Sample records for epoxide functional groups

  1. Versatile Synthesis of Stable, Functional Polypeptides via Reaction with Epoxides.

    PubMed

    Gharakhanian, Eric G; Deming, Timothy J

    2015-06-08

    Methodology was developed for efficient alkylation of methionine residues using epoxides as a general strategy to introduce a wide range of functional groups onto polypeptides. Use of a spacer between epoxide and functional groups further allowed addition of sterically demanding functionalities. Contrary to other methods to alkylate methionine residues, epoxide alkylations allow the reactions to be conducted in wet protic media and give sulfonium products that are stable against dealkylation. These functionalizations are notable since they are chemoselective, utilize stable and readily available epoxides, and allow facile incorporation of an unprecedented range of functional groups onto simple polypeptides using stable linkages.

  2. Vibrational Excitations and Low Energy Electronic Structure of Epoxide-decorated Graphene.

    PubMed

    Mattson, E C; Johns, J E; Pande, K; Bosch, R A; Cui, S; Gajdardziska-Josifovska, M; Weinert, M; Chen, J H; Hersam, M C; Hirschmugl, C J

    2014-01-02

    We report infrared studies of adsorbed atomic oxygen (epoxide functional groups) on graphene. Two different systems are used as a platform to explore these interactions, namely, epitaxial graphene/SiC(0001) functionalized with atomic oxygen (graphene epoxide, GE) and chemically reduced graphene oxide (RGO). In the case of the model GE system, IR reflectivity measurements show that epoxide groups distort the graphene π bands around the K-point, imparting a finite effective mass and contributing to a band gap. In the case of RGO, epoxide groups are found to be present following the reduction treatment by a combination of polarized IR reflectance and transmittance measurements. Similar to the GE system, a band gap in the RGO sample is observed as well.

  3. Vibrational Excitations and Low Energy Electronic Structure of Epoxide-decorated Graphene

    PubMed Central

    Mattson, E.C.; Johns, J.E.; Pande, K.; Bosch, R.A.; Cui, S.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J.H.; Hersam, M.C.; Hirschmugl, C.J.

    2014-01-01

    We report infrared studies of adsorbed atomic oxygen (epoxide functional groups) on graphene. Two different systems are used as a platform to explore these interactions, namely, epitaxial graphene/SiC(0001) functionalized with atomic oxygen (graphene epoxide, GE) and chemically reduced graphene oxide (RGO). In the case of the model GE system, IR reflectivity measurements show that epoxide groups distort the graphene π bands around the K-point, imparting a finite effective mass and contributing to a band gap. In the case of RGO, epoxide groups are found to be present following the reduction treatment by a combination of polarized IR reflectance and transmittance measurements. Similar to the GE system, a band gap in the RGO sample is observed as well. PMID:24563725

  4. Stiffness and strength of oxygen-functionalized graphene with vacancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zandiatashbar, A.; Ban, E.; Picu, R. C., E-mail: picuc@rpi.edu

    2014-11-14

    The 2D elastic modulus (E{sup 2D}) and strength (σ{sup 2D}) of defective graphene sheets containing vacancies, epoxide, and hydroxyl functional groups are evaluated at 300 K by atomistic simulations. The fraction of vacancies is controlled in the range 0% to 5%, while the density of functional groups corresponds to O:C ratios in the range 0% to 25%. In-plane modulus and strength diagrams as functions of vacancy and functional group densities are generated using models with a single type of defect and with combinations of two types of defects (vacancies and functional groups). It is observed that in models containing only vacancies,more » the rate at which strength decreases with increasing the concentration of defects is largest, followed by models containing only epoxide groups and those with only hydroxyl groups. The effect on modulus of vacancies and epoxides present alone in the model is similar, and much stronger than that of hydroxyl groups. When the concentration of defects is large, the combined effect of the functional groups and vacancies cannot be obtained as the superposition of individual effects of the two types of defects. The elastic modulus deteriorates faster (slower) than predicted by superposition in systems containing vacancies and hydroxyl groups (vacancies and epoxide groups)« less

  5. Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2011-12-15

    In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs atmore » the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center. Highlights: Black-Right-Pointing-Pointer CNTs were functionalized by epoxide ring-opening polymerization. Black-Right-Pointing-Pointer Polyether and epoxide group covalently attached to the sidewalls of CNTs. Black-Right-Pointing-Pointer Functionalized CNTs have a polymer weight percentage of ca. 14-74 wt%. Black-Right-Pointing-Pointer Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.« less

  6. Teaching Green Chemistry with Epoxidized Soybean Oil

    ERIC Educational Resources Information Center

    Barcena, Homar; Tuachi, Abraham; Zhang, Yuanzhuo

    2017-01-01

    The synthesis of epoxidized soybean oil (ESO) provides students a vantage point on the application of green chemistry principles in a series of experiments. Qualitative tests review the reactions of alkenes, whereas spectroscopic analyses provide insight in monitoring functional group transformations.

  7. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    USDA-ARS?s Scientific Manuscript database

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  8. Prediction of metabolites of epoxidation reaction in MetaTox.

    PubMed

    Rudik, A V; Dmitriev, A V; Bezhentsev, V M; Lagunin, A A; Filimonov, D A; Poroikov, V V

    2017-10-01

    Biotransformation is a process of the chemical modifications which may lead to the reactive metabolites, in particular the epoxides. Epoxide reactive metabolites may cause the toxic effects. The prediction of such metabolites is important for drug development and ecotoxicology studies. Epoxides are formed by some oxidation reactions, usually catalysed by cytochromes P450, and represent a large class of three-membered cyclic ethers. Identification of molecules, which may be epoxidized, and indication of the specific location of epoxide functional group (which is called SOE - site of epoxidation) are important for prediction of epoxide metabolites. Datasets from 355 molecules and 615 reactions were created for training and validation. The prediction of SOE is based on a combination of LMNA (Labelled Multilevel Neighbourhood of Atom) descriptors and Bayesian-like algorithm implemented in PASS software and MetaTox web-service. The average invariant accuracy of prediction (AUC) calculated in leave-one-out and 20-fold cross-validation procedures is 0.9. Prediction of epoxide formation based on the created SAR model is included as the component of MetaTox web-service ( http://www.way2drug.com/mg ).

  9. Ladder Polyether Synthesis via Epoxide-Opening Cascades Directed by a Disappearing Trimethylsilyl Group

    PubMed Central

    Heffron, Timothy P.; Simpson, Graham L.; Merino, Estibaliz; Jamison, Timothy F.

    2010-01-01

    Epoxide-opening cascades offer the potential to construct complex polyether natural products expeditiously and in a manner that emulates the biogenesis proposed for these compounds. Herein we provide a full account of our development of a strategy that addresses several important challenges of such cascades. The centerpiece of the method is a trimethylsilyl (SiMe3) group that serves several purposes and leaves no trace of itself by the time the cascade has come to an end. The main function of the SiMe3 group is to dictate the regioselectivity of epoxide opening. This strategy is the only general method of effecting endo-selective cascades under basic conditions. PMID:20302314

  10. Towards the Synthesis of Dihydrooxepino[4,3-b]pyrrole-Containing Natural Products via Cope Rearrangement of Vinyl Pyrrole Epoxides.

    PubMed

    Cameron, Alex; Fisher, Brendan; Fisk, Nicholas; Hummel, Jessica; White, Jonathan M; Krenske, Elizabeth H; Rizzacasa, Mark A

    2015-12-18

    An approach to the dihydrooxepino[4,3-b]pyrrole core of diketopiperazine natural products which utilizes a vinyl pyrrole epoxide Cope rearrangement was investigated. It was found that an ester substituent on the epoxide was essential for the [3,3]-rearrangement to occur. Density functional calculations with M06-2X provided explanations for the effects of the pyrrole and ester groups on these rearrangements.

  11. Gold(I)-Catalyzed Cascade Cyclization of Allenyl Epoxides

    PubMed Central

    Tarselli, Michael A.; Lucas Zuccarello, J

    2009-01-01

    Cationic gold(I) phosphite catalysts activate allenes for epoxide cascade reactions. The system is tolerant of numerous functional groups (sulfones, esters, ethers, sulfonamides) and proceeds at room temperature in dichloromethane. The cyclization pathway is sensitive to the substitution pattern of the epoxide, and the backbone structure of the A-ring. It is capable of producing medium-ring ethers, fused 6-5 bicyclic, and linked pyran-furan structures. The resulting cycloisomers are reminiscent of structures found in numerous polyether natural products. PMID:19588972

  12. Effect of Monomer Structure on Curing Behavior, CO2 Solubility, and Gas Permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDanel, WM; Cowan, MG; Barton, JA

    2015-04-29

    New imidazolium- and pyrrolidinium-based bis(epoxide)-functionalized ionic liquid (IL) monorners were synthesized: and reacted with multifunctional amine monomers to produce cross-linked, epoxy-amine poly(ionic liquid) (PIL) resins and PIL/IL ion-gel membranes. The length and chemical nature (i.e., alkyl versus ether) between the irrildazolium group and epokitie groups were studied to determine their effects on CO2 affinity. The CO2 uptake (millimoles per gram) of the epoxy amine resins (between 0.1 and 1 mmol/g) was found to depend predominately on the epoxide-to-amine ratio and the bis(epoxide) IL molecular weight. The effect of using a primary versus a secondary amine-containing multifunctional monoiner was also assessedmore » for the resin-synthesis. Secondary amines can increase CO2 permeability but also increase the iime required for biS(epoxide) coriversion. When either the epoxide or athine monomer structure is changed, the CO2 solubility and permeability of the resulting PIL resins and ion-sel membranes can be tuned.« less

  13. New biobased high functionality polyols and their use in polyurethane coatings.

    PubMed

    Pan, Xiao; Webster, Dean C

    2012-02-13

    High-functionality polyols for application in polyurethanes (PUs) were prepared by epoxide ring-opening reactions from epoxidized sucrose esters of soybean oil-epoxidized sucrose soyates-in which secondary hydroxyl groups were generated from epoxides on fatty acid chains. Ester polyols were prepared by using a base-catalyzed acid-epoxy reaction with carboxylic acids (e.g., acetic acid); ether polyols were prepared by using an acid-catalyzed alcohol-epoxy reaction with monoalcohols (e.g., methanol). The polyols were characterized by using gel permeation chromatography, FTIR spectroscopy, (1)H NMR spectroscopy, differential scanning calorimetry (DSC), and viscosity measurements. PU thermosets were prepared by using aliphatic polyisocyanates based on isophorone diisocyanate and hexamethylene diisocyanate. The properties of the PUs were studied by performing tensile testing, dynamic mechanical analysis, DSC, and thermogravimetric analysis. The properties of PU coatings on steel substrates were evaluated by using ASTM methods to determine coating hardness, adhesion, solvent resistance, and ductility. Compared to a soy triglyceride polyol, sucrose soyate polyols provide greater hardness and range of cross-link density to PU thermosets because of the unique structure of these macromolecules: well-defined compact structures with a rigid sucrose core coupled with high hydroxyl group functionality. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae).

    PubMed

    Goss, Reimund

    2003-09-01

    The substrate specificity of the enzyme violaxanthin de-epoxidase (VDE) of the primitive green alga Mantoniella squamata (Prasinophyceae) was tested in in vitro enzyme assays employing the following xanthophyll mono-epoxides: antheraxanthin (Ax), diadinoxanthin (Ddx), lutein-epoxide (LE), cryptoxanthin-epoxide (CxE), 9- cis neoxanthin (cNx), all- trans neoxanthin (Nx), and xanthophyll di-epoxides: 9- cis violaxanthin (cVx), all- trans violaxanthin (Vx), cryptoxanthin-di-epoxide (CxDE). The data presented in this study show that the VDE of M. squamata not only exhibits a low affinity for the mono-epoxide Ax, as has been reported by R. Frommolt et al. (2001, Planta 213:446-456), but has a reduced substrate affinity for the mono-epoxides Ddx, LE, CxE, and Nx as well. On the other hand, xanthophylls with a second epoxy-group (Vx, CxDE) can be de-epoxidized with a higher efficiency. Such a preference for xanthophyll di-epoxides cannot be observed for the higher-plant VDE, where, in general, no marked differences in the pigment de-epoxidation rates between xanthophyll mono- and di-epoxides are visible. Despite this substantial difference between the VDEs of M. squamata and S. oleracea there are also features common to both enzymes. Neither VDE is able to convert xanthophylls with a 9- cis configuration in the acyclic polyene chain and both rely on substrates in the all- trans configuration. Both enzymes furthermore exhibit a dependence of enzyme activity on the polarity of the substrate. Highly polar (Nx) or non-polar (CxE) xanthophylls are de-epoxidized with greatly reduced rates in comparison to substrates with an intermediate polarity (Vx, Ax, LE, Ddx). This dependence on substrate polarity becomes more obvious when the higher-plant VDE is examined, as the substrate affinity of the VDE of M. squamata is more strongly influenced by the existence or absence of a second epoxy-group. In summary, the data presented in this study underline the fact that different VDEs, although in general catalyzing the same reaction sequence, are functionally diverse.

  15. Epoxide hydrolases: structure, function, mechanism, and assay.

    PubMed

    Arand, Michael; Cronin, Annette; Adamska, Magdalena; Oesch, Franz

    2005-01-01

    Epoxide hydrolases are a class of enzymes important in the detoxification of genotoxic compounds, as well as in the control of physiological signaling molecules. This chapter gives an overview on the function, structure, and enzymatic mechanism of structurally characterized epoxide hydrolases and describes selected assays for the quantification of epoxide hydrolase activity.

  16. Olefin Epoxidation by Methyltrioxorhenium: A Density Functional Study on Energetics and Mechanisms.

    PubMed

    Gisdakis, Philip; Antonczak, Serge; Köstlmeier, Sibylle; Herrmann, Wolfgang A; Rösch, Notker

    1998-09-04

    A spiro attack on a peroxo group is calculated to be the preferred reaction pathway for olefin epoxidation with the catalytic system CH 3 ReO 3 /H 2 O 2 (see picture). This finding is supported by density functional calculations on more than ten transition states for the most probable mechanisms. Hydration has significant effects on various reaction species: it stabilizes the intermediates and destabilizes, with one exception, the transition states. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  17. Probing Competitive and Co-operative Hydroxyl and Ammonium Hydrogen-Bonding Directed Epoxidations.

    PubMed

    Brambilla, Marta; Brennan, Méabh B; Csatayová, Kristína; Davies, Stephen G; Fletcher, Ai M; Kennett, Alice M R; Lee, James A; Roberts, Paul M; Russell, Angela J; Thomson, James E

    2017-10-06

    The diastereoselectivities and rates of epoxidation (upon treatment with Cl 3 CCO 2 H then m-CPBA) of a range of cis- and trans-4-aminocycloalk-2-en-1-ol derivatives (containing five-, six-, and seven-membered rings) have been investigated. In all cases where the two potential directing groups can promote epoxidation on opposite faces of the ring scaffold, evidence of competitive epoxidation pathways, promoted by hydrogen-bonding to either the in situ formed ammonium moiety or the hydroxyl group, was observed. In contrast to the relative directing group abilities already established for the six-membered ring system (NHBn ≫ OH > NBn 2 ), an N,N-dibenzylammonium moiety appeared more proficient than a hydroxyl group at directing the stereochemical course of the epoxidation reaction in a five- or seven-membered system. In the former case, this was rationalized by the drive to minimize torsional strain in the transition state being coupled with assistance from hydrogen-bonding to the ammonium moiety. In the latter case, this was ascribed to the steric bulk of the ammonium moiety disfavoring conformations in which hydrogen-bonding to the hydroxyl group results in direction of the epoxidation to the syn face. In cases where the two potential directing groups can promote epoxidation on the same face of the ring scaffold, an enhancement of epoxidation diastereoselectivity was not observed, while introduction of a second, allylic heteroatom to the substrate results in diminishment of the rate of epoxidation in all cases. Presumably, reduction of the nucleophilicity of the olefin by the second, inductively electron-withdrawing heteroatom is the dominant factor, and any assistance to the epoxidation reaction by the potential to form hydrogen-bonds to two directing groups rather than one is clearly unable to overwhelm it.

  18. Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.

    2006-01-01

    The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.

  19. Electronic Structure Calculations of Ammonia Adsorption on Graphene and Graphene Oxide with Epoxide and Hydroxyl Groups

    NASA Astrophysics Data System (ADS)

    Nancy Anna Anasthasiya, A.; Khaneja, Mamta; Jeyaprakash, B. G.

    2017-10-01

    Ammonia adsorption on graphene (G) and graphene oxide (GO) was investigated through density functional theory calculations. In the GO system, the obtained binding energy, band gap, charge transfer and electronic structure revealed that the epoxide (GO-O) and hydroxyl groups (GO-OH) in GO enhance the NH3 adsorption, which leads to the chemisorption of NH3 on GO. The dissociation of NH3 to NH2 and formation of OH was also observed when the O and H atoms were separated at 0.985 Å, 1.019 Å, 1.035 Å, and 1.044 Å for various GO systems. The maximum charge transfer value was found to be 0.054 |e| with the binding energy of 1.143 eV for GO with a single epoxide (GO-1O) group. The charge transfer from NH3 to G or GO and the bond formation in this study agree with the reported experimental results.

  20. Peroxotantalate-Based Ionic Liquid Catalyzed Epoxidation of Allylic Alcohols with Hydrogen Peroxide.

    PubMed

    Ma, Wenbao; Chen, Chen; Kong, Kang; Dong, Qifeng; Li, Kun; Yuan, Mingming; Li, Difan; Hou, Zhenshan

    2017-05-29

    The efficient and environmentally benign epoxidation of allylic alcohols has been attained by using new kinds of monomeric peroxotantalate anion-functionalized ionic liquids (ILs=[P 4,4,4,n ] 3 [Ta(O) 3 (η-O 2 )], P 4,4,4,n =quaternary phosphonium cation, n=4, 8, and 14), which have been developed and their structures determined accordingly. This work revealed the parent anions of the ILs underwent structural transformation in the presence of H 2 O 2 . The formed active species exhibited excellent catalytic activity, with a turnover frequency for [P 4,4,4,4 ] 3 [Ta(O) 3 (η-O 2 )] of up to 285 h -1 , and satisfactory recyclability in the epoxidation of various allylic alcohols under very mild conditions by using only one equivalent of hydrogen peroxide as an oxidant. NMR studies showed the reaction was facilitated through a hydrogen-bonding mechanism, in which the peroxo group (O-O) of the peroxotantalate anion served as the hydrogen-bond acceptor and hydroxyl group in the allylic alcohols served as the hydrogen-bond donor. This work demonstrates that simple monomeric peroxotantalates can catalyze epoxidation of allylic alcohols efficiently. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xianqing; Pan, Deyou; Lao, Ming; Liang, Shuiying; Huang, Dan; Zhou, Wenzheng; Guo, Jin

    2017-05-01

    The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  2. Epoxy thermoset networks derived from vegetable oils and their blends

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Ravalli, Matthew

    2015-03-01

    Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.

  3. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.

    PubMed

    Zhang, Jing; Ji, Li; Liu, Weiping

    2015-08-17

    Predicting the biotransformation of xenobiotics is important in toxicology; however, as more compounds are synthesized than can be investigated experimentally, powerful computational methods are urgently needed to prescreen potentially useful candidates. Cytochrome P450 enzymes (P450s) are the major enzymes involved in xenobiotic metabolism, and many substances are bioactivated by P450s to form active compounds. An example is the conversion of olefinic substrates to epoxides, which are intermediates in the metabolic activation of many known or suspected carcinogens. We have calculated the activation energies for epoxidation by the active species of P450 enzymes (an iron-oxo porphyrin cation radical oxidant, compound I) for a diverse set of 36 olefinic substrates with state-of-the-art density functional theory (DFT) methods. Activation energies can be estimated by the computationally less demanding method of calculating the ionization potentials of the substrates, which provides a useful and simple predictive model based on the reaction mechanism; however, the preclassification of these diverse substrates into weakly polar and strongly polar groups is a prerequisite for the construction of specific predictive models with good predictability for P450 epoxidation. This approach has been supported by both internal and external validations. Furthermore, the relation between the activation energies for the regioselective epoxidation and hydroxylation reactions of P450s and experimental data has been investigated. The results show that the computational method used in this work, single-point energy calculations with the B3LYP functional including zero-point energy and solvation and dispersion corrections based on B3LYP-optimized geometries, performs well in reproducing the experimental trends of the epoxidation and hydroxylation reactions.

  4. High performance bio-based thermosets for composites and coatings

    NASA Astrophysics Data System (ADS)

    Paramarta, Adlina Ambeg

    In the recent decade, there has been increasing interest in using renewable feedstocks as chemical commodities for composites and coatings application. Vegetable oils are promising renewable resources due to their wide availability with affordable cost. In fact, the utilization of vegetable oils to produce composite and coatings products has been around for centuries; linseed oil was widely used for wide variety of paints. However, due to its chemical structure, the application of vegetable oils for high-performance materials is limited; and thus chemical modification is necessary. One of the modification approaches is by substituting the glycerol core in the triglycerides with sucrose to form sucrose esters of vegetable oil fatty acids, in which this resin possesses a higher number of functional group per molecule and a more rigid core. In this research, thermosets of highly functionalized sucrose esters of vegetable oils were developed. Two crosslinking methods of epoxidized surcrose soyate (ESS) resins were explored: direct polymerization with anhydride moieties for composite applications and Michael-addition reaction of acrylated-epoxidized sucrose soyate (AESS) for coatings applications. In the first project, it was shown that the reaction kinetics, thermal and mechanical properties of the materials can be tuned by varying the molar ratio between the epoxide and anhydride, plus the type and amount of catalyst. Furthermore, the toughness properties of the ESS-based thermosets can be improved by changing the type of anhydride crosslinkers and incorporating secondary phase rubbers. Then, in the second system, the epoxy functionality in the ESS was converted into acrylate group, which then crosslinked with amine groups through the Michael-addition reaction to produce coatings systems. The high number of functional groups and the fast reactivity of the crosslinker results in coatings that can be cured at ambient temperature, yet still possess moderately high glass transition temperatures.

  5. Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosis

    PubMed Central

    Park, Hyun Bong; Sampathkumar, Parthasarathy; Perez, Corey E.; Lee, Joon Ha; Tran, Jeannie; Bonanno, Jeffrey B.; Hallem, Elissa A.; Almo, Steven C.; Crawford, Jason M.

    2017-01-01

    Members of the gammaproteobacterial Photorhabdus genus share mutualistic relationships with Heterorhabditis nematodes, and the pairs infect a wide swath of insect larvae. Photorhabdus species produce a family of stilbenes, with two major components being 3,5-dihydroxy-4-isopropyl-trans-stilbene (compound 1) and its stilbene epoxide (compound 2). This family of molecules harbors antimicrobial and immunosuppressive activities, and its pathway is responsible for producing a nematode “food signal” involved in nematode development. However, stilbene epoxidation biosynthesis and its biological roles remain unknown. Here, we identified an orphan protein (Plu2236) from Photorhabdus luminescens that catalyzes stilbene epoxidation. Structural, mutational, and biochemical analyses confirmed the enzyme adopts a fold common to FAD-dependent monooxygenases, contains a tightly bound FAD prosthetic group, and is required for the stereoselective epoxidation of compounds 1 and 2. The epoxidase gene was dispensable in a nematode-infective juvenile recovery assay, indicating the oxidized compound is not required for the food signal. The epoxide exhibited reduced cytotoxicity toward its producer, suggesting this may be a natural route for intracellular detoxification. In an insect infection model, we also observed two stilbene-derived metabolites that were dependent on the epoxidase. NMR, computational, and chemical degradation studies established their structures as new stilbene-l-proline conjugates, prolbenes A (compound 3) and B (compound 4). The prolbenes lacked immunosuppressive and antimicrobial activities compared with their stilbene substrates, suggesting a metabolite attenuation mechanism in the animal model. Collectively, our studies provide a structural view for stereoselective stilbene epoxidation and functionalization in an invertebrate animal infection model and provide new insights into stilbene cellular detoxification. PMID:28246174

  6. Utilization of oxygen difluoride for syntheses of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Toy, M. S. (Inventor)

    1976-01-01

    The reaction oxygen difluoride, OF2, with ethylenically unsaturated fluorocarbon compounds is examined. Depending upon the fluorocarbon material and reaction conditions, OF2 can chain extend fluoropolyenes, convert functional perfluorovinyl groups to acyl fluoride and/or epoxide groups, and act as a monomer for an addition type copolymerization with diolefins.

  7. Synthesis, reactivity and application studies for different biolubricants

    PubMed Central

    2014-01-01

    Vegetable oils have different unique properties owing to their unique chemical structure. Vegetable oils have a greater ability to lubricate and have higher viscosity indices. Therefore, they are being more closely examined as base oil for biolubricants and functional fluids. In spite of their many advantages, vegetable oils suffer from two major drawbacks of inadequate oxidative stability and poor low-temperature properties, which hinder their utilization as biolubricant base oils. Transforming alkene groups in fatty acids to other stable functional groups could improve the oxidative stability, whereas reducing structural uniformity of the oil by attaching alkyl side chains could improve the low-temperature performance. In that light, the epoxidation of unsaturated fatty acids is very interesting as it can provide diverse side chains arising from the mono- or di-epoxidation of the unsaturated fatty acid. Oxirane ring opening by an acid-catalyzed reaction with a suitable reagent provides interesting polyfunctional compounds. PMID:24612780

  8. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment

    NASA Astrophysics Data System (ADS)

    Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.

  9. Regio- and enantiofacial selectivity of epoxyeicosatrienoic acid hydration by cytosolic epoxide hydrolase.

    PubMed

    Zeldin, D C; Kobayashi, J; Falck, J R; Winder, B S; Hammock, B D; Snapper, J R; Capdevila, J H

    1993-03-25

    The hydration of cis-epoxyeicosatrienoic acids to the corresponding vic-dihydroxyeicosatrienoic acids by cytosolic epoxide hydrolase demonstrates moderate regioselectivity with rates of hydration highest for the 14,15-epoxide and lower for the 11,12- and 8,9-epoxide (4.5, 1.6, and 1.5 mumol of product/mg of protein/min, respectively). Incubations of the 8,9- and 14,15-epoxides with cytosolic epoxide hydrolase show stereoselective formation of diols (7:3 and 4:1 ratio of antipodes, respectively) and concomitant chiral enrichment of the remaining unmetabolized substrate. In contrast, hydration of the 11,12-epoxide is nonenantioselective. The Km value of the enzyme for the 14(R),15(S)-epoxide is 3 microM. Incubations of the enantiomerically pure 8,9- and 14,15-epoxides with lung or liver cytosol, followed by chiral analysis of the resulting diols demonstrate selective cleavage of the oxirane ring at C9 and C15, respectively. On the other hand, cleavage of the 11,12- oxirane ring was less selective. The stereochemical preference of the cytosolic epoxide hydrolase, together with the known chiral composition of the endogenous arachidonate epoxide pools, suggests a functional role for this enzyme in the metabolism of these important compounds.

  10. Anti-Leishmania and cytotoxic activities of perillaldehyde epoxide synthetic positional isomers.

    PubMed

    Keesen, Tatjana Souza Lima; da Silva, Larisse Virgolino; da Câmara Rocha, Juliana; Andrade, Luciana Nalone; Lima, Tamires Cardoso; de Sousa, Damião Pergentino

    2018-03-13

    Leishmaniasis belongs to a complex of zoonotic disease caused by protozoa of the genus Leishmania and is considered a major public health problem. Several essential oil chemical components have inhibitory effect against protozoa, including Leishmania donovani. Thus, the aim of this study was to evaluate for the first time the anti-Leishmania activity of two p-menthane monoterpene isomers (EPER-1: perillaldehyde 1,2-epoxide and EPER-2: perillaldehyde 8,9-epoxide) against L. donovani promastigotes as well as evaluating cytotoxic effect on mononuclear peripheral blood cells. Results of anti-Leishmania assay revealed that EPER-2 (IC 50  = 3.8 μg.mL -1 ) was 16-fold more potent than its isomer EPER-1 (IC 50  = 64.6 μg.mL -1 ). In contrast to PBMC cells, EPER-2 was not cytotoxic (IC 50  > 400 μg.mL -1 ) when compared to positive control. These data suggest that the disposition of epoxide group into the p-menthane skeleton affects the anti-Leishmania activity, being that the presence of the exocyclic epoxide group considerably increased potency. Thus, it was possible to observe that the location of the epoxide group into the p-menthane skeleton resulted in different potencies.

  11. Biobased composites from cross-linked soybean oil and thermoplastic polyurethane

    USDA-ARS?s Scientific Manuscript database

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle and the incorporation of thermoplastic polyurethane improves its toughness. The hydrophilic functional groups from both oil and polyurethane contribute to the adhesion of the blend compon...

  12. Epoxide reduction with hydrazine on graphene: a first principles study.

    PubMed

    Kim, Min Chan; Hwang, Gyeong S; Ruoff, Rodney S

    2009-08-14

    Mechanisms for epoxide reduction with hydrazine on a single-layer graphene sheet are examined using quantum mechanical calculations within the framework of gradient-corrected spin-polarized density-functional theory. We find that the reduction reaction is mainly governed by epoxide ring opening which is initiated by H transfer from hydrazine or its derivatives. In addition, our calculations suggest that the epoxide reduction by hydrazine may predominantly follow a direct Eley-Rideal mechanism rather than a Langmuir-Hinshelwood mechanism. We also discuss the generation of various hydrazine derivatives during the reduction of graphene oxide with hydrazine and their potential contribution to lowering the barrier height of epoxide ring opening.

  13. Substrate-Directed Catalytic Selective Chemical Reactions.

    PubMed

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  14. A combined experimental and theoretical study of the supramolecular self-assembly of the natural benzopyran 2,2-dimethyl-3-hydroxy-6-acetyl-chromane and its isomeric benzofuran 10,11-dihydro-10-hydroxytremetone

    NASA Astrophysics Data System (ADS)

    Gil, Diego M.; Lizarraga, E.; Echeverría, G. A.; Piro, O. E.; Catalán, C. A. N.; Ben Altabef, A.

    2017-10-01

    Epoxidation of 4HMBA, the main metabolite of the medicinal plant Sencecionutans, produces an unstable epoxide eventually giving rise to a mixture of four derivatives, three of them previously reported as natural products. The epoxide product easily undergoes an intra-molecular attack of the phenolic hydroxyl against the epoxide group carbons to produce either a benzofuran or a chromane derivative. When dissolved in methanol-water mixture at room temperature the epoxide is completely solvolyzed to give the corresponding diol (hydrolysis) or vicinal hydroxyl-methoxy (methanolysis) derivative. All the compounds involved in the above reactions were characterized by IR, Raman, H NMR and UV-vis spectroscopies, and by mass spectrometry. Density functional theory (DFT) computations were used to optimize the structure conformations. The optimized structures were further subjected to a Natural Bond Orbital (NBO) and electrostatic potentials analysis. The crystal structures of the title compounds (for short, 3 and 4 respectively) were determined by X-ray diffraction methods. Compound 3 crystallizes in the triclinic P-1 space group with a = 6.4289 (6) Å, b = 8.7120 (6) Å, c = 10.952 (1) Å, α = 92.280 (7)°, β = 95.738 (7)°, γ = 103.973 (7)°, and Z = 2 molecules per unit cell and 4 in the monoclinic P21/c space group with a = 11.2891 (6) Å, b = 9.1902 (4) Å, c = 12.4272 (7) Å. Β = 113.689 (7)°, and Z = 4. In 3 neighboring molecules are linked to each other by OH⋯O (keto) bonds giving rise to a polymeric structure. In 4 the OH group is a bifurcate H-bond donor. It forms a weak intra-molecular OH⋯O (furan) bond and also a much stronger inter-molecular Osbnd H⋯O (keto) bond giving rise to a zig-zag polymeric structure. A detailed analysis of the solid state molecular interactions of compounds 3 and 4 has been performed using Hirshfeld surface analysis and their associated 2D fingerprint plots.

  15. Studies on the structural changes during curing of epoxy and its blend with CTBN

    NASA Astrophysics Data System (ADS)

    Srivastava, Kavita; Rathore, Ashwani Kumar; Srivastava, Deepak

    2018-01-01

    Cashew nut shell liquid (CNSL), an agricultural renewable resource material, produces natural phenolic distillates such as cardanol. Cardanol condenses with formaldehyde at the ortho- and para-position of the phenolic ring under acidic or alkaline condition to yield a series of polymers of novolac- or resol-type phenolic resins. These phenolic resins may further be modified by epoxidation with epichlorohydrin to duplicate the performance of such phenolic-type novolacs (CFN). The structural changes during curing of blend samples of epoxy and carboxyl terminated poly (butadiene-co-acrylonitrile) (CTBN) were studies by Fourier-transform infrared (FTIR) spectrophotometer. The epoxy samples were synthesized by biomass material, cardanol. Blend sample was prepared by physical mixing of CTBN ranging between 0 and 20 weight percent CTBN liquid rubber into cardanol-based epoxidized novolac (CEN) resin. The FTIR spectrum of uncured blend sample clearly indicated that there appeared a band in the region of 3200-3500 cm- 1 which might be due to the presence of phenolic hydroxyl group and sbnd OH group of the opened epoxide. Pure epoxy resin showed peaks near 856 cm- 1 which might be due to oxirane functionality of the epoxidized novolac resin. Both epoxy and its blend sample was cured with polyamine. The cure temperature of CEN resin was found to be decreased by the incorporation of CTBN. The decomposition behavior was also studied by thermogravimetric analyzer (TGA). Two-step decomposition behavior was observed in both epoxy and its blend samples.

  16. Studies on the structural changes during curing of epoxy and its blend with CTBN.

    PubMed

    Srivastava, Kavita; Rathore, Ashwani Kumar; Srivastava, Deepak

    2018-01-05

    Cashew nut shell liquid (CNSL), an agricultural renewable resource material, produces natural phenolic distillates such as cardanol. Cardanol condenses with formaldehyde at the ortho- and para-position of the phenolic ring under acidic or alkaline condition to yield a series of polymers of novolac- or resol-type phenolic resins. These phenolic resins may further be modified by epoxidation with epichlorohydrin to duplicate the performance of such phenolic-type novolacs (CFN). The structural changes during curing of blend samples of epoxy and carboxyl terminated poly (butadiene-co-acrylonitrile) (CTBN) were studies by Fourier-transform infrared (FTIR) spectrophotometer. The epoxy samples were synthesized by biomass material, cardanol. Blend sample was prepared by physical mixing of CTBN ranging between 0 and 20weightpercent CTBN liquid rubber into cardanol-based epoxidized novolac (CEN) resin. The FTIR spectrum of uncured blend sample clearly indicated that there appeared a band in the region of 3200-3500cm -1 which might be due to the presence of phenolic hydroxyl group and OH group of the opened epoxide. Pure epoxy resin showed peaks near 856cm -1 which might be due to oxirane functionality of the epoxidized novolac resin. Both epoxy and its blend sample was cured with polyamine. The cure temperature of CEN resin was found to be decreased by the incorporation of CTBN. The decomposition behavior was also studied by thermogravimetric analyzer (TGA). Two-step decomposition behavior was observed in both epoxy and its blend samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Direct characterization of cotton fabrics treated with di-epoxide by nuclear magnetic resonance.

    PubMed

    Xiao, Min; Chéry, Joronia; Keresztes, Ivan; Zax, David B; Frey, Margaret W

    2017-10-15

    A non-acid-based, di-functional epoxide, neopentyl glycol diglycidyl ether (NPGDGE), was used to modify cotton fabrics. Direct characterization of the modified cotton was conducted by Nuclear Magnetic Resonance (NMR) without grinding the fabric into a fine powder. NaOH and MgBr 2 were compared in catalyzing the reaction between the epoxide groups of NPGDGE and the hydroxyl groups of cellulose. Possible reaction routes were discussed. Scanning electron microscopy (SEM) images showed that while the MgBr 2 -catalyzed reaction resulted in self-polymerization of NPGDGE, the NaOH-catalyzed reaction did not. Fourier transform infrared spectroscopy (FTIR) showed that at high NaOH concentration cellulose restructures from allomorph I to II. NMR studies verified the incorporation of NPGDGE into cotton fabrics with a clear NMR signal, and confirmed that at higher NaOH concentration the efficiency of grafting of NPGDGE was increased. This demonstrates that use of solid state NMR directly on woven fabric samples can simultaneously characterize chemical modification and crystalline polymorph of cotton. No loss of tensile strength was observed for cotton fabrics modified with NPGDGE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Crosslinking Amine-Modified Silica Aerogels with Epoxies: Mechanically Strong Lightweight Porous Materials

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Fabrizio, Eve F.; Ilhan, Faysal; Dass, Amala; Zhang, Guo-Hui; Vassilaras, Plousia; Johnston, J. Chris; Leventis, Nicholas

    2005-01-01

    The mesoporous surfaces of TMOS-derived silica aerogels have been modified with amines by co-polymerization of TMOS with APTES. The amine sites have become anchors for crosslinking the nanoparticles of the skeletal backbone of the aerogel by attachment of di-, tri and tetra-functional epoxies. The resulting conformal coatings increase the density of the native aerogels by a factor of 2-3 but the strength of the resulting materials may increase by more than two orders of magnitude. Processing variables such as amount of APTES used to make the gels, the epoxy type and concentration used for crosslinking, as well as the crosslinking temperature and time were varied according to a multivariable design-of-experiments (DOE) model. It was found that while elastic modulus follows a similar trend with density, maximum strength is attained neither at the maximum density nor at the highest concentration of -NH2 groups, suggesting surface saturation effects. Aerogels crosslinked with the tri-functional epoxide always show improved strength compared with aerogels crosslinked with the other two epoxides under identical conditions. Solid C-13 NMR studies show residual unreacted epoxides, which condense with ne another by heating crosslinked aerogels at 150 C.

  19. Chemistry of carbon nanomaterials: Uses of lithium nanotube salts in organic syntheses and functionalization of graphite

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Jayanta

    The effective utilization of carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs) and graphite, has been hindered due to difficulties (poor solubility, poly-dispersity) in processing. Therefore, a high degree of sidewall functionalization, either covalent or non-covalent, is often required to overcome these difficulties as the functionalized nanomaterials exhibit better solubility (either in organic solvents or in water), dispersity, manipulation, and processibility. This thesis presents a series of convenient and efficient organic synthetic routes to functionalize carbon nanomaterials. Carbon nanotube salts, prepared by treating SWNTs with lithium in liquid ammonia, react readily with aryl halides to yield aryl-functionalized SWNTs. These arylated SWNTs are soluble in methanol and water upon treatment with oleum. Similarly, SWNTs can be covalently functionalized by different heteroatoms (nitrogen, oxygen, and sulfur). Using the reductive alkylation approach, a synthetic scheme is designed to prepare long chain carboxylic acid functionalized SWNTs [SWNTs-(RCOOH)] that can react with (1) amine-terminated polyethylene glycol (PEG) chains to yield water-soluble biocompatible PEGylated SWNTs that are likely to be useful in a variety of biomedical applications; (2) polyethyleneimine (PEI) to prepare a SWNTs-PEI based adsorbent material that shows a four-fold improvement in the adsorption capacity of carbon dioxide over commonly used materials, making it useful for regenerable carbon dioxide removal in spaceflight; (3) chemically modified SWNTs-(RCOOH) to permit covalent bonding to the nylon matrix, thus allowing the formation of nylon 6,10 and nylon 6,10/SWNTs-(RCOOH) nanocomposites. Furthermore, we find that the lithium salts of carbon nanotubes serve as a source of electrons to induce polymerization of simple alkenes and alkynes onto the surface of carbon nanotubes. In the presence of sulfide/disulfide bonds, SWNT salts can initiate the single electron transfer (SET) mechanism to functionalize carbon nanotubes with different alkyl/aryl groups. Using the reductive alkylation approach, we can also functionalize graphites by alkyl/carboxylic acid groups, making graphite soluble in organic solvents and water. Tailoring of graphite layers is also accomplished by using different metals in liquid ammonia. Finally, SWNT-epoxides/graphite epoxides are synthesized using m-CPBA. Quantification of the epoxide substituents on the nanotube/graphite surface is evaluated through the catalytic de-epoxidation reaction using MeReO 3/PPh3 as heterogeneous catalyst. In summary, the proposed covalent functionalization methods yield derivatized nanomaterials that can provide a solid platform for a number of exciting applications, ranging from material science to biomedical devices. Furthermore, the results presented in this thesis provide insight into the molecular chemistry at nano-resolution.

  20. Synthesis and characterization of estolides containing epoxy and cyclic carbonate groups

    USDA-ARS?s Scientific Manuscript database

    The unsaturated sites in 2-ethylhexyl estolides were converted into 5-membered cyclic carbonate groups utilizing a two-step process. First, epoxidation of the alkene bonds was accomplished using formic acid and hydrogen peroxide. The epoxidized estolide material was then reacted with supercritical c...

  1. Synthesis of chlorophyll-amino acid conjugates as models for modification of proteins with chromo/fluorophores.

    PubMed

    Tamiaki, Hitoshi; Isoda, Yasuaki; Tanaka, Takuya; Machida, Shinnosuke

    2014-02-15

    A chlorophyll-a derivative bonded directly with epoxide at the peripheral position of the chlorin π-system was reacted with N-urethane and C-ester protected amino acids bearing an alcoholic or phenolic hydroxy group as well as a carboxy group at the residue to give chlorophyll-amino acid conjugates. The carboxy residues of N,C-protected aspartic and glutamic acids were esterified with the epoxide in high yields. The synthetic conjugates in dichloromethane had absorption bands throughout the visible region including intense red-side Qy and blue-side Soret bands. By their excitation at the visible bands, strong and efficient fluorescence emission was observed up to the near-infrared region. The chromo/fluorophores are promising for preparation of functional peptides and modification of proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Physio-pharmacological Investigations About the Anti-inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide.

    PubMed

    de Almeida, Antonia Amanda Cardoso; Silva, Renan Oliveira; Nicolau, Lucas Antonio Duarte; de Brito, Tarcísio Vieira; de Sousa, Damião Pergentino; Barbosa, André Luiz Dos Reis; de Freitas, Rivelilson Mendes; Lopes, Luciano da Silva; Medeiros, Jand-Venes Rolim; Ferreira, Paulo Michel Pinheiro

    2017-04-01

    D-limonene epoxidation generates (+)-limonene epoxide, an understudied compound in the pharmacologically point of view. Herein, we investigated the anti-inflammatory and antinociceptive potentialities of (+)-limonene epoxide and suggested a mechanism of action. The anti-inflammatory potential was analyzed using agents to induce paw edema, permeability, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines and cell migration of peritoneal cells were also assessed. Antinociceptive effects were evaluated by writhing test induced by acetic acid, formalin, and hot plate assays and contribution of opioid pathways. Pretreated animals with (+)-limonene epoxide showed reduced carrageenan-induced paw edema in all doses (25, 50, and 75 mg/kg) (P < 0.05). At 75 mg/kg, it suppressed edema provoked by compound 48/80, histamine, prostaglandin E 2 , and serotonin and reduced permeability determined by Evans blue and MPO activity. It also reduced leukocytes, neutrophils, and IL-1β levels in the peritoneal cavity in comparison with carrageenan group (P < 0.05). (+)-Limonene epoxide diminished abdominal contortions induced by acetic acid (78.9%) and paw licking times in both 1 (41.8%) and 2 (51.5%) phases and a pretreatment with naloxone (3 mg/kg) reverted the antinociceptive action in morphine- and (+)-limonene epoxide-treated groups (P < 0.05). Additionally, it enlarged response times to the thermal stimulus after 60 and 90 min. In conclusion, (+)-limonene epoxide inhibited release/activity of inflammatory mediators, vascular permeability, migration of neutrophils and displayed systemic and peripheral analgesic-dependent effects of the opioid system.

  3. Epoxide-mediated differential packaging of Cif and other virulence factors into outer membrane vesicles.

    PubMed

    Ballok, Alicia E; Filkins, Laura M; Bomberger, Jennifer M; Stanton, Bruce A; O'Toole, George A

    2014-10-01

    Pseudomonas aeruginosa produces outer membrane vesicles (OMVs) that contain a number of secreted bacterial proteins, including phospholipases, alkaline phosphatase, and the CFTR inhibitory factor (Cif). Previously, Cif, an epoxide hydrolase, was shown to be regulated at the transcriptional level by epoxides, which serve as ligands of the repressor, CifR. Here, we tested whether epoxides have an effect on Cif levels in OMVs. We showed that growth of P. aeruginosa in the presence of specific epoxides but not a hydrolysis product increased Cif packaging into OMVs in a CifR-independent fashion. The outer membrane protein, OprF, was also increased under these conditions, but alkaline phosphatase activity was not significantly altered. Additionally, we demonstrated that OMV shape and density were affected by epoxide treatment, with two distinct vesicle fractions present when cells were treated with epibromohydrin (EBH), a model epoxide. Vesicles isolated from the two density fractions exhibited different protein profiles in Western blotting and silver staining. We have shown that a variety of clinically or host-relevant treatments, including antibiotics, also alter the proteins packaged in OMVs. Proteomic analysis of purified OMVs followed by an analysis of transposon mutant OMVs yielded mutants with altered vesicle packaging. Finally, epithelial cell cytotoxicity was reduced in the vesicles formed in the presence of EBH, suggesting that this epoxide alters the function of the OMVs. Our data support a model whereby clinically or host-relevant signals mediate differential packaging of virulence factors in OMVs, which results in functional consequences for host-pathogen interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Syntheses and Post-Polymerization Modifications of Well-Defined Styrenic Polymers Containing Three-Membered Heterocyclic Functionalities

    NASA Astrophysics Data System (ADS)

    McLeod, David Charles

    Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular compositions, architectures, and thermal stabilities of the resulting ?-hydroxy ether-functionalized homopolymers were evaluated using NMR and FTIR spectroscopy, size exclusion chromatography, and thermal gravimetric analysis. Aziridines and thiiranes (saturated, three-membered heterocycles containing either a single nitrogen or sulfur atom, respectively) are also susceptible to nucleophilic ring-opening reactions, and functional materials derived from aziridine- or thiirane-containing polymers could potentially have many interesting properties as a result of their high amine or thiol content, such as the ability to form pH- or redox-responsive structures. The synthesis of polymers containing aziridines that are activated towards nucleophilic ring-opening by C-aryl and/or N-sulfonyl substituents is unprecedented in the literature. Efficient methods for synthesizing styrenic monomers that contain these highly-reactive functionalities, namely 2-(4-vinylphenyl)aziridine (VPA) and its sulfonyl-activated derivative, N-mesyl-2-(4-vinylphenyl)aziridine (NMVPA), were developed utilizing 4VPO as a starting material. VPA was polymerized under LCC ATRP and RAFT conditions, but these methods were ineffective at producing well-defined polymers due to side reactions between the aziridine groups and the polymerization mediating compounds. Nitroxide-mediated radical polymerization (NMRP) produced well-defined polyVPA at low to moderate conversions of monomer, but cross-linking side reactions were evident at higher monomer conversions. Nearly all undesirable side reactions were prevented by attaching a mesyl group to the aziridine nitrogen atom, and well-defined polyNMVPA was realized under RAFT and NMRP conditions. Under ATRP conditions, reactions between the aziridine groups and catalyst still occurred, so the polymerization of NMVPA was not controlled using this technique. The synthesis of thiirane-containing styrenic polymers from either 2-(4-vinylphenyl)thiirane (VPT) or 2-((4-vinylphenoxy)methyl)thiirane (VPOMT), which were produced in a facile manner from 4VPO or 4VPGE, respectively, was attempted under conventional radical polymerization and RAFT polymerization conditions. Rapid desulfurization or ring-opening polymerization of VPT occurred when elevated temperatures or UV radiation was applied to reactions containing this monomer. The more-stable VPOMT monomer was successfully polymerized at elevated temperatures using thermally-labile azo-type initiators, and, under RAFT conditions, polymers of VPOMT increased in molecular weight as higher conversions of monomer were reached; however, the polymers produced under RAFT conditions were ill-defined and eventually underwent macrogelation, due to cross-linking side reactions of the thiirane moieties.

  5. Epoxide Hydrolase Conformational Heterogeneity for the Resolution of Bulky Pharmacologically Relevant Epoxide Substrates.

    PubMed

    Serrano-Hervás, Eila; Casadevall, Guillem; Garcia-Borràs, Marc; Feixas, Ferran; Osuna, Sílvia

    2018-04-06

    The conformational landscape of Bacillus megaterium epoxide hydrolase (BmEH) and how it is altered by mutations that confer the enzyme the ability to accept bulky epoxide substrates has been investigated. Extensive molecular dynamics (MD) simulations coupled to active site volume calculations have unveiled relevant features of the enzyme conformational dynamics and function. Our long-timescale MD simulations identify key conformational states not previously observed by means of X-ray crystallography and short MD simulations that present the loop containing one of the catalytic residues, Asp239, in a wide-open conformation, which is likely involved in the binding of the epoxide substrate. Introduction of mutations M145S and F128A dramatically alters the conformational landscape of the enzyme. These singly mutated variants can accept bulky epoxide substrates due to the disorder induced by mutation in the α-helix containing the catalytic Tyr144 and some parts of the lid domain. These changes impact the enzyme active site, which is substantially wider and more complementary to the bulky pharmacologically relevant epoxide substrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A One-Step Route to CO2 -Based Block Copolymers by Simultaneous ROCOP of CO2 /Epoxides and RAFT Polymerization of Vinyl Monomers.

    PubMed

    Wang, Yong; Zhao, Yajun; Ye, Yunsheng; Peng, Haiyan; Zhou, Xingping; Xie, Xiaolin; Wang, Xianhong; Wang, Fosong

    2018-03-26

    The one-step synthesis of well-defined CO 2 -based diblock copolymers was achieved by simultaneous ring-opening copolymerization (ROCOP) of CO 2 /epoxides and RAFT polymerization of vinyl monomers using a trithiocarbonate compound bearing a carboxylic group (TTC-COOH) as the bifunctional chain transfer agent (CTA). The double chain-transfer effect allows for independent and precise control over the molecular weight of the two blocks and ensures narrow polydispersities of the resultant block copolymers (1.09-1.14). Notably, an unusual axial group exchange reaction between the aluminum porphyrin catalyst and TTC-COOH impedes the formation of homopolycarbonates. By taking advantage of the RAFT technique, it is able to meet the stringent demand for functionality control to well expand the application scopes of CO 2 -based polycarbonates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase.

    PubMed

    Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke

    2015-11-15

    Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Bio-Based Nano Composites from Plant Oil and Nano Clay

    NASA Astrophysics Data System (ADS)

    Lu, Jue; Hong, Chang K.; Wool, Richard P.

    2003-03-01

    We explored the combination of nanoclay with new chemically functionalized, amphiphilic, plant oil resins to form bio-based nanocomposites with improved physical and mechanical properties. These can be used in many new applications, including the development of self-healing nanocomposites through controlled reversible exfoliation/intercalation, and self-assembled nano-structures. Several chemically modified triglyceride monomers of varying polarity, combined with styrene (ca 30include acrylated epoxidized soybean oil (AESO), maleated acrylated epoxidized soybean oil (MAESO) and soybean oil pentaerythritol glyceride maleates (SOPERMA), containing either hydroxyl group or acid functionality or both. The clay used is a natural montmorillonite modified with methyl tallow bis-2-hydroxyethyl quaternary ammonium chloride, which has hydroxyl groups. Both XRD and TEM showed a completely exfoliated structure at 3 wtwhen the clay content is above 5 wtconsidered a mix of intercalated and partially exfoliated structure. The controlled polarity of the monomer has a major effect on the reversible dispersion of clay in the polymer matrix. The bio-based nanocomposites showed a significant increase in flexural modulus and strength. Supported by EPA and DoE

  9. Selective and metal-free epoxidation of terminal alkenes by heterogeneous polydioxirane in mild conditions

    NASA Astrophysics Data System (ADS)

    Kazemnejadi, M.; Shakeri, A.; Nikookar, M.; Shademani, R.; Mohammadi, M.

    2018-05-01

    Polydioxirane (PDOX) was prepared by the treatment of polysalicylaldehyde with Oxone and was found as a selective, highly efficient and heterogeneous reagent for epoxidation of alkenes which can be successfully isolated. This work also introduced a simpler, safer and milder way for epoxidation of alkenes with dioxirane groups than before. PDOX can be simply recovered from the reaction mixture by plain filtration and reused for eight runs without significant reactivity loss.

  10. Gaucher disease types 1, 2, and 3: differential mutations of the acid beta-glucosidase active site identified with conduritol B epoxide derivatives and sphingosine.

    PubMed Central

    Grabowski, G A; Dinur, T; Osiecki, K M; Kruse, J R; Legler, G; Gatt, S

    1985-01-01

    To elucidate the genetic heterogeneity in Gaucher disease, the residual beta-glucosidase in cultured fibroblasts from affected patients with each of the major phenotypes was investigated in vitro and/or in viable cells by inhibitor studies using the covalent catalytic site inhibitors, conduritol B epoxide or its bromo derivative, and the reversible cationic inhibitor, sphingosine. These studies delineated three distinct groups (designated A, B, and C) of residual activities with characteristic responses to these inhibitors. Group A residual enzymes had normal I50 values (i.e., the concentration of inhibitor that results in 50% inhibition) for the inhibitors and normal or nearly normal t1/2 values for conduritol B epoxide. All neuronopathic (types 2 and 3) and most non-Jewish nonneuronopathic (type 1) patients had group A residual activities and, thus, could not be distinguished by these inhibitor studies. Group B residual enzymes had about four- to fivefold increased I50 values for the inhibitors and similarly increased t1/2 values for conduritol B epoxide. All Ashkenazi Jewish type 1 and only two non-Jewish type 1 patients had group B residual activities. The differences in I50 values between groups A and B also were confirmed by determining the uninhibited enzyme activity after culturing the cells in the presence of bromo-conduritol B epoxide. Group C residual activity had intermediate I50 values for the inhibitors and represented a single Afrikaner type 1 patient: this patient was a genetic compound for the group A (type 2) and group B (type 1) mutations. These inhibition studies indicated that: Gaucher disease type 1 is biochemically heterogeneous, neuronopathic and non-Jewish nonneuronopathic phenotypes cannot be reliably distinguished by these inhibitor studies, and the Ashkenazi Jewish form of Gaucher disease type 1 results from a unique mutation in a specific active site domain of acid beta-glucosidase that leads to a defective enzyme with a decreased Vmax. PMID:4003396

  11. A strategy for position-selective epoxidation of polyprenols.

    PubMed

    Gnanadesikan, Vijay; Corey, E J

    2008-06-25

    An effective strategy has been developed for the efficient site-selective epoxidation of poylolefinic isoprenoid alcohols, based on the use of an internal control element for intramolecular reaction. The approach is illustrated by application to a series of polyisoprenoid alcohols (polyprenols) at substrate concentration of 0.5 mM. With polyprenol substrates having the hydroxyl function at one terminus, the internal epoxidation can be directed at the double bond of the polyprenol, which is either four or five away from the terminal hydroxyprenyl subunit.

  12. A Computational Study of Acid Catalyzed Aerosol Reactions of Atmospherically Relevant Epoxides

    EPA Science Inventory

    Epoxides are important intermediates of atmospheric isoprene oxidation. Their subsequent reactions in the particle phase lead to the production of organic compounds detected in ambient aerosols. We apply density functional theory to determine the important kinetic factors that ...

  13. Is the mu-oxo-mu-peroxodiiron intermediate of a ribonucleotide reductase biomimetic a possible oxidant of epoxidation reactions?

    PubMed

    de Visser, Sam P

    2008-01-01

    Density functional calculations on a mu-oxo-mu-peroxodiiron complex (1) with a tetrapodal ligand BPP (BPP=N,N-bis(2-pyridylmethyl)-3-aminopropionate) are presented that is a biomimetic of the active site region of ribonucleotide reductase (RNR). We have studied all low-lying electronic states and show that it has close-lying broken-shell singlet and undecaplet (S=0, 5) ground states with essentially two sextet spin iron atoms. In strongly distorted electronic systems in which the two iron atoms have different spin states, the peroxo group moves considerably out of the plane of the mu-oxodiiron group due to orbital rearrangements. The calculated absorption spectra of (1,11)1 are in good agreement with experimental studies on biomimetics and RNR enzyme systems. Moreover, vibrational shifts in the spectrum due to (18)O(2) substitution of the oxygen atoms in the peroxo group follow similar trends as experimental observations. To identify whether the mu-oxo-mu-1,2-peroxodiiron or the mu-oxo-mu-1,1-peroxodiiron complexes are able to epoxidize substrates, we studied the reactivity patterns versus propene. Generally, the reactions are stepwise via radical intermediates and proceed by two-state reactivity patterns on competing singlet and undecaplet spin state surfaces. However, both the mu-oxo-mu-1,2-peroxodiiron and mu-oxo-mu-1,1-peroxodiiron complex are sluggish oxidants with high epoxidation barriers. The epoxidation barriers for the mu-oxo-mu-1,1-peroxodiiron complex are significantly lower than the ones for the mu-oxo-mu-1,2-peroxodiiron complex but still are too high to be considered for catalytic properties. Thus, theory has ruled out two possible peroxodiiron catalysts as oxidants in RNR enzymes and biomimetics and the quest to find the actual oxidant in the enzyme mechanism continues.

  14. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.

    PubMed

    Zhang, Jing; Wang, Chenchen; Ji, Li; Liu, Weiping

    2016-05-16

    According to the electrophilic theory in toxicology, many chemical carcinogens in the environment and/or their active metabolites are electrophiles that exert their effects by forming covalent bonds with nucleophilic DNA centers. The theory of hard and soft acids and bases (HSAB), which states that a toxic electrophile reacts preferentially with a biological macromolecule that has a similar hardness or softness, clarifies the underlying chemistry involved in this critical event. Epoxides are hard electrophiles that are produced endogenously by the enzymatic oxidation of parent chemicals (e.g., alkenes and PAHs). Epoxide ring opening proceeds through a SN2-type mechanism with hard nucleophile DNA sites as the major facilitators of toxic effects. Thus, the quantitative prediction of chemical reactivity would enable a predictive assessment of the molecular potential to exert electrophile-mediated toxicity. In this study, we calculated the activation energies for reactions between epoxides and the guanine N7 site for a diverse set of epoxides, including aliphatic epoxides, substituted styrene oxides, and PAH epoxides, using a state-of-the-art density functional theory (DFT) method. It is worth noting that these activation energies for diverse epoxides can be further predicted by quantum chemically calculated nucleophilic indices from HSAB theory, which is a less computationally demanding method than the exacting procedure for locating the transition state. More importantly, the good qualitative/quantitative correlations between the chemical reactivity of epoxides and their bioactivity suggest that the developed model based on HSAB theory may aid in the predictive hazard evaluation of epoxides, enabling the early identification of mutagenicity/carcinogenicity-relevant SN2 reactivity.

  15. Exploring the origins of selectivity in soluble epoxide hydrolase from Bacillus megaterium† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ob01847a

    PubMed Central

    Serrano-Hervás, Eila

    2017-01-01

    Epoxide hydrolase (EH) enzymes catalyze the hydration of racemic epoxides to yield their corresponding vicinal diols. These enzymes present different enantio- and regioselectivity depending upon either the substrate structure or the substitution pattern of the epoxide ring. In this study, we computationally investigate the Bacillus megaterium epoxide hydrolase (BmEH)-mediated hydrolysis of racemic styrene oxide (rac-SO) and its para-nitro styrene oxide (rac-p-NSO) derivative using density functional theory (DFT) and an active site cluster model consisting of 195 and 197 atoms, respectively. Full reaction mechanisms for epoxide ring opening were evaluated considering the attack at both oxirane carbons and considering two possible orientations of the substrate at the BmEH active site. Our results indicate that for both SO and p-NSO substrates the BmEH enantio- and regioselectivity is opposite to the inherent (R)-BmEH selectivity, the attack at the benzylic position (C1) of the (S)-enantiomer being the most favoured chemical outcome. PMID:29026902

  16. Impact of structure and functionality of core polyol in highly functional biobased epoxy resins.

    PubMed

    Pan, Xiao; Webster, Dean C

    2011-09-01

    Highly functional biobased epoxy resins were prepared using dipentaerythritol (DPE), tripentaerythritol (TPE), and sucrose as core polyols that were substituted with epoxidized soybean oil fatty acids, and the impact of structure and functionality of the core polyol on the properties of the macromolecular resins and their epoxy-anhydride thermosets was explored. The chemical structures, functional groups, molecular weights, and compositions of epoxies were characterized using nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI MS). The epoxies were also studied for their bulk viscosity, intrinsic viscosity, and density. Crosslinked with dodecenyl succinic anhydride (DDSA), epoxy-anhydride thermosets were evaluated using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile tests, and tests of coating properties. Epoxidized soybean oil (ESO) was used as a control. Overall, the sucrose-based thermosets exhibited the highest moduli, having the most rigid and ductile performance while maintaining the highest biobased content. DPE/TPE-based thermosets showed modestly better thermosetting performance than the control ESO thermoset. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Integrated process and dual-function catalyst for olefin epoxidation

    DOEpatents

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  18. Asymmetric epoxidation of unsaturated ketones catalyzed by heterobimetallic rare earth-lithium complexes bearing phenoxy-functionalized chiral diphenylprolinolate ligand.

