic model

    NASA Technical Reports Server (NTRS)

    Quinn, John M.; Coleman, Rachel J.; Peck, Michael R.; Lauber, Stephen E.

    1991-01-01

    A detailed summary of the data used, analyses performed, modeling techniques employed, and results obtained in the course of the 1990 Epoch World Magnetic Modeling effort are given. Also, use and limitations of the GEOMAG algorithm are presented. Charts and tables related to the 1990 World Magnetic Model (WMM-90) for the Earth's main field and secular variation in Mercator and polar stereographic projections are presented along with useful tables of several magnetic field components and their secular variation on a 5-degree worldwide grid.

  7. The joint US/UK EPOCH world magnetic model 1995

    NASA Astrophysics Data System (ADS)

    Quinn, John M.; Coleman, Rachel J.; Shiel, Donald L.

    1995-04-01

    This report contains a detailed summary of the data used, analyses performed, modeling techniques employed, and results obtained during the course of the 1995 Epoch World Magnetic Modeling effort. This report also contains the GEOMAG algorithm and describes its uses and limitations. Charts derived from the WMM-95 model and the GEOMAG algorithm for both the Main geomagnetic field components and their Secular Variations are presented on Mercator and polar stereographic projections. Additionally, the numerical values of the Main geomagnetic field components and their Secular Variations are tabulated on a 5-degree worldwide grid.

  8. Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions

    NASA Astrophysics Data System (ADS)

    Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2017-09-01

    The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2Δ&ln;Script L=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2Δ&ln;Script L=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ Nfluid, will be improved by an order of magnitude compared to current bounds.

  9. Modeling high-order synchronization epochs and transitions in the cardiovascular system

    NASA Astrophysics Data System (ADS)

    García-Álvarez, David; Bahraminasab, Alireza; Stefanovska, Aneta; McClintock, Peter V. E.

    2007-12-01

    We study a system consisting of two coupled phase oscillators in the presence of noise. This system is used as a model for the cardiorespiratory interaction in wakefulness and anaesthesia. We show that longrange correlated noise produces transitions between epochs with different n:m synchronisation ratios, as observed in the cardiovascular system. Also, we see that, the smaller the noise (specially the one acting on the slower oscillator), the bigger the synchronisation time, exactly as happens in anaesthesia compared with wakefulness. The dependence of the synchronisation time on the couplings, in the presence of noise, is studied; such dependence is softened by low-frequency noise. We show that the coupling from the slow oscillator to the fast one (respiration to heart) plays a more important role in synchronisation. Finally, we see that the isolines with same synchronisation time seem to be a linear combination of the two couplings.

  10. The Cosmology of Composite Inelastic Dark Matter

    SciTech Connect

    Spier Moreira Alves, Daniele; Behbahani, Siavosh R.; Schuster, Philip; Wacker, Jay G.; /SLAC

    2011-08-19

    Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark hadrons results in several qualitatively different configurations of the resulting dark matter composition depending on the relative mass scales in the system.

  11. Late kinetic decoupling of light magnetic dipole dark matter

    SciTech Connect

    Gondolo, Paolo; Kadota, Kenji

    2016-06-07

    We study the kinetic decoupling of light (≲10 GeV) magnetic dipole dark matter (DM). We find that present bounds from collider, direct DM searches, and structure formation allow magnetic dipole DM to remain in thermal equilibrium with the early universe plasma until as late as the electron-positron annihilation epoch. This late kinetic decoupling leads to a minimal mass for the earliest dark protohalos of thousands of solar masses, in contrast to the conventional weak scale DM scenario where they are of order 10{sup −6} solar masses.

  12. A superposed epoch analysis of auroral evolution during substorms: Local time of onset region

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Grocott, A.; Hubert, B.

    2010-10-01

    Previous workers have shown that the magnetic local time (MLT) of substorm onset depends on the prevailing east-west component of the interplanetary magnetic field (IMF). To investigate the influence of the onset MLT on the subsequent auroral response we perform a superposed epoch analysis of the auroral evolution during approximately 2000 substorms using observations from the FUV instrument on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. We subdivide the substorms by onset latitude and onset local time before determining average auroral images before and after substorm onset, for both electron and proton aurorae. We find that during the growth phase there is preexisting auroral emission in the MLT sector of the subsequent onset. After onset the auroral bulge expands eastward and westward, but remains centered on the onset sector. Approximately 30 min after onset, during the substorm recovery phase, the peaks in electron and proton auroral emission move into the postnoon and prenoon sectors, respectively, reflecting the “average” auroral precipitation patterns determined by previous studies. Superposed epoch analysis of the interplanetary magnetic field for the substorms under study suggests that the BY component of the IMF must be biased toward positive or negative values for up to a day prior to onset for the onset MLT to be influenced.

  13. Light's Darkness

    ScienceCinema

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2016-07-12

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  14. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters

    PubMed Central

    Rempe, Michael J; Clegern, William C; Wisor, Jonathan P

    2015-01-01

    Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state

  15. Constraints on the star formation efficiency of galaxies during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Sun, G.; Furlanetto, S. R.

    2016-07-01

    Reionization is thought to have occurred in the redshift range of 6 < z < 9, which is now being probed by both deep galaxy surveys and CMB observations. Using halo abundance matching over the redshift range 5 < z < 8 and assuming smooth, continuous gas accretion, we develop a model for the star formation efficiency f⋆ of dark matter haloes at z > 6 that matches the measured galaxy luminosity functions at these redshifts. We find that f⋆ peaks at ˜30 per cent at halo masses M ˜ 1011-1012 M⊙, in qualitative agreement with its behaviour at lower redshifts. We then investigate the cosmic star formation histories and the corresponding models of reionization for a range of extrapolations to small halo masses. We use a variety of observations to further constrain the characteristics of the galaxy populations, including the escape fraction of UV photons. Our approach provides an empirically calibrated, physically motivated model for the properties of star-forming galaxies sourcing the epoch of reionization. In the case where star formation in low-mass haloes is maximally efficient, an average escape fraction ˜0.1 can reproduce the optical depth reported by Planck, whereas inefficient star formation in these haloes requires either about twice as many UV photons to escape, or an escape fraction that increases towards higher redshifts. Our models also predict how future observations with James Webb Space Telescope can improve our understanding of these galaxy populations.

  16. An improved model of H II bubbles during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Choudhury, T. Roy

    2014-08-01

    The size distribution of ionized regions during the epoch of reionization - a key ingredient in understanding the H I power spectrum observable by 21 cm experiments - can be modelled analytically using the excursion set formalism of random walks in the smoothed initial density field. To date, such calculations have been based on simplifying assumptions carried forward from the earliest excursion set models of two decades ago. In particular, these models assume that the random walks have uncorrelated steps and that haloes can form at arbitrary locations in the initial density field. We extend these calculations by incorporating recent technical developments that allow us to (a) include the effect of correlations in the steps of the walks induced by a realistic smoothing filter and (b) more importantly, account for the fact that dark matter haloes preferentially form near peaks in the initial density. A comparison with previous calculations shows that including these features, particularly the peaks constraint on halo locations, has large effects on the size distribution of the H II bubbles surrounding these haloes. For example, when comparing models at the same value of the globally averaged ionized volume fraction, the typical bubble sizes predicted by our model are more than a factor of 2 larger than earlier calculations. Our results can potentially have a significant impact on estimates of the observable H I power spectrum.

  17. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Ogaz, Sara

    2012-10-01

    This is a continuation of Program 12386 and is to be executed once a cycle for internal CTE and short darks, respectively.INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.Since Cycle 18, this monitoring program was reduced {compared to 11881} considering that there is also an external CTE monitoring program.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains a set of dark frames for each of the following exposure times: 66 s {60 s for some subarrays} and 339 s. These short darks and the 1040 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness. Subarray short darks were newly added in Cycle 19 to study CTE tails in different subarray readout modes.

  18. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Ogaz, Sara

    2013-10-01

    This is a continuation of Program 13156 and is to be executed once a cycle for internal CTE and short darks, respectively.INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.Since Cycle 18, this monitoring program was reduced {compared to 11881} considering that there is also an external CTE monitoring program.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains a set of dark frames for each of the following exposure times: 66 s {60 s for some subarrays} and 339 s. These short darks and the 1040 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness. Subarray short darks were added in Cycle 19 to study CTE tails in different subarray readout modes.

  19. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Lian Lim, Pey

    2011-10-01

    This is a continuation of Program 12386 and is to be executed once a cycle for internal CTE and short darks, respectively.INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.Since Cycle 18, this monitoring program was reduced {compared to 11881} considering that there is also an external CTE monitoring program.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains a set of dark frames for each of the following exposure times: 66 s {60 s for some subarrays} and 339 s. These short darks and the 1040 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness. Subarray short darks are newly added in Cycle 19 to study CTE tails in different subarray readout modes.

  20. Can dark matter decay in dark energy?

    NASA Astrophysics Data System (ADS)

    Pereira, S. H.; Jesus, J. F.

    2009-02-01

    We analyze the interaction between dark energy and dark matter from a thermodynamical perspective. By assuming they have different temperatures, we study the possibility of occurring a decay from dark matter into dark energy, characterized by a negative parameter Q. We find that, if at least one of the fluids has nonvanishing chemical potential, for instance μx<0 and μdm=0 or μx=0 and μdm>0, the decay is possible, where μx and μdm are the chemical potentials of dark energy and dark matter, respectively. Using recent cosmological data, we find that, for a fairly simple interaction, the dark matter decay is favored with a probability of ˜93% over the dark energy decay. This result comes from a likelihood analysis where only background evolution has been considered.

  1. Physics of the Intergalactic Medium During the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Lidz, Adam

    A major goal of observational and theoretical cosmology is to observe the largely unexplored time period in the history of our universe when the first galaxies form, and to interpret these measurements. Early galaxies dramatically impacted the gas around them in the surrounding intergalactic medium (IGM) by photoionzing the gas during the "Epoch of Reionization" (EoR). This epoch likely spanned an extended stretch in cosmic time: ionized regions formed and grew around early generations of galaxies, gradually filling a larger and larger fraction of the volume of the universe. At some time—thus far uncertain, but within the first billion years or so after the big bang—essentially the entire volume of the universe became filled with ionized gas. The properties of the IGM provide valuable information regarding the formation time and nature of early galaxy populations, and many approaches for studying the first luminous sources are hence based on measurements of the surrounding intergalactic gas. The prospects for improved reionization-era observations of the IGM and early galaxy populations over the next decade are outstanding. Motivated by this, we review the current state of models of the IGM during reionization. We focus on a few key aspects of reionization-era phenomenology and describe: the redshift evolution of the volume-averaged ionization fraction, the properties of the sources and sinks of ionizing photons, along with models describing the spatial variations in the ionization fraction, the ultraviolet radiation field, the temperature of the IGM, and the gas density distribution.

  2. Early Science from the Hydrogen Epoch of Reionization Array

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel; HERA Team

    2017-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer targeting 21cm emission from the primordial intergalactic medium. Observing across a broad redshift range HERA will directly measure the IGM as it is heated and ionized by the first galaxies and black holes. HERA is tuned to make a precision measurement of the HI power spectrum through redshifts 6 to 12, capturing, at high significance, the spatial and temporal pattern of fluctuations imprinted by early objects and will explore beyond to redshift 20 to epochs driven by the very first objects. When completed, the array will have 250 14m dishes packed into a regular hexagonal pattern for roughly 10 times the sensitivity of previous such arrays. HERA is an official Square Kilometer Array precursor operated out of the South African SKA site. It is a staged experimental program that is building out in steps; 19 dishes are operating at the , the next expansion to 37 is under way in parallel with commissioning experiments. Here we report on these tests which have focused on optimizing feed design and calibration techniques and discuss their impact on isolation of foreground emission.

  3. WFC3/IR Dark Current Stability

    NASA Astrophysics Data System (ADS)

    Hilbert, B.; Petro, L.

    2012-06-01

    Examination of the dark current behavior of the WFC3/IR channel over a span of almost 1000 days shows that the mean dark current has remained unchanged since launch. Image-to-image variation in mean dark current is 16% of the total mean dark rate. This variation appears to occur in a spatially-dependent but consistent manner, with the bottom and right edges displaying dark rates which increase more quickly than those elsewhere on the detector. Pixel-to-pixel variations in the dark current across the dataset imply that the 1σ uncertainty associated with the standard pipeline dark current subtraction is roughtly 20%-33% of the mean dark current rate. We have also identified a population of ~2500 pixels (0.25% of the science pixels) which are inconsistently hot over time. In a separate search, we find 2000-4000 pixels (0.2% - 0.4%) in most SPARS200 ramps which have dark rates more than 3σ from their nominal mean level. We find no correlation of mean dark rate with bias level, but an anti-correlation of the number of hot pixels with bias level. The measured dark current also does not appear to be correlated with instrument temperatures or voltages, or sun angle relative to HST.

  4. Dark matter that can form dark stars

    SciTech Connect

    Gondolo, Paolo; Huh, Ji-Haeng; Kim, Hyung Do; Scopel, Stefano E-mail: jhhuh@phya.snu.ac.kr E-mail: scopel@sogang.ac.kr

    2010-07-01

    The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≅ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishing s-wave contribution.

  5. Self-Interacting Dark Matter Halos and the Gravothermal Catastrophe

    NASA Astrophysics Data System (ADS)

    Balberg, Shmuel; Shapiro, Stuart L.; Inagaki, Shogo

    2002-04-01

    We study the evolution of an isolated spherical halo of self-interacting dark matter (SIDM) in the gravothermal fluid formalism. We show that the thermal relaxation time tr of an SIDM halo with the central density and velocity dispersion of a typical dwarf galaxy is significantly shorter than its age. We find a self-similar solution for the evolution of an SIDM halo in the limit where the mean free path between collisions, λ, is longer than the gravitational scale height H everywhere. Typical halos formed in this long mean free path regime relax to a quasi-stationary gravothermal density profile characterized by a nearly homogeneous core and a power-law halo where ρ~r-2.19. We solve the more general time-dependent problem and show that the contracting core evolves to sufficiently high density that λ inevitably becomes smaller than H in the innermost region. The core undergoes secular collapse to a singular state (the ``gravothermal catastrophe'') in a time tcoll~290tr, which is longer than the Hubble time for a typical dark matter-dominated galaxy core at the present epoch. Our model calculations are consistent with previous more detailed N-body simulations for SIDM, providing a simple physical interpretation of their results and extending them to higher spatial resolution and longer evolution times. At late times, mass loss from the contracting dense inner core to the ambient halo is significantly moderated, so that the final mass of the inner core may be appreciable when it becomes relativistic and radially unstable to dynamical collapse to a black hole.

  6. Dark-matter decay and the abundance of ultracompact minihalos

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Peng; Yang, Gui-Lin; Zong, Hong-Shi

    2013-03-01

    Ultracompact minihalos would be formed if there are larger density perturbations (0.0003 < δρ/ρ < 0.3) in the earlier epoch. Their density profile is steeper than the standard dark-matter halos. If dark matter can annihilate or decay into standard particles, e.g., photons, these objects would be the potential astrophysical sources. In order to be consistent with observations, as those from Fermi, the abundance of ultracompact minihalos must be constrained. On the other hand, the formation of these objects has very tight relation with the primordial curvature perturbations on smaller scale, so the fraction of ultracompact minihalos is very important for modern cosmology. In previous works, the studies are focused on the dark-matter annihilation for these objects. But if dark matter is not annihilated, the dark-matter decay is another important possible case. On the other hand, the abundance of ultracompact minihalos is related to many other parameters, such as the mass of dark matter, the decay channels and the density profile of dark-matter halos. One of the important aspects of this work is that we investigate the γ-ray signals from nearby ultracompact minihalos due to dark-matter decay and another important aspect is to study in detail how the different decay channels and density profiles affect the constraints on the abundance of ultracompact minihalos.

  7. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  8. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  9. Unparticle dark energy

    SciTech Connect

    Dai, D.-C.; Stojkovic, Dejan; Dutta, Sourish

    2009-09-15

    We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ({lambda}{sub u}). We study how the evolution of w depends on the parameters B (a function of unparticle scaling dimension d{sub u}), the initial value of the field {phi}{sub i} (or equivalently, {lambda}{sub u}) and the present matter density {omega}{sub m0}. We use observational data from type Ia supernovae, baryon acoustic oscillations and the cosmic microwave background to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale M{sub F}, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.

  10. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    DOE PAGES

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; ...

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, andmore » scenarios for light and heavy sterile neutrinos.« less

  11. Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs

    SciTech Connect

    Grohs, E.; Fuller, George M.; Kishimoto, Chad T.; Paris, Mark W.

    2015-05-11

    In this study, we show that a self-consistent and coupled treatment of the weak decoupling, big bang nucleosynthesis, and photon decoupling epochs can be used to provide new insights and constraints on neutrino sector physics from high-precision measurements of light element abundances and Cosmic Microwave Background observables. Implications of beyond-standard-model physics in cosmology, especially within the neutrino sector, are assessed by comparing predictions against five observables: the baryon energy density, helium abundance, deuterium abundance, effective number of neutrinos, and sum of the light neutrino mass eigenstates. We give examples for constraints on dark radiation, neutrino rest mass, lepton numbers, and scenarios for light and heavy sterile neutrinos.

  12. Constraining the dark fluid

    SciTech Connect

    Kunz, Martin; Liddle, Andrew R.; Parkinson, David; Gao Changjun

    2009-10-15

    Cosmological observations are normally fit under the assumption that the dark sector can be decomposed into dark matter and dark energy components. However, as long as the probes remain purely gravitational, there is no unique decomposition and observations can only constrain a single dark fluid; this is known as the dark degeneracy. We use observations to directly constrain this dark fluid in a model-independent way, demonstrating, in particular, that the data cannot be fit by a dark fluid with a single constant equation of state. Parametrizing the dark fluid equation of state by a variety of polynomials in the scale factor a, we use current kinematical data to constrain the parameters. While the simplest interpretation of the dark fluid remains that it is comprised of separate dark matter and cosmological constant contributions, our results cover other model types including unified dark energy/matter scenarios.

  13. Dark matter directional detection in non-relativistic effective theories

    SciTech Connect

    Catena, Riccardo

    2015-07-20

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  14. Dark matter directional detection in non-relativistic effective theories

    SciTech Connect

    Catena, Riccardo

    2015-07-01

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  15. Multi-Epoch XMM Observations of NGC4258

    NASA Technical Reports Server (NTRS)

    Greenhill, Lincoln J.

    2004-01-01

    The goal of this project was detection of variability in the X-ray absorption column of the AGN in NGC4258 through monitoring with the XMM satellite. We have accomplished this goal and submitted the results to ApJ for publication in a paper entitled, "X-ray Luminosity and Absorption Column Fluctuations in the H2O Maser Galaxy NGC4258 from Weeks to Years," by Fruscione, A., Greenhill, L.J., Filippedco, A.V., Moran, J.M., Hermstein, J.R., and Galle, E. We have received a favorable referee report and expect the article will appear in 2005. To complete the project, we reduced our four epochs of XMM data for NGC4258, one archival XMM observation, and all existing Chandra datasets for NGC4258 (with the latest calibration tables and a grid of corrections for pileup). Self-consistent reduction of all these data permitted detailed comparison that could not have been accomplished simply by taking published model fits that appear in the literature. To accumulate a broader monitoring record, we combined the Chandra and XMM results with those published for SAX and ASCA. We modeled the Chandra and XMM data self-consistently with partially absorbed, hard power-law, soft thermal plasmas, and soft power-law components. Over nine years, the photo-electric absorbing column exhibited a 40% drop between two ASCA epochs separated by 3 years and a 60% rise between two XMM epochs separated by just 5 months. In contract, uncorrelated factor of of 2-3 changes were seen in absorbed flux on te timescale of years, which suggests intrinsic variability of the central engine. The warped disk that is a known source of H2O maser emission in 4258 is believed to cross the line of sight to the central engine. We have proposed that the variations in absorbing column arise from inhomogeneities in the rotating disk, as they sweep across the line of sight. We estimate from the XMM data that the inhomogeneities are about 1E+15 cm in size at radii greater than 0.27 pc. This is consistent with the estimated

  16. The Second Epoch Molonglo Galactic Plane Survey: Images and Candidate Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Green, A. J.; Reeves, S. N.; Murphy, T.

    2014-11-01

    The second epoch Molonglo Galactic Plane Survey covers the area 245° ⩽ l ⩽ 365° and |b| ⩽ 10° at a frequency of 843 MHz and an angular resolution of 45 arcsec × 45 arcsec cosec(δ). The sensitivity varies between 1-2 mJy beam- 1 depending on the presence of strong extended sources. This survey is currently the highest resolution and most sensitive large-scale continuum survey of the southern Galactic plane. In this paper, we present the images of the complete survey, including postage stamps of some new supernova remnant (SNR) candidates and a discussion of the highly structured features detected in the interstellar medium. The intersection of these two types of features is discussed in the context of the `missing' SNR population in the Galaxy.

  17. VLBI multi-epoch water maser observations toward massive protostars

    NASA Astrophysics Data System (ADS)

    Torrelles, José M.; Gómez, José F.; Patel, Nimesh A.; Curiel, Salvador; Anglada, Guillem; Estalella, Robert

    2012-07-01

    VLBI multi-epoch water maser observations are a powerful tool to study the gas very close to the central engine responsible for the phenomena associated with the early evolution of massive protostars. In this paper we present a summary of the main observational results obtained toward the massive star-forming regions of Cepheus A and W75N. These observations revealed unexpected phenomena in the earliest stages of evolution of massive objects (e.g., non-collimated ``short-lived'' pulsed ejections in different massive protostars), and provided new insights in the study of the dynamic scenario of the formation of high-mass stars (e.g., simultaneous presence of a jet and wide-angle outflow in the massive object Cep A HW2, similar to what is observed in low-mass protostars). In addition, with these observations it has been possible to identify new, previously unseen centers of high-mass star formation through outflow activity.

  18. Doppler imaging of AR Lacertae at three epochs

    NASA Technical Reports Server (NTRS)

    Walter, Frederick M.; Neff, James E.; Linsky, Jeffrey L.; Rodono, Marcello

    1988-01-01

    Observations from IUE were used to study the structure of the lower chromosphere of AR Lacertae in the light of Mg II k. Sequences of LWR/P-HI images distributed around the binary period at three epochs were obtained. Discrete plage-like regions of enhanced Mg II surface flux in this system are identified. There are temporal variations in the Mg II flux on timescales of hours as well as substantial changes in chromospheric morphology on timescales of years. Even with the limited S/N attainable with the IUE, one can map the gross structures of active stellar atmospheres. With such information, one can begin to study the true 3-D structure of the atmospheres of late-type stars.

  19. Epoch-making milestones in antibiotic exploratory researches in Japan.

    PubMed

    Hotta, Kunimoto

    2017-01-01

    Professor Satoshi Ōmura was awarded the 2015 Nobel Prize in Physiology or Medicine. He is the third to win the award for research on antibiotic, following Fleming' (UK, 1945, discovery of penicillin) and Waksman (USA, 1952, discovery of streptomycin), and the second person after Waksman to receive the award for research on actinomycetes. By focusing his research on macrolides stemming from leucomycin research rather than β-lactams like penicillin or aminoglycosides like streptomycin, Prof. Ōmura realized many scientific achievements. These efforts finally led to the discovery of avermectin and its semi-synthetic derivative, ivermectin, considered a monumental contribution to the human race. In this manuscript, I will outline the chronicles of the epoch-making antibiotic exploratory researches preceding Prof. Ōmura.

  20. The 21-cm Signal from the cosmological epoch of recombination

    SciTech Connect

    Fialkov, A.; Loeb, A. E-mail: aloeb@cfa.harvard.edu

    2013-11-01

    The redshifted 21-cm emission by neutral hydrogen offers a unique tool for mapping structure formation in the early universe in three dimensions. Here we provide the first detailed calculation of the 21-cm emission signal during and after the epoch of hydrogen recombination in the redshift range of z ∼ 500–1,100, corresponding to observed wavelengths of 100–230 meters. The 21-cm line deviates from thermal equilibrium with the cosmic microwave background (CMB) due to the excess Lyα radiation from hydrogen and helium recombinations. The resulting 21-cm signal reaches a brightness temperature of a milli-Kelvin, orders of magnitude larger than previously estimated. Its detection by a future lunar or space-based observatory could improve dramatically the statistical constraints on the cosmological initial conditions compared to existing two-dimensional maps of the CMB anisotropies.