    PubMed

    Qian, Qinqin; Tan, Yufang; Zhao, Bei; Feng, Tao; Shen, Qi; Yao, Yingming

    2014-09-05

    Four novel heterobimetallic complexes [REL2]{[(THF)3Li]2(μ-Cl)} stabilized by chiral phenoxy-functionalized prolinolate (RE = Yb (1), Y (2), Sm (3), Nd (4), H2L = (S)-2,4-di-tert-butyl-6-[[2-(hydroxydiphenylmethyl)pyrrolidin-1-yl]methyl]phenol have been synthesized and characterized. These readily available complexes are highly active in catalyzing the epoxidation of α,β-unsaturated ketones, while the enantioselectivity varies according to the ionic radii of the rare earth center. A series of chalcone derivatives were converted to chiral epoxides in 80 → 99% ee at 0 °C using TBHP as the oxidant in the presence of 10 mol % of 1.

  19. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation energy of 23.49 kJ/mol for acrylate and 57 kJ/mol for epoxide moeities. Then, hybrid systems pairing hydroxyl-containing acrylates with epoxides were formulated to promote the faster AM mechanism. Monomer composition was changed in the presence of hydroxyl-containing acrylate, and initiators were carefully selected in order to control phase separation. The conversion of acrylate and epoxide was monitored in real time by Raman spectroscopy. The physical and mechanical properties were monitored using dynamic mechanical analysis. Epoxide conversion and rate of polymerization in epoxide-acrylate hybrid monomer systems were shown to increase through the introduction of a hydroxyl group on the meth/acrylate monomer, taking advantage of the faster AM mechanism. In addition, this covalent bond linking the epoxide network to the meth/acrylate polymer chains resulted in little or no phase separation and a reduction of the Tg for the hybrid polymer compared to the neat epoxide. Fundamental knowledge gained from this research will enable the use of epoxy-acrylate hybrid resins in variety of applications. For instance, shrinkage may be reduced in dental fillings, noise and vibration problems in aircraft and other machinery may be controlled, and photopolymerization cost could be reduced in thin film applications.

  20. Synthesis of Transesterified Palm Olein-Based Polyol and Rigid Polyurethanes from this Polyol.

    PubMed

    Arniza, Mohd Zan; Hoong, Seng Soi; Idris, Zainab; Yeong, Shoot Kian; Hassan, Hazimah Abu; Din, Ahmad Kushairi; Choo, Yuen May

    Transesterification of palm olein with glycerol can increase the functionality by introducing additional hydroxyl groups to the triglyceride structure, an advantage compared to using palm olein directly as feedstock for producing palm-based polyol. The objective of this study was to synthesize transesterified palm olein-based polyol via a three-step reaction: (1) transesterification of palm olein, (2) epoxidation and (3) epoxide ring opening. Transesterification of palm olein yielded approximately 78 % monoglyceride and has an hydroxyl value of approximately 164 mg KOH g -1 . The effect of formic acid and hydrogen peroxide concentrations on the epoxidation reaction was studied. The relationships between epoxide ring-opening reaction time and residual oxirane oxygen content and hydroxyl value were monitored. The synthesized transesterified palm olein-based polyol has hydroxyl value between 300 and 330 mg KOH g -1 and average molecular weight between 1,000 and 1,100 Da. On the basis of the hydroxyl value and average molecular weight of the polyol, the transesterified palm olein-based polyol is suitable for producing rigid polyurethane foam, which can be designed to exhibit desirable properties. Rigid polyurethane foams were synthesized by substituting a portion of petroleum-based polyol with the transesterified palm olein-based polyol. It was observed that by increasing the amount of transesterified palm olein-based polyol, the core density and compressive strength were reduced but at the same time the insulation properties of the rigid polyurethane foam were improved.

  1. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications.

    PubMed

    Carrasco-Correa, Enrique Javier; Ramis-Ramos, Guillermo; Herrero-Martínez, José Manuel

    2013-07-12

    Epinephrine-bonded polymeric monoliths for capillary electrochromatography (CEC) were developed by nucleophilic substitution reaction of epoxide groups of poly(glycidyl-methacrylate-co-ethylenedimethacrylate) (poly(GMA-co-EDMA)) monoliths using epinephrine as nucleophilic reagent. The ring opening reaction under dynamic conditions was optimized. Successful chemical modification of the monolith surface was ascertained by in situ Raman spectroscopy characterization. In addition, the amount of epinephrine groups that was bound to the monolith surface was evaluated by oxidation of the catechol groups with Ce(IV), followed by spectrophotometric measurement of unreacted Ce(IV). About 9% of all theoretical epoxide groups of the parent monolith were bonded to epinephrine. The chromatographic behavior of the epinephrine-bonded monolith in CEC conditions was assessed with test mixtures of alkyl benzenes, aniline derivatives and substituted phenols. In comparison to the poly(GMA-co-EDMA) monoliths, the epinephrine-bonded monoliths exhibited a much higher retention and slight differences in selectivity. The epinephrine-bonded monolith was further modified by oxidation with a Ce(IV) solution and compared with the epinephrine-bonded monoliths. The resulting monolithic stationary phases were evaluated in terms of reproducibility, giving RSD values below 9% in the parameters investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Nanostructured bio-functional polymer brushes.

    PubMed

    Padeste, Celestino; Farquet, Patrick; Potzner, Christian; Solak, Harun H

    2006-01-01

    Structured poly(glycidyl methracrylate) (poly-GMA) brushes have been grafted onto flexible fluoro-polymer films using a radiation grafting process. The reactive epoxide of poly-GMA provides the basis for a versatile biofunctionalization of the grafted brushes. Structure definition by extreme ultraviolet (EUV) exposure allowed nanometer-scale resolution of periodic patterns. By variation of the exposure dose the height of the grafted structures can be adapted in a wide range. Derivatization of the grafted brushes included reaction with various amines with different side chains, hydrolysis of the epoxide to diols to increase protein resistance and introduction of ionic groups to yield poly-electrolytes. As an example for biofunctionalization, biotin was linked to the grafted brush and biofunctionality was demonstrated in a competitive biotin-streptavidin assay. In this article we also present a brief review of other approaches to obtain structured biofunctional polymer brushes.

  3. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers

    NASA Astrophysics Data System (ADS)

    Karaman, Mustafa; Uçar, Tuba

    2016-01-01

    Thin films of poly(2,2,3,4,4,4 hexafluorobutyl acrylate-glycidyl methacrylate) (P(HFBA-GMA) were deposited on different surfaces using an inductively coupled RF plasma reactor. Fluorinated polymer was used to impart hydrophobicity, whereas epoxy polymer was used for improved durability. The deposition at a low plasma power and temperature was suitable for the functionalization of fragile surfaces such as textile fabrics. The coated rough textile surfaces were found to be superhydrophobic with water contact angles greater than 150° due to the high retention of long fluorinated side chains. The hydrophobicity of the surfaces was observed to be stable after many exposures to ultrasonification tests, which is attributed to the mechanical durability of the films due to their epoxide functionality. FTIR and XPS analyses of the deposited films confirmed that the epoxide functionality of the polymers increased with increasing glycidyl methacrylate fraction in the reactor inlet. The modulus and hardness values of the films also increase with increasing epoxide functionality.

  4. Photooxidation of mixed aryl and biarylphosphines.

    PubMed

    Zhang, Dong; Celaje, Jeff A; Agua, Alon; Doan, Chad; Stewart, Timothy; Bau, Robert; Selke, Matthias

    2010-07-02

    Arylphosphines and dialkylbiarylphosphines react with singlet oxygen to form phosphine oxides and phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiarylphosphines migration of the alkyl group occurs. Dialkylbiarylphosphines also yield arene epoxides, especially in electron-rich systems. Phosphinate ester formation is increased at high temperature, while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald's recent conformational model for the aerobic oxidation of dialkylbiarylphosphines.

  5. Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure-Property Relationships.

    PubMed

    Longo, Julie M; Sanford, Maria J; Coates, Geoffrey W

    2016-12-28

    Polyesters synthesized through the alternating copolymerization of epoxides and cyclic anhydrides compose a growing class of polymers that exhibit an impressive array of chemical and physical properties. Because they are synthesized through the chain-growth polymerization of two variable monomers, their syntheses can be controlled by discrete metal complexes, and the resulting materials vary widely in their functionality and physical properties. This polymer-focused review gives a perspective on the current state of the field of epoxide/anhydride copolymerization mediated by discrete catalysts and the relationships between the structures and properties of these polyesters.

  6. DFT studies on the heterogeneous oxidation of SO2 by oxygen functional groups on graphene.

    PubMed

    He, Guangzhi; He, Hong

    2016-11-23

    The heterogeneous oxidation of SO 2 has been the subject of intense scrutiny in atmospheric chemistry because of the adverse effects of sulfate particles. Although it has been found that the soot particles with a graphene-like structure play an important role in the oxidation of SO 2 , little is known about the atomic-level mechanism involved. Here, we studied the oxidation of SO 2 on oxygen-functionalized graphene using density functional theory (DFT) calculation. The results showed that SO 2 is oxidized by the epoxide group via a two-step mechanism, where the C-O bond away from the SO 2 is broken first, followed by the breaking of the other C-O bond and the synchronous formation of a new S-O bond. The energy barriers are significantly decreased when solvation free energies are involved, suggesting that humidity is favorable for promoting the oxidation by reducing the reaction barrier. The energy barriers for H 2 SO 3 oxidation are much higher than that for SO 2 oxidation, indicating that the direct conversion of SO 2 to SO 3 is the main pathway for the oxidation of SO 2 by oxygen-functionalized graphene sheets in both the gas phase and solution. The reduced density gradient (RDG) analysis showed that the hydrogen bond formed between H 2 SO 3 and epoxide groups enhances the stability of the reaction complex, and is responsible for the high energy barrier that has to be overcome for the reaction to proceed. These atomistic studies proposed a two-step mechanism for the oxidation of SO 2 on the oxygen-functionalized graphene-like carbonaceous surfaces under ambient conditions.

  7. Alkene epoxidation employing metal nitro complexes

    DOEpatents

    Andrews, M.A.; Cheng, C.W.; Kelley, K.P.

    1982-07-15

    Process for converting alkenes to form epoxides utilizes transition metal nitro complexes of the formula: M(RCN)/sub 2/XNO/sub 2/ wherein M is palladium or platinum, R is an alkyl or aryl group containing up to 12 carbon atoms, and X is a monoanionic, monodentate ligand such as chlorine, optionally in the presence of molecular oxygen.

  8. Photooxidation of Mixed Aryl and Biarylphosphines

    PubMed Central

    Zhang, Dong; Celaje, Jeff A.; Agua, Alon; Doan, Chad; Stewart, Timothy; Bau, Robert; Selke, Matthias

    2010-01-01

    Aryl phosphines and dialkylbiaryl phosphines react with singlet oxygen to form phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiaryl phosphines migration of the alkyl group occurs. Dialkylbiaryl phosphines also yield arene epoxides, especially in electron rich systems. Phosphinate ester formation is increased at high temperature while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald’s recent conformational model for the aerobic oxidation of dialkylbiaryl phosphines. PMID:20527907

  9. Epoxy resin

    DOEpatents

    Wilson, Glenn R.; Salyer, Ival O.; Ball, III, George L.

    1976-07-13

    By mixing one part of a prepolymer containing a polyamine partially polymerized with an organic epoxide and subsequently reacted with a fatty acid containing from 8 to 32 carbon atoms, and then reacting this prepolymer mixture with 3 parts of an organic epoxide, a composition was obtained which made a gas frothable, shear-stable, room temperature curing, low density foam. A particularly advantageous prepolymer was prepared using a polyamine selected from the group consisting of diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, partially polymerized with an organic epoxide having an average molecular weight of about 350 and having an epoxide equivalent of 185 to 192, and reacted with 2-10 weight percent linoleic acid. When one part of this prepolymer was reacted with about three parts of epoxy, and frothed by whipping in air or nitrogen an epoxy foam was produced which could be troweled onto surfaces and into corners or crevices, and subsequently cured, at near ambient temperature, to a strong dimensionally stable foam product.

  10. Identification of geometrical isomers and comparison of different isomeric samples of astaxanthin.

    PubMed

    Qiu, Dan; Wu, Yue-Chan; Zhu, Wen-Li; Yin, Hong; Yi, Long-Tao

    2012-09-01

    A high-performance liquid chromatographic (HPLC) analysis system for isomeric astaxanthin was developed. The separation system consisted of a C(30) column and an elution system of methanol/MTBE/water/dichloromethane (77:13:8:2, v/v/v/v). Using the combination of HPLC diode array detector and HPLC atmospheric pressure chemical ionization mass spectrometry, 11 geometrical isomers and 4 epoxides of astaxanthin were successfully identified. Referred to crystal, only isomerization with different degrees was found for solvent dissolving and iodine catalysis, while melting of astaxanthin caused isomerization, slight oxidation, and more noticeable polymerization confirmed by gel permeation chromatography. Chemical changes in isomeric samples all caused a decrease in UV content. The vibrational spectra (infrared and Raman) showed that epoxide was the only new functional group generated for melting. Changes of several key bands and formations of new bands were found in iodine catalysis and melting samples because of isomerization. Practical Application:  Eleven geometrical isomers and 4 epoxides, which were normally generated for solvent dissolving, iodine catalysis, and melting of astaxanthin, have been identified by C(30) -HPLC-MS technology. Furthermore, different samples were measured by gel permeation chromatography, UV, infrared, and Raman, based on the analysis of messages, the effect of each processing was well understood. © 2012 Institute of Food Technologists®

  11. Arabidopsis thaliana EPOXIDE HYDROLASE1 (AtEH1) is a cytosolic epoxide hydrolase involved in the synthesis of poly-hydroxylated cutin monomers.

    PubMed

    Pineau, Emmanuelle; Xu, Lin; Renault, Hugues; Trolet, Adrien; Navrot, Nicolas; Ullmann, Pascaline; Légeret, Bertrand; Verdier, Gaëtan; Beisson, Fred; Pinot, Franck

    2017-07-01

    Epoxide hydrolases (EHs) are present in all living organisms. They have been extensively characterized in mammals; however, their biological functions in plants have not been demonstrated. Based on in silico analysis, we identified AtEH1 (At3g05600), a putative Arabidopsis thaliana epoxide hydrolase possibly involved in cutin monomer synthesis. We expressed AtEH1 in yeast and studied its localization in vivo. We also analyzed the composition of cutin from A. thaliana lines in which this gene was knocked out. Incubation of recombinant AtEH1 with epoxy fatty acids confirmed its capacity to hydrolyze epoxides of C18 fatty acids into vicinal diols. Transfection of Nicotiana benthamiana leaves with constructs expressing AtEH1 fused to enhanced green fluorescent protein (EGFP) indicated that AtEH1 is localized in the cytosol. Analysis of cutin monomers in loss-of-function Ateh1-1 and Ateh1-2 mutants showed an accumulation of 18-hydroxy-9,10-epoxyoctadecenoic acid and a concomitant decrease in corresponding vicinal diols in leaf and seed cutin. Compared with wild-type seeds, Ateh1 seeds showed delayed germination under osmotic stress conditions and increased seed coat permeability to tetrazolium red. This work reports a physiological role for a plant EH and identifies AtEH1 as a new member of the complex machinery involved in cutin synthesis. © 2017 CNRS New Phytologist © 2017 New Phytologist Trust.

  12. Design and preparation of plant oil-based polymers and their applications

    NASA Astrophysics Data System (ADS)

    Ahn, Byung-Jun Kollbe

    Renewable materials are desirable for many applications due to the finite fossil resources and environmental issues. Plant oil is one of the most promising renewable feedstocks. Plant oils and functionalized oleo-chemicals including functionalized soybean oils have become attractive sustainable chemicals for industrial applications. Especially, epoxidized oleo-chemicals such as epoxidized soybean oil (ESO) are one of the most well-known readily available inexpensive functionalized plant oils. In this study, novel polymers and nanocomposites for sustainable materials applications were designed and prepared via ring-opening of epoxide in plant oils, and their chemical and physical properties were characterized. The novel transparent elastomers derived from functionalized plant oils have a great potential as flexible electronic and biological applications with their inherent low toxicity. Especially, their rheological properties showed a potential for pressure sensitive adhesives (PSAs). The dominant thermal stability and transparency were obtained via green processing: one pot, single step, fast reactions in moderate conditions, or solvent-free UV curing conditions. These oleo-based elastomers presented excellent end-use properties for PSAs application comparable to commercial PSA tapes. Based on the principal chemical studies, the roles of the each component have been identified: polymer derived from the ring-opening of epoxides as an elastomer, and dihydroxylated triglycerides as a tackifier. Their interaction was also elucidated with an element label analysis. The mechanical and rheological properties of the oleo-polymer as PSAs were able to be improved with a rosin ester tackifier. In addition, biogreases and bio-thermoplastics were developed via the environmentally benign process, which will contribute to further application on the production of new bio-based materials. Further, this study essays a novel acid functionalized iron/iron oxide nanoparticles catalyst with excellent product yields for epoxide ring opening of oleochemicals for a greener synthetic method of biopolyols, and excellent environmental benefits with life cycle assessment of syntheses. Those functionalized iron/iron oxide core shell nanoparticles catalysts has great potential for biomedical engineering process with the highest magnetization of Fe(0) core among all metals.

  13. Tumor initiating activities of various derivatives of benz(a)anthracene and 7, 12-dimethyl-benz(a)anthracene in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaga, T.J.; Gleason, G.L.; DiGiovanni, J.

    Current information indicates that polycyclic aromatic hydrocarbons (PAH) exert their toxic, mutagenic, and carcinogenic activities after they have been metabolically activated by target cells to reactive epoxides. The results obtained from IN VIVO and IN VITRO binding, mutagenicity, metabolism, and carcinogenicity studies have led to the conclusion that BP-7, 8-diol is a proximate carcinogenic metabolite of BP, and the BP-diol-epoxide is an ultimate carcinogenic metabolite of BP. Recent results concerning the strong carcinogenicity of BP-7..beta.., 8..cap alpha..-diol-9..cap alpha..,10..cap alpha..-epoxide in newborn mice and in mouse skin strongly indicate that it is the ultimate carcinogenic metabolite of BP. Since diol-epoxides maymore » be responsible for the carcinogenicity of PAH other than BP, diols and diol-epoxides as well as other derivatives of PAH were tested for skin tumor-initiation in a two-stage system of tumorigenesis. In addition, since activation of methylated PAH may involve the side-chain methyl group, the skin tumor-initiating activity of various side-chain derivatives of methylated PA were determined. In this report, the skin tumor initiation of various derivatives of a nonmethylated PAH, BA as well as a methylated PAH, DMBA are compared. The data suggest that bay region diol-epoxides may be important in BA and DMBA carcinogenicity in mice which is supportive of the theory proposed by Jerina and co-workers which predicts that diol-epoxides in the bay region are the major determinants of PAH carcinogenicity.« less

  14. Autonomic self-healing in epoxidized natural rubber.

    PubMed

    Rahman, Arifur; Sartore, Luciana; Bignotti, Fabio; Di Landro, Luca

    2013-02-01

    The development of polymers that can repair damage autonomously would be useful to improve the lifetime of polymeric materials. To date, limited attention has been dedicated to developing elastomers with autonomic self-healing ability, which can recover damages without need for an external or internal source of healing agents. This work investigates the self-healing behavior of epoxidized natural rubber (ENR) with two different epoxidation levels (25 and 50 mol % epoxidation) and of the corresponding unfunctionalized rubber, cis-1,4-polyisoprene (PISP). A self-adhesion assisted self-healing behavior was revealed by T-peel tests on slightly vulcanized rubbers. A higher epoxidation level was found to enhance self-healing. Self-healing of rubbers following ballistic damages was also investigated. A pressurized air flow test setup was used to evaluate the self-healing of ballistic damages in rubbers. Microscope (OM, SEM, and TEM) analyses were carried out to provide further evidence of healing in the impact zones. Self-healing of ballistic damages was observed only in ENR with 50 mol % epoxidation and it was found to be influenced significantly by the cross-link density. Finally, self-healing of ballistic damages was also observed in ENR50/PISP blends only when the content of the healing component (i.e., ENR50) was at least 25 wt %. From an analysis of the results, it was concluded that a synergistic effect between interdiffusion and interaction among polar groups leads to self-healing in ENR.

  15. In-Situ Generated Graphene as the Catalytic Site for Visible-Light Mediated Ethylene Epoxidation on AG Nanocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang Alex; Jain, Prashant

    2017-06-01

    Despite the harsh conditions for chemical conversion, ethylene oxide produced from ethylene epoxidation on Ag-based heterogeneous catalyst constitutes one of the largest volume chemicals in chemical industry. Recently, photocatalytic epoxidation of ethylene over plasmonic Ag nanoparticles enables the chemical conversion under significantly decreased temperature and ambient pressure conditions. Yet a detailed understanding of the photocatalytic process at the reactant/catalyst interface is under debate. Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique that enables the localized detection of rare and/or transient chemical species with high sensitivity under in situ and ambient conditions. Using SERS, we are able to monitor at individual sites of an Ag nanocatalyst the visible-light-mediated adsorption and epoxidation of ethylene. From detected intermediates, we find that the primary step in the photoepoxidation is the transient formation of graphene catalyzed by the Ag surface. Density functional theory (DFT) simulations that model the observed SERS spectra suggest that the defective edge sites of the graphene formed on Ag constitute the active site for C2H4 adsorption and epoxidation. Further studies with pre-formed graphene/Ag catalyst composites confirm the indispensable role of graphene in visible-light-mediated ethylene epoxidation. Carbon is often thought to be either an innocent support or a poison for metallic catalysts; however our studies reveal a surprising role for crystalline carbon layers as potential co-catalysts.

  16. Theoretical study on the mechanism of a ring-opening reaction of oxirane by the active-site aspartic dyad of HIV-1 protease.

    PubMed

    Kóna, Juraj

    2008-01-21

    Two possible mechanisms of the irreversible inhibition of HIV-1 protease by epoxide inhibitors are investigated on an enzymatic model using ab initio (MP2) and density functional theory (DFT) methods (B3LYP, MPW1K and M05-2X). The calculations predict the inhibition as a general acid-catalyzed nucleophilic substitution reaction proceeding by a concerted SN2 mechanism with a reaction barrier of ca. 15-21 kcal mol(-1). The irreversible nature of the inhibition is characterized by a large negative reaction energy of ca. -17-(-24) kcal mol(-1). A mechanism with a direct proton transfer from an aspartic acid residue of the active site onto the epoxide ring has been shown to be preferred compared to one with the proton transfer from the acid catalyst facilitated by a bridging catalytic water molecule. Based on the geometry of the transition state, structural data important for the design of irreversible epoxide inhibitors of HIV-1 protease were defined. Here we also briefly discuss differences between the epoxide ring-opening reaction in HIV-1 protease and epoxide hydrolase, and the accuracy of the DFT method used.

  17. Induction of hepatic aryl hydrocarbon hydroxylase and epoxide hydrase in Wistar rats pretreated with oral methadone hydrochloride.

    PubMed

    Bellward, G D; Gontovnick, L S; Otten, M

    1977-01-01

    Methadone-HCl added to the drinking water of adult female Wistar rats for 4 weeks produced an increase in the aryl hydrocarbon hydroxylase activity of the hepatic microsomal fraction to 222% of control levels. No change was seen in epoxide hydrase activity. In contrast, when male rats were treated similarly, there was an increase in epoxide hydrase activity to 212% of controls with no change in aryl hydrocarbon hydroxylase activity. No such changes were observed when the subcutaneous route of administration or chronic, low-dose, intraperitoneal injections were used. There were no differences in hepatic cytochrome P-450 or protein concentrations in treated animals as compared to their respective control groups. Control studies were carried out with quinine sulfate in the drinking water to decrease water intake to the level of the methadone-treated group. No elevation in either enzyme activity occurred in this control group. Similarly, paired-feeding studies showed the elevation of enzyme activity to be due to the methadone, not food deprivation. The effects of concurrent therapy of methadone with phenobarbital sodium or 3-methylcholanthrene were compared.

  18. Methacrylate gels with epoxide groups as supports for immobilization of enzymes in pH range 3-12.

    PubMed

    Turková, J; Bláha, K; Malaníková, M; Vancurová, D; Svec, F; Kálal, J

    1978-05-11

    Glycidyl methacrylate gels are carriers suitable for attachment of enzymes and for use in affinity chromatography. Experiments on the coupling of glycyl-L-leucine and acetyl-L-leucine to these gels have shown a high pH-dependence of the bond formation between the support and the alpha-amino group (pH optimum 9.7); the coupling reaction between the epoxide group and the carboxyl group is practically pH-independent. Serum albumin and trypsin were attached to a greater extent in acidic than in alkaline media. The effects of time and temperature were also studied. The catalytic action of immobilized trypsin, as well as its use for affinity chromatography of trypsin inhibitor, were studied.

  19. Unprecedented Carbonato Intermediates in Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium(Salen) Complexes.

    PubMed

    Castro-Osma, José A; North, Michael; Offermans, Willem K; Leitner, Walter; Müller, Thomas E

    2016-04-21

    The mechanism by which [Al(salen)]2 O complexes catalyse the synthesis of cyclic carbonates from epoxides and carbon dioxide in the absence of a halide cocatalyst has been investigated. Density functional theory (DFT) studies, mass spectrometry and (1) H NMR, (13) C NMR and infrared spectroscopies provide evidence for the formation of an unprecedented carbonato bridged bimetallic aluminium complex which is shown to be a key intermediate for the halide-free synthesis of cyclic carbonates from epoxides and carbon dioxide. Deuterated and enantiomerically-pure epoxides were used to study the reaction pathway. Based on the experimental and theoretical results, a catalytic cycle is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Radiation polymerisable compositions containing 3-sorboyloxy-2-hydroxypropyl groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, G.E.

    1976-02-03

    Compounds having at least three 3-sorboyloxy-2-hydroxypropyl groups directly attached to ether oxygen atoms are polymerised by exposure to actinic radiation, preferably in the presence of a sensitizer such as Michler's ketone or benzoin. The compounds may be obtained by the reaction either of sorbic acid with a substance having at least three glycidyl ether groups or of glycidyl sorbate with a substance having at least three phenolic or alcoholic hydroxyl groups: if desired, not all of the glycidyl groups may be consumed, so that, after actinically induced polymerisation, the epoxide-containing polymer may be cross-linked by reaction with a curing agentmore » for epoxide resins. The compounds are useful in making printed circuits or printing plates for offset printing.« less

  1. Effect of Organo-Modified Nanoclay on the Thermal and Bulk Structural Properties of Poly(3-hydroxybutyrate)-Epoxidized Natural Rubber Blends: Formation of Multi-Components Biobased Nanohybrids.

    PubMed

    Salehabadi, Ali; Bakar, Mohamad Abu; Bakar, Noor Hana Hanif Abu

    2014-06-13

    Multi-component nanohybrids comprising of organo-modified montmorillonite (MMT) and immiscible biopolymer blends of poly(3-hydroxybutyrate) (PHB) and epoxidized natural rubber (ENR-50) were prepared by solvent casting technique. The one and three dimensional morphology of PHB/ENR-50/MMT systems were studied using Polarizing Optical Microscopy (POM) and Scanning Electron Microscopy (SEM). Differential scanning calorimetry (DSC) technique was used to evaluate the thermal properties of the nanohybrids. The melting temperature ( T m ) and enthalpy of melting (Δ H m ) of PHB decrease with respect to the increase in ENR-50 as well as MMT content. The non-isothermal decomposition of the nanohybrids was studied using thermogravimetric (TG-DTG) analysis. FTIR-ATR spectra supported ring opening of the epoxide group via reaction with carboxyl group of PHB and amines of organic modifier. The reaction mechanism towards the formation of the nanohybrids is proposed.

  2. Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo.

    PubMed

    Weinstein, I B; Jeffrey, A M; Jennette, K W; Blobstein, S H; Harvey, R G; Harris, C; Autrup, H; Kasai, H; Nakanishi, K

    1976-08-13

    Evidence has been obtained that a specific isomer of a diol epoxide derivative of benzo(a)pyrene, (+/-)-7 beta,8alpha-dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene, is an intermediate in the binding of benzo(a)pyrene to RNA in cultured bovine bronchial mucosa. An adduct is formed between position 10 of this derivative and the 2-amino group of guanine.

  3. Allenes in Asymmetric Catalysis. Asymmetric Ring-Opening of Meso-Epoxides Catalyzed by Allene-Containing Phosphine Oxides

    PubMed Central

    Pu, Xiaotao; Qi, Xiangbing; Ready, Joseph M.

    2009-01-01

    Unsymmetrically substituted allenes (1,2 dienes) are inherently chiral and can be prepared in optically pure form. Nonetheless, to date the allene framework has not been incorporated into ligands for asymmetric catalysis. Since allenes project functionality differently than either tetrahedral carbon or chiral biaryls, they may create complementary chiral environments. This study demonstrates that optically active C2 symmetric allene-containing bisphosphine oxides can catalyze the addition of SiCl4 to meso epoxides with high enantioselectivity. The epoxide-opening likely involves generation of a Lewis acidic, cationic (bisphosphine oxide)SiCl3 complex. The fact that high asymmetric induction is observed suggests that allenes may represent a new platform for the development of ligands and catalysts for asymmetric synthesis. PMID:19722613

  4. Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro.

    PubMed Central

    Riley, R J; Kitteringham, N R; Park, B K

    1989-01-01

    The formation of cytotoxic metabolites from the anticonvulsants phenytoin and carbamazepine was investigated in vitro using a hepatic microsomal enzyme system and human mononuclear leucocytes as target cells. Both drugs were metabolised to cytotoxic products. In order to assess the structural requirements for this bioactivation, a series of structurally related compounds was investigated. It was found that molecules which contain either an amide function or an aryl ring may undergo activation in vitro, but only the metabolism-dependent toxicity of the latter is potentiated by pre-treatment of the target cells with an epoxide hydrolase inhibitor. Taken collectively, these data are consistent with the concept that reactive epoxide metabolites of both phenytoin and carbamazepine may produce toxicity in individuals with an inherited deficiency in epoxide hydrolase. PMID:2590607

  5. Sustainable epoxy and oxetane thermosets from photo-initiated cationic polymerization

    NASA Astrophysics Data System (ADS)

    Ryu, Chang

    A group of sustainable materials are proposed and produced from multifunctional epoxides and oxetanes obtained from renewable sources. Monomers are photopolymerized using diaryliodonium salts designed and synthesized by our group as initiator. A detailed investigation of the network formation of epoxidized linseed oil revealed that crosslinks is markedly dependent to the thickness and viscosity of substrate. Copolymerization studies of difunctional oxetane showed that limonene dioxide was effective in increasing the reaction rates and shorten the inherent induction period, also known as kick-starting effect. Such oxetane thermoset can achieve desirable curing rates and Tg compared to petroleum based epoxy used in applications such as large scale surface coatings.

  6. Construction and photophysical properties of organic-inorganic nanonetworks based on oligo(phenylenevinylene) and functionalized gold nanoparticles.

    PubMed

    Yang, Jien; Liu, Xiaofeng; Huang, Changshui; Zhou, Chunjie; Li, Yuliang; Zhu, Daoben

    2010-02-22

    Novel organic-inorganic nanonetworks of oligo(phenylenevinylene) (OPV) and gold nanoparticles (GNPs) have been synthesized by the amine-based epoxide ring-opening reaction. The resulting OPV-GNPs nanocomposites exhibit homogeneous and well-defined interfaces between the organic ligands and the inorganic nanoparticles, thereby promoting efficient electronic interfacial interaction between the two constituents. The functionalized gold nanoparticles serve as chemical reagents for the construction of nanohybrids, while the epoxide-terminated OPV acts as linkage between gold nanoparticles. The new architecture provides a facile methodology for fabrication of novel organic-inorganic nanohybrids under relatively mild conditions, which facilitates further applications of hybrid materials.

  7. A Lewis acid β-diiminato-zinc-complex as all-rounder for co- and terpolymerisation of various epoxides with carbon dioxide.

    PubMed

    Reiter, M; Vagin, S; Kronast, A; Jandl, C; Rieger, B

    2017-03-01

    A β-diiminato-zinc-N(SiMe 3 ) 2 complex ( 1 ) was synthesised and fully characterised, including an X-ray diffraction study. The activity of catalyst 1 towards the coupling reaction of CO 2 and various epoxides, including propylene oxide (PO), cyclohexene oxide (CHO), styrene oxide (SO), limonene oxide (LO), octene oxide (OO) and epichlorohydrin (ECH), was investigated. Terpolymerisation of CO 2 , PO and LO, as well as CO 2 , CHO and PO, was successfully realised, resulting in polymers with adjustable glass transition temperatures and transparencies. Reaction conditions such as temperature, pressure and catalyst concentration were varied to find the optimal reaction values, especially regarding LO/CO 2 . In situ IR experiments hinted that at 60 °C and a critical LO concentration, polymerisation and depolymerisation are in an equilibrium (ceiling effect). Pressurising catalyst 1 with carbon dioxide resulted in a dimeric catalyst ( 2 ) with a OSiMe 3 group as a new initiator. Homopolymerisation of different epoxides was carried out in order to explain the reactivity concerning copolymerisation reaction of CO 2 and epoxides.

  8. Efficient epoxidation of a terminal alkene containing allylic hydrogen atoms: trans-methylstyrene on Cu{111}.

    PubMed

    Cropley, Rachael L; Williams, Federico J; Urquhart, Andrew J; Vaughan, Owain P H; Tikhov, Mintcho S; Lambert, Richard M

    2005-04-27

    The selective oxidation of trans-methylstyrene, a phenyl-substituted propene that contains labile allylic hydrogen atoms, has been studied on Cu{111}. Mass spectrometry and synchrotron fast XPS were used to detect, respectively, desorbing gaseous products and the evolution of surface species as a function of temperature and time. Efficient partial oxidation occurs yielding principally the epoxide, and the behavior of the system is sensitive to the order in which reactants are adsorbed. The latter is understandable in terms of differences in the spatial distribution of oxygen adatoms; isolated adatoms lead to epoxidation, while islands of "oxidic" oxygen do not. NEXAFS data taken over a range of coverages and in the presence and absence of coadsorbed oxygen indicate that the adsorbed alkene lies essentially flat with the allylic hydrogen atoms close to the surface. The photoemission results and comparison with the corresponding behavior of styrene on Cu{111} strongly suggest that allylic hydrogen abstraction is indeed a critical factor that limits epoxidation selectivity. An overall mechanism consistent with the structural and reactive properties is proposed.

  9. Methods for polymer synthesis

    DOEpatents

    Allen, Scott D.; Simoneau, Christopher A.; Keefe, William D.; Conuel, Jeff R.

    2016-12-06

    The present invention provides methods for reducing induction periods in epoxide-CO.sub.2 copolymerizations. In certain embodiments, the methods include the step of contacting an epoxide with CO.sub.2 in the presence of two catalysts: an epoxide hydrolysis catalyst and an epoxide CO.sub.2 copolymerization catalyst. In another aspect, the invention provides catalyst compositions comprising a mixture of an epoxide hydrolysis catalyst and an epoxide CO.sub.2 copolymerization catalyst.

  10. Synthesis and characterization of covalently bound benzocaine graphite oxide derivative

    NASA Astrophysics Data System (ADS)

    Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija

    2015-09-01

    Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.

  11. Catalytic asymmetric epoxidation of alpha,beta-unsaturated amides: efficient synthesis of beta-aryl alpha-hydroxy amides using a one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process.

    PubMed

    Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu

    2002-12-11

    The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.

  12. Lipid Sulfates and Sulfonates Are Allosteric Competitive Inhibitors of the N-Terminal Phosphatase Activity of the Mammalian Soluble Epoxide Hydrolase†

    PubMed Central

    Tran, Katherine L.; Aronov, Pavel A.; Tanaka, Hiromasa; Newman, John W.; Hammock, Bruce D.; Morisseau, Christophe

    2006-01-01

    The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), a homodimeric enzyme with each monomer containing two domains with distinct activities. The C-terminal domain, containing the epoxide hydrolase activity (Cterm-EH), is involved in the metabolism of arachidonic acid epoxides, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, and inflammation. We recently demonstrated that the N-terminal domain contains a Mg2+-dependent lipid phosphate phosphatase activity (Nterm-phos). However, the biological role of this activity is unknown. The inability of known phosphatase inhibitors to inhibit the Nterm-phos constitutes a significant barrier to the elucidation of its function. We describe herein sulfate, sulfonate, and phosphonate lipids as novel potent inhibitors of Nterm-phos. These compounds are allosteric competitive inhibitors with KI in the hundred nanomolar range. These inhibitors may provide a valuable tool to investigate the biological role of the Nterm-phos. We found that polyisoprenyl phosphates are substrates of Nterm-phos, suggesting a possible role in sterol synthesis or inflammation. Furthermore, some of these compounds inhibit the C-terminal sEH activity through a noncompetitive inhibition mechanism involving a new binding site on the C-terminal domain. This novel site may play a role in the natural in vivo regulation of epoxide hydrolysis by sEH. PMID:16142916

  13. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles.

    PubMed

    Hieber, A David; Kawabata, Osamu; Yamamoto, Harry Y

    2004-01-01

    The dynamics of the xanthophyll cycle relative to non-photochemical quenching (NPQ) were examined in tobacco plants overexpressing violaxanthin de-epoxidase (VDE), PsbS and PsbS+VDE for effects on NPQ and violaxanthin (V) de-epoxidation over a range of light intensities. Induction of de-epoxidation and NPQ increased in overexpressed VDE and PsbS plants, respectively. Surprisingly, under low light, overexpressing PsbS enhanced de-epoxidation in addition to NPQ. The effect was hypothesized as due to PsbS binding zeaxanthin (Z) or inducing the binding of Z within the quenching complex, thus shifting the equilibrium toward higher de-epoxidation states. Studies in model systems show that Z can stereospecifically inhibit VDE activity against violaxanthin. This effect, observed under conditions of limiting lipid concentration, was interpreted as product feedback inhibition. These results support the hypothesis that the capacity of the thylakoid lipid phase for xanthophylls is limited and modulates xanthophyll-cycle activity, in conjunction with the release of V and binding of Z by pigment-binding proteins. These modulating factors are incorporated into a lipid-matrix model that has elements of a signal transduction system wherein the light-generated protons are the signal, VDE the signal receptor, Z the secondary messenger, the lipid phase the transduction network, and Z-binding proteins the targets.

  14. The determination and quantification of photosynthetic pigments by reverse phase high-performance liquid chromatography, thin-layer chromatography, and spectrophotometry.

    PubMed

    Pocock, Tessa; Król, Marianna; Huner, Norman P A

    2004-01-01

    Chorophylls and carotenoids are functionally important pigment molecules in photosynthetic organisms. Methods for the determination of chlorophylls a and b, beta-carotene, neoxanthin, and the pigments that are involved in photoprotective cycles such as the xanthophylls are discussed. These cycles involve the reversible de-epoxidation of violaxanthin into antheraxanthin and zeaxanthin, as well as the reversible de-epoxidation of lutein-5,6-epoxide into lutein. This chapter describes pigment extraction procedures from higher plants and green algae. Methods for the determination and quantification using high-performance liquid chromatograpy (HPLC) are described as well as methods for the separation and purification of pigments for use as standards using thin-layer chromatography (TLC). In addition, several spectrophotometric methods for the quantification of chlorophylls a and b are described.

  15. [Production technology and use of composite materials in the aeronautics industry, risks and pathology in the manufacturing workers].

    PubMed

    Franco, G; Candura, F

    1985-01-01

    The type and applications of composite materials have increased greatly during the last forty years, particularly in the aircraft and aerospace industries. The foreseeable increase of the employment of composite materials in future needs an adequate engagement in finding out health risks involved with technological processes. Composite materials - considered as a close union between a continuous glass, aramid or carbon reinforcing fibre and a epoxy matrix - present several advantages over traditional materials. Structural epoxy adhesives are defined as complex formulated systems. By mixing a large number of ingredients a formulated resin is obtained, which represents the start of the production process for adhesive manufacture. The most important ingredients such as catalysts, accelerators, the groups of epoxy monomers and oligomers, additives most used and their role into the epoxy matrices are illustrated. Of the various technologies existing for the fabrication of aircraft structures the one so called "vacuum bag" is described. The knowledge of the chemical composition of the substances used in the production of composite materials and epoxy adhesives allows to verify the possible existence of hazard for workers health. Among the potentially dangerous chemicals, epoxy monomers and oligomers, catalysts, accelerators are to be considered. The metabolism and the mechanisms of toxicity of epoxides are summarized. However the toxic effects of most epoxides are far from being wholly investigated. In man epoxides ingestion, inhalation or absorption through the skin can lead to several toxic effects: irritation and sensitisation, alterations of liver and nervous function. Finally some epoxides are considered to be carcinogenic in animals and in man; however for many compounds, the results are not yet conclusive. From what it is said above come out the necessity of a careful sanitary control of the workers exposed to these hazards, control that is made difficult by the lack of adequate biological indices for the risks found.

  16. Understanding Defect-Stabilized Noncovalent Functionalization of Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hua; Uysal, Ahmet; Anjos, Daniela M.

    2015-09-01

    The noncovalent functionalization of graphene by small molecule aromatic adsorbates, phenanthrenequinone (PQ), is investigated systematically by combining electrochemical characterization, high-resolution interfacial X-ray scattering, and ab initio density functional theory calculations. The findings in this study reveal that while PQ deposited on pristine graphene is unstable to electrochemical cycling, the prior introduction of defects and oxygen functionality (hydroxyl and epoxide groups) to the basal plane by exposure to atomic radicals (i.e., oxygen plasma) effectively stabilizes its noncovalent functionalization by PQ adsorption. The structure of adsorbed PQ molecules resembles the graphene layer stacking and is further stabilized by hydrogen bonding with terminalmore » hydroxyl groups that form at defect sites within the graphene basal plane. The stabilized PQ/graphene interface demonstrates persistent redox activity associated with proton-coupled-electron-transfer reactions. The resultant PQ adsorbed structure is essentially independent of electrochemical potentials. These results highlight a facile approach to enhance functionalities of the otherwise chemically inert graphene using noncovalent interactions.« less

  17. Understanding Defect-Stabilized Noncovalent Functionalization of Graphene

    DOE PAGES

    Zhou, Hua; Uysal, Ahmet; Anjos, Daniela M.; ...

    2015-09-01

    For the noncovalent functionalization of graphene by small molecule aromatic adsorbates, phenanthrenequinone (PQ), is investigated systematically by combining electrochemical characterization, high-resolution interfacial X-ray scattering, and ab initio density functional theory calculations. The fi ndings in this study reveal that while PQ deposited on pristine graphene is unstable to electrochemical cycling, the prior introduction of defects and oxygen functionality (hydroxyl and epoxide groups) to the basal plane by exposure to atomic radicals (i.e., oxygen plasma) effectively stabilizes its noncovalent functionalization by PQ adsorption. Moreover, the structure of adsorbed PQ molecules resembles the graphene layer stacking and is further stabilized by hydrogenmore » bonding with terminal hydroxyl groups that form at defect sites within the graphene basal plane. The stabilized PQ/graphene interface demonstrates persistent redox activity associated with proton-coupled-electron-transfer reactions. The resultant PQ adsorbed structure is essentially independent of electrochemical potentials. Finally, these results highlight a facile approach to enhance functionalities of the otherwise chemically inert graphene using noncovalent interactions.« less

  18. Functional roles of the major chloroplast lipids in the violaxanthin cycle.

    PubMed

    Yamamoto, Harry Y

    2006-08-01

    Monogalactosyldiacylglyceride (MGDG) and digalactosyldiacylglyceride (DGDG) are the major membrane lipids of chloroplasts. The question of the specialized functions of these unique lipids has received limited attention. One function is to support violaxanthin de-epoxidase (VDE) activity, an enzyme of the violaxanthin cycle. To understand better the properties of this system, the effects of galactolipids and phosphatidylcholines on VDE activity were examined by two independent methods. The results show that the micelle-forming lipid (MGDG) and bilayer forming lipids (DGDG and phosphatidylcholines) support VDE activity differently. MGDG supported rapid and complete de-epoxidation starting at a threshold lipid concentration (10 microM) coincident with complete solubilization of violaxanthin. In contrast, DGDG supported slow but nevertheless complete to nearly complete de-epoxidation at a lower lipid concentration (6.7 microM) that did not completely solubilize violaxanthin. Phosphotidylcholines showed similar effects as DGDG except that de-epoxidation was incomplete. Since VDE requires solubilized violaxanthin, aggregated violaxanthin in DGDG at low concentration must become solubilized as de-epoxidation proceeds. High lipid concentrations had lower activity possibly due to formation of multilayered structures (liposomes) that restrict accessibility of violaxanthin to VDE. MGDG micelles do not present such restrictions. The results indicate VDE operates throughout the lipid phase of the single bilayer thylakoid membrane and is not limited to putative MGDG micelle domains. Additionally, the results also explain the differential partitioning of violaxanthin between the envelope and thylakoid as due to the relative solubilities of violaxanthin and zeaxanthin in MGDG, DGDG and phospholipids. The violaxanthin cycle is hypothesized to be a linked system of the thylakoid and envelope for signal transduction of light stress.

  19. Swelling behaviour in n-pentane and mechanical properties of epoxidized natural rubber with different epoxide content

    NASA Astrophysics Data System (ADS)

    Kinasih, N. A.; Fathurrohman, M. I.; Winarto, D. A.

    2017-07-01

    Epoxidized natural rubber (ENR) with different level of epoxidation (i.e. 10, 20, 30, 40 and 50 mol% indicated as ENR ENR10, ENR20, ENR30, ENR40 and ENR50, respectively) were prepared. They were then vulcanized by using efficient system vulcanization. The effect of epoxide content on curing characteristic, swelling and mechanical properties in N-pentane was investigated. The Attenuated Resonance Fourier Transform Infrared (ATR-FTIR) and H-Nuclear Magnetic Resonance (H-NMR) were used to determine the epoxidation level. Glass transition (Tg) of ENR samples was determined by using Direct Scanning Calorimetry (DSC). The result revealed that the resistance of ENR in N-pentane increased with increasing epoxidation level, which indicated by decreasing equilibrium mol uptake and diffusion coefficient. The compression set of ENR and aging resistance increased with increasing epoxide content, except ENR50 was due to ENR 50 have two Tg value. However, the value of hardness and tensile strength were not effected by epoxidation level.

  20. A Successful Replacement of Phenols with Isocyanides in the Bargellini Reaction: Synthesis of 3-Carboxamido-Isobutyric Acids.

    PubMed

    Giustiniano, Mariateresa; Pelliccia, Sveva; Galli, Ubaldina; Amato, Jussara; Travagin, Fabio; Novellino, Ettore; Tron, Gian Cesare

    2016-11-18

    Old multicomponent reactions are still a source of inspiration for discovering novel combinations of three or more reactants. A simple idea is to replace one of the educts of a known multicomponent reaction with another functional group and still be able to mimic the same reactivity. Following this line of thought, we report a three-component reaction in which isocyanides are able to open the epoxide intermediate of the Bargellini reaction affording 3-carboxamido-isobutyric acids in yields of 47-95%.

  1. Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.

    PubMed

    Zou, Yi; Garcia-Borràs, Marc; Tang, Mancheng C; Hirayama, Yuichiro; Li, Dehai H; Li, Li; Watanabe, Kenji; Houk, K N; Tang, Yi

    2017-03-01

    Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Brønsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.

  2. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    PubMed Central

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  3. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase.

    PubMed

    Oguro, Ami; Imaoka, Susumu

    2012-03-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3-7 μM; Vmax, 150-193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism.

  4. Conserved Loop Cysteines of Vitamin K Epoxide Reductase Complex Subunit 1-like 1 (VKORC1L1) Are Involved in Its Active Site Regeneration*

    PubMed Central

    Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W.

    2014-01-01

    Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions. PMID:24532791

  5. Conserved loop cysteines of vitamin K epoxide reductase complex subunit 1-like 1 (VKORC1L1) are involved in its active site regeneration.

    PubMed

    Tie, Jian-Ke; Jin, Da-Yun; Stafford, Darrel W

    2014-03-28

    Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1's active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1's overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1's active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions.

  6. Exciton characteristics in graphene epoxide.

    PubMed

    Zhu, Xi; Su, Haibin

    2014-02-25

    Exciton characteristics in graphene epoxide (GE) are investigated by density functional theory with quasi-particle corrections and many-body interactions. The nature of the exciton is influenced by epoxide content and detailed geometric configurations. Two kinds of excitons are identified in GE: Frenkel-like exciton originated from the sp(2) carbon cluster and charge-transfer exciton formed by localized states involving both oxygen and carbon atoms. The unusual blue shift associated with the Frenkel-like exciton leaking is highlighted. One scaling relationship is proposed to address the power-law dependence of Frenkel-like exciton binding strength on its size. The charge-transfer exciton appears in GE samples with the high oxygen coverage. Particularly, the exciton in GE structures exhibits long lifetime by analyzing both radiative and nonradiative decay processes. This study sheds light on the potential applications of GE-based structures with attractive high quantum yield in light emission and optoelectronic technology.

  7. Evaluation of teeth loss among workers in the laminate and composite materials department of aircraft factory.

    PubMed

    Bachanek, Teresa; Samborski, Dariusz; Chałas, Renata; Wolańska, Ewa

    2005-01-01

    Liquid epoxide resins, solvents and solvent-modified epoxide resins, as well as hardeners for epoxide resins, appear to be skin and mucosa irritants of different intensity and possibly have allergenic properties. Therefore, it is required that the employees are qualified and industrial safety rules are followed when these substances are in use in the manufacturing process. Our study evaluated the state of dentition and analysed the loss of teeth in the workers of the laminate and composite materials department of aircraft factory. The research has been carried out in a group of 114 workers, which consisted of 88 men and 26 women 20 to 61 years old. The control group consisted of 41 workers of the administration department in the aircraft factory who did not have any contact with chemical compounds. The workers in the studied group are characterised as having an unsatisfactory state of dentition, as shown by the high rate of lost teeth (74 %). Statistically significant difference between the studied group and the control was found when the relationship between the number of lost molar teeth in women in the studied group and those in the control group is taken into consideration, a statistically significant difference appears to refer to teeth 46 and 27. The same statistically important correlation between men in the control and studied groups concerns teeth 16. The research data shows that incisor teeth are the least frequently extracted teeth in the whole population studied. Statistically significant differences can be noted for teeth 21 and 23 between the women in the control group and those in the studied one. Future studies are necessary to assess the potential relationship between the loss of teeth among workers of the department of laminate and composite materials of aircraft factory and their workplace.

  8. Mechanism of epoxide hydrolysis in microsolvated nucleotide bases adenine, guanine and cytosine: a DFT study.

    PubMed

    Vijayalakshmi, Kunduchi P; Mohan, Neetha; Ajitha, Manjaly J; Suresh, Cherumuttathu H

    2011-07-21

    Six water molecules have been used for microsolvation to outline a hydrogen bonded network around complexes of ethylene epoxide with nucleotide bases adenine (EAw), guanine (EGw) and cytosine (ECw). These models have been developed with the MPWB1K-PCM/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) level of DFT method and calculated S(N)2 type ring opening of the epoxide due to amino group of the nucleotide bases, viz. the N6 position of adenine, N2 position of guanine and N4 position of cytosine. Activation energy (E(act)) for the ring opening was found to be 28.06, 28.64, and 28.37 kcal mol(-1) respectively for EAw, EGw and ECw. If water molecules were not used, the reactions occurred at considerably high value of E(act), viz. 53.51 kcal mol(-1) for EA, 55.76 kcal mol(-1) for EG and 56.93 kcal mol(-1) for EC. The ring opening led to accumulation of negative charge on the developing alkoxide moiety and the water molecules around the charge localized regions showed strong hydrogen bond interactions to provide stability to the intermediate systems EAw-1, EGw-1 and ECw-1. This led to an easy migration of a proton from an activated water molecule to the alkoxide moiety to generate a hydroxide. Almost simultaneously, a proton transfer chain reaction occurred through the hydrogen bonded network of water molecules and resulted in the rupture of one of the N-H bonds of the quaternized amino group. The highest value of E(act) for the proton transfer step of the reaction was 2.17 kcal mol(-1) for EAw, 2.93 kcal mol(-1) for EGw and 0.02 kcal mol(-1) for ECw. Further, the overall reaction was exothermic by 17.99, 22.49 and 13.18 kcal mol(-1) for EAw, EGw and ECw, respectively, suggesting that the reaction is irreversible. Based on geometric features of the epoxide-nucleotide base complexes and the energetics, the highest reactivity is assigned for adenine followed by cytosine and guanine. Epoxide-mediated damage of DNA is reported in the literature and the present results suggest that hydrated DNA bases become highly S(N)2 active on epoxide systems and the occurrence of such reactions can inflict permanent damage to the DNA.

  9. 40 CFR 721.2675 - Perfluoroalkyl epoxide (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Substances § 721.2675 Perfluoroalkyl epoxide (generic name). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl epoxide (PMN P... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Perfluoroalkyl epoxide (generic name...

  10. 40 CFR 721.2675 - Perfluoroalkyl epoxide (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Substances § 721.2675 Perfluoroalkyl epoxide (generic name). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl epoxide (PMN P... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Perfluoroalkyl epoxide (generic name...

  11. 40 CFR 721.2675 - Perfluoroalkyl epoxide (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Substances § 721.2675 Perfluoroalkyl epoxide (generic name). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl epoxide (PMN P... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkyl epoxide (generic name...

  12. 40 CFR 721.2675 - Perfluoroalkyl epoxide (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Substances § 721.2675 Perfluoroalkyl epoxide (generic name). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl epoxide (PMN P... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Perfluoroalkyl epoxide (generic name...

  13. 40 CFR 721.2675 - Perfluoroalkyl epoxide (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Substances § 721.2675 Perfluoroalkyl epoxide (generic name). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as perfluoroalkyl epoxide (PMN P... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkyl epoxide (generic name...

  14. Preferential glutathione conjugation of a reverse diol epoxide compared to a bay region diol epoxide of phenanthrene in human hepatocytes: relevance to molecular epidemiology studies of glutathione-s-transferase polymorphisms and cancer.

    PubMed

    Hecht, Stephen S; Berg, Jeannette Zinggeler; Hochalter, J Bradley

    2009-03-16

    Bay region diol epoxides are recognized ultimate carcinogens of polycyclic aromatic hydrocarbons (PAH), and in vitro studies have demonstrated that they can be detoxified by conjugation with glutathione, leading to the widely investigated hypothesis that individuals with low activity forms of glutathione-S-transferases are at higher risk of PAH induced cancer, a hypothesis that has found at most weak support in molecular epidemiology studies. A weakness in this hypothesis was that the mercapturic acids resulting from the conjugation of PAH bay region diol epoxides had never been identified in human urine. We recently analyzed smokers' urine for mercapturic acids derived from phenanthrene, the simplest PAH with a bay region. The only phenanthrene diol epoxide-derived mercapturic acid in smokers' urine was produced from the reverse diol epoxide, anti-phenanthrene-3,4-diol-1,2-epoxide (11), not the bay region diol epoxide, anti-phenanthrene-1,2-diol-3,4-epoxide (10), which does not support the hypothesis noted above. In this study, we extended these results by examining the conjugation of phenanthrene metabolites with glutathione in human hepatocytes. We identified the mercapturic acid N-acetyl-S-(r-4,t-2,3-trihydroxy-1,2,3,4-tetrahydro-c-1-phenanthryl)-L-cysteine (14a), (0.33-35.9 pmol/mL at 10 microM 8, 24 h incubation, N = 10) in all incubations with phenanthrene-3,4-diol (8) and the corresponding diol epoxide 11, but no mercapturic acids were detected in incubations with phenanthrene-1,2-diol (7), and only trace amounts were observed in incubations with the corresponding bay region diol epoxide 10. Taken together with our previous results, these studies clearly demonstrate that glutathione conjugation of a reverse diol epoxide of phenanthrene is favored over conjugation of a bay region diol epoxide. Since reverse diol epoxides of PAH are generally weakly or nonmutagenic/carcinogenic, these results, if generalizable to other PAH, do not support the widely held assumption that glutathione-S-transferases are important in the detoxification of PAH in humans.

  15. Ethyl 2-(4-meth-oxy-phen-yl)-6-oxa-3-aza-bicyclo[3.1.0]hexane-3-carboxyl-ate: crystal structure and Hirshfeld analysis.

    PubMed

    Zukerman-Schpector, Julio; Sugiyama, Fabricia H; Garcia, Ariel L L; Correia, Carlos Roque D; Jotani, Mukesh M; Tiekink, Edward R T

    2017-07-01

    The title compound, C 14 H 17 NO 4 , features an epoxide-O atom fused to a pyrrolidyl ring, the latter having an envelope conformation with the N atom being the flap. The 4-meth-oxy-phenyl group is orthogonal to [dihedral angle = 85.02 (6)°] and lies to the opposite side of the five-membered ring to the epoxide O atom, while the N-bound ethyl ester group (r.m.s. deviation of the five fitted atoms = 0.0187 Å) is twisted with respect to the ring [dihedral angle = 17.23 (9)°]. The most prominent inter-actions in the crystal are of the type methine-C-H⋯O(carbon-yl) and these lead to the formation of linear supra-molecular chains along the c axis; weak benzene-C-H⋯O(epoxide) and methine-C-H⋯O(meth-oxy) inter-actions connect these into a three-dimensional architecture. The analysis of the Hirshfeld surface confirms the presence of C-H⋯O inter-actions in the crystal, but also the dominance of H⋯H dispersion contacts.

  16. Hydroxyl-Exchanged Nanoporous Ionic Copolymer toward Low-Temperature Cycloaddition of Atmospheric Carbon Dioxide into Carbonates.

    PubMed

    Guo, Zengjing; Cai, Xiaochun; Xie, Jingyan; Wang, Xiaochen; Zhou, Yu; Wang, Jun

    2016-05-25

    An ionic copolymer catalyst with nanopores, large surface area, high ionic density, and superior basicity was prepared via the radical copolymerization of amino-functionalized ionic liquid bromide and divinylbenzene, followed with a hydroxyl exchange for removing bromonium. Evaluated in chemical fixation of CO2 with epoxides into cyclic carbonates in the absence of any solvent and basic additive, the nanoporous copolymer catalyst showed high and stable activity, superior to various control catalysts including the halogen-containing analogue. Further, high yields were obtained over a wide scope of substrates including aliphatic long carbon-chain alkyl epoxides and internal epoxide, even under atmospheric pressure and less than 100 °C for the majority of the substrates. On the basis of in situ Fourier transform infrared (FT-IR) investigation and density functional theory (DFT) calculation for the reaction intermediates, we proposed a possible reaction mechanism accounting for the superior catalytic activity of the ionic copolymer. The specifically prepared ionic copolymer material of this work features highly stable, noncorrosive, and sustainable catalysis and, thus, may be a new possibility for efficient chemical fixation of CO2 since it is an environmentally friendly, metal-free solid catalyst.

  17. Reduction of the 20-Carbonyl Group of C-21 Steroids by Spores of Fusarium solani and Other Microorganisms. I. Side-Chain Degradation, Epoxide Cleavage, and Substrate Specificity

    PubMed Central

    Plourde, Rosaire; El-Tayeb, Ossama M.; Hafez-Zedan, Hamdallah

    1972-01-01

    The spores of Fusarium solani reduced the C2-carbonyl group, 1-dehydrogenated ring „A” and cleaved the side chain of 16α, 17α-oxidopregn-4-ene-3, 20-dione (16α, 17α-oxidoprogesterone)(I) to give the following products: 20α-hydroxy-16α, 17α-oxidopregn-4-en-3-one(II); 20α-hydroxy-16α, 17α-oxidopregna-1, 4-dien-3-one(III); 16α-hydroxy-17a-oxa-androsta-1, 4-diene-3, 17-dione (16α-hydroxy-1-dehydrotestololactone)(IV); and 16α, 17β-dihydroxy-androsta-1, 4-dien-3-one (16α-hydroxy-1-dehydrotestosterone)(V). When II was used as a substrate, it was metabolized into III, IV, and V at a slower rate than I. Furthermore, 16α-hydroxy-androst-4-ene-3, 17-dione (16α-hydroxyandrostenedione)(X) was transformed into IV and V. Pregn-4-ene-3, 20-dione (progesterone)(XII) was transformed into androsta-1, 4-diene-3, 17-dione (androstadienedione)(VIII) and 17a-oxa-androsta-1, 4-diene-3, 17-dione (1-dehydrotestololactone)(IX), while 17α-hydroxy-pregn-4-ene-3, 20-dione (17α-hydroxyprogesterone)(VI) was converted into its 1-dehydro analogue (VII) without accumulation of any 20-dihydro compounds. Substrate specificity in the 20-reductase system of F. solani, Cylindrocarpon radicicola, Septomyxa affinis, Bacillus lentus, and three strains of B. sphaericus are demonstrated. The 20-reductase is active only on steroids having the 16α, 17α-oxido, and Δ4-3-keto functions. Evidence of competition between side-chain degrading enzymes and the 20-reductase for the steroid molecule and evidence of side-chain degradation followed by epoxide cleavage (and not the reverse) are presented. A mechanism for the epoxide opening by nongerminating spores of F. solani is postulated. PMID:5021973

  18. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  19. Formation of furan fatty alkyl esters from their bis-epoxide fatty esters

    USDA-ARS?s Scientific Manuscript database

    Epoxidation of vegetable oils and consecutive epoxide ring-opening reaction is a widely investigated path for producing biobased lubricants and polymers. The reaction mechanism and products are considered well-studied and known. In the current study, the reactions of epoxidized alkyl soyate with fou...

  20. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09...

  1. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  2. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.

    PubMed

    Thomas, Anthony W; Dove, Andrew P

    2016-12-01

    Functional aliphatic polycarbonates have attracted significant attention as materials for use as biomedical polymers in recent years. The incorporation of pendent functionality offers a facile method of modifying materials postpolymerization, thus enabling functionalities not compatible with ring-opening polymerization (ROP) to be introduced into the polymer. In particular, polycarbonates bearing alkene-terminated functional groups have generated considerable interest as a result of their ease of synthesis, and the wide range of materials that can be obtained by performing simple postpolymerization modifications on this functionality, for example, through radical thiol-ene addition, Michael addition, and epoxidation reactions. This review presents an in-depth appraisal of the methods used to modify alkene-functional polycarbonates postpolymerization, and the diversity of practical applications for which these materials and their derivatives have been used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cu-catalyzed cross-coupling reactions of epoxides with organoboron compounds.

    PubMed

    Lu, Xiao-Yu; Yang, Chu-Ting; Liu, Jing-Hui; Zhang, Zheng-Qi; Lu, Xi; Lou, Xin; Xiao, Bin; Fu, Yao

    2015-02-11

    A copper-catalyzed cross-coupling reaction of epoxides with arylboronates is described. This reaction is not limited to aromatic epoxides, because aliphatic epoxides are also suitable substrates. In addition, N-sulfonyl aziridines can be successfully converted into the products. This reaction provides convenient access to β-phenethyl alcohols, which are valuable synthetic intermediates.

  4. N-Methylpyrrolidone Hydroperoxide/Cs2 CO3 as an Excellent Reagent System for the Hydroxy-Directed Diastereoselective Epoxidation of Electron-Deficient Olefins.

    PubMed

    Victor, Napoleon John; Gana, Janardhanan; Muraleedharan, Kannoth Manheri

    2015-10-12

    This report introduces N-methylpyrrolidone hydroperoxide (NMPOOH)/base as an excellent reagent system for hydroxy-directed syn selective epoxidation of electron-deficient olefins, characterized by high diastereoselectivity, short reaction times and remarkable chemoselectivity, especially in presence of oxidatively labile nitrogen or sulfur atoms. NMPOOH also proves efficient in the oxidation of electron-deficient aromatic aldehydes, in the removal of oxazolidinone chiral auxiliary, and in the functionalization of alkenes and alkynes, showing wide application potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The effects of metyrapone, chalcone epoxide, benzil, clotrimazole and related compounds on the activity of microsomal epoxide hydrolase in situ, in purified form and in reconstituted systems towards different substrates.

    PubMed

    Seidegård, J; DePierre, J W; Guenthner, T M; Oesch, F

    1986-09-01

    The influence of metyrapone, chalcone epoxide, benzil and clotrimazole on the activity of microsomal epoxide hydrolase towards styrene oxide, benzo[a]pyrene 4,5-oxide, estroxide and androstene oxide was investigated. The studies were performed using liver microsomes from rats, rabbits, mice and humans; epoxide hydrolase purified from rat liver microsomes to apparent homogeneity; and the purified enzyme incorporated into liposomes composed of egg-yolk phosphatidylcholine or total rat liver microsomal lipids. All four effectors were found to activate the hydrolysis of styrene oxide by epoxide hydrolase in situ in rat liver microsomal membranes, in agreement with earlier findings. Epoxide hydrolase activity towards styrene oxide in liver microsomes from mouse, rabbit and man was also increased by all four effectors. The most striking effect was a 680% activation by clotrimazole in rat liver microsomes. However, none of the effectors activated microsomal epoxide hydrolase more than 50% when benzo[a]pyrene 4,5-oxide, estroxide or androstene oxide was used as substrate. Indeed, clotrimazole was found to inhibit microsomal epoxide hydrolase activity towards estroxide 30-50% and towards androstene oxide 60-90%. The effects of these four compounds were found to be virtually identical in the preparations from rats, rabbits, mice and humans. The effects of metyrapone, chalcone epoxide, benzil and clotrimazole on purified epoxide hydrolase were qualitatively the same as those on epoxide hydrolase in intact microsomes, but much smaller in magnitude. These effects were increased in magnitude only slightly by incorporation of the purified enzyme into liposomes made from egg-yolk phosphatidylcholine. However, when incorporation into liposomes composed of total microsomal lipids was performed, the effects seen were essentially of the same magnitude as with intact microsomes. When the extent of activation was plotted against effector concentration, three different patterns were found with different effectors. Activation of epoxide hydrolase activity towards styrene oxide by clotrimazole was found to be uncompetitive with the substrate and highly structure specific. On the other hand, inhibition of epoxide hydrolase activity towards androstene oxide by clotrimazole was found to be competitive in microsomes. It is concluded that the marked effects of these four modulators on microsomal epoxide hydrolase activity are due to an interaction with the enzyme protein itself, but that the presence of total microsomal phospholipids allows the maximal expression leading to similar degrees of modulation as those observed in intact microsomes.(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Role of chemical functional groups on thermal and electrical properties of various graphene oxide derivatives: a comparative x-ray photoelectron spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Balaji Mohan, Velram; Jakisch, Lothar; Jayaraman, Krishnan; Bhattacharyya, Debes

    2018-03-01

    In recent years, graphene and its derivatives have become prominent subject matter due to their fascinating combination of properties and potential applications in a number application. While several fundamental studies have been progressed, there is a particular need to understand how different graphene derivatives are influenced in terms of their electrical and thermal conductivities by different functional groups they end up with through their manufacturing and functionalisation methods. This article addresses of the role of different functional groups present of different of reduced graphene oxides (rGO) concerning their electrical and thermal properties, and the results were compared with elemental analyses of functionalised reduced graphene oxide (frGO) and graphene. The results showed that electrical and thermal conductivities of the rGO samples, highly dependent on the presence of residual functional groups from oxidation, reduction and functionalisation processes. The increase in reduction of oxygen, hydroxyl, carboxylic, epoxide moieties and heterocyclic compounds increase the specific surface area of the samples through which the mean electron path has increased. This improved both electrical and thermal conductivities together in all the samples which were highly dependent on the efficiency of different reductant used in this study.

  7. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR).

  8. Regiospecific Epoxidation of Carvone: A Discovery-Oriented Experiment for Understanding the Selectivity and Mechanism of Epoxidation Reactions

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.; Lai, Y. M.; Siu, Yuk-Hong

    2006-01-01

    This article describes a discovery-oriented experiment for demonstrating the selectivity of two epoxidation reactions. Peroxy acids and alkaline H[subscript 2]O[subscript 2] are two commonly used reagents for alkene epoxidation. The former react preferentially with electron-rich alkenes while the latter works better with alpha,beta-unsaturated…

  9. Orientations of nonlocal vibrational modes from combined experimental and theoretical sum frequency spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chase, Hilary M.; Chen, Shunli; Fu, Li

    2017-09-01

    Inferring molecular orientations from vibrational sum frequency generation (SFG) spectra is challenging in polarization combinations that result in low signal intensities, or when the local point group symmetry approximation fails. While combining experiments with density functional theory (DFT) could overcome this problem, the scope of the combined method has yet to be established. Here, we assess its feasibility of determining the distributions of molecular orientations for one monobasic ester, two epoxides and three alcohols at the vapor/fused silica interface. We find that molecular orientations of nonlocal vibrational modes cannot be determined using polarization-resolved SFG measurements alone.

  10. Three-dimensional {Co(3+)-Zn2+} and {Co(3+)-Cd2+} networks originated from carboxylate-rich building blocks: syntheses, structures, and heterogeneous catalysis.

    PubMed

    Kumar, Girijesh; Gupta, Rajeev

    2013-10-07

    The present work shows the utilization of Co(3+) complexes appended with either para- or meta-arylcarboxylic acid groups as the molecular building blocks for the construction of three-dimensional {Co(3+)-Zn(2+)} and {Co(3+)-Cd(2+)} heterobimetallic networks. The structural characterizations of these networks show several interesting features including well-defined pores and channels. These networks function as heterogeneous and reusable catalysts for the regio- and stereoselective ring-opening reactions of various epoxides and size-selective cyanation reactions of assorted aldehydes.

  11. Carbocation/Polyol Systems as Efficient Organic Catalysts for the Preparation of Cyclic Carbonates.

    PubMed

    Rulev, Yuri A; Gugkaeva, Zalina T; Lokutova, Anastasia V; Maleev, Victor I; Peregudov, Alexander S; Wu, Xiao; North, Michael; Belokon, Yuri N

    2017-03-22

    Carbocation/polyol systems are shown to be highly efficient catalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide at 50 °C and 5 MPa CO 2 pressure. The best activity was shown by the combination of crystal violet and 1,1'-bi-2-naphthol (BINOL), which could be recycled five times with no loss of activity. The presence of specific interactions between the amino groups of the carbocation and the hydroxyl protons was confirmed by NMR experiments. The Job plots for the crystal violet iodide/BINOL and brilliant green iodide/BINOL systems showed that the catalytic systems consist of one molecule of the carbocation and one molecule of BINOL. Mechanistic studies using a deuterated epoxide indicate that there was some loss of epoxide stereochemistry during the reaction, but predominant retention of stereochemistry is observed. On this basis, a catalytic cycle is proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Copper-catalyzed cross-coupling reactions of epoxides with gem-diborylmethane: access to γ-hydroxyl boronic esters.

    PubMed

    Ebrahim-Alkhalil, Ahmed; Zhang, Zhen-Qi; Gong, Tian-Jun; Su, Wei; Lu, Xiao-Yu; Xiao, Bin; Fu, Yao

    2016-04-07

    Herein, we describe a novel copper-catalyzed epoxide opening reaction with gem-diborylmethane. Aliphatic, aromatic epoxides as well as aziridines are converted to the corresponding γ-pinacolboronate alcohols or amines in moderate to excellent yields. This new reaction provides beneficial applications for classic epoxide substrates as well as interesting gem-diborylalkane reagents.

  13. Triphenylphosphine-based functional porous polymer as an efficient heterogeneous catalyst for the synthesis of cyclic carbonates from CO2

    NASA Astrophysics Data System (ADS)

    Wu, Siduo; Teng, Chao; Cai, Sheng; Jiang, Biwang; Wang, Yong; Meng, Hong; Tao, Huchun

    2017-11-01

    A novel triphenylphosphine-based porous polymer (TPDB) with a high Brunauer-Emmett-Teller (BET) surface area was synthesized through Friedel-Crafts alkylation of triphenylphosphine and α-dibromo- p-xylene. Then, the functional hydroxyl groups were successfully grafted onto the polymer framework by post modification of TPDB with 3-bromo-1-propanol (BP) and triethanolamine (TEA). The resulting sample TPDB-BP-TEA was characterized by various techniques such as FT-IR, TG, SEM, EDS mapping, ICP-MS, and N2 adsorption-desorption. This new polymer was tested as the catalyst in the solvent-free cycloaddition reaction of CO2 with epoxides, which exhibited excellent performance, with high yield, selectivity, and stable recyclability for several catalytic cycles. The comparison experiment results demonstrate that the bromide ions and hydroxyl groups, as well as high surface area, are key factors in improving the catalytic activity of this new catalyst.

  14. Epoxide hydrolase-lasalocid a structure provides mechanistic insight into polyether natural product biosynthesis.

    PubMed

    Wong, Fong T; Hotta, Kinya; Chen, Xi; Fang, Minyi; Watanabe, Kenji; Kim, Chu-Young

    2015-01-14

    Biosynthesis of some polyether natural products involves a kinetically disfavored epoxide-opening cyclic ether formation, a reaction termed anti-Baldwin cyclization. One such example is the biosynthesis of lasalocid A, an ionophore antibiotic polyether. During lasalocid A biosynthesis, an epoxide hydrolase, Lsd19, converts the bisepoxy polyketide intermediate into the tetrahydrofuranyl-tetrahydropyran product. We report the crystal structure of Lsd19 in complex with lasalocid A. The structure unambiguously shows that the C-terminal domain of Lsd19 catalyzes the intriguing anti-Baldwin cyclization. We propose a general mechanism for epoxide selection by ionophore polyether epoxide hydrolases.

  15. Easy access to a cyclic key intermediate for the synthesis of trisporic acids and related compounds.

    PubMed

    González-Delgado, José A; Escobar, Gustavo; Arteaga, Jesús F; Barrero, Alejandro F

    2014-02-03

    The synthesis of a cyclohexane skeleton possessing different oxygenated functional groups at C-3, C-8 and C-9, and a D1,6-double bond has been accomplished in 10 steps with an overall 17% yield. This compound is a key intermediate for access to a wide range of compounds of the bioactive trisporoid family. The synthetic sequence consists of the preparation of a properly functionalized epoxygeraniol derivative, and its subsequent stereoselective cyclization mediated by Ti(III). This last step implies a domino process that starts with a homolytic epoxide opening followed by a radical cyclization and regioselective elimination. This concerted process gives access to the cyclohexane moiety with stereochemical control of five of its six carbon atoms.

  16. Benzoate Metabolism Intermediate Benzoyl Coenzyme A Affects Gentisate Pathway Regulation in Comamonas testosteroni

    PubMed Central

    Chen, Dong-Wei; Zhang, Yun; Jiang, Cheng-Ying

    2014-01-01

    A previous study showed that benzoate was catabolized via a coenzyme A (CoA)-dependent epoxide pathway in Azoarcus evansii (R. Niemetz, U. Altenschmidt, S. Brucker, and G. Fuchs, Eur. J. Biochem. 227:161-168, 1995), but gentisate 1,2-dioxygenase was induced. Similarly, we found that the Comamonas testosteroni strain CNB-1 degraded benzoate via a CoA-dependent epoxide pathway and that gentisate 1,2-dioxygenase (GenA) was also induced when benzoate or 3-hydroxybenzoate served as a carbon source for growth. Genes encoding the CoA-dependent epoxide (box genes) and gentisate (gen genes) pathways were identified. Genetic disruption revealed that the gen genes were not involved in benzoate and 3-hydroxybenzoate degradation. Hence, we investigated gen gene regulation in the CNB-1 strain. The PgenA promoter, a MarR-type regulator (GenR), and the GenR binding site were identified. We found that GenR took gentisate, 3-hydroxybenzoate, and benzoyl-CoA as effectors and that binding of GenR to its target DNA sequence was prohibited when these effectors were present. In vivo studies showed that the CNB-1 mutant that lost benzoyl-CoA synthesis was not able to activate PgenA promoter, while transcription of genA was upregulated in another CNB-1 mutant that lost the ability to degrade benzoyl-CoA. The finding that benzoyl-CoA (a metabolic intermediate of benzoate degradation) and 3-hydroxybenzoate function as GenR effectors explains why GenA was induced when CNB-1 grew on benzoate or 3-hydroxybenzoate. Regulation of gentisate pathways by MarR-, LysR-, and IclR-type regulators in diverse bacterial groups is discussed in detail. PMID:24771026

  17. Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure.

    PubMed

    Jarupatrakorn, Jonggol; Don Tilley, T

    2002-07-17

    A molecular precursor approach involving simple grafting procedures was used to produce site-isolated titanium-supported epoxidation catalysts of high activity and selectivity. The tris(tert-butoxy)siloxy titanium complexes Ti[OSi(O(t)Bu)(3)](4) (TiSi4), ((i)PrO)Ti[OSi(O(t)Bu)(3)](3) (TiSi3), and ((t)BuO)(3)TiOSi(O(t)Bu)(3) (TiSi) react with the hydroxyl groups of amorphous Aerosil, mesoporous MCM-41, and SBA-15 via loss of HO(t)Bu and/or HOSi(O(t)Bu)(3) and introduction of titanium species onto the silica surface. Powder X-ray diffraction, nitrogen adsorption/desorption, infrared, and diffuse reflectance ultraviolet spectroscopies were used to investigate the structures and chemical natures of the surface-bound titanium species. The titanium species exist mainly in isolated, tetrahedral coordination environments. Increasing the number of siloxide ligands in the molecular precursor decreases the amount of titanium that can be introduced this way, but also enhances the catalytic activity and selectivity for the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. In addition, the high surface area mesoporous silicas (MCM-41 and SBA-15) are more effective than amorphous silica as supports for these catalysts. Supporting TiSi3 on the SBA-15 affords highly active cyclohexene epoxidation catalysts (0.25-1.77 wt % Ti loading) that provide turnover frequencies (TOFs) of 500-1500 h(-1) after 1 h (TOFs are reduced by about half after calcination). These results demonstrate that oxygen-rich siloxide complexes of titanium are useful as precursors to supported epoxidation catalysts.

  18. The rabbit liver microsomal biotransformation of 1,1-dialkylethylenes: enantioface selection of epoxidation and enantioselectivity of epoxide hydrolysis.

    PubMed

    Bellucci, G; Chiappe, C; Cordoni, A; Marioni, F

    1994-01-01

    The rabbit liver microsomal biotransformation of alpha-methylstyrene (1a), 2-methyl-1-hexene (1b), 2,4,4-trimethyl-1-pentene (1c), and 1,3,3-trimethyl-1-butene (1d) has been investigated with the aim at establishing the enantioface selection of the cytochrome P-450-promoted epoxidation of the double bond and the enantioselectivity of microsomal epoxide hydrolase(mEH)-catalyzed hydrolysis of the resulting epoxides. GLC on a Chiraldex G-TA (ASTEC) column was used to determine the enantiomeric composition of the products. The epoxides 2 first produced in incubations carried out in the presence of an NADPH regenerating system were not detected, being rapidly hydrolyzed by mEH to diols 3. The enantiomeric composition of the latter showed that no enantioface selection occurred in the epoxidation of 1c and 1d, and a very low (8%) ee of the (R)-epoxide was formed from 1b. Incubation of racemic epoxides 2b-d with the microsomal fraction showed that the mEH-catalyzed hydrolysis of 2c and 2d was practically nonenantioselective, while that of 2b exhibited a selectivity E = 4.9 favoring the hydrolysis of the (S)-enantiomer. A comparison of these results with those previously obtained for linear and branched chain alkyl monosubstituted oxiranes shows that the introduction of the second alkyl substituent suppresses the selectivity of the mEH reaction of the latter and reverses that of the former substrates.

  19. Plant Oil-Derived Epoxy Polymers toward Sustainable Biobased Thermosets.

    PubMed

    Wang, Zhongkai; Yuan, Liang; Ganewatta, Mitra S; Lamm, Meghan E; Rahman, Md Anisur; Wang, Jifu; Liu, Shengquan; Tang, Chuanbing

    2017-06-01

    Epoxy polymers (EPs) derived from soybean oil with varied chemical structures are synthesized. These polymers are then cured with anhydrides to yield soybean-oil-derived epoxy thermosets. The curing kinetic, thermal, and mechanical properties are well characterized. Due to the high epoxide functionality per epoxy polymer chain, these thermosets exhibit tensile strength over an order of magnitude higher than a control formulation with epoxidized soybean oil. More importantly, thermosetting materials ranging from soft elastomers to tough thermosets can be obtained simply by using different EPs and/or by controlling feed ratios of EPs to anhydrides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Analogues of the epoxy resin monomer diglycidyl ether of bisphenol F: effects on contact allergenic potency and cytotoxicity.

    PubMed

    O'Boyle, Niamh M; Delaine, Tamara; Luthman, Kristina; Natsch, Andreas; Karlberg, Ann-Therese

    2012-11-19

    Diglycidyl ethers of bisphenol A (DGEBA) and bisphenol F (DGEBF) are widely used as components in epoxy resin thermosetting products. They are known to cause occupational and nonoccupational allergic contact dermatitis. The aim of this study is to investigate analogues of DGEBF with regard to contact allergy and cytotoxicity. A comprehensive knowledge of the structural features that contribute to the allergenic and cytotoxic effects of DGEBF will guide the development of future novel epoxy resin systems with reduced health hazards for those coming into contact with them. It was found that the allergenic effects of DGEBF were dependent on its terminal epoxide groups. In contrast, it was found that the cytotoxicity in monolayer cell culture was dependent not only on the presence of epoxide groups but also on other structural features.

  1. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis.

    PubMed

    Minami, Atsushi; Shimaya, Mayu; Suzuki, Gaku; Migita, Akira; Shinde, Sandip S; Sato, Kyohei; Watanabe, Kenji; Tamura, Tomohiro; Oguri, Hiroki; Oikawa, Hideaki

    2012-05-02

    Enantioselective epoxidation followed by regioselective epoxide opening reaction are the key processes in construction of the polyether skeleton. Recent genetic analysis of ionophore polyether biosynthetic gene clusters suggested that flavin-containing monooxygenases (FMOs) could be involved in the oxidation steps. In vivo and in vitro analyses of Lsd18, an FMO involved in the biosynthesis of polyether lasalocid, using simple olefin or truncated diene of a putative substrate as substrate mimics demonstrated that enantioselective epoxidation affords natural type mono- or bis-epoxide in a stepwise manner. These findings allow us to figure out enzymatic polyether construction in lasalocid biosynthesis. © 2012 American Chemical Society

  2. Natural Optical Activity of Chiral Epoxides: the Influence of Structure and Environment on the Intrinsic Chiroptical Response

    NASA Astrophysics Data System (ADS)

    Lemler, Paul M.; Craft, Clayton L.; Vaccaro, Patrick

    2017-06-01

    Chiral epoxides built upon nominally rigid frameworks that incorporate aryl substituents have been shown to provide versatile backbones for asymmetric syntheses designed to generate novel pharmaceutical and catalytic agents. The ubiquity of these species has motivated the present studies of their intrinsic (solvent-free) circular birefringence (CB), the measurement of which serves as a benchmark for quantum-chemical predictions of non-resonant chiroptical behavior and as a beachhead for understanding the often-pronounced mediation of such properties by environmental perturbations (e.g., solvation). The optical rotatory dispersion (or wavelength-resolved CB) of (R)-styrene oxide (R-SO) and (S,S)-phenylpropylene oxide (S-PPO) have been interrogated under ambient solvated and isolated conditions, where the latter efforts exploited the ultrasensitive techniques of cavity ring-down polarimetry. Both of the targeted systems display marked solvation effects as evinced by changes the magnitude and (in the case of R-SO) the sign of the extracted specific optical rotation, with the anomalously large response evoked from S-PPO distinguishing it from other members of the epoxide family. Linear-response calculations of dispersive optical activity have been performed at both density-functional and coupled-cluster levels of theory to unravel the structural and electronic origins of experimental findings, thereby suggesting the possible involvement of hindered torsional motion along dihedral coordinates adjoining phenyl and epoxide moieties.

  3. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  4. Catalytic Efficiency of Titanium Dioxide (TiO2) and Zeolite ZSM-5 Catalysts in the in-situ Epoxidation of Palm Olein

    NASA Astrophysics Data System (ADS)

    Yunus, M. Z. Mohd; Jamaludin, S. K.; Abd. Karim, S. F.; Gani, A. Abd; Sauki, A.

    2018-05-01

    Titanium dioxide and zeolite ZSM-5 are the commonly used heterogeneous catalysts in many chemical reactions. They have several advantages such as low cost and environmental friendly. In this study, titanium dioxide and zeolite ZSM-5 act as catalyst in the in-situ epoxidation of palm olein. Epoxidation of palm olein was carried out by using in-situ generated performic acid to produce epoxidized palm olein in a semi-batch reactor at different temperatures (45°C and 60°C) and agitation speed of 400 rpm. The effects of both catalysts are studied to compare their efficiency in catalyzing the in-situ epoxidation. Epoxidized palm olein was analyzed by using percent of relative conversion to oxirane (RCO%) and fourier transform infrared spectroscopy (FTIR). Surface area of the catalysts used were then characterized by using BET. The results indicated that titanium dioxide is a better catalyst in the in-situ epoxidation of palm olein since it provides higher RCO% compared to Zeolite ZSM-5 at 45°C.

  5. Epoxidation of Short-Chain Alkenes by Resting-Cell Suspensions of Propane-Grown Bacteria

    PubMed Central

    Hou, Ching T.; Patel, Ramesh; Laskin, Allen I.; Barnabe, Nancy; Barist, Irene

    1983-01-01

    Sixteen new cultures of propane-utilizing bacteria were isolated from lake water from Warinanco Park, Linden, N.J. and from lake and soil samples from Bayway Refinery, Linden, N.J. In addition, 19 known cultures obtained from culture collections were also found to be able to grow on propane as the sole carbon and energy source. In addition to their ability to oxidize n-alkanes, resting-cell suspensions of both new cultures and known cultures grown on propane oxidize short-chain alkenes to their corresponding 1,2-epoxides. Among the substrate alkenes, propylene was oxidized at the highest rate. In contrast to the case with methylotrophic bacteria, the product epoxides are further metabolized. Propane and other gaseous n-alkanes inhibit the epoxidation of propylene. The optimum conditions for in vivo epoxidation are described. Results from inhibition studies indicate that a propane monooxygenase system catalyzes both the epoxidation and hydroxylation reactions. Experiments with cell-free extracts show that both hydroxylation and epoxidation activities are located in the soluble fraction obtained after 80,000 × g centrifugation. PMID:16346338

  6. Ultrasound-assisted chemoenzymatic epoxidation of soybean oil by using lipase as biocatalyst.

    PubMed

    Bhalerao, Machhindra S; Kulkarni, Vaishali M; Patwardhan, Anand V

    2018-01-01

    The present work reports the use of ultrasonic irradiation for enhancing lipase catalyzed epoxidation of soybean oil. Higher degree of unsaturated fatty acids, present in the soybean oil was converted to epoxidized soybean oil by using an immobilized lipase, Candida antarctica (Novozym 435). The effects of various parameters on the relative percentage conversion of the double bond to oxirane oxygen were investigated and the optimum conditions were established. The parameters studied were temperature, hydrogen peroxide to ethylenic unsaturation mole ratio, stirring speed, solvent ratio, catalyst loading, ultrasound frequency, ultrasound input power and duty cycle. The main objective of this work was to intensify chemoenzymatic epoxidation of the soybean oil by using ultrasound, to reduce the time required for epoxidation. Epoxidation of the soybean oil was achieved under mild reaction conditions by indirect ultrasonic irradiations (using ultrasonic bath). The relative percentage conversion to oxirane oxygen of 91.22% was achieved within 5h. The lipase was remarkably stable under optimized reaction conditions, later was recovered and reused six times to produce epoxidized soybean oil (ESO). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest.

    PubMed

    Ottoni, Júlia Ronzella; Cabral, Lucélia; de Sousa, Sanderson Tarciso Pereira; Júnior, Gileno Vieira Lacerda; Domingos, Daniela Ferreira; Soares Junior, Fábio Lino; da Silva, Mylenne Calciolari Pinheiro; Marcon, Joelma; Dias, Armando Cavalcante Franco; de Melo, Itamar Soares; de Souza, Anete Pereira; Andreote, Fernando Dini; de Oliveira, Valéria Maia

    2017-07-01

    Mangroves are located in coastal wetlands and are susceptible to the consequences of oil spills, what may threaten the diversity of microorganisms responsible for the nutrient cycling and the consequent ecosystem functioning. Previous reports show that high concentration of oil favors the incidence of epoxide hydrolases and haloalkane dehalogenases in mangroves. This finding has guided the goals of this study in an attempt to broaden the analysis to other hydrolases and thereby verify whether oil contamination interferes with the prevalence of particular hydrolases and their assigned microorganisms. For this, an in-depth survey of the taxonomic and functional microbial diversity recovered in a fosmid library (Library_Oil Mgv) constructed from oil-impacted Brazilian mangrove sediment was carried out. Fosmid DNA of the whole library was extracted and submitted to Illumina HiSeq sequencing. The resulting Library Oil_Mgv dataset was further compared with those obtained by direct sequencing of environmental DNA from Brazilian mangroves (from distinct regions and affected by distinct sources of contamination), focusing on hydrolases with potential use in biotechnological processes. The most abundant hydrolases found were proteases, esterases and amylases, with similar occurrence profile in all datasets. The main microbial groups harboring such hydrolase-encoding genes were distinct in each mangrove, and in the fosmid library these enzymes were mainly assigned to Chloroflexaceae (for amylases), Planctomycetaceae (for esterases) and Bradyrhizobiaceae (for proteases). Assembly and analysis of Library_Oil Mgv reads revealed three potentially novel enzymes, one epoxide hydrolase, one xylanase and one amylase, to be further investigated via heterologous expression assays.

  8. Synthesis and characterization of estolide esters containing epoxy and cyclic carbonate groups

    USDA-ARS?s Scientific Manuscript database

    The unsaturated sites in oleic 2-ethylhexyl estolide esters (containing 35% monoenic fatty acids) were converted into epoxide and five-membered cyclic carbonate groups and the products characterized by Fourier transform infrared spectra (FTIR), 1H-, and 13C-nuclear magnetic resonance (NMR) spectrosc...

  9. Direct Epoxidation of Propylene over Stabilized Cu + Surface Sites on Ti Modified Cu 2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.; Kattel, S.; Xiong, K.

    2015-07-17

    Direct propylene epoxidation by O 2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate the feasibility to tune the epoxidation selectivity by generating highly dispersed and stabilized Cu + active sites in a TiCuO x mixed oxide. The TiCuO x surface anchors the key surface intermediate, oxametallacycle, leading to higher selectivity for epoxidation of propylene.

  10. An unexpected epoxidation of benzil derivatives in their reaction with a germene.

    PubMed

    El Kettani, Sakina Ech-Cherif; Lazraq, Mohamed; Ouhsaine, Fatima; Gornitzka, Heinz; Ranaivonjatovo, Henri; Escudié, Jean

    2008-11-07

    The germene Mes(2)Ge=CR(2) (Mes = 2,4,6-trimethylphenyl, CR(2) = fluorenylidene) reacts with various benzil derivatives to lead to germanium-containing bicyclic epoxides by an unexpected new type of epoxidation reaction.

  11. Di-epoxides of the three isomeric dicyclopenta-fused pyrenes: ultimate mutagenic active agents.

    PubMed

    Otero-Lobato, María José; Kaats-Richters, Veronica E M; Havenith, Remco W A; Jenneskens, Leonardus W; Seinen, Willem

    2004-11-14

    To rationalize the high bacterial mutagenic response recently found for the (di-) cyclopenta-fused pyrene congeners, viz. cyclopenta[cd]-(1), dicyclopenta[cd,mn]-(2), dicyclopenta[cd,fg]-(3) and dicyclopenta[cd,jk]pyrene (4), in the presence of a metabolic activation mixture (S9-mix), their (di-)epoxides at the externally fused unsaturated five-membered rings were previously proposed as the ultimate mutagenic active forms. In this study, cyclopenta[cd]pyrene-3,4-epoxide (5) and the novel dicyclopenta[cd,mn]pyrene-1,2,4,5-di-epoxide (6), dicyclopenta[cd,fg]pyrene-5,6,7,8-di-epoxide (7) and dicyclopenta[cd,jk]pyrene-1,2,6,7-di-epoxide (8) were synthesised from 1 to 4, respectively, and subsequently assayed for bacterial mutagenicity in the standard microsomal/histidine reverse mutation assay (Ames-assay with Salmonella typhimurium strain TA98). The di-epoxides 6-8 are present as a mixture of their cis- and trans-stereo-isomers in a close to 1:1 ratio ((1)H NMR spectroscopy and ab initio IGLO/III//RHF/6-31G** calculations). The direct-acting mutagenic activity and the strong cytotoxicity exerted by 5-8 both in the absence or presence of an exogenous metabolic activation system (+/-S9-mix) demonstrate that the ultimate mutagenic active forms are the proposed (di-)epoxides of 1-4.

  12. Quantitation of enantiomers of r-7,t-8,9,c-10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]-pyrene in human urine: evidence supporting metabolic activation of benzo[a]pyrene via the bay region diol epoxide.

    PubMed

    Hecht, Stephen S; Hochalter, Jon Bradley

    2014-09-01

    Benzo[a]pyrene (BaP), a potent polycyclic aromatic hydrocarbon carcinogen, is widely distributed in the human environment. All humans are exposed to BaP through the diet and contact with the general environment; cigarette smokers have higher exposure. An important pathway of BaP metabolism proceeds through formation of diol epoxides including the 'bay region diol epoxide' 7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [BaP-(7R,8S)-diol-(9S,10R)-epoxide] and the 'reverse diol epoxide' 9S,10R-dihydroxy-7R,8S-epoxy-7,8,9,10-tetrahydrobenzo [a]pyrene [BaP-(9S,10R)-diol-(7R,8S)-epoxide]. The bay region diol epoxide is considered a major ultimate carcinogen of BaP based on studies in cell culture and laboratory animals, but the available data in humans are less convincing. The bay region diol epoxide and the reverse diol epoxide react with H2O to produce enantiomeric BaP-tetraols that are excreted in the urine. We used chiral stationary-phase high-performance liquid chromatography and gas chromatography-negative ion chemical ionisation-tandem mass spectrometry to quantify these enantiomeric BaP-tetraols in the urine of 25 smokers and 25 non-smokers. The results demonstrated that the BaP-tetraol enantiomer representing the carcinogenic bay region diol epoxide pathway accounted for 68±6% (range 56-81%) of total BaP-tetraol in smokers and 64±6% (range 46-78%) in non-smokers. Levels of the major BaP-tetraol enantiomer decreased by 75% in smokers who quit smoking. These data provide convincing evidence in support of the bay region diol epoxide mechanism of BaP carcinogenesis in humans. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB

    PubMed Central

    Garcia-Campo, María Jesús; Quiles-Carrillo, Luis; Masia, Jaime; Reig-Pérez, Miguel Jorge; Montanes, Nestor

    2017-01-01

    Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy’s impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives. PMID:29165359

  14. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB.

    PubMed

    Garcia-Campo, María Jesús; Quiles-Carrillo, Luis; Masia, Jaime; Reig-Pérez, Miguel Jorge; Montanes, Nestor; Balart, Rafael

    2017-11-22

    Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy's impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.

  15. Palladium pincer complex catalyzed stannyl and silyl transfer to propargylic substrates: synthetic scope and mechanism.

    PubMed

    Kjellgren, Johan; Sundén, Henrik; Szabó, Kálmán J

    2005-02-16

    Pincer complex catalyzed substitution of various propargylic substrates could be achieved using tin- and silicon-based dimetallic reagents to obtain propargyl- and allenylstannanes and silanes. These reactions involving chloride, mesylate, and epoxide substrates could be carried out under mild conditions, and therefore many functionalities (such as COOEt, OR, OH, NR, and NAc) are tolerated. It was shown that pincer catalysts with electron-supplying ligands, such as NCN, SCS, and SeCSe complexes, display the highest catalytic activity. The catalytic substitution of secondary propargyl chlorides and primary propargyl chlorides with electron-withdrawing substituents proceeds with high regioselectivity providing the allenyl product. Opening of the propargyl epoxides takes place with an excellent stereo- and regioselectivity to give stereodefined allenylstannanes. Silylstannanes as dimetallic reagents undergo an exclusive silyl transfer to the propargylic substrate affording allenylsilanes with high regioselectivity. According to our mechanistic studies, the key intermediate of the reaction is an organostannane (or silane)-coordinated pincer complex, which is formed from the dimetallic reagent and the corresponding pincer complex catalyst. DFT modeling studies have shown that the trimethylstannyl functionality is transferred to the propargylic substrate in a single reaction step with high allenyl selectivity. Inspection of the TS structures reveals that the trimethylstannyl group transfer is initiated by the attack of the palladium-tin sigma-bond electrons on the propargylic substrate. This is a novel mechanism in palladium chemistry, which is based on the unique topology of the pincer complex catalysts.

  16. Complex Cure Kinetics of the Tertiary Amine activated Reaction in DGEBA Epoxy Hardened with Diethanolamine

    NASA Astrophysics Data System (ADS)

    Ancipink, Windy; McCoy, John; Clarkson, Caitlyn; Kropka, Jamie; Celina, Mathias; Giron, Nicholas; Hailesilassie, Lebelo; Fredj, Narjes

    The curing of a diglycidyl ether of bisphenol-A (DGEBA) epoxy with diethanolamine (DEA) involves a well understood fast amine-epoxide reaction followed by a more complicated slower hydroxyl-epoxide reaction. The time scale of these two reactions are well separated and can be studied independently from one another. The initial amine-epoxide reaction results in a tertiary amine adduct which is a product of the direct reaction of a secondary amine from the DEA reacting with a single DGEBA epoxide. The second hydroxyl-epoxide reaction results in a highly crosslinked glassy epoxy resin. The deviation in the mechanisms between high and low temperatures are discerned through the use of differential scanning calorimetry (DSC), infrared spectroscopy (IR), and isothermal microcalorimetry (IMC) data. Observations of reaction rates at temperatures ranging from 30° C to 110° C have led to the determination that the hydroxyl-epoxide reaction is temperature sensitive. The hydroxyl-epoxide reaction occurs through two different mechanisms: at low temperatures, the reaction is catalyzed by the tertiary amine adduct; at higher temperatures, the reaction does not appear to be catalyzed. Sandia National Laboratories, Albuquerque, NM.

  17. Epoxidation of Alpha-Methylstyrene and its Lewis Acid Rearrangement to 2-Phenylpropanal

    NASA Astrophysics Data System (ADS)

    Garin, David L.; Gamber, Melissa; Rowe, Bradley J.

    1996-06-01

    This undergraduate organic lab experiment includes procedures for the peracid epoxidation of an olefin and the Lewis acid rearrangement of an epoxide to a carbonyl compound. Product mixtures and transformations can be readily analyzed by several spectroscopic techniques.

  18. Mechanism of olefin epoxidation in the presence of a titanium-containing zeolite

    NASA Astrophysics Data System (ADS)

    Danov, S. M.; Krasnov, V. L.; Sulimov, A. V.; Ovcharova, A. V.

    2013-11-01

    The effect of the nature of a solvent on the liquid-phase epoxidation of olefins with an aqueous solution of hydrogen peroxide over a titanium-containing zeolite is studied. Butanol-1, butanol-2, propanol-1, isopropanol, methanol, ethanol, water, acetone, methyl ethyl ketone, isobutanol, and tert-butanol are examined as solvents. A mechanism of olefin epoxidation with hydrogen peroxide in an alcohol medium over a titanium-containing zeolite is proposed. Epoxidation reactions involving hydrogen peroxide and different olefins are studied experimentally.

  19. Synthesis and properties of a novel bio-based polymer from modified soybean oil

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Yang, L. T.; Zhang, H.; Tang, Z. J.

    2017-02-01

    Maleated acrylated epoxidized soybean oil (MAESO) was prepared by acrylated epoxidized soybean oil (AESO) and maleic anhydride. AESO were obtained by the reaction of epoxidized soybean oil (ESO) with acrylic acid as the ring-opening reagent. The polymer was prepared by MAESO react with styrene. The structures of the products were studied by Fourier transformation infrared spectrometer (FT-IR), and were consistent with the theoretical structures. Swelling experiment indicated that the crosslinking degree increased with increasing epoxy value of ESO. Thermal properties was tested by thermo-gravimetric analysis (TG) and differential scanning calorimetry analysis (DSC), indicating that glass transition temperature (Tg) of the polymer increased with increasing epoxy value of ESO, and thermal stability of polymer have a good correlation with the crosslinking degree. Mechanical properties analysis presented that tensile strength and impact strength affected by epoxy value of ESO. With the increase of epoxy value, the tensile strength increase, while the impact strength decrease. The property of the polymer ranged from elastomer to plastic character depended on the functionality of the ESO.

  20. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{submore » 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)« less

  1. Epigallocatechin-3-gallate reduces DNA damage induced by benzo[a]pyrene diol epoxide and cigarette smoke condensate in human mucosa tissue cultures.

    PubMed

    Baumeister, Philipp; Reiter, Maximilian; Kleinsasser, Norbert; Matthias, Christoph; Harréus, Ulrich

    2009-06-01

    Although epidemiological studies indicate cancer preventive effects of diets rich in fruit and vegetables, large clinical intervention studies conducted to evaluate dietary supplementation with micronutrients, mostly vitamins, showed disappointing results in large parts. In contrast, there is encouraging epidemiologic data indicating great chemopreventive potential of a large group of phytochemicals, namely polyphenols. This study shows the DNA protective effect epigallocatechin-3-gallate, a tea catechin, and one of the best-studied substances within this group, on carcinogen-induced DNA fragmentation in upper aerodigestive tract cells. Cell cultures from fresh oropharyngeal mucosa biopsies were preincubated with epigallocatechin-3-gallate in different concentrations before DNA damage was introduced with the metabolically activated carcinogen benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide or cigarette smoke condensate. Effects on resulting DNA fragmentation were measured using the alkaline single-cell microgel electrophoresis (comet assay). Epigallocatechin-3-gallate significantly reduced benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage by up to 51% (P<0.001). Fragmentation induced by cigarette smoke condensate could be lowered by 47% (P<0.001). Data suggest a cancer preventive potential of epigallocatechin-3-gallate as demonstrated on a subcellular level. An additional mechanism of tea catechin action is revealed by using a primary mucosa culture model.

  2. Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado.

    PubMed

    Esteban, Raquel; Olascoaga, Beñat; Becerril, José M; García-Plazaola, José I

    2010-09-01

    Leaves are the main photosynthetically active tissues in most plants. However, stems and fruits are also important for the overall carbon balance of the plant because of their contribution to fixation of the CO(2) released by respiration. Photosynthesis could not be possible without a complete set of photoprotection mechanisms, which include the ubiquitous violaxanthin (V) cycle and the taxonomically restricted lutein epoxide (Lx) cycle. In this work, we characterise carotenoid stoichiometry in photosynthetic stems and fruits of avocado in comparison with that of leaves and specifically whether Lx is present in these tissues and also whether it is involved in a light-driven cycle. Avocado was selected as model species to study whether both cycles were functional in non-foliar photosynthetic structures (stems and fruits). An unusual pigment composition was observed in avocado fruit, with a high content of cis-V and cis-Lx, suggesting a different photosynthetic function. In stems, both xanthophylls de-epoxidated upon illumination, but only V recovered in the dark, indicating the existence of a possible 'truncated' Lx cycle. Lx in fruits was de-epoxidated only when its pool was higher than a threshold of 30 mmol mol(-1) chlorophyll, indicating a high non-photoconvertible pool of Lx. We conclude that, at least in stems, the dynamic regulation of photosynthetic activity could also depend on the Lx cycle.

  3. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    PubMed

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  4. Polyisoprenoid epoxides stimulate the biosynthesis of coenzyme Q and inhibit cholesterol synthesis.

    PubMed

    Bentinger, Magnus; Tekle, Michael; Brismar, Kerstin; Chojnacki, Tadeusz; Swiezewska, Ewa; Dallner, Gustav

    2008-05-23

    In our search for compounds that up-regulate the biosynthesis of coenzyme Q (CoQ), we discovered that irradiation of CoQ with ultraviolet light results in the formation of a number of compounds that influence the synthesis of mevalonate pathway lipids by HepG2 cells. Among the compounds that potently stimulated CoQ synthesis while inhibiting cholesterol synthesis, derivatives of CoQ containing 1-4 epoxide moieties in their polyisoprenoid side chains were identified. Subsequently, chemical epoxidation of all-trans-polyprenols of different lengths revealed that the shorter farnesol and geranylgeraniol derivatives were without effect, whereas the longer derivatives of solanesol enhanced CoQ and markedly reduced cholesterol biosynthesis. In contrast, none of the modified trans-trans-poly-cis-polyprenols exerted noticeable effects. Tocotrienol epoxides were especially potent in our system; those with one epoxide moiety in the side-chain generally up-regulated CoQ biosynthesis by 200-300%, whereas those with two such moieties also decreased cholesterol synthesis by 50-90%. Prolonged treatment of HepG2 cells with tocotrienol epoxides for 26 days elevated their content of CoQ by 30%. In addition, the levels of mRNA encoding enzymes involved in CoQ biosynthesis were also elevated by the tocotrienol epoxides. The site of inhibition of cholesterol synthesis was shown to be oxidosqualene cyclase. In conclusion, epoxide derivatives of certain all-trans-polyisoprenoids cause pronounced stimulation of CoQ synthesis and, in some cases, simultaneous reduction of cholesterol biosynthesis by HepG2 cells.

  5. Metabolic Profile of Skimmianine in Rats Determined by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry.

    PubMed

    Huang, Aihua; Xu, Hui; Zhan, Ruoting; Chen, Weiwen; Liu, Jiawei; Chi, Yuguang; Chen, Daidi; Ji, Xiaoyu; Luo, Chaoquan

    2017-03-23

    Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family. It has been reported to have analgesic, antispastic, sedative, anti-inflammatory, and other pharmacologic activities. Despite its critical pharmacological function, its metabolite profiling is still unclear. In this study, the in vivo metabolite profiling of skimmianine in rats was investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). The metabolites were predicted using MetabolitePilot TM software. These predicted metabolites were further analyzed by MS² spectra, and compared with the detailed fragmentation pathway of the skimmianine standard and literature data. A total of 16 metabolites were identified for the first time in rat plasma, urine, and feces samples after oral administration of skimmianine. Skimmianine underwent extensive Phase I and Phase II metabolism in rats. The Phase I biotransformations of skimmianine consist of epoxidation of olefin on its furan ring (M1) followed by the hydrolysis of the epoxide ring (M4), hydroxylation (M2, M3), O -demethylation (M5-M7), didemethylation (M14-M16). The Phase II biotransformations include glucuronide conjugation (M8-M10) and sulfate conjugation (M11-M13). The epoxidation of 2,3-olefinic bond followed by the hydrolysis of the epoxide ring and O -demethylation were the major metabolic pathways of skimmianine. The results provide key information for understanding the biotransformation processes of skimmianine and the related furoquinoline alkaloids.

  6. Organocatalyzed enantioselective desymmetrization of aziridines and epoxides

    PubMed Central

    2013-01-01

    Summary Enantioselective desymmetrization of meso-aziridines and meso-epoxides with various nucleophiles by organocatalysis has emerged as a cutting-edge approach in recent years. This review summarizes the origin and recent developments of enantioselective desymmetrization of meso-aziridines and meso-epoxides in the presence of organocatalysts. PMID:24062828

  7. Derivatization of castor oil based estolide esters: Preparation of epoxides and cyclic carbonates

    USDA-ARS?s Scientific Manuscript database

    Estolides that are based on castor oil and oleic acid are versatile starting points for the production of industrial fluids with new properties. A variety of unsaturated estolides were derivatized by epoxidation with hydrogen peroxide. The epoxidized estolides were further modified using supercritic...

  8. Ring opening of epoxides with C-nucleophiles.

    PubMed

    Faiz, Sadia; Zahoor, Ameer Fawad

    2016-11-01

    Ring opening of epoxides has been an area of interest for organic chemists, owing to their reactivity toward nucleophiles. Such reactions yield important products depending on the type of nucleophiles used. This review article covers the synthetic approaches (1991-2015) used for the ring opening of epoxides via carbon nucleophiles.

  9. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  10. Evaluation of the active functional groups and structural rearrangement of parthenolide derivatives on their potential anticancer activity

    NASA Astrophysics Data System (ADS)

    Srakaew, Veeranuch; Tachaboonyakiat, Wanpen

    2017-05-01

    Two parthenolide derivatives (PDs) were synthesized by chemical modification of parthenolide with concentrated hydrochloric acid and to evaluate their cytotoxicity to Hep-G2 cells in terms of their active functional groups and polarity. The chemical structures of the PDs were characterized by Fourier transform infrared, nuclear magnetic resonance and high resolution mass spectroscopy. Two PDs (PD1 and PD2) were fractionated by silica gel column chromatography with a Rf of 0.37 and 0.19, respectively, in a 1:1 (v/v) hexane: ethyl acetate mobile phase, indicating that PD1 was less polar than PD2. Compared to the parent parthenolide, both PD1 and PD2 had lost the active carbon-carbon double bond and epoxide functional groups, but retained the active 14-methyl and α-methylene-γ-butyrolactone groups. Although PD1 and PD2 possessed similar functional groups, they differed in their structural arrangement and consequentially their polarity. PD1 and PD2 exhibited an in vitro IC50 against the Hep-G2 cell line of 41.0 and 94.0 μg/ml, respectively, which was weaker than that for parthenolide (<1 μg/ml). Thus, the ranked polarity of PD2 > PD1 > parthenolide was inversely related to their cytotoxicity against the Hep-G2 cell line (parthenolide > PD1 > PD2). The obtained PDs may be potential novel anticancer substances.

  11. Theoretical study of photoinduced epoxidation of olefins catalyzed by ruthenium porphyrin.

    PubMed

    Ishikawa, Atsushi; Sakaki, Shigeyoshi

    2011-05-12

    Epoxidation of olefin by [Ru(TMP)(CO)(O)](-) (TMP = tetramesitylporphine), which is a key step of the photocatalyzed epoxidation of olefin by [Ru(TMP)(CO)], is studied mainly with the density functional theory (DFT) method, where [Ru(Por)(CO)] is employed as a model complex (Por = unsubstituted porphyrin). The CASSCF method was also used to investigate the electronic structure of important species in the catalytic cycle. In all of the ruthenium porphyrin species involved in the catalytic cycle, the weight of the main configuration of the CASSCF wave function is larger than 85%, suggesting that the static correlation is not very large. Also, unrestricted-DFT-calculated natural orbitals are essentially the same as CASSCF-calculated ones, here. On the basis of these results, we employed the DFT method in this work. Present computational results show characteristic features of this reaction, as follows: (i) The epoxidation reaction occurs via carboradical-type transition state. Neither carbocation-type nor concerted oxene-insertion-type character is observed in the transition state. (ii) Electron and spin populations transfer from the olefin moiety to the porphyrin ring in the step of the C-O bond formation. (iii) Electron and spin populations of the olefin and porphyrin moieties considerably change around the transition state. (iv) The atomic and spin populations of Ru change little in the reaction, indicating that the Ru center keeps the +II oxidation state in the whole catalytic cycle. (v) The stability of the olefin adduct [Ru(Por)(CO)(O)(olefin)](-) considerably depends on the kind of olefin, such as ethylene, n-hexene, and styrene. In particular, styrene forms a stable olefin adduct. And, (vi) interestingly, the difference in the activation barrier among these olefins is small in the quantitative level (within 5 kcal/mol), indicating that this catalyst can be applied to various substrates. This is because the stabilities and electronic structures of both the olefin adduct and the transition state are similarly influenced by the substituent of olefin.

  12. Cholesterol-5,6-epoxides: chemistry, biochemistry, metabolic fate and cancer.

    PubMed

    Poirot, Marc; Silvente-Poirot, Sandrine

    2013-03-01

    In the nineteen sixties it was proposed that cholesterol might be involved in the etiology of cancers and cholesterol oxidation products were suspected of being causative agents. Researchers had focused their attention on cholesterol-5,6-epoxides (5,6-ECs) based on several lines of evidence: 1) 5,6-ECs contained an oxirane group that was supposed to confer alkylating properties such as those observed for aliphatic and aromatic epoxides. 2) cholesterol-5,6-epoxide hydrolase (ChEH) was induced in pre-neoplastic lesions of skin from rats exposed to ultraviolet irradiations and ChEH was proposed to be involved in detoxification processes like other epoxide hydrolases. However, 5,6-ECs failed to induce carcinogenicity in rodents which ruled out a potent carcinogenic potential for 5,6-ECs. Meanwhile, clinical studies revealed an anomalous increase in the concentrations of 5,6β-EC in the nipple fluids of patients with pre-neoplastic breast lesions and in the blood of patients with endometrious cancers, suggesting that 5,6-ECs metabolism could be linked with cancer. Paradoxically, ChEH has been recently shown to be totally inhibited by therapeutic concentrations of tamoxifen (Tam), which is one of the main drugs used in the hormonotherapy and the chemoprevention of breast cancers. These data would suggest that the accumulation of 5,6-ECs could represent a risk factor, but we found that 5,6-ECs were involved in the induction of breast cancer cell differentiation and death induced by Tam suggesting a positive role of 5,6-ECs. These observations meant that the biochemistry and the metabolism of 5,6-ECs needed to be extensively studied. We will review the current knowledge and the future direction of 5,6-ECs chemistry, biochemistry, metabolism, and relationship with cancer. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Methyltrioxorhenium-catalyzed epoxidation of homoallylic alcohols with hydrogen peroxide.

    PubMed

    Yamazaki, Shigekazu

    2012-11-02

    Homoallylic alcohols were efficiently converted to the corresponding 3,4-epoxy alcohols in excellent yields by methyltrioxorhenium (MTO)-catalyzed epoxidation with aqueous hydrogen peroxide as the terminal oxidant and 3-methylpyrazole (10 mol %) as an additive. The epoxidations of homoallylic alcohols proceeded under organic solvent-free conditions faster than those in dichloromethane.

  14. COMPARATIVE STUDIES OF THE EFFECT OF POLYCYCLIC AROMATIC HYDROCARBON GEOMETRY ON THE HYDROLYSIS OF DIOL EPOXIDES

    EPA Science Inventory

    Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides

    The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...

  15. Recent trends in ring opening of epoxides with sulfur nucleophiles.

    PubMed

    Ahmad, Sajjad; Zahoor, Ameer Fawad; Naqvi, Syed Ali Raza; Akash, Muhammad

    2018-02-01

    Thiolysis of epoxides offers an efficient and simple synthetic approach to access [Formula: see text]-hydroxy sulfides which are valuable scaffold in the synthesis of various important molecules in medicinal chemistry. This review article presents a recent compilation of the synthetic approaches developed after 2000 for the thiolysis of epoxides.

  16. Oxidation catalysis of Nb(salan) complexes: asymmetric epoxidation of allylic alcohols using aqueous hydrogen peroxide as an oxidant.

    PubMed

    Egami, Hiromichi; Oguma, Takuya; Katsuki, Tsutomu

    2010-04-28

    Several optically active Nb(salan) complexes were synthesized, and their oxidation catalysis was examined. A dimeric mu-oxo Nb(salan) complex that was prepared from Nb(OiPr)(5) and a salan ligand was found to catalyze the asymmetric epoxidation of allylic alcohols using a urea-hydrogen peroxide adduct as an oxidant with good enantioselectivity. However, subsequent studies of the time course of this epoxidation and of the relationship between the ee of the ligand and the ee of the product indicated that the mu-oxo dimer dissociates into a monomeric species prior to epoxidation. Moreover, monomeric Nb(salan) complexes prepared in situ from Nb(OiPr)(5) and salan ligands followed by water treatment were found to catalyze the epoxidation of allylic alcohols better using aqueous hydrogen peroxide in CHCl(3)/brine or toluene/brine solution with high enantioselectivity ranging from 83 to 95% ee, except for the reaction of cinnamyl alcohol that showed a moderate ee of 74%. This is the first example of the highly enantioselective epoxidation of allylic alcohols using aqueous hydrogen peroxide as an oxidant.

  17. Transition-metal-free catalysts for the sustainable epoxidation of alkenes: from discovery to optimisation by means of high throughput experimentation.

    PubMed

    Lueangchaichaweng, Warunee; Geukens, Inge; Peeters, Annelies; Jarry, Benjamin; Launay, Franck; Bonardet, Jean-Luc; Jacobs, Pierre A; Pescarmona, Paolo P

    2012-02-01

    Transition-metal-free oxides were studied as heterogeneous catalysts for the sustainable epoxidation of alkenes with aqueous H₂O₂ by means of high throughput experimentation (HTE) techniques. A full-factorial HTE approach was applied in the various stages of the development of the catalysts: the synthesis of the materials, their screening as heterogeneous catalysts in liquid-phase epoxidation and the optimisation of the reaction conditions. Initially, the chemical composition of transition-metal-free oxides was screened, leading to the discovery of gallium oxide as a novel, active and selective epoxidation catalyst. On the basis of these results, the research line was continued with the study of structured porous aluminosilicates, gallosilicates and silica-gallia composites. In general, the gallium-based materials showed the best catalytic performances. This family of materials represents a promising class of heterogeneous catalysts for the sustainable epoxidation of alkenes and offers a valid alternative to the transition-metal heterogeneous catalysts commonly used in epoxidation. High throughput experimentation played an important role in promoting the development of these catalytic systems.

  18. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haofei; Zhang, Zhenfa; Cui, Tianqu

    2014-04-08

    Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to isoprene, MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide) was synthesized and tentatively proposed here to explain this enhancement. In the present study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosols. Major SOA constituents, 2,3-dihydroxyisopentanol (DHIP) and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and inmore » ambient fine aerosols collected from the BEACHON-RoMBAS field campaign during summer 2011, where MBO emissions are substantial. Our results support epoxides as potential products of MBO photooxidation leading to formation of atmospheric SOA and suggest that reactive uptake of epoxides may generally explain acid enhancement of SOA observed from other biogenic hydrocarbons.« less

  19. Polymerized and functionalized triglycerides

    USDA-ARS?s Scientific Manuscript database

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  20. Construction of Well-Defined Redox-Responsive CO2 -Based Polycarbonates: Combination of Immortal Copolymerization and Prereaction Approach.

    PubMed

    Liu, Shunjie; Zhao, Xun; Guo, Hongchen; Qin, Yusheng; Wang, Xianhong; Wang, Fosong

    2017-05-01

    Due to the axial group initiation in traditional (salen)CoX/quaternary ammonium catalyst system, it is difficult to construct single active center propagating polycarbonates for copolymerization of CO 2 /epoxides. Here a redox-responsive poly(vinyl cyclohexene carbonate) (PVCHC) with detachable disulfide-bond backbone is synthesized in a controllable manner using (salen)CoTFA/[bis(triphenylphosphine)iminium, [PPN]TFA binary catalyst, where the axial group initiation is depressed by judiciously choosing 3,3'-dithiodipropionic acid as starter. While for those comonomers failing to obtain polycarbonate with unimodal gel permeation chromatography (GPC) curve, a versatile method is developed by combination of immortal copolymerization and prereaction approach, and functional aliphatic polycarbonates having well-defined architecture and narrow polydispersity can be prepared. The resulting PVCHC can be further functionalized with alkenes by versatile cross-metathesis reaction to tune the physicochemical properties. The combination of immortal polymerization and prereaction approach creates a powerful platform for controllable synthesis of functional CO 2 -based polycarbonates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A new approach to the side chain formation of 24-alkyl-22-hydroxy steroids: application to the preparation of early brassinolide biosynthetic precursors.

    PubMed

    Hurski, Alaksiej L; Zhabinskii, Vladimir N; Khripach, Vladimir A

    2012-06-01

    A new synthetic route to 22S-hydroxy-24R-methyl steroids has been developed and applied for the preparation of cathasterone, (22S)-hydroxycampesterol, and 6-deoxocathasterone, which are precursors in the early stages of the biosynthesis of brassinolide. The construction of the steroid side chain with the correct stereochemistry at C-24 is based on the use of Claisen rearrangement. The introduction of the 22-hydroxyl group has been achieved by epoxidation of the Δ(22)-double bond, nucleophilic opening of the intermediate mesyl epoxide with sodium sulfide, and desulfurization of the formed tetrahydrothiophenes with Raney nickel. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Capsanthone 3,6-epoxide, a new carotenoid from the fruits of the red paprika Capsicum annuum L.

    PubMed

    Maoka, T; Fujiwara, Y; Hashimoto, K; Akimoto, N

    2001-08-01

    The structure of a new carotenoid, isolated from the fruits of the red tomato-shaped paprika Capsicum annuum L., was elucidated to be (3S,5R,6S,5'R)-3,6-epoxy-5,6-dihydro-5-hydroxy-beta,kappa-carotene-3',6'-dione by spectroscopic analyses, including fast atom bombardment collision-induced dissociation-mass spectrometry/mass spectrometry (FAB CID-MS/MS) and was designated capsanthone 3,6-epoxide. Capsanthone 3,6-epoxide is assumed to be an oxidative metabolite of capsanthin 3,6-epoxide in paprika.

  3. Epoxidation of Geraniol: An Advanced Organic Experiment that Illustrates Asymmetric Synthesis

    NASA Astrophysics Data System (ADS)

    Bradley, Lynn M.; Springer, Joseph W.; Delate, Gregory M.; Goodman, Andrew

    1997-11-01

    The Sharpless epoxidation reaction is considered one of the most powerful advances in asymmetric organic synthesis (1). It is a classic example of the use of an asymmetric catalyst to provide an enantiomerically enriched mixture of epoxy alcohols. The procedure typically uses titanium(IV) tetraisopropoxide (Ti(OiPr)4) as a catalyst, a peroxide, and dialkyl tartrates to induce asymmetry in the epoxidation reaction of allylic alcohols. The experiment described in this paper illustrates the principle of asymmetric epoxidation and enables students to determine enantiomeric product ratios using chiral shift reagents and NMR spectroscopy.

  4. Enantioselective synthesis of 2,2-disubstituted terminal epoxides via catalytic asymmetric Corey-Chaykovsky epoxidation of ketones.

    PubMed

    Sone, Toshihiko; Yamaguchi, Akitake; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2012-02-07

    Catalytic asymmetric Corey-Chaykovsky epoxidation of various ketones with dimethyloxosulfonium methylide using a heterobimetallic La-Li(3)-BINOL complex (LLB) is described. The reaction proceeded smoothly at room temperature in the presence of achiral phosphine oxide additives, and 2,2-disubstituted terminal epoxides were obtained in high enantioselectivity (97%-91% ee) and yield ( > 99%-88%) from a broad range of methyl ketones with 1-5 mol% catalyst loading. Enantioselectivity was strongly dependent on the steric hindrance, and other ketones, such as ethyl ketones and propyl ketones resulted in slightly lower enantioselectivity (88%-67% ee).