  1. Multi-Epoch Spectroscopy of Hydrogen-Poor Superluminous Supernovae

    NASA Astrophysics Data System (ADS)

    Quimby, Robert; De Cia, Annalisa; Gal-Yam, Avishay; Leloudas, Giorgos; Lunnan, Ragnhild; Perley, Daniel A.; Vreeswijk, Paul; Yan, Lin

    2016-06-01

    A growing sample of intrinsically rare supernovae is being uncovered by wide-field synoptic surveys, such as the Palomar Transient Factory (PTF). A fraction of these events have been labeled "superluminous supernovae" due to their peak luminosities, which can exceed normal supernovae by factors of 10 to 100. The power sources for these events and thus their connection to normal luminosity supernovae remains uncertain. Here we present results from 134 spectroscopic observations of 17 hydrogen-poor superluminous supernovae (SLSN-I) discovered by PTF. We select our targets from the full PTF sample using only spectroscopic information; we do not employ the traditional cut in absolute magnitude (e.g. M < -21) to avoid potential bias. Using our multi-epoch observations, we identify the ion species contributing to the spectroscopic features, and we perform parametric modeling to estimate photospheric velocities. Finally we discuss the physical insights into the nature of these explosions offered by this unique dataset.

  2. High Energy Neutrino Signals from the Epoch of Reionization

    SciTech Connect

    Iocco, F.; Murase, K.; Nagataki, S.; Serpico, P.D.

    2007-07-06

    In this paper we perform a new estimate of the high energy neutrinos expected from GRBs associated with the first generation of stars in light of new models and constraints on the epoch of reionization and a more detailed evaluation of the neutrino emission yields. We also compare the diffuse high energy neutrino background from Population III stars with the one from ''ordinary stars'' (Population II), as estimated consistently within the same cosmological and astrophysical assumptions. In disagreement with previous literature, we find that high energy neutrinos from Population III stars will not be observable with current or near future neutrino telescopes, falling below both IceCube sensitivity and atmospheric neutrino background under the most extreme assumptions for the GRB rate. This rules them out as a viable diagnostic tool for these still elusive metal-free stars.

  3. Investigating the earliest epochs of the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else; Starkenburg

    2016-08-01

    Resolved stellar spectroscopy can obtain knowledge about chemical enrichment processes back to the earliest times, when the oldest stars were formed. In this contribution I will review the early (chemical) evolution of the Milky Way halo from an observational perspective. In particular, I will discuss our understanding of the origin of the peculiar abundance patterns in various subclasses of extremely metal-poor stars, taking into account new data from our abundance and radial velocity monitoring programs, and their implications for our understanding of the formation and early evolution of both the Milky Way halo and the satellite dwarf galaxies therein. I conclude by presenting the ``Pristine'' survey, a program on the Canada-France-Hawaii Telescope to study this intriguing epoch much more efficiently.

  4. Past epochs of significantly higher pressure atmospheres on Pluto

    NASA Astrophysics Data System (ADS)

    Stern, S. A.; Binzel, R. P.; Earle, A. M.; Singer, K. N.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; New Horizons Geology; Geophysics; Atmospheres Teams

    2017-05-01

    Pluto is known to have undergone thousands of cycles of obliquity change and polar precession. These variations have a large and corresponding impact on the total average solar insolation reaching various places on Pluto's surface as a function of time. Such changes could produce dramatic increases in surface pressure and may explain certain features observed by New Horizons on Pluto's surface, including some that indicate the possibility of surface paleo-liquids. This paper is the first to discuss multiple lines of geomorphological evidence consistent with higher pressure epochs in Pluto's geologic past, and it also the first to provide a mechanism for potentially producing the requisite high pressure conditions needed for an environment that could support liquids on Pluto. The presence of such liquids and such conditions, if borne out by future work, would fundamentally affect our view of Pluto's past climate, volatile transport, and geological evolution. This paper motivates future, more detailed climate modeling and geologic interpretation efforts in this area.

  5. Sub-Daily Earth Rotation during the Epoch '92 Campaign

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Ibanez-Meier, R.; Lichten, S. M.; Dickey, J. O.; Herring, T. A.

    1993-01-01

    Earth rotation measurements were obtained using Global Positioning System (GPS) data for 11 days during the Epoch '92 campaign in the Summer of 1992. Earth orientation was measured simultaneously with several very long baseline interferornetry (VLBI) networks. These data were processed to yield both GPS and VLBI estimates of UT1 with 3-hour time resolution, which were then compared and analyzed. The high frequency behavior of both data sets is similar, although drifts between the two series of approx.0,1 ms over 2-5 days are evident, Models for tidally induced UT1 variations and estimates of atmospheric angular momentum (AAM) at 6-hour intervals were also compared with the geodetic data, These studies indicate that most of the geodetic signal in the diurnal and semidiurnal frequency bands can be attributed to tidal processes, and that UT1 variations over a few days are mostly atmospheric in origin.

  6. Subdaily Earth rotation during the Epoch '92 campaign

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Ibanez-Meier, R.; Herring, T. A.; Lichten, S. M.; Dickey, J. O.

    1994-01-01

    Global Positioning System (GPS) data were used to estimate Earth rotation variations over an 11-day period during the Epoch '92 campaign in the summer of 1992. Earth orientation was measured simultaneously by several very long baseline interferometry (VLBI) networks. GPS and VLBI estimates of UT1 with 3-hour time resolution were then compared and analyzed. The high frequency behavior of both data sets is similar, although drifts between the two series of approximately 0.1 ms over 2-5 days are evident. The geodetic results were also compared with models for UT1 fluctuations at tidal periods and with estimates of atmospheric angular momentum made at 6-hour intervals. Most of the geodetic signal in the diurnal and semidiurnal frequency bands can be attributed to tidal processes, whereas UT1 variations over a few days are mostly atmospheric in origin.

  7. Dark Matter Density from Heavy Neutrino Decays

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan; Rostampour, Malihe

    2012-10-01

    As we know the heavy neutrino decays is a successful model for describing dark matter and also is origin of the universe entropy. In this paper we use heavy neutrino decays to calculate time-dependent dark matter density. In that case we use observational data to fixing our solutions.

  8. The Dark Ages Lunar Interferometer (DALI)

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Kasper, J.; Jones, D.; Burns, J.; Furlanetto, S.; Weiler, K.; MacDowall, R.; Demaio, L.; Bale, S.; Ellingson, S.; Greenhill, L.; Taylor, G. B.

    2007-12-01

    The Dark Ages Lunar Interferometer (DALI) is a Moon-based telescope concept aimed at imaging highly-redshifted neutral hydrogen signals from the first large scale structures forming during the Dark Ages. The Universe's Dark Ages are the interval after recombination until the formation of the first luminous objects. During the Dark Ages, baryons---neutral hydrogen atoms---were able to collapse into dark matter-dominated, overdense regions for the first time. As the H I gas accumulated in overdense regions, its excitation temperature decoupled from, and became lower than, the temperature of the cosmic microwave background (CMB). Observations of the highly-redshifted hyperfine (21-cm) transition should show a patchwork of absorption features from the first large-scale structures against the CMB. The DALI will construct a *3-dimensional* view of the Dark Ages by imaging the (redshifted) H I 21-cm line at different wavelengths These observations will probe structure formation in the relatively simple *linear regime*, and the H I line may represent the *only* means of obtaining information about this cosmic epoch. Operating at 1--30 meter wavelengths (10--300 MHz), probing redshifts 6 < z < 100, DALI would be located on the far side of the Moon, where it would be shielded from terrestrial emissions and, for half of the Moon's orbit, from solar radio emissions. In order to have sufficient sensitivity, the array must have an effective collecting area of at least 10 km2. We illustrate the notional DALI concept and identify areas of technology development that will be required over the next decade in order to enable the deployment of DALI in following decades under NASA's Exploration Initiative.

  9. Dynamics and Multiplicity of Young Star Clusters: Getting the Most Out of Single Epoch Radial Velocity Data

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel

    The velocity distribution of stellar systems in a cluster and its binary population provide powerful constraints on theories concerning the formation and subsequent evolution of these clusters. Unfortunately radial velocity variations due to binary orbits tend to mask the underlying velocity distribution for clusters with a small velocity dispersion. One possibility to solve this is to identify the spectroscopic binaries through multi-epoch observations. Here we present an alternative procedure. Even with only a single epoch of data, the radial velocity distribution due to the binary orbital motions is expected to be significantly different to the underlying velocity distribution, so it is possible to separate these distributions. This allows the underlying velocity distribution of a cluster, as well as the binary fraction, to be estimated from a single epoch of radial velocity data. We show that the measured velocity distribution depends only weakly on assumptions made about the binary properties. The procedure successfully reproduces the radial velocity dispersion of ˜ 0. 5 km/s in the open cluster NGC 188. A more complete discussion on the mechanics of this procedure, its accuracy, and the test run on NGC 188 can be found in Cottaar et al. (A&A 547:A35, 2012).

  10. Z-portal dark matter

    SciTech Connect

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois E-mail: yann.mambrini@th.u-psud.fr

    2015-03-01

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ} ∼> 200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV . The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sup SD}{sub χn} ≅ 10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  11. Z-portal dark matter

    SciTech Connect

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  12. Z-portal dark matter

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois

    2015-03-01

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit mχ gtrsim 200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV . The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σSDχn simeq 10-40 cm2, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  13. Gravitational Waves from a Dark Phase Transition.

    PubMed

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  14. Gravitational Waves from a Dark Phase Transition

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro

    2015-10-01

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU (N ) dark sectors with nf flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.

  15. Dark matter from dark energy in q-theory

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Volovik, G. E.

    2017-01-01

    A constant (spacetime-independent) q-field may play a crucial role for the cancellation of Planck-scale contributions to the gravitating vacuum energy density. We now show that a small spacetime-dependent perturbation of the equilibrium q-field behaves gravitationally as a pressureless perfect fluid. This makes the fluctuating part of the q-field a candidate for the inferred dark-matter component of the present universe. For a Planck-scale oscillation frequency of the q-field perturbation, the implication would be that direct searches for dark-matter particles would remain unsuccessful in the foreseeable future.

  16. Dark energy and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Kuhlen, Michael; Strigari, Louis E.; Zentner, Andrew R.; Bullock, James S.; Primack, Joel R.

    2005-02-01

    We investigate the effect of dark energy on the density profiles of dark matter haloes with a suite of cosmological N-body simulations and use our results to test analytic models. We consider constant equation of state models, and allow both w>=-1 and w < -1. Using five simulations with w ranging from -1.5 to -0.5, and with more than ~1600 well-resolved haloes each, we show that the halo concentration model of Bullock et al. accurately predicts the median concentrations of haloes over the range of w, halo masses and redshifts that we are capable of probing. We find that the Bullock et al. model works best when halo masses and concentrations are defined relative to an outer radius set by a cosmology-dependent virial overdensity. For a fixed power spectrum normalization and fixed-mass haloes, larger values of w lead to higher concentrations and higher halo central densities, both because collapse occurs earlier and because haloes have higher virial densities. While precise predictions of halo densities are quite sensitive to various uncertainties, we make broad comparisons to galaxy rotation curve data. At fixed power spectrum normalization (fixed σ8), w > -1 quintessence models seem to exacerbate the central density problem relative to the standard w=-1 model. For example, models with w~=- 0.5 seem disfavoured by the data, which can be matched only by allowing extremely low normalizations, σ8<~ 0.6. Meanwhile w < -1 models help to reduce the apparent discrepancy. We confirm that the halo mass function of Jenkins et al. provides an excellent approximation to the abundance of haloes in our simulations and extend its region of validity to include models with w < -1.

  17. Stringent neutrino flux constraints on antiquark nugget dark matter

    NASA Astrophysics Data System (ADS)

    Gorham, P. W.; Rotter, B. J.

    2017-05-01

    Strongly interacting matter in the form of nuggets of nuclear-density material is not currently excluded as a dark matter candidate in the ten gram to hundreds of kilogram mass range. A recent variation on quark nugget dark matter models postulates that a first-order imbalance between matter and antimatter at the quark-gluon phase transition in the early Universe could lead to most of the dark matter bound into heavy (baryon number B ˜1 025) antiquark nuggets in the current epoch, explaining both the dark matter preponderance and the matter-antimatter asymmetry. Interactions of these massive objects with normal matter in the Earth and Sun lead to annihilation and an associated neutrino flux in the ˜30 MeV range. We calculate these fluxes for antiquark nuggets of sufficient flux to account for the dark matter and find that current neutrino flux limits from Super-Kamiokande (SuperK) exclude these objects as major dark matter candidates at a high confidence level. Antiquark nuggets in the previously allowed mass range cannot account for more than ˜15 % of the dark matter flux.

  18. Satellite- and Epoch Differenced Precise Point Positioning Based on a Regional Augmentation Network

    PubMed Central

    Li, Haojun; Chen, Junping; Wang, Jiexian; Wu, Bin

    2012-01-01

    Precise Point Positioning (PPP) has been demonstrated as a simple and effective approach for user positioning. The key issue in PPP is how to shorten convergence time and improve positioning efficiency. Recent researches mainly focus on the ambiguity resolution by correcting residual phase errors at a single station. The success of this approach (referred to hereafter as NORM-PPP) is subject to how rapidly one can fix wide-lane and narrow-lane ambiguities to achieve the first ambiguity-fixed solution. The convergence time of NORM-PPP is receiver type dependent, and normally takes 15–20 min. Different from the general algorithm and theory by which the float ambiguities are estimated and the integer ambiguities are fixed, we concentrate on a differential PPP approach: the satellite- and epoch differenced (SDED) approach. In general, the SDED approach eliminates receiver clocks and ambiguity parameters and thus avoids the complicated residual phase modeling procedure. As a further development of the SDED approach, we use a regional augmentation network to derive tropospheric delay and remaining un-modeled errors at user sites. By adding these corrections and applying the Robust estimation, the weak mathematic properties due to the ED operation is much improved. Implementing this new approach, we need only two epochs of data to achieve PPP positioning converging to centimeter-positioning accuracy. Using seven days of GPS data at six CORS stations in Shanghai, we demonstrate the success rate, defined as the case when three directions converging to desired positioning accuracy of 10 cm, reaches 100% when the interval between the two epochs is longer than 15 min. Comparing the results of 15 min' interval to that of 10 min', it is observed that the position RMS improves from 2.47, 3.95, 5.78 cm to 2.21, 3.93, 4.90 cm in the North, East and Up directions, respectively. Combining the SDED coordinates at the starting point and the ED relative coordinates thereafter, we

  19. Satellite- and epoch differenced precise point positioning based on a regional augmentation network.

    PubMed

    Li, Haojun; Chen, Junping; Wang, Jiexian; Wu, Bin

    2012-01-01

    Precise Point Positioning (PPP) has been demonstrated as a simple and effective approach for user positioning. The key issue in PPP is how to shorten convergence time and improve positioning efficiency. Recent researches mainly focus on the ambiguity resolution by correcting residual phase errors at a single station. The success of this approach (referred to hereafter as NORM-PPP) is subject to how rapidly one can fix wide-lane and narrow-lane ambiguities to achieve the first ambiguity-fixed solution. The convergence time of NORM-PPP is receiver type dependent, and normally takes 15-20 min. Different from the general algorithm and theory by which the float ambiguities are estimated and the integer ambiguities are fixed, we concentrate on a differential PPP approach: the satellite- and epoch differenced (SDED) approach. In general, the SDED approach eliminates receiver clocks and ambiguity parameters and thus avoids the complicated residual phase modeling procedure. As a further development of the SDED approach, we use a regional augmentation network to derive tropospheric delay and remaining un-modeled errors at user sites. By adding these corrections and applying the Robust estimation, the weak mathematic properties due to the ED operation is much improved. Implementing this new approach, we need only two epochs of data to achieve PPP positioning converging to centimeter-positioning accuracy. Using seven days of GPS data at six CORS stations in Shanghai, we demonstrate the success rate, defined as the case when three directions converging to desired positioning accuracy of 10 cm, reaches 100% when the interval between the two epochs is longer than 15 min. Comparing the results of 15 min' interval to that of 10 min', it is observed that the position RMS improves from 2.47, 3.95, 5.78 cm to 2.21, 3.93, 4.90 cm in the North, East and Up directions, respectively. Combining the SDED coordinates at the starting point and the ED relative coordinates thereafter, we

  20. Dark Energy in the Dark Ages

    SciTech Connect

    Linder, Eric V.

    2006-04-11

    Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or"reasonable'" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of<~;;2percent of total energy density at z>> 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5percent of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently sigma 8, and the shape and evolution of the nonlinear mass power spectrum for z<2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z=0-1100.

  1. Spherical collapse model in agegraphic dark energy cosmologies

    NASA Astrophysics Data System (ADS)

    Rezaei, Mehdi; Malekjani, Mohammad

    2017-09-01

    Under the commonly used spherical collapse model, we study how dark energy affects the growth of large scale structures of the Universe in the context of agegraphic dark energy models. The dynamics of the spherical collapse of dark matter halos in nonlinear regimes is determined by the properties of the dark energy model. We show that the main parameters of the spherical collapse model are directly affected by the evolution of dark energy in the agegraphic dark energy models. We compute the spherical collapse quantities for different values of agegraphic model parameter α in two different scenarios: first, when dark energy does not exhibit fluctuations on cluster scales, and second, when dark energy inside the overdense region collapses similar to dark matter. Using the Sheth-Tormen and Reed mass functions, we investigate the abundance of dark matter halos in the framework of agegraphic dark energy cosmologies. The model parameter α is a crucial parameter in order to count the abundance of dark matter halos. Specifically, the present analysis suggests that the agegraphic dark energy model with a bigger (smaller) value of α predicts less (more) virialized halos with respect to that of Λ CDM cosmology. We also show that in agegraphic dark energy models, the number of halos strongly depends on clustered or uniformed distributions of dark energy.

  2. Scale of dark QCD

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Schwaller, Pedro

    2014-03-01

    Most of the mass of ordinary matter has its origin from quantum chromodynamics (QCD). A similar strong dynamics, dark QCD, could exist to explain the mass origin of dark matter. Using infrared fixed points of the two gauge couplings, we provide a dynamical mechanism that relates the dark QCD confinement scale to our QCD scale, and hence provides an explanation for comparable dark baryon and proton masses. Together with a mechanism that generates equal amounts of dark baryon and ordinary baryon asymmetries in the early Universe, the similarity of dark matter and ordinary matter energy densities can be naturally explained. For a large class of gauge group representations, the particles charged under both QCD and dark QCD, necessary ingredients for generating the infrared fixed points, are found to have masses at 1-2 TeV, which sets the scale for dark matter direct detection and novel collider signatures involving visible and dark jets.

  3. Chiral Dark Sector

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-01

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U (1 )D , which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U (1 )D quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U (1 )D gauge boson. Alternatively, if the dark pion stays light due to a specific U (1 )D charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  4. The Lick AGN Monitoring Project: Recalibrating Single-epoch Virial Black Hole Mass Estimates

    NASA Astrophysics Data System (ADS)

    Park, Daeseong; Woo, Jong-Hak; Treu, Tommaso; Barth, Aaron J.; Bentz, Misty C.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor; Greene, Jenny E.; Malkan, Matthew A.; Walsh, Jonelle

    2012-03-01

    We investigate the calibration and uncertainties of black hole (BH) mass estimates based on the single-epoch (SE) method, using homogeneous and high-quality multi-epoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for nine local Seyfert 1 galaxies with BH masses <108 M ⊙. By decomposing the spectra into their AGNs and stellar components, we study the variability of the SE Hβ line width (full width at half-maximum intensity, FWHMHβ or dispersion, σHβ) and of the AGN continuum luminosity at 5100 Å (L 5100). From the distribution of the "virial products" (vprop FWHMHβ 2 L 0.5 5100 or σHβ 2 L 0.5 5100) measured from SE spectra, we estimate the uncertainty due to the combined variability as ~0.05 dex (12%). This is subdominant with respect to the total uncertainty in SE mass estimates, which is dominated by uncertainties in the size-luminosity relation and virial coefficient, and is estimated to be ~0.46 dex (factor of ~3). By comparing the Hβ line profile of the SE, mean, and root-mean-square (rms) spectra, we find that the Hβ line is broader in the mean (and SE) spectra than in the rms spectra by ~0.1 dex (25%) for our sample with FWHMHβ <3000 km s-1. This result is at variance with larger mass BHs where the difference is typically found to be much less than 0.1 dex. To correct for this systematic difference of the Hβ line profile, we introduce a line-width dependent virial factor, resulting in a recalibration of SE BH mass estimators for low-mass AGNs.

  5. Dynamic Heights in the Great Lakes at Different Epochs

    NASA Astrophysics Data System (ADS)

    Roman, D. R.

    2016-12-01

    Vertical control in the Great Lakes region is currently defined by the International Great Lakes Datum of 1985 (IGLD 85) in the form of dynamic heights. Starting in 2025, dynamic heights will be defined through GNSS-derived geometric coordinates and a geopotential model. This paper explores the behavior of an existing geopotential model at different epochs when the Great Lakes were at significantly different (meter-level) geopotential surfaces. Water surfaces were examined in 2015 and 2010 at six sites on Lakes Superior and Lake Erie (three on each Lake). These sites have collocated a Continuously Operating Reference Station (CORS) and a Water Level Sensor (WLS). The offset between the antenna phase center for the CORS and the WLS datum are known at each site. The WLS then measures the distance from its datum to the Lake surface via an open well. Thus it is possible to determine the height above an ellipsoid datum at these sites as long as both the CORS and WLS are operational. The geometric coordinates are then used to estimate the geopotential value from the xGEOID16B model. This accomplished in two steps. To provide an improved reference model, EGM2008 was spectrally enhanced using observations from the GOCE satellite gravity mission and aerogravity from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Project. This enhanced model, xGEOID16B_Ref, is still only a five arcminute resolution model (d/o 2160), but resolves dynamic heights at about 2 cm on Lake Superior for December 2015. The reference model was primarily developed to determine a one arcminute geoid height grid, xGEOID16B, available on the NGS website. This geoid height model was used to iteratively develop improved geopotential value for each of the site locations, which then improved comparisons to the cm-level. Comparisons were then made at the 2010 epoch for these same locations to determine if the performance of the geopotential model was consistent.

  6. Dark count rates in the STIS FUV MAMA

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2015-09-01

    Dark count rates in the STIS FUV MAMA are regularly monitored. The observation sequence was altered from an earlier method to measure the rate as a function of time and temperature shortly after the instrument is turned on. The dark rate exhibits an approximately quadratic de-pendence on temperature. A recommendation for estimating the observation-specific dark rate is given.

  7. Temperature dependence of 1/f noise, defects, and dark current in small pitch MWIR and LWIR HDVIP® HgCdTe FPAs

    NASA Astrophysics Data System (ADS)

    Strong, Roger L.; Kinch, Michael A.; Armstrong, John M.

    2013-06-01

    Reducing an array's pixel pitch reduces the size and weight of the focal plane array (FPA) and its associated dewar, cooler and optics. Higher operating temperatures reduce cool-down time and cooler power, enabling reduced cooler size and weight. High operating temperature small pitch (<=15 um) infrared detectors are therefore highly desirable. We have characterized a large number of MWIR and LWIR FPAs as a function of temperature and cutoff wavelength to determine the impact of these parameters on the FPA's dark current, 1/f noise and defects. The 77K cutoff wavelength range for the MWIR arrays was 5.0-5.6 um, and 8.5-11 um for the LWIR arrays. DRS' HDVIP® FPAs are based on a front-side illuminated, via interconnected, cylindrical geometry, N+/N/P architecture. An FPA's 1/f noise is manifested as a tail in the FPA's rmsnoise distribution. We have found that the model-independent nonparametric skew [(mean-median)/standard deviation] of the rmsnoise distribution is a highly effective tool for quantifying the magnitude of an FPA's 1/f noise tail. In this paper we show that a standard FPA's 1/f noise varies as ni (the intrinsic carrier concentration), in agreement with models that treat dislocations as donor pipes located within the P-volume of the unit cell. Nonstandard FPAs have been observed with systemic 1/f noise which varies as ni2.

  8. Dark radiation from modulated reheating

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takeshi; Takahashi, Fuminobu; Takahashi, Tomo; Yamaguchi, Masahide

    2012-03-01

    We show that the modulated reheating mechanism can naturally account for dark radiation, whose existence is hinted by recent observations of the cosmic microwave background radiation and the primordial Helium abundance. In this mechanism, the inflaton decay rate depends on a light modulus which acquires almost scale-invariant quantum fluctuations during inflation. We find that the light modulus is generically produced by the inflaton decay and therefore a prime candidate for the dark radiation. Interestingly, an almost scale-invariant power spectrum predicted in the modulated reheating mechanism gives a better fit to the observation in the presence of the extra radiation. We discuss the production mechanism of the light modulus in detail taking account of its associated isocurvature fluctuations. We also consider a case where the modulus becomes the dominant component of dark matter.

  9. Secretly asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  10. The Murchison Widefield Array 21cm Epoch of Reionization Experiment: Design, Construction, and First Season Results

    NASA Astrophysics Data System (ADS)

    Beardsley, Adam

    The Cosmic Dark Ages and the Epoch of Reionization (EoR) remain largely unexplored chapters in the history and evolution of the Universe. These periods hold the potential to inform our picture of the cosmos similar to what the Cosmic Microwave Background has done over the past several decades. A promising method to probe the neutral hydrogen gas between early galaxies is known as 21cm tomography, which utilizes the ubiquitous hyper-fine transition of HI to create 3D maps of the intergalactic medium. The Murchison Widefield Array (MWA) is an instrument built with a primary science driver to detect and characterize the EoR through 21cm tomography. In this thesis we explore the challenges faced by the MWA from the layout of antennas, to a custom analysis pipeline, to bridging the gap with probes at other wavelengths. We discuss many lessons learned in the course of reducing MWA data with an extremely precise measurement in mind, and conclude with the first deep integration from array. We present a 2-sigma upper limit on the EoR power spectrum of Delta2(k) < 1.25 x 104 mK2 at cosmic scale k = 0.236 h Mpc-1 and redshift z = 6.8. Our result is a marginal improvement over previous MWA results and consistent with the best published limits from other instruments. This result is the deepest imaging power spectrum to date, and is a major step forward for this type of analysis. While our limit is dominated by systematics, we offer strategies for improvement for future analysis.

  11. The Murchison Widefield Array 21cm Epoch of Reionization Experiment: Design, Construction, and First Season Results

    NASA Astrophysics Data System (ADS)

    Beardsley, Adam

    The Cosmic Dark Ages and the Epoch of Reionization (EoR) remain largely unexplored chapters in the history and evolution of the Universe. These periods hold the potential to inform our picture of the cosmos similar to what the Cosmic Microwave Background has done over the past several decades. A promising method to probe the neutral hydrogen gas between early galaxies is known as 21cm tomography, which utilizes the ubiquitous hyper-fine transition of HI to create 3D maps of the intergalactic medium. The Murchison Widefield Array (MWA) is an instrument built with a primary science driver to detect and characterize the EoR through 21cm tomography. In this thesis we explore the challenges faced by the MWA from the layout of antennas, to a custom analysis pipeline, to bridging the gap with probes at other wavelengths. We discuss many lessons learned in the course of reducing MWA data with an extremely precise measurement in mind, and conclude with the first deep integration from array. We present a 2-σ upper limit on the EoR power spectrum of Δ^2(k)<1.25×10^4 mK^2 at cosmic scale k=0.236 h Mpc^{-1} and redshift z=6.8. Our result is a marginal improvement over previous MWA results and consistent with the best published limits from other instruments. This result is the deepest imaging power spectrum to date, and is a major step forward for this type of analysis. While our limit is dominated by systematics, we offer strategies for improvement for future analysis.

  12. Constraining Dark Energy

    NASA Astrophysics Data System (ADS)

    Abrahamse, Augusta

    2010-12-01

    Future advances in cosmology will depend on the next generation of cosmological observations and how they shape our theoretical understanding of the universe. Current theoretical ideas, however, have an important role to play in guiding the design of such observational programs. The work presented in this thesis concerns the intersection of observation and theory, particularly as it relates to advancing our understanding of the accelerated expansion of the universe (or the dark energy). Chapters 2 - 4 make use of the simulated data sets developed by the Dark Energy Task Force (DETF) for a number of cosmological observations currently in the experimental pipeline. We use these forecast data in the analysis of four quintessence models of dark energy: the PNGB, Exponential, Albrecht-Skordis and Inverse Power Law (IPL) models. Using Markov Chain Monte Carlo sampling techniques we examine the ability of each simulated data set to constrain the parameter space of these models. We examine the potential of the data for differentiating time-varying models from a pure cosmological constant. Additionally, we introduce an abstract parameter space to facilitate comparison between models and investigate the ability of future data to distinguish between these quintessence models. In Chapter 5 we present work towards understanding the effects of systematic errors associated with photometric redshift estimates. Due to the need to sample a vast number of deep and faint galaxies, photometric redshifts will be used in a wide range of future cosmological observations including gravitational weak lensing, baryon accoustic oscillations and type 1A supernovae observations. The uncertainty in the redshift distributions of galaxies has a significant potential impact on the cosmological parameter values inferred from such observations. We introduce a method for parameterizing uncertainties in modeling assumptions affecting photometric redshift calculations and for propagating these

  13. Accelerometry to Assess Preschooler's Free-Play: Issues with Count Thresholds and Epoch Durations

    ERIC Educational Resources Information Center

    Oliver, Melody; Schofield, Grant M.; Schluter, Philip J.

    2009-01-01

    This study examines the utility of current accelerometer threshold definitions and epoch durations for physical activity intensity classification in preschool-aged children. Using video footage of children engaged in active play, directly observed 1-sec epoch physical activity intensity scores were derived from a modified version of the Children's…

  14. Accelerometry to Assess Preschooler's Free-Play: Issues with Count Thresholds and Epoch Durations

    ERIC Educational Resources Information Center

    Oliver, Melody; Schofield, Grant M.; Schluter, Philip J.

    2009-01-01

    This study examines the utility of current accelerometer threshold definitions and epoch durations for physical activity intensity classification in preschool-aged children. Using video footage of children engaged in active play, directly observed 1-sec epoch physical activity intensity scores were derived from a modified version of the Children's…

  15. Superdense cosmological dark matter clumps

    SciTech Connect

    Berezinsky, V.; Dokuchaev, V.; Eroshenko, Yu.; Kachelriess, M.; Solberg, M. Aa.

    2010-05-15

    The formation and evolution of superdense clumps (or subhalos) is studied. Such clumps of dark matter (DM) can be produced by many mechanisms, most notably by spiky features in the spectrum of inflationary perturbations and by cosmological phase transitions. Being produced very early during the radiation-dominated epoch, superdense clumps evolve as isolated objects. They do not belong to hierarchical structures for a long time after production, and therefore they are not destroyed by tidal interactions during the formation of larger structures. For DM particles with masses close to the electroweak mass scale, superdense clumps evolve towards a power-law density profile {rho}(r){proportional_to}r{sup -1.8} with a central core. Superdense clumps cannot be composed of standard neutralinos, since their annihilations would overproduce the diffuse gamma radiation. If the clumps are constituted of superheavy DM particles and develop a sufficiently large central density, the evolution of their central part can lead to a ''gravithermal catastrophe.'' In such a case, the initial density profile turns into an isothermal profile with {rho}{proportional_to}r{sup -2} and a new, much smaller core in the center. Superdense clumps can be observed by gamma radiation from DM annihilations and by gravitational wave detectors, while the production of primordial black holes and cascade nucleosynthesis constrain this scenario.

  16. Inflationary imprints on dark matter

    SciTech Connect

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo E-mail: tommi.tenkanen@helsinki.fi

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z{sub 2} symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ{sup †}Φ s{sup 2}. Dark matter relic density is generated non-thermally for λ ∼< 10{sup −7}. We show that the dark matter yield crucially depends on the inflationary scale. For H∼ 10{sup 10} GeV we find that the singlet self-coupling and mass should lie in the regime λ{sub s}∼> 10{sup −9} and m{sub s}∼< 50 GeV to avoid dark matter overproduction.

  17. Relativistic Dark Matter at the Galactic Center

    SciTech Connect

    Amin, Mustafa A.; Wizansky, Tommer; /SLAC

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  18. Large Scale Structure in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton; Mould, Jeremy; Cooke, Jeffrey; Wyithe, Stuart; Lidman, Christopher; Trenti, Michele; Abbott, Tim; Kunder, Andrea; Barone-Nugent, Robert; Tescari, Edoardo; Katsianis, Antonios

    2014-02-01

    We propose to capitalize on the high red sensitivity and large field of view of DECam to detect the brightest and rarest galaxies at z=6-7. Our 2012 results show the signature of large scale structure with wavenumber of order 0.1 inverse Mpc in line with expectations of primordial non-gaussianity. But the signal to noise in one deep field from two nights' data is insufficient for a robust conclusion. Ten nights' data will do the job. These data will also constrain the galaxy contribution to reionization by enabling a tighter constraint on the full galaxy luminosity function, including the faint end. The observations will be executed with a cadence and depth that will enable the detection of super-luminous supernovae at z=6-7. Super-luminous supernovae are a recently observed class of supernovae that are 10-100x more luminous than typical supernovae. This class includes pair- instability supernovae that are a rare, third type of supernova explosion in which only 3 events are known. The proposed observations will greatly extend the current reach of supernovae research, examining their occurrence rate and properties near the epoch of reionization.

  19. Galaxy Morphologies at the Peak Epoch of Mass Assembly

    NASA Astrophysics Data System (ADS)

    Ravindranath, Swara

    2010-01-01

    Galaxy Morphologies have been studied quite extensively in the recent years,using the highest resolution images available from the deep surveys done with the Hubble Space Telescope (HST). There is some consensus that the Hubble Sequence of galaxy morphologies seen in the present-day Universe is likely to have emerged around z=2-3. Interestingly, this also corresponds to the peak epoch of star formation and mass assembly. The class of massive, red galaxies that have compact sizes, and the clumpy star-forming galaxies with intense starbursts that are observed at z˜2 do not have similar counterparts at low redshift. The observed transition in galaxy morphologies at z>2 is affected by various issues. At high redshifts, HST/ACS images probe the rest-frame UV light which only traces the star-forming regions, and may be severely affected by dust extinction. Surface-brightness dimming also becomes very significant at z>2, causing the observed morphologies to be biased by the distribution of the brightest regions in the galaxies. I will review some of the recent results on galaxy morphology at z=2 based on HST/ACS and NICMOS images, with a prelude to what may be learnt using rest-frame optical images from the upcoming HST/WFC3 deep surveys.

  20. Zero-metallicity stellar sources and the reionization epoch

    NASA Astrophysics Data System (ADS)

    Cojazzi, Paolo; Bressan, Alessandro; Lucchin, Francesco; Pantano, Ornella; Chavez, Miguel

    2000-07-01

    We reconsider the problem of the cosmological reionization owing to stellar sources. Using a method similar to that developed by Haiman & Loeb, we investigate the effect of changing the stellar models and the stellar spectra adopted for deriving the ionizing photon production rate. In particular, we study the consequences of adopting zero-metallicity stars, which is the natural choice for the first stellar populations. We construct young isochrones representative of Population III stars from existing sets of evolutionary models (by Forieri and Cassisi & Castellani) and calculate a suitable library of zero-metallicity model atmospheres. The number of ionizing photons emitted by such a zero-metal population is about 40 per cent higher than that produced by standard metal-poor isochrones. We find that adopting suitable zero-metallicity models modifies the reionization epoch. However the latter is still largely affected by current uncertainties in other important physical processes such as the efficiency of the star formation and the fraction of escaping UV photons.

  1. Superposed Epoch Analysis of Current Systems During Intense Magnetic Storms

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Katus, R. M.

    2013-05-01

    A statistical approach to investigating the intensity and timing of storm-time current systems is conducted and presented. The Hot Electron and Ion Drift Integrator (HEIDI) model was used to simulate all of the intense storms (Dstmin < -100 nT) from solar cycle 23 (1996-2005). Five different HEIDI input combinations were used to create a large collection of numerical results, varying the plasma outer boundary condition and electric field description in the model. The simulation results are then combined with a normalized superposed epoch analysis, where each phase of each storm is prorated to the average duration of that phase and then all of the storms are averaged together. The azimuthal currents in the HEIDI simulation domain are classified as westward and eastward symmetric ring current, partial ring current, banana current, and tail current. The average behavior of these current systems with respect to the HEIDI plasma and electric field boundary conditions are then presented and discussed. It is found that the Volland-Stern electric field produces an earlier increase in the inner magnetospheric current systems because of the usage of the 3-h Kp index. A self-consistent electric field develops the current systems a few hours later, but produces much stronger asymmetric current systems (partial, banana, and tail currents), especially in the main phase of the storm. Applying a nonuniform local time distribution for the plasma outer boundary condition slightly increases the magnitudes of the current systems, but this effect is smaller than the electric field influence.

  2. Second Epoch VLBA Calibrator Survey Observations - VCS-II

    NASA Technical Reports Server (NTRS)

    Gordon, David; Jacobs, Christopher; Beasley, Anthony; Peck, Alison; Gaume, Ralph; Charlot, Patrick; Fey, Alan; Ma, Chopo; Titov, Oleg; Boboltz, David

    2016-01-01

    Six very successful VLBA calibrator survey campaigns were run between 1994 and 2007 to build up a large list of compact radio sources with positions precise enough for use as VLBI phase reference calibrators. We report on the results of a second epoch VLBA Calibrator Survey campaign (VCS-II) in which 2400 VCS sources were re-observed at X and S bands in order to improve the upcoming third realization of the International Celestial Reference Frame (ICRF3) as well as to improve their usefulness as VLBI phase reference calibrators. In this survey, some 2062 previously detected sources and 324 previously undetected sources were detected and revised positions are presented. Average position uncertainties for the reobserved sources were reduced from 1.14 and 1.98 mas to 0.24 and 0.41 mas in RA and Declination, respectively, or by nearly a factor of 5. Minimum detected flux values were approximately 15 and 28 mJy in X and S bands, respectively, and median total fluxes are approximately 230 and 280 mJy. The vast majority of these sources are flat-spectrum sources, with approximately 82% having spectral indices greater than -0.5.

  3. Quasar feedback at the peak of the galaxy formation epoch

    NASA Astrophysics Data System (ADS)

    Alexandroff, Rachael; Zakamska, Nadia; Liu, Guilin; Greene, Jenny; Strauss, Michael

    2014-08-01

    Feedback from accreting supermassive black holes is now a standard ingredient in galaxy formation models. It is seen as necessary for limiting the maximal masses of galaxies and for establishing the black- hole / bulge correlations. Using Gemini GMOS, we demonstrated that powerful ionized gas winds are a ubiquitous feature in luminous obscured z=0.5 quasars. We now propose to extend this discovery to the epoch of peak galaxy formation and quasar activity - to the era at which feedback was most prominent and the galaxy / black hole correlations were established. We request 4.5 hours of Gemini-NIFS LGS adaptive- optics observations of an extremely luminous moderately obscured quasar at z=2.3 to map the morphology and kinematics of the ionized gas and to determine whether it exhibits the signs of black hole feedback in the form of an unbound ionized gas outflow. We will observe H(beta) and [OIII](lambda)5007Ain the H-band and H(alpha) and [NII](lambda)(lambda)6548,6583Ain the K-band on sub-galactic and galaxy-wide scales (spatial resolution 0.8 kpc, field of view 24 kpc). Obscured quasars likely constitute the majority of the quasar population and may represent the relatively early enshrouded phase of the black hole growth; thus, luminous obscured quasars are the most likely sites of quasar feedback, in agreement with our findings at low redshift.

  4. The “Anthropocene” epoch: Scientific decision or political statement?

    USGS Publications Warehouse

    Finney, Stanley C.; Edwards, Lucy E.

    2016-01-01

    The proposal for the “Anthropocene” epoch as a formal unit of the geologic time scale has received extensive attention in scientific and public media. However, most articles on the Anthropocene misrepresent the nature of the units of the International Chronostratigraphic Chart, which is produced by the International Commission on Stratigraphy (ICS) and serves as the basis for the geologic time scale. The stratigraphic record of the Anthropocene is minimal, especially with its recently proposed beginning in 1945; it is that of a human lifespan, and that definition relegates considerable anthropogenic change to a “pre-Anthropocene.” The utility of the Anthropocene requires careful consideration by its various potential users. Its concept is fundamentally different from the chronostratigraphic units that are established by ICS in that the documentation and study of the human impact on the Earth system are based more on direct human observation than on a stratigraphic record. The drive to officially recognize the Anthropocene may, in fact, be political rather than scientific.

  5. A dusty, normal galaxy in the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy

    2015-03-01

    Candidates for the modest galaxies that formed most of the stars in the early Universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-ultraviolet imaging. But it has proved difficult for existing spectrographs to characterize them using their ultraviolet light. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant galaxy discovered via its ultraviolet emission and subsequently detected in dust emission is only at z = 3.2 (ref. 5), and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at z >= 7. Here we report thermal dust emission from an archetypal early Universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5 +/- 0.2 from a spectroscopic detection of the Lyman-α break. A1689-zD1 is representative of the star-forming population during the epoch of reionization, with a total star-formation rate of about 12 solar masses per year. The galaxy is highly evolved: it has a large stellar mass and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7.

  6. Revisiting The First Galaxies: The Epoch of Population III Stars

    NASA Astrophysics Data System (ADS)

    Muratov, Alexander; Gnedin, O. Y.; Gnedin, N. Y.; Zemp, M. K.

    2013-01-01

    We study the formation of the first galaxies using new hydrodynamic cosmological simulations with the ART code. Our simulations feature a recently developed model for dust-based formation of molecular gas. Here, we develop and implement a new recipe for the formation of metal-free Pop III stars. We reach a spatial resolution of 2 pc at z=10 and resolve star-forming galaxies with the masses above 10^6 solar masses. We find the epoch during which Pop III stars dominate the energy and metal budget of the universe to be short-lived. While these stars seed their host galaxies with metals, they cannot drive significant outflows to enrich the IGM in our simulations. Feedback from pair instability supernovae causes Pop III star formation to self-terminate within their host galaxies, but is not strong enough to suppress star formation in external galaxies. Within any individual galaxy, Pop II stars overtake Pop III stars within ~50-150 Myr. A threshold of M = 3 * 10^6 solar masses separates galaxies that lose a significant fraction of their baryons due to Pop III feedback from those that do not. Understanding the nature of the transition between Pop III and Pop II star formation is of key importance for studying the dawn of galaxy formation.

  7. Finite Inflation, Holography, and Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Scacco, Andrew Joseph

    This thesis covers work on theoretical cosmology relating to inflation, de Sitter space, dark matter annihilation, and holography. A unifying feature of all these topics is that all of them occur in de Sitter space or focus on epochs of the Universe when the spacetime was close to de Sitter and that all of them have some connection to holography. Chapter 1 provides a pedagogical introduction to the fundamentals of cosmology, inflation, de Sitter space, dark matter annihilation and entanglement entropy. Chapter 2 covers the impact on the causal entropic principle of dark matter annihilation that we find to have the greatest relevance at late times in the future when the dark energy has driven the universe to be asymptotically de Sitter. In this chapter we estimate holographically preferred dark matter properties for a range of assumptions. Chapter 3 covers holographic bounds in models of finite inflation, specifically the Banks-Fischler bound and de Sitter equilibrium. The assumptions in each of these models are explored in detail and some interesting new connections are presented. Chapter 4 tests models of inflation with a fast-roll start that happen to satisfy the holographic bounds in Chapter 3 against cosmic microwave background data from Planck. We find a slight preference for a feature at the scale predicted by the Banks-Fischler bound though this preference is not found to be statistically significant. Chapter 5 contains a numerical computation of the holographic mutual information for an annular configuration of regions on a conformal field theory in de Sitter space using the AdS/CFT correspondence. This computation shows that the de Sitter space CFT entanglement entropy matches what would be expected from a Minkowski CFT and shows that the HRT conjecture works for this case.

  8. How clustering dark energy affects matter perturbations

    NASA Astrophysics Data System (ADS)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  9. Dark before light: testing the cosmic expansion history through the cosmic microwave background

    SciTech Connect

    Linder, Eric V.; Smith, Tristan L. E-mail: tlsmith@berkeley.edu

    2011-04-01

    The cosmic expansion history proceeds in broad terms from a radiation dominated epoch to matter domination to an accelerated, dark energy dominated epoch. We investigate whether intermittent periods of acceleration (from a canonical, minimally coupled scalar field) are possible in the early universe — between Big Bang nucleosynthesis (BBN) and recombination and beyond. We establish that the standard picture is remarkably robust: anisotropies in the cosmic microwave background consistent with ΛCDM will exclude any extra period of accelerated expansion between 1 ≤ z∼<10{sup 5} (corresponding to 5 × 10{sup −4}eV ≤ T∼<25eV)

  10. Initial conditions for the Galileon dark energy

    NASA Astrophysics Data System (ADS)

    Germani, Cristiano

    2017-03-01

    Galileon models are among the most appealing candidates for Dark Energy. The reason is twofold: classically, they provide a tracking solution leading to an almost DeSitter space starting from very generic initial conditions in the deep radiation era. The second reason is the standard lore that Galileons are quantum mechanically stable. The latter property is certainly true in flat space-time, thanks to the non-renormalisation theorems of Galilean coupling constants. However, in a cosmological background, we show that quantum effects might dominate the classical trajectory. Assuming the radiation era to last at least up to the electroweak phase transition, the trajectory with initial conditions sitting on the tracker is ruled out. On the other hand, it is always possible to find a sub-space of initial conditions such that the dark energy solution approaches stably the tracker at late times. Fixing the value of initial conditions that best fit current data, and assuming that the Galileon effective theory is valid up to the beginning of the radiation epoch, we found that the reheating temperature of the universe cannot be larger than 108 GeV. Reversing the argument, if dark energy will turn out to be in form of Galileons, the bounds by EUCLID on the initial conditions for these models will also be a bound on the reheating temperature of our Universe.

  11. The use of epochs to stage sleep results in incorrect computer-generated AHI values.

    PubMed

    Norman, Mark B; Middleton, Sally; Sullivan, Colin E

    2011-09-01

    The objective of this study was to determine what impact the omission of respiratory events scored during wake epochs has on the generation of the apnea/hypopnea index (AHI) using computerised polysomnography (PSG). Sixty diagnostic PSG recordings were scored using the recommended method of sleep staging with epochs. In addition, absolute sleep scoring criteria was used to calculate the total sleep time (TST). The TST, respiratory events and AHI generated from both scoring methods were compared. The AHI from epoch scoring (AHI(EP)) was significantly less than that derived from absolute sleep staging (AHI(ABS)) [AHI(EP) = 15.8 events/hour (7.3, 38.2), AHI(ABS) = 18.8 events/hour (8.7, 40.2); p < 0.0001]. From a total of 8,820 legitimately scored respiratory events ≥10 s duration, 723 (8%) were excluded from the AHI(EP) calculation as they were identified as having occurred during wake, but 400 of these (57%) started in an epoch of wake and continued into epoch(s) of sleep. These omitted events were not trivial [median 16.6 s (13.0, 24.0)] and were frequently associated with oxygen desaturation events [median 4% (3.0, 7.0)] with a range of 3% to 39%. The use of arbitrarily defined epochs for sleep staging has a direct impact on legitimately scored respiratory events resulting in the systematically incorrect reporting of the AHI. This artefact is due to computerised data reduction excluding all respiratory events that are contained within an epoch(s) of wake as well as those that start in an epoch scored as wake.

  12. DarkSide search for dark matter

    SciTech Connect

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  13. Codecaying Dark Matter.

    PubMed

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  14. Asymmetric dark matter

    SciTech Connect

    Kumar, Jason

    2014-06-24

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  15. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  16. Inhomogeneous dark energy

    SciTech Connect

    Chamseddine, Ali H.; Mukhanov, Viatcheslav E-mail: viatcheslav.Mukhanov@lmu.de

    2016-02-01

    We modify Einstein General Relativity by adding non-dynamical scalar fields to account simultaneously for both dark matter and dark energy. The dark energy in this case can be distributed in-homogeneously even within horizon scales. Its inhomogeneities can contribute to the late time integrated Sachs-Wolfe effect, possibly removing some of the low multipole anomalies in the temperature fluctuations of the CMB spectrum. The presence of the inhomogeneous dark matter also influences structure formation in the universe.

  17. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  18. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  19. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  20. Holographic Dark Energy Density

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan

    2011-06-01

    In this article we consider the cosmological model based on the holographic dark energy. We study dark energy density in Universe with arbitrary spatially curvature described by the Friedmann-Robertson-Walker metric. We use Chevallier-Polarski-Linder parametrization to specify dark energy density.

  1. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2011-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  2. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2012-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  3. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Ely, Justin

    2013-10-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  4. NUV Detector Dark Monitor

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2010-09-01

    Perform routine monitoring of MAMA detector dark current. The main purpose isto look for evidence of a change in the dark rates, both to track on-orbit timedependence and to check for a detector problem developing. The spatial distribution of dark rates on the detector and the effect of SAA will also be studied.