  5. One-Pot Synthesis of N-Substituted β-Amino Alcohols from Aldehydes and Isocyanides.

    PubMed

    Cioc, Răzvan C; van der Niet, Daan J H; Janssen, Elwin; Ruijter, Eelco; Orru, Romano V A

    2015-05-18

    A practical two-stage one-pot synthesis of N-substituted β-amino alcohols using aldehydes and isocyanides as starting materials has been developed. This method features mild reaction conditions, broad scope, and general tolerance of functional groups. Based on a less common central carbon-carbon bond disconnection, this protocol complements traditional approaches that involve amines and various carbon electrophiles (epoxides, α-halo ketones, β-halohydrins). Medicinally relevant products can be prepared in a concise and efficient way from simple building blocks, as demonstrated in the synthesis of the antiasthma drug salbutamol. Upgrading the synthesis to an enantioselective variant is also feasible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reactor liquid at the beginning of the time period, weight percent. k = Reaction rate constant, 1/hr. t = Time, hours. Note: This equation assumes a first order reaction with respect to epoxide concentration... measuring the concentration of the unreacted epoxide, or by using process knowledge, reaction kinetics, and...

  7. Patulin biosynthesis: Epoxidation of toluquinol and gentisyl alcohol by particulate preparations from Penicillium patulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priest, J.W.; Light, R.J.

    1989-11-14

    A crude extract that catalyzes the epoxidation of toluquinol and gentisyl alcohol was isolated from cultures of Penicillium patulum. About 60% of the activity sedimented from crude extract upon centrifugation at 105000g for 2 h, and at 30000g for 30 min after precipitation with 30% ammonium sulfate and resuspension in buffer. The quinone epoxide phyllostine, a product of gentisyl alcohol epoxidation, has previously been shown to be an intermediate in the biosynthesis of patulin and was shown to be further converted to neopatulin by the extract. The epoxide product of toluquinol, desoxyphyllostine (2-methyl-5,6-epoxy-1,4-benzoquinone), has not been reported previously from fungalmore » cultures. Its structure was confirmed by GC-mass spectrometry and proton and {sup 13}C NMR. Its CD spectrum showed the same shape and signs as that of phyllostine, indicating that it too is an enzymatic product with a similar absolute configuration. Whereas chemical epoxidation of toluquinone and gentisly quinone occurs with hydrogen peroxide, the enzymatic epoxidation utilized oxygen and the hydroquinone. The epoxidation was inhibited by 1,10-phenanthroline, EDTA, and {rho}-(chloromercuri)benzenesulfonic acid and by degassing with nitrogen, but no inhibition was observed with KCN, catalase, or CO. The apparent K{sub m}'s were similar for the two substrates with both substrates showing inhibition at 1.0 mM. The rate of desoxyphyllostine formation was more than 10 times that of phyllostine formation at equivalent substrate concentrations. Gentisaldehyde was not a substrate for the enzyme. The epoxidase was induced in late fermentor cultures of P. patulum with the same kinetics as m-hydroxybenzyl alcohol dehydrogenase, another enzyme associated with the induction of patulin biosynthesis.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Askari, Ara A.; Thomson, Scott; Edin, Matthew L.

    Highlights: • We examined epoxygenase product formation and regulation in endothelial cells. • The epoxygenase CYP2J2 is an LPS (TLR-4) inducible enzyme in endothelial cells. • The endothelial cell line EA.Hy926 synthesises epoxygenase products. • Inhibition of endothelial epoxygenases increases TNFα secretion. • Soluble epoxide hydrolase inhibitors reduce inflammation-induced TNFα and NFκB. - Abstract: The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stablemore » commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.« less

  9. The de-epoxidase and epoxidase reactions of Mantoniella squamata (Prasinophyceae) exhibit different substrate-specific reaction kinetics compared to spinach.

    PubMed

    Frommolt, R; Goss, R; Wilhelm, C

    2001-07-01

    In vivo the prasinophyceaen alga Mantoniella squamata Manton et Parke uses an incomplete violaxanthin (Vx) cycle, leading to a strong accumulation of antheraxanthin (Ax) under conditions of high light. Here, we show that this zeaxanthin (Zx)-depleted Vx/Ax cycle is caused by an extremely slow second de-epoxidation step from Ax to Zx, and a fast epoxidation from Ax back to Vx in the light. The rate constant of Ax epoxidation is 5 to 6 times higher than the rate constant of Zx formation, implying that Ax is efficiently converted back to Vx before it can be de-epoxidated to Zx. It is, however, only half the rate constant of the first de-epoxidation step from Vx to Ax, thus explaining the observed net accumulation of Ax during periods of strong illumination. When comparing the rate constant of the second de-epoxidation step in M. squamata with Zx formation in spinach (Spinacia oleracea L.) thylakoids, we find a 20-fold reduction in the reaction kinetics of the former. This extremely slow Ax de-epoxidation, which is also exhibited by the isolated Mantoniella violaxanthin de-epoxidase (VDE), is due to a reduced substrate affinity of M. squamata VDE for Ax compared with the VDE of higher plants. Mantoniella VDE, which has a similar Km value for Vx, shows a substantially increased Km for the substrate Ax in comparison with spinach VDE. Our results furthermore explain why Zx formation in Mantoniella cells can only be found at low pH values that represent the pH optimum of VDE. A pH of 5 blocks the epoxidation reaction and, consequently, leads to a slow but appreciable accumulation of Zx.

  10. Ligand binding pocket function of drosophila USP is necessary for metamorphosis

    USDA-ARS?s Scientific Manuscript database

    The widely accepted paradigm that epoxidized methyl farnesoates (“juvenile hormones,” JHs) are the principle sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis showed that methyl farnesoate, rather than methyl epoxyfarnesoate (= JH III), ...

  11. Attenuation of Cisplatin-Induced Renal Injury by Inhibition of Soluble Epoxide Hydrolase Involves Nuclear Factor κB Signaling

    PubMed Central

    Liu, Yingmei; Webb, Heather K.; Fukushima, Hisayo; Micheli, Janine; Markova, Svetlana; Olson, Jean L.

    2012-01-01

    Acute kidney injury is associated with a significant inflammatory response that has been the target of renoprotection strategies. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory cytochrome P450-derived eicosanoids that are abundantly produced in the kidney and metabolized by soluble epoxide hydrolase (sEH; Ephx2) to less active dihydroxyeicosatrienoic acids. Genetic disruption of Ephx2 and chemical inhibition of sEH were used to test whether the anti-inflammatory effects of EETs, and other lipid epoxide substrates of sEH, afford protection against cisplatin-induced nephrotoxicity. EET hydrolysis was significantly reduced in Ephx2(−/−) mice and was associated with an attenuation of cisplatin-induced increases in serum urea nitrogen and creatinine levels. Histological evidence of renal tubular damage and neutrophil infiltration was also reduced in the Ephx2(−/−) mice. Likewise, cisplatin had no effect on renal function, neutrophil infiltration, or tubular structure and integrity in mice treated with the potent sEH inhibitor 1-adamantan-1-yl-3-(1-methylsulfonyl-piperidin-4-yl-urea) (AR9273). Consistent with the ability of EETs to interfere with nuclear factor-κB (NF-κB) signaling, the observed renoprotection was associated with attenuation of renal NF-κB activity and corresponding decreases in the expression of tumor necrosis factor (TNF) α, TNF receptor (TNFR) 1, TNFR2, and intercellular adhesive molecule-1 before the detection of tubular injury. These data suggest that EETs or other fatty acid epoxides can attenuate cisplatin-induced kidney injury and sEH inhibition is a novel renoprotective strategy. PMID:22414856

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornburg, Nicholas E.; Nauert, Scott L.; Thompson, Anthony B.

    Many industrially significant selective oxidation reactions are catalyzed by supported and bulk transition metal oxides. Catalysts for the synthesis of oxygenates, and especially for epoxidation, have predominantly focused on TiO x supported on or co-condensed with SiO 2, whereas much of the rest of Groups 4 and 5 have been less studied. We have recently demonstrated through periodic trends using a uniform molecular precursor that niobium(V)-silica catalysts reveal the highest activity and selectivity for efficient utilization of H 2O 2 for epoxidation across all of Groups 4 and 5. In this work, we graft a wide range of Nb(V) precursors,more » spanning surface densities of 0.07–1.6 Nb groups nm –2 on mesoporous silica, and we characterize these materials with UV–visible spectroscopy and Nb K-edge XANES. Further, we apply in situ chemical titration with phenylphosphonic acid (PPA) in the epoxidation of cis-cyclooctene by H 2O 2 to probe the numbers and nature of the active sites across this series and in a set of related Ti-, Zr-, Hf-, and Ta-SiO2 catalysts. By this method, the fraction of kinetically relevant NbO x species ranges from ~15% to ~65%, which correlates with spectroscopic evaluation of the NbO x sites. This titration leads to a single value for the average turnover frequency, on a per active site basis rather than a per Nb atom basis, of 1.4 ± 0.52 min –1 across the 21 materials in the series. These quantitative maps of structural properties and kinetic consequences link key catalyst descriptors of supported Nb-SiO 2 to enable rational design for next-generation oxidation catalysts.« less

  13. Effect of fungal mycelia on the HPLC-UV and UV-vis spectrophotometric assessment of mycelium-bound epoxide hydrolase using glycidyl phenyl ether.

    PubMed

    Dolcet, Marta M; Torres, Mercè; Canela, Ramon

    2016-06-25

    The use of mycelia as biocatalysts has technical and economic advantages. However, there are several difficulties in obtaining accurate results in mycelium-catalysed reactions. Firstly, sample extraction, indispensable because of the presence of mycelia, can bring into the extract components with a similar structure to that of the analyte of interest; secondly, mycelia can influence the recovery of the analyte. We prepared calibration standards of 3-phenoxy-1,2-propanediol (PPD) in the pure solvent and in the presence of mycelia (spiked before or after extraction) from five fungi (Aspergillus niger, Aspergillus tubingensis, Penicillium aurantiogriseum, Penicillium sp. and Aspergillus terreus). The quantification of PPD was carried out by HPLC-UV and UV-vis spectrophotometry. The manuscript shows that the last method is as accurate as the HPLC method. However, the colorimetric method led to a higher data throughput, which allowed the study of more samples in a shorter time. Matrix effects were evaluated visually from the plotted calibration data and statistically by simultaneously comparing the intercept and slope of calibration curves performed with solvent, post-extraction spiked standards and pre-extraction spiked standards. Significant differences were found between the post- and pre-extraction spiked matrix-matched functions. Pre-extraction spiked matrix-matched functions based on A. tubingensis mycelia, selected as the reference, were validated and used to compensate for low recoveries. These validated functions were successfully applied to the quantification of PPD achieved during the hydrolysis of glycidyl phenyl ether by mycelium-bound epoxide hydrolases and equivalent hydrolysis yields were determined by HPLC-UV and UV-vis spectrophotometry. This study may serve as starting point to implement matrix effects evaluation when mycelium-bound epoxide hydrolases are studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Asymmetric Epoxidation: A Twinned Laboratory and Molecular Modeling Experiment for Upper-Level Organic Chemistry Students

    ERIC Educational Resources Information Center

    Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H.

    2015-01-01

    The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…

  15. Synthesis of water-soluble multidentate aminoalcohol β-cyclodextrin derivatives via epoxide opening.

    PubMed

    Martina, K; Caporaso, M; Tagliapietra, S; Heropoulos, G; Rosati, O; Cravotto, G

    2011-12-13

    New highly soluble β-aminoalcohol β-cyclodextrin (β-CD) derivatives have been synthesized via nucleophilic epoxide opening reactions with mono-6-amino mono-6-deoxy-permethyl-β-CD and mono-6-amino mono-6-deoxy-β-CD. The binding properties of the β-CD were enhanced by linking aminoalcohol subunits which caused its solubility to improve markedly. The reaction conditions were optimised using microwave irradiation giving moderate-to-good yields with a series of epoxides. A regioselective epoxide opening reaction was observed in the reaction with styrene oxide while the stereoselectivity was strictly dependent on substrate structure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Methods of producing epoxides from alkenes using a two-component catalyst system

    DOEpatents

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  17. Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Gang; Liu, Haiou

    2018-01-01

    A kind of multi-functional sites metal-organic framework (MOF) composite (MIL-101-IMBr) was successfully prepared by post-synthesis modification of MIL-101 with imidazolium-based ionic liquids. The ionic liquids not only functionalize as basic sites but also provide halide anions, which serve as a nucleophile in cycloaddition reaction. The prepared functional MOF materials were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption-desorption and CO2 temperature programmed desorption. The results of fourier transform infrared spectroscopy and energy dispersive spectroscopy show that the MIL-101-IMBr composite was successfully synthesized. The N2 adsorption-desorption results clearly demonstrated that the modified composites still preserve high BET surface area and total pore volume. The composite exhibits high catalytic activity for the cycloaddition of CO2 with epoxides under mild and co-catalyst free conditions. The conversion of propylene oxide was 95.8% and the selectivity of cyclic carbonate was 97.6% under 0.8 MPa at 80 °C for 4 h. Moreover, the catalyst can be used for at least five times.

  18. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harun, Fatin; Chan, Chin Han; Winie, Tan

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 asmore » compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.« less

  19. Occurrence of neoxanthin and lutein epoxide cycle in parasitic Cuscuta species.

    PubMed

    Kruk, Jerzy; Szymańska, Renata

    2008-01-01

    In the present study, xanthophyll composition of eight parasitic Cuscuta species under different light conditions was investigated. Neoxanthin was not detected in four of the eight species examined, while in others it occurred at the level of several percent of total xanthophylls. In C. gronovii and C. lupuliformis it was additionally found that the neoxanthin content was considerably stimulated by strong light. In dark-adapted plants, lutein epoxide level amounted to 10-22% of total xanthophylls in only three species, the highest being for C. lupuliformis, while in others it was below 3%, indicating that the lutein epoxide cycle is limited to only certain Cuscuta species. The obtained data also indicate that the presence of the lutein epoxide cycle and of neoxanthin is independent and variable among the Cuscuta species. The xanthophyll cycle carotenoids violaxanthin, antheraxanthin and zeaxanthin were identified in all the examined species and occurred at the level found in other higher plants. The xanthophyll and lutein epoxide cycle pigments showed typical response to high light stress. The obtained results also suggest that the ability of higher plants to synthesize lutein epoxide probably does not depend on the substrate specificity of zeaxanthin epoxidase but on the availability of lutein for the enzyme.

  20. Covalent Heterogenization of a Discrete Mn(II) Bis-Phen Complex by a Metal-Template/Metal-Exchange Method: An Epoxidation Catalyst with Enhanced Reactivity

    PubMed Central

    Terry, Tracy J.; Stack, T. Daniel P.

    2009-01-01

    Considerable attention has been devoted to the immobilization of discrete epoxidation catalysts onto solid supports due to the possible benefits of site isolation such as increased catalyst stability, catalyst recycling, and product separation. A synthetic metal-template/metal-exchange method to imprint a covalently attached bis-1,10-phenanthroline coordination environment onto high-surface area, mesoporous SBA-15 silica is reported herein along with the epoxidation reactivity once reloaded with manganese. Comparisons of this imprinted material with material synthesized by random grafting of the ligand show that the template method creates more reproducible, solution-like bis-1,10-phenanthroline coordination at a variety of ligand loadings. Olefin epoxidation with peracetic acid shows the imprinted manganese catalysts have improved product selectivity for epoxides, greater substrate scope, more efficient use of oxidant, and higher reactivity than their homogeneous or grafted analogues independent of ligand loading. The randomly grafted manganese catalysts, however, show reactivity that varies with ligand loading while the homogeneous analogue degrades trisubstituted olefins and produces trans-epoxide products from cis-olefins. Efficient recycling behavior of the templated catalysts is also possible. PMID:18351763

  1. Enantioselective total synthesis of hyperforin.

    PubMed

    Sparling, Brian A; Moebius, David C; Shair, Matthew D

    2013-01-16

    A modular, 18-step total synthesis of hyperforin is described. The natural product was quickly accessed using latent symmetry elements, whereby a group-selective, Lewis acid-catalyzed epoxide-opening cascade cyclization was used to furnish the bicyclo[3.3.1]nonane core and set two key quaternary stereocenters.

  2. Epoxy Resins Toughened with Surface Modified Epoxidized Natural Rubber Fibers by One-Step Electrospinning.

    PubMed

    Kim, Joo Ran; Kim, Jung J

    2017-04-27

    Epoxidized natural rubber fibers (ERFs) are developed through one-step electrospinning and directly deposited into epoxy resins without collecting and distributing of fibers. The shape of ERFs shows rough surface due to different evaporation rate of solvent mixture consisting of chloroform and dichloromethane and the average diameter of ERFs is 6.2 µm. The increase of ERFs loading from 0 to 20 wt % into the epoxy resin increases the fracture strain significantly from 1.2% to 13% and toughness from 0.3 MPa to 1.9 MPa by a factor of 7. However, the tensile strength and Young's modulus decrease about 34% from 58 MPa to 34 MPa and from 1.4 GPa to 0.9 GPa, respectively. Due to the crosslinking reactions between oxirane groups of ERFs and amine groups in the resin, surface roughness and the high aspect ratio of ERFs, ERFs result in more effective toughening effect with the minimum loss of tensile properties in epoxy resins.

  3. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    NASA Astrophysics Data System (ADS)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  4. Epoxy Resins Toughened with Surface Modified Epoxidized Natural Rubber Fibers by One-Step Electrospinning

    PubMed Central

    Kim, Joo Ran; Kim, Jung J.

    2017-01-01

    Epoxidized natural rubber fibers (ERFs) are developed through one-step electrospinning and directly deposited into epoxy resins without collecting and distributing of fibers. The shape of ERFs shows rough surface due to different evaporation rate of solvent mixture consisting of chloroform and dichloromethane and the average diameter of ERFs is 6.2 µm. The increase of ERFs loading from 0 to 20 wt % into the epoxy resin increases the fracture strain significantly from 1.2% to 13% and toughness from 0.3 MPa to 1.9 MPa by a factor of 7. However, the tensile strength and Young’s modulus decrease about 34% from 58 MPa to 34 MPa and from 1.4 GPa to 0.9 GPa, respectively. Due to the crosslinking reactions between oxirane groups of ERFs and amine groups in the resin, surface roughness and the high aspect ratio of ERFs, ERFs result in more effective toughening effect with the minimum loss of tensile properties in epoxy resins. PMID:28772822

  5. Modulating optical properties of graphene oxide: role of prominent functional groups.

    PubMed

    Johari, Priya; Shenoy, Vivek B

    2011-09-27

    To modulate the electronic and optical properties of graphene oxide via controlled deoxidation, a proper understanding of the role of the individual functional group in determining these properties is required. We, therefore, have performed ab initio density functional theory based calculations to study the electronic and optical properties of model structures of graphene oxide with different coverages and compositions. In particular, we considered various concentrations of major functional groups like epoxides, hydroxyls, and carbonyls, which mainly consititute the graphene oxide and the reduced graphene oxide. Our calculated electron energy loss spectra (EELS) demonstrate the π plasmon peak to be less sensitive, while π + σ plasmon is found to have a significant blue shift of about 1.0-3.0 eV, when the concentration of epoxy and hydroxyl functional groups in graphene oxide vary from 25% to 75%. However, the increase in carbonyl groups in the center of the graphene sheet creates holes, which lead to the red shift of the EELS. In the case of 37.5% of oxygen-to-carbon ratio, we find the π plasmon peak to be shifted by roughly 1.0 eV as compared to that of the pristine graphene. Our results agree well with the experimental findings which suggest a blue shift in the EELS of graphene oxide and an absorption feature due to a π electron transition of the carbonyl groups at a lower energy than that of epoxy and hydroxyl groups. We also show that the increase in the width of the hole created by the carbonyl groups significantly decreases the optical gap and opens the band gap, and thus, we argue that reduced graphene oxide with mostly carbonyl groups could be a useful material for developing tunable opto-electronic nanodevices. © 2011 American Chemical Society

  6. Anti-inflammatory Effects of Omega-3 Polyunsaturated Fatty Acids and Soluble Epoxide Hydrolase Inhibitors in Angiotensin-II Dependent Hypertension

    PubMed Central

    Ulu, Arzu; Harris, Todd R; Morisseau, Christophe; Miyabe, Christina; Inoue, Hiromi; Schuster, Gertrud; Dong, Hua; Iosif, Ana-Maria; Liu, Jun-Yan; Weiss, Robert H; Chiamvimonvat, Nipavan; Imig, John D; Hammock, Bruce D

    2013-01-01

    The mechanisms underlying the anti-inflammatory and anti-hypertensive effects of long chain ω-3 polyunsaturated fatty acids (PUFAs) are still unclear. The epoxides of an ω-6 fatty acid, arachidonic acid (epoxyeicosatrienoic acids; EETs) also exhibit anti-hypertensive and anti-inflammatory effects. Thus, we hypothesized that the major ω-3 PUFAs including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may lower blood pressure and attenuate renal markers of inflammation through their epoxide metabolites. Here, we supplemented mice with an ω-3 rich diet for three weeks in a murine model of angiotensin-II dependent hypertension. Also, since EPA and DHA epoxides are metabolized by soluble epoxide hydrolase (sEH), we tested the combination of a sEH inhibitor and the ω-3 rich diet. Our results show that ω-3 rich diet in combination with the sEH inhibitor lowered Ang-II increased blood pressure, further increased renal levels of EPA and DHA epoxides, reduced renal markers of inflammation (i.e. prostaglandins and MCP-1), down-regulated an epithelial sodium channel and up-regulated Angiotensin converting enzyme-2 message (ACE-2) and significantly modulated cyclooxygenase and lipoxygenase metabolic pathways. Overall, our findings suggest that epoxides of the ω-3 PUFAs contribute to lowering SBP and attenuating inflammation in part by reduced prostaglandins and MCP-1 and by up-regulation of ACE-2 in angiotensin-II dependent hypertension. PMID:23676336

  7. The oxidation of copper catalysts during ethylene epoxidation.

    PubMed

    Greiner, M T; Jones, T E; Johnson, B E; Rocha, T C R; Wang, Z J; Armbrüster, M; Willinger, M; Knop-Gericke, A; Schlögl, R

    2015-10-14

    The oxidation of copper catalysts during ethylene epoxidation was characterized using in situ photoemission spectroscopy and electron microscopy. Gas chromatography, proton-transfer reaction mass spectrometry and electron-ionization mass spectrometry were used to characterize the catalytic properties of the oxidized copper. We find that copper corrodes during epoxidation in a 1 : 1 mixture of oxygen and ethylene. The catalyst corrosion passes through several stages, beginning with the formation of an O-terminated surface, followed by the formation of Cu2O scale and eventually a CuO scale. The oxidized catalyst exhibits measurable activity for ethylene epoxidation, but with a low selectivity of <3%. Tests on pure Cu2O and CuO powders confirm that the oxides intrinsically exhibit partial-oxidation activity. Cu2O was found to form acetaldehyde and ethylene epoxide in roughly equal amounts (1.0% and 1.2% respectively), while CuO was found to form much less ethyl aldehyde than ethylene epoxide (0.1% and 1.0%, respectively). Metallic copper catalysts were examined in extreme dilute-O2 epoxidation conditions to try and keep the catalyst from oxidizing during the reaction. It was found that in feed of 1 part O2 to 2500 parts C2H4 (PO2 = 1.2 × 10(-4) mbar) the copper surface becomes O-terminated. The O-terminated surface was found to exhibit partial-oxidation selectivity similar to that of Cu2O. With increasing O2 concentration (>8/2500) Cu2O forms and eventually covers the surface.

  8. Novel aminobenzyl and imidobenzyl benzenes

    NASA Technical Reports Server (NTRS)

    Bell, V. L.; Pratt, J. R.; Stump, B. L.

    1976-01-01

    Compounds are useful as intermediates for several classes of polymers. Amines can function as cross-linking agents for epoxide and urethane polymers, as well as intermediates for synthesis of thermally-stable addition-type polyimides. Imide derivatives can be obtained by reacting amines with certain monoanhydrides containing olefinic unsaturation.

  9. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase.

    PubMed

    Hatahet, Feras; Blazyk, Jessica L; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E; Beckwith, Jonathan; Boyd, Dana

    2015-12-08

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.

  10. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase

    PubMed Central

    Hatahet, Feras; Blazyk, Jessica L.; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E.; Beckwith, Jonathan; Boyd, Dana

    2015-01-01

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants. PMID:26598701

  11. Functionalized mesoporous silica supported copper(II) and nickel(II) catalysts for liquid phase oxidation of olefins.

    PubMed

    Nandi, Mahasweta; Roy, Partha; Uyama, Hiroshi; Bhaumik, Asim

    2011-12-14

    Highly ordered 2D-hexagonal mesoporous silica has been functionalized with 3-aminopropyltriethoxysilane (3-APTES). This is followed by its condensation with a dialdehyde, 4-methyl-2,6-diformylphenol to produce an immobilized Schiff-base ligand (I). This material is separately treated with methanolic solution of copper(II) chloride and nickel(II) chloride to obtain copper and nickel anchored mesoporous materials, designated as Cu-AMM and Ni-AMM, respectively. The materials have been characterized by Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance (DRS) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption studies and (13)C CP MAS NMR spectroscopy. The metal-grafted mesoporous materials have been used as catalysts for the efficient and selective epoxidation of alkenes, viz. cyclohexene, trans-stilbene, styrene, α-methyl styrene, cyclooctene and norbornene to their corresponding epoxides in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant under mild liquid phase conditions.

  12. Biocatalytic Synthesis of Epoxy Resins from Fatty Acids as a Versatile Route for the Formation of Polymer Thermosets with Tunable Properties.

    PubMed

    Torron, Susana; Semlitsch, Stefan; Martinelle, Mats; Johansson, Mats

    2016-12-12

    The work herein presented describes the synthesis and polymerization of series of bio-based epoxy resins prepared through lipase catalyzed transesterification. The epoxy-functional polyester resins with various architectures (linear, tri-branched, and tetra-branched) were synthesized through condensation of fatty acids derived from epoxidized soybean oil and linseed oil with three different hydroxyl cores under bulk conditions. The selectivity of the lipases toward esterification/transesterification reactions allowed the formation of macromers with up to 12 epoxides in the backbone. The high degree of functionality of the resins resulted in polymer thermosets with T g values ranging from -25 to over 100 °C prepared through cationic polymerization. The determining parameters of the synthesis and the mechanism for the formation of the species were determined through kinetic studies by 1 H NMR, SEC, and molecular modeling studies. The correlation between macromer structure and thermoset properties was studied through real-time FTIR measurements, DSC, and DMA.

  13. Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats.

    PubMed

    Iyer, Abishek; Kauter, Kathleen; Alam, Md Ashraful; Hwang, Sung Hee; Morisseau, Christophe; Hammock, Bruce D; Brown, Lindsay

    2012-01-01

    The signs of metabolic syndrome following chronic excessive macronutrient intake include body weight gain, excess visceral adipose deposition, hyperglycaemia, glucose and insulin intolerances, hypertension, dyslipidaemia, endothelial damage, cardiovascular hypertrophy, inflammation, ventricular contractile dysfunction, fibrosis, and fatty liver disease. Recent studies show increased activity of soluble epoxide hydrolase (sEH) during obesity and metabolic dysfunction. We have tested whether sEH inhibition has therapeutic potential in a rat model of diet-induced metabolic syndrome. In these high-carbohydrate, high-fat-fed rats, chronic oral treatment with trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB), a potent sEH inhibitor, alleviated the signs of metabolic syndrome in vivo including glucose, insulin, and lipid abnormalities, changes in pancreatic structure, increased systolic blood pressure, cardiovascular structural and functional abnormalities, and structural and functional changes in the liver. The present study describes the pharmacological responses to this selective sEH inhibitor in rats with the signs of diet-induced metabolic syndrome.

  14. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... epoxides, and that are using ECO as a control technique to reduce epoxide emissions in order to comply with... provisions of this section. The owner or operator that is using ECO in order to comply with the emission... used to further reduce the HAP emissions from a process vent already controlled by ECO, then the owner...

  15. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... obtaining the liquid sample, along with the test method used to determine the epoxide concentration. This... pressures, the owner or operator shall determine the time when the pressure has fallen to half its total pressure by using Equation 13: ER08MY00.008 Where: Phalf1 = Half the total pressure of the epoxide for...

  16. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    PubMed

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rational Catalyst Design of Titanium-Silica Materials Aided by Site-Specific Titration Tools

    NASA Astrophysics Data System (ADS)

    Eaton, Todd Robert

    Silica-supported titanium materials are widely used for thermocatalytic applications such as hydroxylation of alkanes and aromatics, oxidation of alcohols and ethers, ammoximation of carbonyls, and sulfoxidations, while Ti-based materials are widely studied for photocatalytic applications such as photo-oxidation of organic substrates and photo-reduction of CO 2. However, the underlying phenomena of how to synthesize, identify, and control the active structures in these materials is not well understood because of the narrow scope of previous work. Studies of titanium-based catalysts typically focus on materials where the metal is present as either highly-dispersed Ti cations or in bulk crystalline TiO2 form, neglecting the numerous and potentially useful intermediate structures. Furthermore, these works typically focus on a single synthesis technique and rely upon bulk characterization techniques to understand the materials. Here rigorous titanium-silica synthesis-structure-function relationships are established by examining several different synthetic method and utilizing characterization techniques that enable an atomic-level understanding of the materials. The materials studied span the range from isolated Ti cations to clustered TiOx domains, polymeric TiO x domains, anatase-like 2D TiO2 domains, and 3D crystalline TiO2. Tools to quantify accessible TiO x and tetrahedral Ti sites are developed, utilizing the selective titration of titanium with phenylphosphonic acid (PPA). Catalytic properties are probed with the photocatalytic oxidation of benzyl alcohol and the thermocatalytic epoxidation of cis-cyclooctene with H2O2 . PPA titration data indicate that the rate of benzyl alcohol photo-oxidation is independent of titanium coordination, while the rate of alkene epoxidation with H2O2 is proportional to the number of tetrahedral titanium sites on the catalyst. PPA titration data also enables the estimation of TiO2 particle size and reveals an important distinction between particle and crystal size, as obtained from XRD. In the course of establishing these relationships we've gained the knowledge of how to control TiO x structure, which enables the design of new and better catalysts. Understanding the synthesis-structure-function relationships allow for the design of a tandem photo/thermocatalytic reaction system for producing and consuming H2O2. By partially overcoating a TiO 2 photocatalyst with a ˜2 nm silica layer we observe a 56-fold rate improvement compared to bare-TiO2 for H2O2 synthesis from the proton-assisted reduction of O2. Addition of metal-SiO2 thermocatalysts (metal=Ti, Nb, or Ta) with sites needed for H2O2 activation creates a tandem system wherein the H2O2 produced in situ is utilized for alkene epoxidation. Compared to a thermocatalytic-only system, the tandem system accelerates epoxidation for cis-cyclooctene(11x faster), styrene(20x) and 1-octene(30x). This approach demonstrates a means for epoxidation with O2 that avoids H2O2 purification and transport, simplifies the total process, provides new opportunities for control by independent H2O2 production and consumption in the same reactor, and enhances rates relative to thermocatalytic-only epoxidation by intimately coupling H2O2 generation and consumption. Critically, establishment of titanium-silica synthesis-structure-function relationships enables the design of new catalysts and systems that are less energy- and material-intensive, leading towards more sustainable chemistry.

  18. RETENTION OF HALOCARBONS ON A HEXAFLUOROPROPYLENE EPOXIDE-MODIFIED GRAPHITIZED CARBON BLACK - IV. PROPANE- BASED COMPOUNDS

    EPA Science Inventory

    The retention characteristics of 25 propane-based bromofluorocarbon, chlorocarbon, chlorofluorocarbon, and fluorocarbon fluids have been studied as a function of temperature on a stationary phase consisting of a 5% (m/m) coating of a low-molecular-mass polymer of hexafluoropropyl...

  19. Reactive Nanoparticles Compatibilized Immiscible Polymer Blends: Synthesis of Reactive SiO2 with Long Poly(methyl methacrylate) Chains and the in Situ Formation of Janus SiO2 Nanoparticles Anchored Exclusively at the Interface.

    PubMed

    Wang, Hengti; Fu, Zhiang; Zhao, Xuewen; Li, Yongjin; Li, Jingye

    2017-04-26

    The exclusive location of compatibilizers at the interface of immiscible binary polymer blends to bridge the neighboring phases is the most important issue for fabricating desirable materials with synergistic properties. However, the positional stability of the compatibilizers at the interface remains a challenge in both scientific and technical points of view due to the intrinsic flexibility of compatibilizer molecules against aggressive processing conditions. Herein, taking the typical immiscible poly vinylidene fluoride (PVDF)/polylactic acid (PLLA) blend as an example, we demonstrate a novel approach, termed as the interfacial nanoparticle compatibilization (IPC) mechanism, to overcome the challenges by packing nanoparticles thermodynamically at the interface through melt reactive blending. Specifically, we have first synthesized nanosilica with both reactive epoxide groups and long poly(methyl methacrylate) (PMMA) tails, called reactive PMMA-graft-SiO 2 (Epoxy-MSiO 2 ), and then incorporated the Epoxy-MSiO 2 into the PVDF/PLLA (50/50, w/w) blends by melt blending. PLLA was in situ grafted onto SiO 2 by the reaction of the carboxylic acid groups with epoxide groups on the surface of SiO 2 . Therefore, the reacted SiO 2 particles were exclusively located at the interface by the formation of the Janus-faced silica hybrid nanoparticles (JSNp) with pregrafted PMMA tails entangled with PVDF molecular chains in the PVDF phase and the in situ grafted PLLA chains embedded in the PLLA phase. Such JSNp with a distinct hemisphere, functioning as compatibilizer, can not only suppress coalescence of PVDF domains by its steric repulsion but also enhance interfacial adhesion via the selective interactions with the corresponding miscible phase. The interfacial location of JSNp is very stable even under the severe shear field and annealing in the melt. This IPC mechanism paves a new possibility to use the various types of nanoparticles as both effective compatibilizers and functional fillers for immiscible polymer blends.

  20. Heterogeneous epoxide carbonylation by cooperative ion-pair catalysis in Co(CO) 4 –-incorporated Cr-MIL-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hoyoung D.; Dinca, Mircea; Roman-Leshkov, Yuriy

    Here, despite the commercial desirability of epoxide carbonylation to β-lactones, the reliance of this process on homogeneous catalysts makes its industrial application challenging. Here we report the preparation and use of a Co(CO) 4 –-incorporated Cr-MIL-101 (Co(CO) 4cCr-MIL-101, Cr-MIL-101 = Cr 3O(BDC) 3F, H2BDC = 1,4-benzenedicarboxylic acid) heterogeneous catalyst for the ring-expansion carbonylation of epoxides, whose activity, selectivity, and substrate scope are on par with those of the reported homogeneous catalysts. We ascribe the observed performance to the unique cooperativity between the postsynthetically introduced Co(CO) 4 – and the site-isolated Lewis acidic Cr(III) centers in the metal–organic framework (MOF). Themore » heterogeneous nature of Co(CO) 4cCr-MIL-101 allows the first demonstration of gas-phase continuous-flow production of β-lactones from epoxides, attesting to the potential applicability of the heterogeneous epoxide carbonylation strategy.« less

  1. Heterogeneous epoxide carbonylation by cooperative ion-pair catalysis in Co(CO) 4 –-incorporated Cr-MIL-101

    DOE PAGES

    Park, Hoyoung D.; Dinca, Mircea; Roman-Leshkov, Yuriy

    2017-03-21

    Here, despite the commercial desirability of epoxide carbonylation to β-lactones, the reliance of this process on homogeneous catalysts makes its industrial application challenging. Here we report the preparation and use of a Co(CO) 4 –-incorporated Cr-MIL-101 (Co(CO) 4cCr-MIL-101, Cr-MIL-101 = Cr 3O(BDC) 3F, H2BDC = 1,4-benzenedicarboxylic acid) heterogeneous catalyst for the ring-expansion carbonylation of epoxides, whose activity, selectivity, and substrate scope are on par with those of the reported homogeneous catalysts. We ascribe the observed performance to the unique cooperativity between the postsynthetically introduced Co(CO) 4 – and the site-isolated Lewis acidic Cr(III) centers in the metal–organic framework (MOF). Themore » heterogeneous nature of Co(CO) 4cCr-MIL-101 allows the first demonstration of gas-phase continuous-flow production of β-lactones from epoxides, attesting to the potential applicability of the heterogeneous epoxide carbonylation strategy.« less

  2. Mechanistic Basis for High Reactivity of (salen)Co–OTs in the Hydrolytic Kinetic Resolution of Terminal Epoxides

    PubMed Central

    Nielsen, Lars P. C.; Zuend, Stephan J.; Ford, David D.; Jacobsen, Eric N.

    2012-01-01

    The (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides is a bimetallic process with a rate controlled by partitioning between a nucleophilic (salen)Co–OH catalyst and a Lewis acidic (salen)Co–X catalyst. The commonly used (salen)Co–OAc and (salen)Co–Cl precatalysts undergo complete and irreversible counterion addition to epoxide during the course of the epoxide hydrolysis reaction, resulting in quantitative formation of weakly Lewis acidic (salen)Co–OH, and severely diminished reaction rates in the late stages of HKR reactions. In contrast, (salen)Co–OTs maintains high reactivity over the entire course of HKR reactions. We describe here an investigation of catalyst partitioning with different (salen)Co–X precatalysts, and demonstrate that counterion addition to epoxide is reversible in the case of the (salen)Co–OTs. This reversible counterion addition results in stable partitioning between nucleophilic and Lewis acidic catalyst species, allowing highly efficient catalysis throughout the course of the HKR reaction. PMID:22292515

  3. Mechanistic basis for high reactivity of (salen)Co-OTs in the hydrolytic kinetic resolution of terminal epoxides.

    PubMed

    Nielsen, Lars P C; Zuend, Stephan J; Ford, David D; Jacobsen, Eric N

    2012-03-02

    The (salen)Co(III)-catalyzed hydrolytic kinetic resolution (HKR) of terminal epoxides is a bimetallic process with a rate controlled by partitioning between a nucleophilic (salen)Co-OH catalyst and a Lewis acidic (salen)Co-X catalyst. The commonly used (salen)Co-OAc and (salen)Co-Cl precatalysts undergo complete and irreversible counterion addition to epoxide during the course of the epoxide hydrolysis reaction, resulting in quantitative formation of weakly Lewis acidic (salen)Co-OH and severely diminished reaction rates in the late stages of HKR reactions. In contrast, (salen)Co-OTs maintains high reactivity over the entire course of HKR reactions. We describe here an investigation of catalyst partitioning with different (salen)Co-X precatalysts and demonstrate that counterion addition to epoxide is reversible in the case of the (salen)Co-OTs. This reversible counterion addition results in stable partitioning between nucleophilic and Lewis acidic catalyst species, allowing highly efficient catalysis throughout the course of the HKR reaction.

  4. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  5. Succinic anhydrides from epoxides

    DOEpatents

    Coates, Geoffrey W.; Rowley, John M.

    2013-07-09

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  6. Succinic anhydrides from epoxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Geoffrey W.; Rowley, John M.

    2016-06-28

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  7. cis-Stilbene and (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)benzene as mechanistic probes in the Mn(III)(salen)-catalyzed epoxidation: influence of the oxygen source and the counterion on the diastereoselectivity of the competitive concerted and radical-type oxygen transfer.

    PubMed

    Adam, Waldemar; Roschmann, Konrad J; Saha-Möller, Chantu R; Seebach, Dieter

    2002-05-08

    cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.

  8. Zeaxanthin epoxidation - an in vitro approach.

    PubMed

    Kuczyńska, Paulina; Latowski, Dariusz; Niczyporuk, Sylvia; Olchawa-Pajor, Monika; Jahns, Peter; Gruszecki, Wiesław I; Strzałka, Kazimierz

    2012-01-01

    Zeaxanthin epoxidase (ZE) is an enzyme operating in the violaxanthin cycle, which is involved in photoprotective mechanisms. In this work model systems to study zeaxanthin (Zx) epoxidation were developed. Two assay systems are presented in which epoxidation of Zx was observed. In these assays two mutants of Arabidopsis thaliana which have active only one of the two xanthophyll cycle enzymes were used. The npq1 mutant possesses an active ZE and is thus able to convert Zx to violaxanthin (Vx) but the violaxanthin de-epoxidase (VDE) is inactive, so that Vx cannot be converted to Zx. The other mutant, npq2, possesses an active VDE and can convert exogenous Vx to Zx under strong light conditions but reverse reaction is not possible. The first assay containing thylakoids from npq1 and npq2 mutants of A. thaliana gave positive results and high efficiency of epoxidation reaction was observed. The amount of Zx was reduced by 25%. To optimize high efficiency of epoxidation reaction additional factors facilitating both fusion of the two types of thylakoids and incorporation of Zx to their membranes were also studied. The second kind of assay contained npq1 mutant thylakoids of A. thaliana supplemented with exogenous Zx and monogalactosyldiacylglycerol (MGDG). Experiments with different proportions of Zx and MGDG showed that their optimal ratio is 1:60. In such system, due to epoxidation, the amount of Zx was reduced by 38% of its initial level. The in vitro systems of Zx epoxidation described in this paper enable analysis some properties of the ZE without necessity of its isolation.

  9. Preparation of anti-CD4 monoclonal antibody-conjugated magnetic poly(glycidyl methacrylate) particles and their application on CD4+ lymphocyte separation.

    PubMed

    Pimpha, Nuttaporn; Chaleawlert-umpon, Saowaluk; Chruewkamlow, Nuttapol; Kasinrerk, Watchara

    2011-03-15

    Novel immunomagnetic particles have been prepared for separation of CD4(+) lymphocytes. The magnetic nanoparticles with a diameter of approximately 5-6 nm were first synthesized by co-precipitation from ferrous and ferric iron solutions and subsequently encapsulated with poly(glycidyl methacrylate) (PGMA) by precipitation polymerization. Monoclonal antibody specific to CD4 molecules expressed on CD4(+) lymphocytes was conjugated to the surface of magnetic PGMA particles through covalent bonding between epoxide functional groups on the particle surface and primary amine groups of the antibodies. The generated immunomagnetic particles have successfully separated CD4(+) lymphocytes from whole blood with over 95% purity. The results indicated that these particles can be employed for cell separation and provide a strong potential to be applied in various biomedical applications including diagnosis, and monitoring of human diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata

    PubMed Central

    2011-01-01

    Background In the violaxanthin (V) cycle, V is de-epoxidized to zeaxanthin (Z) when strong light or light combined with other stressors lead to an overexcitation of photosystems. However, plants can also suffer stress in darkness and recent reports have shown that dehydration triggers V-de-epoxidation in the absence of light. In this study, we used the highly stress-tolerant brown alga Pelvetia canaliculata as a model organism, due to its lack of lutein and its non-photochemical quenching independent of the transthylakoidal-ΔpH, to study the triggering of the V-cycle in darkness induced by abiotic stressors. Results We have shown that besides desiccation, other factors such as immersion, anoxia and high temperature also induced V-de-epoxidation in darkness. This process was reversible once the treatments had ceased (with the exception of heat, which caused lethal damage). Irrespective of the stressor applied, the resulting de-epoxidised xanthophylls correlated with a decrease in Fv/Fm, suggesting a common function in the down-regulation of photosynthetical efficiency. The implication of the redox-state of the plastoquinone-pool and of the differential activity of V-cycle enzymes on V-de-epoxidation in darkness was also examined. Current results suggest that both violaxanthin de-epoxidase (VDE) and zeaxanthin-epoxidase (ZE) have a basal constitutive activity even in darkness, being ZE inhibited under stress. This inhibition leads to Z accumulation. Conclusion This study demonstrates that V-cycle activity is triggered by several abiotic stressors even when they occur in an absolute absence of light, leading to a decrease in Fv/Fm. This finding provides new insights into an understanding of the regulation mechanism of the V-cycle and of its ecophysiological roles. PMID:22269024

  11. Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation

    NASA Astrophysics Data System (ADS)

    Lichtor, Phillip A.; Miller, Scott J.

    2012-12-01

    Selectivity in the catalytic functionalization of complex molecules is a major challenge in chemical synthesis. The problem is magnified when there are several possible stereochemical outcomes and when similar functional groups occur repeatedly within the same molecule. Selective polyene oxidation provides an archetypical example of this challenge. Historically, enzymatic catalysis has provided the only precedents. Although non-enzymatic catalysts that meet some of these challenges became known, a comprehensive solution has remained elusive. Here, we describe low molecular weight peptide-based catalysts, discovered through a combinatorial synthesis and screening protocol, that exhibit site- and enantioselective oxidation of certain positions of various isoprenols. This diversity-based approach, which exhibits features reminiscent of the directed evolution of enzymes, delivers catalysts that compare favourably to the state-of-the-art for the asymmetric oxidation of these compounds. Moreover, the approach culminated in catalysts that exhibit alternative-site selectivity in comparison to oxidation catalysts previously described.

  12. Multifunctional Mesoporous Ionic Gels and Scaffolds Derived from Polyhedral Oligomeric Silsesquioxanes.

    PubMed

    Lee, Jin Hong; Lee, Albert S; Lee, Jong-Chan; Hong, Soon Man; Hwang, Seung Sang; Koo, Chong Min

    2017-02-01

    A new methodology for fabrication of inorganic-organic hybrid ionogels and scaffolds is developed through facile cross-linking and solution extraction of a newly developed ionic polyhedral oligomeric silsesquioxane with inorganic core. Through design of various cationic tertiary amines, as well as cross-linkable functional groups on each arm of the inorganic core, high-performance ionogels are fabricated with excellent electrochemical stability and unique ion conduction behavior, giving superior lithium ion battery performance. Moreover, through solvent extraction of the liquid components, hybrid scaffolds with well-defined, interconnected mesopores are utilized as heterogeneous catalysts for the CO 2 -catalyzed cycloaddition of epoxides. Excellent catalytic performance, as well as highly efficient recyclability are observed when compared to other previous literature materials.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.A.; Cheng, C.W.; Kelley, K.P.

    Process for converting alkenes to form epoxides utilizes transition metal nitro complexes of the formula: M(RCN)/sub 2/XNO/sub 2/ wherein M is palladium or platinum, R is an alkyl or aryl group containing up to 12 carbon atoms, and X is a monoanionic, monodentate ligand such as chlorine, optionally in the presence of molecular oxygen.

  14. Direct synthesis of ESBO derivatives-¹⁸O labelled with dioxirane.

    PubMed

    La Tegola, Stefano; Annese, Cosimo; Suman, Michele; Tommasi, Immacolata; Fusco, Caterina; D'Accolti, Lucia

    2013-01-01

    This work addresses a new approach developed in our laboratory, consisting in the application of isolated dimethyldioxirane (DDO, 1a) labelled with ¹⁸O for synthesis of epoxidized glyceryl linoleate (Gly-LLL, 2). We expect that this work could contribute in improving analytical methods for the determination of epoxidized soybean oil (ESBO) in complex food matrices by adopting an ¹⁸O-labelled-epoxidized triacylglycerol as an internal standard.

  15. A Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide.

    PubMed

    Wu, Xiao; North, Michael

    2017-01-10

    A bimetallic aluminium(salphen) complex is reported as a sustainable, efficient and inexpensive catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. In the presence of this complex and tetrabutylammonium bromide, terminal and internal epoxides reacted at 50 °C and 10 bar carbon dioxide pressure to afford their corresponding cyclic carbonates in yields of 50-94 % and 30-71 % for terminal and internal cyclic carbonates, respectively. Mechanistic studies using deuterated epoxides and an analogous monometallic aluminium(salphen) chloride complex support a mechanism for catalysis by the bimetallic complex, which involves intramolecular cooperative catalysis between the two aluminium centres. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. First-principles chemical kinetic modeling of methyl trans-3-hexenoate epoxidation by HO 2

    DOE PAGES

    Cagnina, S.; Nicolle, Andre; de Bruin, T.; ...

    2017-02-16

    The design of innovative combustion processes relies on a comprehensive understanding of biodiesel oxidation kinetics. The present study aims at unraveling the reaction mechanism involved in the epoxidation of a realistic biodiesel surrogate, methyl trans-3-hexenoate, by hydroperoxy radicals using a bottom-up theoretical kinetics methodology. The obtained rate constants are in good agreement with experimental data for alkene epoxidation by HO 2. The impact of temperature and pressure on epoxidation pathways involving H-bonded and non-H-bonded conformers was assessed. As a result, the obtained rate constant was finally implemented into a state-of-the-art detailed combustion mechanism, resulting in fairly good agreement with enginemore » experiments.« less

  17. Inhibition of β-Glucocerebrosidase Activity Preserves Motor Unit Integrity in a Mouse Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Henriques, Alexandre; Huebecker, Mylene; Blasco, Hélène; Keime, Céline; Andres, Christian R; Corcia, Philippe; Priestman, David A; Platt, Frances M; Spedding, Michael; Loeffler, Jean-Philippe

    2017-07-12

    Recent metabolomic reports connect dysregulation of glycosphingolipids, particularly ceramide and glucosylceramide, to neurodegeneration and to motor unit dismantling in amyotrophic lateral sclerosis at late disease stage. We report here altered levels of gangliosides in the cerebrospinal fluid of amyotrophic lateral sclerosis patients in early disease stage. Conduritol B epoxide is an inhibitor of acid beta-glucosidase, and lowers glucosylceramide degradation. Glucosylceramide is the precursor for all of the more complex glycosphingolipids. In SOD1 G86R mice, an animal model of amyotrophic lateral sclerosis, conduritol B epoxide preserved ganglioside distribution at the neuromuscular junction, delayed disease onset, improved motor function and preserved motor neurons as well as neuromuscular junctions from degeneration. Conduritol B epoxide mitigated gene dysregulation in the spinal cord and restored the expression of genes involved in signal transduction and axonal elongation. Inhibition of acid beta-glucosidase promoted faster axonal elongation in an in vitro model of neuromuscular junctions and hastened recovery after peripheral nerve injury in wild type mice. Here, we provide evidence that glycosphingolipids play an important role in muscle innervation, which degenerates in amyotrophic lateral sclerosis from the early disease stage. This is a first proof of concept study showing that modulating the catabolism of glucosylceramide may be a therapeutic target for this devastating disease.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahl, C.; Morisseau, C; Bomberger, J

    Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its sequence violates two strictly conserved EH motifs and also is compatible with other {alpha}/{beta} hydrolase family members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have determined its structure at 1.8-{angstrom} resolution by X-ray crystallography. The catalytic triad consists of residues Asp129, His297, and Glu153, which are conserved across themore » family of EHs. At other positions, sequence deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity. Although closely related to two other classes of {alpha}/{beta} hydrolase in both sequence and structure, Cif does not exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the structural and functional consequences of the H269A mutation suggests that Cif's effect on host-cell CFTR expression requires the hydrolysis of an extended endogenous epoxide substrate.« less

  19. Removal of distal protein–water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability

    PubMed Central

    Thomaeus, Ann; Naworyta, Agata; Mowbray, Sherry L.; Widersten, Mikael

    2008-01-01

    A putative proton wire in potato soluble epoxide hydrolase 1, StEH1, was identified and investigated by means of site-directed mutagenesis, steady-state kinetic measurements, temperature inactivation studies, and X-ray crystallography. The chain of hydrogen bonds includes five water molecules coordinated through backbone carbonyl oxygens of Pro186, Leu266, His269, and the His153 imidazole. The hydroxyl of Tyr149 is also an integrated component of the chain, which leads to the hydroxyl of Tyr154. Available data suggest that Tyr154 functions as a final proton donor to the anionic alkylenzyme intermediate formed during catalysis. To investigate the role of the putative proton wire, mutants Y149F, H153F, and Y149F/H153F were constructed and purified. The structure of the Y149F mutant was solved by molecular replacement and refined to 2.0 Å resolution. Comparison with the structure of wild-type StEH1 revealed only subtle structural differences. The hydroxyl group lost as a result of the mutation was replaced by a water molecule, thus maintaining a functioning hydrogen bond network in the proton wire. All mutants showed decreased catalytic efficiencies with the R,R-enantiomer of trans-stilbene oxide, whereas with the S,S-enantiomer, k cat/K M was similar or slightly increased compared with the wild-type reactions. k cat for the Y149F mutant with either TSO enantiomer was increased; thus the lowered enzyme efficiencies were due to increases in K M. Thermal inactivation studies revealed that the mutated enzymes were more sensitive to elevated temperatures than the wild-type enzyme. Hence, structural alterations affecting the hydrogen bond chain caused increases in k cat but lowered thermostability. PMID:18515642

  20. Removal of distal protein-water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability.

    PubMed

    Thomaeus, Ann; Naworyta, Agata; Mowbray, Sherry L; Widersten, Mikael

    2008-07-01

    A putative proton wire in potato soluble epoxide hydrolase 1, StEH1, was identified and investigated by means of site-directed mutagenesis, steady-state kinetic measurements, temperature inactivation studies, and X-ray crystallography. The chain of hydrogen bonds includes five water molecules coordinated through backbone carbonyl oxygens of Pro(186), Leu(266), His(269), and the His(153) imidazole. The hydroxyl of Tyr(149) is also an integrated component of the chain, which leads to the hydroxyl of Tyr(154). Available data suggest that Tyr(154) functions as a final proton donor to the anionic alkylenzyme intermediate formed during catalysis. To investigate the role of the putative proton wire, mutants Y149F, H153F, and Y149F/H153F were constructed and purified. The structure of the Y149F mutant was solved by molecular replacement and refined to 2.0 A resolution. Comparison with the structure of wild-type StEH1 revealed only subtle structural differences. The hydroxyl group lost as a result of the mutation was replaced by a water molecule, thus maintaining a functioning hydrogen bond network in the proton wire. All mutants showed decreased catalytic efficiencies with the R,R-enantiomer of trans-stilbene oxide, whereas with the S,S-enantiomer, k (cat)/K (M) was similar or slightly increased compared with the wild-type reactions. k (cat) for the Y149F mutant with either TSO enantiomer was increased; thus the lowered enzyme efficiencies were due to increases in K (M). Thermal inactivation studies revealed that the mutated enzymes were more sensitive to elevated temperatures than the wild-type enzyme. Hence, structural alterations affecting the hydrogen bond chain caused increases in k (cat) but lowered thermostability.

  1. Hydrogen-Bonding Catalysis and Inhibition by Simple Solvents in the Stereoselective Kinetic Epoxide-Opening Spirocyclization of Glycal Epoxides to Form Spiroketals

    PubMed Central

    Wurst, Jacqueline M.; Liu, Guodong; Tan, Derek S.

    2011-01-01

    Mechanistic investigations of a MeOH-induced kinetic epoxide-opening spirocyclization of glycal epoxides have revealed dramatic, specific roles for simple solvents in hydrogen-bonding catalysis of this reaction to form spiroketal products stereoselectively with inversion of configuration at the anomeric carbon. A series of electronically-tuned C1-aryl glycal epoxides was used to study the mechanism of this reaction based on differential reaction rates and inherent preferences for SN2 versus SN1 reaction manifolds. Hammett analysis of reaction kinetics with these substrates is consistent with an SN2 or SN2-like mechanism (ρ = −1.3 vs. ρ = −5.1 for corresponding SN1 reactions of these substrates). Notably, the spirocyclization reaction is second-order dependent on MeOH and the glycal ring oxygen is required for second-order MeOH catalysis. However, acetone cosolvent is a first-order inhibitor of the reaction. A transition state consistent with the experimental data is proposed in which one equivalent of MeOH activates the epoxide electrophile via a hydrogen bond while a second equivalent of MeOH chelates the sidechain nucleophile and glycal ring oxygen. A paradoxical previous observation that decreased MeOH concentration leads to increased competing intermolecular methyl glycoside formation is resolved by the finding that this side reaction is only first-order dependent on MeOH. This study highlights the unusual abilities of simple solvents to act as hydrogen-bonding catalysts and inhibitors in epoxide-opening reactions, providing both stereoselectivity and discrimination between competing reaction manifolds. This spirocyclization reaction provides efficient, stereocontrolled access to spiroketals that are key structural motifs in natural products. PMID:21539313

  2. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  3. Hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends

    NASA Astrophysics Data System (ADS)

    Ahmad, Hazwani Syaza; Ismail, Hanafi; Rashid, Azura A.

    2017-07-01

    This recent work is to investigate the hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends. ENR 50/NBRr blends were prepared by two-roll mills with five different loading of NBRr from 5 to 35 phr. Results indicated that the hardness of ENR 50/NBRr blends increased as recycled NBR increased due to the improvement in crosslink density of the blends. Increasing NBRr content gives ENR 50/NBRr blends better resistance towards swelling. Higher degree of crosslinking will increase the swelling resistance and reduce the penetration of toluene into the blends. The presence of polar group in ENR 50 and NBRr give better hardness properties and swelling behaviour of the ENR 50/NBRr blends compared to the NR/NBRr blends.

  4. Changes in antioxidant capacity and colour associated with the formation of β-carotene epoxides and oxidative cleavage derivatives.

    PubMed

    Gurak, Poliana D; Mercadante, Adriana Z; González-Miret, M L; Heredia, Francisco J; Meléndez-Martínez, Antonio J

    2014-03-15

    In this study HPLC-DAD-MS/MS was applied for the identification of compounds derived from (all-E)-β-carotene following epoxidation and oxidative cleavage. The consequences on the CIELAB colour parameters and antioxidant capacity (AC) were also evaluated. Five apocarotenoids, three secocarotenoids, seven Z isomers and two epoxides were detected as a result of the oxidative cleavage. Four epoxides and three Z isomers were detected as a consequence of the epoxidation reaction. Some compounds were detected for the first time as a result of oxidation reactions. Both treatments led to a marked decrease in b(∗) and Cab(∗) values, indicating that these colour parameters can be used for the rapid assessment of β-carotene oxidation. The oxidative cleavage of β-carotene resulted in increased capacity to both scavenge ABTS(+) and quench singlet oxygen. These results suggest that the study of the AC of these oxidative derivatives and their possible usefulness as food ingredients deserves further attention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Rate and Selectivity Control in Thioether and Alkene Oxidation with H 2 O 2 over Phosphonate-Modified Niobium(V)-Silica Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornburg, Nicholas E.; Notestein, Justin M.

    Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions.more » Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.« less

  6. Signature Motifs Identify an Acinetobacter Cif Virulence Factor with Epoxide Hydrolase Activity*

    PubMed Central

    Bahl, Christopher D.; Hvorecny, Kelli L.; Bridges, Andrew A.; Ballok, Alicia E.; Bomberger, Jennifer M.; Cady, Kyle C.; O'Toole, George A.; Madden, Dean R.

    2014-01-01

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii (“aCif”). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog (“aCifR”) and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections. PMID:24474692

  7. Simple Epoxide Formation for the Organic Laboratory Using Oxone

    ERIC Educational Resources Information Center

    Broshears, Williams C.; Esteb, John J.; Richter, Jeremy; Wilson, Anne M.

    2004-01-01

    Epoxide chemistry is widely used in organic synthesis and regularly discussed in organic chemistry textbooks. An experiment to generate dimethyldioxirane in situ from acetone using Oxone is explained.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in themore » liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.« less

  9. Omega-3 Fatty Acids Modulate TRPV4 Function through Plasma Membrane Remodeling.

    PubMed

    Caires, Rebeca; Sierra-Valdez, Francisco J; Millet, Jonathan R M; Herwig, Joshua D; Roan, Esra; Vásquez, Valeria; Cordero-Morales, Julio F

    2017-10-03

    Dietary consumption of ω-3 polyunsaturated fatty acids (PUFAs), present in fish oils, is known to improve the vascular response, but their molecular targets remain largely unknown. Activation of the TRPV4 channel has been implicated in endothelium-dependent vasorelaxation. Here, we studied the contribution of ω-3 PUFAs to TRPV4 function by precisely manipulating the fatty acid content in Caenorhabditis elegans. By genetically depriving the worms of PUFAs, we determined that the metabolism of ω-3 fatty acids is required for TRPV4 activity. Functional, lipid metabolome, and biophysical analyses demonstrated that ω-3 PUFAs enhance TRPV4 function in human endothelial cells and support the hypothesis that lipid metabolism and membrane remodeling regulate cell reactivity. We propose a model whereby the eicosanoid's epoxide group location increases membrane fluidity and influences the endothelial cell response by increasing TRPV4 channel activity. ω-3 PUFA-like molecules might be viable antihypertensive agents for targeting TRPV4 to reduce systemic blood pressure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Epoxidized natural rubber toughened aqueous resole type liquefied EFB resin: Physical and chemical characterization

    NASA Astrophysics Data System (ADS)

    Amran, Umar Adli; Zakaria, Sarani; Chia, Chin Hua

    2013-11-01

    A preliminary study on the reaction between aqueous resole type resinified liquefied palm oil empty fruit bunches fibres (RLEFB) with epoxidized natural rubber (ENR). Liquefaction of empty fruit bunches (EFB) is carried out at different ratio of phenol to EFB (P:EFB). Resole type phenolic resin is prepared using sodium hydroxide (NaOH) as the catalyst with the ratio of liquefied EFB (LEFB) to formaldehyde (LEFB:F) of 1:1.8. 50% epoxidation of epoxidized natural rubber (ENR-50) is used to react with resole resin by mixing with ENR with aqueous resole resin. The cured resin is characterized with FT-IR and SEM. Aqueous system have been found to be unsuitable medium in the reaction between resin and ENR. This system produced a highly porous product when RLEFB/ENR resin is cured.