  5. Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data

    SciTech Connect

    Amendola, Luca; Campos, Gabriela Camargo; Rosenfeld, Rogerio

    2007-04-15

    Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling {delta} between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w{sub DE}(z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w{sub DE} and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy.

  6. High-dynamic-range extinction mapping of infrared dark clouds. Dependence of density variance with sonic Mach number in molecular clouds

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Tan, J. C.

    2013-01-01

    Context. Measuring the mass distribution of infrared dark clouds (IRDCs) over the wide dynamic range of their column densities is a fundamental obstacle in determining the initial conditions of high-mass star formation and star cluster formation. Aims: We present a new technique to derive high-dynamic-range, arcsecond-scale resolution column density data for IRDCs and demonstrate the potential of such data in measuring the density variance - sonic Mach number relation in molecular clouds. Methods: We combine near-infrared data from the UKIDSS/Galactic Plane Survey with mid-infrared data from the Spitzer/GLIMPSE survey to derive dust extinction maps for a sample of ten IRDCs. We then examine the linewidths of the IRDCs using 13CO line emission data from the FCRAO/Galactic Ring Survey and derive a column density - sonic Mach number relation for them. For comparison, we also examine the relation in a sample of nearby molecular clouds. Results: The presented column density mapping technique provides a very capable, temperature independent tool for mapping IRDCs over the column density range equivalent to AV ≃ 1-100 mag at a resolution of 2″. Using the data provided by the technique, we present the first direct measurement of the relationship between the column density dispersion, σN/⟨N⟩, and sonic Mach number, ℳs, in molecular clouds. We detect correlation between the variables with about 3-σ confidence. We derive the relation σN/⟨N⟩ ≈ (0.047 ± 0.016)ℳs, which is suggestive of the correlation coefficient between the volume density and sonic Mach number, σρ/⟨ρ⟩ ≈ (0.20-0.22+0.37)ℳs, in which the quoted uncertainties indicate the 3-σ range. When coupled with the results of recent numerical works, the existence of the correlation supports the picture of weak correlation between the magnetic field strength and density in molecular clouds (i.e., B ∝ ρ0.5). While our results remain suggestive because of the small number of clouds in our

  7. Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?

    PubMed

    Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim

    2009-10-09

    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.

  8. Atlas Basemaps in Web 2.0 Epoch

    NASA Astrophysics Data System (ADS)

    Chabaniuk, V.; Dyshlyk, O.

    2016-06-01

    The authors have analyzed their experience of the production of various Electronic Atlases (EA) and Atlas Information Systems (AtIS) of so-called "classical type". These EA/AtIS have been implemented in the past decade in the Web 1.0 architecture (e.g., National Atlas of Ukraine, Atlas of radioactive contamination of Ukraine, and others). One of the main distinguishing features of these atlases was their static nature - the end user could not change the content of EA/AtIS. Base maps are very important element of any EA/AtIS. In classical type EA/AtIS they were static datasets, which consisted of two parts: the topographic data of a fixed scale and data of the administrative-territorial division of Ukraine. It is important to note that the technique of topographic data production was based on the use of direct channels of topographic entity observation (such as aerial photography) for the selected scale. Changes in the information technology of the past half-decade are characterized by the advent of the "Web 2.0 epoch". Due to this, in cartography appeared such phenomena as, for example, "neo-cartography" and various mapping platforms like OpenStreetMap. These changes have forced developers of EA/AtIS to use new atlas basemaps. Our approach is described in the article. The phenomenon of neo-cartography and/or Web 2.0 cartography are analysed by authors using previously developed Conceptual framework of EA/AtIS. This framework logically explains the cartographic phenomena relations of three formations: Web 1.0, Web 1.0x1.0 and Web 2.0. Atlas basemaps of the Web 2.0 epoch are integrated information systems. We use several ways to integrate separate atlas basemaps into the information system - by building: weak integrated information system, structured system and meta-system. This integrated information system consists of several basemaps and falls under the definition of "big data". In real projects it is already used the basemaps of three strata: Conceptual

  9. Seeking the Epoch of Maximum Luminosity for Dusty Quasars

    NASA Astrophysics Data System (ADS)

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine

    2014-08-01

    Infrared luminosities νL ν(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 ~ 3 with maximum luminosity νL ν(7.8 μm) >~ 1047 erg s-1 luminosity functions show one quasar Gpc-3 having νL ν(7.8 μm) > 1046.6 erg s-1 for all 2 epoch when quasars first reached their maximum luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL ν(0.25 μm), have the largest values of the ratio νL ν(0.25 μm)/νL ν(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define "obscured" quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ~ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ~ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  10. A dusty, normal galaxy in the epoch of reionization.

    PubMed

    Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy

    2015-03-19

    Candidates for the modest galaxies that formed most of the stars in the early Universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-ultraviolet imaging. But it has proved difficult for existing spectrographs to characterize them using their ultraviolet light. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant galaxy discovered via its ultraviolet emission and subsequently detected in dust emission is only at z = 3.2 (ref. 5), and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at z ≥ 7. Here we report thermal dust emission from an archetypal early Universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5 ± 0.2 from a spectroscopic detection of the Lyman-α break. A1689-zD1 is representative of the star-forming population during the epoch of reionization, with a total star-formation rate of about 12 solar masses per year. The galaxy is highly evolved: it has a large stellar mass and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7.

  11. Characterizing RR Lyraes using SDSS, Single-Epoch Spectroscopy

    NASA Astrophysics Data System (ADS)

    Long, Stacy Scott; Wilhelm, Ronald J.; De Lee, Nathan M.

    2017-01-01

    Starting with Data Release-7, the Sloan Digital Sky Survey (SDSS) has made available the single-epoch spectra (SES) that were previously combined to produce the final composite spectra available for stars and galaxies. These SES can be used to probe time-variability through spectral line strength variations. RR Lyrae stars (RRL) have typically been identified using periodic variations in their light curves. Today, using the SDSS-SES it is possible to, in some cases, identify RRL from changes in the line strengths of the Ca-IIK, H-$\\beta$, H-$\\gamma$, and H-$\\delta$ lines. Similarly, it is possible to construct composite spectra that are free of phase-blending, by grouping SES that have similar spectral line strengths, for an individual star. We have developed a method for comparing SES with synthetic spectra spanning a range of T = [5500,8500]K, log g = [1.0-4.0] and [Fe/H]=[-3.0-0.0] to produce temperatures, surface gravities and metallicities for all SES taken for a given star. Using this method we are able to search for variations in temperature that are 2-sigma beyond the computed uncertainty, indicating that spectral variation is occurring. We will show results using a sample of bright RRL stars of known pulsation phase and stars from SDSS-Stripe82 which have published light curves for several hundred RRLs. We will also present a temperature-phase diagram that shows stars with consistent phases can be produced allowing us to construct composite spectra that are of the same phase for a given star. This is crucially important to the accurate determination of metal abundance for stars in the SDSS spectral foot-print. We will also show details of the compiled Catalina Surveys for stars with SDSS spectroscopy.

  12. On the Detection of Spectral Ripples from the Recombination Epoch

    NASA Astrophysics Data System (ADS)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens

    2015-09-01

    Photons emitted during cosmological hydrogen (500≲ z≲ 1600) and helium recombination (1600≲ z≲ 3500 for He ii \\to He i, 5000≲ z≲ 8000 for He iii \\to He ii) are predicted to appear as broad, weak spectral distortions of the cosmic microwave background. We present a feasibility study for a ground-based detection of these recombination lines, which would uniquely probe astrophysical cosmology beyond the last scattering surface and provide observational constraints on the thermal history of the universe. We find that including sufficient signal spectral structure and maximizing signal-to-noise ratio, an octave band in the 2-6 GHz window is optimal; in this band the predicted signal appears as an additive quasi-sinusoidal component with amplitude about 8 nK embedded in a sky spectrum some nine orders of magnitude brighter. We discuss algorithms to detect these tiny spectral fluctuations in the sky spectrum by foreground modeling and introduce a maximally smooth function capable of describing the foreground spectrum and distinguishing the signal of interest. We conclude that detection is in principle feasible in realistic observing times provided that radio frequency interference and instrument bandpass calibration are controlled in this band at the required level; using Bayesian tests and mock data, we show that 90% confidence detection is possible with an array of 128 radiometers observing for 255 days of effective integration time. We propose APSERa—Array of Precision Spectrometers for the Epoch of Recombination—a dedicated radio telescope to detect these recombination lines.

  13. Seeking the epoch of maximum luminosity for dusty quasars

    SciTech Connect

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine E-mail: dweedman@isc.astro.cornell.edu

    2014-08-01

    Infrared luminosities νL{sub ν}(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 10{sup 46.6} erg s{sup –1} for all 2 epoch when quasars first reached their maximum luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL{sub ν}(0.25 μm), have the largest values of the ratio νL{sub ν}(0.25 μm)/νL{sub ν}(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  14. Influence of Parallel Dark Matter Sectors on Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Challa, Venkata Sai Sreeharsha

    Big Bang Nucleosynthesis (BBN) is a phenomenological theory that describes the synthesis of light nuclei after a few seconds of the cosmic time in the primordial universe. The twelve nuclear reactions in the first few seconds of the cosmic history are constrained by factors such as baryon to photon ratio, number of neutrino families, and present day element abundances. The belief that the expansion of the universe must be slowed down by gravity, was defeated by the recent observation of an accelerated expansion of the universe. Friedmann equations, which describe the cosmic dynamics, need to be revised considering also the existence of dark matter, another recent astronomical observation. The effects of multiple parallel universes of dark matter (dark sectors) on the accelerated expansion of the universe are studied. Collectively, these additional effects will lead to a new cosmological model. We had developed a numerical code on BBN to address the effects of such dark sectors on the abundances of all the light elements. We have studied the effect of degrees of freedom of dark-matter in the early universe on primordial abundances of light elements. The predicted abundances of light elements are compared with observed constraints to obtain bounds on the number of dark sectors, NDM. Comparison of the obtained results with the observations during the BBN epoch shows that the number of dark matter sectors are only loosely constrained, and the dark matter sectors are colder than the ordinary matter sectors. Also, we verified that the existence of parallel dark matter sectors with colder temperatures does not affect the constraints set by observations on the number of neutrino families, Nnu .

  15. Origins and challenges of viral dark matter.

    PubMed

    Krishnamurthy, Siddharth R; Wang, David

    2017-07-15

    The accurate classification of viral dark matter - metagenomic sequences that originate from viruses but do not align to any reference virus sequences - is one of the major obstacles in comprehensively defining the virome. Depending on the sample, viral dark matter can make up from anywhere between 40 and 90% of sequences. This review focuses on the specific nature of dark matter as it relates to viral sequences. We identify three factors that contribute to the existence of viral dark matter: the divergence and length of virus sequences, the limitations of alignment based classification, and limited representation of viruses in reference sequence databases. We then discuss current methods that have been developed to at least partially circumvent these limitations and thereby reduce the extent of viral dark matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. High dark matter densities and the formation of extreme dwarf galaxies

    SciTech Connect

    Lake, G. )

    1990-06-01

    The extreme dwarfs of the Local Group, GR 8, Draco, and Ursa Minor have high densities of dark matter. If the dark matter is dissipationless, then there is a simple relation between the redshift of turnaround z(turn) and its current mean density. Three alternatives for the dSphs are discussed. If the dark matter follows the light, then z(turn) is greater than 30. If a density profile is adopted so that the mean density becomes low enough to be barely consistent with the standard density fluctuation spectrum of cold dark matter, then the mass-to-light ratios are greater than 1000 solar mass/solar luminosity. The last alternative is dissipational dark matter. In this case, the additional collapse factor owing to dissipation allows a later epoch of formation. 39 refs.

  17. Dark microglia: Why are they dark?

    PubMed

    Bisht, Kanchan; Sharma, Kaushik; Lacoste, Baptiste; Tremblay, Marie-Ève

    2016-01-01

    Using transmission electron microscopy (TEM) we recently characterized a microglial phenotype that is induced by chronic stress, fractalkine receptor deficiency, aging, or Alzheimer disease pathology. These 'dark' microglia appear overly active compared with the normal microglia, reaching for synaptic clefts, and extensively engulfing pre-synaptic axon terminals and post-synaptic dendritic spines. From these findings we hypothesized that dark microglia could be specifically implicated in the pathological remodeling of neuronal circuits, which impairs learning, memory, and other essential cognitive functions. In the present addendum we further discuss about the possible causes of their dark appearance under TEM.

  18. The Dark Matter Problem

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2014-02-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  19. On the internal consistency of holographic dark energy models

    SciTech Connect

    Horvat, R

    2008-10-15

    Holographic dark energy (HDE) models, underpinned by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become convincing candidates for providing an explanation of the dark energy in the universe. On the other hand, the maximum number of quantum states that a conventional QFT for a box of size L is capable of describing relates to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cut-off, which cannot be chosen independently of the IR cut-off and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT.

  20. Hunting the dark Higgs

    NASA Astrophysics Data System (ADS)

    Duerr, Michael; Grohsjean, Alexander; Kahlhoefer, Felix; Penning, Bjoern; Schmidt-Hoberg, Kai; Schwanenberger, Christian

    2017-04-01

    We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

  1. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas.

  2. Evolution of the dark matter distribution at the galactic center.

    PubMed

    Merritt, David

    2004-05-21

    Annihilation radiation from neutralino dark matter at the Galactic center (GC) would be greatly enhanced if the dark matter were strongly clustered around the supermassive black hole (SBH). The existence of a dark matter "spike" is made plausible by the observed, steeply rising stellar density near the GC SBH. Here the time-dependent equations describing gravitational interaction of the dark matter with the stars are solved. Scattering of dark matter particles by stars would substantially lower the dark matter density near the GC SBH over 10 Gyr, due both to kinetic heating and to capture of dark matter particles by the SBH. This evolution implies a decrease by several orders of magnitude in the observable flux of annihilation products compared with models that associate a steep, dark matter spike with the SBH.

  3. Dark spatial solitons splitting in logarithmically saturable nonlinear media

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhong; Liu, Baoyuan; Lu, Keqing; Liu, Wangyun; Han, Jun

    2014-12-01

    We numerically simulate the evolution of the dark-notch-bearing optical beam in the logarithmically saturable nonlinear media based on beam propagation method (BPM). The simulation results indicate that the multiple dark spatial solitons are deep, possible in this type of nonlinear media. The number of multiple dark spatial solitons depends on the width of the dark notch, the initial conditions and the peak intensity of the initial input beam. Under the odd and even initial conditions, the odd and even number sequence of multiple dark spatial solitons can be obtained, respectively. For an input beam with fixed optical intensity, the number of dark solitons increases with the width of the initial input dark notch. The behavior of the multiple dark solitons in this type of media is similar to that in a photorefractive nonlinear crystal.

  4. Organic Chemostratigraphic Markers Characteristic of the (Informally Designated) Anthropocene Epoch

    NASA Astrophysics Data System (ADS)

    Kruge, M. A.

    2008-12-01

    Recognizing the tremendous collective impact of humans on the environment in the industrial age, the proposed designation of the current time period as the Anthropocene Epoch has considerable merit. One of the signature activities during this time continues to be the intensive extraction, processing, and combustion of fossil fuels. While fossil fuels themselves are naturally-occurring, they are most often millions of years old and associated with deeply buried strata. They may be found at the surface, for example, as natural oil seeps or coal seam outcrops, but these are relatively rare occurrences. Fossil fuels and their myriad by- products become the source of distinctive organic chemostratigraphic marker compounds for the Anthropocene when they occur out of their original geological context, i.e., as widespread contaminants in sediments and soils. These persistent compounds have high long-term preservation potential, particularly when deposited under low oxygen conditions. Fossil fuels can occur as environmental contaminants in raw form (e.g., crude petroleum spilled during transport) or as manufactured products (e.g., diesel oil from a leaking storage facility, coal tar from a manufactured gas plant, plastic waste in a landfill, pesticides from petroleum feedstock in agricultural soils). Distinctive assemblages of hydrocarbon marker compounds including acyclic isoprenoids, hopanes, and steranes can be readily detected by gas chromatography/mass spectrometric analysis of surface sediments and soils. Polycyclic aromatic hydrocarbons (PAHs), along with sulfur-, oxygen-, and nitrogen-containing aromatic compounds, are also characteristic of fossil fuels and are readily detectable as well. More widespread is the airfall deposition of fossil fuel combustion products from vehicular, domestic and industrial sources. These occur in higher concentrations in large urban centers, but are also detected in remote areas. Parent (nonmethylated) PAHs such as phenanthrene

  5. Discovery of a Giant Lya Emitter Near the Reionization Epoch

    SciTech Connect

    Ouchi, Masami; Ono, Yoshiaki; Egami, Eiichi; Saito, Tomoki; Oguri, Masamune; McCarthy, Patrick J.; Farrah, Duncan; Kashikawa, Nobunari; Momcheva, Ivelina; Shimasaku, Kazuhiro; Nakanishi, Kouichiro; Furusawa, Hisanori; Akiyama, Masayuki; Dunlop, James S.; Mortier, Angela M.J.; Okamura, Sadanori; Hayashi, Masao; Cirasuolo, Michele; Dressler, Alan; Iye, Masanori; Jarvis, Matt.J.

    2008-08-01

    We report the discovery of a giant Ly{alpha} emitter (LAE) with a Spitzer/IRAC counterpart near the reionization epoch at z = 6.595. The giant LAE is found from the extensive 1 deg{sup 2} Subaru narrow-band survey for z = 6.6 LAEs in the Subaru/XMM-Newton Deep Survey (SXDS) field, and subsequently identified by deep spectroscopy of Keck/DEIMOS and Magellan/IMACS. Among our 207 LAE candidates, this LAE is not only the brightest narrow-band object with L(Ly{alpha}) = 3.9 {+-} 0.2 x 10{sup 43} erg s{sup -1} in our survey volume of 10{sup 6} Mpc{sup 3}, but also a spatially extended Ly{alpha} nebula with the largest isophotal area whose major axis is at least {approx_equal} 3-inches. This object is more likely to be a large Ly{alpha} nebula with a size of {approx}> 17-kpc than to be a strongly-lensed galaxy by a foreground object. Our Keck spectrum with medium-high spectral and spatial resolutions suggests that the velocity width is v{sub FWHM} = 251 {+-} 21 km s{sup -1}, and that the line-center velocity changes by {approx_equal} 60 km s{sup -1} in a 10-kpc range. The stellar mass and star-formation rate are estimated to be 0.9-5.0 x 10{sup 10}M{sub {circle_dot}} and > 34 M{sub {circle_dot}}yr{sup -1}, respectively, from the combination of deep optical to infrared images of Subaru, UKIDSS-Ultra Deep Survey, and Spitzer/IRAC. Although the nature of this object is not yet clearly understood, this could be an important object for studying cooling clouds accreting onto a massive halo, or forming-massive galaxies with significant outflows contributing to cosmic reionization and metal enrichment of inter-galactic medium.

  6. Second Epoch Hubble Space Telescope Imaging of Kepler's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; Blair, William P.; Borkowski, Kazimierz J.; Long, Knox S.; Patnaude, Daniel; Raymond, John C.; Reynolds, Stephen P.; Williams, Brian J.

    2015-01-01

    We have obtained new HST/WFC3 images of Kepler's supernova remnant in H-alpha (F656N) and [N II] (F658N) emission line filters. The bright radiative shocks in dense clumps are detected in both filters, while non-radiative shocks are seen as faint filaments only in the H-alpha image. Most of these Balmer filaments lie around the periphery of the remnant where the blast wave encounters partially neutral interstellar gas. We compare the new images with HST/ACS images taken nearly 10 years previously, and find that these filaments tracing the forward shock have moved 0.6"-0.9" between the two epochs. Assuming a distance of 4 kpc to the remnant, these proper motions correspond to shock velocities of 1160-1740 km/s, which are consistent with the published values, 1550-2000 km/s (e.g. Blair et al. 1991, ApJ 366, 484). We also find a few Balmer filaments with highly non-radial proper motions. In one particularly interesting case in the projected interior of the remnant, SE of the center, the shock appears to have wrapped around a sharp density enhancement and moved about 0.3" in the period between the observations.The images allow us to study the evolution of the shock around an ejecta knot, which is punching through the remnant boundary in the northwest. The forward shock, visible as an arcuate Balmer filament, has moved about 1". At the trailing edges, the system of radiative knots formed by Rayleigh-Taylor instabilities have undergone significant changes - some knots have disappeared, new ones have appeared, and many have changed in brightness. Elsewhere in the remnant we find changes in the relative intensities of many small, bright knots over the 10 year baseline, indicating the short radiative lifetimes of these features.This work has been supported in part by grant HST-GO-12885 to the Universities Space Research Association.

  7. Dark Forces and Light Dark Matter

    SciTech Connect

    Hooper, Dan; Weiner, Neal; Xue, Wei

    2012-09-01

    We consider a simple class of models in which the dark matter, X, is coupled to a new gauge boson, phi, with a relatively low mass (m_phi \\sim 100 MeV-3 GeV). Neither the dark matter nor the new gauge boson have tree-level couplings to the Standard Model. The dark matter in this model annihilates to phi pairs, and for a coupling of g_X \\sim 0.06 (m_X/10 GeV)^1/2 yields a thermal relic abundance consistent with the cosmological density of dark matter. The phi's produced in such annihilations decay through a small degree of kinetic mixing with the photon to combinations of Standard Model leptons and mesons. For dark matter with a mass of \\sim10 GeV, the shape of the resulting gamma-ray spectrum provides a good fit to that observed from the Galactic Center, and can also provide the very hard electron spectrum required to account for the observed synchrotron emission from the Milky Way's radio filaments. For kinetic mixing near the level naively expected from loop-suppressed operators (epsilon \\sim 10^{-4}), the dark matter is predicted to scatter elastically with protons with a cross section consistent with that required to accommodate the signals reported by DAMA/LIBRA, CoGeNT and CRESST-II.

  8. THE DARK ADAPTATION OF THE HUMAN EYE.

    PubMed

    Hecht, S

    1920-05-20

    During the dark adaptation of the human eye, its visual threshold decreases to a small fraction of its original value in the light. An analysis of the quantitative data describing this adaptation shows that it follows the course of a bimolecular chemical reaction. On the basis of these findings it is suggested that visual reception in dim light is conditioned by a reversible photochemical reaction involving a photosensitive substance and its two products of decomposition. Accordingly, dark adaptation depends on the course of the "dark" reaction during which the two products of decomposition reunite to synthesize the original photosensitive substance.

  9. THE DARK ADAPTATION OF THE HUMAN EYE

    PubMed Central

    Hecht, Selig

    1920-01-01

    During the dark adaptation of the human eye, its visual threshold decreases to a small fraction of its original value in the light. An analysis of the quantitative data describing this adaptation shows that it follows the course of a bimolecular chemical reaction. On the basis of these findings it is suggested that visual reception in dim light is conditioned by a reversible photochemical reaction involving a photosensitive substance and its two products of decomposition. Accordingly, dark adaptation depends on the course of the "dark" reaction during which the two products of decomposition reunite to synthesize the original photosensitive substance. PMID:19871826

  10. Chemotrophic growth of heliobacteria in darkness.

    PubMed

    Kimble, L K; Stevenson, A K; Madigan, M T

    1994-01-01

    Conditions are described that support anaerobic dark chemotrophic growth of heliobacteria. Growth was pyruvate-dependent and was best in well-buffered pyruvate media supplemented with yeast extract. Heliobacterial cells grown in darkness synthesized bacteriochlorophyll g and carotenoids and fermented pyruvate to acidic products, CO2, and in some cases, H2. All recognized species of heliobacteria as well as several newly isolated strains were capable of dark anaerobic growth, suggesting that this growth mode may be ecologically important for survival of these organisms in their soil habitat.

  11. Magnetic domain walls of relic fermions as Dark Energy

    SciTech Connect

    Yajnik, Urjit A.

    2005-12-02

    We show that relic fermions of the Big Bang can enter a ferromagnetic state if they possess a magnetic moment and satisfy the requirements of Stoner theory of itinerant ferromagnetism. The domain walls of this ferromagnetism can successfully simulate Dark Energy over the observable epoch spanning {approx} 10 billion years. We obtain conditions on the anomalous magnetic moment of such fermions and their masses. Known neutrinos fail to satisfy the requirements thus pointing to the possibility of a new ultralight sector in Particle Physics.