  11. Benzil, a potent activator of microsomal epoxide hydrolase in vitro.

    PubMed

    Seidegård, J; DePierre, J W

    1980-12-01

    Benzil was found to be a very potent activator of microsomal epoxide hydrolase activity (measured with styrene oxide as substrate) in vitro. The activating effect was uncompetitive and benzil causes approximately ninefold increases in both the apparent V and the apparent Km of the enzyme(s). The half-maximal effect on activity was obtained as a 0.3 mM concentration of benzil. The activating effect obtained with benzil was found to be very specific, since a variety of structurally related compounds had little or no effect on microsomal epoxide hydrolase activity. In order to obtain indications for the existence of more than one microsomal epoxide hydrolase the effect of benzil on this activity from rats induced with phenobarbital, 3-methylcholanthrene, 2-acetylaminofluorene, trans-stilbene oxide, and benzil was tested. The differences observed were minor.

  12. Synthesis and physicochemical properties of epoxidized Tmp trioleate by in situ method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samidin, Salma; Salimon, Jumat

    2014-09-03

    Tmp trioleate was initially synthesized via esterification of trimetilolprapane and oleic acid (90%) using 1.5% of H{sub 2}SO{sub 4} as a catalyst. The production of Tmp trioleate was observed at 98% (w/w). The iodine value of Tmp trioleate was analyzed for further reaction of epoxidation. Epoxide was important reaction as an intermediate for preparation of chemical modified lubricants from vegetable oils. Finding the best way of epoxidation process will give high quality for further modification of oil instead of reduce the cost and time for the preparation process during reaction of epoxidation. In this study, the epoxidation of unsaturation Tmpmore » trioleate with peroxyformic acid generated in-situ from hydrogen peroxide 30% in H{sub 2}O{sub 2} with formic acid was studied. 95% conversion to oxygen oxirane content (OOC) ring was obtained. The derivatization showed an improvement of the compound's oxidative stability evidenced from pressurized differential scanning calorimetry (PDSC) data which are 177°C to 200°C. Physicochemical properties showed increasing of temperature of flash point from 280°C to 300°C and viscosity index (VI) from 146 to 154. However, the pour point showed increasing temperature which was −58.81°C to −17.32°C. From the data obtained, these derivatives have shown better performance of lubricity properties. Overall, the data indicates that these performances are compatible to the commercial lubricants.« less

  13. Development of epoxide compound from kapok oil for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Anam, M. K.; Supranto; Murachman, B.; Purwono, S.

    2017-06-01

    Epoxide compound is made by reacting Kapok Oil with acetic acid and hydrogen peroxide with in situ method. The epoxidation reaction was varied at temperatures of 60 °C, 70 °C and 80 °C, while the time of reaction time was varied at 15 minutes, 30 minutes, 60 minutes and 90 minutes. The reaction rate coefficient for the epoxide was obtained as {\\boldsymbol{k}}{\\boldsymbol{=}}{{124}}{\\boldsymbol{,}}{{82}} {{\\exp }} {\\boldsymbol{\\bigg(}}\\frac{{\\boldsymbol-}{{24}}{\\boldsymbol{,}}{{14}}}{{\\boldsymbol{R}}{\\boldsymbol{T}}}{\\boldsymbol{\\bigg)}}. The addition of the epoxide compound 0.5 w/w in the formulation of SLS was able to reduce the IFT value up to 9.95 x 10-2 m N/m. The addition of co-surfactant (1-octanol) was varied between 0.1 and 0.4 of the total mass of the main formulation (SLS + epoxide + water formation). The smallest interfacial tension value is obtained on the addition of co-surfactants as much as 0.2 w/w, with the IFT value is 2.43 x 10-3 m N/m. The effectiveness of the chemicals was tested through micro displacement using artificial porous medium. The experimental results show that some chemicals developed in the laboratory can be used as EOR chemicals. The oil displacement experiments show that as much as 20 to 80 of remaining oil can be recovered by flooding it with the chemicals. The results also show that the oil recovery depends on type of chemicals and chemical concentration.

  14. Iron-catalyzed olefin epoxidation in the presence of acetic acid: insights into the nature of the metal-based oxidant.

    PubMed

    Mas-Ballesté, Rubén; Que, Lawrence

    2007-12-26

    The iron complexes [(BPMEN)Fe(OTf)2] (1) and [(TPA)Fe(OTf)2] (2) [BPMEN = N,N'-bis-(2-pyridylmethyl)-N,N'-dimethyl-1,2-ethylenediamine; TPA = tris-(2-pyridylmethyl)amine] catalyze the oxidation of olefins by H2O2 to yield epoxides and cis-diols. The addition of acetic acid inhibits olefin cis-dihydroxylation and enhances epoxidation for both 1 and 2. Reactions carried out at 0 degrees C with 0.5 mol % catalyst and a 1:1.5 olefin/H2O2 ratio in a 1:2 CH3CN/CH3COOH solvent mixture result in nearly quantitative conversions of cyclooctene to epoxide within 1 min. The nature of the active species formed in the presence of acetic acid has been probed at low temperature. For 2, in the absence of substrate, [(TPA)FeIII(OOH)(CH3COOH)]2+ and [(TPA)FeIVO(NCCH3)]2+ intermediates can be observed. However, neither is the active epoxidizing species. In fact, [(TPA)FeIVO(NCCH3)]2+ is shown to form in competition with substrate oxidation. Consequently, it is proposed that epoxidation is mediated by [(TPA)FeV(O)(OOCCH3)]2+, generated from O-O bond heterolysis of the [(TPA)FeIII(OOH)(CH3COOH)]2+ intermediate, which is promoted by the protonation of the terminal oxygen atom of the hydroperoxide by the coordinated carboxylic acid.

  15. Rapid, high performance method for the determination of vitamin K(1), menaquinone-4 and vitamin K(1) 2,3-epoxide in human serum and plasma using liquid chromatography-hybrid quadrupole linear ion trap mass spectrometry.

    PubMed

    Gentili, Alessandra; Cafolla, Arturo; Gasperi, Tecla; Bellante, Simona; Caretti, Fulvia; Curini, Roberta; Fernández, Virginia Pérez

    2014-04-18

    Unlike the other fat-soluble vitamins, vitamin K circulates in the human bloodstream at very low levels because of a low intake in the diet. Mammals have developed an efficient recycling system, known as vitamin K-epoxide cycle, which involve quinone, hydroquinone and epoxide forms of the vitamin. Phylloquinone (K(1)) is the main homologue, while menaquinone-4 (MK-4) is both a member of the vitamin K(2) family and metabolite of K(1) in extra-hepatic tissues. Notwithstanding the recent advances, many aspects of the complex vitamin K physiology still remain to be investigated. Therefore, there is a critical need to develop more reliable analytical methods for determining the vitamin K and its metabolites in biological fluids and tissues. Nevertheless, relatively low concentrations, unavailability of some authentic standards and occurrence of interfering lipids make this a challenging task. The method proposed in the present paper can directly and accurately estimate K(1), K(1) 2,3-epoxide (K(1)O), and MK-4 in human serum and plasma at concentrations in the ng/L-μg/L range, using labelled internal standards and a quadrupole linear ion trap instrument operated in multiple reaction monitoring (MRM) mode. High sensitivity was achieved by removing signal "endogenous suppressors" and making the composition of the non-aqueous mobile phase suitable to support the positive atmospheric pressure chemical ionization of the analytes. An excellent selectivity resulted from the combination of some factors: the MRM acquisition, the adoption of an identification point system, an extraction optimized to remove most of the lipids and a tandem-C18 column-system necessary to separate isobaric interferences from analytes. The method was validated according to the Food and Drug Administration (FDA) guidelines and its accuracy was assessed by analysing 9 samples from the Vitamin K External Quality Assessment Scheme (KEQAS). Its feasibility in evaluating vitamin K status in human serum was also tested by monitoring a group of six healthy subjects and a group of six patients under oral anticoagulant therapy (OAT). Warfarinised patients did not show deficiency of K1 but levels comparable with those of healthy people and an accumulation of K1O up to 3.760μg/L. MK-4 was not detected in either of the two groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Carotenoid composition in the fruits of red paprika (Capsicum annuum var. lycopersiciforme rubrum) during ripening; biosynthesis of carotenoids in red paprika.

    PubMed

    Deli, J; Molnár, P; Matus, Z; Tóth, G

    2001-03-01

    The changes in the carotenoid pigments of the Capsicum annuum var. lycopersiciforme rubrum during maturation have been investigated quantitatively by means of a HPLC technique. In all of the chromatograms, 40 peaks were detected; 34 carotenoids were identified. The total carotenoid content of the ripe fruits was about 1.3 g/100 g of dry weight, of which capsanthin constituted 37%, zeaxanthin was 8%, cucurbitaxanthin A was 7%, capsorubin constituted 3.2%, and beta-carotene accounted for 9%. The remainder was composed of capsanthin 5,6-epoxide, capsanthin 3,6-epoxide, 5,6-diepikarpoxanthin, violaxanthin, antheraxanthin, beta-cryptoxanthin, and several cis isomers and furanoid oxides. The possible biosynthetic routes for the formation of minor carotenoids containing 3,5,6-trihydroxy-beta-, 3,6-epoxy-beta-, and 6-hydroxy-gamma-end groups are described.

  17. Two conformers of 10,11-dihydro-5H-dibenzo[a,d]cycloheptene spiro-linked with homobenzoquinone epoxide.

    PubMed

    Asahara, Haruyasu; Koizumi, Takuya; Mochizuki, Eiko; Oshima, Takumi

    2006-03-01

    The crystal structures of the two thermally equilibrated conformational isomers of the epoxide 1',5'-dimethylspiro[10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5,8'-4'-oxatricyclo[5.1.0.0(3,5)]octane]-2',6'-dione, C23H20O3, have been determined by X-ray diffraction. In the tricyclic dione skeleton, the oxirane and cyclopropane rings adopt an anti structure with respect to the conjunct quinone frame. The spiro-linked 10,11-dihydro-5H-dibenzo[a,d]cycloheptene ring of the major isomer has a fairly twisted boat form, folding opposite to the adjoining cyclopropane methyl substituent, whereas the seven-membered ring of the minor isomer has an almost ideal twist-boat form, inversely folding to the side of the relevant methyl group. The conformational structures of these isomers have been compared with those of the corresponding isomers of the unepoxidized homobenzoquinone.

  18. INTERACTION OF BENZO(A)PYRENE DIOL EPOXIDE WITH SVAO MINICHROMOSOMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamper, Howard B.; Yokota, Hisao A.; Bartholomew, James C.

    SV40 minichromosomes were reacted with (+)7{beta},8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide). Low levels of modification (< 5 DNA adducts/minichromosome) did not detectably alter the structure of the minichromosomes but high levels (> 200 DNA adducts/minichromosome) led to extensive fragmentation. Relative to naked SV40 DNA BaP diol epoxide induced alkylation and strand scission of minichromosomal DNA was reduced or enhanced by factors of 1.5 and 2.0, respectively. The reduction in covalent binding was attributed to the presence of histones, which competed with DNA for the hydrocarbon and reduced the probability of BaP diol epoxide intercalation by tightening the helix. The enhancement ofmore » strand scission was probably due to the catalytic effect of histones on the rate of S-elimination at apurinic sites, although an altered adduct profile or the presence of a repair endonuclease were not excluded. Staphylococcal nuclease digestion indicated that BaP dial epoxide randomly alkylated the minichromosomal DNA. This is in contrast to studies with cellular chromatin where internucleosomal DNA was preferentially modified. Differences in the minichromosomal protein complement were responsible for this altered susceptibility.« less

  19. A Polyoxovanadate-Resorcin[4]arene-Based Porous Metal-Organic Framework as an Efficient Multifunctional Catalyst for the Cycloaddition of CO2 with Epoxides and the Selective Oxidation of Sulfides.

    PubMed

    Lu, Bing-Bing; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2017-10-02

    In this work, we report a new polyoxovanadate-resorcin[4]arene-based metal-organic framework (PMOF), [Co 2 L 0.5 V 4 O 12 ]·3DMF·5H 2 O (1), assembled with a newly functionalized wheel-like resorcin[4]arene ligand (L). 1 features an elegant porous motif and represents a rare example of PMOFs composed of both a resorcin[4]arene ligand and polyoxovanadate. Remarkably, 1 shows open V sites in the channel, which makes 1 an efficient heterogeneous Lewis acid catalyst for the cycloaddition of carbon dioxide to epoxides with high conversion and selectivity. Strikingly, 1 also exhibits high catalytic activity for the heterogeneous oxidative desulfurization of sulfides. Particularly, the heterogeneous catalyst 1 can be easily separated and reused with good catalytic activity.

  20. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    NASA Astrophysics Data System (ADS)

    Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.

    2016-09-01

    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.

  1. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  2. Carbamazepine and its 10,11-epoxide metabolite in acute mania: clinical and pharmacokinetic correlates.

    PubMed

    Petit, P; Lonjon, R; Cociglio, M; Sluzewska, A; Blayac, J P; Hue, B; Alric, R; Pouget, R

    1991-01-01

    The study was designed to investigate the antimanic profile of carbamazepine as a first-line drug in affective or schizoaffective disorders, to correlate the clinical efficacy with the plasma level of carbamazepine and its 10,11-epoxide metabolite, and to test the potential value of monitoring the salivary level. It was administered alone for 3 weeks to 21 acute manic inpatients. During the first week, the dosage was rapidly increased to 800 mg/day in order to produce steady-state plasma levels of carbamazepine on Day 7. The individual dose was then adjusted to maintain the therapeutic range of 8-12 mg/l. Plasma and saliva levels of the drug and its metabolite, as well as clinical status were assessed weekly. Overall, there was 62% globally improved patients and 77% in affective disorders. The improvement of manic symptoms was significantly lower in schizoaffective than in affective disorders, whereas the dropout rate and the need for antipsychotic medication was higher in the former group. The antimanic response was significantly correlated with the plasma levels both of carbamazepine and its epoxide metabolite, with a time-lag consistent with a delayed drug effect. Drug and metabolite concentrations in saliva were close to their plasma free fraction and were strongly correlated with their plasma levels, suggesting the potential value of salivary drug monitoring.

  3. Ethylene Epoxidation with Nitrous Oxide over Fe-BTC Metal-Organic Frameworks: A DFT Study.

    PubMed

    Maihom, Thana; Choomwattana, Saowapak; Wannakao, Sippakorn; Probst, Michael; Limtrakul, Jumras

    2016-11-04

    The epoxidation of ethylene with N 2 O over the metal-organic framework Fe-BTC (BTC=1,3,5-benzentricarboxylate) is investigated by means of density functional calculations. Two reaction paths for the production of ethylene oxide or acetaldehyde are systematically considered in order to assess the efficiency of Fe-BTC for the selective formation of ethylene oxide. The reaction starts with the decomposition of N 2 O to form an active surface oxygen atom on the Fe site of Fe-BTC, which subsequently reacts with an ethylene molecule to form an ethyleneoxy intermediate. This intermediate can then be selectively transformed either by 1,2-hydride shift into the undesired product acetaldehyde or into the desired product ethylene oxide by way of ring closure of the intermediate. The production of ethylene oxide requires an activation energy of 5.1 kcal mol -1 , which is only about one-third of the activation energy of acetaldehyde formation (14.3 kcal mol -1 ). The predicted reaction rate constants for the formation of ethylene oxide in the relevant temperature range are approximately 2-4 orders of magnitude higher than those for acetaldehyde. Altogether, the results suggest that Fe-BTC is a good candidate catalyst for the epoxidation of ethylene by molecular N 2 O. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in RiceW⃞

    PubMed Central

    Zhu, Yongyou; Nomura, Takahito; Xu, Yonghan; Zhang, Yingying; Peng, Yu; Mao, Bizeng; Hanada, Atsushi; Zhou, Haicheng; Wang, Renxiao; Li, Peijin; Zhu, Xudong; Mander, Lewis N.; Kamiya, Yuji; Yamaguchi, Shinjiro; He, Zuhua

    2006-01-01

    The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found that the eui mutant accumulated exceptionally large amounts of biologically active gibberellins (GAs) in the uppermost internode. Map-based cloning revealed that the Eui gene encodes a previously uncharacterized cytochrome P450 monooxygenase, CYP714D1. Using heterologous expression in yeast, we found that EUI catalyzed 16α,17-epoxidation of non-13-hydroxylated GAs. Consistent with the tall and dwarfed phenotypes of the eui mutant and Eui-overexpressing transgenic plants, respectively, 16α,17-epoxidation reduced the biological activity of GA4 in rice, demonstrating that EUI functions as a GA-deactivating enzyme. Expression of Eui appeared tightly regulated during plant development, in agreement with the stage-specific eui phenotypes. These results indicate the existence of an unrecognized pathway for GA deactivation by EUI during the growth of wild-type internodes. The identification of Eui as a GA catabolism gene provides additional evidence that the GA metabolism pathway is a useful target for increasing the agronomic value of crops. PMID:16399803

  5. Heptachlor epoxide

    Integrated Risk Information System (IRIS)

    Heptachlor epoxide ; CASRN 1024 - 57 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  6. 21 CFR 177.1650 - Polysulfide polymer-polyepoxy resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...(2-chloroethyl) formal Bis(dichloropropyl) formal Cross-linking agent. Butyl alcohol Solvent. Carbon black (channel process) Chlorinated paraffins Cross-linking agent. Epoxidized linseed oil Epoxidized... monobutyl ether Solvent. Magnesium chloride Methyl isobutyl ketone Solvent. Naphthalene sulfonic acid...

  7. Persistence and changes in bioavailability of dieldrin, DDE and heptachlor epoxide in earthworms over 45 years

    USGS Publications Warehouse

    Beyer, W. Nelson; Gale, Robert W.

    2013-01-01

    The finding of dieldrin (88 ng/g), DDE (52 ng/g), and heptachlor epoxide (19 ng/g) in earthworms from experimental plots after a single moderate application (9 kg/ha) 45 years earlier attests to the remarkable persistence of these compounds in soil and their continued uptake by soil organisms. Half-lives (with 95 % confidence intervals) in earthworms, estimated from exponential decay equations, were as follows: dieldrin 4.9 (4.3-5.7) years, DDE 5.3 (4.7-6.1) years, and heptachlor epoxide 4.3 (3.8-4.9) years. These half-lives were not significantly different from those estimated after 20 years. Concentration factors (dry weight earthworm tissue/dry weight soil) were initially high and decreased mainly during the first 11 years after application. By the end of the study, average concentration factors were 1.5 (dieldrin), 4.0 (DDE), and 1.8 (heptachlor epoxide), respectively.

  8. RETENTION OF HALOCARBONS ON A HEXAFLUOROPROPYLENE-EPOXIDE MODIFIED GRAPHITIZED CARBON BLACK, PART 5: HEAVIER ETHANE- AND ETHENE-BASED COMPOUNDS

    EPA Science Inventory

    The paper gives results of a study of the retention characteristics of 13 heavier ethane-based and 8 ethene-based halocarbon fluids related to alternative refrigerant research as a function of temperature on a stationary phase consisting of a 5% (by mass) coating of a low molecul...

  9. Stereoselective Epoxidation of 4-Deoxypentenosides: A Polarized-πModel

    PubMed Central

    Cheng, Gang; Boulineau, Fabien P.; Liew, Siong-Tern; Shi, Qicun; Wenthold, Paul G.; Wei, Alexander

    2008-01-01

    The high facioselectivity in the epoxidation of 4-deoxypentenosides (4-DPs) by dimethyldioxirane (DMDO) correlates with a stereoelectronic bias in the 4-DPs’ ground-state conformations, as elucidated by polarized-π frontier molecular orbital (PPFMO) analysis. PMID:16986946

  10. Metabolic inactivation of five glycidyl ethers in lung and liver of humans, rats and mice in vitro.

    PubMed

    Boogaard, P J; de Kloe, K P; Bierau, J; Kuiken, G; Borkulo, P E; Watson, W P; van Sittert, N J

    2000-05-01

    1. Some glycidyl ethers (GE) have been shown to be direct mutagens in short-term in vitro tests and consequently GE are considered to be potentially mutagenic in vivo. However, GE may be metabolically inactivated in the body by two different enzymatic routes: conjugation of the epoxide moiety with the endogenous tripeptide glutathione (GSH) catalysed by glutathione S-transferase (GST) or hydrolysis of the epoxide moiety catalysed by epoxide hydrolase (EH). 2. The metabolic inactivation of five different GE, the diglycidyl ethers of bisphenol A (BADGE), 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl (Epikote YX4000) and 1,6-hexanediol (HDDGE) and the GE of 1-dodecanol (C12GE) and o-cresol (o-CGE), has been studied in subcellular fractions of human, C3H mouse and F344 rat liver and lung. 3. All GE were chemically very stable and resistant to aqueous hydrolysis, but were rapidly hydrolysed by EH in cytosolic and microsomal fractions of liver and lung. The aromatic GE were very good substrates for EH. In general, microsomal EH is more efficient than cytosolic EH in hydrolysis of GE, and human microsomes are more efficient than rodent microsomes. 4. The more water-soluble GE, o-CGE and HDDGE, were good substrates for GST whereas the more lipophilic GE, YX4000 and C12GE, were poor substrates for GST. In general, rodents are more efficient in GSH conjugation of GE than humans. 5. In general, the epoxide groups of YX4000 are the most and those of HDDGE the least efficiently inactivated of the five GE under study. For the other three GE no general trend was observed: the relative efficiency of inactivation varied with organ and species. 6. The large variation in metabolism observed with five representative GE indicate that GE have variable individual properties and should not be considered as a single, homogenous class of compounds.

  11. The Molecular Structure of Epoxide Hydrolase B From And Its Complex With Urea-Based Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswal, B.K.; Morisseau, C.; Garen, G.

    2009-05-11

    Mycobacterium tuberculosis (Mtb), the intracellular pathogen that infects macrophages primarily, is the causative agent of the infectious disease tuberculosis in humans. The Mtb genome encodes at least six epoxide hydrolases (EHs A to F). EHs convert epoxides to trans-dihydrodiols and have roles in drug metabolism as well as in the processing of signaling molecules. Herein, we report the crystal structures of unbound Mtb EHB and Mtb EHB bound to a potent, low-nanomolar (IC(50) approximately 19 nM) urea-based inhibitor at 2.1 and 2.4 A resolution, respectively. The enzyme is a homodimer; each monomer adopts the classical alpha/beta hydrolase fold that composesmore » the catalytic domain; there is a cap domain that regulates access to the active site. The catalytic triad, comprising Asp104, His333 and Asp302, protrudes from the catalytic domain into the substrate binding cavity between the two domains. The urea portion of the inhibitor is bound in the catalytic cavity, mimicking, in part, the substrate binding; the two urea nitrogen atoms donate hydrogen bonds to the nucleophilic carboxylate of Asp104, and the carbonyl oxygen of the urea moiety receives hydrogen bonds from the phenolic oxygen atoms of Tyr164 and Tyr272. The phenolic oxygen groups of these two residues provide electrophilic assistance during the epoxide hydrolytic cleavage. Upon inhibitor binding, the binding-site residues undergo subtle structural rearrangement. In particular, the side chain of Ile137 exhibits a rotation of around 120 degrees about its C(alpha)-C(beta) bond in order to accommodate the inhibitor. These findings have not only shed light on the enzyme mechanism but also have opened a path for the development of potent inhibitors with good pharmacokinetic profiles against all Mtb EHs of the alpha/beta type.« less

  12. Syntheses, Structures, and Binding Constants of Cyclic Ether and Thioether Adducts of Soluble Cadmium(II) Carboxylates. Intermediates in the Homopolymerization of Oxiranes and Thiiranes and in Carbon Dioxide Coupling Processes.

    PubMed

    Darensbourg, Donald J.; Niezgoda, Sharon A.; Holtcamp, Matthew W.; Draper, Jennifer D.; Reibenspies, Joseph H.

    1997-05-21

    A synthetic methodology for the preparation of a large variety of eta(3)-HB(3-Phpz)(3)Cd(acetate) adducts is presented which involves replacement of toluene in the eta(3)-HB(3-Phpz)(3)Cd(acetate) solvate complex by the appropriate cyclic ether or cyclic thioether. In this manner, adducts of THF, dioxane, propylene oxide, cyclohexene oxide, and propylene sulfide were isolated. The solid-state structures of several of these complexes were determined by X-ray crystallography, revealing a six-coordinate complex where the acetate ligand is shown to be fairly symmetrically bonded to the cadmium center. In methylene chloride solution, the cyclic ether or thioether readily dissociates to afford the five-coordinate complex, as demonstrated by (113)Cd NMR. A quantitative assessment of the binding of these base adducts of eta(3)-HB(3-Phpz)(3)Cd(acetate) was determined by measuring the temperature dependence of the equilibrium constants for the five- and six-coordinate derivatives. The presence of one sharp (113)Cd resonance in this equilibrium mixture is indicative of rapid intermolecular exchange between the five- and six-coordinate complexes when compared to the chemical shift differences in these two species ( approximately 6600 Hz at 89 MHz). The order established for ether binding is THF > dioxane > propylene sulfide > cyclohexene oxide >/= propylene oxide, with DeltaH degrees and DeltaS degrees spanning the ranges -27.7 to 24.3 kJ/mol and -89.7 to -94.1 J/(mol K). The epoxide and thioepoxide adducts were shown to serve as models for the initiation step in the copolymerization of epoxides with carbon dioxide catalyzed by metal carboxylates. That is, the carboxylate ligand was shown to ring-open the epoxide or thioepoxide, subsequently affording polyethers or polythioethers with ester end groups. By way of contrast, in the presence of CO(2) and epoxides, this system led to cyclic carbonate production.

  13. Synthesis of hydrazone functionalized epoxy polymers for non-linear optical device applications

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra K.

    A series of twelve, thermally crosslinkable, epoxy polymers bearing covalently attached NLO-active hydrazone chromophores were synthesized. The primary focus was on the synthesis of two series of NLO-active hydroxy functionalized hydrazone chromophores. The first series, called the monohydroxy series (Hydrazones I--VI) comprised of six monohydroxy functionalized hydrazones and the second series consisted of six dihydroxy functionalized hydrazones (Hydrazones VII--XII). These hydrazone chromophores were then grafted, via the hydroxy functionality, on to a commercial epoxy polymer to obtain twelve NLO-active soluble prepolymers. The grafting reaction yields multiple secondary hydroxyl sites due to opening of the epoxide rings and these hydroxyl groups were used for further crosslinking by formulating the prepolymers with a blocked polyisocyanate commercial crosslinker. This formulation was spin coated on glass slides to form 2--2.5 m m thick uniform, defect free, transparent films. The films were corona poled, above their Tg, to align the chromophores in a noncentrosymmetric fashion and simultaneously complete the thermal cure that results in a highly crosslinked network. Finally the thermal characteristics of the second order nonlinearity of the twelve polymers are compared to illustrate the key structure-property relationships underlying the performance of the films.

  14. 40 CFR 721.2685 - Polyisobutene epoxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....2685 Section 721.2685 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2685 Polyisobutene epoxide (generic). (a) Chemical substances and significant new uses...

  15. Biosynthetic machinery of ionophore polyether lasalocid: enzymatic construction of polyether skeleton.

    PubMed

    Minami, Atsushi; Oguri, Hiroki; Watanabe, Kenji; Oikawa, Hideaki

    2013-08-01

    Diversity of natural polycyclic polyethers originated from very simple yet versatile strategy consisting of epoxidation of linear polyene followed by epoxide opening cascade. To understand two-step enzymatic transformations at molecular basis, a flavin containing monooxygenase (EPX) Lsd18 and an epoxide hydrolase (EH) Lsd19 were selected as model enzymes for extensive investigation on substrate specificity, catalytic mechanism, cofactor requirement and crystal structure. This pioneering study on prototypical lasalocid EPX and EH provides insight into detailed mechanism of ionophore polyether assembly machinery and clarified remaining issues for polyether biosynthesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris.

    PubMed

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells.

  17. Evaluation of In Vitro Anticancer Activity of Ocimum Basilicum, Alhagi Maurorum, Calendula Officinalis and Their Parasite Cuscuta Campestris

    PubMed Central

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells. PMID:25548920

  18. Interaction of water, alkyl hydroperoxide, and allylic alcohol with a single-site homogeneous Ti-Si epoxidation catalyst: A spectroscopic and computational study.

    PubMed

    Urakawa, Atsushi; Bürgi, Thomas; Skrabal, Peter; Bangerter, Felix; Baiker, Alfons

    2005-02-17

    Tetrakis(trimethylsiloxy)titanium (TTMST, Ti(OSiMe3)4) possesses an isolated Ti center and is a highly active homogeneous catalyst in epoxidation of various olefins. The structure of TTMST resembles that of the active sites in some heterogeneous Ti-Si epoxidation catalysts, especially silylated titania-silica mixed oxides. Water cleaves the Ti-O-Si bond and deactivates the catalyst. An alkyl hydroperoxide, TBHP (tert-butyl hydroperoxide), does not cleave the Ti-O-Si bond, but interacts via weak hydrogen-bonding as supported by NMR, DOSY, IR, and computational studies. ATR-IR spectroscopy combined with computational investigations shows that more than one, that is, up to four, TBHP can undergo hydrogen-bonding with TTMST, leading to the activation of the O-O bond of TBHP. The greater the number of TBHP molecules that form hydrogen bonds to TTMST, the more electrophilic the O-O bond becomes, and the more active the complex is for epoxidation. An allylic alcohol, 2-cyclohexen-1-ol, does not interact strongly with TTMST, but the interaction is prominent when it interacts with the TTMST-TBHP complex. On the basis of the experimental and theoretical findings, a hydrogen-bond-assisted epoxidation mechanism of TTMST is suggested.

  19. Can the epoxides of cinnamyl alcohol and cinnamal show new cases of contact allergy?

    PubMed

    Hagvall, Lina; Niklasson, Ida B; Luthman, Kristina; Karlberg, Ann-Therese

    2018-06-01

    Cinnamyl alcohol is considered to be a prohapten and prehapten with cinnamal as the main metabolite. However, many individuals who are allergic to cinnamyl alcohol do not react to cinnamal. Sensitizing epoxides of cinnamyl alcohol and cinnamal have been identified as metabolites and autoxidation products of cinnamyl alcohol. To investigate the clinical relevance of contact allergy to epoxycinnamyl alcohol and epoxycinnamal. Irritative effects of the epoxides were investigated in 12 dermatitis patients. Epoxycinnamyl alcohol and epoxycinnamal were patch tested in 393 and 390 consecutive patients, respectively. In parallel, cinnamyl alcohol and cinnamal were patch tested in 607 and 616 patients, respectively. Both epoxides were irritants, but no more positive reactions were detected than when testing was performed with cinnamyl alcohol and cinnamal. Late allergic reactions to epoxycinnamyl alcohol were observed. In general, patients with late reactions showed doubtful or positive reactions to cinnamal and fragrance mix I at regular patch testing. The investigated epoxides are not important haptens in contact allergy to cinnamon fragrance. The high frequency of fragrance allergy among patients included in the irritancy study showed the difficulty of suspecting fragrance allergy on the basis of history; patch testing broadly with fragrance compounds is therefore important. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Ligand-Enabled meta-C–H Activation Using a Transient Mediator

    PubMed Central

    Wang, Xiao-Chen; Gong, Wei; Fang, Li-Zhen; Zhu, Ru-Yi; Li, Suhua; Engle, Keary M.; Yu, Jin-Quan

    2015-01-01

    Achieving site selectivity in C–H functionalization reactions is a significant challenge, especially when the target C–H bond is distant from existing functional groups.1–5 Coordination of a functional group to a metal catalyst is often a key driving force and control element in many important reactions including asymmetric hydrogenation,6 epoxidation7, 8, and lithiation9. Exploitation of this effect has led to the development of a broad range of directed C–H activation reactions.10–14 However, such C–H activation methods are limited to proximal C–H bonds, which are spatially and geometrically accessible from the directing functional group. Development of meta-selective C–H functionalizations remains a significant challenge.1–5,15–17 We recently developed a U- shaped template that can be used to overcome this constraint and have shown that it can be used to selectively activate remote meta-C–H bonds.1, 2 While this approach has proven applicable for a diverse set of substrates and catalytic transformations,3–5 the need for a covalently attached complex template is a significant drawback for synthetic applications. In this manuscript, we report an alternative approach, one that employs norbornene as a transient mediator to achieve meta-selective C–H activation with a simple and common ortho-directing group. The use of a newly developed pyridine-based ligand is crucial for relaying the palladium catalyst to the meta position by norbornene following initial ortho- C–H activation. Thus, this catalytic reaction demonstrates the feasibility of switching ortho-selectivity to meta-selectivity in C–H activation of the same substrate by catalyst control. PMID:25754328

  1. Ring-opening Polymerization of Epoxidized Soybean Oil

    USDA-ARS?s Scientific Manuscript database

    Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate, (BF3•OEt2), in methylene chloride was conducted in an effort to develop useful biodegradable polymers. The resulting polymers (PESO) were characterized using Infrared (IR), differential scan...

  2. ULTRASOUND-ASSISTED ORGANIC SYNTHESIS: ALCOHOL OXIDATION AND OLEFIN EPOXIDATION

    EPA Science Inventory

    Ultrasound-assisted Organic Synthesis: Alcohol Oxidation and Olefin Epoxidation

    Unnikrishnan R Pillai, Endalkachew Sahle-Demessie , Vasudevan Namboodiri, Quiming Zhao, Juluis Enriquez
    U.S. EPA , 26 W. Martin Luther King Dr. , Cincinnati, OH 45268
    Phone: 513-569-773...

  3. Nicholas Thornburg | NREL

    Science.gov Websites

    ;Consequences of Confinement for Alkene Epoxidation with Hydrogen Peroxide on Highly Dispersed Group 4 and 5 Size in the center and has one clockwise arc arrow moving from left to right connecting 5.4 nm M-SiO2 oxide and cyclohexane diol (using one H2O2 molecule), which is shown in the upper right and labeled

  4. Terreic acid, a quinone epoxide inhibitor of Bruton’s tyrosine kinase

    PubMed Central

    Kawakami, Yuko; Hartman, Stephen E.; Kinoshita, Eiji; Suzuki, Hidefumi; Kitaura, Jiro; Yao, Libo; Inagaki, Naoki; Franco, Alessandra; Hata, Daisuke; Maeda-Yamamoto, Mari; Fukamachi, Hiromi; Nagai, Hiroichi; Kawakami, Toshiaki

    1999-01-01

    Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors. PMID:10051623

  5. Toughening mechanism in elastomer-modified epoxy resins, part 2

    NASA Technical Reports Server (NTRS)

    Yee, A. F.; Pearson, R. A.

    1984-01-01

    The role of matrix ductility on the toughenability and toughening mechanism of elastomer-modified DGEBRA epoxies was investigated. Matrix ductility was varied by using epoxide resins of varying epoxide monomer molecular weights. These epoxide resins were cured using 4,4' diaminodiphenyl sulfone (DDS) and, in some cases, modified with 10% HYCAR(r)CTBN 1300X8. Fracture roughness values for the neat epoxies were found to be almost independent on the monomer molecular weight of the epoxide resin used. However, it was found that the fracture toughness of the elastomer-modified epoxies was very dependent upon the epoxide monomer molecular weight. Tensile dilatometry indicated that the toughening mechanism, when present, is similar to the mechanisms found for the piperidine cured epoxies in Part 1. SEM and OM corroborate this finding. Dynamic mechanical studies were conducted to shed light on the toughenability of the epoxies. The time-dependent small strain behavior of these epoxies were separated into their bulk and shear components. The bulk component is related to brittle fracture, whereas the shear component is related to yielding. It can be shown that the rates of shear and bulk strain energy buildup for a given stress are uniquely determined by the values of Poisson's ratio, nu. It was found that nu increases as the monomer molecular weight of the epoxide resin used increases. This increase in nu can be associated with the low temperature beta relaxation. The effect of increasing cross-link density is to shift the beta relaxation to higher temperatures and to decrease the magnitude of the beta relaxation. Thus, increasing cross-link density decreases nu and increases the tendency towards brittle fracture.

  6. Microsomal oxidation of tribromoethylene and reactions of tribromoethylene oxide.

    PubMed

    Yoshioka, Tadao; Krauser, Joel A; Guengerich, F Peter

    2002-11-01

    Halogenated olefins are of interest because of their widespread use in industry and their potential toxicity to humans. Epoxides are among the enzymatic oxidation products and have been studied in regard to their toxicity. Most of the attention has been given to chlorinated epoxides, and we have previously studied the reactions of the mono-, di-, tri-, and tetrachloroethylene oxides. To further test some hypotheses concerning the reactivity of these compounds, we prepared tribromoethylene (TBE) oxide and compared it to trichloroethylene (TCE) oxide and other chlorinated epoxides. TBE oxide reacted with H(2)O about 3 times faster than did TCE oxide. Several hydrolysis products of TBE oxide were the same as formed from TCE oxide, i.e., glyoxylic acid, CO, and HCO(2)H. Br(2)CHCO(2)H was formed from TBE oxide; the yield was higher than for Cl(2)CHCO(2)H formed in the hydrolysis of TCE oxide. The yield of tribromoacetaldehyde was < 0.4% in aqueous buffer (pH 7.4). In rat liver microsomal incubations containing TBE and NADPH, Br(2)CHCO(2)H was a major product, and tribromoacetaldehyde was a minor product. These results are consistent with schemes previously developed for halogenated epoxides, with migration of bromine being more favorable than for chlorine. Reaction of TBE oxide with lysine yielded relatively more N-dihaloacetyllysine and less N-formyllysine than in the case of TCE oxide. This same pattern was observed in the products of the reaction of TBE oxide with the lysine residues in bovine serum albumin. We conclude that the proposed scheme of hydrolysis of halogenated epoxides follows the expected halide order and that this can be used to rationalize patterns of hydrolysis and reactivity of other halogenated epoxides.

  7. Species differences in the hydrolysis of 2-cyanoethylene oxide, the epoxide metabolite of acrylonitrile.

    PubMed

    Kedderis, G L; Batra, R

    1993-04-01

    The carcinogenic effects of acrylonitrile in rats are believed to be mediated by its DNA-reactive epoxide metabolite, 2-cyanoethylene oxide (CEO). Previous studies have shown that conjugation with glutathione is the major detoxication pathway for both acrylonitrile and CEO. This study investigated the role of epoxide hydrolase in the hydrolysis of CEO by HPLC analysis of the products from [2,3-14C]CEO. CEO is a relatively stable epoxide with a half-life of 99 min at 37 degrees C in sodium phosphate buffer (0.1 M), pH 7.3. Incubation with hepatic microsomes or cytosols from male F-344 rats or B6C3F1 mice did not enhance the rate of hydrolysis of CEO (0.69 nmol/min). Human hepatic microsomes significantly increased the rate of hydrolysis of CEO, whereas human hepatic cytosols did not. Human hepatic microsomal hydrolysis activity was heat-sensitive and potently inhibited by 1,1,1-trichloropropene oxide (IC50 of 23 microM), indicating that epoxide hydrolase was the catalyst. The hydrolysis of CEO catalyzed by hepatic microsomes from six individuals exhibited normal saturation kinetics with KM ranging from 0.6 to 3.2 mM and Vmax from 8.3 to 18.8 nmol hydrolysis products/min/mg protein. Pretreatment of rodents with phenobarbital or acetone induced hepatic microsomal hydrolysis activity toward CEO, whereas treatment with beta-naphthoflavone, dexamethasone or acrylonitrile itself was without effect. These data show that humans possess an additional detoxication pathway for CEO that is not active in rodents (but is inducible). The presence of an active epoxide hydrolase hydrolysis activity toward CEO in humans should be considered in assessments of cancer risk from acrylonitrile exposure.

  8. Evaluation of Heterogeneous Metal-Organic Framework Organocatalysts Prepared by Postsynthetic Modification

    PubMed Central

    Garibay, Sergio J.; Wang, Zhenqiang; Cohen, Seth M.

    2010-01-01

    A metal-organic framework (MOF) containing 2-amino-1,4-benzenedicarboxylate (NH2-BDC) as a building block is shown to undergo chemical modification with a set of cyclic anhydrides. The modification of the aluminum-based MOF known as MIL-53(Al)-NH2 (MIL = Matérial Institut Lavoisier) by these reagents is demonstrated by using a variety of methods, including NMR and ESI-MS, and the structural integrity of the modified MOFs has been confirmed by TGA, PXRD, and gas sorption analysis. Reaction with these cyclic anhydrides produces MOFs that display carboxylic acid functional groups within their pores. Furthermore, it is shown that maleic acid functionalized MIL-53(Al)-AMMal can act as a Brønsted acid catalyst and facilitate the methanolysis of several small epoxides. Experiments show that MIL-53(Al)-AMMal acts in a heterogeneous manner and is recyclable with consistent activity over at least three catalytic cycles. The findings presented here demonstrate several important features of covalent postsynthetic modification (PSM) on MOFs, including: 1) facile introduction of catalytic functionality using simple organic reagents (e.g. anhydrides); 2) the ability to utilize and recycle organocatalytic MOFs; 3) control of catalytic activity through choice of functional group. The findings clearly illustrate that covalent postsynthetic modification represents a powerful means to access new MOF compounds that serve as organocatalytic materials. PMID:20698561

  9. Synthesis of Vitamin K Expoxide: An Undergraduate Biochemistry Experiment.

    ERIC Educational Resources Information Center

    Thierry-Palmer, M.

    1984-01-01

    Provides procedures for synthesizing and purifying a vitamin K metabolite (2,3-epoxide) to introduce many of the techniques used in lipid biochemistry. Includes typical results obtained as well as an optional experiment designed to test the purity of the epoxide obtained. (JM)

  10. A new efficient iron catalyst for olefin epoxidation with hydrogen peroxide.

    PubMed

    Mikhalyova, Elena A; Makhlynets, Olga V; Palluccio, Taryn D; Filatov, Alexander S; Rybak-Akimova, Elena V

    2012-01-18

    A new aminopyridine ligand derived from bipiperidine (the product of full reduction of bipyridine, bipy) coordinates to iron(II) in a cis-α fashion, yielding a new selective catalyst for olefin epoxidation with H(2)O(2) under limiting substrate conditions.

  11. Enhanced metal loading in SBA-15-type catalysts facilitated by salt addition. Synthesis, characterization and catalytic epoxide alcoholysis activity of molybdenum incorporated porous silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budhi, Sridhar; Peeraphatdit, Chorthip; Pylypenko, Svitlana

    2014-02-07

    We report a novel method to increase the metal loading in SBA-15 silica matrix via direct synthesis. It was demonstrated through the synthesis and characterization of a series of molybdenum containing SBA-15 mesoporous silica catalysts prepared with and without diammonium hydrogen phosphate (DHP) as an additive. Catalysts prepared with DHP show a 2–3 times increase in incorporation of molybdenum in the silica matrix and pore size enlargement. The synthesized catalysts were characterized using nitrogen sorption, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma–optical emission spectroscopy (ICP–OES). Themore » catalytic activity of catalysts prepared with DHP for alcoholysis of epoxides was superior than the catalyst prepared without DHP. Alcoholysis of epoxides was demonstrated for a range of alcohols and epoxides under ambient conditions in as little as 30 min with high selectivity.« less

  12. Alphatic 3,4-epoxyalcohols. Metabolism by epoxide hydrase and mutagenic activity.

    PubMed

    Ortiz de Montellano, P R; Boparai, A S

    1978-12-18

    Rabbit hepatic microsomal epoxide hydrase catalyzes the rapid hydrolysis of 1,2-epoxy-4-heptanol to 1,2,4-heptanetriol. Both diastereomers of the substrate are hydrolyzed, and both product diastereomers are formed. Similarly both cis- and trans-3,4-epoxy-1-hexanol are hydrolyzed, albeit more slowly, to give 1,3,4-hexanetriol. The trans isomer gives exclusively one diastereomer (erythro) of the triol, while the cis isomer gives the other diastereomer (threo). The product expected if a primary cationic intermediate were to be formed and trapped intramolecularly during the hydrolysis of 1,2-epoxy-4-heptanol, 2-propyl-4-tetrahydrofuranol, was not observed. A comparison of the mutagenic activity in the Ames test of 1-heptane, 1-hepten-4-ol, 1,2-epoxyheptane, and 1,2-epoxy-4-heptanol revealed that only the latter is a detectable mutagen. A vicinal hydroxyl therefore does not interfere significantly with enzymatic epoxide hydrolysis, but it does enhance the bioalkylating potential of even an aliphatic epoxide.

  13. Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis.

    PubMed

    Sun, Pengfei; Leeson, Cristian; Zhi, Xiaoduo; Leng, Fenfei; Pierce, Richard H; Henry, Michael S; Rein, Kathleen S

    2016-02-01

    Epoxide hydrolases (EH, EC 3.3.2.3) have been proposed to be key enzymes in the biosynthesis of polyether (PE) ladder compounds such as the brevetoxins which are produced by the dinoflagellate Karenia brevis. These enzymes have the potential to catalyze kinetically disfavored endo-tet cyclization reactions. Data mining of K. brevis transcriptome libraries revealed two classes of epoxide hydrolases: microsomal and leukotriene A4 (LTA4) hydrolases. A microsomal EH was cloned and expressed for characterization. The enzyme is a monomeric protein with molecular weight 44kDa. Kinetic parameters were evaluated using a variety of epoxide substrates to assess substrate selectivity and enantioselectivity, as well as its potential to catalyze the critical endo-tet cyclization of epoxy alcohols. Monitoring of EH activity in high and low toxin producing cultures of K. brevis over a three week period showed consistently higher activity in the high toxin producing culture implicating the involvement of one or more EH in brevetoxin biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Enantioconvergent biohydrolysis of racemic styrene oxide to R-phenyl-1, 2-ethanediol by a newly isolated filamentous fungus Aspergillus tubingensis TF1.

    PubMed

    Duarah, Aparajita; Goswami, Amrit; Bora, Tarun C; Talukdar, Madhumita; Gogoi, Binod K

    2013-08-01

    An effort was made to isolate biocatalysts hydrolyzing epoxides from various ecological niches of northeast India, a biodiversity hot spot zone of the world and screened for epoxide hydrolase activity to convert different racemic epoxides to the corresponding 1, 2-vicinal diols. Screening of a total of 450 microorganisms isolated was carried out using NBP colorimetric assay. One of the strains TF1, after internal transcribed spacer sequence analysis, identified as Aspergillus tubingensis, showed promising enantioconvergent epoxide hydrolase activity. The hydrolysis of unsubstituted styrene oxide (1) occurred to give 97 % ee of R-(-)-1-phenylethane-1, 2-diol (6) with more than 99 % conversion within 45 min incubation. It is shown to be a cheap and practical biocatalyst for one step asymmetric synthesis of chiral R-diol. The other representative substrates (2-5), although underwent hydrolysis with more than 99 % conversion beyond 15 h, exhibited poor enantioselectivity.

  15. Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids.

    PubMed

    Dinda, Srikanta; Patwardhan, Anand V; Goud, Vaibhav V; Pradhan, Narayan C

    2008-06-01

    The kinetics of epoxidation of cottonseed oil by peroxyacetic acid generated in situ from hydrogen peroxide and glacial acetic acid in the presence of liquid inorganic acid catalysts were studied. It was possible to obtain up to 78% relative conversion to oxirane with very less oxirane cleavage by in situ technique. The rate constants for sulphuric acid catalysed epoxidation of cottonseed oil were in the range 0.39-5.4 x 10(-6)L mol(-1)s(-1) and the activation energy was found to be 11.7 kcal mol(-1). Some thermodynamic parameters such as enthalpy, entropy, and free energy of activation were determined to be of 11.0 kcal mol(-1), -51.4 cal mol(-1)K(-1) and 28.1 kcal mol(-1), respectively. The order of effectiveness of catalysts was found to be sulphuric acid>phosphoric acid>nitric acid>hydrochloric acid. Acetic acid was found to be superior to formic acid for the in situ cottonseed oil epoxidation.

  16. Concise Stereocontrolled Formal Synthesis of (±)-Quinine and Total Synthesis of (±)-7-Hydroxyquinine via Merged Morita-Baylis-Hillman-Tsuji-Trost Cyclization

    PubMed Central

    Webber, Peter; Krische, Michael J.

    2010-01-01

    Concise stereoselective syntheses of (±)-quinine and (±)-7-hydroxyquinine are achieved using a catalytic enone cycloallylation that combines the nucleophilic features of the Morita-Baylis-Hillman reaction and the electrophilic features of the Tsuji-Trost reaction. Cyclization of enone-allyl carbonate 11 delivers the product of cycloallylation 13 in 68% yield. Diastereoselective conjugate reduction of the enone 13 (>20:1 dr) followed by exchange of N-protecting groups provides the saturated N-Boc-protected methyl ketone 19, which upon aldol dehydration provides quinoline containing enone 15, possessing all carbon atoms of quinine. Exposure of ketone 15 to L-selectride enables diastereoselective carbonyl reduction (>20:1 dr) to furnish the allylic alcohol 16. Stereoselective hydroxyl-directed epoxidation using an oxovanadium catalyst modified by N-hydroxy-N-Me-pivalamide delivers epoxide 17 (17:1 dr). Cyclization of the resulting amine-epoxide 17 provides (±)-7-hydroxyquinine in 13 steps and 11% overall yield from aminoacetaldehyde diethyl acetal. Notably, highly stereoselective formation of five contiguous stereocenters is achieved through a series of 1,2-asymmetric induction events. A formal synthesis of (±)-quinine is achieved upon deoxygenation of the N-Cbz-protected allylic acetate 22 to provide olefin 23, which previously has been converted to quinine. Thus, (±)-quinine is accessible in 16 steps and 4% overall yield from commercial aminoacetaldehyde diethyl acetal, making this route the most concise approach to quinine, to date. PMID:18989927

  17. Organic reactions catalyzed by methylrhenium trioxide: Reactions of ethyl diazoacetate and organic azides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z.; Espenson, J.H.

    1996-10-16

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) catalyzes several classes of reactions of ethyl diazoacetate, EDA. It is the first high valent oxo complex for carbene transfer. Under mild conditions and in the absence of other substrates, EDA was converted to a 9:1 mixture of diethyl maleate and diethyl fumarate. In the presence of alcohols, {alpha}-alkoxy ethyl acetates were obtained in good yield. The yields dropped for the larger and more branched alcohols, the balance of material being diethyl maleate and fumarate. An electron-donating group in the para position of phenols favors the formation of {alpha}-phenoxy ethyl acetates. The usemore » of EDA to form {alpha}-thio ethyl acetates and N-substituted glycine ethyl esters, on the other hand, is hardly affected by the size or structure of the parent thiol or amine, with all of these reactions proceeding in high yield. MTO-catalyzed cycloaddition reactions occur between EDA and aromatic imines, olefins, and carbonyl compounds. Three-membered ring products are formed: aziridines, cyclopropanes, and epoxides, respectively. The reactions favor the formation of trans products, and provide a convenient route for the preparation of aziridines. Intermediate carbenoid and nitrenoid species have been proposed. In the presence of an oxygen source such as an epoxide, ethyl diazoacetate and azibenzil are converted to an oxalic acid monoethyl ester and to benzil; at the same time the epoxide was converted to an olefin. 75 refs., 1 fig., 7 tabs.« less

  18. Metabolism of halogenated ethylenes.

    PubMed Central

    Leibman, K C; Ortiz, E

    1977-01-01

    The metabolism of the chlorinated ethylenes may be explained by the formation of chloroethylene epoxides as the first intermediate products. The evidence indicates that these epoxides rearrange with migration of chlorine to form chloroacetaldehydes and chloroacetyl chlorides. Thus, monochloroacetic acid, chloral hydrate, and trichloroacetic acid have been found in reaction mixtures of 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene, respectively, with rat liver microsomal systems. Rearrangements of the chloroethylene, and glycols formed from the epoxides by hydration may also take place, but would appear, at least in the case of 1,1-dichloroethylene, to be quantitatively less important. The literature on the metabolism of chlorinated ethylenes and its relationship to their toxicity is reviewed. PMID:612463

  19. Practical synthesis of Shi's diester fructose derivative for catalytic asymmetric epoxidation of alkenes.

    PubMed

    Nieto, N; Molas, P; Benet-Buchholz, J; Vidal-Ferran, A

    2005-11-25

    [reaction: see text] A practical synthesis of Shi's diester 3 for catalytic asymmetric epoxidations has been developed. The catalyst has been prepared in multigram quantities from D-fructose in four steps with a 66% overall yield. Efficiency, cost, and selectivity aspects of the reagents involved for its preparation have been taken care of during its preparation. The workup procedures have been simplified to the bare minimum, rendering a very practical preparation method. The well-known high efficiency of this catalyst 3 in the epoxidation of alpha,beta-unsaturated carbonyl compounds has also proved to be high in unfunctionalized alkenes.

  20. Diastereoselective Synthesis of a Strawberry Flavoring Agent by Epoxidation of Ethyl trans-b-Methylcinnamate

    NASA Astrophysics Data System (ADS)

    Pageau, Gayle J.; Mabaera, Rodwell; Kosuda, Kathryn M.; Sebelius, Tamara A.; Ghaffari, Ali H.; Kearns, Kenneth A.; McIntyre, Jean P.; Beachy, Tina M.; Thamattoor, Dasan M.

    2002-01-01

    The diastereoselective synthesis of ethyl (E)-3-methyl-3-phenylglycidate, a strawberry flavoring agent, is carried out by epoxidizing ethyl trans-b-methylcinnamate with m-chloroperbenzoic acid. This epoxidation is appropriate for the introductory organic laboratory and augments the small number of such experiments currently available for undergraduate education. In the course of performing this exercise, students are exposed to many important facets of organic chemistry such as synthesis, reaction mechanism, stereochemistry, chromatography, quantitative analysis, spectroscopy, and computational chemistry. The 1H NMR spectrum of this compound is especially interesting and presents instructive examples of diastereotopic protons and shielding effects of the aromatic ring current.

  1. Oxidative Reactions with Nonaqueous Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan S. Dordick; Douglas Clark; Brian H Davison

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with lessmore » waste.« less

  2. Residential Segregation, Housing Status, and Prostate Cancer in African American and White Men

    DTIC Science & Technology

    2008-04-01

    and Leu432Val, microsomal epoxide hydrolase (mEH) Tyr113His and His139Arg, CYP3A4 A(−392)G] and conjugation [glutathione S-transferase (GST) M1 null...CYP1B1, or CYP3A4 (16) can then transform the dihydrodiol to a highly reactive diol-epoxide [benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, BPDE] that can...Although mEH (18) and CYP1B1 (19) are expressed in the prostate, CYP1A1 may only be induced under androgen dependency (20) and CYP3A4 may require

  3. Polymercaptanized soybean oil – properties and tribological characterization

    USDA-ARS?s Scientific Manuscript database

    Polymercaptanized vegetable oils are produced in industrial scale by the addition of hydrogen sulfide across double bonds or epoxides of vegetable oils, in the presence of UV-light. To date, soybean oil, epoxidized soybean oil, and castor oil has been mercaptanized using such a procedure. Depending ...

  4. Polymerization of epoxidized triglycerides with fluorosulfonic acid

    USDA-ARS?s Scientific Manuscript database

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  5. Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation

    EPA Science Inventory

    Isoprene significantly contributes to organic aerosol in the southeastern United States where biogenic hydrocarbons mix with anthropogenic emissions. In this work, the Community Multiscale Air Quality model is updated to predict isoprene aerosol from epoxides produced under both ...

  6. P-channel thin film transistors using reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Resmi, A. N.; Renuka Devi, P.; Jinesh, K. B.

    2017-04-01

    Chemically reduced graphene oxide (rGO) samples with various degrees of reduction were prepared using hydrazine hydrate as the reducing agent. Scanning tunnelling microscope imaging shows that rGO contains rows of randomly distributed patches of epoxy groups. The local density of states of the rGO samples were mapped with scanning tunnelling spectroscopy, which shows that the bandgap in rGO originates from the epoxide regions itself. The Fermi level of the epoxide regions is shifted towards the valence band, making rGO locally p-type and a range of bandgaps from 0-2.2 eV was observed in these regions. Thin film transistors were fabricated using rGO as the channel layer. The devices show excellent output characteristics with clear saturation and gate dependence. The transfer characteristics show that rGO behaves as a p-type semiconductor; the devices exhibit an on/off ratio of 104, with a low-bias hole mobility of 3.9 cm2 V-1 s-1.

  7. 3-D QSAR ANALYSIS OF INHIBITION OF MURINE SOLUBLE EPOXIDE HYDROLASE (MSEH) BY BENZOYLUREAS, ARYLUREAS, AND THEIR ANALOGUES. (R825433)

    EPA Science Inventory

    Two hundred and seventy-one compounds including benzoylureas, arylureas and related compounds were assayed using recombinant murine soluble epoxide hydrolase (MsEH) produced from a baculovirus expression system. Among all the insect growth regulators assayed, 18 benzoylphenylu...

  8. 40 CFR 63.1431 - Process vent annual epoxides emission factor plan requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., recovery, or recapture device, along with the expected percent efficiency. (iii) Annual emissions after the... section, kg/yr. R = Expected control efficiency of the combustion, recovery, or recapture device, percent....1426(c) to determine the epoxide control efficiency of the combustion, recovery, or recapture device...

  9. 40 CFR 63.1431 - Process vent annual epoxides emission factor plan requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., recovery, or recapture device, along with the expected percent efficiency. (iii) Annual emissions after the... section, kg/yr. R = Expected control efficiency of the combustion, recovery, or recapture device, percent....1426(c) to determine the epoxide control efficiency of the combustion, recovery, or recapture device...

  10. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  11. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  12. 40 CFR 63.1425 - Process vent control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1425 Process vent... operators of all affected sources using epoxides in the production of polyether polyols are subject to the... (c) of this section only if epoxides are used in the production of polyether polyols and nonepoxide...

  13. Synthesis of epoxidized cardanol and its antioxidative properties for vegetable oils and biodiesel

    USDA-ARS?s Scientific Manuscript database

    A novel antioxidant epoxidized cardanol (ECD), derived from cardanol, was synthesized and characterized by FT-IR, 1H-NMR and 13C-NMR. Oxidative stability of ECD used in vegetable oils and biodiesel was evaluated by pressurized differential scanning calorimetry (PDSC) and the Rancimat method, respect...

  14. Catalytic epoxidation activity of keplerate polyoxomolybdate nanoball toward aqueous suspension of olefins under mild aerobic conditions.

    PubMed

    Rezaeifard, Abdolreza; Haddad, Reza; Jafarpour, Maasoumeh; Hakimi, Mohammad

    2013-07-10

    Catalytic efficiency of a sphere-shaped nanosized polyoxomolybdate {Mo132} in the aerobic epoxidation of olefins in water at ambient temperature and pressure in the absence of reducing agent is exploited which resulted good-to-high yields and desired selectivity.

  15. EXPOXIDATION OF OLEFINS AND α,β-UNSATURATED KEYTONES OVER SONOCHEMICALLY PREPARED HYDROXYAPATITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An effective and environmentally friendly protocol for the epoxidation of olefins and α,β-unsaturated ketones in the presence of hydroxyapatite as catalyst using hydrogen peroxide is described. The catalyst is active and reusable for the selective epoxidation of a variety...

  16. ULTRASOUND-ASSISTED EPOXIDATION OF OLEFINS AND A,B-UNSATURATED KETONES OVER HYDROTALCITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An efficient ultrasound-assisted epoxidation of olefins and a,B-unsaturated ketones over hydrotacite catalysts in the presence of hydrogen peroxide and acetonitrile is described. This general and selective protocol is relatively fast and is applicable to a wide variety of substra...

  17. Formation of furan fatty alkyl esters from their bis-epoxide fatty esters

    USDA-ARS?s Scientific Manuscript database

    Reactions of epoxidized alkyl soyate with four different alcohols: ethanol, isopropyl alcohol, 2-ethylhexanol, and benzyl alcohol were investigated in the presence of Bronsted acid catalyst. Products not reported in prior studies of similar reactions were found. These were furan fatty acid alkyl est...

  18. Formation of furan fatty alkyl esters from their bis-epoxide fatty esters

    USDA-ARS?s Scientific Manuscript database

    Reactions of epoxidized alkyl soyate with four different alcohols: ethanol, isopropyl alcohol, 2-ethylhexanol, benzyl alcohol, in the presence of Bronsted acid catalyst, were investigated. Products that were not reported in prior studies of similar reactions were found. These were furan fatty acid a...

  19. 21 CFR 172.723 - Epoxidized soybean oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Epoxidized soybean oil. 172.723 Section 172.723 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN...

  20. 21 CFR 172.723 - Epoxidized soybean oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Epoxidized soybean oil. 172.723 Section 172.723 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN...

  1. Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers

    NASA Astrophysics Data System (ADS)

    Arifur Rahman, Md; Penco, Maurizio; Peroni, Isabella; Ramorino, Giorgio; Janszen, Gerardus; Di Landro, Luca

    2012-03-01

    The development of autonomous healing material has an enormous scientific and technological interest. In this context, this research work deals with the investigation of autonomous healing behavior of epoxidized natural rubber (ENR) and its blends with ethylene methacrylic acid ionomers. The autonomous healing behavior of ENR and its blends containing two different ionomers [poly(ethylene-co-methacrylic acid sodium salt) (EMNa) and poly(ethylene-co-methacrylic acid zinc salt) (EMZn)] has been studied by ballistic puncture tests. Interestingly, EMNa/ENR blends exhibit complete healing just after the ballistic test but EMZn/ENR blends do not show full self-repairing. The healing efficiency has been evaluated by optical microscopy and a depressurized air-flow test. The healing mechanism has been investigated by characterizing thermal and mechanical properties of the blends. The chemical structure studied by FTIR and thermal analysis show that the ion content of ionomers and functionality of ENR has a significant influence on the self-healing behavior.