  12. Impact of Dynamics Orbit Parameters of Different Reference Epoch on Predicted Orbit Accuracy

    NASA Astrophysics Data System (ADS)

    Zhang, Rui

    2017-04-01

    The dynamics orbit parameters of any epoch in the observed arc can be calculated by the observed orbit. Then the orbit outside the observed arc can be calculated by the dynamics orbit parameters of this epoch. Because of the impact of the observed orbit solving strategies and the orbit integration error, the dynamics orbit parameters in different epoch directly affects the accuracy of predicted orbit. In this paper, the different schemes that whether to join the velocity breaks parameters were used to calculate the observed orbit of GPS, GLONASS, BDS and GALILEO. And in the observed arc, the dynamics orbit parameters of every 6 hours were used to calculate the 24-hour predicted orbit outside the observed arc. The results show that when the velocity breaks parameters are calculated in the observed orbit, the dynamics orbit parameters of different epoch directly affects the accuracy of predicted orbit.

  13. VizieR Online Data Catalog: The epoch ICRF (Xu+, 2013)

    NASA Astrophysics Data System (ADS)

    Xu, M. H.; Wang, G. L.; Zhao, M.

    2014-04-01

    The epoch International Celestial Reference Frame (epoch ICRF) is proposed as a new concept in order to consider the effect of apparent proper motion of the position of a radio source due to acceleration of the spatial origin of the ICRF, the centre of mass of the Solar system. This apparent proper motion has a magnitude of approximately 5.8-microarcsec (μas) per year, and for the 30-year very long baseline interferometry (VLBI) observational history these position variations will exceed 100μas. We show that the dipole structure of the apparent proper motions leads to global rotation in the ICRF2 and the main term, the shift of direction of the origin of right ascension, reaches 25μas per century. The 'epoch ICRF' is constructed using epoch positions at J2000.0 and apparent proper motions of radio sources, which are reported here for 295 ICRF2-defining sources. (1 data file).

  14. Dark-ages reionization and galaxy formation simulation - III. Modelling galaxy formation and the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Mutch, Simon J.; Geil, Paul M.; Poole, Gregory B.; Angel, Paul W.; Duffy, Alan R.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-10-01

    We introduce MERAXES, a new, purpose-built semi-analytic galaxy formation model designed for studying galaxy growth during reionization. MERAXES is the first model of its type to include a temporally and spatially coupled treatment of reionization and is built upon a custom (100 Mpc)3 N-body simulation with high temporal and mass resolution, allowing us to resolve the galaxy and star formation physics relevant to early galaxy formation. Our fiducial model with supernova feedback reproduces the observed optical depth to electron scattering and evolution of the galaxy stellar mass function between z = 5 and 7, predicting that a broad range of halo masses contribute to reionization. Using a constant escape fraction and global recombination rate, our model is unable to simultaneously match the observed ionizing emissivity at z ≲ 6. However, the use of an evolving escape fraction of 0.05-0.1 at z ˜ 6, increasing towards higher redshift, is able to satisfy these three constraints. We also demonstrate that photoionization suppression of low-mass galaxy formation during reionization has only a small effect on the ionization history of the intergalactic medium. This lack of `self-regulation' arises due to the already efficient quenching of star formation by supernova feedback. It is only in models with gas supply-limited star formation that reionization feedback is effective at regulating galaxy growth. We similarly find that reionization has only a small effect on the stellar mass function, with no observationally detectable imprint at M* > 107.5 M⊙. However, patchy reionization has significant effects on individual galaxy masses, with variations of factors of 2-3 at z = 5 that correlate with environment.

  15. Dark Energy and Key Physical Parameters of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.

    We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.

  16. Magnetic dipole moments for composite dark matter

    SciTech Connect

    Aranda, Alfredo; Barajas, Luis; Cembranos, Jose A.R. E-mail: luisedua@buffalo.edu

    2016-03-01

    We study neutral dark matter candidates with a nonzero magnetic dipole moment. We assume that they are composite states of new fermions related to the strong phase of a new gauge interaction. In particular, invoking a dark flavor symmetry, we analyze the composition structure of viable candidates depending on the assignations of hypercharge and the multiplets associated to the fundamental constituents of the extended sector. We determine the magnetic dipole moments for the neutral composite states in terms of their constituents masses.

  17. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  18. THE LICK AGN MONITORING PROJECT: RECALIBRATING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATES

    SciTech Connect

    Park, Daeseong; Woo, Jong-Hak; Treu, Tommaso; Bennert, Vardha N.; Barth, Aaron J.; Walsh, Jonelle; Bentz, Misty C.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor; Greene, Jenny E.; Malkan, Matthew A.

    2012-03-01

    We investigate the calibration and uncertainties of black hole (BH) mass estimates based on the single-epoch (SE) method, using homogeneous and high-quality multi-epoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for nine local Seyfert 1 galaxies with BH masses <10{sup 8} M{sub Sun }. By decomposing the spectra into their AGNs and stellar components, we study the variability of the SE H{beta} line width (full width at half-maximum intensity, FWHM{sub H{beta}} or dispersion, {sigma}{sub H{beta}}) and of the AGN continuum luminosity at 5100 A (L{sub 5100}). From the distribution of the 'virial products' ({proportional_to} FWHM{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100} or {sigma}{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100}) measured from SE spectra, we estimate the uncertainty due to the combined variability as {approx}0.05 dex (12%). This is subdominant with respect to the total uncertainty in SE mass estimates, which is dominated by uncertainties in the size-luminosity relation and virial coefficient, and is estimated to be {approx}0.46 dex (factor of {approx}3). By comparing the H{beta} line profile of the SE, mean, and root-mean-square (rms) spectra, we find that the H{beta} line is broader in the mean (and SE) spectra than in the rms spectra by {approx}0.1 dex (25%) for our sample with FWHM{sub H{beta}} <3000 km s{sup -1}. This result is at variance with larger mass BHs where the difference is typically found to be much less than 0.1 dex. To correct for this systematic difference of the H{beta} line profile, we introduce a line-width dependent virial factor, resulting in a recalibration of SE BH mass estimators for low-mass AGNs.

  19. Thermokarst, mantling and Late Amazonian Epoch periglacial-revisions in the Argyre region, Mars

    NASA Astrophysics Data System (ADS)

    Soare, R. J.; Baoini, D.; Conway, S. J.; Dohm, J. M.; Kargel, J. S.

    2015-10-01

    Thermokarst, mantling and Late Amazonian Epoch periglacial-revisions in the Argyre region, Mars R.J. Soare(1), D. Baioni(2), S.J. Conway (3), J.M. Dohm(4)and J.S. Kargel (5)(1) Geography Department, Dawson College, Montreal, Canada H3Z 1A4 rsoare@dawsoncollege.qc.ca.(2) Dipartimento di Scienze della Terra,della Vita e Ambiente, Università di Urbino "Carlo Bo", Campus SOGESTA, 61029 Urbino (PU) Italy. (3) Department of Physical Sciences, Open University, Milton Keynes, United Kingdom, MK7 6AA. (4) The University Museum, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-, Japan.(5) Department of Hydrology & Water Resources, University of Arizona, Tucson, Arizona, USA 85719.1.Introduction Metre to decametre-deep depressions that are rimless, relatively flat-floored, polygonised and scallop-shaped have been widely observed in Utopia Planitia (UP) [e.g. 1-5] and Malea Planum (MP) [6-8]. Although there is some debate about whether the depressions formed by means of sublimation or evaporation, it is commonly believed that the terrain in which the depressions occur is ice-rich.Moreover, most workers assume that this "ice-richness" is derived of a bi-hemispheric, latitudinally-dependent and atmospherically-precipitated mantle that is metres thick [2,4,6-10].

  20. Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR

    NASA Astrophysics Data System (ADS)

    Patil, A. H.; Yatawatta, S.; Koopmans, L. V. E.; de Bruyn, A. G.; Brentjens, M. A.; Zaroubi, S.; Asad, K. M. B.; Hatef, M.; Jelić, V.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Vedantham, H.; Abdalla, F. B.; Brouw, W. N.; Chapman, E.; Ciardi, B.; Gehlot, B. K.; Ghosh, A.; Harker, G.; Iliev, I. T.; Kakiichi, K.; Majumdar, S.; Mellema, G.; Silva, M. B.; Schaye, J.; Vrbanec, D.; Wijnholds, S. J.

    2017-03-01

    We present the first limits on the Epoch of Reionization 21 cm H i power spectra, in the redshift range z = 7.9–10.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total, 13.0 hr of data were used from observations centered on the North Celestial Pole. After subtraction of the sky model and the noise bias, we detect a non-zero {{{Δ }}}{{I}}2={(56+/- 13{mK})}2 (1-σ) excess variance and a best 2-σ upper limit of {{{Δ }}}212< {(79.6{mK})}2 at k = 0.053 h cMpc‑1 in the range z = 9.6–10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to nonlinear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.

  1. An Improved Statistical Point-source Foreground Model for the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Murray, S. G.; Trott, C. M.; Jordan, C. H.

    2017-08-01

    We present a sophisticated statistical point-source foreground model for low-frequency radio Epoch of Reionization (EoR) experiments using the 21 cm neutral hydrogen emission line. Motivated by our understanding of the low-frequency radio sky, we enhance the realism of two model components compared with existing models: the source count distributions as a function of flux density and spatial position (source clustering), extending current formalisms for the foreground covariance of 2D power-spectral modes in 21 cm EoR experiments. The former we generalize to an arbitrarily broken power law, and the latter to an arbitrary isotropically correlated field. This paper presents expressions for the modified covariance under these extensions, and shows that for a more realistic source spatial distribution, extra covariance arises in the EoR window that was previously unaccounted for. Failure to include this contribution can yield bias in the final power-spectrum and under-estimate uncertainties, potentially leading to a false detection of signal. The extent of this effect is uncertain, owing to ignorance of physical model parameters, but we show that it is dependent on the relative abundance of faint sources, to the effect that our extension will become more important for future deep surveys. Finally, we show that under some parameter choices, ignoring source clustering can lead to false detections on large scales, due to both the induced bias and an artificial reduction in the estimated measurement uncertainty.

  2. The Shock Dynamics of Heterogeneous YSO Jets: 3D Simulations Meet Multi-epoch Observations

    NASA Astrophysics Data System (ADS)

    Hansen, E. C.; Frank, A.; Hartigan, P.; Lebedev, S. V.

    2017-03-01

    High-resolution observations of young stellar object (YSO) jets show them to be composed of many small-scale knots or clumps. In this paper, we report results of 3D numerical simulations designed to study how such clumps interact and create morphologies and kinematic patterns seen in emission line observations. Our simulations focus on clump scale dynamics by imposing velocity differences between spherical, over-dense regions, which then lead to the formation of bow shocks as faster clumps overtake slower material. We show that much of the spatial structure apparent in emission line images of jets arises from the dynamics and interactions of these bow shocks. Our simulations show a variety of time-dependent features, including bright knots associated with Mach stems where the shocks intersect, a “frothy” emission structure that arises from the presence of the Nonlinear Thin Shell Instability along the surfaces of the bow shocks, and the merging and fragmentation of clumps. Our simulations use a new non-equilibrium cooling method to produce synthetic emission maps in Hα and [S ii]. These are directly compared to multi-epoch Hubble Space Telescope observations of Herbig–Haro jets. We find excellent agreement between features seen in the simulations and the observations in terms of both proper motion and morphologies. Thus we conclude that YSO jets may be dominated by heterogeneous structures and that interactions between these structures and the shocks they produce can account for many details of YSO jet evolution.

  3. Quintessential scale dependence from separate universe simulations

    NASA Astrophysics Data System (ADS)

    Chiang, Chi-Ting; Li, Yin; Hu, Wayne; LoVerde, Marilena

    2016-12-01

    By absorbing fluctuations into a local background, separate universe simulations provide a powerful technique to characterize the response of small-scale observables to the long-wavelength density fluctuations, for example those of the power spectrum and halo mass function which lead to the squeezed-limit n -point function and halo bias, respectively. Using quintessence dark energy as the paradigmatic example, we extend these simulation techniques to cases where non-gravitational forces in other sectors establish a Jeans scale across which the growth of density fluctuations becomes scale dependent. By characterizing the separate universes with matching background expansion histories, we show that the power spectrum and mass function responses depend on whether the long-wavelength mode is above or below the Jeans scale. Correspondingly, the squeezed bispectrum and halo bias also become scale dependent. Models of bias that are effectively local in the density field at a single epoch, initial or observed, cannot describe this effect which highlights the importance of temporal nonlocality in structure formation. Validated by these quintessence tests, our techniques are applicable to a wide range of models where the complex dynamics of additional fields affect the clustering of matter in the linear regime and it would otherwise be difficult to simulate their impact in the nonlinear regime.

  4. Holographic dark energy reexamined

    SciTech Connect

    Gong Yungui; Wang Bin; Zhang Yuanzhong

    2005-08-15

    We have reexamined the holographic dark energy model by considering the spatial curvature. We have refined the model parameter and observed that the holographic dark energy model does not behave as phantom model. Comparing the holographic dark energy model to the supernova observation alone, we found that the closed Universe is favored. Combining with the Wilkinson microwave anisotropy probe (WMAP) data, we obtained the reasonable value of the spatial curvature of our Universe.

  5. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  6. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  7. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  8. Dark Matter 2013

    NASA Astrophysics Data System (ADS)

    Schumann, Marc

    2014-10-01

    This article reviews the status of the exciting and fastly evolving field of dark matter research as of summer 2013, when it was discussed at the International Cosmic Ray Conference (ICRC) 2013 in Rio de Janeiro. It focuses on the three main avenues to detect weakly interacting massive particle (WIMP) dark matter: direct detection, indirect detection, and collider searches. The article is based on the dark matter rapporteur talk summarizing the presentations given at the conference, filling some gaps for completeness.

  9. Distances, Ages, and Epoch of Formation of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio; Gratton, Raffaele G.; Clementini, Gisella; Fusi Pecci, Flavio

    2000-04-01

    calibrations, reddening, and metallicity scale. This total uncertainty still amounts to about +/-0.12 mag. We then compare the corresponding (true) LMC distance modulus μLMC=18.64+/-0.12 mag with other existing determinations. We conclude that at present the best estimate for the distance of the LMC is μLMC=18.54+/-0.03+/-0.06, suggesting that distances from the subdwarf fitting method are ~1 σ too long. Consequently, our best estimate for the age of the GCs is revised to Age=12.9+/-2.9 Gyr (95% confidence range). The best relation between ZAHB absolute magnitude and metallicity is MV(ZAHB)=(0.18+/-0.09)([Fe/H]+1.5)+(0.63+/-0.07). Finally, we compare the ages of the GCs with the cosmic star formation rate recently determined by studies of the Hubble Deep Field (HDF), exploiting the determinations of ΩM=0.3 and ΩΛ=0.7 provided by Type Ia supernovae surveys. We find that the epoch of formation of the GCs (at z~3) matches well the maximum of the star formation rate for elliptical galaxies in the HDF as determined by Franceschini et al. Based on data from the Hipparcos astrometry satellite.

  10. Gauge coupling unification and nonequilibrium thermal dark matter.

    PubMed

    Mambrini, Yann; Olive, Keith A; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-14

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale T(RH). To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (M(int) ≃ 10(10)-10(12) GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation T(RH)(3)/M(int)(4). As a consequence, we show that the unification of gauge couplings which determines M(int) also fixes the reheating temperature, which can be as high as T(RH) ≃ 10(11) GeV.

  11. Gauge Coupling Unification and Nonequilibrium Thermal Dark Matter

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Olive, Keith A.; Quevillon, Jérémie; Zaldívar, Bryan

    2013-06-01

    We study a new mechanism for the production of dark matter in the Universe which does not rely on thermal equilibrium. Dark matter is populated from the thermal bath subsequent to inflationary reheating via a massive mediator whose mass is above the reheating scale TRH. To this end, we consider models with an extra U(1) gauge symmetry broken at some intermediate scale (Mint≃1010-1012GeV). We show that not only does the model allow for gauge coupling unification (at a higher scale associated with grand unification) but it can provide a dark matter candidate which is a standard model singlet but charged under the extra U(1). The intermediate scale gauge boson(s) which are predicted in several E6/SO(10) constructions can be a natural mediator between dark matter and the thermal bath. We show that the dark matter abundance, while never having achieved thermal equilibrium, is fixed shortly after the reheating epoch by the relation TRH3/Mint4. As a consequence, we show that the unification of gauge couplings which determines Mint also fixes the reheating temperature, which can be as high as TRH≃1011GeV.

  12. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  13. Metastable dark energy

    NASA Astrophysics Data System (ADS)

    Landim, Ricardo G.; Abdalla, Elcio

    2017-01-01

    We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2)R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm) dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  14. DARK ADAPTATION IN DINEUTES

    PubMed Central

    Clark, Leonard B.

    1938-01-01

    The level of dark adaptation of the whirligig beetle can be measured in terms of the threshold intensity calling forth a response. The course of dark adaptation was determined at levels of light adaptation of 6.5, 91.6, and 6100 foot-candles. All data can be fitted by the same curve. This indicates that dark adaptation follows parts of the same course irrespective of the level of light adaptation. The intensity of the adapting light determines the level at which dark adaptation will begin. The relation between log aI0 (instantaneous threshold) and log of adapting light intensity is linear over the range studied. PMID:19873056

  15. Asymmetric Dark Matter and Dark Radiation

    SciTech Connect

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo E-mail: enfmarti@cern.ch E-mail: redondo@mppmu.mpg.de

    2012-07-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.

  16. EVOLUTION IN THE H I GAS CONTENT OF GALAXY GROUPS: PRE-PROCESSING AND MASS ASSEMBLY IN THE CURRENT EPOCH

    SciTech Connect

    Hess, Kelley M.; Wilcots, Eric M. E-mail: ewilcots@astro.wisc.edu

    2013-11-01

    We present an analysis of the neutral hydrogen (H I) content and distribution of galaxies in groups as a function of their parent dark matter halo mass. The Arecibo Legacy Fast ALFA survey α.40 data release allows us, for the first time, to study the H I properties of over 740 galaxy groups in the volume of sky common to the Sloan Digital Sky Survey (SDSS) and ALFALFA surveys. We assigned ALFALFA H I detections a group membership based on an existing magnitude/volume-limited SDSS Data Release 7 group/cluster catalog. Additionally, we assigned group ''proximity' membership to H I detected objects whose optical counterpart falls below the limiting optical magnitude—thereby not contributing substantially to the estimate of the group stellar mass, but significantly to the total group H I mass. We find that only 25% of the H I detected galaxies reside in groups or clusters, in contrast to approximately half of all optically detected galaxies. Further, we plot the relative positions of optical and H I detections in groups as a function of parent dark matter halo mass to reveal strong evidence that H I is being processed in galaxies as a result of the group environment: as optical membership increases, groups become increasingly deficient of H I rich galaxies at their center and the H I distribution of galaxies in the most massive groups starts to resemble the distribution observed in comparatively more extreme cluster environments. We find that the lowest H I mass objects lose their gas first as they are processed in the group environment, and it is evident that the infall of gas rich objects is important to the continuing growth of large scale structure at the present epoch, replenishing the neutral gas supply of groups. Finally, we compare our results to those of cosmological simulations and find that current models cannot simultaneously predict the H I selected halo occupation distribution for both low and high mass halos.

  17. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    SciTech Connect

    Atrio-Barandela, F.; Kashlinsky, A. E-mail: Alexander.Kashlinsky@nasa.gov

    2014-12-20

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10{sup 4} K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.

  18. Probing the Epoch of Pre-reionization by Cross-correlating Cosmic Microwave and Infrared Background Anisotropies

    NASA Astrophysics Data System (ADS)

    Atrio-Barandela, F.; Kashlinsky, A.

    2014-12-01

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ~5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ~ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ~= 0.05) and the temperature of the IGM (up to ~104 K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources.

  19. REIONIZATION IN THE WARM DARK MATTER MODEL

    SciTech Connect

    Yue Bin; Chen Xuelei

    2012-03-10

    Compared with the cold dark matter (CDM) model, the formation of the small-scale structure of the universe is suppressed in the warm dark matter (WDM) model. It is often thought that this would delay the reionization of the intergalactic medium (IGM) because the star formation rate during the epoch of reionization (EOR) would be lowered. However, during the later stage of the EOR, a large portion of the ionizing photons is consumed by recombination inside the minihalos, which is where the gas has higher density and recombination rates than that in the IGM. The suppression of the small-scale structure would therefore reduce the recombination rate and could potentially shorten the reionization process. This effect is investigated here by using the analytical 'bubble model' of reionization. We find that, in some cases, although the initiation of the EOR is delayed in the WDM model, its completion could be even earlier than the CDM case, but the effect is generally small. We obtain limits on the mass of WDM particles for different reionization redshifts.

  20. Galactic Dark Matter

    NASA Astrophysics Data System (ADS)

    Burch, Benjamin P.

    The precise phase-space distribution and properties of Galactic dark matter necessary for its direct and indirect detection are currently unknown. Since the distributions of normal and dark matter in the Milky Way are coupled to each other as they both move in the same gravitational potential, constraints on the distribution and properties of dark matter can be derived by studying the distribution of visible matter in the Galaxy and making some general assumptions regarding the phase-space distribution of the dark matter. In this study, the visible components of the Galaxy have been comprehensively reviewed to create an axisymmetric model of the Galaxy that is consistent with the available observations, and the dark matter phase-space distribution is assumed to follow a lowered-isothermal form. Poisson's equations are then solved self-consistently to construct models of the spatial and velocity distribution of Galactic dark matter. The total gravitational potential from normal and dark matter are calculated and compared to the current observations of the rotation curve and to the radial velocity distributions of blue horizontal-branch and blue straggler stars. It is found that this analysis allows for a wide range of parameters for the dark matter. The implications for direct and indirect detection of dark matter are discussed in detail. In the appendices, two additional projects are presented. In Appendix A, the recent observations of the positron fraction and the total electron spectrum in cosmic rays are addressed by considering a nested leaky-box model for the propagation of cosmic rays in the Galaxy. This is found to obviate the need for exotic processes such as the annihilation or decay of dark matter to explain the recent observations. In Appendix B, we discuss a novel dark matter detector involving triggered cavitation in acoustic fields. The theory behind the detector is presented in detail, and we discuss the work than has been done to create a prototype

  1. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  2. Single top quarks and dark matter

    NASA Astrophysics Data System (ADS)

    Pinna, Deborah; Zucchetta, Alberto; Buckley, Matthew R.; Canelli, Florencia

    2017-08-01

    Processes with dark matter interacting with the standard model fermions through new scalars or pseudoscalars with flavor-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavored quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavor violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by 30% up to a factor of two, depending on the mass assumed for the mediator particle.

  3. Probing primordial non-Gaussianity: the 3D Bispectrum of Ly-α forest and the redshifted 21-cm signal from the post reionization epoch

    SciTech Connect

    Sarkar, Tapomoy Guha; Hazra, Dhiraj Kumar E-mail: dhiraj@apctp.org

    2013-04-01

    We explore possibility of using the three dimensional bispectra of the Ly-α forest and the redshifted 21-cm signal from the post-reionization epoch to constrain primordial non-Gaussianity. Both these fields map out the large scale distribution of neutral hydrogen and maybe treated as tracers of the underlying dark matter field. We first present the general formalism for the auto and cross bispectrum of two arbitrary three dimensional biased tracers and then apply it to the specific case. We have modeled the 3D Ly-α transmitted flux field as a continuous tracer sampled along 1D skewers which corresponds to quasars sight lines. For the post reionization 21-cm signal we have used a linear bias model. We use a Fisher matrix analysis to present the first prediction for bounds on f{sub NL} and the other bias parameters using the three dimensional 21-cm bispectrum and other cross bispectra. The bounds on f{sub NL} depend on the survey volume, and the various observational noises. We have considered a BOSS like Ly-α survey where the average number density of quasars n-bar = 10{sup −3}Mpc{sup −2} and the spectra are measured at a 2-σ level. For the 21-cm signal we have considered a 4000 hrs observation with a futuristic SKA like radio array. We find that bounds on f{sub NL} obtained in our analysis (6 ≤ Δf{sub NL} ≤ 65) is competitive with CMBR and galaxy surveys and may prove to be an important alternative approach towards constraining primordial physics using future data sets. Further, we have presented a hierarchy of power of the bispectrum-estimators towards detecting the f{sub NL}. Given the quality of the data sets, one may use this method to optimally choose the right estimator and thereby provide better constraints on f{sub NL}. We also find that by combining the various cross-bispectrum estimators it is possible to constrain f{sub NL} at a level Δf{sub NL} ∼ 4.7. For the equilateral and orthogonal template we obtain Δf{sub NL}{sup equ} ∼ 17 and

  4. Dark microglia: Why are they dark?

    PubMed Central

    Bisht, Kanchan; Sharma, Kaushik; Lacoste, Baptiste; Tremblay, Marie-Ève

    2016-01-01

    ABSTRACT Using transmission electron microscopy (TEM) we recently characterized a microglial phenotype that is induced by chronic stress, fractalkine receptor deficiency, aging, or Alzheimer disease pathology. These ‘dark’ microglia appear overly active compared with the normal microglia, reaching for synaptic clefts, and extensively engulfing pre-synaptic axon terminals and post-synaptic dendritic spines. From these findings we hypothesized that dark microglia could be specifically implicated in the pathological remodeling of neuronal circuits, which impairs learning, memory, and other essential cognitive functions. In the present addendum we further discuss about the possible causes of their dark appearance under TEM. PMID:28042375

  5. Beam-forming Errors in Murchison Widefield Array Phased Array Antennas and their Effects on Epoch of Reionization Science

    NASA Astrophysics Data System (ADS)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Bradley, Richard F.; Dillon, Joshua S.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2016-03-01

    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.

  6. STAR FORMATION IN ORION'S L1630 CLOUD: AN INFRARED AND MULTI-EPOCH X-RAY STUDY

    SciTech Connect

    Principe, David A.; Kastner, J. H.; Richmond, Michael; Grosso, Nicolas; Hamaguchi, Kenji

    2014-07-01

    X-ray emission is characteristic of young stellar objects (YSOs) and is known to be highly variable. We investigate, via an infrared and multi-epoch X-ray study of the L1630 dark cloud, whether and how X-ray variability in YSOs is related to protostellar evolutionary state. We have analyzed 11 Chandra X-Ray Observatory observations, obtained over the course of four years and totaling ∼240 ks exposure time, targeting the eruptive Class I YSO V1647 Ori in L1630. We used Two Micron All Sky Survey and Spitzer data to identify and classify IR counterparts to L1630 X-ray sources and identified a total of 52 X-ray-emitting YSOs with IR counterparts, including four Class I sources and one Class 0/I source. We have detected cool (<3 MK) plasma, possibly indicative of accretion shocks, in three classical T Tauri stars. A subsample of 27 X-ray-emitting YSOs were covered by 9 of the 11 Chandra observations targeting V1647 Ori and the vicinity. For these 27 YSOs, we have constructed X-ray light curves spanning approximately four years. These light curves highlight the variable nature of pre-main-sequence X-ray-emitting young stars; many of the L1630 YSOs vary by orders of magnitude in count rate between observations. We discuss possible scenarios to explain apparent trends between various X-ray spectral properties, X-ray variance, and YSO classification.

  7. BEAM-FORMING ERRORS IN MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS AND THEIR EFFECTS ON EPOCH OF REIONIZATION SCIENCE

    SciTech Connect

    Neben, Abraham R.; Hewitt, Jacqueline N.; Dillon, Joshua S.; Goeke, R.; Morgan, E.; Bradley, Richard F.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Lonsdale, C. J.; McWhirter, S. R.; Deshpande, A. A.; Greenhill, L. J.; Hazelton, B. J.; Morales, M. F.; Johnston-Hollitt, M.; Kaplan, D. L.; Mitchell, D. A.; and others

    2016-03-20

    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%–20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.

  8. Formation of subgalactic objects within two-component dark matter

    NASA Astrophysics Data System (ADS)

    Umemura, M.; Ikeuchi, S.

    1985-12-01

    The collisionless relics dominating the presently considered Einstein-de Sitter universe are neutrinos, as hot dark matter, and X-particles having negligible thermal velocity, as cold dark matter (CDM). On scales greater than that of neutrino collisionless damping, neutrino fluctuations develop with time, producing large scale, neutrino-overdense (NOD) and underdense (NUD) regions that subsequently evolve into superclusters and huge voids, respectively. Calculations are presented for the growth of fluctuations of CDM and induced fluctuations of baryons on subgalactic scales in both NOD and NUD regions, from the recombination epoch to the present. It is shown that dwarf galaxies are preferentially formed in NOD regions, and that subgalactic baryon fluctuations in NUD regions are subject to UV heating by QSOs before collapse.

  9. Dark energy and the return of the phoenix universe

    SciTech Connect

    Lehners, Jean-Luc; Steinhardt, Paul J.

    2009-03-15

    In cyclic universe models based on a single scalar field (e.g., the radion determining the distance between branes in M theory), virtually the entire Universe makes it through the ekpyrotic smoothing and flattening phase, bounces, and enters a new epoch of expansion and cooling. This stable evolution cannot occur, however, if scale-invariant curvature perturbations are produced by the entropic mechanism because it requires two scalar fields (e.g., the radion and the Calabi-Yau dilaton) evolving along an unstable classical trajectory. In fact, we show here that an overwhelming fraction of the Universe fails to make it through the ekpyrotic phase; nevertheless, a sufficient volume survives and cycling continues forever provided the dark energy phase of the cycle lasts long enough, of order a trillion years. Two consequences are a new role for dark energy and a global structure of the Universe radically different from that of eternal inflation.

  10. Dark matter and dark energy from the solution of the strong CP problem.

    PubMed

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  11. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    NASA Astrophysics Data System (ADS)

    Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.

    2017-03-01

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small image patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.

  12. Dark Energy, or Worse

    ScienceCinema

    Professor Sean Carroll

    2016-07-12

    General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.

  13. Working the Dark Edges

    ERIC Educational Resources Information Center

    Weston, Anthony

    2014-01-01

    Environmentalism's wider and wilder possibilities today appear as regions of seeming darkness that bracket or frame acceptable environmental thinking. One of these barely-mentionable darknesses is outer space--the cosmos. Another is the inner and chthonic powers of the land and natural beings generally. This essay aims to bring these two kinds of…

  14. Dark Energy, or Worse

    SciTech Connect

    Professor Sean Carroll

    2006-11-13

    General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.

  15. Working the Dark Edges

    ERIC Educational Resources Information Center

    Weston, Anthony

    2014-01-01

    Environmentalism's wider and wilder possibilities today appear as regions of seeming darkness that bracket or frame acceptable environmental thinking. One of these barely-mentionable darknesses is outer space--the cosmos. Another is the inner and chthonic powers of the land and natural beings generally. This essay aims to bring these two kinds of…

  16. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  17. Small-scale Substructure in Dark Matter Haloes: Where Does Galaxy Formation Come to an End?

    NASA Astrophysics Data System (ADS)

    Taylor, J. E.; Silk, J.; Babul, A.

    2004-07-01

    Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.

  18. Constraining Sommerfeld enhanced annihilation cross-sections of dark matter via direct searches

    NASA Astrophysics Data System (ADS)

    Arina, Chiara; Josse-Michaux, François-Xavier; Sahu, Narendra

    2010-08-01

    In a large class of models we show that the light scalar field responsible for the Sommerfeld enhancement in the annihilation of dark matter leads to observable direct detection rates, due to its mixing with the standard model Higgs. As a result the large annihilation cross-section of dark matter at present epoch, required to explain the observed cosmic ray anomalies, can be strongly constrained by direct searches. In particular Sommerfeld boost factors of order of a few hundred are already out of the CDMS-II upper bound at 90% confidence level for reasonable values of the model parameters.

  19. Warm dark matter

    SciTech Connect

    Horiuchi, Shunsaku

    2016-06-21

    The cold dark matter paradigm has been extremely successful in explaining the large-scale structure of the Universe. However, it continues to face issues when confronted by observations on sub-Galactic scales. A major caveat, now being addressed, has been the incomplete treatment of baryon physics. We first summarize the small-scale issues surrounding cold dark matter and discuss the solutions explored by modern state-of-the-art numerical simulations including treatment of baryonic physics. We identify the too big to fail in field galaxies as among the best targets to study modifications to dark matter, and discuss the particular connection with sterile neutrino warm dark matter. We also discuss how the recently detected anomalous 3.55 keV X-ray lines, when interpreted as sterile neutrino dark matter decay, provide a very good description of small-scale observations of the Local Group.

  20. Dark matter and dark energy: The critical questions

    SciTech Connect

    Michael S. Turner

    2002-11-19

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% {+-} 1% baryons; 29% {+-} 4% cold dark matter; and 66% {+-} 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up.

  1. Right-handed neutrinos as the dark radiation: Status and forecasts for the LHC

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Goldberg, Haim; Steigman, Gary

    2013-01-01

    Precision data from cosmology (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch) have hinted at the presence of extra relativistic degrees of freedom, the so-called "dark radiation." We present a model independent study to account for the dark radiation by means of the right-handed partners of the three, left-handed, standard model neutrinos. We show that milli-weak interactions of these Dirac states (through their coupling to a TeV-scale Z‧ gauge boson) may allow the νR's to decouple much earlier, at a higher temperature, than their left-handed counterparts. If the νR's decouple during the quark-hadron crossover transition, they are considerably cooler than the νL's and contribute less than 3 extra "equivalent neutrinos" to the early Universe energy density. For decoupling in this transition region, the 3νR generate ΔNν=3(<3, extra relativistic degrees of freedom at BBN and at the CMB epochs. Consistency with present constraints on dark radiation permits us to identify the allowed region in the parameter space of Z‧ masses and couplings. Remarkably, the allowed region is within the range of discovery of LHC14.

  2. Dark matter complementarity and the Z' portal

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Berlin, Asher; Profumo, Stefano; Queiroz, Farinaldo S.

    2015-10-01

    Z' gauge bosons arise in many particle physics models as mediators between the dark and visible sectors. We exploit dark matter (DM) complementarity and derive stringent and robust collider, direct and indirect constraints, as well as limits from the muon magnetic moment. We rule out almost the entire region of the parameter space that yields the right dark matter thermal relic abundance, using a generic parametrization of the Z'-fermion couplings normalized to the standard model Z-fermion couplings for dark matter masses in the 8 GeV-5 TeV range. We conclude that mediators lighter than 2.1 TeV are excluded regardless of the DM mass, and that depending on the Z'-fermion coupling strength much heavier masses are needed to reproduce the DM thermal relic abundance while avoiding existing limits.

  3. Biophotons Contribute to Retinal Dark Noise.

    PubMed

    Li, Zehua; Dai, Jiapei

    2016-06-01

    The discovery of dark noise in retinal photoreceptors resulted in a long-lasting controversy over its origin and the underlying mechanisms. Here, we used a novel ultra-weak biophoton imaging system (UBIS) to detect biophotonic activity (emission) under dark conditions in rat and bullfrog (Rana catesbeiana) retinas in vitro. We found a significant temperature-dependent increase in biophotonic activity that was completely blocked either by removing intracellular and extracellular Ca(2+) together or inhibiting phosphodiesterase 6. These findings suggest that the photon-like component of discrete dark noise may not be caused by a direct contribution of the thermal activation of rhodopsin, but rather by an indirect thermal induction of biophotonic activity, which then activates the retinal chromophore of rhodopsin. Therefore, this study suggests a possible solution regarding the thermal activation energy barrier for discrete dark noise, which has been debated for almost half a century.

  4. Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Ichikawa, Koji; Matsumoto, Shigeki; Ibe, Masahiro; Ishigaki, Miho N.; Sugai, Hajime

    2016-09-01

    The dwarf spheroidal galaxies (dSphs) in the Milky Way are the primary targets in the indirect searches for particle dark matter. To set robust constraints on candidate dark matter particles, understanding the dark halo structure of these systems is of substantial importance. In this paper, we first evaluate the astrophysical factors for dark matter annihilation and decay for 24 dSphs, taking into account a non-spherical dark halo, using generalized axisymmetric mass models based on axisymmetric Jeans equations. First, from a fitting analysis of the most recent kinematic data available, our axisymmetric mass models are a much better fit than previous spherical ones, thus, our work should be the most realistic and reliable estimator for astrophysical factors. Secondly, we find that among analysed dSphs, the ultra-faint dwarf galaxies Triangulum II and Ursa Major II are the most promising but large uncertain targets for dark matter annihilation while the classical dSph Draco is the most robust and detectable target for dark matter decay. It is also found that the non-sphericity of luminous and dark components influences the estimate of astrophysical factors, even though these factors largely depend on the sample size, the prior range of parameters and the spatial extent of the dark halo. Moreover, owing to these effects, the constraints on the dark matter annihilation cross-section are more conservative than those of previous spherical works. These results are important for optimizing and designing dark matter searches in current and future multi-messenger observations by space and ground-based telescopes.

  5. Clustering of galaxies with dynamical dark energy

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Upadhyay, Sudhaker; Hameeda, Mir; Faizal, Mir

    2017-07-01

    In this paper, we study thermodynamics of the cluster of galaxies under the effect of dynamical dark energy. We evaluate the configurational integral for interacting system of galaxies in an expanding Universe by including the effects produced by the varying Λ. The gravitational partition function is obtained using this configuration integral. We obtain thermodynamics quantities in canonical ensemble which depend on time and investigate the second law of thermodynamics. We also calculate the distribution function in grand canonical ensemble. The time evolution of the clustering parameter of galaxies is investigated for the time-dependent (dynamical) dark energy. We conclude that the second law of thermodynamics is valid for the total system of cluster of galaxies and dynamical dark energy. We calculate the correlation function and show that our model is very close to Peebles's power law, in agreement with the N-body simulation. It is observed that thermodynamics quantities depend on the modified clustering parameter for this system of galaxies.

  6. HD100546 multi-epoch scattered light observations

    SciTech Connect

    Avenhaus, Henning; Quanz, Sascha P.; Meyer, Michael R.; Brittain, Sean D.; Carr, John S.; Najita, Joan R.

    2014-07-20

    We present H, K{sub s}, and L' filter polarimetric differential imaging (PDI) data for the transitional disk around HD100546 obtained in 2013, together with an improved re-reduction of previously published 2006 data. We reveal the disk in polarized scattered light in all three filters, achieving an inner working angle of ∼0.''1. Additional, short-exposure observations in the H and K{sub s} filters probe the surroundings of the star down to ∼0.''03 (∼3 AU). HD100546 is fascinating because of its variety of sub-structures possibly related to forming planets in the disk, and PDI is currently the best technique for imaging them in the near-IR. For the first time ever, we detect a disk in L-band PDI data, and we constrain the outer radius of the inner hole to 14 ± 2 AU and its eccentricity to <0.133. A dark lane is detected between ∼0.''2-0.''6 AU in the front side of the disk, which is likely an effect of the scattering angle and the scattering function of the grains. We find a spiral arm in the northeast that has no obvious connection to spiral arms seen before by other authors further out in the disk, but winds are in the same direction (clockwise). The two bright scattering peaks along the semi-major axis are asymmetric, with the southeastern one being significantly brighter. This could be related to the inner companion candidate that is close to the brighter side of the disk at the time of the observations. The scattering color is close to gray between the H and K{sub s} filters ([H]–[K{sub s}] = 0.19 ± 0.11), but the scattering in the L' filter is significantly weaker ([H]–[L'] = –1.08 ± 0.35, [K{sub s}]–[L'] = –1.27 ± 0.35). We measure the position angle of the disk to be 138° ± 3°, consistent with previous observations, and we derive the dust scattering function in the H and K{sub s} filters between ∼35° and ∼130° at two different radii (30-50 and 80-110 AU) and show that our results are consistent with a disk that is more strongly

  7. Dark energy and dark matter from an additional adiabatic fluid

    NASA Astrophysics Data System (ADS)

    Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo

    2016-10-01

    The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.

  8. EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer's.

    PubMed

    Kanda, Paulo A M; Oliveira, Eliezyer F; Fraga, Francisco J

    2017-01-01

    Eyes-closed-awake electroencephalogram (EEG) is a useful tool in the diagnosis of Alzheimer's. However, there is eyes-closed-awake EEG with dominant or rare alpha rhythm. In this paper, we show that random selection of EEG epochs disregarding the alpha rhythm will lead to bias concerning EEG-based Alzheimer's Disease diagnosis. We compared EEG epochs with more than 30% and with less than 30% alpha rhythm of mild Alzheimer's Disease patients and healthy elderly. We classified epochs as dominant alpha scenario and rare alpha scenario according to alpha rhythm (8-13 Hz) percentage in O1, O2 and Oz channels. Accordingly, we divided the probands into four groups: 17 dominant alpha scenario controls, 15 mild Alzheimer's patients with dominant alpha scenario epochs, 12 rare alpha scenario healthy elderly and 15 mild Alzheimer's Disease patients with rare alpha scenario epochs. We looked for group differences using one-way ANOVA tests followed by post-hoc multiple comparisons (p < 0.05) over normalized energy values (%) on the other four well-known frequency bands (delta, theta, beta and gamma) using two different electrode configurations (parieto-occipital and central). After carrying out post-hoc multiple comparisons, for both electrode configurations we found significant differences between mild Alzheimer's patients and healthy elderly on beta- and theta-energy (%) only for the rare alpha scenario. No differences were found for the dominant alpha scenario in any of the five frequency bands. This is the first study of Alzheimer's awake-EEG reporting the influence of alpha rhythm on epoch selection, where our results revealed that, contrarily to what was most likely expected, less synchronized EEG epochs (rare alpha scenario) better discriminated mild Alzheimer's than those presenting abundant alpha (dominant alpha scenario). In addition, we find out that epoch selection is a very sensitive issue in qEEG research. Consequently, for Alzheimer's studies dealing with

  9. Oscillating asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M.

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations "interpolate" between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle "flavor" effects, depending on the interaction type, analogous to neutrino oscillations in a medium. "Flavor-sensitive" DM interactions include scattering or annihilation through a new vector boson, while "flavor-blind" interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  10. Reconsidering Dark Matter

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2012-02-01

    There is a difference between (a) distances of remote standard candles, SN Type Ia, and (b) distances based upon their red shifts. It was believed that these galaxies had accelerated and used Dark Energy. There are 2 assumptions not supported by observations. The first is that the red shifts for remote galaxies are due to the Doppler Effect associated with receding velocity. Hubble only observed red shifts as a function of distances of known stars, and never measured receding velocities. He suggested the Doppler Effect as a cause, but expressed doubt about the suggestion. There are other causes for a red shift - gravity red shift of light from the sun, and loss of photon energy by gravity interaction of photons with dust and gas in interstellar space. The second assumption is that Hubble's linear relationship between the observed red shift and the distance will be valid at very large distances. Increasing red shift corresponds to a decrease of photon energy towards zero, and cannot be used for very remote stars - where the photon energy approaches zero and the red shift dependence becomes nonlinear and asymptotic to a constant value. This predicts the difference between the galaxy distances and the distances determined from their observed red shifts. The recent Nobel Prize (to Schmidt, Reis, and Perlmutter) needs reexamination. Two basic assumptions that are the foundation of their work may not be accurate. Details are in my earlier essays in ``The Misunderstood Universe'', 2009. .

  11. EEG epoch selection: lack of alpha rhythm improves discrimination of Alzheimer's disease.

    PubMed

    Fraga, Francisco J; Oliveira, Eliezyer F; Kanda, Paulo A M

    2016-08-01

    In this work we propose a detailed EEG epoch selection method and compare epochs with rare and abundant alpha rhythm (AR) of patients with Alzheimer's disease (AD) and normal controls. Epochs were classified as Dominant Alpha Scenario (DAS) and Rare Alpha Scenario (RAS) according to the AR percentage (energy within the 8-13 Hz bandwidth) in O1, O2 and Oz electrodes. Participants were divided into four groups: 17 DAS controls (N1), 15 DAS mild-AD patients (AD1), 12 RAS controls (N2) and 15 RAS mild-AD patients (AD2). We found out that scenario factor (DAS vs. RAS, two-way ANOVA) is significant over a great amount of electrode-bandwidth situations. Furthermore, one-way ANOVA showed significant differences between RAS AD and RAS controls in much more situations as compared to DAS. This is the first study using AD awake EEG reporting the decisive influence of alpha rhythm on epoch selection, where our results revealed that, contrary to what was initially expected, EEG epochs with poor alpha (RAS) discriminate mild AD much better than those presenting richer alpha content (DAS).

  12. The pulsar B2224+65 and its jets: a two epoch X-ray analysis

    NASA Astrophysics Data System (ADS)

    Johnson, S. P.; Wang, Q. D.

    2010-10-01

    We present an X-ray morphological and spectroscopic study of the pulsar B2224+65 and its apparent jet-like X-ray features based on two epoch Chandra observations. The main X-ray feature, which shows a large directional offset from the ram-pressure confined pulsar wind nebula (Guitar nebula), is broader in apparent width and shows evidence for spectral hardening (at 95 per cent confidence) in the second epoch compared to the first. Furthermore, the sharp leading edge of the feature is found to have a proper motion consistent with that of the pulsar (~180 mas yr-1). The combined data set also provides evidence for the presence of a counter feature, albeit substantially fainter and shorter than the main one. Additional spectral trends along the major and minor axes of the feature are only marginally detected in the two epoch data, including softening counter to the direction of proper motion. Possible explanations for the X-ray features include diffuse energetic particles being confined by an organized ambient magnetic field as well as a simple ballistic jet interpretation; however, the former may have difficulty in explaining observed spectral trends between epochs and along the feature's major axis, whereas the latter may struggle to elucidate its linearity. Given the low counting statistics available in the two epoch observations, it remains difficult to determine a physical production scenario for these enigmatic X-ray emitting features with any certainty.

  13. The effects of Dark Matter annihilation on cosmic reionization

    SciTech Connect

    Kaurov, Alexander A.; Hooper, Dan; Gnedin, Nickolay Y.

    2016-12-15

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons that ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM, however, begins to efficiently annihilate with the formation of primordial microhalos at $z\\sim100-200$, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval $z \\sim 20-100$, it can leave a significant imprint on the global optical depth, $\\tau$. Moreover, we show that cosmic microwave background (CMB) polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. Here, we show that future measurements could make it possible to place constraints on the dark matter's annihilation cross section that are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic ray measurements, and studies of recombination.

  14. The effects of Dark Matter annihilation on cosmic reionization

    DOE PAGES

    Kaurov, Alexander A.; Hooper, Dan; Gnedin, Nickolay Y.

    2016-12-15

    We revisit the possibility of constraining the properties of dark matter (DM) by studying the epoch of cosmic reionization. Previous studies have shown that DM annihilation was unlikely to have provided a large fraction of the photons that ionized the universe, but instead played a subdominant role relative to stars and quasars. The DM, however, begins to efficiently annihilate with the formation of primordial microhalos atmore » $$z\\sim100-200$$, much earlier than the formation of the first stars. Therefore, if DM annihilation ionized the universe at even the percent level over the interval $$z \\sim 20-100$$, it can leave a significant imprint on the global optical depth, $$\\tau$$. Moreover, we show that cosmic microwave background (CMB) polarization data and future 21 cm measurements will enable us to more directly probe the DM contribution to the optical depth. In order to compute the annihilation rate throughout the epoch of reionization, we adopt the latest results from structure formation studies and explore the impact of various free parameters on our results. Here, we show that future measurements could make it possible to place constraints on the dark matter's annihilation cross section that are at a level comparable to those obtained from the observations of dwarf galaxies, cosmic ray measurements, and studies of recombination.« less

  15. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  16. The VIMOS VLT deep survey. The evolution of galaxy clustering to z ≃ 2 from first epoch observations

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Guzzo, L.; Meneux, B.; Pollo, A.; Cappi, A.; Colombi, S.; Iovino, A.; Marinoni, C.; McCracken, H. J.; Scaramella, R.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Picat, J. P.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnaboldi, M.; Arnouts, S.; Bardelli, S.; Blaizot, J.; Bolzonella, M.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Ilbert, O.; Marano, B.; Mathez, G.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pozzetti, L.; Radovich, M.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Busarello, G.; Lamareille, F.; Mellier, Y.; Merluzzi, P.; Ripepi, V.; Rizzo, D.

    2005-09-01

    This paper presents the evolution of the clustering of the main population of galaxies from z≃2 to z=0.2, from the first epoch VIMOS VLT Deep Survey (VVDS), a magnitude limited sample with 17.5 ≤ IAB ≤ 24. The sample allows a direct estimate of evolution from within the same survey over the time base sampled. We have computed the correlation functions ξ(r_p,π) and w_p(r_p), and the correlation length r_0(z), for the VVDS-02h and VVDS-CDFS fields, for a total of 7155 galaxies in a 0.61 deg2 area. We find that the correlation length in this sample slightly increases from z=0.5 to z=1.1, with r_0(z)=2.2{-}2.9 h-1 Mpc (comoving), for galaxies comparable in luminosity to the local 2dFGRS and SDSS samples, indicating that the amplitude of the correlation function was ≃2.5 times lower at z≃1 than observed locally. The correlation length in our lowest redshift bin z=[0.2, 0.5] is r_0=2.2 h-1 Mpc, lower than for any other population at the same redshift, indicating the low clustering of very low luminosity galaxies, 1.5 mag fainter than in the 2dFGRS or SDSS. The correlation length increases to r_0˜3.6 h-1 Mpc at higher redshifts z=[1.3, 2.1], as we are observing increasingly brighter galaxies, comparable to galaxies with MB_{AB}=-20.5 locally. We compare our measurement to the DEEP2 measurements in the range z=[0.7, 1.35] (Coil et al. 2004, ApJ, in press) and find comparable results when applying the same magnitude and color selection criteria as in their survey. The slowly varying clustering of VVDS galaxies as redshift increases is markedly different from the predicted evolution of the clustering of dark matter, indicating that bright galaxies traced higher density peaks when the large scale structures were emerging from the dark matter distribution 9-10 billion years ago, being supporting evidence for a strong evolution of the galaxy vs. dark matter bias.