  2. Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans.

    PubMed

    Deline, Marshall; Keller, Julia; Rothe, Michael; Schunck, Wolf-Hagen; Menzel, Ralph; Watts, Jennifer L

    2015-10-21

    Dietary fats are not created equally, slight differences in structure lead to crucial differences in function. Muticellular organisms use polyunsaturated fatty acid as substrates to produce potent signaling molecules crucial for many physiological processes, including reproduction. Here we explored the mechanism responsible for germ cell loss induced by dietary supplementation of dihomo-gamma-linolenic acid (DGLA, 20:3n-6) in the roundworm Caenorhabditis elegans. In this study we found that C. elegans CYP-33E2 activity produces a range of epoxy and hydroxy metabolites from dietary DGLA. Knockdown of cyp-33E2 suppressed the DGLA-induced sterility phenotype. Additionally, direct exposure of two specific DGLA-derived epoxy products, 8,9- and 14,15-epoxyeicosadienoic acids, produced germ cell abnormalities in the C. elegans gonad. We propose that sterility is mediated by the production of toxic DGLA-derived epoxides that trigger germ cell destruction. These studies are the first to establish a biological activity for a CYP-produced metabolite of DGLA.

  3. Bimetal-organic frameworks for functionality optimization: MnFe-MOF-74 as a stable and efficient catalyst for the epoxidation of alkenes with H2O2.

    PubMed

    Yuan, Kuo; Song, Tianqun; Wang, Dawei; Zou, Ye; Li, Jinfeng; Zhang, Xiaotao; Tang, Zhiyong; Hu, Wenping

    2018-01-25

    In this work, we synthesized a series of microcrystalline Mn x N 100-x -MOF-74 (N = Fe, Co and Ni) materials by a one-pot reaction. Powder X-ray diffraction (PXRD) patterns of Mn x N 100-x -MOF-74 matched well with those of single-metal MOF-74, and the scanning electron microscopy (SEM) images exhibited homogeneous nanocrystallites aggregated together. The amounts and dispersion of metals were analyzed by using inductively coupled plasma (ICP) and energy-dispersive X-ray spectroscopy (EDS), separately. Mn x N 100-x -MOF-74 could remain crystalline and efficiently catalyze the epoxidation of alkenes in DMF with NaHCO 3 and 30% H 2 O 2 . In particular, Mn 29.39 Fe 70.61 -MOF-74 can achieve almost 100% conversion for styrene with 95.0% selectivity towards styrene oxide and be reused at least five times without loss of activity.

  4. Zero VOC, Coal Tar Free Splash Zone Coating (SZC)

    DTIC Science & Technology

    2011-09-01

    marketed a millable gum polysulfide known as the first synthetic rubber commercially made in the United States. Today, there are several liquid...polysulfide polymers have the same excellent overall solvent resistance properties as the millable gum polysulfides. However, the liquid polysulfides...to the epoxide group and displaces the tertiary amine to form a covalent sulfur-carbon bond. The tertiary amine is regenerated and is then available

  5. A Review of the Environmental Degradation, Ecotoxicity, and Bioaccumulation Potential of the Low Molecular Weight Polyether Polyol Substances.

    PubMed

    Schupp, Thomas; Austin, Tom; Eadsforth, Charles V; Bossuyt, Bart; Shen, Summer M; West, Robert J

    "Polyalkylene glycol" is the name given to a broad class of synthetic organic chemicals which are produced by polymerization of one or more alkylene oxide (epoxide) monomers, such as ethylene oxide (EO) and propylene oxide (PO), with various initiator substances which possess amine or alcohol groups. A generalization of this polymerization reaction is illustrated in Fig. 1.

  6. Ovarian expressed microsomal epoxide hydrolase: Role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Poulomi, E-mail: poulomib@iastate.edu; Sen, Nivedita, E-mail: nsen@email.arizona.edu; Hoyer, Patricia B., E-mail: Hoyer@u.arizona.edu

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally,more » because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P < 0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P < 0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P < 0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. -- Highlights: ► Ovarian mEH functions to metabolize VCD to a less toxic compound. ► mEH expression is increased in a temporal pattern in response to VCD exposure. ► PI3K signaling is involved in regulation of ovarian mEH expression.« less

  7. Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flitter, Becca A.; Hvorecny, Kelli L.; Ono, Emiko

    Recurrent Pseudomonas aeruginosa infections coupled with robust, damaging neutrophilic inflammation characterize the chronic lung disease cystic fibrosis (CF). The proresolving lipid mediator, 15-epi lipoxin A4 (15-epi LXA4), plays a critical role in limiting neutrophil activation and tissue inflammation, thus promoting the return to tissue homeostasis. Here, we show that a secreted P. aeruginosa epoxide hydrolase, cystic fibrosis transmembrane conductance regulator inhibitory factor (Cif), can disrupt 15-epi LXA4 transcellular biosynthesis and function. In the airway, 15-epi LXA4 production is stimulated by the epithelial-derived eicosanoid 14,15-epoxyeicosatrienoic acid (14,15-EET). Cif sabotages the production of 15-epi LXA4 by rapidly hydrolyzing 14,15-EET into its cognatemore » diol, eliminating a proresolving signal that potently suppresses IL-8–driven neutrophil transepithelial migration in vitro. Retrospective analyses of samples from patients with CF supported the translational relevance of these preclinical findings. Elevated levels of Cif in bronchoalveolar lavage fluid were correlated with lower levels of 15-epi LXA4, increased IL-8 concentrations, and impaired lung function. Together, these findings provide structural, biochemical, and immunological evidence that the bacterial epoxide hydrolase Cif disrupts resolution pathways during bacterial lung infections. The data also suggest that Cif contributes to sustained pulmonary inflammation and associated loss of lung function in patients with CF.« less

  8. A STUDY OF THE EFFECT OF SUBSTITUENTS AND OF SOLVENT ON THE REACTIVITY OF THE NORMAL AND ABNORMAL POSITIONS OF UNSYMMETRICAL ORGANIC EPOXIDES

    DTIC Science & Technology

    determined by a kinetic study of the reactions of m-chloro- and 3,4-dimethylbenzylamine with styrene oxide in ethanol at 3 temperatures. The results...and o-methyl-styrene oxide with benzylamine in ethanol showed that the beta-methyl group reduces the rate of attack at both positions very...considerably, while the alpha-methyl group reduces the rate of normal attack slightly and that of abnormal attack considerably, and the o-methyl group has surprisingly little effect of the rate of attack at either position. (Author)

  9. The Synthesis, Structures, and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clearfield, Abraham

    2014-11-01

    In this part of the proposal we have concentrated on the surface functionalization of α-zirconium phosphate of composition Zr(O3POH)2•H2O. It is a layered compound that can be prepared as particles as small as 30 nm to single crystals in the range of cm. This compound is an ion exchanger with a capacity of 6.64 meq per gram. It finds use as a catalyst, proton conductor, sensors, biosensors, in kidney dialysis and drug delivery. By functionalizing the surface additional uses are contemplated as will be described. The layers consist of the metal, with 4+ charge, that is positioned slightly above andmore » below the mean layer plane and bridged by three of the four phosphate oxygens. The remaining POH groups point into the interlayer space creating double rows of POH groups but single arrays on the surface layers. The surface groups are reactive and we were able to bond silanes, isocyanates, epoxides, acrylates ` and phosphates to the surface POH groups. The layers are easily exfoliated or filled with ions by ion exchange or molecules by intercalation reactions. Highlights of our work include, in addition to direct functionalization of the surfaces, replacement of the protons on the surface with ions of different charge. This allows us to bond phosphates, biophosphates, phosphonic acids and alcohols to the surface. By variation of the ion charge of the ions that replace the surface protons, different surface structures are obtained. We have already shown that polymer fillers, catalysts and Janus particles may be prepared. The combination of surface functionalization with the ability to insert molecules and ions between the layers allow for a rich development of numerous useful other applications as well as nano-surface chemistry.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilfong, Walter Christopher; Kail, Brian W.; Bank, Tracy L.

    Recovering aqueous rare earth elements (REEs) from domestic water sources is one key strategy to diminish the U.S.’s foreign reliance of these precious commodities. Herein, we synthesized an array of porous, amine–epoxy monolith and particle REE recovery sorbents from different polyamine, namely tetraethylenepentamine, and diepoxide (E2), triepoxide (E3), and tetra-epoxide (E4) monomer combinations via a polymer-induced phase separation (PIPS) method. The polyamines provided -NH 2 (primary amine) plus -NH (secondary amine) REE adsorption sites, which were partially reacted with C–O–C (epoxide) groups at different amine/epoxide ratios to precipitate porous materials that exhibited a wide range of apparent porosities and REEmore » recoveries/affinities. Specifically, polymer particles (ground monoliths) were tested for their recovery of La 3+, Nd 3+, Eu 3+, Dy 3+, and Yb 3+ (Ln 3+) species from ppm-level, model REE solutions (pH ≈ 2.4, 5.5, and 6.4) and a ppb-level, simulated acid mine drainage (AMD) solution (pH ≈ 2.6). Screening the sorbents revealed that E3/TEPA-88 (88% theoretical reaction of -NH 2 plus -NH) recovered, overall, the highest percentage of Ln 3+ species of all particles from model 100 ppm- and 500 ppm-concentrated REE solutions. Water swelling (monoliths) and ex situ, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (ground monoliths/particles) data revealed the high REE uptake by the optimized particles was facilitated by effective distribution of amine and hydroxyl groups within a porous, phase-separated polymer network. In situ DRIFTS results clarified that phase separation, in part, resulted from polymerization of the TEPA-E3 (N-N-diglycidyl-4-glycidyloxyaniline) species in the porogen via C–N bond formation, especially at higher temperatures. Most importantly, the E3/TEPA-88 material cyclically recovered >93% of ppb-level Ln 3+ species from AMD solution in a recovery–strip–recovery scheme, highlighting the efficacy of these materials for practical applications.« less

  11. Carbocations from Oxidized Metabolites of Benzo[a]anthracene. A Computational Study of Their Methylated and Fluorinated Derivatives and Guanine Adducts

    PubMed Central

    Borosky, Gabriela L.; Laali, Kenneth K.

    2008-01-01

    Structure-reactivity relationships and substituent effects on carbocation stability in benzo[a] anthracene (BA) derivatives have been studied computationally at the B3LYP/6-31G* and MP2/6-31G** levels. Bay-region carbocations are formed by O-protonation of the 1,2-epoxides in barrierless processes. This process is energetically more favored as compared to carbocation generation via zwitterion formation/O-protonation, via single electron oxidation to generate a radical cation, or via benzylic hydroxylation. Relative carbocation stabilities were determined in the gas phase and in water as solvent (PCM method). Charge delocalization mode in the BA carbocation framework was deduced from NPA-derived changes in charges, and substitution by methyl or fluorine was studied at different positions selected on basis of the carbocation charge density. A bay-region methyl group produces structural distortion with consequent deviation from planarity of the aromatic system, which destabilizes the epoxide, favoring ring opening. Whereas fluorine substitution at sites bearing significant positive charge leads to carbocation stabilization by fluorine p-π back-bonding, a fluorine atom at a ring position which presented negative charge density leads to inductive destabilization. Methylated derivatives are less sensitive to substituent effects as compared to the fluorinated analogues. Although the solvent decreases the exothermicity of the epoxide ring opening reactions due to greater stabilization of the reactants, it provokes no changes in relative reactivities. Relative energies in the resulting bay-region carbocations are examined taking into account the available biological activity data on these compounds. In selected cases, quenching of bay-region carbocations was investigated by analyzing relative energies (in the gas phase and in water) and geometries of their guanine adducts formed via covalent bond formation with the exocyclic amino group and with the N-7. PMID:16841957

  12. Isolation of an oxomanganese(V) porphyrin intermediate in the reaction of a manganese(III) porphyrin complex and H2O2 in aqueous solution.

    PubMed

    Nam, Wonwoo; Kim, Inwoo; Lim, Mi Hee; Choi, Hye Jin; Lee, Je Seung; Jang, Ho G

    2002-05-03

    The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.

  13. Recovering Rare Earth Elements from Aqueous Solution with Porous Amine–Epoxy Networks

    DOE PAGES

    Wilfong, Walter Christopher; Kail, Brian W.; Bank, Tracy L.; ...

    2017-05-12

    Recovering aqueous rare earth elements (REEs) from domestic water sources is one key strategy to diminish the U.S.’s foreign reliance of these precious commodities. Herein, we synthesized an array of porous, amine–epoxy monolith and particle REE recovery sorbents from different polyamine, namely tetraethylenepentamine, and diepoxide (E2), triepoxide (E3), and tetra-epoxide (E4) monomer combinations via a polymer-induced phase separation (PIPS) method. The polyamines provided -NH 2 (primary amine) plus -NH (secondary amine) REE adsorption sites, which were partially reacted with C–O–C (epoxide) groups at different amine/epoxide ratios to precipitate porous materials that exhibited a wide range of apparent porosities and REEmore » recoveries/affinities. Specifically, polymer particles (ground monoliths) were tested for their recovery of La 3+, Nd 3+, Eu 3+, Dy 3+, and Yb 3+ (Ln 3+) species from ppm-level, model REE solutions (pH ≈ 2.4, 5.5, and 6.4) and a ppb-level, simulated acid mine drainage (AMD) solution (pH ≈ 2.6). Screening the sorbents revealed that E3/TEPA-88 (88% theoretical reaction of -NH 2 plus -NH) recovered, overall, the highest percentage of Ln 3+ species of all particles from model 100 ppm- and 500 ppm-concentrated REE solutions. Water swelling (monoliths) and ex situ, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (ground monoliths/particles) data revealed the high REE uptake by the optimized particles was facilitated by effective distribution of amine and hydroxyl groups within a porous, phase-separated polymer network. In situ DRIFTS results clarified that phase separation, in part, resulted from polymerization of the TEPA-E3 (N-N-diglycidyl-4-glycidyloxyaniline) species in the porogen via C–N bond formation, especially at higher temperatures. Most importantly, the E3/TEPA-88 material cyclically recovered >93% of ppb-level Ln 3+ species from AMD solution in a recovery–strip–recovery scheme, highlighting the efficacy of these materials for practical applications.« less

  14. Epoxidation of 1-Octene with hydrogen peroxide aqueous catalyzed by titania supported sulfonated coal

    NASA Astrophysics Data System (ADS)

    Nurhadi, Mukhamad

    2017-02-01

    Titania supported sulfonated coal was created as heterogeneous catalyst for epoxidation of 1-octene with aqueous hydrogen peroxide as oxidant at room temperature. The catalysts were prepared from coal that was sulfonated with H2SO4 (97%) and impregnated 7.2%wt with titanium(IV) isopropoxide (Ti(PrO)4). All catalysts coal (C), CS, Ti(7.2)-CS and Ti(7.2)-CSC were characterized by FTIR. The catalytic performance was tested for epoxidation of 1-octene with H2O2 aqueous as oxidant. It is found that Ti(7.2)-CS possessed the best catalytic performance and it gave the highest 1,2 epoxyoctene 322 µmol.

  15. Layered transition metal carboxylates: efficient reusable heterogeneous catalyst for epoxidation of olefins.

    PubMed

    Sen, Rupam; Bhunia, Susmita; Mal, Dasarath; Koner, Subratanath; Miyashita, Yoshitaro; Okamoto, Ken-Ichi

    2009-12-01

    Layered metal carboxylates [M(malonato)(H(2)O)(2)](n) (M = Ni(II) and Mn(II)) that have a claylike structure have been synthesized hydrothermally and characterized. The interlayer separation in these layered carboxylates is comparable to that of the intercalation distance of the naturally occurring clay materials or layered double hydroxides (LDHs). In this study, we have demonstrated that, instead of intercalating the metal complex into layers of the clay or LDH, layered transition metal carboxylates, [M(malonato)(H(2)O)(2)](n), as such can be used as a recyclable heterogeneous catalyst in olefin epoxidation reaction. Metal carboxylates [M(malonato)(H(2)O)(2)](n) exhibit excellent catalytic performance in olefin epoxidation reaction.

  16. Measurement of the degree of cure in epoxies with ultrasonic velocity

    NASA Technical Reports Server (NTRS)

    Winfree, W. P.; Parker, F. R.

    1986-01-01

    The use of ultrasonic longitudinal velocity values to measure the degree of cure (defined for an epoxide system as the concentration of epoxide/amine bonds divided by the initial epoxide concentration) in epoxy resins is investigated. The experimental setup used to measure the changes in longitudinal velocity with time is described, together with the technique used to calculate the degree of cure from the acoustic data, using the principle of additive module. Measurements were done with diglycidyl ether of bisphenol A epoxy resin cured with an amine adduct agent. Good qualitative agreement was shown between the time dependence of the acoustically measured degree of cure and the predicted rate of reaction.

  17. Thermochemical Studies of Epoxides and Related Compounds

    PubMed Central

    Morgan, Kathleen M.; Ellis, Jamie A.; Lee, Joseph; Fulton, Ashley; Wilson, Shavonda L.; Dupart, Patrick S.; Dastoori, Rosanna

    2013-01-01

    Gas phase heats of formation for the our butene oxide isomers are reported. They were obtained by measuring the condensed-phase heat of reduction to the corresponding alcohol using reaction calorimetry. Heats of vaporization were determined, and allow gas-phase heats of formation to be obtained. The experimental measurements are compared to calculations obtained using a variety of computational methods. Overall, the G3 and CBS-APNO methods agree quite well with the experimental data. The influence of alkyl substituents on epoxide stability is discussed. Comparisons to alkenes, cyclopropanes, aziridines, thiiranes and phosphiranes are also made. Isodesmic-type reactions were used to determine strain energies of the epoxides and related compounds with various substituents. PMID:23551240

  18. Bismuth(III) trifluoromethanesulfonate catalyzed ring opening reaction of mono epoxy oleochemicals to form keto and diketo derivatives

    USDA-ARS?s Scientific Manuscript database

    Using a catalytic system, methyl oleate is transformed into long chain keto and diketo derivatives via an epoxide route. Methyl 9(10)-oxooctadecanoate and methyl 9,10-dioxooctadecanoate were made by a ring opening reaction of epoxidized methyl oleate using bismuth triflate catalyst. Lower reaction t...

  19. Synthesis of an Epoxide Carbonylation Catalyst: Exploration of Contemporary Chemistry for Advanced Undergraduates

    ERIC Educational Resources Information Center

    Getzler, Yutan D. Y. L.; Schmidt, Joseph A. R.; Coates, Geoffrey W.

    2005-01-01

    A class of highly active, well-defined compounds for the catalytic carbonylation of epoxides and aziridines to beta-lactones and beta-lactams are introduced. The synthesis of one of the catalysts involves a simple imine condensation to form the ligand followed by air-sensitive metalation and salt metathesis steps.

  20. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    EPA Science Inventory

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  1. Thermal behavior of epoxidized cardanol diethyl phosphate as novel renewable plasticizer for poly(vinyl chloride)

    USDA-ARS?s Scientific Manuscript database

    A novel plasticizer, epoxidized cardanol diethyl phosphate (ECEP), based on cardanol was synthesized. Chemical structure of ECEP was characterized by fourier transform infrared (FTIR), 1H-nuclear magnetic resonance(1H NMR) and 13C-nuclear magnetic resonance(13C NMR) spectroscopy. Effects of ECEP sub...

  2. Tungsten-catalyzed asymmetric epoxidation of allylic and homoallylic alcohols with hydrogen peroxide.

    PubMed

    Wang, Chuan; Yamamoto, Hisashi

    2014-01-29

    A simple, efficient, and environmentally friendly asymmetric epoxidation of primary, secondary, tertiary allylic, and homoallylic alcohols has been accomplished. This process was promoted by a tungsten-bishydroxamic acid complex at room temperature with the use of aqueous 30% H2O2 as oxidant, yielding the products in 84-98% ee.

  3. Nanobody based immunoassay for human soluble epoxide hydrolase detection using polyHRP for signal enhancement—the rediscovery of polyHRP

    USDA-ARS?s Scientific Manuscript database

    Soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, cancer, pain and multiple cardiovascular related diseases. A variable domain of a heavy chain only antibody (termed sdAb, nanobody or VHH) possesses advantages of small size, high ...

  4. Epoxidation with Possibilities: Discovering Stereochemistry in Organic Chemistry via Coupling Constants

    ERIC Educational Resources Information Center

    Treadwell, Edward M.; Yan, Zhiqing; Xiao, Xiao

    2017-01-01

    A one-day laboratory epoxidation experiment, requiring no purification, is described, wherein the students are given an "unknown" stereoisomer of 3-hexen-1-ol, and use [superscript 1]H NMR coupling constants to determine the stereochemistry of their product. From this they work backward to determine the stereochemistry of their starting…

  5. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    PubMed

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  6. Chemo-Enzymatic Synthesis of Chiral Epoxides Ethyl and Methyl (S)-3-(Oxiran-2-yl)propanoates from Renewable Levoglucosenone: An Access to Enantiopure (S)-Dairy Lactone.

    PubMed

    Peru, Aurélien A M; Flourat, Amandine L; Gunawan, Christian; Raverty, Warwick; Jevric, Martyn; Greatrex, Ben W; Allais, Florent

    2016-07-29

    Chiral epoxides-such as ethyl and methyl (S)-3-(oxiran-2-yl)propanoates ((S)-1a/1b)-are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation) in low to moderate overall yield (20%-50%). Moreover, this procedure requires some harmful reagents such as sodium nitrite ((eco)toxic) and borane (carcinogen). Herein, starting from levoglucosenone (LGO), a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S)-3-(oxiran-2-yl)propanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S)-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO.

  7. Assignment of the relative and absolute stereochemistry of two novel epoxides using NMR and DFT-GIAO calculations

    NASA Astrophysics Data System (ADS)

    Moraes, F. C.; Alvarenga, E. S.; Demuner, A. J.; Viana, V. M.

    2018-07-01

    Considering the potential biological application of isobenzofuranones, especially as agrochemical defensives, two novel epoxides, (1aR,2R,2aR,5S,5aS,6S,6aS)-5-(hydroxymethyl)hexahydro-2,6-methanooxireno[2,3-f]isobenzofuran-3(1aH)-one (9), and (1aS,2S,2aR,5S,5aS,6R,6aR)-5-(hydroxymethyl)hexahydro-2,6-methanooxireno[2,3-f]isobenzofuran-3(1aH)-one (10), were synthesized from the readily available D-mannitol in six steps. The multiplicities of the hydrogens located at the bridge of the bicycle are distinct for epoxides 9 and 10 due to W coupling, and this feature was employed to confirm the assignment of these nuclei. Besides analyses of the 2D NMR spectra, the assignments of the nuclei at the epoxide ring were also inferred from information obtained by theoretical calculations. The calculated 1H and 13C NMR chemical shifts for eight candidate structures were compared with the experimental chemical shifts of 9 and 10 by measuring the mean absolute errors (MAE) and by the DP4 statistical analysis. The structures and relative configurations of 9, and 10 were determined via NMR spectroscopy assisted with theoretical calculations. As consequence of the enantioselective syntheses starting from a natural polyol, the absolute configurations of the epoxides 9 and 10 were also defined.

  8. An efficient hybrid, nanostructured, epoxidation catalyst: titanium silsesquioxane-polystyrene copolymer supported on SBA-15.

    PubMed

    Zhang, Lei; Abbenhuis, Hendrikus C L; Gerritsen, Gijsbert; Bhriain, Nollaig Ní; Magusin, Pieter C M M; Mezari, Brahim; Han, Wei; van Santen, Rutger A; Yang, Qihua; Li, Can

    2007-01-01

    A novel interfacial hybrid epoxidation catalyst was designed with a new immobilization method for homogeneous catalysts by coating an inorganic support with an organic polymer film containing active sites. The titanium silsesquioxane (TiPOSS) complex, which contains a single-site titanium active center, was immobilized successfully by in-situ copolymerization on a mesoporous SBA-15-supported polystyrene polymer. The resulting hybrid materials exhibit attractive textural properties (highly ordered mesostructure, large specific surface area (>380 m2 g-1) and pore volume (>or==0.46 cm3 g-1)), and high activity in the epoxidation of alkenes. In the epoxidation of cyclooctene with tert-butyl hydrogen peroxide (TBHP), the hybrid catalysts have rate constants comparable with that of their homogeneous counterpart, and can be recycled at least seven times. They can also catalyze the epoxidation of cyclooctene with aqueous H2O2 as the oxidant. In two-phase reaction media, the catalysts show much higher activity than their homogeneous counterpart due to the hydrophobic environment around the active centers. They behave as interfacial catalysts due to their multifunctionality, that is, the hydrophobicity of polystyrene and the polyhedral oligomeric silsesquioxanes (POSS), and the hydrophilicity of the silica and the mesoporous structure. Combination of the immobilization of homogeneous catalysts on two conventional supports, inorganic solid and organic polymer, is demonstrated to achieve novel heterogeneous catalytic ensembles with the merits of attractive textural properties, tunable surface properties, and optimized environments around the active sites.

  9. Influence of silencing soluble epoxide hydrolase with RNA interference on cardiomyocytes apoptosis induced by doxorubicin.

    PubMed

    Du, Guangsheng; Lv, Jiagao; He, Li; Ma, Yexin

    2011-06-01

    In order to investigate the influence of silencing soluble epoxide hydrolase (sEH) with double-stranded small interfering RNA (siRNA) on cardiomyocytes apoptosis induced by doxorubicin (DOX), two plasmids containing siRNA sequences specific to sEH were constructed and transfected into the primary cultured cardiomyocytes by using FuGENE HD transfection agents. The mRNA and protein expression levels of sEH were detected by semiquantitative RT-PCR and Western blotting respectively, and the plasmids that silenced sEH most significantly were selected, and renamed EH-R. The plasmids carrying a nonspecific siRNA coding sequence (PCN) served as the negative control. Cardiomyocytes were divided into four groups: control group, DOX group, PCN+DOX group, and EH-R+DOX group. Apoptosis of cardiomyocytes was induced by DOX at a concentration of 1 μmol/L. Apoptosis rate of cardiomyocytes was determined by flow cytometery. The protein expression levels of Bcl-2 and Bax were detected by Western blotting. The results showed that the expression of sEH was down-regulated by EH-R plasmid. The expression levels of sEH mRNA and protein in the EH-R+DOX group were significantly decreased as compared with other groups (P<0.01). As compared with the control group, the apoptosis rate of cardiomyocytes in three DOX-treated groups was obviously increased, the expression levels of Bax increased, and those of Bcl-2 decreased (P<0.01). However, the expression levels of Bax were decreased, those of Bcl-2 increased and the apoptosis rate of cardiomyocytes obviously decreased in EH-R+DOX group when compared with those in the DOX group and the PCN+DOX group (P<0.01 for each). It was concluded that the recombinant plasmids could be successfully constructed, and transfected into the primary cultured cardiomyocytes. They could ameliorate the DOX-induced cardiomyocytes apoptosis by selectively inhibiting the expression of sEH with RNAi and increasing the expression of Bcl-2.

  10. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    PubMed

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  11. Reaction Mechanism for Direct Propylene Epoxidation by Alumina-Supported Silver Aggregates. The Role of the Particle / Support Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lei; Yin, Chunrong; Mehmood, Faisal

    2013-11-21

    Sub-nanometer Ag aggregates on alumina supports have been found to be active toward direct propylene epoxidation to propylene oxide by molecular oxygen at low temperatures, with a negligible amount of carbon dioxide formation (Science 328, p. 224, 2010). In this work, we computationally and experimentally investigate the origin of the high reactivity of the sub-nanometer Ag aggregates. Computationally, we study O 2 dissociation and propylene epoxidation on unsupported Ag 19 and Ag 20 clusters, as well as alumina-supported Ag 19. The O 2 dissociation and propylene epoxidation apparent barriers at the interface between the Ag aggregate and the alumina supportmore » are calculated to be 0.2 and 0.2~0.4 eV, respectively. These barriers are somewhat lower than those on sites away from the interface. The mechanism at the interface is similar to what was previously found for the silver trimer on alumina and can account for the high activity observed for the direct oxidation of propylene on the Ag aggregates. The barriers for oxygen dissociation on these model systems both at the interface and on the surfaces are small compared to crystalline surfaces, indicating that availability of oxygen will not be a rate limiting step for the aggregates, as in the case of the crystalline surfaces. Experimentally, we investigate Ultrananocrystalline Diamond (UNCD)-supported silver aggregates under reactive conditions of propylene partial oxidation. The UNCD-supported Ag clusters are found to be not measurably active toward propylene oxidation, in contrast to the alumina supported Ag clusters. This suggests that the lack of metal-oxide interfacial sites of the Ag-UNCD catalyst, limits the epoxidation catalytic activity. This combined computational and experimental study shows the importance of the metal-oxide interface as well as the non-crystalline nature of the alumina-supported sub-nanometer Ag aggregate catalysts for propylene epoxidation.« less

  12. An integrated computational approach of molecular dynamics simulations, receptor binding studies and pharmacophore mapping analysis in search of potent inhibitors against tuberculosis.

    PubMed

    Agarwal, Shivangi; Verma, Ekta; Kumar, Vivek; Lall, Namrita; Sau, Samaresh; Iyer, Arun K; Kashaw, Sushil K

    2018-05-03

    Tuberculosis is an infectious chronic disease caused by obligate pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Although many first and second line drugs are available for its treatment, but their irrational use has adversely lead to the emerging cases of multiple drug resistant and extensively drug-resistant tuberculosis. Therefore, there is an intense need to develop novel potent analogues for its treatment. This has prompted us to develop potent analogues against TB. The Mycobacterium tuberculosis genome provides us with number of validated targets to combat against TB. Study of Mtb genome disclosed six epoxide hydrolases (A to F) which convert harmful epoxide into diols and act as a potential drug target for rational drug design. Our current strategy is to develop such analogues which inhibits epoxide hydrolase enzyme present in Mtb genome. To achieve this, we adopted an integrated computational approach involving QSAR, pharmacophore mapping, molecular docking and molecular dynamics simulation studies. The approach envisaged vital information about the role of molecular descriptors, essential pharmacophoric features and binding energy for compounds to bind into the active site of epoxide hydrolase. Molecular docking analysis revealed that analogues exhibited significant binding to Mtb epoxide hydrolase. Further, three docked complexes 2s, 37s and 15s with high, moderate and low docking scores respectively were selected for molecular dynamics simulation studies. RMSD analysis revealed that all complexes are stable with average RMSD below 2 Å throughout the 10 ns simulations. The B-factor analysis showed that the active site residues of epoxide hydrolase are flexible enough to interact with inhibitor. Moreover, to confirm the binding of these urea derivatives, MM-GBSA binding energy analysis were performed. The calculations showed that 37s has more binding affinity (ΔGtotal = -52.24 kcal/mol) towards epoxide hydrolase compared to 2s (ΔGtotal = -51.70 kcal/mol) and 15s (ΔGtotal = -49.97 kcal/mol). The structural features inferred in our study may provide the future directions to the scientists towards the discovery of new chemical entity exhibiting anti-TB property. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Genotoxicity risk assessment of diversely substituted quinolines using the SOS chromotest.

    PubMed

    Duran, Leidy Tatiana Díaz; Rincón, Nathalia Olivar; Galvis, Carlos Eduardo Puerto; Kouznetsov, Vladimir V; Lorenzo, Jorge Luis Fuentes

    2015-03-01

    Quinolines are aromatic nitrogen compounds with wide therapeutic potential to treat parasitic and microbial diseases. In this study, the genotoxicity of quinoline, 4-methylquinoline, 4-nitroquinoline-1-oxide (4-NQO), and diversely functionalized quinoline derivatives and the influence of the substituents (functional groups and/or atoms) on their genotoxicity were tested using the SOS chromotest. Quinoline derivatives that induce genotoxicity by the formation of an enamine epoxide structure did not induce the SOS response in Escherichia coli PQ37 cells, with the exception of 4-methylquinoline that was weakly genotoxic. The chemical nature of the substitution (C-5 to C-8: hydroxyl, nitro, methyl, isopropyl, chlorine, fluorine, and iodine atoms; C-2: phenyl and 3,4-methylenedioxyphenyl rings) of quinoline skeleton did not significantly modify compound genotoxicities; however, C-2 substitution with α-, β-, or γ-pyridinyl groups removed 4-methylquinoline genotoxicity. On the other hand, 4-NQO derivatives whose genotoxic mechanism involves reduction of the C-4 nitro group were strong inducers of the SOS response. Methyl and nitrophenyl substituents at C-2 of 4-NQO core affected the genotoxic potency of this molecule. The relevance of these results is discussed in relation to the potential use of the substituted quinolines. The work showed the sensitivity of SOS chromotest for studying structure-genotoxicity relationships and bioassay-guided quinoline synthesis. © 2013 Wiley Periodicals, Inc.

  14. Crystal Structure and Catalytic Behavior in Olefin Epoxidation of a One-Dimensional Tungsten Oxide/Bipyridine Hybrid.

    PubMed

    Amarante, Tatiana R; Antunes, Margarida M; Valente, Anabela A; Paz, Filipe A Almeida; Pillinger, Martyn; Gonçalves, Isabel S

    2015-10-19

    The tungsten oxide/2,2'-bipyridine hybrid material [WO3(2,2'-bpy)]·nH2O (n = 1-2) (1) has been prepared in near quantitative yield by the reaction of H2WO4, 2,2'-bpy, and H2O in the mole ratio of ca. 1:2:700 at 160 °C for 98 h in a rotating Teflon-lined digestion bomb. The solid-state structure of 1 was solved and refined through Rietveld analysis of high-resolution synchrotron X-ray diffraction data collected for the microcrystalline powder. The material, crystallizing in the orthorhombic space group Iba2, is composed of a one-dimensional organic-inorganic hybrid polymer, ∞(1)[WO3(2,2'-bpy)], topologically identical to that found in the previously reported anhydrous phases [MO3(2,2'-bpy)] (M = Mo, W). While in the latter the N,N'-chelated 2,2'-bpy ligands of adjacent corner-shared {MO4N2} octahedra are positioned on the same side of the 1D chain, in 1 the 2,2'-bpy ligands alternate above and below the chain. The catalytic behavior of compound 1 for the epoxidation of cis-cyclooctene was compared with that for several other tungsten- or molybdenum-based (pre)catalysts, including the hybrid polymer [MoO3(2,2'-bpy)]. While the latter exhibits superior performance when tert-butyl hydroperoxide (TBHP) is used as the oxidant, compound 1 is superior when aqueous hydrogen peroxide is used, allowing near-quantitative conversion of the olefin to the epoxide. With H2O2, compounds 1 and [MoO3(2,2'-bpy)] act as sources of soluble active species, namely, the oxodiperoxo complex [MO(O2)2(2,2'-bpy)], which is formed in situ. Compounds 1 and [WO(O2)2(2,2'-bpy)] (2) were further tested in the epoxidation of cyclododecene, trans-2-octene, 1-octene, (R)-limonene, and styrene. The structure of 2 was determined by single-crystal X-ray diffraction and found to be isotypical with the molybdenum analogue.

  15. Direct valorisation of waste cocoa butter triglycerides via catalytic epoxidation, ring-opening and polymerisation.

    PubMed

    Plaza, Dorota D; Strobel, Vinzent; Heer, Parminder Kaur Ks; Sellars, Andrew B; Hoong, Seng-Soi; Clark, Andrew J; Lapkin, Alexei A

    2017-09-01

    Development of circular economy requires significant advances in the technologies for valorisation of waste, as waste becomes new feedstock. Food waste is a particularly important feedstock, containing large variation of complex chemical functionality. Although most food waste sources are complex mixtures, waste from food processing, no longer suitable for the human food chain, may also represent relatively clean materials. One such material requiring valorisation is cocoa butter. Epoxidation of a triglyceride from a food waste source, processing waste cocoa butter, into the corresponding triglyceride epoxide was carried out using a modified Ishii-Venturello catalyst in batch and continuous flow reactors. The batch reactor achieved higher yields due to the significant decomposition of hydrogen peroxide in the laminar flow tubular reactor. Integral and differential models describing the reaction and the phase transfer kinetics were developed for the epoxidation of cocoa butter and the model parameters were estimated. Ring-opening of the epoxidised cocoa butter was undertaken to provide polyols of varying molecular weight (M w = 2000-84 000 Da), hydroxyl value (27-60 mg KOH g -1 ) and acid value (1-173 mg KOH g -1 ), using either aqueous ortho-phosphoric acid (H 3 PO 4 ) or boron trifluoride diethyl etherate (BF 3 · OEt 2 )-mediated oligomerisation in bulk, using hexane or tetrahydrofuran (THF) as solvents. The thermal and tensile properties of the polyurethanes obtained from the reaction of these polyols with 4,4'-methylene diphenyl diisocyanate (MDI) are described. The paper presents a complete valorisation scheme for a food manufacturing industry waste stream, starting from the initial chemical transformation, developing a process model for the design of a scaled-up process, and leading to synthesis of the final product, in this case a polymer. This work describes aspects of optimisation of the conversion route, focusing on clean synthesis and also demonstrates the interdisciplinary nature of the development projects, requiring input from different areas of chemistry, process modelling and process design. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Selective polymerization catalysis: controlling the metal chain end group to prepare block copolyesters.

    PubMed

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2015-09-30

    Selective catalysis is used to prepare block copolyesters by combining ring-opening polymerization of lactones and ring-opening copolymerization of epoxides/anhydrides. By using a dizinc complex with mixtures of up to three different monomers and controlling the chemistry of the Zn-O(polymer chain) it is possible to select for a particular polymerization route and thereby control the composition of block copolyesters.

  17. Grafting strategy to develop single site titanium on an amorphous silica surface.

    PubMed

    Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G

    2009-06-16

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.

  18. Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J

    2009-01-01

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less

  19. Soluble epoxide hydrolase inhibition does not prevent cardiac remodeling and dysfunction after aortic constriction in rats and mice.

    PubMed

    Morgan, Lisa A; Olzinski, Alan R; Upson, John J; Zhao, Shufang; Wang, Tao; Eisennagel, Stephen H; Hoang, Bao; Tunstead, James R; Marino, Joseph P; Willette, Robert N; Jucker, Beat M; Behm, David J

    2013-04-01

    Epoxyeicosatrienoic acids, substrates for soluble epoxide hydrolase (sEH), exhibit vasodilatory and antihypertrophic activities. Inhibitors of sEH might therefore hold promise as heart failure therapeutics. We examined the ability of sEH inhibitors GSK2188931 and GSK2256294 to modulate cardiac hypertrophy, fibrosis, and function after transverse aortic constriction (TAC) in rats and mice. GSK2188931 administration was initiated in rats 1 day before TAC, whereas GSK2256294 treatment was initiated in mice 2 weeks after TAC. Four weeks later, cardiovascular function was assessed, plasma was collected for drug and sEH biomarker concentrations, and left ventricle was isolated for messenger RNA and histological analyses. In rats, although GSK2188931 prevented TAC-mediated increases in certain genes associated with hypertrophy and fibrosis (α-skeletal actin and connective tissue growth factor), the compound failed to attenuate TAC-induced increases in left ventricle mass, posterior wall thickness, end-diastolic volume and pressure, and perivascular fibrosis. Similarly, in mice, GSK2256294 did not reverse cardiac remodeling or systolic dysfunction induced by TAC. Both compounds increased the sEH substrate/product (leukotoxin/leukotoxin diol) ratio, indicating sEH inhibition. In summary, sEH inhibition does not prevent cardiac remodeling or dysfunction after TAC. Thus, targeting sEH seems to be insufficient for reducing pressure overload hypertrophy.

  20. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... = Concentration of epoxide in the reactor liquid at the beginning of the time period, weight percent. k = Reaction rate constant, 1/hr. t = Time, hours. Note: This equation assumes a first order reaction with respect... process knowledge, reaction kinetics, and engineering knowledge, in accordance with paragraph (a)(2)(i) of...

  1. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... = Concentration of epoxide in the reactor liquid at the beginning of the time period, weight percent. k = Reaction rate constant, 1/hr. t = Time, hours. Note: This equation assumes a first order reaction with respect... process knowledge, reaction kinetics, and engineering knowledge, in accordance with paragraph (a)(2)(i) of...

  2. The Epoxidation of 2,5-Di-tert-butyl-1,4-benzoquinone: A Consecutive Reaction for the Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Hairfield, E. M.; And Others

    1985-01-01

    Reports a consecutive first-order reaction for which the concentrations of reactant, intermediate, and products can be determined simulataneously. This reaction is the epoxidation of 2,5-di-tert-butyl-1,4-benzoquinone (I) by alkaline hydroperoxidation using tert-butyl hydroperoxide and benzyltrimethylammonium hydroxide (Triton B) catalyst.…

  3. Gold nanoparticle-catalyzed environmentally benign deoxygenation of epoxides to alkenes.

    PubMed

    Noujima, Akifumi; Mitsudome, Takato; Mizugaki, Tomoo; Jitsukawa, Koichiro; Kaneda, Kiyotomi

    2011-09-28

    We have developed a highly efficient and green catalytic deoxygenation of epoxides to alkenes using gold nanoparticles (NPs) supported on hydrotalcite [HT: Mg(6)Al(2)CO(3)(OH)(16)] (Au/HT) with alcohols, CO/H(2)O or H(2) as the reducing reagent. Various epoxides were selectively converted to the corresponding alkenes. Among the novel metal NPs on HT, Au/HT was found to exhibit outstanding catalytic activity for the deoxygenation reaction. Moreover, Au/HT can be separated from the reaction mixture and reused with retention of its catalytic activity and selectivity. The high catalytic performance of Au/HT was attributed to the selective formation of Au-hydride species by the cooperative effect between Au NPs and HT.

  4. FAD C(4a)-hydroxide stabilized in a naturally fused styrene monooxygenase

    PubMed Central

    Schlömann, Michael; van Berkel, Willem J.H.; Gassner, George T.

    2013-01-01

    StyA2B represents a new class of styrene monooxygenases that integrates flavin-reductase and styrene-epoxidase activities into a single polypeptide. This naturally-occurring fusion protein offers new avenues for studying and engineering biotechnologically relevant enantioselective biochemical epoxidation reactions. Stopped-flow kinetic studies of StyA2B reported here identify reaction intermediates similar to those reported for the separate reductase and epoxidase components of related two-component systems. Our studies identify substrate epoxidation and elimination of water from the FAD C(4a)-hydroxide as rate-limiting steps in the styrene epoxidation reaction. Efforts directed at accelerating these reaction steps are expected to greatly increase catalytic efficiency and the value of StyA2B as biocatalyst. PMID:24157359

  5. Lithium Diisopropylamide-Mediated Reactions of Imines, Unsaturated Esters, Epoxides, and Aryl Carbamates: Influence of Hexamethylphosphoramide and Ethereal Cosolvents on Reaction Mechanisms

    PubMed Central

    Ma, Yun

    2010-01-01

    Several reactions mediated by lithium diisopropylamide (LDA) with added hex-amethylphosphoramide (HMPA) are described. The N-isopropylimine of cyclohex-anone lithiates via an ensemble of monomer-based pathways. Conjugate addition of LDA/HMPA to an unsaturated ester proceeds via di- and tetra-HMPA-solvated dimers. Deprotonation of norbornene epoxide by LDA/HMPA proceeds via an intermediate metalated epoxide as a mixed dimer with LDA. Ortholithiation of an aryl carbamate proceeds via a mono-HMPA-solvated monomer-based pathway. Dependencies on THF and other ethereal cosolvents suggest that secondary-shell solvation effects are important in some instances. The origins of the inordinate mechanistic complexity are discussed. PMID:17985891

  6. Use of dimethyldioxirane in the epoxidation of the main constituents of the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora.

    PubMed

    Veloza, Luz A; Orozco, Lina M; Sepúlveda-Arias, Juan C

    2011-07-01

    Dimethyldioxirane (DMDO), a widely used oxidant in organic synthesis is considered an environmentally friendly oxygen transfer reagent because acetone is the only byproduct formed in its oxidation reactions. This work describes the isolation of the main constituents (terpenes) in the essential oils obtained from Tagetes lucida, Cymbopogon citratus, Lippia alba and Eucalyptus citriodora, their epoxidation with DMDO in acetone solution and the characterization of the resulting epoxides by GC-MS (EI) and NMR. This is one of the first reports involving the application of dioxirane chemistry to essential oils in order to generate modified compounds with potential uses in several areas of medicine and industry.

  7. Ozonides and epoxides from ozonization of pyrethroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzo, L.O.; Kimmel, E.C.; Casida, J.E.

    Ozonization of pyrethroids as solutions or thin films yields products proposed to be epoxides from the 2,2-dihalovinyl substituents of deltamethrin and permethrin and transitory ozonides from these compounds and more stable ozonides from the 2-methyl-1-propenyl and 2-chloro-3,3,3-trifluoropropenyl substituents of phenothrin and descyanocyhalothrin, respectively. The unstable epoxydeltamethrin from ozonization is identified by /sup 1/H nuclear magnetic resonance spectroscopy and chemical ionization-mass spectroscopy and by reversion to deltamethrin on treatment of reaction mixtures with triphenylphosphine. Degradation of the ozonides yields the corresponding caronaldehyde in each case and trifluoroacetyl chloride from the chlorotrifluoropropenyl analogues. The ozonolysis mixtures are direct acting but weak bacterialmore » mutagens presumable due to their epoxide and ozonide components.« less

  8. Microbial screening test for lignite degradation. Quarterly progress report No. 2, April-June 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Fractionation of lignite was performed by means of: (1) benzene-methanol followed by aqueous alkaline extraction; and (2) benzene followed by methanol-alkaline extraction. The residue obtained by the latter fractionation was oxidized by means of cupric oxide and separated into methanol soluble fraction and methanol insoluble residue. Methanol-alkaline fraction was further divided into methylene chloride extractable portion and methylene chloride non-extractable portion. Fourier Transform Infrared Spectroscopy (FT-IR) was employed to characterize functional groups present in the raw lignite sample, benzene-methanol fraction, aqueous alkaline fraction, lignite residue, and benzene fraction. FT-IR was also used for the analysis of both methylene chloride extractablemore » and non-extracted portions. The following are some functional groups identified by the spectra of the fractions mentioned above: OH, amide, aromatic, CH, CO, C=C, CH/sub 2/, C-CH/sub 3/, SiCH/sub 3/, epoxide, and C-O-C. Both, raw lignite sample and aqueous alkaline fraction produced positive results for P. versicolor growth, whereas benzene-methanol fraction and lignite residue produced negative results. Acclimation of P. versicolor to lignite was accomplished up to 80% lignite and 20% neopeptone and maltose. 10 refs., 9 figs., 6 tabs.« less

  9. Crosslinked Polyamide

    DOEpatents

    Huang, Zhi H.; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2002-06-04

    A crosslinked polyamide material and a process for preparing the crosslinked polyamide material are disclosed. The crosslinked polyamide material comprises a crosslinked chemical combination of (1) a polyamide of the formula: ##STR1## wherein n is between about 50 and 10,000, wherein each R is between 1 and 50 carbon atoms alone and is optionally substituted with heteroatoms, oxygen, nitrogen, sulfur, or phosphorus and combinations thereof, wherein multiple of the R are in vertically aligned spaced relationship along a backbone forming the polyamide, and wherein two or more of the R contain an amino group; and (2) a crosslinking agent containing at least two functional groups capable of reacting with the amino groups of the polyamide. In one embodiment of the invention, the crosslinking agent is an aliphatic or aromatic isocyanate compound having 2 or more --N.dbd.C.dbd.O groups. In another embodiment of the invention, the crosslinking agent is an aliphatic aldehyde or aromatic aldehyde compound having 2 or more --CHO groups. In still another embodiment of the invention, the crosslinking agent is selected from a phosphine having the general formula (A).sub.2 P(B) and mixtures thereof, wherein A is hydroxyalkyl, and B is hydroxyalkyl, alkyl, or aryl. In yet another embodiment of the invention, the crosslinking agent is selected from the group consisting of epoxy resins having more than one epoxide group per molecule.

  10. Syntheses of the enantiomers of 1-deoxynojirimycin and 1-deoxyaltronojirimycin via chemo- and diastereoselective olefinic oxidation of unsaturated amines.

    PubMed

    Bagal, Sharan K; Davies, Stephen G; Lee, James A; Roberts, Paul M; Scott, Philip M; Thomson, James E

    2010-12-03

    Oxidation of enantiomerically pure (R)-N(1)-1'-(1''-naphthyl)ethyl-2,7-dihydro-1H-azepine with m-CPBA in the presence of HBF(4) and BnOH gave (3S,4R,5S,6S,1'R)-N(1)-1'-(1''-naphthyl)ethyl-3-hydroxy-4-benzyloxy-5,6-epoxyazepane as the major product and as a single diastereoisomer after chromatography. Elaboration of this highly functionalized intermediate via ring contraction to (2S,3R,4S,5S,1'R)-N(1)-benzyl-2-chloromethyl-3-benzyloxy-4,5-epoxypiperidine followed by regioselective epoxide ring opening, functional group manipulation, and deprotection gave (+)-1-deoxyaltronojirimycin. Alternatively, resolution of (RS,RS)-N(1)-benzyl-3-hydroxy-4-benzyloxy-2,3,4,7-tetrahydro-1H-azepine or (3RS,4SR,5RS,6RS)-N(1)-benzyl-3-hydroxy-4-benzyloxy-5,6-epoxyazepane by preparative chiral HPLC and subsequent elaboration allows access to the enantiomers of 1-deoxynojirimycin and 1-deoxyaltronojirimycin, respectively.

  11. 40 CFR 63.1426 - Process vent requirements for determining organic HAP concentration, control efficiency, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent reduction may be measured as total epoxide, total organic HAP, or as TOC minus methane and ethane... TOC (minus methane and ethane) concentrations in all process vent streams and primary and secondary... million by volume total epoxide or TOC limit in § 63.1425(b)(1)(ii) or (b)(2)(iii), the sampling site...

  12. BENZO[A]PYRENE AND BENZO[C]PHENANTHRENE: THE EFFECT OF STRUCTURE ON THE BINDING OF WATER MOLECULES TO THE DIOL EPOXIDES

    EPA Science Inventory

    ABSTRACT
    The interaction with water of the diol epoxides (DEs) of both a planar and a non-planar PAH have been examined using molecular dynamics. To determine probable water locations around the DE for later use in the study of DE protonation, molecular dynamics simulations u...

  13. Transformations of Carotenoids in the Oceanic Water Column.

    DTIC Science & Technology

    1982-11-01

    suggests that dehydration and epoxide rearrangement occur over considerably longer time scales than ester hydrolysis . Isofucoxanthin was not isolated...transformations: 1) ester hydrolysis via zooplanktonic metabolism, 2) dehydration via bacterial metabolism, and 3) epoxide opening via slow chemical...be restricted to zooplankton and not common to other higher heLerotrophs, as is ester hydrolysis . The high concentration of fuco- dehydrates and short

  14. Lipid-modifying enzymes in oat and faba bean.

    PubMed

    Yang, Zhen; Piironen, Vieno; Lampi, Anna-Maija

    2017-10-01

    The aim was to study lipase, lipoxygenase (LOX) and peroxygenase (POX) activities in oat and faba bean samples to be able to evaluate their potential in formation of lipid-derived off-flavours. Lipase and LOX activities were measured by spectroscopy, and POX activities via the formation of epoxides. An ultra-high performance liquid chromatography method was developed to study the formation of fatty acid epoxides. The epoxides of esters were measured by gas chromatography. Mass spectroscopy was used to verify the identity of the epoxides. Both oat and faba bean possessed high lipase activities. In faba bean, LOX catalysed the formation of hydroperoxides, whose break-down products are the likely cause of off-flavours. Since oat had low LOX activity, autoxidation is needed to initiate lipid oxidation. Oat had high POX activity, which is able to convert hydroperoxides to epoxy and hydroxy fatty acids that could contribute significantly to off-flavours. POX activity in the faba bean was low. Thus, in faba bean volatile lipid oxidation products could rapidly be formed by LOX, whereas in oat reactions are slower due to the need of autoxidation prior to further reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Microsomal epoxide hydrolase of rat liver. Purification and characterization of enzyme fractions with different chromatographic characteristics.

    PubMed Central

    Bulleid, N J; Graham, A B; Craft, J A

    1986-01-01

    Microsomal epoxide hydrolase was purified from rat liver, and different fractions of the purified enzyme, which varied in their contents of phospholipid, were obtained by ion-exchange chromatography. One fraction (A), which did not bind to CM-cellulose, had a high phospholipid content, and a second fraction (B), which was eluted from CM-cellulose at high ionic strength, had a low phospholipid content. Removal of most of the phospholipid from fraction A altered its chromatographic behaviour. When the delipidated material was re-applied to CM-cellulose, most of the enzyme bound to the cation-exchanger. The specific activities of all the fractions described (with styrene epoxide [(1,2-epoxyethyl)benzene] as substrate) were altered by adding the non-ionic detergent Lubrol PX or phospholipid. Lubrol PX inhibited enzyme activity, and phospholipid reversed this inhibition. The various enzyme fractions isolated appeared to be different forms of the same protein, as judged by their minimum Mr values and immunochemical properties. These results indicate that different fractions of epoxide hydrolase isolated by ion-exchange chromatography probably are not different isoenzyme forms. Images Fig. 2. Fig. 3. PMID:3082328

  16. Morphology and phase control of iron oxide polymorph nanoparticles

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao; Wang, Li; Shi, Min; Li, Yanhong

    2017-04-01

    In this work, lepidocrocite (γ-FeOOH) nanobundles were prepared by a facile NH4F assisted epoxide precipitation route. The reactions between epoxide and [Fe(H2O)6]2+ promoted the hydrolysis and condensation of [Fe(H2O)6]2+, resulting in the formation of iron oxyhydroxide. After calcination of γ-FeOOH nanobundles at 400 °C, the produced α-Fe2O3 still kept the bundle morphology. Due to the unique chemistry of epoxide, the morphology and phase of iron oxide polymorph nanoparticles (goethite, akaganeite, lepidocrocite, magnetite) were well-controlled through controlling reaction conditions such as Fe2+ concentration, NH4F additive and reaction temperature. It is particularly interesting that NH4F working as phase controlling agent is able to control the phase development of iron oxyhydroxides. This phase control effect of NH4F is attributed to the promoted reaction rate of epoxide originating from the higher electronegativity of fluoride ions than chloride ions. Based on the results in this work and our other preliminary works, it is considered that this route can be used as a general strategy for controlling the morphology and phase of transition element compounds.

  17. Cyclohexene oxide/CO2 copolymerization catalyzed by chromium(III) salen complexes and N-methylimidazole: effects of varying salen ligand substituents and relative cocatalyst loading.

    PubMed

    Darensbourg, Donald J; Mackiewicz, Ryan M; Rodgers, Jody L; Fang, Cindy C; Billodeaux, Damon R; Reibenspies, Joseph H

    2004-09-20

    A detailed mechanistic study into the copolymerization of CO2 and cyclohexene oxide utilizing CrIII(salen)X complexes and N-methylimidazole, where H2salen = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediimine and other salen derivatives and X = Cl or N3, has been conducted. By studying salen ligands with various groups on the diimine backbone, we have observed that bulky groups oriented perpendicular to the salen plane reduce the activity of the catalyst significantly, while such groups oriented parallel to the salen plane do not retard copolymer formation. This is not surprising in that the mechanism for asymmetric ring opening of epoxides was found to occur in a bimetallic fashion, whereas these perpendicularly oriented groups along with the tert-butyl groups on the phenolate rings produce considerable steric requirements for the two metal centers to communicate and thus initiate the copolymerization process. It was also observed that altering the substituents on the phenolate rings of the salen ligand had a 2-fold effect, controlling both catalyst solubility as well as electron density around the metal center, producing significant effects on the rate of copolymer formation. This and other data discussed herein have led us to propose a more detailed mechanistic delineation, wherein the rate of copolymerization is dictated by two separate equilibria. The first equilibrium involves the initial second-order epoxide ring opening and is inhibited by excess amounts of cocatalyst. The second equilibrium involves the propagation step and is enhanced by excess cocatalyst. This gives the [cocatalyst] both a positive and negative effect on the overall rate of copolymerization. Copyright 2004 American Chemical Society

  18. The Thr-His Connection on the Distal Heme of Catalase-Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides.

    PubMed

    Mashhadi, Zahra; Newcomer, Marcia E; Brash, Alan R

    2016-11-03

    This review focuses on a group of heme peroxidases that retain the catalase fold in structure, yet show little or no reaction with hydrogen peroxide. Instead of having a role in oxidative defense, these enzymes are involved in secondary metabolite biosynthesis. The prototypical enzyme is catalase-related allene oxide synthase, an enzyme that converts a specific fatty acid hydroperoxide to the corresponding allene oxide (epoxide). Other catalase-related enzymes form allylic epoxides, aldehydes, or a bicyclobutane fatty acid. In all catalases (including these relatives), a His residue on the distal face of the heme is absolutely required for activity. Its immediate neighbor in sequence as well as in 3 D space is conserved as Val in true catalases and Thr in the fatty acid hydroperoxide-metabolizing enzymes. Thr-His on the distal face of the heme is critical in switching the substrate specificity from H 2 O 2 to fatty acid hydroperoxide. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  20. Microbial production of epoxides

    DOEpatents

    Clark, Thomas R.; Roberto, Francisco F.

    2003-06-10

    A method for microbial production of epoxides and other oxygenated products is disclosed. The method uses a biocatalyst of methanotrophic bacteria cultured in a biphasic medium containing a major amount of a non-aqueous polar solvent. Regeneration of reducing equivalents is carried out by using endogenous hydrogenase activity together with supplied hydrogen gas. This method is especially effective with gaseous substrates and cofactors that result in liquid products.

  1. Application of Fourier transform infrared (FT-IR) spectroscopy to the study of the modification of epoxidized sunflower oil by acrylation.

    PubMed

    Irinislimane, Ratiba; Belhaneche-Bensemra, Naima

    2012-12-01

    Commercial sunflower oil was epoxidized at the laboratory-scale. The epoxidized sunflower oil (ESFO) was modified following the acrylation reaction. Modification was carried out simultaneously using acrylic acid (AA) and triethylamine (TEA). To optimize the reaction conditions, the effects of four temperatures (40, 60, 80, and 100 °C), the ESFO:AA (100:100) ratio, and 0.2% TEA were investigated. The rate of conversion was analyzed with both FT-IR and titration of the oxirane ring. After that, the temperature with the highest conversion was selected and used throughout for all modification reactions. Then, four ratios (100:100, 100:90, 100:80, and 100:75) of ESFO:AA were analyzed at four different concentrations of TEA (0.2, 0.3, 0.4, and 0.5%) to determine the best estimate for both the ESFO:AA ratio and the catalyst concentration. Conversion rate was analyzed using FT-IR spectroscopy by measuring the concentrations of ester, carbonyl, and alcohol groups. Moreover, oxirane-ring concentration was estimated using the titration method (with gentian violet as indicator) and FT-IR spectroscopy (epoxy ring absorptions at 1270 cm(-1) and 877 cm(-1)). Based on conversion yield, the optimum ESFO:AA ratio corresponds to 100:80; the best temperature reaction was at 60 °C, and the best TEA concentration was 0.2%. The critical amounts of reactants needed to reach maximum conversion were established. The final acid value of the acrylated ESFO after washing (pH = 7) was 2.1 mg potassium hydroxide (KOH)·g(-1). All results show that FT-IR spectroscopy is a simple, low-cost, rapid method for investigating the kinetics of a reaction.

  2. Anticorrosive organic/inorganic hybrid coatings

    NASA Astrophysics Data System (ADS)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were evaluated by electrochemical impedance spectroscopy (EIS) and the results showed that 10 wt% pigmentation improved the corrosion resistance of the entire coating system. The effect of pigmentation on epoxide/polysiloxane hybrid coatings was also investigated. The epoxide was successfully modified using 3-(triethoxysilyl) propyl isocyanate (TEOSPI) as indicated by FTIR and NMR. Good dispersion of the pigment particles was achieved as revealed by the SEM images. The tensile modulus, tensile strength, pencil hardness and thermal stability of the hybrid coatings were improved while the flexibility and pull-off adhesion were deteriorated when increasing PVC.

  3. Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula.

    PubMed

    Corcuera, L; Morales, F; Abadía, A; Gil-Pelegrín, E

    2005-05-01

    Quercus ilex L. subsp. ballota (Desf.) Samp., a Mediterranean evergreen species growing in a continental Mediterranean climate, did not experience water stress and showed greater sensitivity to winter stress than to summer stress over a 12-month period. Net CO2 assimilation rates and photosystem II (PSII) efficiency decreased markedly during the cold months and recovered completely in spring. Lutein, neoxanthin and beta-carotene to chlorophyll (Chl) molar ratios all showed the same trend throughout the year, increasing from September to March. This increase was a result of increases in carotenoid concentrations, because Chl concentration per unit leaf area remained stable, and was higher at the end than at the beginning of the first growing season. Lutein-epoxide was a minor component of the total lutein pool. Thermal energy dissipation and non-photochemical quenching (NPQ) were associated with the de-epoxidated forms of the xanthophyll cycle pigments in the warm months. Photosynthetic rates decreased slightly at midday in summer. These changes were accompanied by decreases in maximum potential PSII efficiency (which recovered during the night), actual and intrinsic PSII efficiencies, photochemical quenching and increases in NPQ. Overall, our data indicate down-regulation of photosynthesis during the summer. The diurnal de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin occurred throughout the year, except in January. Antioxidant enzymatic activity increased in the winter months, especially during the coldest months, highlighting its key role in photoprotection against photo-oxidation. Structural and functional modifications protected PSII from permanent damage and allowed 1-year-old leaves to photosynthesize at high rates when temperatures increased in spring.