  17. Correlation of QSO absorption lines in universes dominated by cold dark matter

    NASA Technical Reports Server (NTRS)

    Salmon, J.; Hogan, C.

    1986-01-01

    Theoretical predictions for the redshift correlations between QSO absorption-line systems are investigated in the context of 'cold dark matter' cosmological models. Particles in 'particle-mesh' N-body simulations are interpreted as absorbing clouds at epochs corresponding to mean redshifts, z, of 0.0, 1.25, and 3.0. The velocity correlation function for absorbing clouds is found by passing lines-of-sight through the systems and computing velocity differences for those particles which lie close to the lines. It depends strongly on z and Omega but only weakly, if at all, on the number density, diameter or mass of the clouds. Two interpretations are possible: (1) the heavy element absorption systems are associated with galaxies which are an unbiased sample of the mass distribution in an Omega(0) = 0.2 universe or (2) the Lyman-alpha absorbers are an unbiased sample of the mass in an Omega(0) = 1 universe and the heavy-element absorption systems, like galaxies, are more strongly clustered than the mass.

  18. Pseudoscalar portal dark matter

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Gori, Stefania; Lin, Tongyan; Wang, Lian-Tao

    2015-07-01

    A fermion dark matter candidate with a relic abundance set by annihilation through a pseudoscalar can evade constraints from direct detection experiments. We present simplified models that realize this fact by coupling a fermion dark sector to a two-Higgs doublet model. These models are generalizations of mixed bino-Higgsino dark matter in the minimal supersymmetric standard model, with more freedom in the couplings and scalar spectra. Annihilation near a pseudoscalar resonance allows a significant amount of parameter space for thermal relic dark matter compared to singlet-doublet dark matter, in which the fermions couple only to the standard model (SM) Higgs doublet. In a general two-Higgs doublet model, there is also freedom for the pseudoscalar to be relatively light and it is possible to obtain thermal relic dark matter candidates even below 100 GeV. In particular, we find ample room to obtain dark matter with mass around 50 GeV and fitting the Galactic center excess in gamma-rays. This region of parameter space can be probed by LHC searches for heavy pseudoscalars or electroweakinos, and possibly by other new collider signals.

  19. Exothermic dark matter

    SciTech Connect

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-09-15

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass {approx}few GeV and splittings {approx}5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  20. Direct dark matter searches—Test of the Big Bounce Cosmology

    SciTech Connect

    Cheung, Yeuk-Kwan E.; Vergados, J.D. E-mail: vergados@uoi.gr

    2015-02-01

    We consider the possibility of using dark matter particle's mass and its interaction cross section as a smoking gun signal of the existence of a Big Bounce at the early stage in the evolution of our currently observed universe. A study of dark matter production in the pre-bounce contraction and the post bounce expansion epochs of this universe reveals a new venue for achieving the observed relic abundance of our present universe. Specifically, it predicts a characteristic relation governing a dark matter mass and interaction cross section and a factor of 1/2 in thermally averaged cross section, as compared to the non-thermal production in standard cosmology, is needed for creating enough dark matter particle to satisfy the currently observed relic abundance because dark matter is being created during the pre-bounce contraction, in addition to the post-bounce expansion. As the production rate is lower than the Hubble expansion rate information of the bounce universe evolution is preserved. Therefore once the value of dark matter mass and interaction cross section are obtained by direct detection in laboratories, this alternative route becomes a signature prediction of the bounce universe scenario. This leads us to consider a scalar dark matter candidate, which if it is light, has important implications on dark matter searches.

  1. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  2. Asymmetric dark matter bound state

    NASA Astrophysics Data System (ADS)

    Bi, Xiao-Jun; Kang, Zhaofeng; Ko, P.; Li, Jinmian; Li, Tianjun

    2017-02-01

    We propose an interesting framework for asymmetric scalar dark matter (ADM), which has novel collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local U (1 )d symmetry which is broken at a low scale and provides a light gauge boson X . The dark gauge coupling is strong and then ADM can annihilate away into X -pair effectively. Therefore, the ADM can form a bound state due to its large self-interaction via X mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with b b ¯. The resulting signature at the LHC depends on the decays of X . In this paper we consider a case of particular interest: p p →b b ¯ +ADMonium followed by ADMonium→2 X →2 e+e- where the electrons are identified as (un)converted photons. It may provide a competitive explanation to heavy di-photon resonance searches at the LHC.

  3. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  4. SOLAR CONSTRAINTS ON ASYMMETRIC DARK MATTER

    SciTech Connect

    Lopes, Ilidio; Silk, Joseph E-mail: silk@astro.ox.ac.uk

    2012-10-01

    The dark matter content of the universe is likely to be a mixture of matter and antimatter, perhaps comparable to the measured asymmetric mixture of baryons and antibaryons. During the early stages of the universe, the dark matter particles are produced in a process similar to baryogenesis, and dark matter freezeout depends on the dark matter asymmetry and the annihilation cross section (s-wave and p-wave annihilation channels) of particles and antiparticles. In these {eta}-parameterized asymmetric dark matter ({eta}ADM) models, the dark matter particles have an annihilation cross section close to the weak interaction cross section, and a value of dark matter asymmetry {eta} close to the baryon asymmetry {eta}{sub B}. Furthermore, we assume that dark matter scattering of baryons, namely, the spin-independent scattering cross section, is of the same order as the range of values suggested by several theoretical particle physics models used to explain the current unexplained events reported in the DAMA/LIBRA, CoGeNT, and CRESST experiments. Here, we constrain {eta}ADM by investigating the impact of such a type of dark matter on the evolution of the Sun, namely, the flux of solar neutrinos and helioseismology. We find that dark matter particles with a mass smaller than 15 GeV, a spin-independent scattering cross section on baryons of the order of a picobarn, and an {eta}-asymmetry with a value in the interval 10{sup -12}-10{sup -10}, would induce a change in solar neutrino fluxes in disagreement with current neutrino flux measurements. This result is also confirmed by helioseismology data. A natural consequence of this model is suppressed annihilation, thereby reducing the tension between indirect and direct dark matter detection experiments, but the model also allows a greatly enhanced annihilation cross section. All the cosmological {eta}ADM scenarios that we discuss have a relic dark matter density {Omega}h {sup 2} and baryon asymmetry {eta}{sub B} in agreement with

  5. Layers and Dark Dunes

    NASA Image and Video Library

    2015-04-08

    The target of this observation as seen by ASA Mars Reconnaissance Orbiter is a circular depression in a dark-toned unit associated with a field of cones to the northeast. At the image scale of a Context Camera image, the depression appears to expose layers especially on the sides or walls of the depression, which are overlain by dark sands presumably associated with the dark-toned unit. HiRISE resolution, which is far higher than that of the Context Camera and its larger footprint, can help identify possible layers. http://photojournal.jpl.nasa.gov/catalog/PIA19358

  6. Dark Spots and Fans

    NASA Technical Reports Server (NTRS)

    2006-01-01

    As winter turns to spring at the south polar ice cap of Mars, the rising sun reveals dark spots and fans emerging from the cold polar night. Using visual images (left) and temperature data (right) from the Thermal Emission Imaging system on NASA's Mars Odyssey orbiter, scientists have built a new model for the origin of the dark markings. Scientists propose the markings come from dark sand and dust strewn by high-speed jets of carbon-dioxide gas. These erupt from under a layer of carbon-dioxide ice that forms each Martian winter.

  7. SBC Dark Current Measurement

    NASA Astrophysics Data System (ADS)

    Ogaz, Sara

    2013-10-01

    This takes a series of SBC dark measurements over a continuous period of about 6 hours {4 orbits}. The aim is to collect dark images during an extended SBC on-time. Earlier measurements indicate that the dark current increases with SBC on-time and may also be increasing with overall SBC use. The 6-hour time matches the longest time used by any observer. As with all SBC observations this needs continuous SAA free time.This program is executed once per cycle. The last exposures were taken in Mar 2013 under Program 13161.

  8. Dark matter in voids

    NASA Astrophysics Data System (ADS)

    Fong, Richard; Doroshkevich, Andrei G.; Turchaninov, Victor I.

    1995-07-01

    The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids'' or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.''

  9. Alternative to particle dark matter

    NASA Astrophysics Data System (ADS)

    Khoury, Justin

    2015-01-01

    We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

  10. THE EFFECT OF INTERPLANETARY SCINTILLATION ON EPOCH OF REIONIZATION POWER SPECTRA

    SciTech Connect

    Trott, Cathryn M.; Tingay, Steven J.

    2015-11-20

    Interplanetary Scintillation (IPS) induces intensity fluctuations in small angular size astronomical radio sources via the distortive effects of spatially and temporally varying electron density associated with outflows from the Sun. These radio sources are a potential foreground contaminant signal for redshifted HI emission from the Epoch of Reionization (EoR) because they yield time-dependent flux density variations in bright extragalactic point sources. Contamination from foreground continuum sources complicates efforts to discriminate the cosmological signal from other sources in the sky. In IPS, at large angles from the Sun applicable to EoR observations, weak scattering induces spatially and temporally correlated fluctuations in the measured flux density of sources in the field, potentially affecting the detectability of the EoR signal by inducing non-static variations in the signal strength. In this work, we explore the impact of interplanetary weak scintillation on EoR power spectrum measurements, accounting for the instrumental spatial and temporal sampling. We use published power spectra of electron density fluctuations and parameters of EoR experiments to derive the IPS power spectrum in the wavenumber phase space of EoR power spectrum measurements. The contrast of IPS power to expected cosmological power is used as a metric to assess the impact of IPS. We show that IPS has a spectral structure different from power from foregrounds alone, but the additional leakage into the EoR observation parameter space is negligible under typical IPS conditions, unless data are used from deep within the foreground contamination region.

  11. Statistical properties of multi-epoch spectral variability of SDSS stripe 82 quasars

    SciTech Connect

    Kokubo, Mitsuru; Morokuma, Tomoki; Minezaki, Takeo; Doi, Mamoru; Kawaguchi, Toshihiro; Sameshima, Hiroaki; Koshida, Shintaro

    2014-03-01

    We investigate the UV-optical (longward of Lyα 1216 Å) spectral variability of nearly 9000 quasars (0 < z < 4) using multi-epoch photometric data within the SDSS Stripe 82 region. The regression slope in the flux-flux space of a quasar light curve directly measures the color of the flux difference spectrum, then the spectral shape of the flux difference spectra can be derived by taking a careful look at the redshift dependence of the regression slopes. First, we confirm that the observed quasar spectrum becomes bluer when the quasar becomes brighter. We infer the spectral index of the composite difference spectrum as α{sub ν}{sup dif}∼+1/3 (in the form of f{sub ν}∝ν{sup α{sub ν}}), which is significantly bluer than that of the composite spectrum α{sub ν}{sup com}∼−0.5. We also show that the continuum variability cannot be explained by accretion disk models with varying mass accretion rates. Second, we examine the effects of broad emission line variability on the color-redshift space. The variability of the 'Small Blue Bump' is extensively discussed. We show that the low-ionization lines of Mg II and Fe II are less variable compared to Balmer emission lines and high-ionization lines, and the Balmer continuum is the dominant variable source around ∼3000 Å. These results are compared with previous studies, and the physical mechanisms of the variability of the continuum and emission lines are discussed.

  12. THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS

    SciTech Connect

    Parsons, Aaron R.; Backer, Donald C.; Foster, Griffin S.; Wright, Melvyn C. H.; Bradley, Richard F.; Gugliucci, Nicole E.; Parashare, Chaitali R.; Benoit, Erin E.; Aguirre, James E.; Jacobs, Daniel C.; Carilli, Chris L.; Herne, David; Lynch, Mervyn J.; Manley, Jason R.; Werthimer, Daniel J.

    2010-04-15

    We are developing the Precision Array for Probing the Epoch of Re-ionization (PAPER) to detect 21 cm emission from the early universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a four-antenna array in the low radio frequency interference (RFI) environment of Western Australia and an eight-antenna array at a prototyping site at the NRAO facilities near Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 sr at 156 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (C {sub l}) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the sample variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at l = 100 for a 1.46 MHz band centered at 164.5 MHz. This sensitivity level is approximately 3 orders of magnitude in temperature above the level of the fluctuations in 21 cm emission associated with re-ionization.

  13. Epoch of reionization 21 cm forecasting from MCMC-constrained semi-numerical models

    NASA Astrophysics Data System (ADS)

    Hassan, Sultan; Davé, Romeel; Finlator, Kristian; Santos, Mario G.

    2017-06-01

    The recent low value of Planck Collaboration XLVII integrated optical depth to Thomson scattering suggests that the reionization occurred fairly suddenly, disfavouring extended reionization scenarios. This will have a significant impact on the 21 cm power spectrum. Using a semi-numerical framework, we improve our model from instantaneous to include time-integrated ionization and recombination effects, and find that this leads to more sudden reionization. It also yields larger H ii bubbles that lead to an order of magnitude more 21 cm power on large scales, while suppressing the small-scale ionization power. Local fluctuations in the neutral hydrogen density play the dominant role in boosting the 21 cm power spectrum on large scales, while recombinations are subdominant. We use a Monte Carlo Markov chain approach to constrain our model to observations of the star formation rate functions at z = 6, 7, 8 from Bouwens et al., the Planck Collaboration XLVII optical depth measurements and the Becker & Bolton ionizing emissivity data at z ˜ 5. We then use this constrained model to perform 21 cm forecasting for Low Frequency Array, Hydrogen Epoch of Reionization Array and Square Kilometre Array in order to determine how well such data can characterize the sources driving reionization. We find that the Mock 21 cm power spectrum alone can somewhat constrain the halo mass dependence of ionizing sources, the photon escape fraction and ionizing amplitude, but combining the Mock 21 cm data with other current observations enables us to separately constrain all these parameters. Our framework illustrates how the future 21 cm data can play a key role in understanding the sources and topology of reionization as observations improve.

  14. Analysing the 21 cm signal from the epoch of reionization with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Shimabukuro, Hayato; Semelin, Benoit

    2017-07-01

    The 21 cm signal from the epoch of reionization should be observed within the next decade. While a simple statistical detection is expected with Square Kilometre Array (SKA) pathfinders, the SKA will hopefully produce a full 3D mapping of the signal. To extract from the observed data constraints on the parameters describing the underlying astrophysical processes, inversion methods must be developed. For example, the Markov Chain Monte Carlo method has been successfully applied. Here, we test another possible inversion method: artificial neural networks (ANNs). We produce a training set that consists of 70 individual samples. Each sample is made of the 21 cm power spectrum at different redshifts produced with the 21cmFast code plus the value of three parameters used in the seminumerical simulations that describe astrophysical processes. Using this set, we train the network to minimize the error between the parameter values it produces as an output and the true values. We explore the impact of the architecture of the network on the quality of the training. Then we test the trained network on the new set of 54 test samples with different values of the parameters. We find that the quality of the parameter reconstruction depends on the sensitivity of the power spectrum to the different parameters at a given redshift, that including thermal noise and sample variance decreases the quality of the reconstruction and that using the power spectrum at several redshifts as an input to the ANN improves the quality of the reconstruction. We conclude that ANNs are a viable inversion method whose main strength is that they require a sparse exploration of the parameter space and thus should be usable with full numerical simulations.

  15. Spectral Calibration Requirements of Radio Interferometers for Epoch of Reionisation Science with the SKA

    NASA Astrophysics Data System (ADS)

    Trott, Cathryn M.; Wayth, Randall B.

    2016-05-01

    Spectral features introduced by instrumental chromaticity of radio interferometers have the potential to negatively impact the ability to perform Epoch of Reionisation and Cosmic Dawn (EoR/CD) science. We describe instrument calibration choices that influence the spectral characteristics of the science data, and assess their impact on EoR/CD statistical and tomographic experiments. Principally, we consider the intrinsic spectral response of the antennas, embedded within a complete frequency-dependent primary beam response, and instrument sampling. The analysis is applied to the proposed SKA1-Low EoR/CD experiments. We provide tolerances on the smoothness of the SKA station primary beam bandpass, to meet the scientific goals of statistical and tomographic (imaging) of EoR/CD programs. Two calibration strategies are tested: (1) fitting of each fine channel independently, and (2) fitting of an nth-order polynomial for each ~ 1 MHz coarse channel with (n+1)th-order residuals (n = 2, 3, 4). Strategy (1) leads to uncorrelated power in the 2D power spectrum proportional to the thermal noise power, thereby reducing the overall sensitivity. Strategy (2) leads to correlated residuals from the fitting, and residual signal power with (n+1)th-order curvature. For the residual power to be less than the thermal noise, the fractional amplitude of a fourth-order term in the bandpass across a single coarse channel must be < 2.5% (50 MHz), < 0.5% (150 MHz), < 0.8% (200 MHz). The tomographic experiment places constraints on phase residuals in the bandpass. We find that the root-mean-square variability over all stations of the change in phase across any fine channel (4.578 kHz) should not exceed 0.2 degrees.

  16. Non-Abelian dark matter and dark radiation

    NASA Astrophysics Data System (ADS)

    Buen-Abad, Manuel A.; Marques-Tavares, Gustavo; Schmaltz, Martin

    2015-07-01

    We propose a new class of dark matter models with unusual phenomenology. What is ordinary about our models is that dark matter particles are weakly interacting massive particles; they are weakly coupled to the standard model and have weak scale masses. What is unusual is that they come in multiplets of a new dark non-Abelian gauge group with milliweak coupling. The massless dark gluons of this dark gauge group contribute to the energy density of the Universe as a form of weakly self-interacting dark radiation. In this paper we explore the consequences of having (i) dark matter in multiplets, (ii) self-interacting dark radiation, and (iii) dark matter which is weakly coupled to dark radiation. We find that (i) dark matter cross sections are modified by multiplicity factors which have significant consequences for collider searches and indirect detection, and (ii) dark gluons have thermal abundances which affect the cosmic microwave background (CMB) as dark radiation. Unlike additional massless neutrino species the dark gluons are interacting and have vanishing viscosity and (iii) the coupling of dark radiation to dark matter represents a new mechanism for damping the large scale structure power spectrum. A combination of additional radiation and slightly damped structure is interesting because it can remove tensions between global Λ CDM fits from the CMB and direct measurements of the Hubble expansion rate (H0) and large scale structure (σ8).

  17. Inflation, dark matter, and dark energy in the string landscape.

    PubMed

    Liddle, Andrew R; Ureña-López, L Arturo

    2006-10-20

    We consider the conditions needed to unify the description of dark matter, dark energy, and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.

  18. Gamma-rays from dark showers with twin Higgs models

    DOE PAGES

    Freytsis, Marat; Knapen, Simon; Robinson, Dean J.; ...

    2016-05-03

    We consider a twin WIMP scenario whose twin sector contains a full dark copy of the SM hadrons, where the lightest twin particles are twin pions. By analogy to the standard WIMP paradigm, the dark matter (DM) freezes out through twin electroweak interactions, and annihilates into a dark shower of light twin hadrons. These are either stable or decay predominantly to standard model (SM) photons. We show that this ‘hadrosymmetric’ scenario can be consistent with all applicable astrophysical, cosmological and collider constraints. In order to decay the twin hadrons before the big-bang nucleosynthesis epoch, an additional portal between the SMmore » and twin sector is required. In most cases we find this additional mediator is within reach of either the LHC or future intensity frontier experiments. Furthermore, we conduct simulations of the dark shower and consequent photon spectra. We find that fits of these spectra to the claimed galactic center gamma-ray excess seen by Fermi -LAT non-trivially coincide with regions of parameter space that both successfully generate the observed DM abundance and exhibit minimal fine-tuning.« less

  19. Gamma-rays from dark showers with twin Higgs models

    SciTech Connect

    Freytsis, Marat; Knapen, Simon; Robinson, Dean J.; Tsai, Yuhsin

    2016-05-03

    We consider a twin WIMP scenario whose twin sector contains a full dark copy of the SM hadrons, where the lightest twin particles are twin pions. By analogy to the standard WIMP paradigm, the dark matter (DM) freezes out through twin electroweak interactions, and annihilates into a dark shower of light twin hadrons. These are either stable or decay predominantly to standard model (SM) photons. We show that this ‘hadrosymmetric’ scenario can be consistent with all applicable astrophysical, cosmological and collider constraints. In order to decay the twin hadrons before the big-bang nucleosynthesis epoch, an additional portal between the SM and twin sector is required. In most cases we find this additional mediator is within reach of either the LHC or future intensity frontier experiments. Furthermore, we conduct simulations of the dark shower and consequent photon spectra. We find that fits of these spectra to the claimed galactic center gamma-ray excess seen by Fermi -LAT non-trivially coincide with regions of parameter space that both successfully generate the observed DM abundance and exhibit minimal fine-tuning.

  20. Gamma-rays from dark showers with twin Higgs models

    NASA Astrophysics Data System (ADS)

    Freytsis, Marat; Knapen, Simon; Robinson, Dean J.; Tsai, Yuhsin

    2016-05-01

    We consider a twin WIMP scenario whose twin sector contains a full dark copy of the SM hadrons, where the lightest twin particles are twin pions. By analogy to the standard WIMP paradigm, the dark matter (DM) freezes out through twin electroweak interactions, and annihilates into a dark shower of light twin hadrons. These are either stable or decay predominantly to standard model (SM) photons. We show that this `hadrosymmetric' scenario can be consistent with all applicable astrophysical, cosmological and collider constraints. In order to decay the twin hadrons before the big-bang nucleosynthesis epoch, an additional portal between the SM and twin sector is required. In most cases we find this additional mediator is within reach of either the LHC or future intensity frontier experiments. Furthermore, we conduct simulations of the dark shower and consequent photon spectra. We find that fits of these spectra to the claimed galactic center gamma-ray excess seen by Fermi -LAT non-trivially coincide with regions of parameter space that both successfully generate the observed DM abundance and exhibit minimal fine-tuning.

  1. Gradational epochs on Mars - Evidence from west-northwest of Isidis Basin and Electris

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Schultz, P. H.

    1990-03-01

    An account is given of the characteristics of Martian regions which may be adduced as evidence for enhanced gradation. The crater statistics for these regional surfaces are sufficiently different from those of proximate units with little evidence of modification to suggest, through comprehensive correlation, that a common pattern of modification to crater statistics may be a reflection of common epochs of enhanced gradation. If that be the case, then these areas' gradation occurred during a series of epochs of local-to-global extent whose duration and intensity decreased through time, following the last major impacts.

  2. Light and Dark Tricks

    NASA Image and Video Library

    2010-10-04

    Capturing the interplay between light and shadow, NASA Cassini spacecraft looks toward the night side of Saturn where sunlight reflected off the rings has dimly illuminated what would otherwise be the dark side of the planet.

  3. Dark Polar Dunes

    NASA Image and Video Library

    2006-09-01

    This MOC image shows dunes in the martian north polar region. The dunes are composed of dark, coarse sand. The white areas around the dunes are the last remaining areas of seasonal carbon dioxide frost cover

  4. Inflatable Dark Matter

    NASA Astrophysics Data System (ADS)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-01

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ˜MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  5. Dark and Light Titan

    NASA Image and Video Library

    2010-09-08

    NASA Cassini spacecraft examines Titan dark and light seasonal hemispheric dichotomy as it images the moon with a filter sensitive to near-infrared light. This image also shows Titan north polar hood.

  6. The Dark Universe

    NASA Astrophysics Data System (ADS)

    Livio, Mario

    2010-04-01

    1. A brief history of dark matter Vera Rubin; 2. Microlensing towards the Magellanic Clouds Kailash Sahu; 3. Searching for galactic dark matter Harvey Richer; 4. Hot gas in clusters of galaxies and Omega Megan Donahue; 5. Tracking the Baryon density from the Big Bang to the present Gary Steigman; 6. Modified Newtonian dynamics and its implications Bob Sanders; 7. Cosmological parameters and quintessence from radio galaxies Ruth Daly and Eric Guerra; 8. The mass density of the Universe Neta Bahcall; 9. Growth of structure in the Universe John Peacock; 10. Cosmological implications of the most distant supernova (known) Adam Riess; 11. Dynamical probes of the Halo mass function Chris Kochanek; 12. Detection of gravitational waves from inflation Marc Kamionkowski and Andrew Jaffe; 13. Cosmological constant problems and their solution Alex Vilenkin; 14. Dark Matter and dark energy: a physicist's perspective Michael Dine.