  4. Combined experimental and theoretical approach to understand the reactivity of a mononuclear Cu(II)-hydroperoxo complex in oxygenation reactions.

    PubMed

    Kamachi, Takashi; Lee, Yong-Min; Nishimi, Tomonori; Cho, Jaeheung; Yoshizawa, Kazunari; Nam, Wonwoo

    2008-12-18

    A copper(II) complex bearing a pentadentate ligand, [Cu(II)(N4Py)(CF(3)SO(3))(2)] (1) (N4Py = N,N-bis(2-pyridylmethyl)bis(2-pyridyl)methylamine), was synthesized and characterized with various spectroscopic techniques and X-ray crystallography. A mononuclear Cu(II)-hydroperoxo complex, [Cu(II)(N4Py)(OOH)](+) (2), was then generated in the reaction of 1 and H(2)O(2) in the presence of base, and the reactivity of the intermediate was investigated in the oxidation of various substrates at -40 degrees C. In the reactivity studies, 2 showed a low oxidizing power such that 2 reacted only with triethylphosphine but not with other substrates such as thioanisole, benzyl alcohol, 1,4-cyclohexadiene, cyclohexene, and cyclohexane. In theoretical work, we have conducted density functional theory (DFT) calculations on the epoxidation of ethylene by 2 and a [Cu(III)(N4Py)(O)](+) intermediate (3) at the B3LYP level. The activation barrier is calculated to be 39.7 and 26.3 kcal/mol for distal and proximal oxygen attacks by 2, respectively. This result indicates that the direct ethylene epoxidation by 2 is not a plausible pathway, as we have observed in the experimental work. In contrast, the ethylene epoxidation by 3 is a downhill and low-barrier process. We also found that 2 cannot be a precursor to 3, since the homolytic cleavage of the O-O bond of 2 is very endothermic (i.e., 42 kcal/mol). On the basis of the experimental and theoretical results, we conclude that a mononuclear Cu(II)-hydroperoxo species bearing a pentadentate N5 ligand is a sluggish oxidant in oxygenation reactions.

  5. Lutein from Deepoxidation of Lutein Epoxide Replaces Zeaxanthin to Sustain an Enhanced Capacity for Nonphotochemical Chlorophyll Fluorescence Quenching in Avocado Shade Leaves in the Dark1

    PubMed Central

    Förster, Britta; Pogson, Barry James; Osmond, Charles Barry

    2011-01-01

    Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m−2 s−1, increasing the total L pool by 5% to 10% (ΔL). Deepoxidation of Lx to L was near stoichiometric and similar in kinetics to deepoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). Although the V pool was restored by epoxidation of A and Z overnight, the Lx pool was not. Depending on leaf age and pretreatment, the pool of ΔL persisted for up to 72 h in the dark. Metabolism of ΔL did not involve epoxidation to Lx. These contrasting kinetics enabled us to differentiate three states of the capacity for nonphotochemical chlorophyll fluorescence quenching (NPQ) in attached and detached leaves: ΔpH dependent (NPQΔpH) before deepoxidation; after deepoxidation in the presence of ΔL, A, and Z (NPQΔLAZ); and after epoxidation of A+Z but with residual ΔL (NPQΔL). The capacity of both NPQΔLAZ and NPQΔL was similar and 45% larger than NPQΔpH, but dark relaxation of NPQΔLAZ was slower. The enhanced capacity for NPQ was lost after metabolism of ΔL. The near equivalence of NPQΔLAZ and NPQΔL provides compelling evidence that the small dynamic pool ΔL replaces A+Z in avocado to “lock in” enhanced NPQ. The results are discussed in relation to data obtained with other Lx-rich species and in mutants of Arabidopsis (Arabidopsis thaliana) with increased L pools. PMID:21427278

  6. Redox-inactive metal ions promoted the catalytic reactivity of non-heme manganese complexes towards oxygen atom transfer.

    PubMed

    Choe, Cholho; Yang, Ling; Lv, Zhanao; Mo, Wanling; Chen, Zhuqi; Li, Guangxin; Yin, Guochuan

    2015-05-21

    Redox-inactive metal ions can modulate the reactivity of redox-active metal ions in a variety of biological and chemical oxidations. Many synthetic models have been developed to help address the elusive roles of these redox-inactive metal ions. Using a non-heme manganese(II) complex as the model, the influence of redox-inactive metal ions as a Lewis acid on its catalytic efficiency in oxygen atom transfer was investigated. In the absence of redox-inactive metal ions, the manganese(II) catalyst is very sluggish, for example, in cyclooctene epoxidation, providing only 9.9% conversion with 4.1% yield of epoxide. However, addition of 2 equiv. of Al(3+) to the manganese(II) catalyst sharply improves the epoxidation, providing up to 97.8% conversion with 91.4% yield of epoxide. EPR studies of the manganese(II) catalyst in the presence of an oxidant reveal a 16-line hyperfine structure centered at g = 2.0, clearly indicating the formation of a mixed valent di-μ-oxo-bridged diamond core, Mn(III)-(μ-O)2-Mn(IV). The presence of a Lewis acid like Al(3+) causes the dissociation of this diamond Mn(III)-(μ-O)2-Mn(IV) core to form monomeric manganese(iv) species which is responsible for improved epoxidation efficiency. This promotional effect has also been observed in other manganese complexes bearing various non-heme ligands. The findings presented here have provided a promising strategy to explore the catalytic reactivity of some di-μ-oxo-bridged complexes by adding non-redox metal ions to in situ dissociate those dimeric cores and may also provide clues to understand the mechanism of methane monooxygenase which has a similar diiron diamond core as the intermediate.

  7. Epoxide metabolism in the liver of mice treated with clofibrate (ethyl-alpha-(p-chlorophenoxyisobutyrate)), a peroxisome proliferator.

    PubMed

    Moody, D E; Loury, D N; Hammock, B D

    1985-05-01

    An increase in cytosolic epoxide hydrolase (cEH) activity occurs in the livers of mice treated with peroxisome proliferating-hypolipidemic-nongenotoxic carcinogens. As increases in activity of epoxide metabolizing enzymes may reflect the carcinogenic mechanism, a detailed comparison of the response of cEH, microsomal epoxide hydrolase (mEH), and cytosolic glutathione S-transferase (cGST) activities using the geometrical isomers trans- and cis-stilbene oxide as substrates has been performed in livers from mice treated with clofibrate (ethyl-alpha-(p-chlorophenoxyisobutyrate]. The maximal increase of cEH activity occurred at lower dietary doses of clofibrate (0.5%) and within a shorter time (5 days) than mEH and cGST (2%, 14 days) activity. After 14 days at 0.5% clofibrate, cEH, mEH, and cGST activities were 250, 175, and 165% and 290, 220, and 75% of control values in male and female mice, respectively. Withdrawal of clofibrate from the diet resulted in a reversion of activities to control values within 7 days. Clofibrate treatment shifted the apparent subcellular compartmentation of all three enzymatic activities with an increase in the ratio of soluble to particulate activity. In particular, the relative specific activity of all three enzymes decreased in the light mitochondrial (peroxisomal) cell fraction, and an increase of a mEH-like activity (benzo[a]pyrene-4,5-oxide and cis-stilbene oxide hydrolysis) in the cytosol occurred. Both the increase of cEH activity and the appearance of mEH-like activity in the cytosol are novel responses of epoxide metabolizing enzymes, which may be related to the novel cellular responses that follow clofibrate treatment, peroxisome proliferation, hypolipidemia, and nongenotoxic carcinogenesis.

  8. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis.

    PubMed

    Chen, Zhong; Gallie, Daniel R

    2012-09-01

    In response to conditions of excess light energy, plants induce non-photochemical quenching (NPQ) as a protective mechanism to prevent over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, which contributes significantly to reversible NPQ to thermally dissipate excess absorbed light energy, involves de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin in response to excess light energy. The activation of violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction, requires the generation of a light-induced, transthylakoid pH gradient. In this work, we overexpressed or repressed the expression of VDE in Arabidopsis (Arabidopsis thaliana) to examine whether VDE is rate-limiting for the induction of NPQ. Increasing VDE expression increased the de-epoxidation state of xanthophyll pigments, the rate of NPQ induction, and the level of NPQ achieved under subsaturating light. In saturating light, however, overexpression of VDE did not increase the xanthophyll pigment de-epoxidation state, the level of NPQ achieved following its initial induction, or substantially improve tolerance to high light. Only under chilling, which reduces VDE activity, did an increase in VDE expression provide slightly greater phototolerance. Repression of VDE expression impaired violaxanthin de-epoxidation, reduced the generation of NPQ, and lowered the level of NPQ achieved while increasing photosensitivity. These results demonstrate that the endogenous level of VDE is rate-limiting for NPQ in Arabidopsis under subsaturating but not saturating light and can become rate-limiting under chilling conditions. These results also show that increasing VDE expression confers greater phototolerance mainly under conditions which limit endogenous VDE activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gash, A E; Satcher, J H; Simpson, R L

    2004-01-13

    The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surfacemore » area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.« less

  10. Gender differences in the metabolism of 1,3-butadiene to butadiene diepoxide in Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton-Manning, J.R.; Dahl, A.R.; Bechtold, W.E.

    1995-12-01

    1,3-Butadiene (BD), a gaseous compound used in the production of rubber, is a potent carcinogen in mice and a weak carcinogen in rats. The mechanism of BD-induced carcinogenicity is thought to involve genotoxic effects of its reactive epoxide metabolites butadiene monoepoxide (BDO) and butadiene diepoxide (BDO{sub 2}). Studies in our laboratory have shown that levels of the epoxides, particularly BDO{sub 2}, are greater in mice-the more sensitive species-than rats. While both epoxides are genotoxic in a number of assays, BDO{sub 2} is mutagenic in TK6 human lymphoblastoid cells at concentrations approximately 100-fold lower than BDO. Species differences in carcinogenicity ofmore » BD have posed a dilemma to investigators deciding which animal model is most appropriate for BD risk assessment.« less

  11. Propylene epoxidation over biogenic Au/TS-1 catalysts by Cinnamomum camphora extract in the presence of H2 and O2

    NASA Astrophysics Data System (ADS)

    Du, Mingming; Huang, Jiale; Sun, Daohua; Li, Qingbiao

    2016-03-01

    The Au/TS-1 catalysts with different Au nanoparticles (NPs) sizes ranging from 3.1 to 8.4 nm but the same Au loading of 0.5 wt% were prepared by Cinnamomum camphora (CC) extract, and were used for propylene epoxidation. The results showed that the interaction between Au and TS-1 support surface is important for propylene epoxidation and much smaller Au NPs (<3 nm) are the dominant active sites. After reaction of 100 h, there is no decreasing in both the activity and the PO selectivity for the Au/TS-1 catalysts, and only 1.8 wt% of the carbonaceous deposits on the surface of the catalyst after reaction, suggesting that the desorption of the product from the modified catalysts surface by residual biomolecules is much easier.

  12. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    NASA Technical Reports Server (NTRS)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  13. Epoxidation of alkenes and oxidation of alcohols with hydrogen peroxide catalyzed by a manganese(V) nitrido complex.

    PubMed

    Kwong, Hoi-Ki; Lo, Po-Kam; Lau, Kai-Chung; Lau, Tai-Chu

    2011-04-14

    The manganese(V) nitrido complex (PPh(4))(2)[Mn(N)(CN)(4)] is an active catalyst for alkene epoxidation and alcohol oxidation using H(2)O(2) as an oxidant. The catalytic oxidation is greatly enhanced by the addition of just one equivalent of acetic acid. The oxidation of ethene by this system has been studied computationally by the DFT method.

  14. Enantioselective syntheses of aeruginosin 298-A and its analogues using a catalytic asymmetric phase-transfer reaction and epoxidation.

    PubMed

    Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Fukuta, Yuhei; Nemoto, Tetsuhiro; Shibasaki, Masakatsu

    2003-09-17

    We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogues, in which all stereocenters were controlled by a catalytic asymmetric phase-transfer reaction and epoxidation. Furthermore, drastic counteranion effects in phase-transfer catalysis were observed for the first time, making it possible to three-dimensionally fine-tune the catalyst (ketal part, aromatic part, and counteranion).

  15. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  16. Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst

    PubMed Central

    Nguyen, Van-Huy; Bai, Hsunling

    2014-01-01

    Summary The light irradiation parameters, including the wavelength spectrum and intensity of light source, can significantly influence a photocatalytic reaction. This study examines the propylene photo-epoxidation over V-Ti/MCM-41 photocatalyst by using artificial sunlight (Xe lamp with/without an Air Mass 1.5 Global Filter at 1.6/18.5 mW·cm−2) and ultraviolet light (Mercury Arc lamp with different filters in the range of 0.1–0.8 mW·cm−2). This is the first report of using artificial sunlight to drive the photo-epoxidation of propylene. Over V-Ti/MCM-41 photocatalyst, the propylene oxide (PO) formation rate is 193.0 and 112.1 µmol·gcat −1·h−1 with a PO selectivity of 35.0 and 53.7% under UV light and artificial sunlight, respectively. A normalized light utilization (NLU) index is defined and found to correlate well with the rate of both PO formation and C3H6 consumption in log–log scale. The light utilization with a mercury arc lamp is better than with a xenon lamp. The selectivity to PO remains practically unchanged with respect to NLU, suggesting that the photo-epoxidation occurs through the same mechanism under the conditions tested in this study. PMID:24991493

  17. Assessment of epoxidized soy bean oil (ESBO) migrating into foods: comparison with ESBO-like epoxy fatty acids in our normal diet.

    PubMed

    Fankhauser-Noti, Anja; Fiselier, Katell; Biedermann-Brem, Sandra; Grob, Koni

    2006-08-01

    Epoxidized soy bean oil (ESBO) was found to be toxic for rats, but the toxic constituent is unknown. It became an issue as the migration from the gaskets in the lids for jars into oily foods regularly far exceeds the European legal limit (overall migration limit and specific migration limit derived from the tolerable daily intake (TDI)). In the context of risk management it was of interest to determine the epoxidized fatty acids of ESBO in those foods of our normal diet which are expected to contain the highest concentrations, i.e., oxidized edible oils (including degraded frying oils), fried foods, bakery ware and roasted meat. The contribution of epoxy oleic acid from ESBO to our diet turned out to be negligible. If this acid were the toxic component in ESBO, the toxicological assessment would primarily be a warning regarding oxidized fats and oils. The contribution of diepoxy linoleic acid from ESBO might be similar to the exposure from oxidized fats and oils of our diet, whereas the intake of triepoxy linolenic acid from ESBO exceeds that from normal food by around two orders of magnitude. Hence use of an epoxidized edible oil virtually free of linolenic acid would be inconspicuous in our diet.

  18. Production of epoxide hydrolases in batch fermentations of Botryosphaeria rhodina.

    PubMed

    Melzer, Guido; Junne, Stefan; Wohlgemuth, Roland; Hempel, Dietmar C; Götz, Peter

    2008-06-01

    The filamentous fungus Botryosphaeria rhodina (ATCC 9055) was investigated related to its ability for epoxide hydrolase (EH) production. Epoxide hydrolase activity is located at two different sites of the cells. The larger part is present in the cytosol (70%), while the smaller part is associated to membranes (30%). In media optimization experiments, an activity of 3.5 U/gDW for aromatic epoxide hydrolysis of para-nitro-styrene oxide (pNSO) could be obtained. Activity increased by 30% when pNSO was added to the culture during exponential growth. An increase of enzyme activity up to 6 U/gDW was achieved during batch-fermentations in a bioreactor with 2.7 l working volume. Evaluation of fermentations with 30 l working volume revealed a relation of oxygen uptake rate to EH expression. Oxygen limitation resulted in a decreased EH activity. Parameter estimation by the linearization method of Hanes yielded Km values of 2.54 and 1.00 mM for the substrates S-pNSO and R-pNSO, respectively. vmax was 3.4 times higher when using R-pNSO. A protein purification strategy leading to a 47-fold increase in specific activity (940 U/mgProtein) was developed as a first step to investigate molecular and structural characteristics of the EH.

  19. Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis.

    PubMed

    Hotta, Kinya; Chen, Xi; Paton, Robert S; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N; Kim, Chu-Young

    2012-03-04

    Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A to form lasalocid A. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue to provide the first atomic structure-to our knowledge-of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. © 2012 Macmillan Publishers Limited. All rights reserved

  20. Molecular Mechanisms and New Treatment Paradigm for Atrial Fibrillation.

    PubMed

    Sirish, Padmini; Li, Ning; Timofeyev, Valeriy; Zhang, Xiao-Dong; Wang, Lianguo; Yang, Jun; Lee, Kin Sing Stephen; Bettaieb, Ahmed; Ma, Sin Mei; Lee, Jeong Han; Su, Demetria; Lau, Victor C; Myers, Richard E; Lieu, Deborah K; López, Javier E; Young, J Nilas; Yamoah, Ebenezer N; Haj, Fawaz; Ripplinger, Crystal M; Hammock, Bruce D; Chiamvimonvat, Nipavan

    2016-05-01

    Atrial fibrillation represents the most common arrhythmia leading to increased morbidity and mortality, yet, current treatment strategies have proven inadequate. Conventional treatment with antiarrhythmic drugs carries a high risk for proarrhythmias. The soluble epoxide hydrolase enzyme catalyzes the hydrolysis of anti-inflammatory epoxy fatty acids, including epoxyeicosatrienoic acids from arachidonic acid to the corresponding proinflammatory diols. Therefore, the goal of the study is to directly test the hypotheses that inhibition of the soluble epoxide hydrolase enzyme can result in an increase in the levels of epoxyeicosatrienoic acids, leading to the attenuation of atrial structural and electric remodeling and the prevention of atrial fibrillation. For the first time, we report findings that inhibition of soluble epoxide hydrolase reduces inflammation, oxidative stress, atrial structural, and electric remodeling. Treatment with soluble epoxide hydrolase inhibitor significantly reduces the activation of key inflammatory signaling molecules, including the transcription factor nuclear factor κ-light-chain-enhancer, mitogen-activated protein kinase, and transforming growth factor-β. This study provides insights into the underlying molecular mechanisms leading to atrial fibrillation by inflammation and represents a paradigm shift from conventional antiarrhythmic drugs, which block downstream events to a novel upstream therapeutic target by counteracting the inflammatory processes in atrial fibrillation. © 2016 American Heart Association, Inc.

  1. In situ epoxide generation by dimethyldioxirane oxidation and the use of epichlorohydrin in the flow synthesis of a library of β-amino alcohols.

    PubMed

    Cossar, Peter J; Baker, Jennifer R; Cain, Nicholas; McCluskey, Adam

    2018-04-01

    The flow coupling of epichlorohydrin with substituted phenols, while efficient, limits the nature of the epoxide available for the development of focused libraries of β-amino alcohols. This limitation was encountered in the production of analogues of 1-(4-nitrophenoxy)-3-((2-((4-(trifluoromethyl)pyrimidin-2-yl)amino)ethyl)amino)propan-2-ol 1 , a potential antibiotic lead. The in situ (flow) generation of dimethyldoxirane (DMDO) and subsequent flow olefin epoxidation abrogates this limitation and afforded facile access to structurally diverse β-amino alcohols. Analogues of 1 were readily accessed either via (i) a flow/microwave hybrid approach, or (ii) a sequential flow approach. Key steps were the in situ generation of DMDO, with olefin epoxidation in typically good yields and a flow-mediated ring opening aminolysis to form an expanded library of β-amino alcohols 1 and 10a - 18g , resulting in modest ( 11a , 21%) to excellent ( 12g , 80%) yields. Alternatively flow coupling of epichlorohydrin with phenols 4a - 4m (22%-89%) and a Bi(OTf) 3 catalysed microwave ring opening with amines afforded a select range of β-amino alcohols, but with lower levels of aminolysis regiocontrol than the sequential flow approach.

  2. In situ epoxide generation by dimethyldioxirane oxidation and the use of epichlorohydrin in the flow synthesis of a library of β-amino alcohols

    PubMed Central

    Cossar, Peter J.; Baker, Jennifer R.; Cain, Nicholas

    2018-01-01

    The flow coupling of epichlorohydrin with substituted phenols, while efficient, limits the nature of the epoxide available for the development of focused libraries of β-amino alcohols. This limitation was encountered in the production of analogues of 1-(4-nitrophenoxy)-3-((2-((4-(trifluoromethyl)pyrimidin-2-yl)amino)ethyl)amino)propan-2-ol 1, a potential antibiotic lead. The in situ (flow) generation of dimethyldoxirane (DMDO) and subsequent flow olefin epoxidation abrogates this limitation and afforded facile access to structurally diverse β-amino alcohols. Analogues of 1 were readily accessed either via (i) a flow/microwave hybrid approach, or (ii) a sequential flow approach. Key steps were the in situ generation of DMDO, with olefin epoxidation in typically good yields and a flow-mediated ring opening aminolysis to form an expanded library of β-amino alcohols 1 and 10a–18g, resulting in modest (11a, 21%) to excellent (12g, 80%) yields. Alternatively flow coupling of epichlorohydrin with phenols 4a–4m (22%–89%) and a Bi(OTf)3 catalysed microwave ring opening with amines afforded a select range of β-amino alcohols, but with lower levels of aminolysis regiocontrol than the sequential flow approach. PMID:29765627

  3. Alternative synthesis of 3-acetyl, 3-epoxy, and 3-formyl chlorins from a 3-vinyl chlorin, methyl pyropheophorbide-a, via iodination.

    PubMed

    Oba, Toru; Masuya, Takuto; Yasuda, Satoru; Ito, Satoshi

    2015-08-01

    We developed novel methods to convert the C3-vinyl group of a chlorophyll derivative, methyl pyropheophorbide-a, into an acetyl group, an epoxy group, and a formyl group via iodination with I2 and phenyliodine(III) bis(trifluoroacetate). Reaction of the iodinated intermediate with ethylene glycol and subsequent treatment with base led to formation of the C3-acetyl chlorin. Reaction of the iodinated intermediate with ethylenediamine afforded the C3-oxiranyl chlorin. The C3-formyl chlorin was readily derived from the epoxide without hazardous reagents such as OsO4. These reactions were facile and useful alternatives to the previous methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Soluble epoxide hydrolase activity and pharmacologic inhibition in horses with chronic severe laminitis.

    PubMed

    Guedes, A; Galuppo, L; Hood, D; Hwang, S H; Morisseau, C; Hammock, B D

    2017-05-01

    The roles of soluble epoxide hydrolase and lipid mediators in inflammatory and neuropathic pain could be relevant in laminitis pain management. To determine soluble epoxide hydrolase (sEH) activity in the digital laminae, sEH inhibitor potency in vitro, and efficacy of a sEH inhibitor as an adjunct analgesic therapy in chronic laminitic horses. In vitro experiments and clinical case series. sEH activity was measured in digital laminae from euthanised healthy and laminitic horses (n = 5-6/group). Potency of 7 synthetic sEH inhibitors was determined in vitro using equine liver cytosol. One of them (t-TUCB; 0.1 mg/kg bwt i.v. every 24 h) was selected based on potency and stability, and used as adjunct therapy in 10 horses with severe chronic laminitis (Obel grades 2, one horse; 3-4, nine horses). Daily assessments of forelimb lifts, pain scores, physiologic and laboratory examinations were performed before (baseline) and during t-TUCB treatment. Data are presented as mean ± s.d. and 95% confidence intervals (CI). sEH activity in the digital laminae from laminitic horses (0.9±0.6 nmol/min/mg; 95% CI 0.16-1.55 nmol/min/mg) was significantly greater (P = 0.01) than in healthy horses (0.17±0.09 nmol/min/mg; CI 0.07-0.26 nmol/min/mg). t-TUCB as an adjunct analgesic up to 10 days (4.3±3 days) in laminitic horses was associated with significant reduction in forelimb lifts (36±22%; 95% CI 9-64%) and in pain scores (18±23%; 95% CI 2-35%) compared with baseline (P = 0.04). One horse developed gas colic and another corneal vascularisation in a blind eye during treatment. No other significant changes were observed. Absence of control group and evaluator blinding in case series. sEH activity is significantly higher in the digital laminae of actively laminitic compared with healthy horses, and use of a potent inhibitor of equine sEH as adjunct analgesic therapy appears to decrease signs of pathologic pain in laminitic horses. © 2016 EVJ Ltd.

  5. Comparison of Aspirin and Naoxintong Capsule () with Adjusted-Dose Warfarin in Elderly Patients with High-Risk of Non-Valvular Atrial Fibrillation and Genetic Variants of Vitamin K Epoxide Reductase.

    PubMed

    Wang, Huan; Zhou, Xiao-Kai; Zheng, Li-Fan; Wu, Xiao-Ying; Chen, Hui

    2018-04-01

    To compared the therapeutic effect of a Chinese patent medicine Naoxintong Capsule (, NXT) and aspirin with adjusted-dose warfarin in Chinese elderly patients (over 65 years) with nonvalvular atrial fibrillation (NVAF) and genetic variants of vitamin K epoxide reductase (VKORC1), who are at high-risk of thromboembolism. A total of 151 patients, with NVAF and AA genotype of VKORC1-1639 (a sensitive genotype to warfarin) and a CHA 2 DS 2 -VASc clinical risk score of 2 or above, were chosen for this study. Patients were randomized into two groups and orally treated with a combination of aspirin (100 mg/day) and NXT (1.6 g thrice a day) or adjusted-dose warfarin [international normalized ratio 2.0-3.0). The primary end points including ischemic stroke and death as well as the secondary end points including hemorrhage events were followed up for at least 1 year. Baseline clinical data and the rates of primary end points were similar between groups. However, the rate of serious bleeding (secondary event) in the combination therapy group was lower than that in the adjusted-dose warfarin group (0% vs. 7.9%, odds ratio: 0.921, 95% confidence interval: 0.862-0.984, P=0.028). Aspirin combined with NXT and warfarin displayed comparable rates of primary end point including ischemic stroke and all-cause death during the 1-year follow-up. However, as compared with warfarin, the combination therapy reduced the rate of serious bleeding. Therefore, aspirin combined with NXT might provide an alternative pharmacotherapy in preventing ischemic stroke for elderly patients with NAVF who cannot tolerate warfarin. (No. ChiCTR-TRC-13003596).

  6. Puerarin offsets the anticoagulation effect of warfarin in rats by inducing rCyps, upregulating vitamin K epoxide reductase and inhibiting thrombomodulin.

    PubMed

    Ge, Beikang; Zhang, Zhen; Lam, Teddy Taining; Zuo, Zhong

    2017-01-01

    The current study was conducted to investigate the potential pharmacokinetic and pharmacodynamic interactions between warfarin and puerarin which is the most abundant component in Pueraria lobata (Gegen). In vivo and ex vivo rat models were used to reveal the underlying mechanisms of such interactions. Apart from one control group, five groups of Sprague-Dawley rats were treated with warfarin, oral puerarin, oral puerarin with warfarin, intravenous puerarin, intravenous puerarin with warfarin. The treatment lasted for 5 consecutive days. Thereafter, the levels of warfarin, warfarin metabolites and puerarin in plasma of these rats were monitored and compared. The rCyps activity and expression in rat livers of different treatment groups were assessed. The prothrombin time was observed. The vitamin K epoxide reductase (VKOR) activity and expression in rat livers were evaluated. Thrombomodulin activity and expression in the rat lung and rat plasma were assessed. The soluble thrombomodulin (sTM) concentrations of different treatment groups were examined. Intravenously administered puerarin altered the pharmacokinetics of warfarin significantly by shortening t 1/2 , decreasing AUC 0-96 h and increasing the clearance of warfarin. Further mechanistic studies suggested that both oral and intravenous administration of puerarin significantly induced the activities and expressions of rCyp2b1, rCyp2c6 and rCyp1a1. In addition, co-administration of puerarin reduced the prothrombin time of rat plasma by enhancing VKOR and inhibiting thrombomodulin. Puerarin increased warfarin metabolism and offset warfarin anticoagulation by inducing rCyps, upregulating VKOR and inhibiting thrombomodulin in rats. The clinical impact of such potential interactions warrants further verification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Metabolic inactivation of 2-oxiranylmethyl 2-ethyl-2,5-dimethylhexanoate (C10GE) in skin, lung and liver of human, rat and mouse.

    PubMed

    Boogaard, P J; van Elburg, P A; de Kloe, K P; Watson, W P; van Sittert, N J

    1999-10-01

    The inactivation of 2-oxiranylmethyl 2-ethyl-2,5-dimethylhexanoate (C10GE), one of the most abundant isomers of the epoxy-resin Carduras E-10 glycidyl ester, was studied in subcellular fractions of human, C3H mouse and F344 rat liver, lung and skin. C10GE is chemically very stable and resistant to aqueous hydrolysis, but it was rapidly metabolized in both cytosolic and microsomal fractions of all organs by epoxide hydrolase (EH)-catalysed hydrolysis of the epoxide moiety as well as carboxylesterase (CE)-catalysed hydrolysis of the ester bond. In cytosol the epoxide group was also efficiently conjugated with glutathione, catalysed by glutathione S-transferase (GST), but this conjugation was much less important than hydrolysis in human as well as rodent samples. Although CE-catalysed hydrolysis of C10GE would theoretically give rise to the formation of glycidol, a directly acting mutagen, it is highly unlikely that any significant level of glycidol would occur in vivo since reported rates of inactivation of glycidol exceed the total rate of hydrolysis of C10GE. The overall rates of inactivation in vitro decreased in the following order: mouse > rat > human. Scaling of the data in vitro to clearances in vivo suggests that the detoxifying capacity in the rodents is similar and about an order of magnitude greater than in human. Nevertheless, the rate of inactivation is 2-3 orders of magnitude greater than for simple epoxides such as butadiene monoxide and about one order of magnitude higher than for the diglycidyl ether of bisphenol A (BADGE). The transdermal penetration and metabolism of [14C]-C10GE was studied in fresh full-thickness mouse, and dermatomized human and rat skin. Of the total radioactivity applied on the skin, only 0.24+/-0.06 (SD), 1.8+/-0.2 and 6.8+/-0.6% penetrated through human, mouse and rat skin respectively. The corresponding apparent skin permeability constants were 0.81, 6.42 and 26.4 x 10(-6) cm/h. During transdermal penetration, [14C]-C10GE was extensively hydrolysed to the corresponding diol and the free acid. Only 0.01, 0.11 and 0.21]% of the applied dose was absorbed unchanged through the human, mouse and rat skin respectively.

  8. Stepwise O-Atom Transfer in Heme-Based Tryptophan Dioxygenase: Role of Substrate Ammonium in Epoxide Ring Opening.

    PubMed

    Shin, Inchul; Ambler, Brett R; Wherritt, Daniel; Griffith, Wendell P; Maldonado, Amanda C; Altman, Ryan A; Liu, Aimin

    2018-03-28

    Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1 H NMR, 13 C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.

  9. Functional Study of the Vitamin K Cycle Enzymes in Live Cells

    PubMed Central

    Tie, J.-K.; Stafford, D.W.

    2018-01-01

    Vitamin K-dependent carboxylation, an essential posttranslational modification catalyzed by gamma-glutamyl carboxylase, is required for the biological functions of proteins that control blood coagulation, vascular calcification, bone metabolism, and other important physiological processes. Concomitant with carboxylation, reduced vitamin K (KH2) is oxidized to vitamin K epoxide (KO). KO must be recycled back to KH2 by the enzymes vitamin K epoxide reductase and vitamin K reductase in a pathway known as the vitamin K cycle. Our current knowledge about the enzymes of the vitamin K cycle is mainly based on in vitro studies of each individual enzymes under artificial conditions, which are of limited usefulness in understanding how the complex carboxylation process is carried out in the physiological environment. In this chapter, we review the current in vitro activity assays for vitamin K cycle enzymes. We describe the rationale, establishment, and application of cell-based assays for the functional study of these enzymes in the native cellular milieu. In these cell-based assays, different vitamin K-dependent proteins were designed and stably expressed in mammalian cells as reporter proteins to accommodate the readily used enzyme-linked immunosorbent assay for carboxylation efficiency evaluation. Additionally, recently emerged genome-editing techniques TALENs and CRISPR-Cas9 were used to knock out the endogenous enzymes in the reporter cell lines to eliminate the background. These cell-based assays are easy to scale up for high-throughput screening of inhibitors of vitamin K cycle enzymes and have been successfully used to clarify the genotypes and their clinical phenotypes of enzymes of the vitamin K cycle. PMID:28065270

  10. Crosslinking of Perfluorocarbon Polymers

    DTIC Science & Technology

    1977-04-01

    absorption in the 8.0-8.7 M region, the presence of oxide can be excluded and thus the higher than to date reported melting point is most likely due...did not produce any epoxide. Apparently the stabilizer present in the Mallinckrodt hydrogen peroxide ( acetanilide ) promoted degradation of the epoxide...DTA curve (see Figure 3) Freon E-7 has a boiling point above 2500C. The broadness of the endotherm indicates that it is a multi-component mixture

  11. General Approach to the Synthesis of the Chlorosulfolipids Danicalipin A, Mytilipin A, and Malhamensilipin A in Enantioenriched Form

    PubMed Central

    2015-01-01

    A second-generation synthesis of three structurally related chlorosulfolipids has been developed. Key advances include highly stereocontrolled additions to α,β-dichloroaldehydes, kinetic resolutions of complex chlorinated vinyl epoxide intermediates, and Z-selective alkene cross metatheses of cis-vinyl epoxides. This strategy facilitated the synthesis of enantioenriched danicalipin A, mytilipin A, and malhamensilipin A in nine, eight, and 11 steps, respectively. PMID:24494597

  12. Crystal structures and catalytic performance of three new methoxy substituted salen type nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Ghaffari, Abolfazl; Behzad, Mahdi; Pooyan, Mahsa; Amiri Rudbari, Hadi; Bruno, Giuseppe

    2014-04-01

    Three new nickel(II) complexes of a series of methoxy substituted salen type Schiff base ligands were synthesized and characterized by IR, UV-Vis and 1H NMR spectroscopy and elemental analysis. The ligands were synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with n-methoxysalicylaldehyde (n = 3, 4 and 5). Crystal structures of these complexes were determined. Electrochemical behavior of the complexes was studied by means of cyclic voltammetry in DMSO solutions. Catalytic performance of the complexes was studied in the epoxidation of cyclooctene using tert-butylhydroperoxide (TBHP) as oxidant under various conditions to find the optimum operating parameters. Low catalytic activity with moderate epoxide selectivity was observed in in-solvent conditions but in the solvent-free conditions, enhanced catalytic activity with high epoxide selectivity was achieved.

  13. Exploiting epoxidized natural rubber latex (ENRL) as a starting raw material for latex-based products

    NASA Astrophysics Data System (ADS)

    Siti Nor Qamarina, M.; Fatimah Rubaizah, M. R.; Nurul Suhaira, A.; Norhanifah, M. Y.

    2017-12-01

    Epoxidized natural rubber latex (ENRL) is a chemically modified natural rubber latex produced from epoxidation process that involves usage of organic peracids. Conversion of the ENRL into dry rubber products has been known to exhibit many beneficial properties, however limited published works were found on diversifiying the ENRL latex-based products applications. In this preliminary work, different source of raw materials and neutralization systems were investigated. The objective was to explore possibilities in producing distinctive ENRL. Findings have demonstrated that different source of raw materials and neutralization systems influenced the typical ENRL specifications, stability behavior and particle size distribution. Morphological observations performed on these ENRL systems appeared to agree with the ENRL characteristics achieved. Since experimenting these two main factors resulted in encouraging ENRL findings, detailed work shall be further scrutinized to search for an optimum condition in producing marketable ENRL specifically for latex-based products applications.

  14. Na@SiO2-Mediated Addition of Organohalides to Carbonyl Compounds for the Formation of Alcohols and Epoxides

    NASA Astrophysics Data System (ADS)

    Kapoor, Mohit; Hwu, Jih Ru

    2016-11-01

    Alcohols and epoxides were generated by the addition of organohalides to carbonyl compounds in the presence of sodium metal impregnated with silica gel (Na@SiO2) in THF at 25 °C through a radical pathway. Under the same conditions, Schiff bases were also successfully converted to the corresponding amines. Furthermore, the reaction of aldehydes with α-haloesters or 4-(chloromethyl)-coumarin with the aid of Na@SiO2 generated trans epoxides. An unprecedented mechanism is proposed for their formation. The advantages associated with these new reactions include: (1) products are obtained in good-to-excellent yields, (2) reactions are completed at room temperatures in a short period of time (<2.0 h), (3) it is unnecessary to perform the reactions under anhydrous conditions, and (4) the entire process requires only simple manipulations.

  15. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal-organic framework

    NASA Astrophysics Data System (ADS)

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2015-03-01

    Metal-organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH2 (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV-vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity.

  16. Structural insights into human microsomal epoxide hydrolase by combined homology modeling, molecular dynamics simulations, and molecular docking calculations.

    PubMed

    Saenz-Méndez, Patricia; Katz, Aline; Pérez-Kempner, María Lucía; Ventura, Oscar N; Vázquez, Marta

    2017-04-01

    A new homology model of human microsomal epoxide hydrolase was derived based on multiple templates. The model obtained was fully evaluated, including MD simulations and ensemble-based docking, showing that the quality of the structure is better than that of only previously known model. Particularly, a catalytic triad was clearly identified, in agreement with the experimental information available. Analysis of intermediates in the enzymatic mechanism led to the identification of key residues for substrate binding, stereoselectivity, and intermediate stabilization during the reaction. In particular, we have confirmed the role of the oxyanion hole and the conserved motif (HGXP) in epoxide hydrolases, in excellent agreement with known experimental and computational data on similar systems. The model obtained is the first one that fully agrees with all the experimental observations on the system. Proteins 2017; 85:720-730. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Experimental verification, and domain definition, of structural alerts for protein binding: epoxides, lactones, nitroso, nitros, aldehydes and ketones.

    PubMed

    Nelms, M D; Cronin, M T D; Schultz, T W; Enoch, S J

    2013-01-01

    This study outlines how a combination of in chemico and Tetrahymena pyriformis data can be used to define the applicability domain of selected structural alerts within the profilers of the OECD QSAR Toolbox. Thirty-three chemicals were profiled using the OECD and OASIS profilers, enabling the applicability domain of six structural alerts to be defined, the alerts being: epoxides, lactones, nitrosos, nitros, aldehydes and ketones. Analysis of the experimental data showed the applicability domains for the epoxide, nitroso, aldehyde and ketone structural alerts to be well defined. In contrast, the data showed the applicability domains for the lactone and nitro structural alerts needed modifying. The accurate definition of the applicability domain for structural alerts within in silico profilers is important due to their use in the chemical category in predictive and regulatory toxicology. This study highlights the importance of utilizing multiple profilers in category formation.

  18. Self-repairing systems based on ionomers and epoxidized natural rubber blends.

    PubMed

    Rahman, Md Arifur; Penco, Maurizio; Peroni, Isabella; Ramorino, Giorgio; Grande, Antonio Mattia; Di Landro, Luca

    2011-12-01

    The development of materials with the ability of intrinsic self-repairing after damage in a fashion resembling that of living tissues has important scientific and technological implications, particularly in relation to cost-effective approaches toward damage management of materials. Natural rubbers with epoxy functional groups in the macromolecular chain (ENR) and ethylene-methacrylic acid ionomers having acid groups partially neutralized with metal ions possess self-repairing behavior following high energy impacts. This research investigates the self-repairing behavior of both ENR and ionomers during ballistic puncture test on the basis of their thermal and mechanical properties. Heterogeneous blending of ionomers and ENR have also been used here as a strategy to tune the thermal and mechanical properties of the materials. Interestingly, blends of sodium ion containing ionomer exhibit complete self-repairing behavior, whereas blends of zinc ion containing ionomer show limited mending. The chemical structure studied by FTIR and thermal analysis shows that both ion content of ionomer and functionality of ENR have significant influence on the self-repairing behavior of blends. The mobility of rubbery phases along with its interaction to ionomer phase in the blends significantly changes the mending capability of materials. The healing behavior of the materials has been discussed on the basis of their thermal, mechanical, and rheological tests for each materials. © 2011 American Chemical Society

  19. Hybrid Nanomaterials with Single-Site Catalysts by Spatially Controllable Immobilization of Nickel Complexes via Photoclick Chemistry for Alkene Epoxidation.

    PubMed

    Ghosh, Dwaipayan; Febriansyah, Benny; Gupta, Disha; Ng, Leonard Kia-Sheun; Xi, Shibo; Du, Yonghua; Baikie, Tom; Dong, ZhiLi; Soo, Han Sen

    2018-05-22

    Catalyst deactivation is a persistent problem not only for the scientific community but also in industry. Isolated single-site heterogeneous catalysts have shown great promise to overcome these problems. Here, a versatile anchoring strategy for molecular complex immobilization on a broad range of semiconducting or insulating metal oxide ( e. g., titanium dioxide, mesoporous silica, cerium oxide, and tungsten oxide) nanoparticles to synthesize isolated single-site catalysts has been studied systematically. An oxidatively stable anchoring group, maleimide, is shown to form covalent linkages with surface hydroxyl functionalities of metal oxide nanoparticles by photoclick chemistry. The nanocomposites have been thoroughly characterized by techniques including UV-visible diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and X-ray absorption spectroscopy (XAS). The IR spectroscopic studies confirm the covalent linkages between the maleimide group and surface hydroxyl functionalities of the oxide nanoparticles. The hybrid nanomaterials function as highly efficient catalysts for essentially quantitative oxidations of terminal and internal alkenes and show molecular catalyst product selectivities even in more eco-friendly solvents. XAS studies verify the robustness of the catalysts after several catalytic cycles. We have applied the photoclick anchoring methodology to precisely control the deposition of a luminescent variant of our catalyst on the metal oxide nanoparticles. Overall, we demonstrate a general approach to use irradiation to anchor molecular complexes on oxide nanoparticles to create recyclable, hybrid, single-site catalysts that function with high selectivity in a broad range of solvents. We have achieved a facile, spatially and temporally controllable photoclick method that can potentially be extended to other ligands, catalysts, functional molecules, and surfaces.

  20. Noncovalent Organocatalysis Based on Hydrogen Bonding: Elucidation of Reaction Paths by Computational Methods

    NASA Astrophysics Data System (ADS)

    Etzenbach-Effers, Kerstin; Berkessel, Albrecht

    In this article, the functions of hydrogen bonds in organocatalytic reactions are discussed on atomic level by presenting DFT studies of selected examples. Theoretical investigation provides a detailed insight in the mechanism of substrate activation and orientation, and the stabilization of transition states and intermediates by hydrogen bonding (e.g. oxyanion hole). The examples selected comprise stereoselective catalysis by bifunctional thioureas, solvent catalysis by fluorinated alcohols in epoxidation by hydrogen peroxide, and intramolecular cooperative hydrogen bonding in TADDOL-type catalysts.

  1. Photochemical cycloaddition reagents for rigidly attaching the 1, 4-dimethoxynaphthalene chromophore to scaffold alkenes

    PubMed

    Margetic; Russell; Warrener

    2000-12-14

    The norbornanecyclobutene epoxides 1a-1c containing a fused 1, 4-dimethoxynaphthalene chromophore have been reacted with cyclobutenes, cyclohexenes, norbornenes, 7-isopropylidenenorbornenes, 7-azanorbornenes, and other cyclic or electron-deficient alkenes at room temperature to form 1:1 adducts in stereoselective 1,3-dipolar cycloaddition reactions; alkynes can also participate in this reaction. The ability to form 2:1 adducts has also been demonstrated, thereby opening up opportunities for preparing functionalized products with large chromophore separations.

  2. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed Central

    Stahl, U.; Banas, A.; Stymne, S.

    1995-01-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization. PMID:12228415

  3. Plant Microsomal Phospholipid Acyl Hydrolases Have Selectivities for Uncommon Fatty Acids.

    PubMed

    Stahl, U.; Banas, A.; Stymne, S.

    1995-03-01

    Developing endosperms and embryos accumulating triacylglycerols rich in caproyl (decanoyl) groups (i.e. developing embryos of Cuphea procumbens and Ulmus glabra) had microsomal acyl hydrolases with high selectivities toward phosphatidylcholine with this acyl group. Similarly, membranes from Euphorbia lagascae and Ricinus communis endosperms, which accumulate triacylglycerols with vernoleate (12-epoxy-octadeca-9-enoate) and ricinoleate (12-hydroxy-octadeca-9-enoate), respectively, had acyl hydrolases that selectively removed their respective oxygenated acyl group from the phospholipids. The activities toward phospholipid substrates with epoxy, hydroxy, and medium-chain acyl groups varied greatly between microsomal preparations from different plant species. Epoxidated and hydroxylated acyl groups in sn-1 and sn-2 positions of phosphatidylcholine and in sn-1-lysophosphatidylcholine were hydrolyzed to a similar extent, whereas the hydrolysis of caproyl groups was highly dependent on the positional localization.

  4. Boomerang-type substitution reaction: reactivity of fullerene epoxides and a halofullerenol.

    PubMed

    Jia, Zhenshan; Zhang, Xiang; Zhang, Gaihong; Huang, Shaohua; Fang, Hao; Hu, Xiangqing; Li, Yuliang; Gan, Liangbing; Zhang, Shiwei; Zhu, Daoben

    2007-02-05

    The C(s)-symmetric fullerene chlorohydrin C60(Cl)(OH)(OOtBu)4 reacts with 4-dimethylaminopyridine (DMAP) and 1,4-diazabicyclo[2.2.2]octane (DABCO) to yield two isomers with the formula C60(O)(OOtBu)4 in good yields. These isomers differ with respect to the location of the epoxy functionality. The one from DMAP is C(s) symmetric, whereas that from DABCO is C1 symmetric with the epoxy group on the central pentagon. Two different mechanisms are proposed to explain the chemoselectivity of these reactions. The reaction with DMAP involves single-electron transfer as the key step; DMAP acts as the electron donor. A combination of an oxygen-atom shift and S(N)2'' processes (boomerang substitution) are responsible for the formation of isomer with DACBO. Various related reactions support the proposed mechanisms. The structures of new fullerene derivatives were determined by spectroscopy, single-crystal X-ray analysis, and chemical correlation experiments.

  5. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation.

    PubMed

    Lee, M; Lenman, M; Banaś, A; Bafor, M; Singh, S; Schweizer, M; Nilsson, R; Liljenberg, C; Dahlqvist, A; Gummeson, P O; Sjödahl, S; Green, A; Stymne, S

    1998-05-08

    Acetylenic bonds are present in more than 600 naturally occurring compounds. Plant enzymes that catalyze the formation of the Delta12 acetylenic bond in 9-octadecen-12-ynoic acid and the Delta12 epoxy group in 12,13-epoxy-9-octadecenoic acid were characterized, and two genes, similar in sequence, were cloned. When these complementary DNAs were expressed in Arabidopsis thaliana, the content of acetylenic or epoxidated fatty acids in the seeds increased from 0 to 25 or 15 percent, respectively. Both enzymes have characteristics similar to the membrane proteins containing non-heme iron that have histidine-rich motifs.

  6. Rhodococcus erythropolis DCL14 Contains a Novel Degradation Pathway for Limonene

    PubMed Central

    van der Werf, Mariët J.; Swarts, Henk J.; de Bont, Jan A. M.

    1999-01-01

    Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (−)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1,2-monooxygenase activity, a cofactor-independent limonene-1,2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S,4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R,4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the β-oxidation pathway. PMID:10224006

  7. Synthesis of (+)-Didemniserinolipid B: Application of a 2-Allyl-4-fluorophenyl Auxiliary for Relay Ring-Closing Metathesis

    PubMed Central

    Marvin, Christopher C.; Voight, Eric A.; Suh, Judy M.; Paradise, Christopher L.; Burke, Steven D.

    2009-01-01

    The synthesis of didemniserinolipid B utilizing a ketalization/ring-closing metathesis (K/RCM) strategy is described. In the course of this work, a novel 2-allyl-4-fluorophenyl auxiliary for relay ring-closing metathesis (RRCM) was developed which increased the yield of the RCM. The resulting 6,8-dioxabicyclo[3.2.1]octene core was selectively functionalized by complimentary dihydroxylation and epoxidation routes to install the C10 axial alcohol. This bicyclic ketal core was further functionalized by etherification and an alkene cross metathesis with an unsaturated α-phenylselenyl ester en route to completing the total synthesis. PMID:18811201

  8. Förster resonance energy transfer competitive displacement assay for human soluble epoxide hydrolase

    PubMed Central

    Lee, Kin Sing Stephen; Morisseau, Christophe; Yang, Jun; Wang, Peng; Hwang, Sung Hee; Hammock, Bruce D.

    2013-01-01

    The soluble epoxide hydrolase (sEH), responsible for the hydrolysis of various fatty acid epoxides to their corresponding 1,2-diols, is becoming an attractive pharmaceutical target. These fatty acid epoxides, particularly epoxyeicosatrienoic acids (EETs), play an important role in human homeostatic and inflammation processes. Therefore, inhibition of human sEH, which stabilizes EETs in vivo, brings several beneficial effects to human health. Although there are several catalytic assays available to determine the potency of sEH inhibitors, measuring the in vitro inhibition constant (Ki) for these inhibitors using catalytic assay is laborious. In addition, koff, which has been recently suggested to correlate better with the in vivo potency of inhibitors, has never been measured for sEH inhibitors. To better measure the potency of sEH inhibitors, a reporting ligand, 1-(adamantan-1-yl)-3-(1-(2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetyl) piperidin-4-yl)urea (ACPU), was designed and synthesized. With ACPU, we have developed a Förster resonance energy transfer (FRET)-based competitive displacement assay using intrinsic tryptophan fluorescence from sEH. In addition, the resulting assay allows us to measure the Ki values of very potent compounds to the picomolar level and to obtain relative koff values of the inhibitors. This assay provides additional data to evaluate the potency of sEH inhibitors. PMID:23219719

  9. Development and characterization of soy-based epoxy resins and pultruded FRP composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang

    This dissertation focuses on the development, manufacture and characterization of novel soy-based epoxy FRP composites. Use of alternative epoxy resin systems derived from a renewable resource holds potential for low cost raw materials for the polymer and composite industries. Epoxidized Allyl Soyate (EAS) and Epoxidized Methyl Soyate (EMS) were developed from soybean oil with two chemical modification procedures: transesterification and epoxidation. This research investigates the curing characteristics and thermal and mechanical properties of the neat soyate resin systems. The derived soyate resins have higher reactivity and superior performance compared to commercially available epoxidized soybean oil. An efficient two-step curing method was developed in order to utilize these soyate resins to their full potential. The epoxy co-resin systems with varied soyate resin content were successfully used to fabricate composite material through pultrusion. The pultrusion resin systems with 30 wt% soyate resins yielded improved, or comparable mechanical properties with neat commercial resins. A finite element analysis of the heat transfer and curing process was performed to study the processing characterization on glass/epoxy composite pultrusion. This model can be used to establish baseline process variables and will benefit subsequent optimization. This research demonstrates that soy-based resins, especially EAS, show considerable promise as an epoxy resin supplement for use in polymer and composite structural applications. The new products derived from soybean oil can provide competitive performance, low cost and environmental advantages.

  10. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-09-12

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.

  11. Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis

    PubMed Central

    Hotta, Kinya; Chen, Xi; Paton, Robert S.; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I.; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N.; Kim, Chu-Young

    2012-01-01

    Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid1 and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed2. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates2. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions3–5. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A6 to form lasalocid A7,8. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue9 to provide the first atomic structure—to our knowledge—of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. PMID:22388816

  12. Antisense suppression of violaxanthin de-epoxidase in tobacco does not affect plant performance in controlled growth conditions.

    PubMed

    Chang, S H; Bugos, R C; Sun, W H; Yamamoto, H Y

    2000-01-01

    Violaxanthin de-epoxidase (VDE) catalyzes the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in the xanthophyll cycle. Tobacco was transformed with an antisense VDE construct under control of the cauliflower mosaic virus 35S promoter to determine the effect of reduced levels of VDE on plant growth. Screening of 40 independent transformants revealed 18 antisense lines with reduced levels of VDE activity with two in particular (TAS32 and TAS39) having greater than 95% reduction in VDE activity. Northern analysis demonstrated that these transformants had greatly suppressed levels of VDE mRNA. De-epoxidation of violaxanthin was inhibited to such an extent that no zeaxanthin and only very low levels of antheraxanthin could be detected after exposure of leaves to high light (2000 mumol m(-2) s(-1) for 20 min) with no observable effect on levels of other carotenoids and chlorophyll. Non-photochemical quenching was greatly reduced in the antisense VDE tobacco, demonstrating that a significant level of the non-photochemical quenching in tobacco requires de-epoxidation of violaxanthin. Although the antisense plants demonstrated a greatly impaired de-epoxidation of violaxanthin, no effect on plant growth or photosynthetic rate was found when plants were grown at a photon flux density of 500 or 1000 mumol m(-2) s(-1) under controlled growth conditions as compared to wild-type tobacco.

  13. Heteropolytungstate nanoparticles: Microemulsion-mediated preparation and investigation of their catalytic activity in the epoxidation of olefins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masteri-Farahani, M., E-mail: mfarahany@yahoo.com; Ghorbani, M.

    2016-04-15

    Highlights: • Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles were synthesized by using microemulsion system. • The nanoparticles have uniform size of about 25 nm and spherical morphologies. • The prepared nanoparticles act as reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}. - Abstract: Keggin type Q{sub 3}PW{sub 12}O{sub 40} nanoparticles (Q = cetyltrimethylammonium cation) were synthesized in water-in-oil (w/o) microemulsion consisted of water/cetyltrimethylammonium bromide/n-butanol/isooctane. Reaction of Na{sub 2}WO{sub 4}, Na{sub 2}HPO{sub 4} and hydrochloric acid within water containing nanoreactors of reverse micelles resulted in the preparation of Q{sub 3}PW{sub 12}O{sub 40} nanoparticles. The resultant nanoparticles weremore » analyzed by physicochemical methods such as FT-IR spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, thermogravimetric analyses (TGA-DTA), scanning and transmission electron microscopy and atomic force microscopy which show nearly uniform spherical nanoparticles with size of about 15 nm. Finally, catalytic activity of the Q{sub 3}PW{sub 12}O{sub 40} nanoparticles was examined in the epoxidation of olefins with H{sub 2}O{sub 2}. The prepared nanoparticles acted as recoverable and reusable catalyst in the epoxidation of olefins with H{sub 2}O{sub 2}.« less

  14. Development of a γ-alumina- nanoparticle-functionalized porous polymer monolith for the enrichment of Sudan dyes in red wine samples.

    PubMed

    Li, Wanjun; Zhou, Xiao; Ye, Juanjuan; Jia, Qiong

    2013-10-01

    Monolithic materials were synthesized in capillaries by in situ polymerization with N-isopropylacrylamide, glycidyl methacrylate, and ethylene dimethacrylate as the monomers, and methanol and PEG as the porogens. With γ-alumina nanoparticles attached to the surface of the porous monolithic column via epoxide groups, a novel polymer monolith microextraction (PMME) material was prepared with a good mechanical stability and a high extraction capacity. SEM and X-ray photoelectron spectroscopy were employed to characterize the modified monolithic column, demonstrating that γ-alumina nanoparticles were effectively functionalized onto the monolithic column. In addition, a new method was developed for the analysis of Sudan I-IV dyes using PMME coupled with HPLC. In order to obtain the optimum extraction efficiency, the PMME conditions including desorption solvent type, sample pH, sample volume, sample flow rate, and eluent flow rate were investigated. Under the optimum conditions, we obtained acceptable linearities, low LODs, and good intra- and interday RDSs. When applied to the determination of Sudan I-IV dyes in red wine samples, satisfactory recoveries were obtained in the range of 84.0-115.9%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Triazole-Containing Metal-Organic Framework as a Highly Effective and Substrate Size-Dependent Catalyst for CO2 Conversion.

    PubMed

    Li, Pei-Zhou; Wang, Xiao-Jun; Liu, Jia; Lim, Jie Sheng; Zou, Ruqiang; Zhao, Yanli

    2016-02-24

    A highly porous metal-organic framework (MOF) incorporating both exposed metal sites and nitrogen-rich triazole groups was successfully constructed via solvothermal assembly of a clicked octcarboxylate ligand and Cu(II) ions, which presents a high affinity toward CO2 molecules clearly verified by gas adsorption and Raman spectral detection. The constructed MOF featuring CO2-adsorbing property and exposed Lewis-acid metal sites could serve as an excellent catalyst for CO2-based chemical fixation. Catalytic activity of the MOF was confirmed by remarkably high efficiency on CO2 cycloaddition with small epoxides. When extending the substrates to larger ones, its activity showed a sharp decrease. These observations reveal that MOF-catalyzed CO2 cycloaddition of small substrates was carried out within the framework, while large ones cannot easily enter into the porous framework for catalytic reactions. Thus, the synthesized MOF exhibits high catalytic selectivity to different substrates on account of the confinement of the pore diameter. The high efficiency and size-dependent selectivity toward small epoxides on catalytic CO2 cycloaddition make this MOF a promising heterogeneous catalyst for carbon fixation.

  16. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-08-04

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  17. Electronic Structure and Reactivity of TM-Doped La1-xSrxCoO3 (TM = Ni, Fe) Catalysts

    NASA Astrophysics Data System (ADS)

    Grice, S. C.; Flavell, W. R.; Thomas, A. G.; Warren, S.; Marr, P. G.; Jewitt, D. E.; Khan, N.; Dunwoody, P. M.; Jones, S. A.

    The catalytic properties of LaCoO3 in the oxidation of organic molecules in aqueous solution are explored as a function of doping with both Sr substitution for La and Fe and Ni substitution for Co. VUV photoemission is used to explore the surface reactivity of the ceramic catalysts in aqueous solution, using H2O as a probe molecule. These measurements are complemented by EXAFS and XANES measurements designed to probe the local defect structure and by GC measurements of catalytic activity in the aqueous epoxidation of crotyl alcohol. We relate the observed catalytic activity to the defect structure of the doped materials. In Ni-doped materials, oxygen vacancies appear to be the predominant defect, whereas in Fe-doped samples, electron holes are stabilised on Fe, leading to very different behaviour in oxidation. The surface reactivity to water is also influenced by the TM d electron count, with water binding more strongly to Fe-doped materials than to those containing Ni. The influence of these factors on the rate of the unwanted hydrogen peroxide decomposition reaction and hence on activity in epoxidation is discussed.

  18. Desaturation reactions catalyzed by soluble methane monooxygenase.

    PubMed

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  19. Fragment Screening of Soluble Epoxide Hydrolase for Lead Generation-Structure-Based Hit Evaluation and Chemistry Exploration.

    PubMed

    Xue, Yafeng; Olsson, Thomas; Johansson, Carina A; Öster, Linda; Beisel, Hans-Georg; Rohman, Mattias; Karis, David; Bäckström, Stefan

    2016-03-04

    Soluble epoxide hydrolase (sEH) is involved in the regulation of many biological processes by metabolizing the key bioactive lipid mediator, epoxyeicosatrienoic acids. For the development of sEH inhibitors with improved physicochemical properties, we performed both a fragment screening and a high-throughput screening aiming at an integrated hit evaluation and lead generation. Followed by a joint dose-response analysis to confirm the hits, the identified actives were then effectively triaged by a structure-based hit-classification approach to three prioritized series. Two distinct scaffolds were identified as tractable starting points for potential lead chemistry work. The oxoindoline series bind at the right-hand side of the active-site pocket with hydrogen bonds to the protein. The 2-phenylbenzimidazole-4-sulfonamide series bind at the central channel with significant induced fit, which has not been previously reported. On the basis of the encouraging initial results, we envision that a new lead series with improved properties could be generated if a vector is found that could merge the cyclohexyl functionality of the oxoindoline series with the trifluoromethyl moiety of the 2-phenylbenzimidazole-4-sulfonamide series. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photoredox Catalysis for the Generation of Carbon Centered Radicals.

    PubMed

    Goddard, Jean-Philippe; Ollivier, Cyril; Fensterbank, Louis

    2016-09-20

    Radical chemistry has witnessed over the last decades important advances that have positioned it as a methodology of choice in synthetic chemistry. A number of great attributes such as specific reactivities, the knowledge of the kinetics of most elementary processes, the functional group tolerance, and the possibility to operate cascade sequences are clearly responsible for this craze. Nevertheless, at the end of the last century, radical chemistry appeared plagued by several hurdles to overcome such as the use of environmentally problematic mediators or the impossibility of scale up. While the concept of photocatalysis was firmly established in the coordination chemistry community, its diffusion in organic synthetic chemistry remained sporadic for decades until the end of the 2000s with the breakthrough merging of organocatalysis and photocatalysis by the MacMillan group and contemporary reports by the groups of Yoon and Stephenson. Since then, photoredox catalysis has enjoyed particularly active and intense developments. It is now the topic of a still increasing number of publications featuring various applications from asymmetric synthesis, total synthesis of natural products, and polymerization to process (flow) chemistry. In this Account, we survey our own efforts in this domain, focusing on the elaboration of new photocatalytic pathways that could lead to the efficient generation of C-centered functionalized alkyl and aryl radicals. Both reductive and oxidative manifolds are accessible through photoredox catalysis, which has guided us along these lines in our projects. Thus, we studied the photocatalytic reduction of onium salts such as sulfoniums and iodoniums for the production of the elusive aryl radical intermediates. Progressing to more relevant chemistry for synthesis, we examined the cleavage of C-O and the C-Br bonds for the generation of alkyl C-centered radicals. Activated epoxides could serve as valuable substrates of a photocatalyzed variant of the Nugent-RajanBabu-Gansäuer homolytic cleavage of epoxides. Using imidazole based carbamates, we could also devise the first photocatalyzed Barton-McCombie deoxygenation reaction. Finally, bromophenylacetate can be reduced using the [Au2(μ-dppm)2]Cl2 photocatalyst under UVA or visible-light. This was used for the initiation of the controlled atom transfer radical polymerization of methacrylates and acrylates in solution or laminate. Our next endeavors concerned the photocatalyzed oxidation of stabilized carbanions such as enolates of 1,3-dicarbonyl substrates, trifluoroborates, and more extensively bis-catecholato silicates. Because of their low oxidation potentials, the later have proved to be exquisite sources of radical entities, which can be engaged in diverse intermolecular reactions such as vinylation, alkynylation, and conjugate additions. The bis-catecholato silicates were also shown to behave as excellent partners of dual photoredox-nickel catalysis leading in an expeditious manner to libraries of cross coupling products.

  1. Lutein from deepoxidation of lutein epoxide replaces zeaxanthin to sustain an enhanced capacity for nonphotochemical chlorophyll fluorescence quenching in avocado shade leaves in the dark.

    PubMed

    Förster, Britta; Pogson, Barry James; Osmond, Charles Barry

    2011-05-01

    Leaves of avocado (Persea americana) that develop and persist in deep shade canopies have very low rates of photosynthesis but contain high concentrations of lutein epoxide (Lx) that are partially deepoxidized to lutein (L) after 1 h of exposure to 120 to 350 μmol photons m(-2) s(-1), increasing the total L pool by 5% to 10% (ΔL). Deepoxidation of Lx to L was near stoichiometric and similar in kinetics to deepoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). Although the V pool was restored by epoxidation of A and Z overnight, the Lx pool was not. Depending on leaf age and pretreatment, the pool of ΔL persisted for up to 72 h in the dark. Metabolism of ΔL did not involve epoxidation to Lx. These contrasting kinetics enabled us to differentiate three states of the capacity for nonphotochemical chlorophyll fluorescence quenching (NPQ) in attached and detached leaves: ΔpH dependent (NPQ(ΔpH)) before deepoxidation; after deepoxidation in the presence of ΔL, A, and Z (NPQ(ΔLAZ)); and after epoxidation of A+Z but with residual ΔL (NPQ(ΔL)). The capacity of both NPQ(ΔLAZ) and NPQ(ΔL) was similar and 45% larger than NPQ(ΔpH), but dark relaxation of NPQ(ΔLAZ) was slower. The enhanced capacity for NPQ was lost after metabolism of ΔL. The near equivalence of NPQ(ΔLAZ) and NPQ(ΔL) provides compelling evidence that the small dynamic pool ΔL replaces A+Z in avocado to "lock in" enhanced NPQ. The results are discussed in relation to data obtained with other Lx-rich species and in mutants of Arabidopsis (Arabidopsis thaliana) with increased L pools.

  2. Formation of a Cyclopropyl Epoxide via a Leukotriene A Synthase-related Pathway in an Anaerobic Reaction of Soybean Lipoxygenase-1 with 15S-Hydroperoxyeicosatetraenoic Acid

    PubMed Central

    Zheng, Yuxiang; Brash, Alan R.

    2010-01-01

    The further conversion of an arachidonic acid hydroperoxide to a leukotriene A (LTA) type epoxide by specific lipoxygenase (LOX) enzymes constitutes a key step in inflammatory mediator biosynthesis. Whereas mammalian 5-LOX transforms its primary product (5S-hydroperoxyeicosatetraenoic acid; 5S-HPETE) almost exclusively to LTA4, the model enzyme, soybean LOX-1, normally produces no detectable leukotrienes and instead further oxygenates its primary product 15S-HPETE to 5,15- and 8,15-dihydroperoxides. Mammalian 15-LOX-1 displays both types of activity. We reasoned that availability of molecular oxygen within the LOX active site favors oxygenation, whereas lack of O2 promotes LTA epoxide synthesis. To test this, we reacted 15S-HPETE with soybean LOX-1 under anaerobic conditions and identified the products by high pressure liquid chromatography, UV, mass spectrometry, and NMR. Among the products, we identified a pair of 8,15-dihydroxy diastereomers with all-trans-conjugated trienes that incorporated 18O from H218O at C-8, indicative of the formation of 14,15-LTA4. A pair of 5,15-dihydroxy diastereomers containing two trans,trans-conjugated dienes (6E,8E,11E,13E) and that incorporated 18O from H218O at C-5 was deduced to arise from hydrolysis of a novel epoxide containing a cyclopropyl ring, 14,15-epoxy-[9,10,11-cyclopropyl]-eicosa-5Z,7E,13E-trienoic acid. Also identified was the δ-lactone of the 5,15-diol, a derivative that exhibited no 18O incorporation due to its formation by intramolecular reaction of the carboxyl anion with the proposed epoxide intermediate. Our results support a model in which access to molecular oxygen within the active site directs the outcome from competing pathways in the secondary reactions of lipoxygenases. PMID:20194505

  3. Original Synthesis of Fluorenyl Alcohol Derivatives by Reductive Dehalogenation Initiated by TDAE.

    PubMed

    Giuglio-Tonolo, Alain Gamal; Terme, Thierry; Vanelle, Patrice

    2016-10-24

    We report here a novel and easy-to-handle reductive dehalogenation of 9-bromofluorene in the presence of arylaldehydes and dicarbonyl derivatives to give the corresponding fluorenyl alcohol derivatives and Darzens epoxides as by-products in tetrakis(dimethylamino)ethylene (TDAE) reaction conditions. The reaction is believed to proceed via two successive single electron transfers to generate the fluorenyl anion which was able to react with different electrophiles. A mechanistic study was conducted to understand the formation of the epoxide derivatives.

  4. Synthesis of Potential Metaboliters in the 1,2,3,4, and 5,6,7,8 Benzo Ring Positions of the Polycyclic Aromatic Hydrocarbon Benzo(G)Chrysene.

    DTIC Science & Technology

    1986-01-01

    biological activity. Pullman, in 1945 , noted that active compounds contained angular benzo rings. She introduced the terminology "K- region" to refer to...Figure 1.6) give .... ~~~~~. .. .. .. . ........ . _............ . _.-.•.-•.. . ..... ... ,. 12 .xcellent correlation when measured reactivity ( hydrolysis ...molecular plane, the diol epoxide is trans or series 2. Early studies indicated that isomer 1 is the more reactive diol epoxide in hydrolysis reactions

  5. Gas-phase and solution-phase polymerization of epoxides by Cr(salen) complexes: evidence for a dinuclear cationic mechanism.

    PubMed

    Schön, Eva; Zhang, Xiangyang; Zhou, Zhiping; Chisholm, Malcolm H; Chen, Peter

    2004-11-15

    The gas-phase reactions of a series of mass-selected mononuclear and dinuclear Cr(salen) complexes with propylene oxide suggest that the enhanced reactivity of the dinuclear complexes in gas-phase and in solution may derive from a dicationic mechanism in which the alkoxide chain is mu(2)-coordinated to two Lewis acidic metal centers. The double coordination is proposed to suppress backbiting, and hence chain-transfer in the gas-phase homopolymerization of epoxides.

  6. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  7. Alkyl halide-free heteroatom alkylation and epoxidation facilitated by a recyclable polymer-supported oxidant for the in-flow preparation of diazo compounds.

    PubMed

    Nicolle, Simon M; Hayes, Christopher J; Moody, Christopher J

    2015-03-16

    Highly reactive metal carbenes, generated from simple ketones via diazo compounds, including diazo-amides and -phosphonates, using a recyclable reagent in-flow, are transient but versatile electrophiles for heteroatom alkylation reactions and for epoxide formation. The method produces no organic waste, with the only by-products being water, KI and nitrogen, without the attendant hazards of isolation of intermediate diazo compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enantioselective Ring Opening of Epoxides with 4-Methoxyphenol Catalyzed by Gallium Heterobimetallic Complexes: An Efficient Method for the Synthesis of Optically Active 1,2-Diol Monoethers.

    PubMed

    Iida, Takehiko; Yamamoto, Noriyoshi; Matsunaga, Shigeki; Woo, Hee-Gweon; Shibasaki, Masakatsu

    1998-09-04

    Useful chiral building blocks such as 1,2-diols can be obtained by the enantioselective ring opening of achiral epoxides with oxygen nucleophiles. The ring opening is carried out effectively (up to 94 % ee) with 4-methoxyphenol and catalytic amounts of gallium complexes. The novel complex GaSO 1 displays a particularly high catalytic activity. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  9. Stereoselective construction of the 5-hydroxy diazabicyclo[4.3.1]decane-2-one scaffold, a privileged motif for FK506-binding proteins.

    PubMed

    Bischoff, Matthias; Sippel, Claudia; Bracher, Andreas; Hausch, Felix

    2014-10-17

    A stereoselective synthesis of a derivatized bicyclic [4.3.1]decane scaffold based on an acyclic precursor is described. The key steps involve a Pd-catalyzed sp(3)-sp(2) Negishi-coupling, an asymmetric Shi epoxidation, and an intramolecular epoxide opening. Representative derivatives of this novel scaffold were synthesized and found to be potent inhibitors of the psychiatric risk factor FKBP51, which bound to FKBP51 with the intended molecular binding mode.

  10. Greater cognitive decline with aging among elders with high serum concentrations of organochlorine pesticides.

    PubMed

    Kim, Se-A; Lee, Yu-Mi; Lee, Ho-Won; Jacobs, David R; Lee, Duk-Hee

    2015-01-01

    Although cognitive decline is very common in elders, age-related cognitive decline substantially differs among elders and the determinants of the differences in age-related cognitive decline are unclear. We investigated our hypothesis that the association between age and cognition was stronger in those with higher serum concentrations of organochlorine (OC) pesticides, common persistent and strongly lipophilic neurotoxic chemicals. Participants were 644 elders aged 60-85, participating in the National Health and Nutrition Examination Survey 1999-2002. Six OC pesticides (p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodipenyldichloroethylene (DDE), β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide) were evaluated. "Lower cognitive function" was defined as having a low Digit-Symbol Substitution Test (DSST) score (<25th percentile of DSST score, cutpoint 28 symbols substituted). Higher levels of β-hexachlorocyclohexane, trans-nonachlor, oxychlordane, and heptachlor epoxide modified the associations between age and lower cognitive function (Pinteraction<0.01, 0.03, <0.01, and 0.02, respectively). Elders in the 3rd tertile of these chemicals demonstrated a greater risk of lower cognitive function with aging, compared to those in the combined 1st and 2nd tertiles. Among those with highest OC pesticides (3rd tertile), the odds ratio for the risk of lower cognitive function was about 6 to 11 for the highest quintile of age (80-85 years) vs. the first quintile of age (60-63 years), while the association between age and lower cognitive function became flatter in those with lower OC pesticides (combined 1st and 2nd tertiles). Both DDT and DDE showed no interaction, with lower DSST scores for higher age irrespective of serum concentrations of DDT or DDE. Even though DSST score measures only one aspect of cognition, several OC pesticides modified aging-related prevalence of low cognitive score, a finding which should be evaluated in prospective studies.

  11. Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.

    PubMed

    Lee, Ting-Wai; Cherney, Maia M; Liu, Jie; James, Karen Ellis; Powers, James C; Eltis, Lindsay D; James, Michael N G

    2007-02-23

    The SARS coronavirus main peptidase (SARS-CoV M(pro)) plays an essential role in the life-cycle of the virus and is a primary target for the development of anti-SARS agents. Here, we report the crystal structure of M(pro) at a resolution of 1.82 Angstroms, in space group P2(1) at pH 6.0. In contrast to the previously reported structure of M(pro) in the same space group at the same pH, the active sites and the S1 specificity pockets of both protomers in the structure of M(pro) reported here are in the catalytically competent conformation, suggesting their conformational flexibility. We report two crystal structures of M(pro) having an additional Ala at the N terminus of each protomer (M(+A(-1))(pro)), both at a resolution of 2.00 Angstroms, in space group P4(3)2(1)2: one unbound and one bound by a substrate-like aza-peptide epoxide (APE). In the unbound form, the active sites and the S1 specificity pockets of both protomers of M(+A(-1))(pro) are observed in a collapsed (catalytically incompetent) conformation; whereas they are in an open (catalytically competent) conformation in the APE-bound form. The observed conformational flexibility of the active sites and the S1 specificity pockets suggests that these parts of M(pro) exist in dynamic equilibrium. The structural data further suggest that the binding of APE to M(pro) follows an induced-fit model. The substrate likely also binds in an induced-fit manner in a process that may help drive the catalytic cycle.

  12. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    PubMed Central

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo[a]pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz[a]anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure. PMID:3392204

  13. Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen

    DOE PAGES

    Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.; ...

    2017-03-28

    Here, the ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml –1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s –1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participationmore » in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation.« less

  14. Stable and solubilized active Au atom clusters for selective epoxidation of cis-cyclooctene with molecular oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Linping; Wang, Zhen; Beletskiy, Evgeny V.

    Here, the ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml –1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s –1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participationmore » in the cycle. Spectroscopic characterization suggests that 7–8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation.« less

  15. Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B{sub 1} carcinogenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, T.E.; Stewart, R.K.; Daniels, J.M.

    Aflatoxin B{sub 1} (AFB{sub 1}) is a fungal toxin that has been implicated as a causative agent in human hepatic and extrahepatic carcinogenesis. In this review, the mechanisms involved in AFB{sub 1} toxicity are delineated, in order to describe the features that make a specific cell, tissue, or species susceptible to the mycotoxin. Important considerations include: (i) different mechanisms for bioactivation of AFB{sub 1} to its ultimate carcinogenic epoxide metabolite; (ii) the balance between bioactivation to and detoxification of the epoxide; (iii) the interaction of AFB{sub 1} epoxide with DNA and the mutational events leading to neoplastic transformation; (iv) themore » role of cytotoxicity in AFB{sub 1} carcinogenesis; (v) the significance of nonepoxide metabolites in toxicity; and (vi) the contribution of mycotoxin-unrelated disease processes. Although considerable controversy remains about the importance of specific events, a great deal has been learned about biochemical and molecular actions of AFB{sub 1}. 157 refs., 4 figs., 1 tab.« less

  16. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    PubMed Central

    Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul

    2012-01-01

    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943

  17. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants.

    PubMed

    Goss, Reimund; Greifenhagen, Anne; Bergner, Juliane; Volke, Daniela; Hoffmann, Ralf; Wilhelm, Christian; Schaller-Laudel, Susann

    2017-04-01

    A special domain of the thylakoid membrane of higher plants has been isolated which carries out the de-epoxidation of the xanthophyll cycle pigment violaxanthin to zeaxanthin. Recent models indicate that in the chloroplast of higher plants, the violaxanthin (V) cycle takes place within specialized domains in the thylakoid membrane. Here, we describe a new procedure to directly isolate such a domain in functional state. The procedure consists of a thylakoid membrane isolation at a pH value of 5.2 which realizes the binding of the enzyme V de-epoxidase (VDE) to the membrane throughout the preparation process. Isolated thylakoid membranes are then solubilized with the very mild detergent n-dodecyl α-D-maltoside and the pigment-protein complexes are separated by sucrose gradient ultracentrifugation. The upper main fraction of the sucrose gradient represents a V cycle domain which consists of the major light-harvesting complex of photosystem II (LHCII), a special lipid composition with an enrichment of the galactolipid monogalactosyldiacylglycerol (MGDG) and the VDE. The domain is isolated in functional state as evidenced by the ability to convert the LHCII-associated V to zeaxanthin. The direct isolation of a V cycle domain proves the most important hypotheses concerning the de-epoxidation reaction in intact thylakoid membranes. It shows that the VDE binds to the thylakoid membrane at low pH values of the thylakoid lumen, that it binds to membrane regions enriched in LHCII, and that the domain contains high amounts of MGDG. The last point is in line with the importance of the galactolipid for V solubilisation and, by providing inverted hexagonal lipid structures, for VDE activity.

  18. Physicochemical characterization and toxicity of decursin and their derivatives from Angelica gigas.

    PubMed

    Mahat, Bimit; Chae, Jung-Woo; Baek, In-Hwan; Song, Gyu-Yong; Song, Jin-Sook; Cho, Seong-Kwon; Kwon, Kwang-Il

    2012-01-01

    Angelica gigas NAKAI is used to treat dysmenorrhea, amenorrhea, menopause, abdominal pain, injuries, migraine, and arthritis. The present study provided a physicochemical and toxicological characterization of compounds in A. gigas NAKAI (decursin, decursinol angelate, diketone decursin, ether decursin, epoxide decursin and oxim decursin). Diketone decursin (173.16 μg/mL) and epoxide decursin (122.12 μg/mL) exhibited >100 μg/mL kinetic solubility after applying nephelometry, suggesting a highly soluble compound. The Student’s t-test revealed significant differences in the pKa ranges of the compounds by automatic titration from capillary electrophoresis (p<0.05). Diketone decursin, epoxide decursin and oxim decursin might be formulated into an oral dosage form (log P: 0-3) by an automatic titration analysis. A parallel artificial membrane permeability assay demonstrated permeability coefficients of <10 x 10⁻⁶ cm/s for all of the compounds, suggesting poor permeability. Ether decursin exhibited a toxic effect after being applied to mouse (NIH 3T3, EC₅₀: 57.9 μM) and human (HT-29, EC₅₀: 36.1 μM; Hep-G2, EC₅₀: 4.92 μM) cells. Additionally, epoxide and oxim decursin were toxic through acute oral toxicity (four and three deaths of Institute of Cancer Research (ICR) mice) and mutation toxicity testing by applying Salmonella typhimurium cells with and without S9. Although diketone decursin exhibited less permeability, it is potentially valuable pharmacological compound that should be investigated.

  19. Effect of coexposure to asbestos and kerosene soot on pulmonary drug-metabolizing enzyme system.

    PubMed Central

    Arif, J M; Khan, S G; Mahmood, N; Aslam, M; Rahman, Q

    1994-01-01

    This article reports the effect of coexposure to Indian chrysotile asbestos (5 mg/rat) and kerosene soot (5 mg/rat) on the pulmonary phase I and phase II drug-metabolizing enzymes 1, 4, 8, 16, 30, 90, and 150 days after a single intratracheal inoculation. Exposure to soot resulted in a significant induction of the pulmonary microsomal cytochrome P450 and the activity of dependent monooxygenase, benzo(a)pyrene (B[a]P) hydroxylase, and epoxide hydrase at all time intervals. On the other hand, the cytosolic glutathione S-transferase (GST) activity was induced at days 1, 4, 8, 16, and 30 after exposure, followed by inhibition in the enzyme activity. In contrast, chrysotile exposure depleted cytochrome P450, B[a]P hydroxylase, epoxide hydrase, and GST at initial stages, while all these parameters except GST were induced at later stages. However, coexposure to chrysotile and soot led to a significant inhibition in the cytochrome P450 levels, activities of B[a]P hydroxylase, epoxide hydrase, and GST at initial stages of exposure. At advanced stages, however, an additional increase in cytochrome P450, B[a]P hydroxylase, and epoxide hydrase but a decrease in GST was observed. These results clearly show that the intratracheal coexposure to high levels of asbestos and kerosene soot alters the metabolic activity of the lung, which is turn may retain toxins in the system for a longer period, resulting in adverse pathological disorders. PMID:7882926

  20. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype

    PubMed Central

    Dalli, Jesmond; Zhu, Min; Vlasenko, Nikita A.; Deng, Bin; Haeggström, Jesper Z.; Petasis, Nicos A.; Serhan, Charles N.

    2013-01-01

    Maresins are produced by macrophages from docosahexaenoic acid (DHA) and exert potent proresolving and tissue homeostatic actions. Maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid) is the first identified maresin. Here, we investigate formation, stereochemistry, and precursor role of 13,14-epoxy-docosahexaenoic acid, an intermediate in MaR1 biosynthesis. The 14-lipoxygenation of DHA by human macrophage 12-lipoxygenase (hm12-LOX) gave 14-hydro(peroxy)-docosahexaenoic acid (14-HpDHA), as well as several dihydroxy-docosahexaenoic acids, implicating an epoxide intermediate formation by this enzyme. Using a stereo-controlled synthesis, enantiomerically pure 13S,14S-epoxy-docosa-4Z,7Z,9E,11E,16Z,19Z-hexaenoic acid (13S,14S-epoxy-DHA) was prepared, and its stereochemistry was confirmed by NMR spectroscopy. When this 13S,14S-epoxide was incubated with human macrophages, it was converted to MaR1. The synthetic 13S,14S-epoxide inhibited leukotriene B4 (LTB4) formation by human leukotriene A4 hydrolase (LTA4H) ∼40% (P<0.05) to a similar extent as LTA4 (∼50%, P<0.05) but was not converted to MaR1 by this enzyme. 13S,14S-epoxy-DHA also reduced (∼60%; P<0.05) arachidonic acid conversion by hm12-LOX and promoted conversion of M1 macrophages to M2 phenotype, which produced more MaR1 from the epoxide than M1. Together, these findings establish the biosynthesis of the 13S,14S-epoxide, its absolute stereochemistry, its precursor role in MaR1 biosynthesis, and its own intrinsic bioactivity. Given its actions and role in MaR1 biosynthesis, this epoxide is now termed 13,14-epoxy-maresin (13,14-eMaR) and exhibits new mechanisms in resolution of inflammation in its ability to inhibit proinflammatory mediator production by LTA4 hydrolase and to block arachidonate conversion by human 12-LOX rather than merely terminating phagocyte involvement.—Dalli, J., Zhu, M., Vlasenko, N. A., Deng, B., Haeggström, J. Z., Petasis, N. A., Serhan, C. N. The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H) and shifts macrophage phenotype. PMID:23504711

  1. Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes.

    PubMed

    Li, Xiu-Yuan; Li, Yong-Zhi; Yang, Yun; Hou, Lei; Wang, Yao-Yu; Zhu, Zhonghua

    2017-11-30

    The first strontium-based MOF possessing polar tubular channels embedded with a high density of open Lewis acidic metal sites and basic oxalamide groups was constructed, which shows not only a high CO 2 and C 2 H 6 adsorption capability and significant selectivity for CO 2 over both CH 4 and CO, and for C 2 H 6 over CH 4 , but also size-selective chemical conversion of CO 2 with epoxides producing cyclic carbonates under ambient conditions.

  2. A practical deca-gram scale ring expansion of (R)-(-)-carvone to (R)-(+)-3-methyl-6-isopropenyl-cyclohept-3-enone-1.

    PubMed

    Alves, Leandro de C; Desiderá, André L; de Oliveira, Kleber T; Newton, Sean; Ley, Steven V; Brocksom, Timothy J

    2015-07-28

    A route to enantiopure (R)-(+)-3-methyl-6-isopropenyl-cyclohept-3-enone-1, an intermediate for terpenoids, has been developed and includes a highly chemo- and regioselective Tiffeneau-Demjanov reaction. Starting from readily available (R)-(-)-carvone, this robust sequence is available on a deca-gram scale and uses flow chemistry for the initial epoxidation reaction. The stereochemistry of the addition of two nucleophiles to the carbonyl group of (R)-(-)-carvone has been determined by X-ray diffraction studies and chemical correlation.

  3. Concurrent Cooperativity and Substrate Inhibition in the Epoxidation of Carbamazepine by Cytochrome P450 3A4 Active Site Mutants Inspired by Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major human P450 responsible for the metabolism of carbamazepine (CBZ). To explore the mechanisms of interactions of CYP3A4 with this anticonvulsive drug, we carried out multiple molecular dynamics (MD) simulations, starting with the complex of CYP3A4 manually docked with CBZ. On the basis of these simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, and A370L, in which the productive binding orientation was expected to be stabilized, thus leading to increased turnover of CBZ to the 10,11-epoxide product. In addition, we generated CYP3A4 mutant S119A as a control construct with putative destabilization of the productive binding pose. Evaluation of the kinetics profiles of CBZ epoxidation demonstrate that CYP3A4-containing bacterial membranes (bactosomes) as well as purified CYP3A4 (wild-type and mutants I369L/F) exhibit substrate inhibition in reconstituted systems. In contrast, mutants S119A and A370V/L exhibit S-shaped profiles that are indicative of homotropic cooperativity. MD simulations with two to four CBZ molecules provide evidence that the substrate-binding pocket of CYP3A4 can accommodate more than one molecule of CBZ. Analysis of the kinetics profiles of CBZ metabolism with a model that combines the formalism of the Hill equation with an allowance for substrate inhibition demonstrates that the mechanism of interactions of CBZ with CYP3A4 involves multiple substrate-binding events (most likely three). Despite the retention of the multisite binding mechanism in the mutants, functional manifestations reveal an exquisite sensitivity to even minor structural changes in the binding pocket that are introduced by conservative substitutions such as I369F, I369L, and A370V. PMID:25545162

  4. Concurrent cooperativity and substrate inhibition in the epoxidation of carbamazepine by cytochrome P450 3A4 active site mutants inspired by molecular dynamics simulations.

    PubMed

    Müller, Christian S; Knehans, Tim; Davydov, Dmitri R; Bounds, Patricia L; von Mandach, Ursula; Halpert, James R; Caflisch, Amedeo; Koppenol, Willem H

    2015-01-27

    Cytochrome P450 3A4 (CYP3A4) is the major human P450 responsible for the metabolism of carbamazepine (CBZ). To explore the mechanisms of interactions of CYP3A4 with this anticonvulsive drug, we carried out multiple molecular dynamics (MD) simulations, starting with the complex of CYP3A4 manually docked with CBZ. On the basis of these simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, and A370L, in which the productive binding orientation was expected to be stabilized, thus leading to increased turnover of CBZ to the 10,11-epoxide product. In addition, we generated CYP3A4 mutant S119A as a control construct with putative destabilization of the productive binding pose. Evaluation of the kinetics profiles of CBZ epoxidation demonstrate that CYP3A4-containing bacterial membranes (bactosomes) as well as purified CYP3A4 (wild-type and mutants I369L/F) exhibit substrate inhibition in reconstituted systems. In contrast, mutants S119A and A370V/L exhibit S-shaped profiles that are indicative of homotropic cooperativity. MD simulations with two to four CBZ molecules provide evidence that the substrate-binding pocket of CYP3A4 can accommodate more than one molecule of CBZ. Analysis of the kinetics profiles of CBZ metabolism with a model that combines the formalism of the Hill equation with an allowance for substrate inhibition demonstrates that the mechanism of interactions of CBZ with CYP3A4 involves multiple substrate-binding events (most likely three). Despite the retention of the multisite binding mechanism in the mutants, functional manifestations reveal an exquisite sensitivity to even minor structural changes in the binding pocket that are introduced by conservative substitutions such as I369F, I369L, and A370V.

  5. Recents patents in the use of peroxidases.

    PubMed

    Alvarado, Berenize; Torres, Eduardo

    2009-01-01

    Peroxidases are hemoenzymes with a wide range of applications, from fine chemical synthesis to environmental biocatalysis. These outstanding biocatalysts are able to catalyze reactions such as heteroatom oxidation (N- and S-oxidation), epoxidation, hydroxylation, and the oxidation of alcohols and indole, often giving high yields and enantiomeric excess values. This makes these biocatalysts very useful for application to several biotechnological processes. In this paper, recent advances and patents surrounding the use of peroxidases are reviewed, covering different aspects related to the applications of peroxidases and the modifications carried out to improve their functionality as biocatalysts.

  6. Functionalized Carbon Nanotubes in Modified Plant Oil Composites.

    NASA Astrophysics Data System (ADS)

    McAninch, Ian M.; Wool, Richard P.

    2007-03-01

    Carbon nanotubes (CNTs) with their impressive mechanical properties are ideal reinforcement material. Acrylated epoxidized soy oil (AESO) has been previously shown to have favorable interactions with carbon nanotubes; however a mixture of aggregates and dispersed tubes were found even at low CNT concentrations. In order to prevent re-aggregation, the CNTs were functionalized with a 10 carbon long aliphatic chain. These aliphatic chains are similar to the fatty acids that make up soy oil. Functionalization was verified using XPS and IR spectroscopy. These functionalized CNTs were dispersed by mechanical shear mixing into AESO both with and without styrene as a comonomer. No large aggregates were observed in the liquid, uncured, samples or in the final cured composites. Dispersion in the solid composites was verified using optical and electron microscopy. Better dispersion also resulted in improved mechanical properties.

  7. Catalysts for CO2/epoxide ring-opening copolymerization

    PubMed Central

    Trott, G.; Saini, P. K.; Williams, C. K.

    2016-01-01

    This article summarizes and reviews recent progress in the development of catalysts for the ring-opening copolymerization of carbon dioxide and epoxides. The copolymerization is an interesting method to add value to carbon dioxide, including from waste sources, and to reduce pollution associated with commodity polymer manufacture. The selection of the catalyst is of critical importance to control the composition, properties and applications of the resultant polymers. This review highlights and exemplifies some key recent findings and hypotheses, in particular using examples drawn from our own research. PMID:26755758

  8. Co(III)(salen)-catalyzed phenolic kinetic resolution of two stereocentered benzyloxy and azido epoxides: its application in the synthesis of ICI-118,551, an anti-hypertensive agent.

    PubMed

    Karabal, Pratibha U; Kamble, Dayanand A; Sudalai, Arumugam

    2014-04-21

    The salen Co(III)-catalyzed phenolic kinetic resolution of racemic anti- or syn-azido and benzyloxy epoxides provides a practical route to a range of enantioenriched anti- or syn-1-aryloxy-3-azido or benzyloxy-2-alcohols in excellent yields and ees. The synthetic potential of this protocol is illustrated with an enantioselective synthesis of ICI-118,551, a β-blocker, in a highly optically pure form (99% ee).

  9. One-Pot Conversion of Epoxidized Soybean Oil (ESO) into Soy-Based Polyurethanes by MoCl₂O₂ Catalysis.

    PubMed

    Pantone, Vincenzo; Annese, Cosimo; Fusco, Caterina; Fini, Paola; Nacci, Angelo; Russo, Antonella; D'Accolti, Lucia

    2017-02-21

    An innovative and eco-friendly one-pot synthesis of bio-based polyurethanes is proposed via the epoxy-ring opening of epoxidized soybean oil (ESO) with methanol, followed by the reaction of methoxy bio-polyols intermediates with 2,6-tolyl-diisocyanate (TDI). Both synthetic steps, methanolysis and polyurethane linkage formation, are promoted by a unique catalyst, molybdenum(VI) dichloride dioxide (MoCl₂O₂), which makes this procedure an efficient, cost-effective, and environmentally safer method amenable to industrial scale-up.

  10. Quantum chemical study of the mechanism of action of vitamin K epoxide reductase (VKOR)

    NASA Astrophysics Data System (ADS)

    Deerfield, David, II; Davis, Charles H.; Wymore, Troy; Stafford, Darrel W.; Pedersen, Lee G.

    Possible model, but simplistic, mechanisms for the action of vitamin K epoxide reductase (VKOR) are investigated with quantum mechanical methods (B3LYP/6-311G**). The geometries of proposed model intermediates in the mechanisms are energy optimized. Finally, the energetics of the proposed (pseudo-enzymatic) pathways are compared. We find that the several pathways are all energetically feasible. These results will be useful for designing quantum mechanical/molecular mechanical method (QM/MM) studies of the enzymatic pathway once three-dimensional structural data are determined and available for VKOR.

  11. The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts.

    PubMed

    Wróblewska, Agnieszka

    2014-11-28

    Limonene belongs to a group of very important intermediates used in the production of fine chemicals. This monoterpene compound can be obtained from peels of oranges or lemon which are a (biomass) waste from the orange juice industry. Thus, limonene is a renewable, easy available and a relatively cheap compound. This work presents preliminary studies on the process of limonene epoxidation over zeolite type catalysts such as: TS-1 and Ti-SBA-15. In these studies methanol was used as a solvent and as an oxidizing agent a 60 wt % hydrogen peroxide solution was applied. The activity of each catalyst was investigated for four chosen temperatures (0 °C, 40 °C, 80 °C and 120 °C). The reaction time was changed from 0.5 to 24 h. For each catalyst the most beneficial conditions (the appropriate temperature and the reaction time) have been established. The obtained results were compared and the most active catalyst was chosen. These studies have also shown different possible ways of limonene transformation, not only in the direction of 1,2-epoxylimonene and its corresponding diol, but also in direction of carveol, carvone and perillyl alcohol-compounds with a lot of applications. The possible mechanisms of formation of the allylic oxidation products were proposed.

  12. Mesoporous silica originating from a gaseous ammonia epoxide ring opening and the thermodynamic data on some divalent cation adsorptions.

    PubMed

    Sales, José A A; Petrucelli, Giovanni C; Oliveira, Fernando J V E; Airoldi, Claudio

    2007-11-15

    An organofunctionalized mesoporous HMS-like compound has been synthesized by reacting the silylating agent 3-glycidoxypropyltrimethoxysilane with gaseous ammonia. The reaction path leads to the opening of the three membered epoxide ring to incorporate ammonia to give the modified silylating agent. This new silylating agent was used to synthesize a mesostructure inorganic-organic hybrid through the neutral template directing agent, dodecylamine, using a co-condensation process, and exploring the ability of the silicon source tetraethoxysilane. The final solid named HMS-NH has been characterized through elemental analysis, X-ray powder diffraction, nitrogen gas adsorption, infrared spectroscopy and solid state NMR for the 29Si nucleus. An amount of 1.06+/-0.10 mmol of pendant groups is covalently bonded to the inorganic backbone. The attached basic centers adsorbed divalent cations to give the maxima adsorption capacity of 0.74+/-0.03, 0.55+/-0.06, 0.53+/-0.05 and 0.51+/-0.06 mmolg(-1) for copper, nickel, zinc and cobalt, respectively. From calorimetric determinations the quantitative thermal effects for all these cation/basic center interactions gave exothermic enthalpy, negative Gibbs free energy and positive entropy. These thermodynamic data confirmed the energetically favorable condition of such interactions at the solid/liquid interface for all systems.

  13. Chirality transition in the epoxidation of (-)-alpha-pinene and successive hydrolysis studied by Raman optical activity and DFT.

    PubMed

    Qiu, Shi; Li, Guanna; Liu, Peng; Wang, Changhao; Feng, Zhaochi; Li, Can

    2010-03-28

    Characterization of the chirality evolution involved in chemical and biochemical reaction processes is extremely important to the understanding of the chiral catalysis mechanism. In this work, the chiral transition from the epoxidation of (-)-alpha-pinene to alpha-pinene oxide and successive hydrolysis to (-)-pinanediol has been studied as an archetype of the asymmetric catalysis by Raman optical activity (ROA) and the DFT calculation. Minor changes of the absolute configuration of the chiral products from (-)-alpha-pinene to (-)-pinanediol lead to the dramatic variation in ROA spectra indicating that the chirality is delocalized in the whole molecule rather than only concentrated on the chiral centers. The oxygen atom of alpha-pinene oxide contributes strong ROA signals while the two hydroxyl groups of (-)-pinanediol give no apparent contribution to the chirality in terms of ROA signals. Isolation of the two symmetric anisotropic invariants shows that the predominant contribution to the ROA signals stems from the electric dipole-magnetic dipole invariant, and the bond polarizability model is indeed found to be a good approximation for molecules composed of entirely axially-symmetric bonds in alpha-pinene oxide and (-)-pinanediol. This study demonstrates the feasibility of using ROA to sensitively monitor the variation of the chirality transition during the chiral reactions either in the chemical or biological system.

  14. Benzylpyrazinium Salts as Photo-Initiators in the Polymerization of Epoxide Monomers

    PubMed Central

    Kim, Moon Suk; Lee, Sang Bong

    2014-01-01

    In order to study the capability of pyrazinium salt derivatives to act as photo-initiators of epoxide monomers, benzyl pyrazinium hexafluoroantimonate (BPH), benzyl 3,5-dimethyl pyrazine hexafluoroantimonate (BDH) and benzyl quinoxalinium hexafluoroantimonate (BQH) were synthesized by the Menschutkin reaction of benzyl bromide with pyrazine, 2,6-dimethyl pyrazine, and quinoxaline, followed by exchanging with hexafluoroantimonate (SbF6). BPH, BDH, and BQH exhibited characteristic ultraviolet (UV) absorbance as well as exothermic peaks as a function of irradiation time in a differential photo-calorimeter (DPC). In the absence of photo-irradiation, cyclohexene oxide (CHO) underwent slow polymerization at 25 °C using BPH derivatives, but quantitative conversion was achieved even after a 5-min photo-irradiation. In addition, photo-irradiation was required for the photo-polymerization of CHO and styrene oxide (STO), which was characterized by a short induction period followed by a very rapid and exothermic polymerization. While glycidyl methyl ether (GME) required long induction periods, glycidyl phenyl ether (GPE) underwent rather slow and/or no photo-polymerization. The reactivity order of the monomers was CHO > STO >> GME >>> GPE, and the reactivity order for the photo-polymerization of CHO was BPH > BQH > BDH. It was found that BPH, BDH, and BQH could serve as photo-latent initiators for CHO, STO and GME, respectively. PMID:28788147

  15. Benzylpyrazinium Salts as Photo-Initiators in the Polymerization of Epoxide Monomers.

    PubMed

    Kim, Moon Suk; Lee, Sang Bong

    2014-07-31

    In order to study the capability of pyrazinium salt derivatives to act as photo-initiators of epoxide monomers, benzyl pyrazinium hexafluoroantimonate (BPH), benzyl 3,5-dimethyl pyrazine hexafluoroantimonate (BDH) and benzyl quinoxalinium hexafluoroantimonate (BQH) were synthesized by the Menschutkin reaction of benzyl bromide with pyrazine, 2,6-dimethyl pyrazine, and quinoxaline, followed by exchanging with hexafluoroantimonate (SbF₆). BPH, BDH, and BQH exhibited characteristic ultraviolet (UV) absorbance as well as exothermic peaks as a function of irradiation time in a differential photo-calorimeter (DPC). In the absence of photo-irradiation, cyclohexene oxide (CHO) underwent slow polymerization at 25 °C using BPH derivatives, but quantitative conversion was achieved even after a 5-min photo-irradiation. In addition, photo-irradiation was required for the photo-polymerization of CHO and styrene oxide (STO), which was characterized by a short induction period followed by a very rapid and exothermic polymerization. While glycidyl methyl ether (GME) required long induction periods, glycidyl phenyl ether (GPE) underwent rather slow and/or no photo-polymerization. The reactivity order of the monomers was CHO > STO > GME > GPE, and the reactivity order for the photo-polymerization of CHO was BPH > BQH > BDH. It was found that BPH, BDH, and BQH could serve as photo-latent initiators for CHO, STO and GME, respectively.

  16. Inhibition of Smooth Muscle Proliferation by Urea-Based Alkanoic Acids via Peroxisome Proliferator-Activated Receptor α–Dependent Repression of Cyclin D1

    PubMed Central

    Ng, Valerie Y.; Morisseau, Christophe; Falck, John R.; Hammock, Bruce D.; Kroetz, Deanna L.

    2007-01-01

    Objective Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and the role of PPARα in smooth muscle cell proliferation. Methods and Results Alkanoic acids transactivated PPARα, induced binding of PPARα to its response element, and significantly induced the expression of PPARα-responsive genes, showing their function as PPARα agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor–induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARα expression, it was determined that PPARα was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. Conclusions These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARα. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation. PMID:16917105

  17. Computer-Aided Design and Computer-Aided Manufacturing Hydroxyapatite/Epoxide Acrylate Maleic Compound Construction for Craniomaxillofacial Bone Defects.

    PubMed

    Zhang, Lei; Shen, Shunyao; Yu, Hongbo; Shen, Steve Guofang; Wang, Xudong

    2015-07-01

    The aim of this study was to investigate the use of computer-aided design and computer-aided manufacturing hydroxyapatite (HA)/epoxide acrylate maleic (EAM) compound construction artificial implants for craniomaxillofacial bone defects. Computed tomography, computer-aided design/computer-aided manufacturing and three-dimensional reconstruction, as well as rapid prototyping were performed in 12 patients between 2008 and 2013. The customized HA/EAM compound artificial implants were manufactured through selective laser sintering using a rapid prototyping machine into the exact geometric shapes of the defect. The HA/EAM compound artificial implants were then implanted during surgical reconstruction. Color-coded superimpositions demonstrated the discrepancy between the virtual plan and achieved results using Geomagic Studio. As a result, the HA/EAM compound artificial bone implants were perfectly matched with the facial areas that needed reconstruction. The postoperative aesthetic and functional results were satisfactory. The color-coded superimpositions demonstrated good consistency between the virtual plan and achieved results. The three-dimensional maximum deviation is 2.12 ± 0.65  mm and the three-dimensional mean deviation is 0.27 ± 0.07  mm. No facial nerve weakness or pain was observed at the follow-up examinations. Only 1 implant had to be removed 2 months after the surgery owing to severe local infection. No other complication was noted during the follow-up period. In conclusion, computer-aided, individually fabricated HA/EAM compound construction artificial implant was a good craniomaxillofacial surgical technique that yielded improved aesthetic results and functional recovery after reconstruction.

  18. The mechanism of epoxide carbonylation by [Lewis Acid]+[Co(CO)4]- catalysts.

    PubMed

    Church, Tamara L; Getzler, Yutan D Y L; Coates, Geoffrey W

    2006-08-09

    A detailed mechanistic investigation of epoxide carbonylation by the catalyst [(salph)Al(THF)2]+ [Co(CO)4]- (1, salph = N,N'-o-phenylenebis(3,5-di-tert-butylsalicylideneimine), THF = tetrahydrofuran) is reported. When the carbonylation of 1,2-epoxybutane (EB) to beta-valerolactone is performed in 1,2-dimethoxyethane solution, the reaction rate is independent of the epoxide concentration and the carbon monoxide pressure but first order in 1. The rate of lactone formation varies considerably in different solvents and depends primarily on the coordinating ability of the solvent. In mixtures of THF and cis/trans-2,5-dimethyltetrahydrofuran, the reaction is first order in THF. From spectroscopic and kinetic data, the catalyst resting state was assigned to be the neutral (beta-aluminoxy)acylcobalt species (salph)AlOCH(Et)CH2COCo(CO)4 (3a), which was successfully trapped with isocyanates. As the formation of 3a from EB, CO, and 1 is rapid, lactone ring closing is rate-determining. The favorable impact of donating solvents was attributed to the necessity of stabilizing the aluminum cation formed upon generation of the lactone.

  19. A PLS-based extractive spectrophotometric method for simultaneous determination of carbamazepine and carbamazepine-10,11-epoxide in plasma and comparison with HPLC

    NASA Astrophysics Data System (ADS)

    Hemmateenejad, Bahram; Rezaei, Zahra; Khabnadideh, Soghra; Saffari, Maryam

    2007-11-01

    Carbamazepine (CBZ) undergoes enzyme biotransformation through epoxidation with the formation of its metabolite, carbamazepine-10,11-epoxide (CBZE). A simple chemometrics-assisted spectrophotometric method has been proposed for simultaneous determination of CBZ and CBZE in plasma. A liquid extraction procedure was operated to separate the analytes from plasma, and the UV absorbance spectra of the resultant solutions were subjected to partial least squares (PLS) regression. The optimum number of PLS latent variables was selected according to the PRESS values of leave-one-out cross-validation. A HPLC method was also employed for comparison. The respective mean recoveries for analysis of CBZ and CBZE in synthetic mixtures were 102.57 (±0.25)% and 103.00 (±0.09)% for PLS and 99.40 (±0.15)% and 102.20 (±0.02)%. The concentrations of CBZ and CBZE were also determined in five patients using the PLS and HPLC methods. The results showed that the data obtained by PLS were comparable with those obtained by HPLC method.

  20. Epoxide hydrolase Lsd19 for polyether formation in the biosynthesis of lasalocid A: direct experimental evidence on polyene-polyepoxide hypothesis in polyether biosynthesis.

    PubMed

    Shichijo, Yoshihiro; Migita, Akira; Oguri, Hiroki; Watanabe, Mami; Tokiwano, Tetsuo; Watanabe, Kenji; Oikawa, Hideaki

    2008-09-17

    Polyether metabolites are an important class of natural products. Although their biosynthesis, especially construction of polyether skeletons, attracted organic chemists for many years, no experimental data on the enzymatic polyether formation has been obtained. In this study, a putative epoxide hydrolase gene lsd19 found on the biosynthetic gene cluster of an ionophore polyether lasalocid was cloned and successfully overexpressed in Escherichia coli. Using the purified Lsd19, a proposed substrate, bisepoxyprelasalocid, and its synthesized analogue were successfully converted into lasalocid A and its derivative via a 6-endo-tet cyclization mode. On the other hand, treatment of the bisepoxide with trichloroacetic acid gave isolasalocid A via a 5-exo-tet cyclization mode. Therefore, the enzymatic conversion observed in this study unambiguously showed that the bisepoxyprelasalocid is an intermediate of the lasalocid biosynthesis and that Lsd19 catalyzes the sequential cyclic ether formations involving an energetically disfavored 6-endo-tet cyclization. This is the first example of the enzymatic epoxide-opening reactions leading to a polyether natural product.

  1. Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis.

    PubMed

    Babu, Robin; Roshan, Roshith; Kathalikkattil, Amal Cherian; Kim, Dong Woo; Park, Dae-Won

    2016-12-14

    A dual-porous, three-dimensional, metal-organic framework [Zn 4 O(2,6-NDC)(BTB) 4/3 ] (MOF-205, BET = 4200 m 2 /g) has been synthesized using microwave power as an alternative energy source for the first time, and its catalytic activity has been exploited for CO 2 -epoxide coupling reactions to produce five-membered cyclic carbonates under solvent-free conditions. Microwave synthesis was performed at different time intervals to reveal the formation of the crystals. Significant conversion of various epoxides was obtained at room temperature, with excellent selectivity toward the desired five-membered cyclic carbonates. The importance of the dual porosity and the synergistic effect of quaternary ammonium salts on efficiently catalyzed CO 2 conversion were investigated using various experimental and physicochemical characterization techniques, and the results were compared with those of the solvothermally synthesized MOF-205 sample. On the basis of literature and experimental inferences, a rationalized mechanism mediated by the zinc center of MOF-205 for the CO 2 -epoxide cycloaddition reaction has been proposed.

  2. Irreversible covalent modification of type I dehydroquinase with a stable Schiff base.

    PubMed

    Tizón, Lorena; Maneiro, María; Peón, Antonio; Otero, José M; Lence, Emilio; Poza, Sergio; van Raaij, Mark J; Thompson, Paul; Hawkins, Alastair R; González-Bello, Concepción

    2015-01-21

    The irreversible inhibition of type I dehydroquinase (DHQ1), the third enzyme of the shikimic acid pathway, is investigated by structural, biochemical and computational studies. Two epoxides, which are mimetics of the natural substrate, were designed as irreversible inhibitors of the DHQ1 enzyme and to study the binding requirements of the linkage to the enzyme. The epoxide with the S configuration caused the covalent modification of the protein whereas no reaction was obtained with its epimer. The first crystal structure of DHQ1 from Salmonella typhi covalently modified by the S epoxide, which is reported at 1.4 Å, revealed that the modified ligand is surprisingly covalently attached to the essential Lys170 by the formation of a stable Schiff base. The experimental and molecular dynamics simulation studies reported here highlight the huge importance of the conformation of the C3 carbon of the ligand for covalent linkage to this type of aldolase I enzyme, revealed the key role played by the essential His143 as a Lewis acid in this process and show the need for a neatly closed active site for catalysis.

  3. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P.; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  4. Protective Effect of Fucoxanthin Isolated from Laminaria japonica against Visible Light-Induced Retinal Damage Both in Vitro and in Vivo.

    PubMed

    Liu, Yixiang; Liu, Meng; Zhang, Xichun; Chen, Qingchou; Chen, Haixiu; Sun, Lechang; Liu, Guangming

    2016-01-20

    With increasingly serious eye exposure to light stresses, such as light-emitting diodes, computers, and widescreen mobile phones, efficient natural compounds for preventing visible light-induced retinal damages are becoming compelling needs in the modern society. Fucoxanthin, as the main light absorption system in marine algae, may possess an outstanding bioactivity in vision protection because of its filtration of blue light and excellent antioxidative activity. In this work, both in vitro and in vivo simulated visible light-induced retinal damage models were employed. The in vitro results revealed that fucoxanthin exhibited better bioactivities than lutein, zeaxanthin, and blueberry anthocyanins in inhibiting overexpression of vascular endothelial growth factor, resisting senescence, improving phagocytic function, and clearing intracellular reactive oxygen species in retinal pigment epithelium cells. The in vivo experiment also confirmed the superiority of fucoxanthin than lutein in protecting retina against photoinduced damage. This excellent bioactivity may be attributed to its unique structural features, including allenic, epoxide, and acetyl groups. Fucoxanthin is expected to be an important ocular nutrient in the future.

  5. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    NASA Astrophysics Data System (ADS)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  6. In-situ preparation of functionalized molecular sieve material and a methodology to remove template.

    PubMed

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-10

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  7. Bioluminescence as the Basis for the Detection of Trichothecenes

    DTIC Science & Technology

    1986-03-17

    screened for their ability to quench bioluminescence were obtained through the courtesy of Dr. Lou Carson, of the Toxicology Division of the Food and...34 Recent Adv. Phytochem . 9, 167 (1974). 13. Lyman, J. and Fleming, R.H., "Composition of Seawater," J. Mar. Res. 3, 134 (1940). 14. Mayer, C.F., "Endemic...DIELDRIN Cl CI Cl~c C 1 2I• HEPTACHLOR EPOXIDE OCTACHLOR EPOXIDE "Fig. 11 - Pesticides screened for ability to quench bioluminescence Ir £ d, PF K.I IR 10 R 125 - I ’S * N 586 9 -q

  8. Pesticide contamination of endangered gray bats and their food base in Boone County, Missouri, 1982

    USGS Publications Warehouse

    Clawson, R.L.; Clark, D.R.

    1989-01-01

    Gray bat guano from Devil's Icebox and Hunters Caves contained dieldrin at levels previously associated with gray bat mortality. Two of four gray bats found dead in Holton Cave had lethal brain concentrations of dieldrin. Twenty-five of 28 (86%) insect samples from bat foraging areas contained measurable dieldrin, heptachlor epoxide or both. Beetle samples were most heavily contaminated containing up to 2.2 ppm and 1.1 ppm heptachlor epoxide. The addition of Holton Cave brings to five the number of Missouri caves where gray bats have died of food chain pesticide poisoning.

  9. Curing agent for polyepoxides and epoxy resins and composites cured therewith. [preventing carbon fiber release

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D. (Inventor)

    1981-01-01

    A curing for a polyepoxide is described which contains a divalent aryl radical such as phenylene a tetravalent aryl radical such as a tetravalent benzene radical. An epoxide is cured by admixture with the curing agent. The cured epoxy product retains the usual properties of cured epoxides and, in addition, has a higher char residue after burning, on the order of 45% by weight. The higher char residue is of value in preventing release to the atmosphere of carbon fibers from carbon fiber-epoxy resin composites in the event of burning of the composite.

  10. Titanocene(III) chloride mediated radical-induced addition to Baylis-Hillman adducts: synthesis of (E)- and (Z)-trisubstituted alkenes and alpha-methylene/arylidene delta-lactones.

    PubMed

    Mandal, Samir K; Paira, Moumita; Roy, Subhas C

    2008-05-16

    Baylis-Hillman adduct underwent smooth radical-induced condensation with activated bromo compounds and epoxides using titanocene(III) chloride (Cp2TiCl) as the radical generator. The reactions of activated bromo compounds with 3-acetoxy-2-methylene alkanoates provided (E)-alkenes exclusively, whereas similar reactions with 3-acetoxy-2-methylenealkanenitriles led to (Z)-alkenes as the major product. The reactions of epoxides with Baylis-Hillman adduct furnished alpha-methylene/arylidene-delta-lactones in good yield via addition followed by in situ lactonization.

  11. [Epoxide acrylate maleic resin and hydroxyapatite composite material as a bone graft substitute in surgical correction of orbital reconstruction].

    PubMed

    Mu, X; Dong, J; Wang, W

    1995-11-01

    This paper illustrates the results of surgical correction in 11 cases with orbital deformities such as periorbital deficiency after orbitotomy for retinoblastoma and orbital malposition after facial trauma. EH composite material, mixture of hydroxyapatite and epoxide acrylate maleic resin in constant proportion, was used as a good bone graft substitute in all 11 cases. This material was easier to be molded during surgery, safe to human body, had no toxic effects, no irritation and no implant-related complications. The early results obtained in these patients are encouraging.

  12. Prilezhaev dihydroxylation of olefins in a continuous flow process.

    PubMed

    van den Broek, Bas A M W; Becker, René; Kössl, Florian; Delville, Mariëlle M E; Nieuwland, Pieter J; Koch, Kaspar; Rutjes, Floris P J T

    2012-02-13

    Epoxidation of both terminal and non-terminal olefins with peroxy acids is a well-established and powerful tool in a wide variety of chemical processes. In an additional step, the epoxide can be readily converted into the corresponding trans-diol. Batch-wise scale-up, however, is often troublesome because of the thermal instability and explosive character of the peroxy acids involved. This article describes the design and semi-automated optimization of a continuous flow process and subsequent scale-up to preparative production volumes in an intrinsically safe manner. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Surface Science and the Advancement of Direct Olefin Epoxidation A Perspective on the Article, ‘‘Partial Oxidation of Higher Olefins on Ag(111) and Ag(110): Conversion of Styrene to Styrene Oxide, Benzene, and Benzoic Acid’’, by Andreas Klust and Robert J. Madix.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barteau, Mark A.

    2006-10-04

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Few reactions are as conceptually simple or as devilishly difficult as the epoxidation of ethylene to form ethylene oxide:

  14. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide.

    PubMed

    Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K

    2014-02-01

    Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Studies toward brevisulcenal F via convergent strategies for marine ladder polyether synthesis.

    PubMed

    Katcher, Matthew; Jamison, Timothy F

    2018-03-15

    Shortly after the initial isolation of marine ladder polyether natural products, biomimetic epoxide-opening cascade reactions were proposed as an efficient strategy for the synthesis of these compounds. However, difficulties in assembling the cascade precursors have limited the realization of these cascades. In this report, we describe strategies that provide convergent access to cascade precursors via regioselective allylation and efficient fragment coupling. We then investigate epoxide-opening cascades promoted by strong bases for the formation of fused tetrahydropyrans. These strategies are evaluated in the context of the synthesis of rings CDEFG of brevisulcenal F.

  16. Taxonomic and functional assignment of cloned sequences from high Andean forest soil metagenome.

    PubMed

    Montaña, José Salvador; Jiménez, Diego Javier; Hernández, Mónica; Angel, Tatiana; Baena, Sandra

    2012-02-01

    Total metagenomic DNA was isolated from high Andean forest soil and subjected to taxonomical and functional composition analyses by means of clone library generation and sequencing. The obtained yield of 1.7 μg of DNA/g of soil was used to construct a metagenomic library of approximately 20,000 clones (in the plasmid p-Bluescript II SK+) with an average insert size of 4 Kb, covering 80 Mb of the total metagenomic DNA. Metagenomic sequences near the plasmid cloning site were sequenced and them trimmed and assembled, obtaining 299 reads and 31 contigs (0.3 Mb). Taxonomic assignment of total sequences was performed by BLASTX, resulting in 68.8, 44.8 and 24.5% classification into taxonomic groups using the metagenomic RAST server v2.0, WebCARMA v1.0 online system and MetaGenome Analyzer v3.8 software, respectively. Most clone sequences were classified as Bacteria belonging to phlya Actinobacteria, Proteobacteria and Acidobacteria. Among the most represented orders were Actinomycetales (34% average), Rhizobiales, Burkholderiales and Myxococcales and with a greater number of sequences in the genus Mycobacterium (7% average), Frankia, Streptomyces and Bradyrhizobium. The vast majority of sequences were associated with the metabolism of carbohydrates, proteins, lipids and catalytic functions, such as phosphatases, glycosyltransferases, dehydrogenases, methyltransferases, dehydratases and epoxide hydrolases. In this study we compared different methods of taxonomic and functional assignment of metagenomic clone sequences to evaluate microbial diversity in an unexplored soil ecosystem, searching for putative enzymes of biotechnological interest and generating important information for further functional screening of clone libraries.

  17. Synthesis, characterization and catalytic activity of novel large network polystyrene-immobilized organic bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassi, Marco; Bartollini, Elena; Adriaensens, Peter

    2015-12-07

    In view of searching for efficient polymeric supports for organic bases to be used in environmentally friendly reaction conditions, novel gel-type cross-linked polystyrenes functionalized with diethylamine and 1,5,7-triazabicyclo[4.4.0]dec-5-ene, have been prepared. Moreover, the structural properties and morphology of these catalysts have been determined by extensive solid state NMR experiments, FTIR spectroscopy and SEM/TEM microscopy. SPACeR-supported bases were found to exhibit high catalytic activity in the epoxide ring opening by phenols. Finally, a range of β-substituted alcohols have been readily and regioselectively synthesized.

  18. Effect of green tea catechins and hydrolyzable tannins on benzo[a]pyrene-induced DNA adducts and structure-activity relationship.

    PubMed

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C

    2010-04-19

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)-DNA adducts and the possible structure-activity relationship. BP (1 microM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1-200 microM) or vehicle. The purified DNA was analyzed by (32)P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC(50) = 16 microM) > epicatechin gallate (24 microM) > epigallocatechin (146 microM) > epicatechin (462 microM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC(50) = 4 microM) and pentagalloglucose (IC(50) = 26 microM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 microM) in the presence of test compounds (200 microM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography-mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP-DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is higher with an increasing number of functional hydroxyl groups.

  19. Effect of Green Tea Catechins and Hydrolyzable Tannins on Benzo[a]pyrene-Induced DNA Adducts and Structure–Activity Relationship

    PubMed Central

    Cao, Pengxiao; Cai, Jian; Gupta, Ramesh C.

    2016-01-01

    Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)–DNA adducts and the possible structure–activity relationship. BP (1 μM) was incubated with rat liver microsomes and DNA in the presence of the test compound (1–200 μM) or vehicle. The purified DNA was analyzed by 32P-postlabeling. The inhibitory activity of the catechins was in the following descending order: epigallocatechin gallate (IC50 = 16 μM) > epicatechin gallate (24 μM) > epigallocatechin (146 μM) > epicatechin (462 μM), suggesting a correlation between the number of adjacent aromatic hydroxyl groups in the molecular structure and their potencies. Tannic acid (IC50 = 4 μM) and pentagalloglucose (IC50 = 26 μM) elicited as much DNA adduct inhibitory activity as the catechins or higher presumably due to the presence of more functional hydroxyl groups. To determine if the activity of these compounds was due to direct interaction of phenolic groups with electrophilic metabolite(s) of BP, DNA was incubated with anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (anti-BPDE) (0.5 μM) in the presence of test compounds (200 μM) or vehicle. Significant inhibition of DNA adduct formation was found (tannic acid > pentagalloglucose > epigallocatechin gallate > epicatechin gallate). This notion was confirmed by analysis of the reaction products of anti-BPDE with the catechins and pentagalloglucose by electrospray ionization mass spectrometry and liquid chromatography–mass spectrometry. In conclusion, our data demonstrate that green tea catechins and the hydrolyzable tannins are highly effective in inhibiting BP–DNA adduct formation at least, in part, due to direct interaction of adjacent hydroxyl groups in their structures and that the activity is higher with an increasing number of functional hydroxyl groups. PMID:20218540

  20. Determination of mineral oil aromatic hydrocarbons in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection - Evaluation of automated removal strategies for biogenic olefins.

    PubMed

    Nestola, Marco; Schmidt, Torsten C

    2017-07-07

    The determination of mineral oil aromatic hydrocarbons (MOAH) in foodstuffs gained in importance over the last years as carcinogenicity cannot be excluded for certain MOAH. The existence of olefins in foodstuffs, such as edible oils and fats, can be problematic for the determination of MOAH by LC-GC-FID. Removal of these interfering substances by HPLC based on polarity differences is not possible. During gas chromatographic separation heavily overloaded peaks are observed rendering the detection of small mineral oil contaminations almost impossible. Therefore, removal of these olefins is necessary before subjection of the sample to LC-GC-FID. Epoxidation of olefins to increase their polarity proved to be a valuable tool in the past. Precision and trueness of the results as shown in a collaborative trial, however, are relying on exact reaction conditions. Additionally, it is known that certain MOAH are oxidized during epoxidation and therefore get lost. In the scope of this work, hydroboration, bromohydrin reaction, and epoxidation were examined for their potential for derivatization of unsaturated hydrocarbons with increased robustness and higher recovery of MOAH. Epoxidation by meta-chloroperoxybenzoic acid (mCPBA) delivered the best removal of olefins. Factors influencing this reaction were enlightened. Adaption of the reaction conditions and time-controlled automation increased the recovery of polycyclic MOAH. Good precision (RSD r <1.5%) and recovery (95-102%) for MOAH were also observed for sunflower and olive oils spiked with a lubricating mineral oil (at 24.5mg/kg of MOAH). The trueness of the method was verified by analyzing collaborative trial samples. Copyright © 2017 Elsevier B.V. All rights reserved.

Top