  7. Xenophobic dark matter

    NASA Astrophysics Data System (ADS)

    Feng, Jonathan L.; Kumar, Jason; Sanford, David

    2013-07-01

    We consider models of xenophobic dark matter, in which isospin-violating dark matter-nucleon interactions significantly degrade the response of xenon direct detection experiments. For models of near-maximal xenophobia, with neutron-to-proton coupling ratio fn/fp≈-0.64, and dark matter mass near 8 GeV, the regions of interest for CoGeNT and CDMS-Si and the region of interest identified by Collar and Fields in CDMS-Ge data can be brought into agreement. This model may be tested in future direct, indirect, and collider searches. Interestingly, because the natural isotope abundance of xenon implies that xenophobia has its limits, we find that this xenophobic model may be probed in the near future by xenon experiments. Near-future data from the LHC and Fermi-LAT may also provide interesting alternative probes of xenophobic dark matter.

  8. Inflatable Dark Matter.

    PubMed

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  9. Ghost dark matter

    SciTech Connect

    Furukawa, Tomonori; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Sugiyama, Naoshi; Mukohyama, Shinji E-mail: shu@a.phys.nagoya-u.ac.jp E-mail: naoshi@a.phys.nagoya-u.ac.jp

    2010-05-01

    We revisit ghost dark matter, the possibility that ghost condensation may serve as an alternative to dark matter. In particular, we investigate the Friedmann-Robertson-Walker (FRW) background evolution and the large-scale structure (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmological constant and ghost dark matter. The FRW background of the ΛGDM universe is indistinguishable from that of the standard ΛCDM universe if M∼>1eV, where M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger bound: M∼>10eV. For smaller M, ghost dark matter would have non-negligible sound speed after the matter-radiation equality, and thus the matter power spectrum would significantly differ from observation. These bounds are compatible with the phenomenological upper bound M∼<100GeV known in the literature.

  10. Is dark energy evolving?

    SciTech Connect

    Nair, Remya; Jhingan, Sanjay E-mail: sanjay.jhingan@gmail.com

    2013-02-01

    We look for evidence for the evolution in dark energy density by employing Principal Component Analysis (PCA). Distance redshift data from supernovae and baryon acoustic oscillations (BAO) along with WMAP7 distance priors are used to put constraints on curvature parameter Ω{sub k} and dark energy parameters. The data sets are consistent with a flat Universe. The constraints on the dark energy evolution parameters obtained from supernovae (including CMB distance priors) are consistent with a flat ΛCDM Universe. On the other hand, in the parameter estimates obtained from the addition of BAO data the second principal component, which characterize a non-constant contribution from dark energy, is non-zero at 1σ. This could be a systematic effect and future BAO data holds key to making more robust claims.

  11. Detailing Dark Spokes

    NASA Image and Video Library

    2010-03-09

    NASA Cassini spacecraft images dark spokes on Saturn B ring. Spokes are radial markings on Saturn rings that continue to interest scientists, and they can be seen here stretching left to right across the image.

  12. Dark matter detectors as dark photon helioscopes.

    PubMed

    An, Haipeng; Pospelov, Maxim; Pradler, Josef

    2013-07-26

    Light new particles with masses below 10 keV, often considered as a plausible extension of the standard model, will be emitted from the solar interior and can be detected on Earth with a variety of experimental tools. Here, we analyze the new "dark" vector state V, a massive vector boson mixed with the photon via an angle κ, that in the limit of the small mass mV has its emission spectrum strongly peaked at low energies. Thus, we utilize the constraints on the atomic ionization rate imposed by the results of the XENON10 experiment to set the limit on the parameters of this model: κ×mV<3×10(-12)  eV. This makes low-threshold dark matter experiments the most sensitive dark vector helioscopes, as our result not only improves current experimental bounds from other searches by several orders of magnitude but also surpasses even the most stringent astrophysical and cosmological limits in a seven-decade-wide interval of mV. We generalize this approach to other light exotic particles and set the most stringent direct constraints on "minicharged" particles.

  13. Simulations: The dark side

    NASA Astrophysics Data System (ADS)

    Frenkel, D.

    2013-01-01

    This paper discusses the Monte Carlo and Molecular Dynamics methods. Both methods are, in principle, simple. However, simple does not mean risk-free. In the literature, many of the pitfalls in the field are mentioned, but usually as a footnote --and these footnotes are scattered over many papers. The present paper focuses on the "dark side" of simulation: it is one big footnote. I should stress that "dark", in this context, has no negative moral implication. It just means: under-exposed.

  14. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  15. Dark Matter Hunters

    NASA Astrophysics Data System (ADS)

    Peter, Annika

    2017-06-01

    We know just enough about dark matter to design beautiful and plausible particle models for it, but not enough to sharpen searches in this vast theoretical parameter space. In this talk, I will highlight new ideas from the community to cover this large parameter space, and how new laboratory measurements and techniques are helping the community probe previously inaccessible types of dark matter microphysics. I will discuss open questions and possible future directions.

  16. The Local Dark Matter

    SciTech Connect

    Helfer, H.L.

    2005-10-21

    The observations of the extended rotation curves of some galaxies provide important constraints upon the nature of the local dark matter present in the halos of these galaxies. Using these constraints, one can show that the halo dark matter cannot be some population of conventional astronomical objects and (most probably) cannot be a population of exotic non-interacting particles. We suggest that the halos can be regarded as large spatial fluctuations in a classic scalar field.

  17. Dark Matter Astrophysics

    NASA Astrophysics Data System (ADS)

    D'Amico, Guido; Kamionkowski, Marc; Sigurdson, Kris

    This chapter is intended to provide a brief pedagogical review of dark matter for the newcomer to the subject. We begin with a discussion of the astrophysical evidence for dark matter. The standard weakly interacting massive particle (WIMP) scenario—the motivation, particle models, and detection techniques—is then reviewed. We provide a brief sampling of some recent variations to the standard WIMP scenario, as well as some alternatives (axions and sterile neutrinos). Exercises are provided for the reader.

  18. DARK SECTOR COUPLING BENDS THE SUPERCLUSTERS

    SciTech Connect

    Shim, Junsup; Lee, Jounghun E-mail: jounghun@astro.snu.ac.kr

    2013-11-01

    Galaxy clusters exhibit a noticeably anisotropic pattern in their clustering, which is vividly manifested by the presence of rich filament-like superclusters. The more anisotropic the clustering of galaxy clusters is, the more straight the rich filament-like superclusters become. Given that the degree of the anisotropy in the largest-scale clustering depends sensitively on the nature of dark energy, the supercluster straightness may play a complimentary role in testing dynamic dark energy models. Here, we focus on the coupled dark energy (cDE) models which assume the existence of dark sector coupling between scalar field dark energy and nonbaryonic dark matter. By determining the spines of the superclusters identified in the publicly available group catalogs from the COupled Dark Energy Cosmological Simulations for four different cDE models as well as for the ΛCDM model, we quantify the straightness of each supercluster as the spatial extent of its spine per member cluster, where a supercluster spine represents the main stem of the minimal spanning tree constructed out of the member clusters. It is shown that the dark sector coupling plays a role in making the supercluster less straight relative to the ΛCDM case and that in a cDE model with supergravity potential the superclusters are least straight. We also find that the difference in the degree of the supercluster straightness between the cDE and the ΛCDM cases increases with redshift. A physical interpretation of our result as well as its cosmological implication are discussed.

  19. Chilly dark sectors and asymmetric reheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-06-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  20. REVISITING THE FIRST GALAXIES: THE EPOCH OF POPULATION III STARS

    SciTech Connect

    Muratov, Alexander L.; Gnedin, Oleg Y.; Zemp, Marcel; Gnedin, Nickolay Y.

    2013-08-10

    We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z Almost-Equal-To 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars in 20-200 Myr, depending on galaxy mass.

  1. Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.

  2. Dark matter: theoretical perspectives.

    PubMed Central

    Turner, M S

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the "standard model" of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for "new physics." The compelling candidates are a very light axion (10(-6)-10(-4) eV), a light neutrino (20-90 eV), and a heavy neutralino (10 GeV-2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. PMID:11607395

  3. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  4. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. |

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  5. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. Fermi National Accelerator Lab., Batavia, IL )

    1993-06-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the [open quotes]standard model[close quotes] of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for [open quotes]new physics.[close quotes] The compelling candidates are a very light axion (10[sup [minus]6]--10[sup [minus]4] eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs.

  6. Is Dark Energy Falsifiable?

    NASA Astrophysics Data System (ADS)

    Gibson, C. H.; Schild, R. E.

    2011-11-01

    Is the accelerating expansion of the Universe true, inferred through observations of distant supernovae, and is the implied existence of an enormous amount of anti- gravitational dark energy material driving the accelerating expansion of the universe also true? To be physically useful these propositions must be falsifiable; that is, subject to observational tests that could render them false, and both fail when viscous, diffusive, astro-biological and turbulence effects are included in the interpretation of observations. A more plausible explanation of negative stresses producing the big bang is turbulence at Planck temperatures. Inflation results from gluon viscous stresses at the strong force transition. Anti-gravitational (dark energy) turbulence stresses are powerful but only temporary. No permanent dark energy is needed. At the plasma-gas transition, viscous stresses cause fragmentation of plasma proto-galaxies into dark matter clumps of primordial gas planets, each of which falsifies dark-energy cold-dark-matter cosmologies. Clumps of these planets form all stars, and explain the alleged accelerating expansion of the universe as a systematic dimming error of Supernovae Ia by light scattered in the hot turbulent atmospheres of evaporated planets surrounding central white dwarf stars.

  7. Constraining Dark Matter and Dark Energy Models using Astrophysical Surveys

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.

    This thesis addresses astrophysical probes to constrain dark matter (DM) and dark energy models. Primordial black holes (PBHs) remain one of the few DM candidates within the Standard Model of Particle Physics. This thesis presents a new probe of this PBH DM, using the microlensing of the source stars monitored by the already existing Kepler satellite. With its photometric precision and the large projected cross section of the nearby stars, it is found that previous constraints on PBH DM could theoretically be extended by two orders of magnitude. Correcting a well-known microlensing formula, a limb-darkening analysis is included, and a new approximation is calculated for future star selection. A preliminary prediction is calculated for the planned Wide-Field Infrared Survey Telescope. A preliminary study of the first two years of publicly available Kepler data is presented. The investigation yields many new sources of background error not predicted in the theoretical calculations, such as stellar flares and comets in the field of view. Since no PBH candidates are detected, an efficiency of detection is therefore calculated by running a Monte Carlo with fake limb-darkened finite-source microlensing events. It is found that with just the first 8 quarters of data, a full order of magnitude of the PBH mass range can be already constrained. Finally, one of the astrophysical probes of dark energy is also addressed - specifically, the baryon acoustic oscillations (BAO) measurement in the gas distribution, as detected in quasar absorption lines. This unique measurement of dark energy at intermediate redshifts is being measured by current telescope surveys. The last part of this thesis therefore focuses on understanding the systematic effects in such a detection. Since the bias between the underlying dark matter distribution and the measured gas flux distribution is based on gas physics, hydrodynamic simulations are used to understand the evolution of neutral hydrogen over

  8. Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity

    PubMed Central

    2014-01-01

    Background It is difficult to compare accelerometer-derived estimates of moderate-to-vigorous physical activity (MVPA) between studies due to differences in data processing procedures. We aimed to evaluate the effects of accelerometer processing options on total and bout-accumulated time spent in MVPA in adults. Methods 267 participants from the ProActive Trial provided 1236 days of valid physical activity (PA) data, collected using a 5-s epoch with ActiGraph GT1M accelerometers. We integrated data over 5-s to 60-s epoch lengths (EL) and applied two-level mixed effects regression models to MVPA time, defined using 1500 to 2500 counts/minute (cpm) cut-points (CP) and bout durations (BD) from 1 to 15 min. Results Total MVPA time was lower on longer EL and higher CP (47 vs 26 min/day and 26 vs 5 min/day on 1500 vs 2500 cpm on 5-s and 60-s epoch, respectively); this could be approximated as MVPA = exp[2.197 + 0.279*log(CP) + 6.120*log(EL) - 0.869*log(CP)*log(EL)] with an 800 min/day wear-time. In contrast, EL was positively associated with time spent in bout-accumulated MVPA; the approximating equation being MVPA = exp[54.679 - 6.268*log(CP) + 6.387*log(EL) - 10.000*log(BD) - 0.162*log(EL)*log(BD) - 0.626*log(CP)*log(EL) + 1.033*log(CP)*log(BD)]. BD and CP were inversely associated with MVPA, with higher values attenuating the influence of EL. Conclusions EL, CP and BD interact to influence estimates of accelerometer-determined MVPA. In general, higher CP and longer BD result in lower MVPA but the direction of association for EL depends on BD. Reporting scaling coefficients for these key parameters across their frequently used ranges would facilitate comparisons of population-level accelerometry estimates of MVPA. PMID:24612726

  9. An Exploration of WFC3/IR Dark Current Variation

    NASA Astrophysics Data System (ADS)

    Sunnquist, B.; Baggett, S.; Long, K. S.

    2017-02-01

    We use a collection of darks spanning September 2009 to June 2016 to study variations in the dark current in the IR detector on WFC3. Although the darks possess a similar signal pattern across the detector, we find that their median dark rates vary by as much as 0.014 DN/s (0.032 e-/s). The distribution of these median values has a triangular shape with a mean and standard deviation of 0.021 ± 0.0029 DN/s (0.049 ± 0.0069 e-/s). We observe a long term time-dependence in the inboard vertical reference pixel and zeroth read signals; however, these differences do not noticeably affect the calibrated dark signals, and we conclude that the WFC3/IR dark current levels continue to remain stable since launch. The inboard reference pixel signals exhibit a unique, but consistent, pattern around the detector, but this pattern does not evolve noticeably with the median of the science pixels, and a quadrant or row-based reference pixel subtraction strategy does not reduce the spread between the median dark rates. We notice a slight drift in the inboard reference pixel signals up the dark ramps, and the intensity of this drift is related to the median dark current in the science pixels. This holds true using either the horizontal or vertical reference pixels and for darks with a variety of sample sequences.

  10. Doppler effect on indirect detection of dark matter using dark matter only simulations

    NASA Astrophysics Data System (ADS)

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.; Abel, Tom

    2017-03-01

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy [E. G. Speckhard, K. C. Y. Ng, J. F. Beacom, and R. Laha, Phys. Rev. Lett. 116, 031301 (2016), 10.1103/PhysRevLett.116.031301]. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometer on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥3 σ . The halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.

  11. Doppler effect on indirect detection of dark matter using dark matter only simulations

    DOE PAGES

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.; ...

    2017-03-15

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometermore » on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥ 3σ. As a result, the halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.« less

  12. New Efforts to Identify Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    among them.In the early universe, small density perturbations on sub-galactic scales produce dwarf galaxies in the lambda-CDM model. But in the warm dark matter model, the longer free streaming length of the dark matter particles smooth out some of those small perturbations. This results in the formation of fewer dwarf galaxies which fits better with our current observations.Limits on Warm Dark MatterSo how can we test this alternative model? The maximum number density of dark-matter halos predicted by the warm dark matter model at a given redshift depends on the mass of the candidate dark matter particle: a larger particle mass means that more halos form. We therefore can set lower limits on the mass of dark matter particles in a two-step process:Calculate the maximum number density of dark matter halos predicted by models, andCompare this to the measured abundance of the faintest galaxies at a given redshift.Another way of looking at it: for different values of the dark matter particle mass mX, this shows the maximum number density of dark matter halos predicted at z = 6. The shaded areas represent the observed number density of faint galaxies at different confidence levels. [Menci et al. 2016]Recently, unprecedented new Hubble observations of ultra-faint, lensed galaxies in the Hubble Frontier Fields at z~6 have allowed for the discovery of more faint galaxies at this redshift than ever before. Now, a team of scientists led by Nicola Menci (INAF Rome) have used these observations to set a new limit on the lowest mass that candidate dark matter particles can have.Menci and collaborators find that these new observations constrain the particle masses to be above 2.9 keV at the 1 confidence level. These constitute the tightest constraints on the mass of candidate warm dark matter particles derived to date, and they even allow us to rule out some production mechanisms for theorized particles.Extending this analysis to other clusters with deep observations will only

  13. Stellar mass map and dark matter distribution in M 31

    NASA Astrophysics Data System (ADS)

    Tamm, A.; Tempel, E.; Tenjes, P.; Tihhonova, O.; Tuvikene, T.

    2012-10-01

    Aims: Stellar mass distribution in the Andromeda galaxy (M 31) is estimated using optical and near-infrared imaging data. Combining the derived stellar mass model with various kinematical data, properties of the dark matter (DM) halo of the galaxy are constrained. Methods: SDSS observations through the ugriz filters and the Spitzer imaging at 3.6 microns are used to sample the spectral energy distribution (SED) of the galaxy at each imaging pixel. Intrinsic dust extinction effects are taken into account by using far-infrared observations. Synthetic SEDs created with different stellar population synthesis models are fitted to the observed SEDs, providing estimates for the stellar mass surface density at each pixel. The stellar mass distribution of the galaxy is described with a 3-dimensional model consisting of a nucleus, a bulge, a disc, a young disc and a halo component, each following the Einasto density distribution (relations between different functional forms of the Einasto density distribution are given in Appendix B). By comparing the stellar mass distribution to the observed rotation curve and kinematics of outer globular clusters and satellite galaxies, the DM halo parameters are estimated. Results: Stellar population synthesis models suggest that M 31 is dominated by old (≳7 Gyr) stars throughout the galaxy, with the lower limit for the stellar mass-to-light ratios M/Lr ≳ 4 M⊙/L⊙. The upper limit M/Lr ≲ 6 M⊙/L⊙ is given by the rotation curve of the galaxy. The total stellar mass is (10-15) × 1010 M⊙, 30% of which is in the bulge and 56% in the disc. None of the tested DM distribution models (Einasto, NFW, Moore, Burkert) can be falsified on the basis of the stellar matter distribution and the rotation curve of the galaxy. The virial mass M200 of the DM halo is (0.8-1.1) × 1012 M⊙ and the virial radius is R200 = 189-213 kpc, depending on the DM distribution. For the Einasto profile, the average density of the DM halo within the central

  14. Dark baryons not in ancient halo white dwarfs

    NASA Astrophysics Data System (ADS)

    Crézé, M.; Mohan, V.; Robin, A. C.; Reylé, C.; McCracken, H. J.; Cuillandre, J.-C.; Le Fèvre, O.; Mellier, Y.

    2004-10-01

    Having ruled out the possibility that stellar objects are the main contributor of the dark matter embedding galaxies, microlensing experiments cannot exclude the hypothesis that a significant fraction of the Milky Way dark halo might be made of MACHOs with masses in the range 0.5-0.8 M⊙. Ancient white dwarfs are generally considered the most plausible candidates for such MACHOs. We report the results of a search for such white dwarfs in a proper motion survey covering a 0.16 sq. deg. field at three epochs at high galactic latitude, and 0.938 sq. deg. at two epochs at intermediate galactic latitude (VIRMOS survey), using the CFH telescope. Both surveys are complete to I = 23, with detection efficiency fading to 0 at I = 24.2. Proper motion data are suitable to separate unambiguously halo white dwarfs identified as belonging to a non rotating system. No candidates were found within the colour-magnitude-proper motion volume where such objects can be safely discriminated from any standard population as well as from possible artefacts. In the same volume, we estimate the maximum white dwarf halo fraction compatible with this observation at different significance levels if the halo is at least 14 gigayears old and under different ad hoc initial mass functions. Our data alone rule out a halo fraction greater than 14 % at a 95% confidence level. Combined with two previous investigations exploring comparable volumes, this pushes the limit below 4 % (95% confidence level) or below 1 % (64% confidence), and implies that if baryonic dark matter is present in galaxy halos, it is not, or is only marginally in the form of faint hydrogen white dwarfs. Based on observations made at Canada-France-Hawaii Telescope (CFHT).

  15. Dark Field Microscopy for Analytical Laboratory Courses

    ERIC Educational Resources Information Center

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  16. Dark Field Microscopy for Analytical Laboratory Courses

    ERIC Educational Resources Information Center

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  17. The Influence of Epoch Length on Physical Activity Patterns Varies by Child's Activity Level

    ERIC Educational Resources Information Center

    Nettlefold, Lindsay; Naylor, P. J.; Warburton, Darren E. R.; Bredin, Shannon S. D.; Race, Douglas; McKay, Heather A.

    2016-01-01

    Purpose: Patterns of physical activity (PA) and sedentary time, including volume of bouted activity, are important health indicators. However, the effect of accelerometer epoch length on measurement of these patterns and associations with health outcomes in children remain unknown. Method: We measured activity patterns in 308 children (52% girls,…

  18. The Influence of Epoch Length on Physical Activity Patterns Varies by Child's Activity Level

    ERIC Educational Resources Information Center

    Nettlefold, Lindsay; Naylor, P. J.; Warburton, Darren E. R.; Bredin, Shannon S. D.; Race, Douglas; McKay, Heather A.

    2016-01-01

    Purpose: Patterns of physical activity (PA) and sedentary time, including volume of bouted activity, are important health indicators. However, the effect of accelerometer epoch length on measurement of these patterns and associations with health outcomes in children remain unknown. Method: We measured activity patterns in 308 children (52% girls,…

  19. Effects of Formation Epoch Distribution on X-Ray Luminosity and Temperature Functions of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Enoki, Motohiro; Takahara, Fumio; Fujita, Yutaka

    2001-07-01

    We investigate statistical properties of galaxy clusters in the context of a hierarchical clustering scenario, taking into account their formation epoch distribution; this study is motivated by the recent finding by Fujita and Takahara that X-ray clusters form a fundamental plane in which the mass and the formation epoch are regarded as two independent parameters. Using the formalism that discriminates between major mergers and accretion, the epoch of a cluster formation is identified with that of the last major merger. Since tiny mass accretion following formation does not much affect the core structure of clusters, the properties of X-ray emission from clusters are determined by the total mass and density at their formation time. Under these assumptions, we calculate X-ray luminosity and temperature functions of galaxy clusters. We find that the behavior of the luminosity function differs from the model that does not take into account formation epoch distribution; the behavior of the temperature function, however, is not much different. In our model, the luminosity function is shifted to a higher luminosity and shows no significant evolution up to z~1, independent of cosmological models. The clusters are populated on the temperature-luminosity plane, with a finite dispersion. Since the simple scaling model in which the gas temperature is equal to the virial temperature fails to reproduce the observed luminosity-temperature relation, we also consider a model that takes into account the effects of preheating. The preheating model reproduces the observations much more accurately.

  20. Sleep stage and obstructive apneaic epoch classification using single-lead ECG

    PubMed Central

    2010-01-01

    Background Polysomnography (PSG) is used to define physiological sleep and different physiological sleep stages, to assess sleep quality and diagnose many types of sleep disorders such as obstructive sleep apnea. However, PSG requires not only the connection of various sensors and electrodes to the subject but also spending the night in a bed that is different from the subject's own bed. This study is designed to investigate the feasibility of automatic classification of sleep stages and obstructive apneaic epochs using only the features derived from a single-lead electrocardiography (ECG) signal. Methods For this purpose, PSG recordings (ECG included) were obtained during the night's sleep (mean duration 7 hours) of 17 subjects (5 men) with ages between 26 and 67. Based on these recordings, sleep experts performed sleep scoring for each subject. This study consisted of the following steps: (1) Visual inspection of ECG data corresponding to each 30-second epoch, and selection of epochs with relatively clean signals, (2) beat-to-beat interval (RR interval) computation using an R-peak detection algorithm, (3) feature extraction from RR interval values, and (4) classification of sleep stages (or obstructive apneaic periods) using one-versus-rest approach. The features used in the study were the median value, the difference between the 75 and 25 percentile values, and mean absolute deviations of the RR intervals computed for each epoch. The k-nearest-neighbor (kNN), quadratic discriminant analysis (QDA), and support vector machines (SVM) methods were used as the classification tools. In the testing procedure 10-fold cross-validation was employed. Results QDA and SVM performed similarly well and significantly better than kNN for both sleep stage and apneaic epoch classification studies. The classification accuracy rates were between 80 and 90% for the stages other than non-rapid-eye-movement stage 2. The accuracies were 60 or 70% for that specific stage. In five